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GAIN: DISTRIBUTED ARRAY COMPUTATION WITH PYTHON

Abstract

by Jeffrey Alan Daily, M.S.
Washington State University
May 2009

Chair: Robert R. Lewis

Scientific computing makes use of very large, multidimenaimumerical arrays —
typically, gigabytes to terabytes in size — much larger ttemfit on even the largest
single compute node. Such arrays must be distributed aartdsster” of nodes.

Global Arrays is a cluster-based software system from BatRacific Northwest
National Laboratory that enables an efficient, portabld,@arallel shared-memory
programming interface to manipulate these arrays. Writtemd for the C and
FORTRAN programming languages, it takes advantage of pagfermance cluster
interconnections to allow any node in the cluster to accass ah any other node very
rapidly.

The “numpy” module is the de facto standard for numericatwaition in the
Python programming language, a language whose use is gyoapndly in the scientific
and engineering communities. numpy provides a powerfuliedsional array class as
well as other scientific computing capabilities. Howevie the majority of the core
Python modules, numpy is inherently serial.

Our system, GAIN (Global Arrays in NumPy), is a parallel exdi®on to Python that
accesses Global Arrays through numpy. This allows panalteessing and/or larger prob-

lem sizes to be harnessed almost transparently within ne@xisting numpy programs.
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CHAPTER ONE

INTRODUCTION

Scientific computing with Python typically involves usingetNumPy package. NumPy
provides an efficient multi-dimensional array and arraycpesing routines. Unfortunately,
like many Python programs, NumPy is serial in nature. Thrgt§ both the size of the
arrays as well as the speed with which the arrays can be peté&sthe available resources
on a single compute node.

NumPy programs are written, debugged, and run on single imegh This may be
sufficient for certain problem domains. However, NumPy nlag e used to develop pro-
totype software. Such software is usually ported to a difiercompiled language and/or
explicitly parallelized to take advantage of additionaldveare.

GAIN is an extension to Python and provides parallel, distied processing of arrays.
It implements a subset of the NumPy API so that for some progréy simply importing
gain in place ofnumpy they may be able to take advantage of parallel processimg aut
matically. Other programs may require slight modificatidhis allows those programs to
take advantage of the additional cores available on singiepate nodes and to increase
problem sizes by distributing across clustered envirorimen

Chapter 2 provides all of the background information neagst understand GAIN.
Chaptper 3 highlights systems similar to GAIN. Chapter 4dbss all of the subsystems
and concepts that went into GAIN. Chapter 5 briefly documt#mslifficulties encountered
while carrying out the design. Chapter 6 evaluates the padace of GAIN compared to
NumPy as well as other attempts to make NumPy more efficidmpter 7 concludes and

Chapter 8 describes how GAIN can be extended or used as tissobasture research.



CHAPTER TWO

BACKGROUND

Like any complex piece of software, GAIN builds on many otfemdational ideas and
implementations. This background is not intended to be apbete reference of the sub-
jects herein, rather only what is necessary to understandekign and implementation of

GAIN. Further details may be found by examining the refeesnar as otherwise noted.

2.1 Python

Python[28, 46] is a machine-independent, bytecode indéedr object-oriented program-
ming (OOP) language. It can be used for rapid applicatioreldgment, shell scripting,
or scientific computing to name a few. It gives programmeis emmd users the ability to
extend the language with new features or functionality. hSextensions can be written
in C[45], C++[15], FORTRAN[36], or Python. It is also a highihtrospective language,
allowing code to examine various features of the Pythorrpméer at run-time and adapt

as needed.

2.1.1 Operator Overloading

User-defined classes may implement special methods thahaneinvoked by built-in
Python functions. This allows any user-defined class to \aelike Python built-in ob-
jects. For example, if a class defineden__ () it will be called by the built-inen()
There are special methods for object creation, deletidnbate access, calling objects as
functions, and making objects act like Python sequencegsnma numbers. Classes need

only implement the appropriate overloaded operators.



2.1.2 object construction

User-defined classes control their instance creation @sihgr the overloaded new_ () ,
__init__() ,orboth. _new__ () is a special-cased static method that takes the class
of which an instance was requested as its first argument. $t neturn a class instance,
but it need not be an instance of the class that was requds$tednew__ () returns an
instance of the requested class, then the instancést () is called. If some other
class instance is returned, theninit__ () is not called on that instance. new__ ()

was designed to allow for subclasses of Python’s immutgiplestbut can be used for other

purposes.

2.1.3 Slicing

Python supports two types of built-in sequences, immutabtémutable. The immutable
sequences are tlstring s,unicode s, andtuple s while the only mutable type is the
list . Python sequences generally support access to their itentsacket “[]” notation
and accept either an integemwhere0 <= k < N andN is the length of the sequence,
or aslice object. Out-of-bounds indices will result in an error, hewenegative indices
are supported by the built-in Python sequences by caloglatifsets from the end of the
sequence. It is up to the implementing class whether to stupggative indices when
overloading the sequence operators.

slice objects are used for describiegtended slice syntaslice objects describe
the beginning, end, and increment of a subsequence viatéine , stop , andstep
attributes, respectively. Wheslice s are used within the bracket notation, they can be
represented by using thstice() constructor or as colon-separated values. The start
value is inclusive of its index while the stop value is not.tHé start value is omitted it
defaults to 0. Similarly, stop defaults to the length of teguence and step defaults to 1.

Theslice can be used in lieu of an index for accessing a subsequenbe sktjuence



object. Slicing a built-in Python sequence always returm®py of the returned subse-
guence. User-defined classes are free to abandon that ¢immveRurther,slice s that
are out-of-bounds will silently return an in-bounds seqgewhich is different behavior
than simple single-item indexing.

To illustrate both index andlice  access to Python sequences assume we have the
list ofint sA=[0,1,2,3,4,5,6,7,8,9] . An example of single-item access would
beA[1]=1 . Usingslice syntaxwouldlooke liké\[1:2]=[1] . A negative single-item
index looks likeA[-1]=9 . Finally, an example oflice syntax that includes atep
is A[2:9:3]=[2,5,8] . Note in these examples how single-item access returirg an

whereas slicing notation returngist

2.1.4 Function Decorators

Everything in Python is almbject , including functions. That means functions can be
passed as arguments to other functions. This allows fumtio wrap other functions
quite easily and has always been available to the Pythorrgamoger. As of Python 2.4,
a function that takes another function as its first argumadtraturns a function is given
special importance asdecorator

Decorators allow a form of metaprogramming[37], allowingdtions to be wrapped
by one or more additional functions at the time of their défni. They are defined like any
other Python function. The decorator’s label is then placedediately above the function
to be decorated and denoted by the “@” symbol. Python usesatecs internally to im-
plement class and static metho@classmethod and @staticmethod respectively.
One use for decorators besides those already mentionedl weutor logging function
calls. Other uses might be to enforce the types of inputs augputs since Python is

dynamically typed. See the sample code in Appendix A.1 faritgl



def my_decorator(function_to_wrap):
def new_function():
print "Hello World"
return function_to_wrap
return new_function
@my_decorator
def function_getting_wrapped():
pass

Figure 2.1: Example of Python Function Decorators.

