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Executive Summary 

Through the duration of the NNSA Office of Nuclear Nonproliferation Research and Development 
(NA-22) ITAS lifecycle project, the Infrared Photonics research has been focused on developing 
integrated quantum cascade (QC) laser technology to enable next-generation remote sensing designs.  Our 
team developed the concept of the integrated QC laser transmitter and originated and promoted the vision 
of mid-infrared (3–12 µm) wavelength photonics.  Sustained NA-22 project funding produced the QC 
laser transmitter that is now deployed in follow-on projects.  Our team produced nationally recognized 
cutting-edge research in the area of infrared transparent chalcogenide photonics.  Three technical staff 
were recruited from outside PNNL and hired to support this research.  This project also supported student 
research at the national laboratory, including high school, undergraduate, and graduate students.  This 
provided a derivative benefit to NA-22, PNNL, and the educational institutions through training and 
mentoring next-generation students in science and technology.  The student support was also the catalyst 
to develop research collaborations with two universities that are internationally recognized for their 
chalcogenide glass research. 

The research conducted under this project was disseminated to the scientific community through 
13 journal papers, 1 book chapter, 5 technical report publications, and 15 conference presentations listed 
in Appendix A.  Common research themes were beneficially leveraged with other government-funded 
projects and the research produced leads to business growth in this area.  This project was also 
instrumental in conceiving research topics for both university and industry SBIR NA-22 solicitations.  
PNNL provided technical review of the proposals generated by these solicitations, provided follow-on 
consultation with the principal investigators, and participated in independent project reviews. 
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Acronyms and Abbreviations 

APEL Applied Process Engineering Laboratory 
AR anti-reflection 
CTE coefficient of thermal expansion 
DFB distributed feedback 
DTA/TGA  differential thermal analysis and thermo gravimetric analysis 
EDM electrical discharge machining 
EDS energy dispersive spectroscopy 
FP Fabry-Perot 
FTIR Fourier transform infrared 
FWHM Full Width at Half Maximum 
GaP gallium phosphide 
Ge germanium 
HHL high heat load 
ITAS Infrared Technology for Advanced Sensors 
MCT mercury-cadmium telluride 
MCZT mercury-cadmium-zinc-telluride 
NA numerical aperture 
NA-22 NNSA Office of Nuclear Nonproliferation Research and Development 
NNSA National Nuclear Security Administration 
NOMSL Non-Oxide Materials Synthesis Laboratory 
OD outer diameter 
OFHC oxygen-free, high-conductivity copper 
PNNL Pacific Northwest National Laboratory 
QC quantum cascade 
RIU refractive index units 
RMS root mean square 
SBIR small business innovation research 
SEM scanning electron microscopy 
TE transverse electric 
TEC thermoelectric cooler 
TM transverse magnetic 
UV ultraviolet 
WFE wavefront error 
XRD x-ray diffraction 
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1.1 

1.0 Introduction 

During FY 2008, Pacific Northwest National Laboratory’s (PNNL’s) Infrared Photonics research 
team continued developing infrared photonics capabilities in response to the demand for lighter, more 
compact, and integrated remote sensing system designs.  In this report we provide the lifecycle project 
highlights and a summary of the FY 2008 research progress for the Infrared Photonics project (a subtask 
under the ITAS program [PL211i]).  Detailed background information on PNNL’s chalcogenide infrared 
photonics research can be found in our previous reports (Anheier et al. 2004; Anheier et al. 2005; Anheier 
et al. 2006; Anheier et al. 2007). 

In Section 2, we discuss the tangible staff contributions, significant research results, and the 
laboratory capabilities created as consequences of the NA-22 project funding.  In Section 3, we provide 
an update of our thin film deposition cleanroom and the results of our film adhesion and film 
characterization study.  In Section 4, we report on design and measured performance of QC laser and 
waveguide coupling lenses.  Section 5 presents an update on the QC laser transmitter integration and laser 
performance. Section 6 presents our chalcogenide optical fiber processing investigation.  Section 7 
provides a progress update on the advance chalcogenide photonic component design, fabrication, and 
evaluation.  Section 8 provides an introduction to our mid-infrared index measurements of chalcogenide 
glass.  Finally, Section 9 provides a summary of our efforts in FY 2008 within the Infrared Photonics 
project. 
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2.0 ITAS Infrared Photonics Lifecycle – Research Highlights 
and Capabilities 

PNNL has developed unique expertise and capabilities in the area of infrared photonics with primary 
applications in chemical sensing aimed at the NA-22 nuclear nonproliferation mission.  To fulfill our 
project objective, PNNL has created innovative infrared technologies by developing and maturing designs 
and methods to produce compact and efficient infrared photonic components.  These components now 
play an important role in infrared remote sensing, enabling the development of novel optical sensor 
designs and techniques. 

To support this research, significant investments were made in both laboratory improvements and 
equipment acquisition to enable this research effort to achieve our goals and resolve the technological 
challenges needed to support the NA-22 mission.  Within these research laboratories, thin films of 
chalcogenide glass were deposited onto silicon wafers and subsequently fabricated into planar 
waveguides (Ho et al. 2006), splitters, and couplers for mid-infrared applications using direct-laser 
writing.  Theses devices were designed using RSoft’s BeamPROPTM and FullWAVETM software 
packages.  To establish repeatable process parameters, the deposited thin films were fully characterized 
for their material and optical properties.  Thin film optical constants were derived from the measured 
absorption spectra, while the change in refractive index due to the laser writing was measured using a 
custom-built lateral shearing interferometer (Krishnaswami et al. 2008c).  The material properties of these 
thin films were measured using a scanning electron microscope (SEM) equipped with an electron 
dispersive spectrometer (EDS), which provided structural detail and chemical composition.  X-ray 
diffraction (XRD) was used to verify the amorphous/crystalline nature of both pre- and post-annealed thin 
films (Allen et al. 2006).   

Because metrology tools in the mid-infrared are not commercially available, PNNL invested a portion 
of its resources to develop mid-infrared metrology tools needed to characterize the performance of mid-
infrared photonic components and systems.  PNNL has recently developed a prism coupler that permits 
the measurement of absolute refractive index in chalcogenide glasses at mid-infrared wavelengths (Carlie 
et al. 2008).  Also developed was a Twyman-Green mid-infrared interferometer used to collect and 
analyze wavefront data from PNNL-designed mid-infrared aspheric lenses (Bernacki et al. 2008a).  Lens 
designs developed by PNNL, then fabricated using single-point diamond turning methods, were 
subsequently verified to have diffraction-limited optical performance using this interferometer.  A 
dedicated test apparatus was constructed to measure divergence and emission profiles from mid-infrared 
quantum cascade lasers and chalcogenide optical fibers.  Using this apparatus, PNNL produced the first 
experimental measurement data for intrinsic beam propagation metric (M2) and astigmatism for QC lasers 
(Krishnaswami et al. 2008a).  PNNL also developed the necessary technology and methods to process 
chalcogenide optical fibers including cleaving, polishing, tapering, and fusing.  Chalcogenide fibers were 
processed using a Vytran large-core fiber splicer at low temperatures, providing the capability to fabricate 
mid-infrared fiber optic components.  Our group has also developed compression-molding expertise that 
provided the ability to produce miniature chalcogenide glass optical elements. 

Included as part of the Infrared Photonics research are staff and facilities at PNNL’s Applied Process 
Engineering Laboratory (APEL).  The APEL facility has over 6,000 square feet of laboratory space 
committed to glass science research.  APEL’s capabilities extend from compositional design of glasses to 
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meet specified design criteria (durability, viscosity, crystallinity, thermal expansion, chemical 
compatibility, color, etc.) to glass synthesis, sample preparation, and characterization.  The lab is 
equipped with over 20 high-temperature furnaces, 12 low-temperature-drying ovens, and 12 fume hoods.  
The characterization tools include simultaneous differential thermal analysis and thermo gravimetric 
analysis (DTA/TGA), high-temperature viscometer, dilatometry, and optical microscopy.  An additional 
1000 square feet of lab space is dedicated to the Non-Oxide Materials Synthesis Laboratory (NOMSL) 
used to fabricate chalcogenide, chalcopyrite and other photonic, electronic, and magnetic materials.  This 
facility is capable of synthesizing and purifying materials under completely anoxic and anhydrous 
conditions using a combination of atmospherically controlled glove box and ultra-high vacuum glass 
sealing technology.  High-purity fused quartz ampoules can be loaded with stoichiometric quantities of 
the desired elements, evacuated, sealed and thermally processed without ever exposing the elements to 
atmosphere.  Dedicated chambers and processes have been developed that can be used for both purifying 
and/or thin-film deposition of chalcogenide glasses.  Microstructural and microchemical characterization 
of these glasses is accomplished via optical microscopy and SEM/EDS and XRD.   

In summary, the mid-infrared capabilities and expertise developed under this NA-22 funded project 
include enhanced laboratory research space and equipment, chalcogenide glass processing, QC laser 
expertise, waveguide design and fabrication, lens design and fabrication, fiber optic processing, sensor 
design and integration, and new infrared metrology tools.  The research conducted under this project 
further strengthens PNNL’s leadership position in the area of nonproliferation technology development. 
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3.0 Chalcogenide Glass Thin Film Deposition 

3.1 Cleanroom Facility Update 

The maintenance of a cleanroom facility remains a critical component for the continued production of 
chalcogenide glass thin films.  The capability has been expanded to include an ion gun chamber for 
substrate cleaning prior to deposition, a three-gun magnetron sputtering system for various metal and 
dielectric thin film deposition, a programmable digital vacuum annealing oven, and a broad beam 
ultraviolet (UV) lamp at 366-nm wavelength for photolithography.  A quartz lamp was installed inside the 
chalcogenide thin film deposition chamber to provide in-situ baking to dehydrate the substrates prior to 
deposition. 

3.2 Film Adhesion and Delamination Investigation 

Silicon wafers with a silicon oxide layer were selected as substrates for chalcogenide glass films in 
our past research because the low refractive index SiO2 acted as a barrier layer to prevent evanescent 
coupling into the high refractive index silicon wafer.  The next generation of this device omitted the SiO2 
layer from our bi-layer chalcogenide film structure (3.8-µm As2Se3 on the top of 4.5-µm As2S3) after a 
beam propagation simulation using the Beam-PROPTM software confirmed that a 4.5-µm-thick As2S3 
cladding layer was sufficient to confine light within the As2Se3 core.  After consistently experiencing 
glass film delamination on silicon substrates, we indentified substrate surface cleanliness, monolayer 
water and mismatch in thermal expansion coefficients as main causes of film adhesion failure and 
delamination.  Among these three, the coefficient of thermal expansion mismatch is a primary contributor 
of the adhesion failure.  This was demonstrated through the successful deposition and annealing of 
8.3-µm-thick bi-layer chalcogenide glass films on CaF2 substrates which have a coefficient of thermal 
expansion (CTE) of ~19 × 10-6/°C compared to chalcogenide glass films that have a CTE of 
~21 × 10-6/°C.  Silicon, on the other hand, has a CTE of 3.42 × 10-6/°C, which is significantly different 
compared to chalcogenide glass.  In addition, CaF2 also demonstrates greater than 90% transmission up to 
8 µm, as shown in Figure 3.1. 

