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Executive Summary

Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra

can be used to identify materials present in the image. In some cases, spectral libraries

representing atmospheric chemicals or ground materials are available. The challenge is to

determine if any of the library chemicals or materials exist in the hyperspectral image. The

number of spectra in these libraries can be very large, far exceeding the number of spectral

channels collected in the field. Suppose an image pixel contains a mixture of p spectra from

the library. Is it possible to uniquely identify these p spectra? We address this question in

this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to

determine if unique identification is possible for any given library. We also show that if p is

small compared to the number of spectral channels, it is very likely that unique identification

is possible. We show that unique identification becomes less likely as p increases.
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1 Introduction

Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra

can be used to extract information from the image. In some cases, spectral libraries exist,

and the challenge is to determine if any of the library spectra exist in the hyperspectral

image. The number of spectra in these libraries can be very large, far exceeding the number

of spectral channels collected in the field. A fundamental question is, “Given library spectra,

each of length n, how many spectra can be uniquely identified in a hyperspectral image?”

We address this question in this paper and refer to it as the Large Spectral Library (LSL)

problem. The question is complicated by the presence of noise in spectral measurements as

well as model uncertainty.

The “curse of dimensionality” refers to the difficulties associated with high-dimensional data.

Yet, hyperspectral imaging is an extension from a low-dimensional view of a scene to a high-

dimensional view. The expectation is that important features can only be perceived from

the higher dimensional view. This paper explores how the dimension of the data impacts

the LSL problem.

A first cut at the problem is to ignore two complicating factors that are the physical constraint

of positive coefficients in spectral mixing and spectral noise. This allows us to address the

problem with the tools of classical linear algebra, which is done in Section 2. In Section 3,

we incorporate the constraint of positive coefficients. In Section 4, we explore how spectral

noise affects spectral uniqueness. Section 5 is a summary of the impact of these findings on

spectral identification in hyperspectral imaging analysis.

2 A Linear Algebra Perspective

In this section, we explore the LSL problem in the context of classical linear algebra. We

ignore both the physical constraint of positive coefficients and spectral noise. These will be

addressed in Sections 3 and 4, respectively.

Since individual spectra can be viewed as vectors, we consider the spectral library to be

a collection of vectors. Two properties of the spectral library are of interest. The first is

whether a pixel vector can be represented by a linear combination of spectra in the library.
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The second property addresses the uniqueness of the representation. Of course, if the spectral

library is large compared to the number of spectral channels and the library has a maximal

linearly independent subset, then there will be infinitely many representations for any vector.

A more interesting question in the context of the LSL problem is the uniqueness of mixtures

or linear combinations of length p, where p is small relative to the vector length. For example,

let p = 3 and the vector length be n = 100, where n is the number of spectral channels.

If a pixel is a linear combination of three spectra, are there any other linear combinations

of three or fewer spectra that can produce the same pixel? We address this question in the

following theorem. In the theorem, G represents the spectral library at the resolution of the

fielded sensor, and w is an individual pixel vector.

Note: a q−tuple is a collection of q vectors.

Theorem 2.1. Let G = {g1, ..., gN}, gi ∈ Rn and n ¿ N . Let q ≤ n and assume every

q-tuple from G is linearly independent. Let p ≤ q
2

and v1, v2, . . . , vp ∈ G. Finally, let

w = c1v1 + c2v2 + · · ·+ cpvp, ci 6= 0 and w 6= 0. Then w has a unique representation of length

p in G.

Proof. Suppose there is another representation of w of length p or less. In other words,

assume there exists u1, u2, . . . , uk ∈ G such that

w = b1u1 + b2u2 + · · ·+ bkuk, k ≤ p .

We will show that this assumption leads to a contradiction. Let {v1, v2, . . . , vp} and {u1, u2, . . . , uk}
have r elements in common where 0 ≤ r < k and assume they are ordered such that the

common elements are last. Then,

w = c1v1 + c2v2 + · · ·+ cpvp = b1u1 + b2u2 + · · ·+ bkuk

and

c1v1 + · · ·+ cp−rvp−r + (cp−r+1 − bk−r+1)vp−r+1 + · · ·+
(cp − bk)vp − (b1u1 + b2u2 + · · ·+ bk−ruk−r) = 0

and at least p + k− 2r coefficients in this equation are non-zero. Thus, by definition [Str88],

this set of p + k − 2r ≤ q vectors is linearly dependent, which contradicts the hypothesis
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that every q−tuple in G is linearly independent.

This theorem does not say that a longer representation does not exist. It does say there is

only one representation of length p or less if the hypotheses of the theorem are satisfied.

It is important to notice in this theorem that for any set G, if every q-tuple is linearly

independent, then every r-tuple is also linearly independent where r ≤ q. In this sense, q is

not unique.

For a given set G, one may want to find the largest q, but in the LSL problem, a more

realistic concern would be to determine for a given p if all q-tuples are linearly independent

where q = 2p. In theory, one could answer this question directly by computing the nullspace

for every q−tuple in G. If the nullspace of every q−tuple is empty, then every q−tuple is

linearly independent. Unfortunately, this approach is quickly overcome by combinatorics if

N is large, but may be feasible for small p.