2.1.5 Bytecode

Python is a machine-independent bytecode-interpretepige. When a Python program
is written, the source code is compiled by Python into anrmégiate, internal Python
representation called bytecode. The bytecode is macholependent and consists of in-
structions for the Python interpreter to carry out. Thisslogide is cached as *.pyc or *.pyo
files so that running the same code is faster after the firs.tiBytecode can be exam-
ined or replaced at run-time. For a function, the bytecodectessible from the attribute
func_code as acode object . The returned object can be replaced with any other

code object , allowing functions to change their behavior at run-time.

2.1.6 Object Serialization

Many languages have the need for object serialization arsdalization. Serialization is
the process by which a class instance is transformed intthen@ften succinct, represen-
tation (like a byte stream) which can persist or be tranguahitit can then be de-serialized
back into its original object. This is also commonly knownraarshalling and unmar-
shalling. In Python this is also called pickling and unpicgl

pickle [28]is part of the Python Standard Library and can serialzarly everything
in Python. It is designed to be backwards compatible withexarersions of Python. Cer-

tain Python objects, such as modules or functions, areligedaby name only rather than



by their state. They can only be de-serialized so long asdimesnodule or function exists
within the scope where the de-serialization occurs. Themoiguarantee that the same
function will result from the de-serialization or that thenttion exists in that namespace.
There is another module for performing serialization achitearshal [28]. marshal
does not support as many classepakle nor is it version independent. However,
marshal supports serializing Python code objects wipilekle does not. Recall from
2.1.5 thatcode object s represent Python bytecode and are the instructions ofedeefin

functions. By using thenarshal module one can serialize Python functions.

2.1.7 ctypes

ctypes [46] is a Python module that allows functions in shared lilesto be called di-
rectly from Python. This allows libraries written in C to beapped in pure Python versus
other wrapping options[6]ctypes also has representations of the C data types which
are are more efficient yet less flexible than the Python Imslt- All functions called via
ctypes must have their parameters converted to one of these C daga.tyAutomatic
conversion is only available for integers and stringypes also exposes the otherwise
internal Python C-API to native Python prograntsypes became a part of the Python

Standard Library as of Python 2.5.

2.2 NumPy

numpy[32, 31] is a Python extension module which adds a powerfutidionensional
array classxdarray to the Python language. NumPy also provides scientific camgu
capabilities such as basic linear algebra and Fourierfsemssupport. NumPy is the de
facto standard for scientific computing in Python and theessor of the other numerical

Python packages Numarray[42] and numeric[2].



2.2.1 ndarray

The primary class defined by NumPy is th@array . Thendarray is implemented as

a contiguous memory segment that is either FORTRAN- or @edl Recall thatin FOR-
TRAN, the first dimension changes the fastest while it is thpasite (last) dimension in
C. All ndarray s have a pointer to the location of the first element as wehasttributes
shape , ndim, andstrides . ndim describes the number of dimensions in the array,
shape describes the number of elements in each dimensionstinids  describes the
number of bytes between consecutive elements per dimenstape can be modified
while ndim andstrides  are read-only and used internally, although their expogure
the programmer may help in developing certain algorithms.

The ndarray does not implement Python’s init_ () object constructor. In-
stead,ndarray s use the new__ () classmethod , treatingndarray s as if they
were immutable objects. Recall from 2.1.2thahew__ () is Python’s hook for subclass-
ing its built-in objects since otherwise theinit__ () method of the built-in’s subclass
would never be called. The creationmdarray s is complicated by the need to return
views of ndarray s that are alsmdarray s. However, due to the use of new_ () ,
subclasses afdarray would never get the chance to modify their attributes ducog-
struction.__array_finalize_ () is called instead of _init__ () for ndarray

subclasses to avoid this limitation.

2.2.2 Slicing

Unlike slicing with built-in Python sequences, slicing irulPy is performed per axis.
Each sliced axis is separated by commas within the usudkétraotation. Further, slicing
in NumPy produces “views” rather than copies of the origmddrray . If a copy of the
result is truly desired, it can be explicitly requested. sThllows operations on subarrays

without unnecessary copying of data. To the programmeéarray s behave the same



whether they are the result of a slicing operation. Viewshavadditional attributdase ,
assigned that points to thelarray that owns the data. The originatlarray ’s base
is None (effectively a null pointer.) When amdarray is sliced, the resultingdarray
may have differenshape , strides , andndim attributes appropriately. There is no
restriction on taking slices of already slicedarray s, either.

For example, the following array is a 3x4x5 array of integers. Zeros were prepended

to smaller numbers for clarity.

000 001 002 003 004| 100 101 102 103 104| 200 201 202 203 204
010 011 012 013 014| 110 111 112 113 114| 210 211 212 213 214
020 021 022 023 024| 120 121 122 123 124| 220 221 222 223 224

030 031 032 033 034 130 131 132 133 134| 230 231 232 233 234

Below is a sample of slicing notations and their resultsion
A0,2,4] = 024.

101 103
Al1,0:2,1:5:2] =
111 113

031 033 | 131 133 | 231 233
021 023 | 121 123 | 221 223

Al —1,1:5:2] =
011 013 111 113 211 213

001 003 | 101 103 | 201 203

There are a few special cases of slicing implemented by NurmRg form described
previously is standard slicing. NumPy also supports a forslicing calledfancy slicing
Fancy slicing allows othemdarray s to be used as the indices into other arrays so long
as they consist of integers or booleans. The result of imgewiith an integendarray

causes the resulting array to have the same shape as thamalewith its integer elements



replaced by their corresponding values in the array beidegxad. Indexing with a boolean

array causes the correspondingie elements to be selected.

2.2.3 Universal Functions

The element-wise operators in NumPy are knowbasersal Functionsor ufuncs Many

of the methods of thadarray simply invoke the corresponding ufunc. For example, the
operator+ callsndarray. _add__ () which invokes the ufunadd. Ufuncs are either
unary or binary, taking either one or two arrays as inpupeetvely. Ufuncs always return
the result of the operation as an array. Optionally, an autdit array may be specified to
receive the results of the operation. Specifying this ougstay to the ufunc avoids the
sometimes unnecessary creation of a new array.

Ufuncs are more than just callable functions. They also lsame special methods
such ageduce andaccumulate . reduce is similar to Python’s built-in function of
the same name that repeatedly applies a callable objestlasitresult and the next item of
the sequence. This effectively reduces a sequence to & sialgle. When applied to arrays
the reduction occurs along the first axis by default, but oéxes may be specified. Each
ufunc defines the function that is used for the reduction. éxample,add will sum the
values along an axis whileultiply  will generate the running producaccumulate
is similar toreduce , but it returns the intermediate results of the reduction.

Ufuncs can operate on objects that are mdrrays . In order for subclasses of the
ndarray or ndarray -like objects to utilize the ufuncs, they may define threehmet
ods and one attribute which are array_finalize () , __array_wrap__ () ,
__array__ () ,and__array priority , respectively. array wrap__ takes
anndarray as its only argument and expects a subclassafray to be returned. In
the case of binary ufuncs, the input arrays may be differebtlasses of thadarray

Since ufuncs return the baedarray as a result of their execution, array_wrap



is used to return a subclassradarray for the input array with the highest
__array_priority . If an object is specified to receive the results of the ufurat a
implements _array__ () ,the results from the ufunc will be written to the array retea

by that method.

