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Executive Summary

Detecting and identifying weak gaseous plumes using thermal imaging data is complicated

by many factors. These include variability due to atmosphere, ground and plume temper-

ature, and background clutter. This paper presents an analysis of one formulation of the

physics-based radiance model, which describes at-sensor observed radiance. The background

emissivity and plume/ground temperatures are isolated, and their effects on chemical signal

are described. This analysis shows that the plume’s physical state, emission or absorption,

is directly dependent on the background emissivity and the plume/ground temperatures.

We then describe conditions on the background emissivity and plume/ground temperatures

that have inhibiting or amplifying effects on the chemical signal. These claims are illus-

trated by analyzing synthetic hyperspectral imaging data with the Adaptive Matched Filter

using four chemicals and three distinct background emissivities. Two chemicals (Carbon-

tetrachloride and Tetraflourosilane) used in the analysis had a single dominant absorbance

feature over a short range of wavenumbers. Analysis of simulated hyperspectral images

containing these chemicals showed that, depending on the relationship between the plume

and ground temperatures, the detectability of these gases over each of the backgrounds

was either directly related or inversely related to the relative magnitude of the background

emissivities. These empirical results are consistent with the analysis of the physics based

model. The other chemicals considered (Ammonia and Tributylphosphate) exhibited more

complex absorbance structure across the longwave infrared spectrum. Analysis of images

containing these chemicals revealed that the the analysis of the physics-based model did not

hold completely for these complex chemicals but did indicate that gas detection was domi-

nated by their dominant absorbance features. These results provide a partial explanation of

the effect of the background emissivity on gas detection. A more general exploration of gas

absorbance/background emissivity variability and their effects on gas detection is warranted.
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1 Introduction

Remotely detecting and identifying weak gaseous plumes using infrared measurement instru-

ments is a challenge that receives continual attention. Burr and Hengartner [2] provide a

comprehensive review of this problem. Generally, the ability to detect a gaseous effluent is

influenced by its concentration path-length, atmospheric interferences, the temperature dif-

ference between the plume and the background surface, the emissivity of the background, and

the complexity of the background surface. Collectively, these elements are termed clutter.

The type and variability of background clutter in an image presents many modeling chal-

lenges for gaseous plume detection. This subject has been studied from many perspectives.

There have been studies that address the statistical characterization of background clutter

at the pixel level of resolution [1, 12]. End member estimation is a family of methods that

models the types of clutter in an image on a subpixel (multiple background types within a

pixel) level [3, 13]. There are also studies that address signal-to-noise (SNR) and signal-to-

clutter (SCR) ratios [11, 4]. The effects of signal contamination within a matched filter as

well as methods to improve SCR are well studied.

The work presented in this paper studies background clutter from a different perspective.

We develop a conceptual model of the effect of the background emissivity on the chemical

signal as influenced by the temperature emissivity (TE ) contrast; that is, we identify when

the background emissivity will have inhibiting effects on signal strength resulting in a re-

duced SCR. We view the temperature emissivity contrast as a difference in radiance signal

contribution of the plume and the background. First, we isolate the TE in a formulation

of the physics-based radiance model. Then, we conduct analyses of the TE ’s contribution

to the chemical signal while isolating the effect of the background emissivity. We describe

the contributions of these terms to the chemical signal and identify cases where the differ-

ence between the plume and ground temperatures along with background emissivity have

amplifying or inhibiting effects upon the net radiance signal at the sensor.

We validate our conceptual model for the effects of emissivity and temperature contrast on

signal strength by simulating simplified hyperspectral images using the InfraRed Systems

Analysis in General Environments (IR-SAGE) code [8] and calculating relative detection

proportions for three different backgrounds. We investigate three temperature cases and

four gases. The temperature cases consist of a constant ground temperature with plume
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temperatures that are less than, equal to, and greater than the ground temperature. We

estimate relative probabilities of detection using an adaptive matched filter for gases that

have a single large spectral feature. We also test the conceptual model further with two

gases that have multiple dominant spectral features.

This paper is organized as follows. Section 2 presents the physics-based radiance model and

the analyses of the temperature emissivity contrast cases that demonstrate the influence

of background emissivity upon gas detection. Section 3 describes image simulation, the

gas detection method, and sets up the modeling experiments with the four gases and three

backgrounds to demonstrate the phenomena described in Section 2. Section 4 presents the

results of the simulation studies and Section 5 presents our conclusions.