Based on the above observations, we proceeded to identify a source for CaF2 substrates but eventually 
found that CaF2 substrates were not widely available and therefore they were expensive.  Furthermore, the 
production of CaF2 wafers had a very low yield, further exacerbating the problem, with poor surface 
finish compared to silicon wafers.  Polycrystalline CaF2 substrates were not considered as a viable 
substrate because they could not be cleaved.  To combine the high thermal expansion property of CaF2 
with optical quality and cleavability of silicon, we investigated the possibility of depositing CaF2 films 
onto silicon substrates. 
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Figure 3.1. CaF2 and SU-8 Transmission Spectrum in the Visible and Mid-Infrared Wavelength 
 

Based on the availability of deposition techniques at PNNL, thermal evaporation, sputtering, and 
e-beam deposition methods were chosen as possible candidates for depositing CaF2 onto silicon.  CaF2 
films, with thicknesses ranging from 0.5 µm to 10 µm, were deposited using each method.  Bi-layer 8.3-
µm chalcogenide glass films were then deposited on the top of each of these CaF2-layered substrates.  A 
tape-pull test technique (using 3M clear ScotchTM tape), derived from the ISO Standard 9211-4, was 
employed to examine film adhesion.  Here, a tape of approximately 1 × 1 cm2 was firmly pressed onto the 
coated films with sufficient tape remaining to execute a tape-pull test.  Holding the sample in one hand 
and pulling the tape normal to the surface provides an assessment of the adhesion.  Satisfactory adhesion 
was ascertained if the films survived at least ten tape-pulls without adhesion failure.  Chalcogenide films 
on the CaF2-coated substrates resulted in satisfactory adhesion, while tape tests performed on bi-layers 
deposited directly on silicon failed after a few tape-pulls. 

Coating a high-thermal expansion material on silicon substrates is a promising approach to improve 
chalcogenide film adhesion while preserving cleavability and high surface qualities of the silicon 
substrates.  The drawback of vapor deposited CaF2 films is that the films display a high degree of 
porosity, therefore, absorb water vapor easily and release it during post-deposition film annealing.  An 
effective baking process is necessary to dehydrate CaF2 films before glass deposition. 

In a parallel effort, we employed a technique to improve film adhesion on silicon substrate by baking 
substrates at elevated temperatures for a prolonged period of time in a vacuum oven prior to chalcogenide 
glass deposition. The tape test resulted in an average of five pulls before the 4.5-µm-thick single As2S3 
layer failed.  After we baked the substrates at 170°C for 3 to 12 hours in an inert environment, the tape 
test result on as-deposited 8.3-µm-thick bi-layer films improved to ten pulls without failing.  Annealed 
films, however, still failed after the first tape pull.  O’Hanlon (2003) indicates monolayer water’s 
residence time on metal is 10-5 seconds at 450°C, 16 seconds at 100°C, and 9800 seconds at 22°C.  The 
residence time is defined as the time a molecule spends on a surface before desorption.  Because the 
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prebaked substrates are exposed to water vapor during loading into the vacuum deposition chamber, there 
is a need for a final in-situ baking within the deposition chamber.  

Significant adhesion issues remain for annealed chalcogenide films.  Cracks were often observed in 
annealed chalcogenide films.  SEM/EDS measurements indicated no change in film stoichiometry after 
annealing; therefore, adhesion failure is not due to film compositional changes in cracks.  It is likely that 
cracks and film failure is caused by excessive tensile stress produced by the thermal expansion of the 
films.  To compensate for the tensile stress, a layer of polymer was coated on the chalcogenide films prior 
to annealing.  Another layer of polymer can be used to overcoat the chalcogenide films to serve as a 
protection layer.  Polymers usually contract during the curing process that restrains the tensile stress in the 
annealed chalcogenide films.  The overcoat polymer layer also protects chalcogenide films from handling 
and moisture in the environment that is known to be responsible for chalcogenide film crystallization and 
degradation.  We experimented with SU-8 photosensitive epoxies (MicroChem Corp.), which are 
routinely used as photoresist for micromachining and microelectronics applications.  The SU-8 serial 
epoxies can achieve thicknesses from 0.5 to 200 µm with a single coat.  We found that the chalcogenide 
film with the SU-8 coating did not display cracks after annealing.  The chalcogenide films adhered very 
well to the SU-8 coating and the cleaved facet quality was significantly better with improved overall film 
mechanical properties. 

Because the polymer overcoat also serves as the film cladding, its transmission spectrum becomes 
important to the optical performance of the devices made in the chalcogenide films.  We measured the 
transmission of cured SU-8, shown in Figure 3.1, from the visible to the mid-infrared wavelength using a 
Fourier transform infrared (FTIR) spectrometer.  A transmission window of SU-8 between 4 and 6 µm 
enables mid-infrared applications for this approach.  Fluorinated polymers are available without the 
hydrocarbon stretch absorption peaks near 3.3 µm and potentially others that have transmission extending 
further into the infrared.  These results demand further exploration of these materials to enable additional 
design flexibility and improved mid-infrared device performance. 

SEM/EDS characterization is used periodically to monitor the stoichiometry of the deposited 
chalcogenide glass films.  It was previously confirmed that thermal evaporated chalcogenide glass films 
can maintain stoichiometry within 2% of the bulk parent material.  To study the film adhesion and 
delamination characteristics, we used SEM/EDS to measure potential chemical diffusion between the 
deposited film layers and the substrate.  The EDS data were analyzed using dot maps and line scans to 
provide atomic percentages across each film interface.  For each interface, a 0.5-µm-wide by 29-µm-long 
area was extracted from each dot map for analysis.  The extraction region is shown in Figure 3.2a for a 
4.5-µm As2S3 film on a Si substrate with a 1-µm-thick CaF2 layer.  The atomic percentage of each 
element on this film was calculated, corrected with the standard element correction, and then plotted in 
Figure 3.2b.  The analysis shows significant diffusion of both arsenic and sulfur atoms into the CaF2 film 
layer, producing a molecular network with every two calcium atoms bonded to one arsenic and sulfur 
atom.  In addition, greater numbers of Si atoms migrated across the CaF2 layer and diffused into the As2S3 
film.  The atomic ratio of Si near the As2S3-CaF2 interface was an unexpected 25%.  
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Figure 3.2a. Sections Across a Film and Substrate 

Interface were Chosen to Extract 
Atomic Percentage Data 

Figure 3.2b. Atomic Percentage of Elements in a 
Sample with a 1-µm-thick CaF2 
Layer 

  

  
  
Figure 3.2c. Atomic Percentage of Elements in a 

Sample on a Si Substrate 
Figure 3.2d. Atomic Percentage of Elements in a 

Sample with a 2-µm-thick SiO2 Layer 
 

This analysis was repeated on samples with As2S3 films deposited on non-oxidized and oxidized 
(2 µm SiO2) Si substrates.  Atomic percentages of each sample are shown in Figure 3.2c and Figure 3.2d.  
The non-oxidized Si substrate exhibited smaller diffusion of 15% atomic ratio near the interface, 
compared to the previous CaF2 study.  However, the chemical diffusion is significantly smaller for the 
oxidized Si substrate, where the atomic ratio of Si near the As2S3–SiO2 interface is less than 5%.  Arsenic 
or sulfur atom diffusion in the SiO2 layer was not detected. These results show that there is a correlation 
between the chemical diffusion magnitude at the film and substrate interface and the film adhesion 
behavior. 
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In a similar measurement of bi-layer chalcogenide films with a SU-8 overcoat, we detected arsenic 
and selenium atoms in the SU-8 near the As2Se3 interface and a 20% carbon atomic ratio at the center of 
the As2Se3 layer. The large chemical diffusion between these layers was again found to enhance the film 
adhesion.  In contrast, low chemical diffusion, as seen in the oxidized Si substrate, results in poor film 
adhesion.  Further analysis will be needed to study the degree of the chemical diffusion enhancement on 
film adhesion and potentially other chalcogenide glass film characteristics. 

3.3 Film Characterization 

In this section, film annealing characteristics were measured using both XRD spectrum shift and 
index of refraction change.  Annealing chalcogenide films is critical to obtaining the desired optical 
performance in conjunction with material stability.  The annealing process relaxes the crystalline structure 
to its lowest energy states.  For as-deposit As2S3, annealing transforms As4S4 crystal defects into As2S3.  
As4S4 crystals are undesirable because their presence lead to high loss and instability of devices fabricated 
in these films.  In this experiment, we annealed As2S3 film at three different temperatures for three 
different durations at each temperature.  The XRD spectrums of unannealed and annealed films are shown 
in Figure 3.3.  The first peak of the unannealed film at 15.4° is aligned the realgar line (As4S4), while 
annealing gradually shifts the peak toward 18.5°, the orpiment line (As2S3).  The hump peaking at 29° in 
the unannealed sample moves out to 33°, another orpiment line, and broadens with annealing.  The shift 
of the film spectrum peaks towards those of the As2S3 bulk glass with increasing temperature and duration 
enables the optimization of the annealing parameters. 
 
 

 
 
Figure 3.3. XRD Spectrum of Unannealed and Annealed As2S3 Film Using Different Annealing 

Parameters 
 

Photomodification is a process commonly used to alter the refractive index of chalcogenide films but 
the films must be fully annealed to produce stable results.  Unannealed chalcogenide glass film has a 
lower refractive index than its bulk material, while annealing increases the refractive indices of 
chalcogenide glass films.  We measured the refractive indices of unannealed and annealed films using a 
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1.55-µm laser and the custom-built Metricon prism coupler having 5 × 10-4 resolution.  Figure 3.4 shows 
that the refractive indices of As2S3 films approach the bulk value with progressive annealing.  Clearly the 
measurement of the refractive index provides an excellent monitoring tool to guide the film annealing 
process. 
 
 

 
 

Figure 3.4. Refractive Indices of Unannealed, Annealed As2S3 Films and Bulk Material 
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4.0 Lens Design for QC Laser High Heat Load Package 
and Waveguide Coupling 

4.1 Preliminary Considerations 

Earlier QC laser characterization work (Bernacki et al. 2008b) established the design criteria for 
collimation of QC lasers.  Due to their waveguide design, QC lasers exhibit large divergence in the 
direction normal to the waveguide structure (fast axis) and a correspondingly smaller divergence in 
emission direction parallel to the waveguide structure (slow axis) (Krishnaswami et al. 2008b).  Typical 
values for Full Width at Half Maximum (FWHM) divergence are 62º ± 2º and 32º ± 2º for the fast and 
slow axes, respectively.  These values correspond to 1/e2 divergence half angles of 52.7º and 27.2º, 
respectively.  It is helpful to translate the FWHM values to 1/e2 numbers because estimates of beam 
performance, like divergence and beam size, all depend on measurements with respect to 1/e2 parameters. 

The 52.7º divergence angle in the fast axis is the pacing factor for determining how large the 
numerical aperture must be to capture the laser emission efficiently.  This divergence angle corresponds 
to a 1/e2 numerical aperture of 0.8, but we set the numerical aperture at 0.85 to ensure some engineering 
margin for the design.  Numerical aperture (NA) is defined as the sine of the angle formed by the edge or 
marginal ray emitting from the laser facet.  Our design value equals the NA of high performance 
microscope objectives.  Mechanical constraints limit the outer diameter (OD) of the lens to 5 mm in order 
to fit within the confines of the high heat load (HHL) package.  Additionally, we must ensure that there 
will be sufficient working distance to mount the lens and manipulate it in the vicinity of the laser facet.  
We chose germanium as the lens material due to its high index of refraction and ease of single point 
diamond turning, which is essential to obtaining reasonably priced aspheric lenses in relatively small 
quantities needed for research tasks.  Design of the lens and its performance, both modeled and measured, 
follows. 

4.2 0.85 Collimating Lens 

The resulting design of the 5-mm OD 0.85 NA collimating lens is shown below in Figure 4.1.  The 
design utilizes a 10th order aspheric shape on the first (left) surface, and requires only a spherical concave 
shape on its second surface (closest to the laser).  The mathematical expression used to describe the 
aspheric surface is shown in the following expression, where r is the radial coordinate, k is the conic 
constant, and R is the base radius of curvature of the surface. 
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Figure 4.1. Layout Drawing Showing the Final Design for the Meniscus-Shaped Germanium (Ge) 

Collimating Lens 
 

The design is summarized in Table 4.1. 
 