2.2.4 Broadcasting

NumPy introduces the powerful feature of allowing otheemiscompatible arrays to be
used as operands in element-wise operations. If the nuniltBmensions do not match
for two arrays, 1's are repeatedly prepended to the shapeafrtay with the least number
of dimensions until theindim s match. Arrays are then broadcast-compatible (alsad-
castabl¢ if for each of their dimensions their shapes either matcbra of them is equal
to 1. For example, the shapgs 4, 5) and(2, 3, 4, 1) are broadcastable. In this way, scalars
can be used as operands in element-wise array operatiaresthiey will be broadcast to
match any other array. Broadcasting relies ondingles  attribute of thendarray . A
stride of O effectively causes the data for that dimensiaepeat, which is precisely what

happens when broadcasting occurs in element-wise arragtoges.

2.3 Parallel Programming Paradigms

Parallel applications can be classified into a few well defipeogramming paradigms.
Each paradigm is a class of algorithms that have the sameotstructure. The literature
differs in how these paradigms are classified and the boieslbetween paradigms can
sometimes be fuzzy or intentionally blended into hybrid eleff]. The Master/Slave and

SPMD paradigms are discussed further.

2.3.1 Master/Slave

The master/slave paradigm, also known as task-farmingheyeva single master process

farms out tasks to multiple slave processes. The controdays maintained by the master,

10



dispatching commands to the slaves. Usually, the commtioirciakes place only between
the master and slaves. This model may either use static @ngignoad-balancing. The
former involves the allocation of tasks to happen when tmemdation begins whereas the
latter allows the application to adjust to changing cowdisi within the computation. Dy-
namic load-balancing may involve recovering after theuf&lof a subset of slave processes

or handling the case where the number of tasks is not knowreattart of the application.

2.3.2 Single-Program Multiple-Data (SPMD)

With SPMD, each process executes essentially the same codmla different part of
the data. The communication pattern is highly structuretimedictable. Occasionally, a
global synchronization may be needed. The efficiency ofelygses of programs depends
on the decomposition of the data and the degree to which tteeislandependent of its
neighbors. These programs are also highly susceptibledeps failure. If any single
process fails, generally it causes deadlock since globallspnizations thereafter would

fail.

2.4 Message Passing Interface (MPI)

Message passing is one form of inter-process communicafaoh process is considered
to have access only to its local memory. Data is transferegd/iden processes by the
sending and receiving of messages which usually requisesdbperation of participating
processes. Communication can take the form of one-to-oree{@many, many-to-one, or
many-to-many.

Message passing libraries allow efficient parallel progrémbe written for distributed
memory systems. MPI[19], also known as MPI-1, is a librargcfication for message-
passing that was standardized in May 1994 by the MPI Forunis designed for high
performance on both massively parallel machines and onsiatikn clusters. An MPI

implementation exists on nearly all modern parallel systemd there are a number of

11



freely available, portable implementations for thoseesyst that do not[7]. As such, MPl is
the de facto standard for writing massively parallel aggilan codes in either FORTRAN,
C, or C++.

MPI programs are typically started with eith@pirun or mpiexec , specifying the
number of processes to invoke. If the MPI program is run wittibe use of those, then it
is run as if only one process was specified. Not all MPI impletagons support running
without the use of thenpirun or mpiexec programs. MPI programs can query their
environment to determine how many processes were specHigther, each process can
guery to determine which process they are out of the totalbmurspecified.

MPI programs are typically conform to the SPMD paradigm[Fhe mpiexec pro-
grams by default launch programs for this type of paralelig single program is specified
on the command line which gets replicated to all particigpfprocesses. This same pro-
gram is then executed within its own address space on eackgwosuch that any process
knows only its own data until it communicates with other meses, passing messages
(data) around. A “hello world” program executed in this fashwould print "hello world”

once per process.

241 MPI-2

The MPI-2 standard[20] was first completed in 1997 and addadmaber of important
additions to MPI including, but not limited to, process ¢ie@aand management, one-sided
communication, parallel file 1/0, and the C++ language bigdiWith MPI-2, any single
MPI process or group of processes can invoke additional M&tgsses. This is useful
when the total number of processes required for the probtemarad cannot be known a
priori.

Before MPI-2, all communication required explicit handshg between the sender

and receiver viaMPl_Send() andMPI_Recv() in addition to non-blocking variants.

12



MPI-2's one-sided communication model allows reads, writéend accumulates of remote
memory without the explicit cooperation of the process amgrthe memory. If synchro-
nization is required at a later time, it can be requestedAR4d Barrier() . Otherwise,
there is no strict guarantee that a one-sided operatioraritiplete before the data segment
it accessed is used by another process.

Parallel 1/0 in MPI-2, sometimes referred to as MPI-10, akofor single, collective
files to be output by an MPI process. Before MPI-IO, one suthnivodel for SPMD pro-
grams was to have each process write to its own file. Havinp paacess write to its
own file may be fast, however in most cases it requires sutistpost-processing in order
to stitch those files back together into a coherent, sintgadpresentation thus diminish-
ing the benefit of parallel computation. Other forms of patdfO before MPI-IO was
introduced included having all other processes send tla# t a single process for out-
put. However, any computational speed-ups from the pédisatieare reduced by having to
communicate all data back to a single node. MPI-1O hides ABanodel behind calls to
the API, allowing efficient I/O routines to be developed ipdedently of the calling MPI

programs. One such popular implementation of MPI-10 is ROML].

2.4.2 mpidpy

mpidpy is a Python wrapper around MPI written to mimic the damguage bindings.
It supports point-to-point communication as well as thdemive communication models.
Typical communication of arbitrary objects in the FORTRAN®bindings of MPI require

the programmer to define new MPI datatypes. These datatygseside the number and
order of the bytes to be communicated. On the other handgstgould be sent without
defining a new datatype so long as the length of the string wdsrstood by the recipient.
mpi4py is able to communicate amyckle able Python object singaickle d objects

are just byte streams. mpidpy also has special enhancemoeefficiently communicate

13



any object implementing Python’s buffer protocol, such asiRy arrays. It also supports

dynamic process management and parallel 1/0. [10, 9, 11]

2.5 Global Arrays (GA)

The GA toolkit[30, 29, 17] is a software system from BattéMacific Northwest National
Laboratory that enables an efficient, portable, and parsiiared-memory programming
interface to manipulate physically distributed dense idutensional arrays, without the
need for explicit cooperation by other processes. GA camgatits the message-passing
programming model and is compatible with MPI so that the pogner can use both in
the same program. The GA library handles the distributioarcdys across processes and
recognizes that accessing local memory is faster than sioggemote memory. However,
the library allows access mechanisms for any part of theeedistributed array regardless
of where its data is located. Local memory is acquiredN&A_Access() returning

a pointer while remote memory is retrieved W& A _Get() filling an already allocated
array buffer. GA has been leveraged in several large cortipotd chemistry codes and

has been shown to scale well.
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CHAPTER THREE

PREVIOUSWORK

GAIN is similar in many ways to other parallel computatiofita@re packages. It attempts
to leverage the best ideas for transparent, parallel psowpfound in current systems. The

following packages provided insight into how GAIN was to leveloped.

