Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

RT Dahowski
JJ Dooley

September 2008
Source/Sink Matching for U.S. Ethanol Plants and Candidate Deep Geologic Carbon Dioxide Storage Formations

RT Dahowski
JJ Dooley

September 2008

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352
ABSTRACT: This report presents data on the 140 existing and 74 planned ethanol production facilities and their proximity to candidate deep geologic storage formations. Half of the existing ethanol plants and 64% of the planned units sit directly atop a candidate geologic storage reservoir, while 70% of the existing and 97% of the planned units are within 100 miles of at least one candidate deep geologic storage reservoir. As a percent of the total CO₂ emissions from these facilities, 92% of the emissions from exiting units and 97% of the emissions from planned units are generated within 100 miles of at least one potential CO₂ storage reservoir.

KEY WORDS: ethanol production, carbon dioxide capture and storage; climate change, United States.
Figure 1 shows current and announced ethanol production facilities in the United States as well as candidate deep geologic CO₂ storage reservoirs.¹ As can be seen from Figure 1, while many ethanol facilities sit directly atop a potential storage formation, a significant percentage do not. This brief paper will examine the proximity of U.S. ethanol production facilities to candidate storage reservoirs, as well as the implications of this analysis for the potential deployment of carbon dioxide capture and storage (CCS) technologies within the U.S. ethanol industry.

Figure 1: Candidate Deep Geologic CO₂ Storage Reservoirs and Current and Planned Ethanol Production Facilities

Overview of U.S. Ethanol Plants
Table 1 presents an overview of the existing and planned U.S. ethanol production infrastructure using the most recently available data.

Table 1: Overview of Existing and Planned Ethanol Production Facilities

<table>
<thead>
<tr>
<th></th>
<th>Existing Facilities</th>
<th>Planned Facilities</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Facilities</td>
<td>140</td>
<td>74</td>
<td>214</td>
</tr>
<tr>
<td>Total Emissions, MtCO₂/yr</td>
<td>19.3</td>
<td>15.1</td>
<td>34.4</td>
</tr>
</tbody>
</table>

Ethanol plants are seen as potential early adopters of CCS systems as the cost of capturing CO₂ from these facilities is believed to be quite low. The fermentation process involved in producing ethanol results in a very pure stream of CO₂ that is typically vented to the atmosphere. If there were a policy in place that created a disincentive for venting CO₂ to the atmosphere, the CO₂ stream from these ethanol plants would only need to be dehydrated (to prevent corrosion in CO₂ pipelines) and compressed to typical pipeline pressures. The cost of capture (including dehydration and compression) from these facilities could be in the range of $6-12/tonCO₂, which is far lower than the potential costs to capture and prepare pipeline-ready CO₂ from even the most modern coal fired power plants.² For this reason, industrial facilities such as ethanol plants that produce high purity CO₂ streams are often seen as early opportunities for CCS deployment.

Source Sink Matching Transporting CO₂ from Ethanol Facilities
While the cost of capturing CO₂ from ethanol plants is considered to be quite low, the captured CO₂ still needs to be delivered to a suitable deep geologic storage reservoir, injected into that reservoir, and monitored for safety and efficacy. The cost of transport (which for the U.S. and many other parts of the world will almost surely be by dedicated CO₂ pipelines)³ is likely to be another significant cost element, particularly on a per-ton basis given the relatively low-volume CO₂ streams produced by ethanol facilities.⁴

Source Sink Matching for Existing Ethanol Production Facilities

Table 2 presents summary information on the existing ethanol facilities and their proximity to candidate deep geologic CO₂ storage formations. As shown in Table 2, 50% of the existing ethanol plants (which cumulatively account for 46% of the CO₂ produced from all existing ethanol plants) sit directly atop a candidate deep geologic CO₂ storage formation. If the search radius is expanded to 50 miles, 85 existing ethanol plants (61%) could reach a candidate CO₂ storage reservoir. If the search radius is extended to 100 miles, 110 existing facilities accounting for 92% of the cumulative CO₂ from these existing ethanol plants could likely reach at least one deep geologic CO₂ storage formation.

Table 2: Existing Ethanol Facilities and their Distance to Candidate Deep Geologic CO₂ Storage Reservoirs

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number of Facilities</th>
<th>% of Facilities</th>
<th>Total Emissions, MtCO₂/yr</th>
<th>% Of Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 miles</td>
<td>70</td>
<td>50%</td>
<td>19.3</td>
<td>46%</td>
</tr>
<tr>
<td>50 miles</td>
<td>85</td>
<td>61%</td>
<td>9.0</td>
<td>76%</td>
</tr>
<tr>
<td>100 miles</td>
<td>110</td>
<td>79%</td>
<td>14.8</td>
<td>92%</td>
</tr>
<tr>
<td>Total</td>
<td>140</td>
<td>100%</td>
<td>19.3</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source Sink Matching for Planned Ethanol Production Facilities

Table 3 presents summary information on the planned ethanol facilities and their proximity to candidate deep geologic CO₂ storage formations. As can be seen from Table 3, 64% of the planned plants (62% of the planned units CO₂ emissions), appear to sit atop a candidate deep geologic CO₂ storage formation. If pipeline lengths of up to 50 miles are considered, then slightly more than 80% of the facilities and a similar percentage of their CO₂ emissions should be able to reach a candidate CO₂ storage reservoir. If the search radius is extended to 100 miles, virtually all of the facilities and their associated emissions (97% by both measures) should be able to reach a candidate deep geologic CO₂ storage reservoir.

Table 3: Existing Ethanol Facilities and their Distance to Candidate Deep Geologic CO₂ Storage Reservoirs

<table>
<thead>
<tr>
<th>Distance</th>
<th>Number of Facilities</th>
<th>% of Facilities</th>
<th>Total Emissions, MtCO₂/yr</th>
<th>% Of Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 miles</td>
<td>47</td>
<td>64%</td>
<td>9.4</td>
<td>62%</td>
</tr>
<tr>
<td>50 miles</td>
<td>60</td>
<td>81%</td>
<td>12.5</td>
<td>83%</td>
</tr>
<tr>
<td>100 miles</td>
<td>72</td>
<td>97%</td>
<td>14.7</td>
<td>97%</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>100%</td>
<td>15.1</td>
<td>100%</td>
</tr>
</tbody>
</table>

The following figures illustrate the findings for both the existing and planned ethanol facilities. Figure 2 shows the distance from each current and planned ethanol production facility to the nearest candidate CO₂ storage formation. Figure 3 shows the cumulative estimated CO₂ emissions from these same sets (and order) of plants. Figure 4 shows a preliminary estimate of
cumulative CO$_2$ pipeline requirements, assuming individual pipelines from each plant to nearest storage reservoir, with a 17% routing factor and 10 mile adder to locate a suitable injection location.

Figure 2: Distance in Miles to Nearest Candidate Deep Geologic CO$_2$ Storage Formation for Both Existing and Current Ethanol Plants
Figure 3: Cumulative Estimated CO₂ Emissions for the Set of Existing and Planned Ethanol Production Facilities Shown in Figure 2.

Figure 4: Estimated Cumulative CO₂ Pipeline Infrastructure for the Set of Existing and Planned Ethanol Production Facilities Shown in Figure 2.