 

Table 4.1. Design Summary for the 0.85 NA Germanium Collimating Lens 
 

Parameter Value 
Material Germanium 
RMS WFE < 0.006 λ on-axis 
Design Wavelength 8.5 µm 
Central Thickness 2.0 mm ± 0.025 mm 
OD 5.0 mm ± 0.050 mm 
Effective Focal Length (EFL) 1.72 mm 
Working Distance 1.135 mm 
Numerical Aperture 0.85 
Surface 1 Radius of Curvature (ROC) 4.413145 mm (convex) 
Surface 1 Aspheric Coefficients a4 = -4.682680E-003 

a6 = +1.056326E-004 
a8 = -2.319990E-006 
a10 = -1.083806E-007 

Surface 2 ROC 20 mm (concave) 
 

The design was optimized for both on-axis and off-axis rays up to 10 µm off-axis.  Practically, this 
means that the laser facet can be misaligned from the nominal optical axis of the lens by up to ±10 µm 
and still be diffraction-limited.  This can be shown by looking at a metric of the performance of a lens 
with respect to the root mean square (RMS) wavefront error (WFE), the Strehl Ratio.  Briefly, the Strehl 
Ratio is the ratio of the point spread function on-axis intensity of a system compared with the ideal value 
of the on-axis point spread function.  A perfect system has a Strehl Ratio of one.  The system is said to be 
diffraction limited if its Strehl Ratio is greater than 0.8, which equates to an RMS WFE of λ/14.  The plot 
below shows that the system still gives acceptable performance for a translation of the lens from its true 
optical axis by a bit more than ±10 µm.  The point of all this is to plan for the inevitable imperfections 
that arise in the fabrication of the opto-mechanical components needed to construct a practical system, as 
well as the limits on one’s ability to place components in precise alignment.  The plot in Figure 4.2 
illustrates this point succinctly. 
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Figure 4.2. Plot of Strehl Ratio versus Lens Translation from its Optimum On-Axis Position.  Notice 

that a translation of greater than ± 10 µm can be tolerated before the lens system ceases to be 
diffraction limited.  This engineering margin ensures that a reasonable opto-mechanical 
system will meet the requirements for diffraction limited performance. 

 

4.3 0.85 NA Lens Testing Results 

Although the 0.85 NA design is not new to FY08 work, additional lenses were procured to populate 
the predicted number of HHL packages required for other supported NA-22 projects.  For the final lens 
order, 26 0.85 NA lenses having the 5-mm OD were manufactured using single-point diamond turning of 
germanium, and were also anti-reflection (AR) coated for Rave < 1% from 8 to 12 µm.  All lenses were 
tested in double-pass transmission at 9.4 µm using a Twyman-Green interferometer described in previous 
reports.  The 26 lenses had a mean RMS WFE of 0.0165λ ± 0.0037λ, which is much better than the 
diffraction-limited value of 0.071λ.  A plot of the RMS WFE values is shown in Figure 4.3.  The lenses 
showed particularly good performance with regard to spherical aberration, and displayed an average 
Strehl Ratio of 0.99 ± 0.01, which greatly exceeds the diffraction limit threshold of 0.80. 
 
 

 
 
Figure 4.3. Bar Chart Showing the Measured RMS WFE Values for the Twenty-Six 0.85 NA 

Germanium Collimating Lenses Designed Expressly for the HHL Package Requirements.  
The mean RMS WFE was 0.0165λ ± 0.0037λ. 



 

4.4 

4.4 0.85 NA Collimating Lens Optimized at 5 µm 

The collimating lens described thus far was optimized for use at 8.5 µm, but certainly can provide 
diffraction-limited performance from approximately 6 µm to 12 µm in wavelength, but its performance 
degrades at wavelengths shorter than 6 µm.  Due to project requirements for the design of a chalcogenide 
waveguide beam combiner operating at approximately 5 µm in wavelength, the 0.85 NA lens was re-
optimized to provide diffraction-limited performance at 5 µm.  The design followed the same guidelines 
discussed in the section above on collimator lens design.  The design for the optimized 5-µm device is 
summarized in Table 4.2.  The shorter wavelength design showed approximately equal sensitivity to 
element decenter as the 8.5-µm HHL collimating lens design, maintaining diffraction-limited 
performance for element displacement up to ±9 µm from the nominal optical axis.  A plot of this 
relationship is shown in Figure 4.4. 
 
 
Table 4.2. Design Summary for the 0.85 NA HHL Collimating Lens that was Optimized for Use at a 

Wavelength of 5 µm 
 

Parameter Value 
Material Germanium 
RMS WFE < 0.009 λ on-axis 
Design Wavelength 5.0 µm 
Central Thickness 2.0 mm ± 0.025 mm 
OD 5.0 mm ± 0.050 mm 
Effective Focal Length (EFL) 1.80 mm 
Working Distance 1.133 mm 
Numerical Aperture 0.85 
Surface 1 Radius of Curvature (ROC) 4.047790 mm (convex) 
Surface 1 Aspheric Coefficients a4 = -3.382850E-003 

a6 = +3.635408E-006 
a8 = +2;032581E-007  
a10 = -3.583678E-007 

Surface 2 ROC 10 mm (concave) 
 
 

 
 
Figure 4.4. Change in RMS WFE as a Function of Element Decenter.  Note that diffraction-limited 

performance obtains up to displacement values of ±9 µm. 
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4.5 0.85 NA Collimating Lens Optimized at 5 µm Test Results 

Eight lenses were manufactured using the design described previously by single-point diamond 
turning.  The AR coating design provided Rave < 5% from 3 to 12 µm.  All lenses were tested in 
transmission at a wavelength of 9.4 µm (the lowest wavelength accessible on the tunable CO2 laser used 
in the Twyman-Green interferometer), and exhibited diffraction-limited performance with an average 
RMS WFE of 0.018λ ± 0.005λ.  The lenses also exhibited an average Strehl Ratio of 0.99 ± 0.01, greatly 
in excess of the 0.80 threshold value for diffraction-limited performance.  A graph showing the measured 
Strehl Ratio for each lens is shown in Figure 4.5. 
 
 

 
 
Figure 4.5. Value of Strehl Ratio for Each Lens Tested for the HHL Collimating Lens Optimized for 

Use at 5 µm.  Note that all of the lenses’ performance far exceeds the diffraction-limit 
threshold of 0.80. 

 

4.6 0.6 NA Fiber/Waveguide Coupling Lens 

For practical applications of a collimated QC laser output, the light typically must be focused to probe 
or couple the light into a waveguide or optical fiber.  Coupling into optical fibers or waveguides differs 
slightly on whether the device is single mode or multimode.  Multimode fiber coupling requires that two 
criteria be met simultaneously: 

1. The size of the focused spot must be smaller than the active core of the waveguide or fiber. 

2. The numerical aperture of the focused beam must be less than the numerical aperture of the 
waveguide or fiber. 

A diffraction-limited optical system ensures that we focus the light to a small enough spot, but due to 
the limits of physical optics, the minimum spot size that we can achieve is limited by the wavelength of 
light and the numerical aperture of the lens in use.  Spot size is approximately given by the expression 
below. 
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So, in the ideal case, a 0.6-NA lens used at 8.5 µm can yield a theoretical spot size of 8.5-µm FWHM, 
or about 14.5 µm out to the 1/e2 intensity value, for a beam diameter of 29 µm at the 1/e2 intensity points. 

To couple into single-mode waveguides and fibers also requires meeting two criteria: 

1. The focused spot must be smaller than the core of the single-mode device. 

2. The focused beam must be mode matched to the waveguide.  This is practically accomplished by 
focusing using the same numerical aperture as the waveguide and ensuring that the focused spot be as 
aberration-free as practicable.  Therefore, diffraction-limited performance and hence aspheric lens 
designs are paramount. 

To handle the large range of currently available commercial chalcogenide fibers and waveguides 
under study, a lens numerical aperture of 0.6 was selected, along with maintaining an element OD of 
5.0 mm to match that of the collimating lens.  This design was also presented in the previous year’s 
annual report, but is repeated here for completeness in describing the HHL optical system.  The final 
design is summarized in Table 4.3. 
 
 

Table 4.3. Design Summary for the 0.6 NA Fiber/Waveguide/Collimator Lens 
 

Parameter Value 
Material Germanium 
RMS WFE < 0.001 λ on-axis 
Design Wavelength 8.5 µm 
Central Thickness 2.0 mm ± 0.025 mm 
OD 5.0 mm ± 0.050 mm 
Effective Focal Length (EFL) 3.07 mm 
Working Distance 2.574 mm 
Numerical Aperture 0.6 
Surface 1 Radius of Curvature (ROC) 9.238746 mm (convex) 
Surface 1 Aspheric Coefficients a4 = -1.131846 -003 

a6 = +1.972292E-005 
a8 = -1.055187E-007 

Surface 2 ROC Infinite (plane) 
 

The completed design is shown in Figure 4.6.  The design was optimized to anticipate a lateral 
misalignment of ±25 µm, and shows diffraction-limited performance over a range nearly twice as large as 
this design goal.  The increased tolerance is due to the reduced numerical aperture of the lens compared 
with that of the collimating lens.  The variation in Strehl Ratio with lateral misalignment is shown in 
Figure 4.7.  This design provides a generous engineering margin in the demands of placing and 
maintaining the lens in the optimum position for the intended application. 
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Figure 4.6. Optical Layout Showing the 0.6 NA Lens at Focus 
 
 

 
 
Figure 4.7. Plot of Strehl Ratio versus Element Decenter for the 0.6 NA Germanium Fiber Coupling 

Lens.  Note that the lens can be decentered up to ±50 µm from its nominal optical axis and 
still display diffraction-limited performance. 

 

The 0.85 NA HHL collimating lens and 0.6 NA fiber/waveguide coupling lens form a compatible lens 
pair that are optimized for use with the HHL package.  Both exhibit performance in excess of the 
diffraction limit and show good tolerance to misalignment that occurs in the course of integration of opto-
mechanical elements. 
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5.0 QC Laser Transmitter Integration 

Early QC laser systems required cryogenic cooling in conjunction with large and complex opto-
mechanical components.  These limitations hindered their integration within field-deployable infrared 
sensing platforms.  However, recent progress in QC laser design and fabrication has led to the 
introduction of room-temperature devices that has enabled new approaches for miniaturization and 
integration. 

5.1 Design Goals, Approach, and Specifications 

As a first step towards sensor miniaturization, PNNL’s goal is to develop a fully ruggedized and 
compact QC laser transmitter by leveraging the optical and electronic component technologies developed 
for the telecommunications industry.  Our approach utilizes the industry standard HHL laser component 
package, which is capable of providing the required laser thermal control.  The hermetically sealed HHL 
package contains the QC laser die, a custom collimation lens, and the custom opto-mechanical mounting 
components.  This design is compatible with QC laser dies mounted on both industry-standard C-mounts 
and custom submounts.  The QC laser submount and the collimation lens are externally assembled onto a 
miniature optical bench (optical top plate) using small machine screws.  This assembly approach 
facilitates QC laser collimation outside of the HHL package.  Upon collimation, the miniature optical 
bench is mated to the cold plate within the HHL package using small machine screws.  This method of 
assembly allows rapid turnover and rework, if necessary.  A square thermoelectric cooler (TEC) module 
with an area of 256 mm2 and heat pumping capacity of 28 W was selected to remove the excess heat 
produced by the QC laser.  The cold plate is bonded to the TEC cold side using indium solder.  An AR-
coated ZnSe wedged window is used as an exit port for the collimated QC laser beam.  Prior to sealing 
the HHL lid, the package is purged with ultra-pure argon gas to provide a dry and inert environment for 
operations up to a set point temperature of 0°C.  A miniature ball valve (Beswick Engineering, model 
M3SV) is mounted under the electrical feedthrough pins to facilitate purging and venting the HHL 
package. 

5.2 Packaging and Collimation Investigation 

To test the performance of the HHL QC laser transmitter package, a 5.3-µm distributed feedback 
(DFB) QC laser was obtained from Maxion Technologies, Inc.  The C-mount QC laser was mounted in 
the HHL package along with the germanium asphere collimation lens described in Section 4.4.  The 
assembled QC laser transmitter is shown in Figure 5.1.  Laser collimation was performed using the 
hardware described in the prior year’s final report.  A lid was sealed to the HHL package, but a 5.3-µm 
AR-coated window was not available in time for our device characterization.  To minimize the effect of 
air currents, a 25-mm-long tube was temporarily fastened to the HHL output port. 
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Figure 5.1. DFB QC Laser C-mount in a HHL Package.  The germanium asphere collimation lens is 

shown in the flexure mount.  A miniature ball value is seen on the back of the package. 
 