3.1 MiITMatlab

MITMatlab[24, 33] provides a client-server model for irdetive, large-scale scientific
computation. It does so by providing a transparently par&ibnt-end through the pop-
ular MATLAB[25] numerical package and sends the parallehpatations to its Parallel
Problem Server workhorse. Separating the interactiveglseature of MATLAB from the

parallel computation server allows the user to leveragh bbtheir strengths. This also
allows much larger arrays to be operated over than is alldweal single compute node.
MITMatlab does not allow parallel programs to run withou thottleneck imposed by the
client-server model because MATLAB is still run seriallyni the server is ever run in

parallel.

3.2 PyTrilinos

Trilinos[23] consists of a suite of related solvers built established libraries such as
PETSc[4, 3, 5], Aztec[44], BLAS[12], LAPACK[1], and othe&sd strives to make them
more capable, robust and user friendly. PyTrilinos[39k&atkhis a step further by wrap-
ping selected Trilinos packages in Python. This adds thgertdance and capabilities of
Python to many of the Trilinos features, such as its paraitel PyTrilinos supplements the
capabilities of SciPy[26] and NumPy[32] by providing a hdggree of compatibility with

those packages.
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3.3 GAMMA: Global Arrays Meets MATLAB

GAMMA[34] provides a MATLAB binding to the Global Arrays tdkit, thus allowing
for larger problem sizes and parallel computation. MATLABYides an interactive inter-
preter, however to fully utilize GAMMA one must run within agllel environment such
as provided by MPI and a cluster of compute nodes. GAMMA wasvshto scale well

even within an interpreted environment like MATLAB.

3.4 IPython and distarray

IPython[35] provides an enhanced interactive Python skeelivell as an architecture for
interactive parallel computing. IPython supports pralycall models of parallelism but
more importantly in an interactive way. For instance, algimgeractive Python shell could
be controlling a parallel program running on a super compuihis is done by having a
Python engine running on a remote machine which is able wved®ython commands.
distarray[18] is an experimental package for the IPythajpgut. distarray uses IPython’s

architecture as well as MPI extensively in order to look agel fike NumPy’sndarray

Only the SPMD model of parallel computation is supportedikerother parallel models
supported directly by IPython. Further, the status of diatais that of a proof of concept

and not production ready.

3.5 GpuPy

A Graphics Process Unit (GPU) is a powerful parallel proces$isat is capable of more
floating point calculations per second than a traditiondDGfowever, GPUs are more dif-
ficult to program and require other special consideratioich ®s copying data from main
memory to the GPU’s on-board memory in order for it to be pssed, then copying the
results back. The GpuPy[14, 13] Python extension packagedereloped to lessen these

burdens by providing a NumPy-like interface for the GPUliRr@ary results demonstrate
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considerable speedups for certain single-precision figgtoint operations.

3.6 pyGA

The Global Arrays toolkit was wrapped in Python for the 3.xiese of GA by Robert
Harrison[21]. It was written as a C extension to Python anly ewapped a subset of
the complete GA functionality. It illustrated some impattaoncepts such as the benefits
of integration with NumPy and the difficulty of compiling GAaertain systems.

In pyGA, the local or remote portions of the global arrays evestrieved as NumPy
arrays at which point they could be used as inputs to NumPgtifums like the ufuncs.
However, the burden was still on the programmer to undedstiam SPMD nature of the
program. For example, when accessing the global array aslamay , the array shape
and dimensions would match that of the local array mainthlmethe process calling the
access function. Such an implementation is entirely correxvever there was no attempt
to handle slicing at the global level as it is implemented imiNPy. In short, pyGA recog-
nized the benefit of returning portions of the global arragpped in a NumPy array, but it

did not treat the global arrays as if they were themselvedelass of thendarray
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CHAPTER FOUR

DESIGN

There comes a point at which a single compute node does nethavesources necessary
for executing a given problem. The need for parallel programg and running these pro-
grams on parallel architectures is obvious, however, efiity programming for a parallel
environment can be a daunting task. One area of researchaigamatically parallelize
otherwise serial programs and to do so with the least amdwsaw intervention.[7] GAIN
attempts to do this for certain Python programs utilizing NumPy module. It will be
shown that some NumPy program can be parallelized in a n&amgparent way with

GAIN and its multidimensional distributed array objgetinarray

4.1 Supporting Two User Communities

Both NumPy[32, 31] and Global Arrays[30, 29, 17] are welbdéished in their respective
communities. However, as stated in 1, NumPy is inherentlialseAlso, the size of its
arrays are limited by the resources of a single compute ndtlenPy’s computational
capabilities may be efficient, however parallelizing thesing the SPMD paradigm will
allow for larger problem sizes and may also see performaanesg This design attempts
to leverage the substantial work that is Global Arrays inpgupof large parallel array
computation within the NumPy framework.

Python is known for among other things its ease of use, eteganax, and its inter-
active interpreter. Python users would expect these chigebito remain intact for any
extension written for it. As discussed in Section 3.4, thghBn project is a good exam-
ple of supporting the interactive interpreter and paratghputation simultaneously[35].
Users familiar with NumPy would expect its syntax and semgarbd remain intact if large

parallel array computation were added to its feature set.
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High performance computing users are familiar with writocogles that optimize every
last bit of performance out of the system where they are arglvan. Although message-
passing is a useful and widely adopted computation modeb#&lArrays users have come
to appreciate the abstraction of a shared-memory intettaeedistributed memory array.
In either case, users are familiar with the challenges iraain maintaining scalability as
problem sizes increase or as additional hardware is addathtdning these codes may be
difficult if they are muddled with FORTRAN and/or C and varsomessage-passing API
calls. If one of these users were to switch to NumPy in ordésterage its strengths, they
would hope to not sacrifice the performance and scalabiigy bnce may have enjoyed.

Not all NumPy programs are suitable for parallel executitbrihe Python interpreter
is to be used interactively, or if the NumPy program has maderaptions about a single
process environment, there must be a separation betweleorlyinning as a single process
and a parallel back-end where the parallel computation ifopeed. For example, the
program might open a connection to a database. Doing so withphe processes and in
addition having each process make multiple updates to #itabdse would be disastrous.
Explicit knowledge on the user’s part of the parallel natof¢he execution environment
would be needed to mitigate database access.

Mitigating those NumPy programs unsuitable for paralled@iion can be handled by
utilizing master/slave parallelism. The master NumPy paogcould run as usual until
an expression was reached involvingainarray . This expression would then be sent
to the slave processes for execution. This strategy clesaparates the serial from the

parallel.

4.2 Global Arrays in Python

Robert Harrison’s work to wrap a subset of Global Arrays fiomality in the Python lan-

guage was successful[21]. However, it was our goal to makél@4ure Python extension
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module. Further, there may have been APl incompatibilietsveen the 3.x release of GA
and the current 4.x release series or the version of the NUBARP| used. Rather than
leverage the existing pyGA code, it was decided to leverageeist ideas and usgypes
to wrap what was needed from the Global Arrays toolkit.