2 Physics-Based Radiance Model and Analysis

We explore the three-layer physics-based radiance model which relates ground, plume, and

atmospheric radiance to gain insight into how the structure of the background emissivity

impacts the at-sensor observed plume signal [5, 2, 7]. This model can be written as

Lobs(ν) = τa(ν)[(1 − τp(ν))B(Tp; ν) + τp(ν)Lg(ν)] + Lu(ν) + e(ν) (1)

where Lobs(ν) represents sensor-recorded radiance in W/cm2 ∗ Sr ∗ cm−1 at wavenumber

ν (cm−1), τa(ν) and τp(ν) are dimensionless terms representing the atmosphere and plume

transmissivity, respectively, B(T ; ν) has radiance units and is Planck’s Blackbody function

at wavenumber ν and temperature T (K), Lg(ν) and Lu(ν) are the ground-leaving and atmo-

spheric upwelling radiances, respectively, and e(ν) represents instrument noise and modeling

error.

Following the convention of [10, 2], we model the ground-leaving radiance as

Lg(ν) = ǫg(ν)B(Tg; ν) (2)

where ǫg(ν) is a dimensionless quantity representing the emissivity of the ground at wavenum-

ber ν, and 0 ≤ ǫg(ν) ≤ 1. Note that this formulation ignores the reflected atmospheric

downwelling radiance. This assumption is reasonable in the Longwave Infrared band (LWIR)
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because the reflected radiance contribution to observed signal is negligible [10].

The Beer-Bourger-Lambert Law [6] gives an explicit expression for the transmissivity of a

gas in terms of the chemical effluent’s concentration path-length, c (with c measured in

parts-per-million-meter, denoted ppm-m), as follows:

τp(ν) = e−A(ν)c (3)

where A(ν) is the absorbance coefficient of the gas in ppm-m−1 [6]. For optically thin plumes,

this term is well approximated by the first two terms in a Taylor Series expansion [2]. This

gives

τp(ν) ≈ 1 − A(ν)c. (4)

We now substitute Eq. (2) and Eq. (4) into Eq. (1) to arrive at the working-gas-plume

linear model

Lobs(ν) = τa(ν)[B(Tp; ν) − ǫg(ν)B(Tg; ν)]A(ν)c + τa(ν)ǫg(ν)B(Tg, ν) + Lu(ν) + e(ν) (5)

which we interrogate further.

The right hand side of Eq. (5) shows that atmospheric radiance observed by the sensor is

an additive layering of upwelling radiance Lu(ν), ground radiance attenuated by atmosphere

τa(ν)Lg(ν), and the signal due to the chemical plume τa(ν)[B(Tp; ν) − ǫg(ν)B(Tg; ν)]A(ν)c.

This representation has been used to motivate scene whitening and the use of the Adaptive-

Matched Filter (AMF ) for gas detection [2, 7]. We will use this formulation to explore the

effect that background emissivity and the ground/plume temperatures have on the chemical

signal.

The radiance due to the chemical plume is the first term on the right hand side of Eq. (5),

namely

τa(ν)[B(Tp; ν) − ǫg(ν)B(Tg; ν)]A(ν)c. (6)

Inspection of this term shows that radiance due to the plume is a function of atmospheric

transmission, plume and ground temperature, ground emissivity, and the plume gas ab-

sorbance and concentration path length. We are interested in how the structure of the back-

ground emissivity affects the chemical signal. Toward that end, we will make the following

assumptions:
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1. The gas exhibits absorbance at wavenumber ν.

2. The gas is present at some fixed concentration path length c.

3. The atmospheric transmission, τa(ν) is such that all plume radiance is not being at-

tenuated by atmosphere at wavenumber ν.

Assumptions 1 and 2 confirm that there is a chemical signal (gas absorbance or concentration

path length of 0 imply chemical signal of 0). Assumption 3 confirms that chemical radiance

can pass through the atmosphere and reach the sensor.

To isolate the effects of background emissivity on the net plume signal at a single channel,

we will focus our attention on the Temperature Emissivity Contrast that is defined below

TE(Tp, Tg, ǫg, ν) = B(Tp; ν) − ǫg(ν)B(Tg; ν). (7)

Eq. (6) shows that the chemical signal is proportional to TE. Thus, larger values of TE (in

absolute value) will yield larger chemical signals at wavenumber ν, making the plume easier

to detect at that wavenumber. Therefore, we investigate the properties of the background

emissivity ǫg(ν) that will yield a larger TE. We consider three plume-ground temperature

cases: Tp = Tg, Tp > Tg, and Tp < Tg. We analyze TE for each of these temperature cases

in the next sections.