A mid-infrared wavemeter (Bristol Instruments, model 621) was used to characterize the emission 
wavelength as a function of both temperature and injection current.  The optical power and room 
temperature was also monitored.  Figure 5.2a shows the emission wavelength verses operating 
temperature.  The QC laser was operated at 700 mA CW injection current while the setpoint temperature 
was adjusted in ±0.5°C steps between 15 and 20°C.  The emission wavelength was found to increase 
linearly with temperature by 0.423 nm/°C and the power decreased by 2.9 mW/°C.  The drop in emission 
power near 15°C is due to a nearby water vapor absorption peak.  Figure 5.2b shows the emission 
wavelength verses injection current.  The QC laser was held at 20°C while the setpoint current was 
adjusted in ±2 mA steps between 696 and 710 mA.  The emission wavelength was found to increase 
linearly with injection current by 0.035 nm/mA and the power increased by 0.407 mW/mA. 

The longitudinal mode profile was characterized using a FTIR spectrometer (Bruker, model 
Vector 22).  FTIR spectra having 0.5-cm-1 resolution was collected near threshold at 2 mA injection 
current increments.  The QC laser was held at 20°C.  The emission profile without the collimation lens 
installed, shown in Figure 5.3a, indicates multimode behavior.  In contrast, the emission profile with the 
collimation lens, shown in Figure 5.3b, suggests single mode emission behavior.  The AR-coated 
germanium collimation lens (BBAR 3 to12 µm) had a 2% nominal reflection at 5.3-µm wavelength.  The 
recorded longitudinal mode profile suggests that the native DFB feedback is insufficient to provide 
stabilized single-mode emission.  The 2% reflection from the collimation lens produced additional 
feedback and, within the FTIR measurement resolution, provided the desired single-mode structure.  It 
was also noted that the DFB QC laser was quite sensitive to feedback from external optical elements, 
which provided further evidence that the DFB design produced weak feedback stability. 
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 (a) (b) 
 
Figure 5.2. (a) Emission Wavelength verses Temperature at a Fixed Injection Current, and (b) Emission 

Wavelength verses Injection Current at a Fixed Temperature 
 
 

   
 (a) (b) 
 
Figure 5.3. (a) FTIR Spectra Showing Multimode Behavior without Collimation Lens Installed, and 

(b) FTIR Spectra Suggesting Single-Mode Behavior with Collimation Lens Installed 
 

We next characterized the long-term laser stability.  The QC laser was operated at 20°C and 700 mA 
CW injection current, resulting in 7 mW output.  Figure 5.4a shows the data trend over a 90-hour 
duration.  The wavelength shifted upward by 3.6 ppm during this period.  Expanding the data region 
between hours 10 and 11, as shown in Figure 5.4b, reveals that a nominal 1°C room-temperature 
oscillation produced a correlated 1.3 ppm (0.007 nm or 73 MHz) peak-to-peak wavelength oscillation.  
After repeated power cycling, we found that the laser would return to the desired emission wavelength 
within ±0.005 nm. 
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 (a) (b) 
 
Figure 5.4. (a) Wavelength Drift over 90 Hours, and (b) A 1°C Room Temperature Variation Produced 

Nominally 1.3 ppm Peak-to-Peak Wavelength Shift 
 

To evaluate the wavelength tuning performance of the HHL-packaged QC laser transmitter, spectra 
was collected from nearby water absorption features shown in Figure 5.5a.  A nominal 1-meter path 
length was used at atmospheric pressure and the laser was operated just above threshold at 20°C.  A 
±50 mA linear ramp swept the DFB QC laser wavelength through the strongest water absorption peak, 
producing the correlated loss in transmitted laser power as shown in Figure 5.5b. 
 
 

   
 (a) (b) 
 
Figure 5.5. (a) HITRAN 2004 Water Spectrum (1 meter, 1% absolute humidity) within the DFB QC 

Laser Tuning Range; (b) Direct Transmission Trace of the Strong Water Line 
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5.3 HHL QC Laser Transmitter Design Update 

Developing designs that incorporate QC laser devices requires careful attention to thermal design.  
The HHL package uses a large square TEC module with heat pumping capacity of 28 W to remove the 
excess heat produced by the QC laser.  The selection of materials used for laser integration was based 
primarily on their thermal and mechanical properties.  Oxygen-free, high-conductivity copper (OFHC) 
was selected for both custom and C-mount submount configurations.  The remaining two components 
(optical top plate and cold plate) in the main thermal pathway require materials with optimum mechanical 
properties, such as hardness and stiffness, reasonable thermal conductivity, and materials with a CTE that 
is compatible with the TEC module.  If the thermal expansion effects are not accounted for, the inevitable 
mechanical strains can quickly destroy the TEC module.  The absolute value of the thermal expansion is 
proportional to the TEC module dimension, so the large (16 × 16 mm) TEC module used in our design 
requires materials with small differences in CTE.  The TEC cold-side material is 100% Al2O3 ceramic 
having 7.2 ppm/°C CTE.  Our component materials ideally would have thermal conductivity near pure 
copper and a CTE near the TEC ceramics.  Unfortunately, one must compromise on thermal conductivity 
to minimize the CTE mismatch.  For example, copper has a thermal conductivity of 400 W/m/°K, but the 
CTE is an unacceptable 16.7 ppm/°C.  Fortunately, specialty tungsten-copper alloys are available for this 
application (CMW Inc., Thermkon® 83).  The alloy is composed of 75% tungsten and 25% copper.  The 
thermal conductivity is a modest 190 W/m/°K, but has a CTE of 8.3 ppm/°C.  The tungsten-copper cold 
plate is bonded to the TEC module cold side using indium solder with a melting point near 200°C.  At 
room temperature, the mechanical strain on the TEC module is small because the expansion differential 
between the CTE and the cold plate is only 2.3 µm.  

To maximize the thermal performance of the HHL package design, the mating surfaces of all the 
custom-machined HHL components were carefully finished to maximize flatness and minimize surface 
roughness.  These components are important because they account for a majority of the thermal contact 
resistance between the QC laser heat source and the TEC.  To achieve the desired thermal design 
performance, thermal mating surfaces are generally specified finished flat within ±25 µm across the entire 
mounting surface and smooth to a surface finish of 0.8 µm Ra or better.  Ra is the arithmetic average of 
the roughness profile over a given distance.  The as-machined and finished surfaces were characterized 
using a Veeco non-contact optical profilometer.  Surface data was collected over a 150 × 115 µm2 area 
and analyzed to provide both Ra and Rq.  Rq is the quadratic mean of the roughness profile and provides 
the most representative assessment of the magnitude of the varying roughness quantity.  

The machined surfaces had a representative surface finish with 0.5 µm Ra and 0.6 µm Rq, but also had 
roughly ±1.0-µm periodic features produced by machining flycutter.  All flat accessible surfaces were 
mechanically lapped with 0.025-µm diamond-oil slurry on a stainless steel cloth to remove the periodic 
features.  This was followed by diamond-oil slurry on Pellon polishing cloth.  The final polish was 
colloidal silica solution on cloth.  This process removed all evidence of the periodic machining features 
and produced representative surface finishes having 0.4 µm Ra and 0.5 µm Rq. 

The recessed submount surfaces that mated with the QC laser were not accessible to the lapping 
process described above.  In addition, the machining process was incapable of producing zero radius 
corners at right-angle intersecting planar surfaces.  To obtain intimate contact between the thermal 
surfaces of the QC laser mount and the submount, the residual radius at intersecting surfaces must be 
minimized.  A 25.4-µm diameter wire electrical discharge machining (EDM) process was used to lap and 



 

5.6 

zero radius the recessed submount surfaces, as shown in Figure 5.6.  By taking several machining passes, 
each with decreasing power, 0.24 µm Ra and 0.3 µm Rq microfinish was obtained.  After surface 
finishing, all parts containing copper were Au plated by an external vendor to prevent oxidation. 
 
 

 
 (a) (b) 
 
Figure 5.6. (a) Submount Component with Micro-Finished Surface; (b) Zero Radius Machined Mating 

Corner.  Machining was performed using micro-wire EDM. 
 

The HHL QC laser transmitter design described in the FY2007 report was updated so that it was 
compatible with pre-production QC laser assemblies delivered by Hamamatsu Photonics K.K., Laser 
Group (Japan).  The laser die submounts are a design proprietary to Hamamatsu; therefore, we redesigned 
our OFHC submount assembly to accommodate the new laser.  The exploded HHL assembly, with the 
new OFHC submount, clamp, and submount retainer design, is shown in Figure 5.7a.  The fully 
assembled HHL transmitter is shown in Figure 5.7b.  The submount retainer is polymer material 
fabricated using a rapid prototyping process.  The retainer clamps the QC laser assembly tightly down to 
the OFHC submount, while simultaneously drawing it against the submount back ledge.  This design 
provides secure mounting and thermal conduction from the bottom and back of the QC laser mount. 

5.4 HHL Package Thermal Modeling 

An important QC laser integration issue is thermal management because it affects both optical 
component stability and laser frequency stability.  A thermal evaluation of the HHL QC laser package 
was performed using finite element simulation software (ANYSYS Thermal Analysis System).  The 
simulation software was used to analyze the thermal transfer aspects of a C-mount QC laser, the 1.5-mm-
thick WCu optical top plate, a thermal grease layer, and the 1.5-mm-thick WCu cold plate bonded to the 
cold side of the TEC module.  The thermal conductivities of Thermkon® 83, OFHC, and the thermal 
grease used were 190, 391.2, and 2.5 W/m/°K respectively.  The model used a thermal grease thickness of 
50 microns as recommended by prior research (Chia-Pin et al. 1997). 
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 (a) (b) 
 
Figure 5.7. (a) Exploded and (b) Assembled HHL QC Laser Transmitter with Hamamatsu QC Laser 

Submount 
 

The contact pressure between the C-mount and the submount must be as high and uniform as possible 
to provide good thermal conduction.  The surface finish and flatness, as discussed in other sections of this 
report, are important parameters that affect the contact performance.  A 2-56 machine screw retains the 
C-mount to the copper submount.  The contact area between the C-mount and the submount is 6.35 mm 
by 5.21 mm, for a surface area of 33.1 mm2.  Using an assembly torque of 22.6 Ncm will achieve 75% of 
yield for a stainless steel fastener with a yield strength of 2813 kg/cm.  This will provide a clamping force 
of 153.5 Nm and a contact pressure of 15 MPa.  Using this contact pressure and reported thermal 
experimental results (Rao et al. 2004) for copper-copper interfaces, the thermal contact conductance 
between the C-mount and the submount was estimated to be 200,000 W/m2/°K. 

The QC laser was assumed to produce a 5-W heat load.  The TEC cold side was held at a constant set 
point temperature so that the QC laser maintained a temperature of 10°C.  The modeled assembly is 
shown in Figure 5.8a.  The components include the WCu cold plate and optical top plate (shown in green) 
and the OFHC submount and laser C-mount (shown in orange).  The QC laser die is represented in 
yellow.  Figure 5.8b shows the critical thermal clamping surfaces. 