Even though a compiled extension module generally perféastsr than its pure Python
counterpart, there were a number of benefits to writing atltee first version of GAIN
as pure Python. First and foremost it would require verielitd be installed by the end
user. Second, it leverages Python's strengths such aadalvdity, maintainability, and the
elimination of the need to compile machine code. It is beythredscope of this thesis to
compare the performance ofypes to a compiled extension, however if the need arose

it would only be a matter of time to write GAIN as a compiled Gension.

4.3 Whether to Subclass ndarray

Both NumPy and GA provide multidimensional arrays and impgat element-wise or
matrix operations, as well as linear algebra routines. Alth they have a number of
differences, the primary one is that NumPy programs runiwighsingle address space.
When manipulatingndarray s, thendarray s in their entirety are being manipulated in
a serial fashion. With Global Arrays, each process gets arsayp of the distributed array.

When translating from NumPy to Global Arrays, each processtriranslate NumPy
calls into calls with respect to their local array portiomie first thought would be to sim-
ply have thegainarray  subclass thedarray and implement the appropriate methods
by which the subclass could integrate with NumPy. HoweVerd are a few cases where
this would result in unwanted behavior.

One must be careful whether NumPy mechanisms may attemplbtat the entire
ndarray per process There are a few ways in whichdarray s are created, either

invoking thendarray constructor directly or one of the many array creation fioms.

20



It would be simple enough to replace all of the array creatioictions and override the
__new___ operator within thendarray subclass to appropriately handle the creation of
ourgainarray . However, the ufuncs present a challenge.

Thendarray methods used by the ufuncs are insufficient to handle thetduat
quired by ougainarray . An instance of our subclass both represents the entirg asra
well as its local portion, if any. The problem arises in theecaf inputs to binary ufuncs.
Take, for example, a binary ufunc suchadd. If a gainarray is input and andarray
is input, how should this be handled? For maximum computatiefficiency, only the
subarray represented by thainarray  should be operated over per process. The shape
of thegainarray is likely broadcastable with the shape of th@array , however, the
shape of the subarray of tlgainarray is certainly not so, not to mention broadcasting
a subarray to be compatible with the other input is illogiddie other input must then be
sliced to match that of the subarray.

The slicing of the othendarray input to match that of thgainarray ’s subarray
must happen as part of the call to the binary ufunc. NumPy basechanism to manip-
ulate the inputs to ufuncs. _array () and__array_wrap__ () only operate on
the output array, if specified. Therefore, the ufuncs musiviaped with functionality
that handles making amydarray s compatible with the subarrays of agginarray s
passed as arguments to ufuncs. Similarly, if yanarray s are used as inputs to a bi-
nary ufunc, their subarrays relevant to the calculatioreatdmust be made to match. This
is just one example where NumPy must be made to understandsthbuted nature of the
gainarray . Subclassingndarray in this case would not provide sufficient means to
handle the distributedainarray

The last case against subclassimtarray  is when the NumPy program is to be run
in the master/slave configuration. In this configurationewlagainarray is created,

it must communicate to the slaves to also creategdi@array  within their memory
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space. If thegainarray  subclassed thedarray then it would override _new__ () .
To initialize the data members that are defined byrttiarray.  new__ () , that class
method would also need to be called. That call would attempgtlbcate the memory for
thendarray . This would cause the distributgginarray to be allocated both within
the slaves as well as entirely on the master. There is no wayitialize the ndarray
members without allocating the array’s memory. Subclastfiendarray would make it
impossible to run GAIN in the master/slave configuration.

Rather than subclass thelarray , then, we must create ardarray work-alike re-
placement. Besides being impractical, such as in the nisistez configuration, there is
no benefit to subclassing tmelarray since the majority ohdarray attributes would
need to be replaced with GAIN-specific, distributed funa#lity. Further, not subclass-
ing thendarray ensures no memory will ever be allocated by any NumPy meshemni

inadvertently.

4.3.1 Utilizing both NumPy and Global Arrays

Regardless of whethegrainarray  subclassesdarray , memory will be allocated by
Global Arrays. This memory must be made available to NumPgdasray s. There
are a few ways of doing this, either from within NumPy’s C-Ad?Ifrom within Python.
ndarray s hold a pointer to a memory location representing the béginof the under-
lying C array. Using a pointer obtained from eitiéGA_Access() or NGA Get() is
relatively straightforward. Recall from 3.6 that pyGA uséamPy’s C-API in order to cre-
atendarray s in this way. However, NumPy does not expose those same eation
functions from within Python. Instead, a Python buffer @bjeust be created first and
then used as input to a specraarray creation function. However, creating buffer ob-
jects from C pointers is only possible from Python’s C-ARhankfully, Python'sctypes

module exposes Python’s C-API, so we can use it to create uftertobject which can
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then be passed to NumPy[22]. See the code sample in Appen2iifoAdetails.

There is a fair bit of overlap between NumPy and Global Arfaystionality including
certain element-wise operations and linear algebra stipporthe cases where overlap
occurs, we need to choose which library should implemeniithetionality. Using Global
Arrays directly might be faster since there would be no ogathin creating thedarray s
from the Global Arrays data pointers. However, it was naticea set of test programs
that the same program written using GA directly versus GAidbdpiced slightly different
results due to different round-off error between the two lenpentations. Even though
there are differences in the results, it might still be berfito use the Global Arrays
methods if there is a significant speedup, such as with thexmatiltiplication algorithm

used by GA[27].

4.3.2 Slicing

GAIN would be incomplete if it didn’t handle the slicing gainarray  s. NumPy extends

the functionality of slicing in a number of ways, as notediegrto include single-element

access, subarray slices, and indexing using other arragsh &e valuable in their own

right. All types of slicing operations utilize the same deaded operator _getitem___

and so are dispatched to appropriate handlers based omgtiraemts to this function.
Single-element access is the easiest to implement. Givielgke sndex in each dimen-

sion, the value can simply be retrieved using GRSA_Get() without regard to where

the actual data resides. This value can be directly returned

Simple Slicing

Subarray slices, also known as “simple slicing” in NumPypresent the more traditional
form of slicing. The slice itself can be a single Python ilites Ellipsis, or None object or
a sequence thereof. NumPy’s C-API provides a convenietgatan of routines for cal-

culating the number of dimensions, shape, strides, and meofifset of a newndarray

23



given an existingdarray and the slicing argument. These functions are not exposed to
Python, but their functionality is vital for maintainingetglobal view of the distributed
arrays. This and other functionality found in NumPy’s C-ARIk not in NumPy’s Python
interface must be ported to Python. Perhaps in the futusethenctions will be exposed
to Python directly without having to create and slicenalarray to get the same results.

Recall that simple slicing in NumPy produces nedarray s that are views of their
sliced originals. However, these views are still typeddarray s. Slicing in GAIN pro-
duces similar results. Slicinggainarray  will produce a newgainarray that shares
its memory with its original. The resultingginarray  will have its ownndim , shape ,
andstrides  arguments and itlsase attribute will refer to the originagjainarray

Global Arrays maintains information on both the global mdes of an array as well
as its distribution across processes. Therefore, theldavidbnegainarray instance per
process containing both information about the global aamyvell as that process’s local
distribution. Thegainarray = must behave as if it were ardarray , so it’s attributes
shape , strides , ndim, etc. will refer to the global representation of the arrayhai/
a slicing operation occurs, the local distribution infotioa does not change. It is only
when thegainarray is to be used in an expression that tidarray wrapper is pro-
duced. At that time, each process determines whether isteldcal portion of the sliced

gainarray , returning immediately if they don't.