2.1 Case 1: Tp = Tg

This case is presented first since it is the easiest to interpret analytically. Equality of the

plume and ground temperatures implies that B(Tp; ν) = B(Tg; ν) = B(T ; ν) for the common

temperature T . Thus, when Tp = Tg = T , we can express Eq. (7) as

TE(Tp, Tg, ǫg, ν) = B(Tp; ν) − ǫg(ν)B(Tg; ν)

= B(T ; ν) − ǫg(ν)B(T ; ν)

= (1 − ǫg(ν))B(T ; ν) (8)
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Since 0 ≤ ǫg(ν) ≤ 1, Eq. (8) demonstrates that a smaller ǫg(ν) will result in a larger TE and

hence a larger chemical signal. We also note that TE is strictly positive for this temperature

case. An ǫg(ν) = 1 is required for TE = 0, but this happens only for a true Blackbody. This

indicates that the plume is in emission (emitting radiation) when Tp = Tg. A gas plume in

emission is contributing to the observed radiance signal, and the chemical may be seen as

peaks on the observed radiance at wavenumbers where the gas exhibits positive values in

A(ν).

2.2 Case 2: Tp > Tg

When Tp > Tg, it follows that B(Tp; ν) > B(Tg; ν) since Planck’s function is monotonically

increasing with respect to T . We can write the plume’s Blackbody radiance as a function of

the ground’s blackbody radiance. We express this as

B(Tp; ν) = (1 + δ1(ν))B(Tg; ν) (9)

where we use δ1(ν) to represent the relative difference between the plume and ground Black-

body functions as follows:

δ1(ν) =
B(Tp; ν) − B(Tg; ν)

B(Tg; ν)
. (10)

Substituting Eq. (9) into Eq. (7) yields

TE(Tp, Tg, ǫg, ν) = B(Tp; ν) − ǫg(ν)B(Tg; ν)

= (1 + δ1(ν))B(Tg; ν) − ǫg(ν)B(Tg; ν)

= (1 + δ1(ν) − ǫg(ν))B(Tg; ν). (11)

Eq. (11) is also easy to interpret as a function of ǫg. First, we note that because δ1(ν)

is a positive and is additive in TE, it can be shown that TE is strictly positive for this

temperature case. This says that the plume is strictly in emission for this case. It also says

that a larger chemical signal is observable compared to the previous temperature case. Since

ǫg(ν) is subtracted, small emissivities yield a larger chemical signal at wavenumber ν.

5



2.3 Case 3: Tp < Tg

This temperature case is the most difficult to interpret analytically. When Tp < Tg, it follows

that B(Tp; ν) < B(Tg; ν). Similar to the previous section, we can write

B(Tp; ν) = (1 − δ2(ν))B(Tg; ν) (12)

where the δ2(ν) is now expressed as

δ2(ν) =
B(Tg; ν) − B(Tp; ν)

B(Tg; ν)
. (13)

Note that the order of the Blackbody functions in Eq. (13) has changed from Eq. (10) to

maintain a positive δ2(ν) function for this temperature case.

We substitute Eq. (12) into Eq. (7) and find that

TE(Tp, Tg, ǫg, ν) = B(Tp; ν) − ǫg(ν)B(Tg; ν)

= (1 − δ2(ν))B(Tg; ν) − ǫg(ν)B(Tg; ν)

= (1 − δ2(ν) − ǫg(ν))B(Tg; ν). (14)

The fact that δ2(ν) is a subtracted term in Eq. (14) complicates the interpretation of what

properties of ǫg(ν) are desirable for a larger TE and larger chemical signal. We provide a

graphical summary of TE for the three temperature cases in the next subsection to clarify

how ǫg(ν) contributes to TE for each temperature case. For this temperature case, TE can

be positive, negative, or 0, and this is directly dependent on ǫg(ν) as well as Tp and Tg. A

plume in absorption (TE < 0) is decreasing the observed radiance signal at wavenumbers

where A(ν) is positive. In this case, the gas can be seen as troughs in the observed radiance.