Thermal simulations were iterated by varying the TEC cold-side temperature until the maximum 
temperature of the QCL was 10°C, using 0.5% error band on the heat balance.  For this simulation, the 
split plate design thermal boundaries between the optical top plate and the cold-side plate were modeled 
using 50-µm-thick thermal conductive grease.  The simulation results show that the TEC cold side must 
be maintained at 0.67°C to achieve a laser operating temperature of 10°C.  The major thermal bottleneck 
is the native laser C-mount.  A nominal 6.75°C gradient is shown in Figure 5.9 between the QC laser die 
and the C-mount back surface.  The thermal gradient is only 2.75°C between the submount top and the 
TEC cold side.  The location of the thermistor, used to provide temperature feedback to the TEC 
controller, is also shown in Figure 5.9.  This simulation also showed that a large thermal gradient (~7°C) 
exists between the QC laser die and the thermal feedback location. 
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 (a) (b) 
 
Figure 5.8. (a) Component Configuration Used in the Thermal Simulation; (b) Critical Thermal Contact 

Surfaces 
 
 

 
 

Figure 5.9. Temperature Distribution from Thermal Simulations 
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6.0 Chalcogenide Optical Fiber Research 

Fiber optics components are highly desirable for integrated mid-infrared sensing systems.  Yet the 
availability of commercial mid-infrared optical fibers is limited to several small companies producing 
small batches of highly specialized fiber.  Because the market for mid-infrared fiber products is still in its 
infancy, there are no readily available tools or processes in place for fabricating mid-infrared fiber-optic 
components.  Therefore, several tools commercially available for silica fiber processing were modified to 
process mid-infrared transparent chalcogenide optical fiber.  To efficiently inject light into or couple light 
out of an optical fiber, the fiber facets require high quality optical surfaces.  While processing tools are 
readily available to strip and cleave silica-based optical fibers, handling and processing chalcogenide 
glass fiber can be challenging because of its frangibility.  The following section describes the processing 
methods developed at PNNL to chemically remove the fiber jacket and to produce optical-quality facets 
by either cleaving or mechanical polishing. 

6.1 Fiber Jacket Removal 

The fiber used in this study was procured from CorActive (Quebec, Canada).  This fiber (IRT-SE65) 
is fabricated from an arsenic selenide glass composition, having nominal core, clad, and jacket diameters 
of 70 µm, 180 µm, and 350 µm, respectively.  A protective jacket is formed during the fiber draw using 
thermally cured acrylate.  To fabricate optical facets, the jacket must first be removed without damaging 
the fiber.  Because of the frangible nature of the fiber, we developed a chemical-stripping method to 
expose the fiber instead of the mechanical jacket stripping techniques.  The vendor recommended 
methylene chloride to dissolve acrylate jacket layer.  However, our investigation showed that that 
methylene chloride had little reaction with the acrylate jacket under extremely long process times.  We, 
therefore, proceeded to evaluate other chemical processes including concentrated acid and then 
commercial photoresist stripper. 

In the first case, the fiber was first soaked in sulfuric acid having a concentration of 95.5%.  Here, the 
jacket was unaffected by the acid bath until the temperature was elevated to 80°C.  At this temperature, 
the jacket dissolved after 30–120 minutes soak time.  Unfortunately, this fiber cannot handle high 
processing temperatures.  The stripped fiber region had a tendency to curl after the long acid treatment.  

Next, we used Nano-StripTM solution, produced by Cyantek Corporation (Fremont, California), which 
is widely used to remove photoresist and organic contaminants in semiconductor industry.  Our 
investigation showed that this Nano-Strip was very effective at removing the acrylate jacket within 1 to 
2 minutes at a bath temperature of 80°C.  In this case, the acrylate jacket quickly separated from the fiber 
so that it could be peeled away by set of tweezers.  Because the fiber is maintained at an elevated 
temperature for a short duration, it doe not get damaged.  However, extending the soak time does produce 
fiber curl as observed in the case of sulfuric acid.  After the jacket is removed, the stripped fiber is washed 
thoroughly in deioinzed water. 

In addition to stripping the jacket from the fiber ends to facilitate the fabrication of the end facets, we 
were also successful in stripping away jacket sections in the middle of the fiber to provide access for 
additional fiber processing. 
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6.2 Fiber Cleaving Investigation 

The end facets in the CorActive chalcogenide fiber were prepared using an ultrasonic FK11 cleaver 
available from Photon Kinetics (Beaverton, Oregon).  Angle cleaves were prepared using a model FK12 
angle cleaver (0° to 15° range).  Once again, these cleavers were designed for cleaving mechanically 
robust silica fiber rather than frangible chalcogenide optical fibers.  Fortunately the design of the cleaver 
incorporates an adjustable precision tension mechanism that has the dynamic range to facilitate cleaving 
chalcogenide glass fibers. 

The chalcogenide fibers are first stripped to expose a length of bare fiber such that a sufficient section 
can be held in place by the cleaver holding blocks.  To produce acceptable cleaves with chalcogenide 
fibers, the fiber tension must be reduced from its factory 100 psi setting to approximately 60 psi, a metric 
that was arrived at empirically through a series of tests.  If the tension is too high, the fiber tends to break 
once the diamond blade scores the fiber, producing a rough facet surface as shown in Figure 6.1(a).  
When the tension is less than 60 psi, the blade bends the fiber out without properly scoring it, producing 
the cleave depicted in Figure 6.1(b).  To achieve the right tension while also preventing the fiber from 
bending outwards, a rigid flat metal bar was placed opposite of the scoring blade.  This minor 
modification holds the fiber in place as the diamond blade moves through it scoring motion.  This simple 
tool modification in conjunction with the appropriate tension reliably produces fiber cleaves like the one 
depicted in Figure 6.1(c).   

Next, we focused our effort on producing angle cleaves using the FK12 angle cleaver.  Due to 
differences in the cleaving tool, the parameters established for the straight cleaves were used only as a 
starting point for angle cleaving.  A series of tests established that the appropriate tension setting for 
angled cleaves in chalcogenide fibers was 80 psi.  Figure 6.2(a) shows the image of an angle cleave with 
small edge defects that do not propagate to the fiber core.  Figure 6.2(b) provides a side view of the same 
fiber exhibiting a nominal 8° cleave angle.  Increasing the tension beyond 80 psi begins to degrade the 
cleave properties. 
 
 

 
 (a) (b) (c) 
 
Figure 6.1. Images of the Cleaved Facet When Fiber Tension was (a) ~100 psi, (b) <60 psi, and (c) 60 

psi with Metal Bar Installed.  It can be seen that both high- and low-fiber tensions leave 
rough and damaged cleave surfaces indicating the need to narrow in on the right fiber tension 
with the assistance of a metal bar. 
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 (a) (b) 
 
Figure 6.2. Images of Angle Cleaved Surfaces:  (a) Top View and (b) Side View Obtained by Using 

Fiber Tension of 80 psi and the Metal Bar.  Edge defects and scratches are outside the core 
region and do not impact the performance of the fiber. 

 

6.3 Fiber Polishing Investigation 

Another common optical fiber processing step is preparing fiber patch cords.  The fiber is generally 
placed in a protective outer sheath and connectorized using telecom standard metal or ceramic fiber optic 
connectors.  To assemble the connectors on the fiber patch cord ends, the stripped fiber end is epoxied 
into the connector and the end facets are created using an optical polishing process.  Adapting 
chalcogenide fiber to patch cords fabrication follows the same steps as silica fiber, except extra care must 
be taken during the polishing process. 

A Buehler FibrMet portable fiber optic polisher and aluminum oxide polishing pads with 12, 9, 3, 1, 
and 0.3 µm grit sizes are used.  The fiber is first ground with a 12-µm polishing pad to remove the 
residual epoxy until the ferrule end is exposed as shown in Figure 6.3.  The fiber facet is then polished to 
an optical finish using successively finer polishing pads.  Chalcogenide glass is much softer than silica, so 
it can become easily scratched during the polishing process.  Frequently spraying water onto polishing 
pads can significantly reduce fiber facet scratches.  After each polishing set, the fiber facet is inspected 
under a microscope, and the resulting images are shown in Figure 6.3(a)–(e).  When deep scratches larger 
than the polishing pad grit are observed, the polishing sequence must be restarted using the next larger 
polishing pad grit. 

During the course of our process development, we found it critical to completely fill the connector 
ferrule with epoxy.  If air pockets are formed between fiber and the ferrule interior wall, the fiber edges 
will fracture during polishing.  The fractured chips then produce deep scratches on the polished surface.  
Both straight and angle polished fiber facets were successfully demonstrated using the described 
polishing method. 
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Figure 6.3. Fiber Facet after Polishing with (a) 12 µm, (b) 9 µm, (c) 3 µm, (d) 1 µm, and (e) 0.3 µm Grits 
 

6.4 Fiber Optical Characterization 

Once we established a repeatable process for fabricating optical quality cleaves, we next 
characterized the performance of a single mode fiber optic cable (CorActive IRT-Se-28) having a core 
diameter of 28 µm.  Both ends of fiber were cleaved and inspected for facet quality and the acquired 
images were similar to those shown in Figure 6.1(c) above.  The test apparatus comprised of a tunable 
CO2 laser, tuned to 9.3 µm wavelength.  A polarizer and half-wave plate were used in combination to 
function as an attenuator.  The laser beam was reflected off a set of mirrors to provide flexibility in 
alignment as shown in Figure 6.4. 

A 0.6 NA germanium aspheric lens with a focal length of 8mm was chosen as the coupling lens.  This 
lens was mounted on a translation stage that provided five degrees of freedom.  Similarly, the input facet 
of the fiber was also placed on a matching mount to provide complete flexibility and control of fiber 
orientation and to obtain the optimum coupling efficiency.  The power at the input end of the fiber was 
measured to be approximately 75 mW using a Molectron Powermax 500D power meter.  An identical 
0.6 NA coupling lens was used to collect and collimate the output of the approximately 3.5-m-long fiber.  
In order to image the output of the fiber using a thermal camera, the output coupling lens was put in an 
infinite conjugate arrangement with a 500 mm focal length ZnSe lens to provide a magnification of 
roughly 60.   
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Figure 6.4. Experimental Apparatus to Measure the Emission Profile of Mid-Infrared Beam from a 

Single Mode Chalcogenide Fiber Optic Cable 
 

Figure 6.5(a) shows the distribution of light across the output facet demonstrating leakage from the 
core into the cladding and undesirable light propagation within the cladding itself.  Figure 6.5(b) shows 
the beam profiles along the X and Y directions indicating the presence of structure outside the core 
region.  Due to the high refractive indices of the core and cladding, minimal fiber bending can launch 
light into the fiber cladding.  Once in the cladding, the light continues to propagate as a cladding mode.  
Bending or moving the fiber significantly perturbs the cladding modes, creating rapid changes in intensity 
pattern.  These cladding modes exit the fiber facet at various angles detrimentally impacting system 
performance.  It is therefore necessary to quench cladding modes before integration within performance 
optical systems. 

In order to quench cladding modes, the surface of the fiber cladding had to be coated with gallium 
(Houizot et al. 2007) both at the entrance and the exit facets.  To accomplish this, approximately 50 to 
75 millimeters of the jacket was chemically stripped about 50 mm away from the facets to provide a 
region for the coating.  Gallium in a crucible was elevated to roughly 55°C and the slag from the surface 
was slowly pushed aside.  The stripped cladding region was then dipped into the crucible and allowed to 
wet by linearly translating the fiber back and forth in the crucible.  The optical fiber, with the gallium-
coated surfaces, was then allowed to return to room temperature before being placed back in the 
measurement apparatus. 
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Figure 6.5. (a) Magnified Image of the Fiber Facet Showing Emission from the Core Along with Light 

Leaking from the Cladding due to the Presence of Cladding Modes; (b) Beam Profiles in 
Pixel Dimensions along the X (blue) and Y (red) Directions Showing the Presence of 
Cladding Modes 

 

Figure 6.6(a) shows the performance of the CorActive single mode fiber with gallium applied to both 
ends.  It can be seen that the gallium application successfully quenches the cladding modes to provide a 
clean output profile from the core of the fiber.  Figure 6.6(b) shows the beam profile in the X and Y 
directions indicating that even with power sufficient to saturate the camera, the region outside the core 
shows no emission of light.  Bending the fiber now only changes the intensity in the core region – as 
expected from a single mode fiber. 
 