Slice Arithmetic

As slices are taken from thgainarray  the underlying memory remains unchanged but
the view onto that memory changes. If a view of@narray = must be converted into
an ndarray , we must be able to reconstruct adarray with the correct shape and
data elements. Therefore, as slices are taken, the sligiagand is cached within the

gainarray . If a slice of a view is taken, the cached operand is furtheedlto reflect
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the new view which we caBlice arithmetic

4.4 Master/Slave Parallelism

It was mentioned in the opening of this chapter that mastedparallelism was needed for
those NumPy programs unsuitable for parallel executionelbas for supporting interac-
tive parallel programs via the interactive Python intetgreThe original program assumes
the role of the master while the parallel portions of the paog are sent to separate, par-
allel slaves. Unless the data being operated on alreadisenshe slaves, both data and
the function to operate on the data must be transmitted. donaglish this parallelism, we
need to use the process management features of the MPIiflcsgigm as well as a custom

pickle subclass.

4.4.1 Using MPI-2 and Spawn

MPI-2 added dynamic process management to the MPI spemficaihe function we
will use is MP1_Spawn which allows one group of processes to create another grbup o
processes. In our case the first group of processes will sibokthe single master pro-
cess. The number of slaves to spawn will be determined egther parameter from the
master’'s command-line invocation or from an external camégon file. mpi4dpy has an

implementation of the spawn function.

4.4.2 Serializing Python Functions

Telling the slaves what actions to perform could be accoshplil by establishing a com-
mand language. The commands would be sent from the masténemadhterpreted by the
slaves. The language would only consist of a certain set wihcands, likely pertaining

to either NumPy or GA operations. This sort of command lagguaight be needed for
languages like C or FORTRAN that are not interpreted, howeiece Python is already

an interpreted language it is itself the command languaagenk need. All we need, then,
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is a means of sending arbitrary objects and functions asauntands.

mpidpy makes this communication simpler since aigkle able object can be com-
municated. Thepickle operation is usually performed automatically impidpy , if
needed. Unfortunately, as stated earlier, a function’s bgtle is not pickled but rather its
name only. If we assumed that pickling functions by name veagtable, requiring the
slaves to run the same versions of the Python libraries (a@dPython interpreter itself,)
then we might be okay. However, the NumPy array creationtfondromfunction
accepts any user-defined function as an argument. Thatlefieed function would need
to be communicated to the slaves or disemfunction would need to create the ar-
ray on the master before sending it to the slaves. Furtharuger-defined function might
come from an interactive Python session as opposed to beittgwas part of a module
that could be imported by a slave.

pickle may not be sufficient for our function pickling needs, howahe marshal
module is able to serialize Python byte code. Unfortunatelyrshal does not share other
desirable features gickle  such as tracking objects that have already been serialized s
they won't be serialized again and support of more than hesbuilt-in Python types.

Our solution was to subclass thpeckle  machinery to add function marshalling.
Functions are like any other object in Python whose attedutan be inspected at run-
time. The important attributes of PythorfainctionType includefunc_globals
func_code , andfunc_defaults which represent the objects within the function’s
scope, the byte code of the function, and the default argtsrterthe function, respec-

tively. All three of those attributes are necessary andaafit to reconstruct a function.

4.4.3 Communication Protocol

The communication between the master and the slaves conéisto messages. The first

message is a one-to-many message from the master to the stavasting of the function
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to execute and the functions arguments. The second messagaany-to-one message
from the slaves to the master and consists of the functi@tigmed values. If the slave
encounters an exception (most likely some sort of evalnadroor), then the message will
contain the exception instance generated by the slave esShaay fail independently, so
there may be one or more exceptions within the message. Torteet, the entire message
must be scanned for exceptions.

Pickling a function for the master/slave configuration i perfect, however. If the
function being serialized is not a pure function, meanisgaiguments are passed by ref-
erence and manipulated within the function but not returtieeh the slaves will not com-
municate those arguments back to the master. Only the mgtieturned arguments will

be communicated back to the master.

4.5 Implicit versus Explicit Parallelism

GAIN will ultimately operate as a stand-alone SPMD program (explicitly parallel) or
as a master controlling an SPMD slave program (i.e. impfigarallel.) The factor that
decides which mode GAIN will be run under is whether GAIN igponted within a single
process. The MPI environment can be queried to determinerhamy processes were
requested for the current process. If only one process wpgested, GAIN will run in
the master/slave configuration. The user need not alter hdIM @& imported within their
programs since GAIN will determine at run-time which moddésired.

Whether GAIN is running explicitly or implicitly parallehoth modes will share a sig-
nificant amount of code. For most of GAIN’s functionalityetimaster simply needs to
communicate one of its own functions to the slaves. Rathaar tnplement two versions
of GAIN that are practically identical, GAIN will be impleméed as if it were only explic-
itly an SPMD program. Using Python’s function decorators\igs functionality will be

altered at import-time with proxied versions of its funciso
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GAIN NumPy
gainintlé | intl6
gainint32 | int32
gaininté4 | int64
gainfloat32| float32
gainfloat64| float64

Table 4.1: GAIN Data Types. These are the data types sugpaoyt&AiN and their NumPy
equivalents.

4.6 Using GAIN

Some of the goals of GAIN are to improve performance over Ny@Rd to require lit-
tle change to existing NumPy programs in order to use GAIN. $eame NumPy pro-
grams, the only change necessary is to chdrmge numpy tofrom gain orto change
import numpy toimport gain as numpy . Some programs may require specify-
ing thegain datatypes instead of the NumPy ones to functions takindtipe attribute.

Table 4.1 shows thgain types and their NumPy equivalent.
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CHAPTER FIVE

IMPLEMENTATION

The design discussed previously and its evaluation prograene implemented in approx-
imately 10000 lines of purely Python code. The C versionfiefavaluation programs are
the only exceptions to the pure Python target. The majofitie@design was implemented
without undue effort. The exceptional cases are listed inendetail in the following sec-

tions.

5.1 Accessing Global Arrays in Python

pyGA[21] recognized that wrapping memory returned fromlgldArrays within a NumPy
ndarray was the appropriate course of action. The pyGA distributicludes some sam-
ple code demonstrating calling NumPy ufuncsrafarray -wrapped GA memory. This
is important functionality, however, rather than approtmehproblem from the perspective
of having Global Arrays use NumPy, GAIN synergizes Globaikés and NumPy.

Rather than continue or adapt pyGA to the needs of GAIN, it thesauthor’s goal to
make GAIN a pure Python extension module. Even though a dethpktension module
should perform faster than its pure Python counterpartethvere a number of benefits to
writing at least the first version of GAIN in pure Python. Eimad foremost it would require
very little to be installed by the end user. Pure Python meslake by far the simplest to
install. Second, it leverages Python’s strengths suchsasdidability, maintainability, and
the elimination of the need to compile machine code. It ioinelthe scope of this thesis to
compare the performance ofypes to a compiled extension, however if the need arose
it would only be a matter of time to write GAIN as a compiled Gension.