A plume that is neither emitting nor absorbing (TE = 0) is transparent to the sensor and

cannot be detected.

2.4 Graphical Summary of TE for the three temperature cases.

We present a plot of TE as a function of ǫg(ν) for the three temperature cases at ν = 1000

cm−1 in Figure 1. We set the ground temperature to Tg = 300K and vary the plume
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temperature at Tp = 305, 300, 295K.

The plots of TE for the Tp > Tg and Tp = Tg cases are the red and green lines, respectively.

The plot shows that values of ǫg(ν) closer to 0 increase the magnitude of TE. This is

consistent with the interpretation of the analyses.

The plot of TE when Tp < Tg illustrates which values of ǫg(ν) yield a larger TE in magnitude.

We can see that TE crosses the horizontal axis if ǫg(ν) = B(Tp; ν)/B(Tg; ν). This shows that

when ǫg(ν) = B(Tp; ν)/B(Tg; ν), the plume is neither emitting nor absorbing and there is no

chemical signal at wavenumber ν. The fact that TE can cross the horizontal axis informs

us that small emissivities (closer to 0) or larger emissivities (closer to 1) have the potential

to make the absolute value of TE larger for this temperature case.

The implications of this plot are as follows. When the gas exhibits an absorbance feature

at wavenumber ν and the plume is in emission, the analysis implies that backgrounds that

have emissivities closer to 0 at wavenumber ν will contribute to a larger chemical signal,

and thus the plume will be easier to detect. We note that this is true for each temperature

case Tp ≥ Tg and Tp < Tg. However, when Tp < Tg, we observe that it is possible that a

background emissivity closer to 0 or closer to 1 may contribute to a larger chemical signal.

This is illustrated by the orange line in Figure 1. Thus the plume will give some chemical

signal for emissivities near 1 when Tp < Tg and this distinguishes this temperature case from

those where Tp ≥ Tg.

3 Experimental Methods

The goal of this section is to explore the validity of the analysis presented in Section 2.

While the analysis describes the effect of ǫg(ν) on the chemical signal at a single channel,

hyperspectral instruments record a radiance vector across the LWIR band. As such we will

explore how these phenomena affect gas detectability in a multivariate setting. In order

to illustrate the claims made in the single channel analysis, we will first restrict ourselves

to a specific subset of gases and background emissivities. We choose gases that exhibit

strong absorbance over a small range of wavenumbers and no absorbance everywhere else

and select emissivities that do not change ordering over the wavenumbers where the gas

exhibits absorbance. Then we explore the effect of background emissivities on detectibility
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Figure 1: Temperature emissivity contrast plotted as a function of emissivity for three tem-
perature cases at ν = 1000 cm−1: 305K = Tp > Tg = 300K (red line), Tp = Tg = 300K
(green dashed line), and 295 = Tp < Tg = 300K (orange line). TE is non-negative when
Tp ≥ Tg, which indicates the plume is in emission. TE can be positive or negative, depending
on ǫg when Tp < Tg, which indicates the plume can be in emission or absorption.

using gases that do not meet this constraining criterion. We choose gases that have multiple

features across all wavenumbers in the LWIR and do not require any specific ordering of the

background emissivities where the gases exhibit features.

We employ IR-SAGE to simulate simplified hyperspectral images. The background spectra

used in this study are laboratory-measured individual background materials from the Non-

conventional Exploitation Factors Data System (NEFDS), a government database of surface

reflection parameters. We selected three distinct background emissivity clusters and used

the mean spectra of the three clusters in image simulation. These spectra are representative

of the following three groups: Brick, Snow, and Steel-Copper Tubing. These spectra are
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presented in Figure 2(a). Note that in the LWIR (750-1250 cm−1), these emissivities are

relatively high.

Two single feature gases were selected for image simulation: Carbontetrachloride (CCL4)

and Tetraflourosilane (SiF4). These gases exhibit one large dominant absorbance feature.

A plot of the absorbance spectra for these gases is presented in Figure 2(b). The spectrum

for CCL4 shows a major feature around 790 cm−1. SiF4 exhibits a dominant feature around

1025 cm−1. Note that the background emissivities show a consistent ordering across type

(they do not cross) where each of these chemicals exhibits positive absorbance.