 

 
 
Figure 6.6. (a) Magnified Image of the Fiber Facet of a Gallium-Coated Fiber, Showing Emission Only 

from the Core and None from the Cladding; (b) Beam Profiles in Pixel Dimensions Along 
the X (blue) and Y (red) Directions Showing that the Gallium Coatings Quenched the 
Cladding Modes 
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To further characterize the beam, the power was reduced to approximately 7.5 mW at input facet to 
prevent pixel saturation and thereby obtain a complete emission profile.  Figure 6.7 shows the circular 
emission profile fiber.  The X and Y direction line scans of this data are also shown with a Gaussian fit 
that indicates single-mode emission. 
 
 

 
 
Figure 6.7. Emission from the Output Facet of the Chalcogenide Fiber Demonstrating near Gaussian 

Profiles in Both X and Y Directions, Indicative of a Single-Mode Emission.  The units of 
measurement in both dimensions are pixels. 

 

The IRT-SE-28 fiber described in the previous section was modeled using a 3D model constructed 
within the RSoft Beam Propagation modeling package.  Model parameters were as shown in the table 
below. 
 

Parameter Value 
Core Diameter 28 µm ± 3 µm 
Clad Diameter 170 µm ± 5 µm 
Simulation Wavelength 9.2 µm 
Clad index 2.7 
Core Δn 0.008 
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Divergence data was acquired by scanning a cryogenically cooled HgCdTe detector in the far field of 
the fiber with the Gallium treatment described above.  For this measurement, the bare output facet was 
clamped at the center of rotating stage on which the HgCdTe was mounted.  The radial distance between 
the tip of the fiber and the detector was approximately 70 mm.  The 9.3-µm CO2 laser beam was 
mechanically chopped at approximately 400 Hz before being coupled into the fiber.  Power measurements 
using lock-in detection techniques were made in half-degree rotation increments along the hemisphere. 

The measured emission profile from the chalcogenide fiber and the model output, provided in 
Figure 6.8, show that there is good agreement between the model and the acquired data for the far field 
pattern.  A Gaussian model was fit to the acquired data and the 1/e2 angular width was found to be 9.23º, 
which corresponds to a NA of 0.16.  If we select a 1% intensity level to define beam width, the angular 
width is 14.0º, corresponding to a NA of 0.24. 
 
 

 
 
Figure 6.8. Modeled Data Shown Plotted with the Measured Far-Field Divergence Data, Revealing a 

Good Fit for the Model Assumptions Shown in the Above Table 
 

Additionally, the model was also used to compute the mode profile for the fiber model and compared 
with the images shown earlier of the unsaturated fiber output after the cladding modes were stripped.  If 
we fit a Gaussian function to the mode profile in the images shown in Figure 6.7, we find that the 
1/e2 width of the beam is 44.66 pixels, as shown in Figure 6.9. 

A plot of the data sliced in the X-direction is shown with its Gaussian fit in Figure 6.10.  The imaging 
system used to magnify the image at the focal plane array of the ferroelectric infrared camera was 
composed of two lenses used at infinite conjugates with focal lengths f1 and f2, 8 mm and 500 mm, 
respectively.  The magnification was thus f1/f2.  Therefore, using the number of pixels measured, optical 
system magnification, and pixel pitch the beam size is found to be: 
 

 . 
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Figure 6.9. Image of the Mode Field Shown Earlier (blue trace) Plotted with Its Gaussian Fit (red trace).  

The 1/e2 beam width was determined to be 44.66 pixels. 
 
 

 
 
Figure 6.10. Model Data of the Mode Profile for the Chalcogenide Fiber Shown Compared with the 

Experimental Data Shown Earlier.  The measured mode size is 34.66 µm, while the 
modeled data was calculated to be 39.55 µm, in relatively good agreement with experiment. 

 

The model resulted in a beam width measurement of 39.55 µm, which is in relatively good agreement 
with the experimental obtained value of 34.66 µm. 
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7.0 Advanced Chalcogenide Photonic Components 

7.1 Basic Waveguide Structure 

Chalcogenide glasses in the As-S-Se family are promising candidates for mid-infrared photonic 
structures and components.  A Y-junction waveguide structure was designed to provide both beam 
combining and splitting capability for QC laser integration.  The design used the basic multi-layer 
structure used in previous 8.4-µm waveguide design.  Single-mode operation at the 5-µm design 
wavelength was ensured by iterative optimization of both the layer thicknesses and waveguide width.  
The initial design and its modification for use at 5 µm (as opposed to the original design wavelength of 
8.4 µm) are summarized in Table 7.1. 
 
 
Table 7.1. Device Parameters for the Original Waveguide Design and the New Design Optimized for 

Use at λ = 5.0 µm 
 

 8.4 µm Design 5 µm Design 
Substrate Si Si 
Layer 1 (As2S3) 4.5 µm 4.5 µm 
Layer 2 (As2Se3) 3.8 µm 3.0 µm 
Capping Layer Air Air 
Waveguide width 5.4 µm 5.4 µm 
Channel Δn 0.04 0.05 

 

The index profile for the two layers and photomodified region are shown in Figure 7.1a.  The 
fundamental mode was calculated using the commercial software package BeamPROP.  The mode 
structure of the lowest order mode is shown in Figure 7.1b superimposed on the multi-layer structure. 
 
 

  
 (a) (b) 
 
Figure 7.1. (a) Contour Map Depicts the Index Distribution for the Photomodified Waveguide 

Employing Chalcogenide Glasses for 5 µm Operation.  The yellow rectangle is the 
photomodified channel waveguide.  (b) Cross-sectional View along the Y-Axis Shows the 
Mode Structure and Its Penetration into the Cladding and Capping Layers of the Y-Junction 
Waveguide Structure. 
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BeamPROP allows one to calculate the mode spectrum of all modes possible with the waveguide 
structure.  To ensure excitation of all modes, the input launch beam, having a 3.5-µm width in Y and 
6-µm in X, is misaligned slightly in the X-direction by an amount 1/8 the width of the waveguide.  The 
computed mode structure is shown in Figure 7.2.  As is evident from the figure, the waveguide retains the 
desirable single-mode operation.  Finally, we model a short stretch of this waveguide totaling 1 mm to 
observe the propagation of the zero-order mode.  Figure 7.3 shows two monitor traces, where the first trace 
shows the relative power and its evolution of the zero-order mode, and the second trace (Total Power) 
provides the integral power in the calculated field at various Z positions over the waveguide cross section. 
 
 

 
 
Figure 7.2. Computed Mode Spectrum for the Waveguide Optimized to Operate at λ= 5 µm Showing 

Single-Mode Operation 
 
 

 
 
Figure 7.3. Evolution of the Launch Beam in the Waveguide Described Above and the Output of Two 

Monitors:  the Power Contained in the Zero-Order Mode as well as the Total Power in the 
Waveguide Slab Structure 
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7.2 Y-Junction Beam Combiner Design and Modeling 

A highly useful photonic device is a y-junction type beam combiner that couples two beams into two 
waveguide channels and outputs both beams in a single waveguide channel.  The design challenge is to:  
(1) separate input channels enough to allow two 5.0-mm-diameter coupling lenses to be placed in close 
proximity to the facets, (2) minimize valuable real estate used on the silicon wafer substrate, and 
(3) optimize the s-bend radius of curvature to minimize loss.  If the waveguide s-bend is too abrupt, the 
guided mode will leak into the substrate to become a radiative mode.  The s-bend design curvature is 
restrained by the low index contrast nature of the photomodification process, because the mode is weakly 
confined to the waveguide and is especially subject to radiative losses. 

The input arms are separated by 6 mm, and the overall length of the structure is 45 mm.  Figure 7.4 
shows the power in the zero-order mode in each arm for equal slab mode inputs, and monitor 3 shows the 
power in the final straight section, which is 1 mm in length.  The design consists of arcs having a radius 
of curvature of 162.1 mm pieced together to complete the s-bends.  Further reductions in the size (smaller 
radius of curvature) may require high index contrast structures (i.e., etched rib waveguides) where the 
propagating mode is more tightly confined. 
 
 

 
 
Figure 7.4. Final Y-Junction Waveguide Beam Combiner Consisting of Two S-bends and One Straight 

Section.  Monitors 1 and 2 show the power in the slab mode of each arm (because they are 
equal, they overlap) while monitor 3 shows the combined power in the final 1-mm-long 
straight section. 

 

Figure 7.5 shows the arcs that are used to construct the s-bends.  The starting and ending coordinates 
of each arc, the s-bend radiuses of curvature, as well as the angle through which they are swept, are used 
to produce G-code instructions for the translation stage used in the laser waveguide writing station. 
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Figure 7.5. Coordinate System Used to Fabricate the Y-Junction Beam Combiner Described in the Text.  

The calculations used to produce this graph were used to generate the G-code instructions 
needed to program the XY stage used to pattern the waveguides in the laser waveguide 
writing station. 

 

7.3 Device Fabrication and Testing 

Material and waveguide characterization at the design wavelengths is essential for design and 
fabrication of optimized photonic structures and components.  Of particular interest is the measurement of 
the photoinduced refractive index change at mid-infrared wavelengths, both for bulk and waveguide 
structures.  We have previously measured propagation loss using the cutback method at a wavelength of 
8.4 µm on single-mode waveguides formed by direct laser writing in thin-film chalcogenide structures 
(Ho et al. 2006).  Here we present a more detailed characterization of waveguide loss and photoinduced 
index change in the mid-infrared. 

One method of measuring waveguide propagation loss involves analysis of the waveguide 
transmission when a tunable laser is propagated through a waveguide (Walker 1985).  The waveguide end 
facets form a Fabry-Perot (FP) cavity, which generates an interference pattern as the laser is tuned in 
wavelength.  The resulting fringe amplitude and shape depends on both the facet reflectivity and the 
waveguide loss.  Therefore, if the facet reflectivity is known or can be calculated, the waveguide loss can 
be extracted from analysis of the FP fringes.  Benefits of the FP loss measurement technique include a 
fast measurement time, especially compared to a cutback measurement, and a reduced dependence on 
coupling efficiency.  However, the FP method does require consistent and high-quality end facet cleaves, 
and requires prior knowledge or assumptions of the facet reflectivity. 

The transmission through the FP resonator formed by the waveguide end facets is given by an Airy 
transmission function.  It is convenient to perform analysis using the fringe visibility K, using the 
maximum and minimum transmitted intensities from the fringe pattern: 
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From the fringe visibility, the waveguide loss is calculated via: 
 

, 

where R is the facet reflectivity and L is the waveguide length in cm. 

We performed waveguide transmission measurements using a cryogenically cooled DFB QC laser 
centered at a wavelength of 8.35 µm.  The polarization of the laser was controlled using a half wave plate 
and linear polarizer combination to allow launching of either TE or TM modes in the waveguide.  The 
laser was coupled in and out of the waveguide using 0.5-inch-diameter 0.8 NA germanium aspheric 
lenses.  The output light was directed to a cryogenically cooled mercury-cadmium telluride (MCT) 
detector (Fermionics PV-11-1) and a custom transimpedence amplifier. 

The laser wavelength was tuned by ramping the applied current from 250–720 mA at a frequency of 
10 Hz.  In addition, a 5-ms segment of the ramp was set to zero current to allow subtraction of detector 
offset.  Figure 7.6a shows the applied laser current.  The ramp waveform was provided to the current 
controller using custom National Instruments LabVIEW software and data acquisition hardware.  The 
analog output channel driving the current ramp was updated at a rate of 200 kS/s.  The detector signal was 
digitized using the analog input channel at a rate of 400 kS/s. 

Figure 7.6b shows the detected laser intensity without the waveguide in place.  The laser intensity 
shows a nearly linear increase with applied current except for slight roll-off at high current. 
 