2.1 Interpretation in R3

Consider a set G = {g1, . . . , gN} with gi ∈ R3 and let p = 1. Then the theorem hypothesis

states that all 2-tuples (pairs) in G are linearly independent. Now, any linear combination of

p vectors is the singleton w = c1v1, and w points in the same direction as one of the original

N vectors. Intuitively, the only way there can be more than one way to represent a single

vector using a linear combination of size p = 1 is if two (or more) vectors in G point in the

same direction. However, the hypothesis guarantees that every pair is linearly independent,

which means that no two vectors in G can point in the same direction.

Now, consider p = 2. Then q = 2p = 4 > 3, and so the theorem does not address linear

combinations of 2 or more vectors in R3.

In summary, in R3, the theorem only addresses the p = 1 case, which is single vectors. The

only way single vectors are not unique is when two (or more) identical vectors occur in the

original set G.
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2.2 Interpretation in Rn, n À q = 2p

The LSL problem is concerned with large n; typically n > 100 (recall that n is the number

of spectral channels). Consider p = 3. Then all q = 2p = 6-tuples from G can be tested

for linear independence. If all 6-tuples are linearly independent, then any vector w that is a

linear combination of 3 vectors in G, i.e., w = c1v1 + c2v2 + c3v3 has no other representation

of length 3 or less. There may be representations of length 4 or greater but none of length

3 or less.

We tested the Pacific Northwest National Laboratory (PNNL) Infrared Spectral Library

(IRSL) in the long-wave infrared (LWIR) region to see if all q-tuples are linearly independent.

We tested q = 2, 4, 6 on random subsets of the IRSL of size up to 200. We did not test the

whole library (the IRSL has over 500 spectra) at the same time because of computational

limitations. Every q-tuple we tested was linearly independent. For the IRSL this means

that it is very likely that all linear combinations of 3 chemical spectra will have only one

representation. Linear combinations larger than 3 may also be unique but we have not tested

that case.

3 Positive Coefficients

In hyperspectral imaging, when pixel vectors are the result of linear spectral mixing, the mix-

ing coefficients are physically constrained to be positive. So we consider linear combinations

w = c1v1 + c2v2 + · · · + cpvp where every coefficient ci > 0. As before, let G = {g1, ..., gN}
and let G(i) be every spectral vector in G except gi. Now let Hi,2p−1 be the set of all (2p−1)-

tuples from G(i) and let A ∈ Hi,2p−1 and β ∈ R2p−1. Claim: If Aβ = gi has no solution for

all A ∈ Hi,2p−1, then every linear combination of size p or less from G is unique.

We show this by considering w = c1v1 + c2v2 + · · · + cpvp and making the assumption that

there is another linear combination such that w = b1u1 +b2u2 + · · ·+bkuk, bi > 0, k ≤ p. We

will show that this assumption leads to a contradiction. Since we have two representations

of w, then

c1v1 + c2v2 + · · ·+ cpvp = b1u1 + b2u2 + · · ·+ bkuk
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and solving for v1 yields

v1 =
1

c1

[b1u1 + b2u2 + · · ·+ bkuk − c2v2 − · · · − cpvp] .

In other words, v1 can be represented by a p+k−1 linear combination in G with coefficients

that are both positive and negative. This is also true for each of v2, . . . , vp, u1, u2, . . . , uk.

In summary, we have shown that the assumption that there is a second representation of w

leads to the conclusion that single vectors can be represented by linear combinations of size

no greater than 2p− 1. Note that 2p− 1 ≥ p + k − 1.

We can test G, and if we can show that every gi ∈ G is not a linear combination of 2p− 1 or

fewer elements in G, then the assumption that a second representation exists must be false.

We tested random subsets of the IRSL of size 100. We used p = 3 and found no cases where

gi = Aβ for any A ∈ Hi,5. We did not check the whole library concurrently because of

computational limitations. This guarantees that all positive coefficient linear combinations

of size 3 or less from the subsets of the IRSL we tested have only one representation. It also

provides evidence that this is also true for the whole library.

Another way to evaluate the positive coefficient case is related to Theorem 2.1. There we

were interested in q-tuples where

c1v1 + · · ·+ cpvp − b1u1 − · · · − bkuk = 0 (1)

and allowed the coefficients c1, . . . , cp, b1, . . . , bk to be either positive or negative. In this

section, we restrict our search to positive coefficients, guaranteeing that we are searching

over a smaller set. Thus, if no q-tuples were found satisfying (1) when both positive and

negative coefficients are allowed, then we are guaranteed to not find any when we only allow

positive coefficients.
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4 Spectral Noise

In this section, we explore how spectral noise affects the uniqueness of linear combinations

of gases from the IRSL. As before, we are given a linear combination

w = c1v1 + c2v2 + · · ·+ cpvp , ci > 0

from G (where G is the IRSL), and we want to know if there are other linear combinations

w̃ = b1u1 + · · · + bpup, bi ≥ 0 from G that are close enough to w that they would produce

essentially the same signal when measured by the same instrument. The signal measured

due to w is y = w + ε, and the signal measured due to w̃ is ỹ = w̃ + ε where ε ∼ N(0, σ2I)

represents the measurement error. So if w̃ is close enough to w, ỹ will be indistinguishable

from y if σ2 is large enough. We will analyze the IRSL to indicate how likely nearly identical

linear combinations are as a function of p, the size of the combination. We will use the

minimum singular value (MSV) to measure how similar two sets of vectors are. How and

why we use the MSV will be explained in what follows. We expect the likelihood of nearly

identical cases to increase with p.