We also selected two gases that exhibit multiple features across the spectrum. These gases

are Ammonia (NH3) and Tributylphosphate (TBP). A plot of the absorbance spectra for

these gases is presented in Figure 2(c). The spectrum for NH3 exhibits multiple small and

sharp peaks across many of the wavenumbers. The spectrum for NH3 shows two dominant

sharp peaks at approximately 930 and 960 cm−1 and multiple minor sharp peaks across

the other wavenumbers. The spectrum for TBP shows some absorbance (greater than 0)

at all wavenumbers as well as some large broad peaks. The largest is centered at approxi-

mately 1050 cm−1 and covers a range from approximately 1040 to 1100 cm−1. We note that

the background emissivites show no consistent ordering where these gases exhibit non-zero

absorbance.

The simulated images have dimensions 75× 120× 126 (rows by columns by spectral dimen-

sion). The wavenumber range used is 750 to 1250 cm−1 in steps of 4. The three background

spectra are inserted across the rows in three 25-pixel swaths. The chemicals are inserted as

six 20-column bands at concentration path-lengths 16, 8, 4, 2, 1, and 0 ppm-m. This orien-

tation produces 500 pixel replicates within a background/gas concentration combination.

Images were created for each temperature case. The ground temperature, Tg, was kept

constant at 300K, and the plume temperature, Tp, was varied at Tp = 305K, 300K, and

295K for the CCL4 images. This temperature range was selected to illustrate the effect of

the background emissivities on detection. A slightly wider temperature range was needed

to illustrate the effect for SiF4: Tg = 300 and Tp = 305K, 300K, 292K. It was possible to

show the effect of background emissivity on gas detection for NH3 and TBP, but a larger

temperature range was required. For these chemicals Tg was kept constant at 300K and Tp

was varied at Tp = 290K, 295K, 300K, and 305K.
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Simulated zero-mean instrument noise was used to perturb the spectra in each pixel. Vari-

ability due to atmosphere, temperature, and emissivity from pixel to pixel were held constant

to enable us to study the effect of the background emissivity’s variability across the spectrum

on the chemical signal.

We use the Adaptive Matched Filter (AMF ) as a gas detector, note that this is equivalent

to a generalized least squares solution to a linear model e.g. see [2, 9]. The image analysis

process is as follows. The non-gas pixels can be formulated as

Loffi
= τa ⊙ Lg + Lu + ei, i = 1, ..., 500 (15)

where bold terms are vectors of length 126 (126 spectral channels) and ⊙ denotes the

Hadamard product (elementwise multiplication). We compute the mean of these pixels for

use in background radiance subtraction. This can be represented as Loff = τa⊙Lg +Lu + ē

for the 500 non-gas replicates as the atmospheric transmissivity and background radiance are

not varied across pixels. We subtract this quantity from each of the gas pixels that contain

the same background type, i.e., we compute

Lobs − Loff = τa ⊙ [B(Tp) − ǫg ⊙ B(Tg)] ⊙ Ac + e. (16)

Eq. (16) shows how the background mean subtraction removes radiance due to ground as

well as atmospheric upwelling radiance and leaves the chemical signal and noise. These data

are processed with the AMF. Explicitly we compute

AMF = (A′Σ̂−1
A)−1

A
′Σ̂−1(Lobs − Loff ) (17)

where A is a 126 × 1 vector of the gas absorbance spectra and Σ̂ : 126 × 126 represents the

spectral covariance matrix computed on the non-gas pixels. This formulation of the filter is

sometimes used in practice in the LWIR. It assumes no information about the atmosphere,

plume or ground temperatures, and emissivity is available. It also assumes that TE is

constant across the spectral dimension [2, 1].

If the AMF is statistically significant based on a 5% level two-sided hypothesis test [8],

then we say we have “detected” the gas in that pixel. We apply this solution to each of the

500 replicates within each gas concentration path-length/background combination and then
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record the proportion of detections:

p̂ =
# of detections

500
. (18)

We use p̂ as an estimate of the gas detection probability. We get 18 detection probabilities

for each image as there are three backgrounds and six gas-concentration path-length levels.

Lastly, we plot detection proportions versus concentration path length and look for orderings

(conditioned on background emissivity) in these curves. We then interpret these results back

to the claims to the effect that background emissivities should produce a larger chemical

signal and better detectability for each chemical.