 

 
 

Figure 7.6. (a) Laser Current Ramp Waveform; (b) Detected Laser Output Intensity 
 

The current ramp provides tuning of the laser wavelength via thermal effects.  The wavelength-tuning 
rate was measured using a solid Ge etalon with known free spectral range of 0.0475 cm-1.  Figure 7.7 
shows the measured transmission through this etalon, normalized to the input laser intensity.  The etalon 
peaks were located and the peak positions used to determine the wavelength tuning of the laser via 
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interpolation.  It was determined that the overall tuning range of this laser was 1.5 cm-1 for the applied 
current ramp.  The etalon results were necessary to calibrate the tuning of the laser for the waveguide 
refractive index measurements described below. 
 
 

 
 
Figure 7.7. Transmission Measured Through Solid Ge Etalon with Free Spectral Range of 0.0475 cm-1.  

The etalon transmission was normalized to the input laser intensity. 
 

Chalcogenide thin films were deposited with 3.8-µm-thick As2Se3 and 4.7-µm-thick As2S3 layers.  
Channel waveguides were fabricated by direct laser writing using a 633-nm HeNe laser focused onto the 
surface.  For the experiments presented here, the stage was moved at a speed of 4 mm/min, and the 
waveguide writing laser was focused to a spot size of 7 µm using an aspheric lens (LightPath 
Technologies, part number 350220).  A series of waveguides were patterned on the film in which the 
writing laser power was varied from 0.05–5 mW to alter the effective writing dose, and thereby vary the 
photoinduced refractive index change.  The film section containing the waveguides was cleaved to 
provide perpendicular end facets suitable for waveguide transmission measurements.  Figure 7.8 shows an 
example of the detected laser signal transmitted through one of the waveguides written at 1-mW power, 
normalized to the input intensity.  The FP fringes are clearly visible as are the differences between TE and 
TM modes. 
 
 

 
 
Figure 7.8. Transmission Measured Through Waveguide Written with 1-mW Power, Normalized to the 

Input Laser Intensity for TE (red) and TM (blue) Polarization 
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Straight waveguides were cleaved into sections with a length of 3.80 cm, for which a series of over 
30 FP fringes were observed.  The etalon peaks were located and the mean fringe separation was used to 
calculate the group refractive index, based on the wavelength tuning calibration of the QC laser.  The 
amplitude of the fringes was used to compute the fringe visibility, which in turn was used to calculate the 
waveguide loss.  The location and amplitude of the fringes were determined using an analysis routine 
written in LabVIEW.  In addition to the FP fringes from the waveguide, the data also contained small 
amplitude higher-frequency and lower-frequency fringes of unknown origin.  These fringes were removed 
by using a 3rd order Savitsky-Golay filter on the data.  From the fringe separation Δν, the waveguide 
group effective index Neff can be determined via the relationship 
 

  

Figure 7.9 shows the location of the peaks and valleys of the fringes for one waveguide, calibrated to 
wavenumber.  A linear fit was performed using the data, and the slope used to calculate the effective 
index.   
 
 

 
 
Figure 7.9. Position of WG Transmission FP Fringes and Linear Fit Used to Determine Neff.  The fit 

residuals are shown in the lower graph. 
 

The fringe amplitudes were used to calculate the fringe visibility K, as described above.  This value 
was in turn used to calculate the waveguide loss.  The facet reflectivity was calculated using finite-
difference time-domain simulations of the waveguide structure, resulting in R = 0.35 for TE and R = 0.26 
for TM polarization.  Note that these values are both larger than the reflectivity of 0.22 calculated using 
the Fresnel formula with the refractive index of the waveguide core.  Figure 7.10 shows the measured 
group refractive index and waveguide loss for both TE and TM propagation, as a function of peak writing 
dose.  Three waveguides were characterized for each writing dose. 
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Figure 7.10. Measured Group Refractive Index (top) and Waveguide Loss Versus Writing Laser Dose 

for TE (circles) and TM (squares) Polarization (bottom) 
 

The measured group refractive index increases with writing laser dose as expected for an increasing 
refractive index of the waveguide core, and the leveling off at higher doses indicates that the glass is 
approaching saturation of its photoinduced index change.  The measured group indices for the TM modes 
were higher than the TE modes, which is consistent with modeling results discussed below.  Losses as 
low as 1.0 dB/cm were measured for the highest dose and the TE propagation mode.  At doses above 
500 J/cm2 (not shown in Figure 7.10) significant physical modification of the waveguide surface was 
observed and the waveguides ceased supporting single-mode propagation. 

The group index of refraction is related to the modal effective index via the relationship 
 
  

The modal effective index and its dispersion were calculated using the BeamPROP software package with 
the waveguide modeled as a step-index structure.  Figure 7.11 shows the calculated modal effective index 
and group index for the waveguide structure as a function of photoinduced index change of the waveguide 
core Δn.  Although it is difficult to match the absolute index values of the experiment and model due to 
uncertainties in both film indices and profile of the photomodified core region, the calculated results 
verify several experimental observations.  The calculations confirm that for these waveguide structures, 
the TM group index is expected to be higher than the TE group index, and both values are larger than the 
waveguide core material index and modal effective indices.  Furthermore, the model indicates that over 
this range of index photomodification, the change in group index is linear with a slope of 1.1.  Therefore, 
we can infer that measured change in group index results from a corresponding change in the waveguide 
core index of slightly smaller magnitude. 

In summary, we have fabricated laser-written single-mode channel waveguides in chalcogenide glass 
thin films and characterized the propagation loss and group refractive index using a QC laser emitting at a 
wavelength of 8.35 µm.  Modeling of the waveguide structure confirms the experimentally observed 
behavior of the group refractive index.  These measurements of waveguide and material properties at mid-
infrared wavelengths will allow design and fabrication of photonic structures optimized for mid-infrared 
operation. 
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Figure 7.11. Calculated Group Refractive Index (solid points) and Waveguide Effective Index (open 

points) Versus Photoinduced Index Change of the Waveguide Core for TE (circles) and TM 
(squares) Modes 
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8.1 

8.0 Mid-Infrared Refractive Index Measurement 
of Chalcogenide Glass Materials Using  

Prism Coupling 

The design of integrated optical elements requires a precise knowledge of their refractive index, as 
well as the influence of processing steps, such as the post-deposition annealing of thin films.  
Unfortunately, many of the currently available techniques for measurement of the refractive index of 
films offer inadequate precision, or cannot access the mid-infrared spectral region, where many of the 
applications of these materials are desired. 

8.1 Prism Coupler Method 

Techniques commonly used for the measurement of the refractive index of thin materials include 
modeling of spectroscopic data (transmission or reflection), various ellipsometric techniques, and prism 
coupling.  The prism-coupling technique offers high-resolution, simple data analysis, and is self-
referencing.  Additionally, this technique can be used to measure bulk materials as well as films, and no 
specific sample preparation is generally necessary, other than the measured surface must be reasonably 
flat and free from contaminants.  This makes the prism-coupling technique very attractive.  However, to 
date, commercial systems have been designed to function only over the visible and near-infrared spectral 
regions.  In order to address this shortcoming, a commercial prism coupler instrument (Metricon, model 
2010) has been modified to include the ability to perform measurements over the mid-infrared region, 
covering a wavelength range using discrete laser wavelengths from 0.6328 to 10.6 µm.  In this study we 
present the system design and modification, as well address the data analysis problems specific to its use 
in the mid-infrared.  We further show the effects of film deposition and annealing on the refractive index 
of As2Se3 glass, and on its photoresponse under band gap illumination. 

The prism coupling technique functions by pressing a sample to the hypotenuse of an isosceles prism 
fabricated from a high-index material.  The prism and sample are rotated relative to a collimated light 
source, typically a HeNe laser, and the intensity that is transmitted through the prism is monitored as a 
function of incident angle, as shown in Figure 8.1.  
 
 

 
 

Figure 8.1.  Metricon Model 2010 Prism Coupler Arrangement 
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For a sufficiently flat surface, light reflected within the prism can couple into the sample through the 
evanescent field at an angle that is dependent on the refractive indices of the sample and prism.  
Additionally, the angle of the prism is referenced by detecting the back-reflection of the laser from the 
input face of the prism.  This has the advantage of removing the effects of any change in prism alignment 
between measurements.  The intensity of the transmitted light as a function of angle for bulk and film 
samples is simulated in Figure 8.2. 
 
 

 
 
Figure 8.2. Simulated Output Intensity as a Function of Incident Angle for Bulk Samples (left) and Thin 

Films (right) 
 

As can be seen for a bulk sample a single knee in the intensity plot is found, and the refractive index 
is calculated from the corresponding angle.  For a film sample, a series of dips is found.  The film 
refractive index and thickness can be calculated if the indices of the prism and substrate are known.  It 
should be noted that absolute intensity is not significant for either measurement.  Furthermore, the 
calculation of thickness and index in a film sample requires at least two modes to be observed, which in 
practice requires a film thickness of approximately one-half of the measurement wavelength or greater.  
Due to the use of monochromatic light source, this technique cannot generally provide information on the 
wavelength dispersion of the refractive index. 

8.2 Mid-Infrared Apparatus 

In order to allow measurement at longer wavelengths, several modifications to the commercial 
instrument configuration are necessary, including incorporation of a mid-infrared detector and additional 
laser sources and a coupling prism.  For chalcogenide glasses, their high transparency in the infrared leads 
to applications in mid-infrared photonics and sensing.  This makes the ability to precisely measure the 
mid-infrared refractive index of chalcogenide bulk or film materials attractive.  In order to accommodate 
the transparency range of these glasses, we have expanded the capabilities of the instrument to cover the 
visible to mid-infrared range.  The configuration of the instrument is shown in Figure 8.3. 
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Figure 8.3. Optical Configuration of the Prism Coupler System, Modified for Operation in the Mid-

Infrared Spectral Region 
 

The laser sources used in this study include the 632.8-nm HeNe laser, which is equipped with the 
commercial configuration as well as a 1547-nm telecom fiber laser, both of which may be used with the 
standard rutile prism and germanium detector.  Additionally, a 3.391-µm HeNe laser and a 5.348-µm 
DFB QC laser have been added, as well as a tunable CO2 laser operating over the range of 9.3 to 10.6 µm.  
A HeNe laser is used as a reference; therefore, it is necessary to combine the visible and infrared beams.  
In order to accomplish this, a Ge window is used to act as a dichroic mirror, reflecting visible and near-
infrared wavelengths and passing those in the mid-infrared.  It should be noted, therefore, that any 
discrepancy in the alignments of these various lasers will result in an inaccuracy in the refractive index 
measurement.  Precise alignment was achieved by first placing an aperture in front of the Ge window, 
then imaging all of the lasers onto an pyroelectric camera (Electrophysics Corp., model PV320L).  The 
use of mid-infrared wavelengths also requires substitution of the prism material and the detector. 

A Ge prism is used for measuring infrared glass having index of refraction from 3.5 to 2.6.  A gallium 
phosphide (GaP) is used for lower index glasses in the range of 2.7 to 1.6.  Both of these materials are 
transparent over the mid-infrared range (2.0 to 10.8 µm) used in this study; however, the GaP prism has 
an absorption band gap that extends into the visible, conveniently allowing measurement over the entire 
range of 0.6–10.6 µm with a single prism.  