As with pyGA, only a subset of the complete GA APl was portetie Bubset of GA

functionality wrapped usingtypes and bundled with GAIN could be used independently
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MA _init GA_Elem_minimum  NGA_Release

NGA_Access GA_Fill NGA_Release_update
GA _Add_constant NGA_Get GA_Scale
GA_Compare_distr ~ GA_Initialize NGA_Scatter
GA_Copy NGA_Inquire NGA_Select_elem

NGA_Create NGA_Locate region NGA_Strided get
GA_Destroy GA_Nnodes NGA_Strided_put

NGA_Distribution GA_Nodeid GA_Sync
GA_Duplicate NGA_Put GA_Terminate

Table 5.1: Subset of Global Arrays C-API wrapped with Pythatypes, in alphabetical
order.

of GAIN and may serve as the beginnings of a complete GA implaation for Python.
Functions were only wrapped on an as-needed basis untiluibbgesin Table 5.1 was
established. Historically, GA only supported two-dimemsil arrays. The two different
function prefixesGA_andNGA_are a result of maintaining backwards compatibility with
the original APl when the move was made to supporting aniigrdimensioned arrays.
Since GAIN's wrapper interface for GA need not be backwam®sgatible, the prefixes
were stripped from the function names and the remaininggdatie function name was
made lowercase. This follows Python naming conventionswidpped GA functionality
is now found in the modulga.

Althoughctypes makes it possible to call C functions directly from withintRgn, it
is not as simple as passing Python objects to C functions.ofhenative Python objects
that are directly supported astr andint . Most GA function calls require one or more
integer arrays. The GA functions that move data also requingters to data arrays. Rather
than force the caller of the GA functions to use ttgpes C data types for constructing
function arguments, Python sequences are converted atiieto the appropriate types. In
an effort to minimize the overhead of Python-to-C type cmarcin functions returning

values thectypes types are returned rather than converted back into Pythouresees.
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5.2 gainarray.flat

The Performance Python[38] test program to be discussed2inm@kes heavy use of
the flat  attribute on thegainarray . For anndarray , this attribute returns a 1-
dimensional view of the given array as @erator without copying data. This is no
problem for thendarray where all data for the array lives in a single address space. |
that case, only a pointer to the beginning of the originahamust be maintained as well
as the strides necessary to move between adjacent arragreterihe flat iterator may be
passed to NumPy functions just like any othéarray

For gainarray s, the problem is much more difficult. Though it would be pbkesi
to create arnterator for againarray , passing one to one of GAIN’s ufuncs would
be problematic. GAIN’s ufuncs expect to operate on theialguece of the input array.
An iterator argument would need to be split appropriately among the mamgesses.
Unfortunately, the memory that each process maintains tisLrdimensionally contigu-
ous. Instead, the low and high points defined by a subarrayspay across dimensions
discontiguously.

It was attempted tdlatten() the gainarray  rather than use theerator
approach, with just as poor results. Recall from the desighreshaping an array requires
a copy of the data since no such operation is implemented blyabArrays to redistribute
or reshape an array. Each process must fitatter() s its portion of the original array
into the flattened copy. This approach caused egregious cocations overhead.

Recognizing thaflat was used such that tigot function would operate element-
wise on two 2-dimensional inputs, the test program was obéig instead call the appro-
priatemultiply  andsumfunctions. To be fair, this change was also made to the aigin

laplace.py test program.
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5.3 Implicit versus Explicit Parallelism

When running explicitly parallel, alN processes run the same program and therefore func-
tion calls behave as for a serial program. When running icitpliparallel, the functions
are sent to the slaves but the result of executing the fumetiost be reduced down to as
single result to the master. If the functions that the imligparallelgainarray  proxies
return large objects, such as adarray , then it would be wasteful to send identical
results back to the master only to haVe— 1 discarded. As a solution, the primary slave
is the only slave that communicates actual results backetawhster. The remaining slaves
only communicate Pythonsone or an exception object, if one were to be raised by the
function. The protocol initially designed had all slavestounicating their results back to

the master, which was unnecessatry.
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CHAPTER SIX

EVALUATION

The success of GAIN hinges on its ability to enable disteldrray processing in NumPy,
to transparently enable this processing, and most impthytém efficiently accomplish
those goals. This chapter describes two benchmark codedoged to test GAIN and
reports on their performance. The programs were run on a genemus cluster of dual
3.2GHz P4 processors, 1GB main memory, using 1GBit Ethefi@®/IP socket commu-
nication, running Ubuntu 8.10. GAIN utilized 8 nodes of tHaster while NumPy and

others ran serially on a single node (as they must.)

6.1 distmap

The idea for the distmap program originated from Ben Eitz@rork on transparently using
GPUs within NumPy[13]. The program randomly distributesymon anV x N grid, then
calculates the distance from any grid cell to its nearesitpdi/hen the results map is writ-
ten as a gray image, it produces a pattern similar to soaplésibbhis algorithm is used,
for example, as part of the level set method[40] and it isuldef demonstrating relative
performance of the algorithm when implemented in variougswvén GpuPy, two versions
of the distmap program were written, one using GpuPy and tiier @sing NumPy. Simi-
larly for GAIN, there is a NumPy and a GAIN version of the disiprprogram.

For the first test, arvV x NV grid size was used wittV varying from 1000 to 5000 at
intervals of 1000. The results appear in Figure 6.1 below.

GAIN was not only able to scale better than NumPy, it also wae & run a larger
problem size than NumPy. AY = 8000, NumPy was unable to complete its task due to
memory swap thrashing. Even if it weren’t for the lack of mem&AiIN performed much

faster.
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6.2 Performance Python

Performance Python[38] “perfpy” was conceived to dematstthe ways Python can be
used for high performance computing. It evaluates NumPythadelative performance
of various Python extensions to NumPy including SciPy’s wee¢blitz and inline)[43],
Pyrex[16], and f2py[36]. It represents an important benatkrby which any additional
high performance numerical Python module should be medsurke original program
laplace.py  was modified by importingain instead ohumpy and then stripped of the
additional test codes so that oggin remained. The latter modification makes no impact
on the timing results since all tests are run independentiyas necessary becaugan

is run on multiple processes while the original test suiteigal. Recall from Chapter 5, the

original code was also modified to uswultiply ~ andsum instead of thdlat  attribute

Distance Map Running Times for N x N Grid

100

NumPy
—— GAIN

Running Time (minutes)

0.1 : :

Figure 6.1: Distance Map Running Times firx N Grid. This plot compares the running
times of the GAIN and NumPy implementations of the distaneg test. GAIN both scales
better than NumPy and exceeds beyond the limits of NumPsgeta problem size.
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Performance Python Running Times for N x N Grid

1000

4

. /,,./'*’GAiN-l —
~ GAIN-2 — ]
GAIN-4
GAIN-8
GAIN-16 —=—
pyrex —- |
fortran —e—
fastinline ——
inline
blitz
NumPy ————

100

Running Time (seconds)

2 2 %
% % %

Figure 6.2: Performance Python Running Timesfoix N Grid. This plot compares the
running times of GAIN and various NumPy or Python extensi@ga&iN was run using 1,
2, 4, 8, and 16 nodes. GAIN scales only as well as the best d¢ednijpnplementation but
does extend beyond the system resource limitations.
and thedot function. The results of running with the grid lengthvarying from 1000 to
5000 at intervals of 1000 appear in Figure 6.2. The data fgureéi 6.2 can be found in
Table 6.1.