4 Results

In this section, we present the results of analyses performed on the synthetic IR-SAGE

images. Sample detection proportions were computed for each combination of concentration

path-length and background type. The detection proportions for the single-feature chemicals,

CCL4 and SiF4, are presented in Figures 3 and 4 respectively. The detection proportions for

the multi-feature chemicals, NH3 and TBP, are presented in Figures 6 and 7 respectively.

The single and multi-feature chemicals are considered in separate sections below.

4.1 Single-feature Chemicals

First, we consider Figure 3(a), which is a plot of the empirical detection curves for CCL4

when Tp = Tg = 300K. Examination of the plot shows that the backgrounds can be ordered

by detection proportion as (best to worst) Steel-Copper, Brick, and Snow. Figure 3(d) shows

a plot of the CCL4 absorbance spectra along with the background emissivities. We see that

where CCL4 exhibits the large absorbance peak, the background emissivities can be ordered

from low to high as Steel-Copper, Brick, and Snow. Thus, the results here are consistent

with the characterization of TE for this temperature case: lower background emissivities

contribute to larger chemical signal when the plume is in emission.

Next, we consider the detection proportion plot for 305K = Tp > Tg = 300K in Figure 3(b)

which shows the same ordering in backgrounds as the previous temperature case. It also

12



shows that detection has generally increased over all backgrounds. These observations are

consistent with the characterization of TE as they represent the fact that the backgrounds

that give better detection for the Tp = Tg case are the same as for the Tp > Tg case. They

also represent the fact that Tp > Tg gives a larger TE and in turn a larger chemical signal.

Third, we consider Figure 3(c), which shows the empirical detection curves for CCL4 when

295K = Tp < Tg = 300K. Now we see that the ordering in the detection curves by

background is Snow, Brick, and then Steel Copper. Inspection of Figure 3(d) shows that

the background emissivites can be ordered (high to low) as Snow, Brick, then Steel-Copper

where CCL4 exhibits its dominant absorbance peak. These results are consistent with the

analysis of TE for this temperature case. They illustrate that, for an absorbing plume and a

large enough (negative) TE, the backgrounds that give best detection are those that exhibit

larger emissivities and not smaller ones as in the previous two temperature cases.

Now we consider Figure 4(a), which is a plot of the empirical detection curves for SiF4 when

Tp = Tg = 300K. Examination of the plot shows that the backgrounds can be ordered from

best to worst detectability for SiF4 as Brick, Steel-Copper, and Snow. Figure 4(d) shows that

the background emissivities can be ordered from least to greatest as Brick, Steel-Copper,

and Snow where SiF4 exhibits its dominant absorbance peak. This ordering is consistent

with the analysis of TE: smaller emissivities yield a larger chemical signal for this case.

Next, we consider Figure 4(b), which gives the SiF4 detection proportions when 305K =

Tp > Tg = 300K. Examination of this plot shows that the background orderings by detection

proportion are the same as the Tp = Tg case. The plot also shows that detection has generally

increased for the emitting plume at a higher temperature.

Last, we consider the plot in Figure 4(c), which presents the empirical detection proportions

when Tp = 292K < Tg = 300K. This plot shows that the backgrounds that yield best

detection have changed ordering to Snow, Steel-Copper, and Brick. Again, we see that

larger emissivities yield larger detection proportions for a large TE when Tp < Tg.

4.2 Multi-feature Chemicals

First, we present plots of the background emissivities and NH3 and TBP in Figure 5. The

plot of the background emissivities with the NH3 spectrum in Figure 5(a) shows that the
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Figure 3: Detection proportions for CCL4 when (a) Tp = Tg = 300K, (b) Tp = 305K >
Tg = 300K, (c) Tp = 295K < Tg = 300K, and (d) gas absorbance spectra and background
emissivities.
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Figure 4: Detection proportions for SiF4 when (a) Tp = Tg = 300K, (b) Tp = 305K >
Tg = 300K, (c) Tp = 292K < Tg = 300K, and (d) gas absorbance spectra and background
emissivities.
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background emissivities do not exhibit any consistent ordering across the wavenumbers where

NH3 has non-zero absorbance peaks. While this is the case, we note that NH3 exhibits

two dominant absorbance peaks at approximately 930 and 960 cm−1 and that, at these

wavenumbers, it is possible to order the background emissivities as (high to low) Snow,

Brick, then Steel-Copper. This point will be revisited in the presentation of the detection

results. Similarly Figure 5(b) shows that the background emissivities show no consistent

ordering across the wavenumbers where TBP exhibits non-zero absorbance features. We do

note that TBP exhibits a broad dominant absorbance centered at approximately 1050 cm−1.