MCT is a common detector that can be used over the entire 2.2-µm to 10.6-µm wavelength range.  
However, these detectors must generally be cryogenically cooled in order to reduce noise from thermally 
excited electrons.  Due to the small space in which the detector must be placed, cryogenically cooled 
devices are not practicable.  A relatively new detector material, mercury-cadmium-zinc-telluride (MCZT), 
can operate over a similar wavelength range as MCT, but has improved thermal and electrical properties, 
making it capable of detection with lower noise at room temperature.  For this reason, a MCZT 
photovoltaic detector (Vigo Systems, model PVM-10.6) has been used.  In order to improve the signal-to-
noise ratio, the laser sources are optically chopped at 1 kHz.  The raw signal from the detector was first 
amplified (Stanford Research, model SR570) and then the signal was recovered using a lock-in amplifier 
(Princeton Applied Research, model 5208).  The dc output signal was then applied to the detector input of 
the Metricon instrument controller.  Due to wide range of angles scanned during the measurement (~60°) 
and to the small size of the MCZT detector (3 mm × 4 mm), it is necessary to place the detector at a small 
distance (0.1 mm) from the output face of the prism to prevent the refracted beam from walking off the 
detector.  To satisfy this requirement, the MCZT detector TO-9 housing was removed.  Our evaluation of 
the new detector configuration demonstrated detection with low noise at the same scan rate and angular 
range provided by the factory-configured Ge photodiode detector. 
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8.3 Mid-Infrared Index Measurements 

The Metricon prism coupler was originally designed to measure index of refraction from visible to 
near-infrared wavelengths.  The design team never envisioned using this instrument at wavelengths longer 
than 1.6 µm.  As a consequence, the analysis software is not capable of correctly calculating the film 
thickness using measurements at wavelengths longer than 1.6 µm.  Therefore, a separate program was 
written to perform the required analysis.  The analysis of the data for film thickness and index is 
accomplished by recording the intensity values as a function of incident angle, and determining the 
location of the minima observed in the signal.  The effective index of the guided mode (Nm) 
corresponding to the each minimum is determined from the incident angle of the mode (θm), the prism cut 
angle (ε), and the prism refractive index (np) using the following relation: 
 

  

The film refractive index (nf) and thickness (W), are found to lie at discrete positions where the mode 
order (m) has an integer value and follows the relation: 
 
  

where: 
 

  

The values φfs and φft are the respective phase shifts caused by internal reflection of the optical wave from 
the top surface of the film or the substrate interface, and nt and ns (each substituted for the variable ni) 
therefore correspond to the refractive index of air and the substrate respectively.  

The challenge then is to find a single value of nf and W that solves the set of transcendental equations 
describing the position of the intensity minima.  In order accomplish this we utilize a linear regression 
method (Kirsch 1981).  An initial guess value for the refractive index is calculated from the position of 
the first two minima in order of increasing mode index (Nm) using the equation: 
 

  

Once the estimated film index is known, approximate values of the two phase shifts, φfs and φft, may be 
calculated.  The following relationship between effective mode index (Nm) and mode order number (m) 
may then be fit using linear regression through the following relation. 
 
  



 

8.5 

where: 

 

The refractive index may then be calculated from the xm intercept, and the thickness from the slope of 
the line.  The film index derived from regression is then used to improve the initial estimates of the values 
of the φfs and φft phase shifts and the regression is performed again.  This iterative refinement is continued 
until the change in nf between each iteration is significantly less than the expected precision of the index 
measurement, which is 1×10-5 refractive index units (RIU) for our instrument. 

Thin As2S3 and As2Se3 film layers were deposited using thermal evaporation of commercial glass 
materials AMTIR2 and AMTIR6, respectively (Amorphous Materials Inc.).  The target consisted of 5.5 g 
of ground bulk As2S3 and 7.7 g of ground bulk As2Se3 glass, placed in a fused silica crucible.  The 
substrate was a non-oxidized 4-inch Si wafer (Silicon Quest), and deposition was carried out using a 
deposition process described in a prior report.  A 4.5-µm under-cladding of As2S3 was first deposited, 
followed immediately by deposition of a 7.6-µm As2Se3 layer.  The temperature of the substrate and stage 
was not controlled during deposition.  Following deposition, one half of the film sample was annealed at 
170°C for a period of 3 hours and at a heating and cooling rate of 1°C/min.  The refractive index of the 
parent bulk glass and films has been measured in the 0.6328-µm to 10.591-µm region and is shown in 
Figure 8.4. 
 
 

 
 
Figure 8.4. Measured Refractive Index Dispersion of Bulk AMTIR2, Compared with Reference Data for 

AMI, and Index Dispersions for As-Deposited and Annealed Films 
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It can bee seen from the figure that the refractive index of the bulk glass is in good agreement with 
the reference data, showing the high level of accuracy achievable using the prism-coupling method.  The 
refractive index of the annealed film is also found to be close to that of the bulk glass, while that of the as-
deposited film is significantly lower.  This behavior is often observed in chalcogenide thin films.  It is 
well known that the high cooling rate of the vapor, as it condenses into the solid glass film during thermal 
evaporation, leads to a film with a structure that is far from equilibrium.  The glassy film generally 
possesses lower density compared to the parent bulk glass, and therefore, a correspondingly lower 
refractive index.  Annealing the glass film near its glass transition temperature results in structural 
relaxation.  This relaxation leads to a higher density glass structure that is closer to equilibrium, and a 
refractive index that is similar to the corresponding bulk glass.  Therefore, by using the prism-coupling 
technique, it is possible to accurately judge the effectiveness of the annealing process by examining how 
similar the refractive index of the annealed film is compared to bulk glass. 

8.4 Photomodification Studies 

To examine the possibility of precisely measuring the mid-infrared refractive index change in 
chalcogenide thin films after band gap irradiation, thin films of As2Se3 (7-µm) were deposited from 
AMTIR2 commercial glass using thermal evaporation.  Relatively thick films are used because the prism-
coupling measurement requires film thickness at least one-half the characterization wavelength.  The as-
deposited thin films were then exposed to HeNe laser irradiation using a spot size of 8 mm at an 
irradiance of 56 mW/cm2 for varying periods between 8 and 32 hours.  The refractive index of the films 
as a function of wavelength for varying dose is shown in Figure 8.5. 
 
 

 
 
Figure 8.5. Refractive Index Data of the As2Se3 Film Measured Between 3.3 to 10.6 µm as a Function of 

Dose 
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The film refractive index increases upon exposure, but appears to begin to saturate at higher doses as 
shown in Figure 8.6.  Additionally, the index change magnitude is not constant as a function of 
wavelength.  The refractive index increases by up to 0.06 RIU at 5.348 µm, which is the largest change, 
while the smallest change, only 0.04 RIU occurs at a wavelength of 1.547 µm.  The inconsistency of the 
RIU magnitude could be attributed to variation in laser polarization, which was not accounted for during 
these measurements.  In addition, the Ge prism used in these index measurements has a rather large 
thermal refractive index coefficient, dN/dT, of approximately 400 (10-6/°C).  Room temperature 
fluctuations on the order of 1°C begin to produce apparent index measurement variations at the resolution 
of the instrument.  To remedy this issue, we plan to install a thin foil heater to stabilize the Ge prism 
temperature just above ambient room temperature. 
 
 

 
 

Figure 8.6. Refractive Index of the As2Se3 Film at 1.547 and 5.348 µm as a Function of Dose 
 

While no literature values for photoinduced Δn have been found for mid-infrared wavelengths, 
similar magnitudes for Δn under HeNe laser irradiation of 1–2% have been previously reported for near-
infrared wavelengths (van Popta et al. 2002; Robinson et al. 2003).  It should be noted, however, that 
these thick films displayed relatively poor adhesion, which led to film delamination during repeated 
prism-coupling measurements.  This issue prevented measurement on the same film location before and 
after irradiation.  While the refractive index of the film was found to be homogenous across the surface of 
the wafer, a slight inhomogeneity in the film thickness (2%) was observed.  Therefore, values for 
photoinduced thickness changes (e.g., photoexpansion) could not be accurately determined for these 
samples and are not reported. 

Finally, an annealed film was exposed to identical conditions as those used for the as-deposited films.  
The refractive index dispersion of the annealed film is shown in Figure 8.7. 
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Figure 8.7. Refractive Index Data of the Annealed Film as a Function of Laser Dose 
 

One can see from Figure 8.7 that the photoinduced refractive index change in the annealed film is 
significantly smaller compared to the as-deposited film study.  Additionally, the sign has changed, 
showing a slight decrease of refractive index as dose increases.  The refractive index was found to 
decrease uniformly by 0.003 RIU at all wavelengths, with no significant saturation observed.  This result 
is unexpected, and investigation to confirm this result is still ongoing.  In addition, these results contradict 
our previous study of band gap laser written waveguides in annealed films.  Here we successfully 
demonstrated low-loss waveguides at 8.3-µm wavelength.  In this case, if the laser photomodification 
resulted in an index decrease, a guided mode condition in the core would not be possible.  It is possible 
that small variations in the deposition and annealing processing can produce variability in the initial 
energy of the glassy film structure, leading to unexpected and potentially undesirable photorefractive 
behaviors.  These results further demonstrate the importance of optical metrology tools, like prism 
coupling, at mid-infrared wavelengths. 

These results suggest that for effective laser writing of waveguide structures in As2Se3 thin films, 
exposure of as-deposited films, rather than annealed films, will result in a larger induced index change 
producing waveguides with better confinement.  It is also shown that knowledge of the induced index 
change at visible wavelengths is not sufficient to predict the index change at mid-infrared wavelengths. 

It has been shown that the refractive index of chalcogenide glasses can be measured across the 
visible, near, and mid-infrared spectral range using the prism-coupling technique.  Additionally, the 
technique was shown to have significantly improved accuracy as compared to spectroscopic and 
ellipsometric methods, with an experimental error of 0.0005 RIU for bulk glasses and 0.001 RIU for thin 
films.  The ability to precisely measure the refractive index change, which is induced during film 
processing steps such as deposition and annealing, as well as the photoinduced index change, which 
occurs upon laser irradiation, of chalcogenide films has also been demonstrated.  Access to precise 
refractive index values across the entire transparency region of these glasses will allow the optimization 
of the device design and processing steps which is key for the development of high-performance, 
integrated infrared photonics and sensing applications.
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9.0 Summary 

During FY 2008, PNNL’s Infrared Photonics research team continued developing the science and 
technology needed to meet the demand for lighter, more compact, and integrated mid-infrared remote 
sensing system designs.   

Improvements in PNNL’s chalcogenide glass thin-film deposition facility were made, including 
development of an ion gun chamber for substrate cleaning prior to deposition and installation of a three-
gun magnetron sputtering system for various metal and dielectric thin film deposition.  New channel 
waveguide designs were produced including y-junction beam combiners and waveguides for propagation 
wavelengths near 5 µm.  These devices were all fabricated using direct-laser writing exploiting the 
photomodification properties of chalcogenide glasses.  The performance of the fabricated waveguides was 
characterized using a waveguide transmission measurement that incorporated a mid-infrared tunable laser.  
Custom asphere lenses were designed and fabricated to couple in and out of these channel waveguides. 

A prism-coupling technique was developed to measure the refractive index of chalcogenide glasses 
across the visible, near, and mid-infrared spectral range.  This instrumentation provides the ability to 
precisely measure refractive index change due to thin-film processing and/or laser-written 
photomodification in chalcogenide glass.  Precise index measurements now allow for accurate device 
modeling and improved fabrication control to produce novel photonic structures specifically optimized 
for mid-infrared applications. 

PNNL also made significant progress in processing and characterizing commercially available 
chalcogenide fiber optics.  Due to the frangible nature of chalcogenide fiber optics, standard fiber optic 
tools and processes developed for silica fibers are not immediately applicable.  Towards this, we have 
successfully developed repeatable processes to strip the jacket, produce straight and angle cleave fibers, 
and polish connectorized fiber facets.  Our measurements of commercially available chalcogenide fibers 
indicated the need to quench cladding modes which was successfully accomplished by applying a coating 
of gallium metal on the cladding near both input and output facets.  Upon successfully quenching the 
cladding modes, single-mode emission with a near-Gaussian profile was obtained from these commercial 
fibers. 

PNNL continued to make significant progress towards the development of an integrated QC laser 
transmitter housed in an HHL package.  The integrated QC laser transmitter design was characterized 
using a 5.3-µm DFB QC laser.  The C-mount QC laser was mounted in the HHL package along with 
custom-designed germanium asphere collimation lens optimized for 5-µm wavelength.  These lenses 
exhibit diffraction-limited performance with tolerance to misalignment that occurs in the course of 
integrating optomechanical elements.  The emission wavelength versus temperature and injection current 
were characterized as well as the long-term frequency drift.  Our results show that the HHL package QC 
laser transmitter provides a stable laser source for laser-based sensing platforms. 
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