Let G = {g1, ..., gN} represent the IRSL, and w = c1v1 + · · · + cpvp, vi ∈ G, ci > 0. Then

w̃ = b1u1 + · · ·+ bpup, ui ∈ G, bi ≥ 0 will be indistinguishable from w when ‖w− w̃‖ ≤ T or

‖c1v1 + · · ·+ cpvp − b1u1 − · · · − bpup‖ ≤ T (2)

where T is called a threshold and depends on environmental and instrument parameters and

the identification algorithm. In this case ‖ ◦ ‖ denotes the Euclidean norm.

When v1, . . . , vp, u1, . . . , up are linearly dependent, there are linear combinations of them

that equal 0, so the inequality in (2) could be satisfied for any threshold T . One way to

test for linear independence of a set of vectors v1, . . . , vp, u1, . . . , up is to compute the rank of

the n× 2p matrix X = [v1, . . . , vp, u1, . . . , up]. Recall, we assume n À 2p. Now, if the rank

equals the number of columns of X, then the columns are linearly independent. If the rank

is less than the number of columns, then the columns are linearly dependent.

A very reliable method for computing the rank is singular value decomposition where the

rank equals the number of non-zero singular values. However, if the MSV is non-zero but

very close to 0, then even though the set of vectors is technically linearly independent, they
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Figure 1: Percent of 2p-tuples whose minimum singular value (MSV) is below the threshold
(T ) (indicating they are linearly dependent). For fixed T , the percent of 2p-tuples with MSV
below T increases as p increases. For each p, the percent of 2p-tuples with MSV below T
decreases as T decreases. The p = 48 case is hard to see because it is 1 for all values of T .

are effectively linearly dependent [Dem97]. This means that T in (2) is very close to zero.

We use the MSV to indicate how close a 2p-tuple is to being linearly dependent. If the MSV

is not close to zero then the 2p-tuple is linearly independent. If the MSV is zero or close to

zero then the 2p-tuple is linearly dependent.

Remark: Linear dependence of the set v1, . . . , vp, u1, . . . , up is a conservative test for existence

of a w̃ = b1u1 + · · · + bpup that is close to w = c1v1 + · · · + cpvp. Linear dependence

says there is a linear combination of v1, . . . , vp, u1, . . . , up that equals zero. For a given

w = c1v1 + · · · + cpvp, it does not guarantee there is a w̃ = b1u1 + · · · + bpup such that

w − w̃ = c1v1 + · · ·+ cpvp − b1u1 − · · · − bpup = 0.
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Due to computational limitations, we analyze subsets of the IRSL of size 100. For each p,

we compute the MSV of every 2p-tuple from the subset. We count those 2p-tuples whose

MSV is below the threshold (T) (indicating the 2p-tuple is nearly linearly dependent) for

a set of threshold values from 0 to 0.2. The results are given in Figure 1. We see that for

fixed T , the percent of 2p-tuples with MSV below T increases as p increases. This represents

the case for a given imaging scenario, where the instrument and environment are fixed for a

specific image, indicating a specific (although unknown) value of T . This means that for a

given T , as p increases the percent of p-tuples that have a unique representation decreases.

For each p, the percent of 2p-tuples with MSV below T decreases as T decreases. The p = 48

case is hard to see because it is essentially 1 for all values of T , even when T is close to 0.

5 Summary and Conclusions

In this report, in Section 2 we have shown that for a set of spectral vectors G, if we ignore

noise and if all 2p-tuples in G are linearly independent, then all p-tuples have a unique

representation.

When we consider the effect of noise, a good way to quantify how close two p-tuples are is

to compute the MSV of the combined 2p-tuple. If the MSV is very close to 0, then the two

p-tuples will produce essentially the same response when measured by an instrument.

This is an important result for the LSL Problem. The MSV at which two p-tuples, w and w̃,

become indistinguishable from each other depends on the instrument noise, environmental

conditions, and the identification algorithm. For every combination of these three factors

there is an effective threshold, Te. If the MSV of a 2p-tuple is below Te, then the two p-tuples

that were combined to form the 2p-tuple will be indistinguishable.

For the PNNL IRSL, we see in Figure 1 that if Te is about 0.2 then for any p ≥ 2, all p-

tuples can be duplicated by another p-tuple. On the other hand, if Te is 0.02 then for p = 2, 3

almost all p-tuples are unique. For p = 48, no matter how small Te is, every p-tuple will have

another p-tuple that is nearly identical. These results emphasize the value of developing

instruments and algorithms that reduce Te.
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