At this wavenumber the background emissivities do show a consistent ordering as Snow,

Steel-Copper, and Brick.
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Figure 5: Background emissivities plotted with (a) NH3 and (b) TBP.

The results for NH3 and TBP presented in Figures 6 and 7 respectively indicate that it

is possible to observe a switch in background orderings for best detection as the plume

temperature goes from Tp > Tg to Tp < Tg. The analysis of the physics based model in

Section 2, however, does not lend to predicting the best/worst backgrounds for detection for

these chemicals as they exhibit complex structure and relationship to each of the backgrounds

across the spectrum.

First, we consider Figure 6(a) which presents the empirical detection results for NH3 when

Tp = Tg = 300K. Examination of this plot shows that the backgrounds can be ordered by
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detection proportion as (best to worst) as Steel-Copper, Brick, then Snow. We note that the

detection proportions for this temperature case are relatively low at each gas concentration

path-length. Reasonably large detections are not observed until 16 ppm-m. Further the

detection proportion curve for NH3 over Snow is not statistically different from non-detection

at any concentration path-length. We do note that at 930 and 960 cm−1 where NH3 exhibits

the two dominant absorbance peaks, the backgrounds can be ordered (low to high) as Steel-

Copper, Brick, then Snow and that this is consistent with the detection proportion ordering

at 16 ppm-m. This observation suggests that the two large absorbance peaks for NH3 have

the most impact on gas detection for these data. We also note that these observations are

also consistent with the analysis of the physics-based model in Section 2 that when Tp = Tg

smaller emissivities yield a larger chemical signal for this case.

Second, we consider the detection proportion plot for Tp = 305K > Tg = 300K in Figure

6(b). As expected, this plot shows that background ordering is the same as the previous

temperature case at 16 ppm-m and that detection proportion has generally increased. This

is consistent with with the characterization of TE in Section 2 that larger temperature

differences contribute to larger chemical signal.

Third, we consider the detection proportion plot for 295K = Tp < Tg = 300K in Figure

6(c). This plot indicates that Snow is now the best background for detecting NH3 which is

in contrast to the previous temperature cases. It also shows that the detection proportion

curves for Steel-Copper and Brick have not yet changed ordering as we expect and in fact,

these detection proportions are not significantly different from non-detection. This indicates

that this temperature contrast is not sufficient to produce a TE large enough to detect NH3

over these backgrounds. Recall that in this temperature case it is possible for TE to change

sign from positive to negative (see Section 2). This fact may help explain why NH3 cannot

be detected over Steel-Copper and Brick, that is, these temperatures yield a TE that gives

a very small chemical signal.

Last, we consider the detection proportion plot for 290K = Tp < Tg = 300K in Figure 6(c).

This plot shows that the backgrounds can now be ordered as Snow, Brick, then Steel-Copper

and this is exactly the opposite ordering from the Tp = Tg and Tp > Tg cases. We note that

at 930 and 960 cm−1 where NH3 exhibits the two dominant absorbance peaks the background

emissivities can be ordered (high to low) as Snow, Brick, then Steel-Copper. Again, these

observations suggest that the large absorbance peaks of NH3 have the greatest impact on
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gas detection. We also note that the ordering of backgrounds for this temperature case are

consistent with the analysis of TE in Section 2 that when Tp < Tg larger emissivities yield

a larger chemical signal.

We now consider the detection results for TBP. We first consider the detection proportion

plot for Tp = Tg = 300K presented in Figure 7(a). The plot shows that the backgrounds

can be ordered for best to worst detectability for TBP as Brick, Steel-Copper, and Snow.

We note that TBP detections over the snow background were not statistically different

from non-detections for this temperature case. While TBP exhibits complex structure and

relationship to the background emissivities, we do note that at 1050 cm−1 TBP exhibits its

largest absorbance feature and that the backgrounds can be ordered as (low to high) Brick,

Steel-Copper, and Snow. This ordering is consistent with the ordering of the detection

proportion curves for this temperature case. These observations suggest that, while TBP

exhibits non-zero absorbance over all wavenumbers in the LWIR, its detectability seems to be

dominated by its largest absorbance feature. We also note that the ordering of the backround

emissivities over the dominant absorbance feature is consistent with the analysis of TE in

Section 2 that when Tp = Tg, smaller background emissivities yield a larger chemical signal.