Using 8 or more nodes, GAIN scaled better than NumPy and lisec just-in-time
compiled or pre-compiled codes. All codes appeared to sgafermly with each other.
GAIN was able to run much larger sizes@fwhile the other tests thrashed due to a lack of

memory. The perfpy code represents in general a more iealss case for GAIN whereas

the distmap program is idealized with very little commuima.
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Length GAIN-1 GAIN-2 GAIN-4 GAIN-8 GAIN-16 pyrex fortran ftinline inline blitz NumPy

1000 38 32 27 29 31 8 8 8 10 32 51
2000 144 100 66 55 47 44 45 45 54 178 223
3000 317 211 130 94 69 103 106 104 125 398 459
4000 555 366 217 149 98 177 183 180 217 684 841
5000 ? 570 326 217 135 267 276 270 325 997 7
6000 ? ? 468 300 181 372 7? ? ? ? ?
7000 ? ? 644 397 233 493 ? ? ? ? ?
8000 ? ? ? 511 295 ? ? ? ? ? ?
9000 ? ? ? 660 364 ? ? ? ? ? ?
10000 ? ? ? 800 445 ? ? ? ? ? ?

Table 6.1: Performance Python Results. GAIN was run usirj 4, 8, and 16 nodes. Times are in seconds. Missing values are
represented by a “?” and indicate thrashing during the test.



6.3 Implicit versus Explicit Parallelism

Using 8 processors, in the master/slave configuration titarte map program took ap-
proximately 15 seconds for a small test case while the SPMbiguration took approx-
imately 5 seconds. As expected, GAIN runs slower when intpliparallel in the mas-
ter/slave configuration than if it is run explicitly in SPMDatte. Profiling results show
that the majority of the time is spent communicating betwdenmaster and the slaves.
Even though an effort was made to reduce the number and simesgages communi-
cated, it was not enough. Other communication protocolvdsen the master and slaves

must be devised or the current protocol must be optimized.
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CHAPTER SEVEN

CONCLUSIONS

GAIN succeeds in its ability to grow problem sizes beyondmglse compute node, how-

ever its performance in all cases does not scale as anadip#t the case of the distance
map test, scalability across nodes was achieved. The peafare of the perfpy code leaves
room for improvement. As described in 4.6 GAIN allows certaasses of existing NumPy

programs to run using GAIN with sometimes as little efforichanging the import state-

ment, immediately taking advantage of the ability to run olwster environment. Further,

GAIN seamlessly allows parallel codes to be developedactarely. Once a smaller-sized

program has been developed and tested on a desktop compaotar,then be run on a

cluster with very little effort. GAIN provides the groundwkofor large distributed multidi-

mensional arrays within NumPYy.
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CHAPTER EIGHT

FUTURE WORK

GAIN is not a complete implementation of the NumPy API nor sldegepresent the only
way in which distributed arrays can be achieved for NumPye fidllowing sections de-
scribe some of NumPy’s important missing features withinikbAs well as discusses al-

ternative implementations for GAIN that would be worth exqptg further.

8.1 Missing Functionality

GAIN successfully implements all of the ufuncs, simpleisli; simple slice assignment,
and many of the array creation functions. This is only a subs¢he NumPy API and
really a small fraction of NumPy’s capabilities, many of waiicould benefit from similar
auto-parallelizing treatment. Notable missing featuneduide fancy slicing, binary ufunc
special methods such as reduce and accumulate, and lige@aral GAIN is certainly not
complete. Unlike GpuPy, missing functionality cannot adétféo a built-in NumPy routine.
This is due to thgainarray  not subclassing thedarray . NumPy simply would not
know how to handle this type. Unless NumPy’s ability to imttg with classes that do not
subclass thedarray is extended to support distributed arrays they will corgitmneed

to exist as work-alike replacements to NumPYy.

8.2 Linearization of the Underlying Multidimensional GillArray

The Global Arrays that make up the internals of gesnarray  are multidimensional.
This differs from NumPy, where the arrays are always repteskin memory as contigu-
ous memory segments. It was noted in a comparison of COA@RTRAN (CAF) and

Unified Parallel C (UPC) [8] that UPC suffered from perforroamproblems due to its lin-

earization of multidimensional arrays, its synchronizatmodel, and its communication
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efficiency for strided data, among other issues. Consideha performance penalties as-
sociated with linearizing multidimensional arrays withiPC, it is still worth exploring
whether GAIN would benefit from this one-dimensional apptoaince NumPy has used
this model successfully since its inception. Global Arrajready exposes a 64-bit inter-
face to allow for the large one-dimensional arrays that wdel required if this design were
attempted. Unfortunately, it would require a rewrite of ¢ GAIN since GAIN assumes

the multidimensional nature of the underlying Global Asaata.

8.3 C Implementation

Python is inherently slower than its C equivalent due tonterpreted nature. Writing
the first version of GAIN in pure Python was easy for both depaient and accessibility
for end-users, however it is likely a cause of some of the &gsificant performance
problems. Since GAIN is intended for use in high performaoaenputing situations, it

would be possible to implement it as a C extension to furthergase its performance.
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APPENDIX ONE
SOURCE CODE

A.1 Python Function Decorators

def enhance(func):
def new(=*args, = kwargs):
print "I am enhanced"
return func( *args, = kwargs)
return new

def old_style decoration(a,b,c):
return ab,c
old_style decoration = enhance(old_style_decoration)

@enhance

def new_style_decoration(a,b,c):
return a,b,c
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A.2 Wrapping Global Array Pointers with an ndarray

#! /usr/ bi n/ env python
from ctypes inport =

i nport gain.ga as ga

i mport numpy as numpy

shape = [2,2]

# create our global array and get its distribution

# single processes w
# e.g. here 10=[0,0]

Il hold the entire distribution
hi =[1, 1]

g_a = ga.create(ga.C_FLOAT, shape)

lo,hi = ga.distribution(g_a)

ptr,ld = ga. access(g_a, lo, hi)

# calcul ate the size
# if we have nultiple

of the local portion of the distribution
processes

diffs = map( |anbda x,y: y-x+1, lo, hi)

def safe_product(x,y):
if x == 0: x
if y=20:vy
return x*y

1
1

nelements = reduce(safe_product, diffs)

# set up the python f

unction that creates buffers,

# from ctypes. pyt honapi
func = pythonapi.PyBuffer_FromReadWriteMemory

func.restype = py_object

# ptr is returned as
# of the gl obal array

a c_types pointer to the actual type
. This differs fromthe GA C APl which

# normally returns a void pointer
buffer = func(ptr, nelements * sizeof(ptr))

# create the nunpy ar
# note that w thout s

ray, w appi ng our global array pointer
peci fying a shape, we get a 1-di nensional

a = numpy.frombuffer(buffer, numpy.float32)

# now return control
# shoul d probably get

of the global array nenory
rid of tenporary nunpy array so that

a7

array



41 # we don't try to use it
42 del a
43 ga.release_update(g_a, lo, hi)

| at er
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