Second, we consider the detection proportion plot for 305K = Tp > Tg = 300K presented

in Figure 7(b). We observe that the detection proportions have generally increased for this

temperature case and that the backgrounds that give the best to worst detection for TBP

are ordered the same as the previous temperature case at 16 ppm-m. These observations are

consistent with the analysis of TE in Section 2 and show that a stronger chemical signal is

observable with a greater plume-ground temperature difference.

Third, we consider the detection proportion plot for 295 = Tp < Tg = 300K presented in

Figure 7(c). We observe that, for this temperature case, the backgrounds can be ordered

for best to worst detection for TBP as Snow, Brick, then Steel-Copper. These observations

show that this temperature case is not yet sufficient to give a large enough negative TE

to completely switch the background emissivity orderings for detection from the orderings

of the previous temperature cases. Recall that it is possible for TE to change sign when

Tp < Tg. The detection proportions indicate that TE for Brick may still be positive across

the wavenumbers while the TE for Steel-Copper is to small across the wavenumbers to yield

any reasonable detections for this temperature case.
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Figure 6: Detection proportions for NH3 when (a)Tp = Tg = 300K, (b)Tp = 305K > Tg =
300K, (c)Tp = 295K < Tg = 300K, and (d)Tp = 290K < Tg = 300K.
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Figure 7: Detection proportions for TBP when (a)Tp = Tg = 300K, (b)Tp = 305K > Tg =
300K, (c)Tp = 295K < Tg = 300K, and (d)Tp = 290K < Tg = 300K.
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Last, we consider the detection proportion plot for 290 = Tp < Tg = 300K presented

in Figure 7(d). We now observe that the backgrounds can be ordered for best to worst

detection of TBP as Snow, Steel-Copper, then Brick. This temperature case was sufficient

to give a large enough (negative) TE to observe the switch in background orderings. We also

note that, at 1050 cm−1 where TBP exhibits the broad dominant absorbance feature, the

background emissivities can be ordered from high to low as Snow, Steel-Copper, then Brick

and that this ordering is consistent with the background ordering as decided by the detection

proportions. These observations suggest that the large absorbance for TBP is dominating

gas detection for this chemical. Further, we note that these observations are consistent with

the analysis of TE in Section 2 that when Tp < Tg larger emissivities yield a larger chemical

signal for this temperature case.

5 Conclusions

The effects of clutter on gas plume detection/identification is a complicated problem that

is approached from multiple perspectives. This paper studied the effects of background

emissivity and plume/ground temperatures on the chemical signal. The analysis is most

pertinent to treatments of the physical radiance model that linearize the plume transmissivity

term and work with linear approaches to gas detection or identification.

Our investigation has shown that, when ignoring reflected downwelling radiance, the phys-

ical state of the plume (emission, neutral, or absorption) is not only dependent on the

plume/ground temperatures, but is also directly dependent on the background emissivity,

ǫg(ν), at a particular wavenumber. We have shown that Tp ≥ Tg implies that the plume is

strictly in emission and that values of ǫg(ν) closer to 0 will contribute to a larger observed

chemical signal. Further, when Tp < Tg we have shown that it is possible that the plume is

in emission, absorption, or neither emitting nor absorbing (neutral). A neutral plume hap-

pens when ǫg(ν) = B(Tp; ν)/B(Tg; ν). Thus the background has the potential to completely

obscure the plume at wavenumber ν. The analysis also shows that emissivities closer to 0

or 1 in this case have the potential to contribute to a larger observed chemical signal.

The analysis was verified by analyzing simulated hyperspectral radiances in the absence of

atmospheric, background, and temperature variability. The first two gases considered exhib-

ited a very strong relationship with the background emissivities: the background emissivities
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did not change ordering over the wavenumbers that the gas exhibited absorbance. This made

it possible to explore and illustrate the analysis of the physical model in Section 2 that de-

scribed what types of background emissivities give better chemical detection. The second

two gases considered exhibited general variability over the LWIR and results presented with

these gases revealed that the dominant gas absorbances may play the greatest role in gas

detection. These results also showed that Tp < Tg is a complex case for gas detection as

TE can change signs in this case. These observations warrant further study and we aim to

explore this phenomenology in a general setting in future work.
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