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1 Introduction 
 
Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many 
decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the 
Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers.  
 
For such studies to be credible, significant effort must be put into applying the best science to 
reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more 
and more sophisticated dose reconstruction methods have been developed as studies progressed. For the 
example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced 
by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it 
has become increasingly clear that an equal level of effort must be expended on the quantitative 
assessment of uncertainty in such doses, and to reducing and managing uncertainty. 
 
In this context, this report reviews difficulties in terminology, explores the nature of Berkson and classical 
uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating 
Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of 
effort for DOSES-2008. 
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2 Uncertainty and Error 
There are some issues of terminology that should be clarified to ensure clear communication. One issue 
that has received ever increasing attention is the subject of classical and Berkson errors, and the differing 
effects each has on the inference of dose-response relationships, power, and confidence intervals. Other 
issues include shared and unshared errors, covariance over time within an individual’s dose history, how 
uncertainties can be assessed 

2.1 Terminology: Error and Uncertainty 
The International Organization for Standardization has clearly defined metrology terms (International 
Organization for Standardization (ISO)1995), and these have been adopted by the U.S. National Institute 
of Standards and Technology (Taylor and Kuyatt1994). The ISO makes careful distinction between the 
words “error” and “uncertainty.”  
 
Error is the “result of a measurement minus the … measurand,” where the measurand is the “true value” 
of the quantity being measured (ISO 1995 B.2.19).  
 
Uncertainty is the “parameter, associated with the result of a measurement, that characterizes the 
dispersion of the values that could reasonably be attributed to the measurand” (ISO 1995 B.2.18). Since 
the measurand is unknown and unknowable, so is the error. “The result of a measurement (after 
correction) can unknowably be very close to the value of the measurand (and hence have negligible error) 
even though it may have a large uncertainty. Thus the uncertainty of the result of a measurement should 
not be confused with the remaining unknown error” (ISO 1995 3.3.1). The ISO addresses “correction” of 
measurement results for known systematic deviations inherent in the measurement process.  
 
The ISO (1995) presents methods for assessing combined standard uncertainty to characterize this 
distribution, including both random and systematic error components. According to the ISO, a Type A 
uncertainty evaluation is performed by statistical means, such as calculating the standard deviation of a 
group of repeated measurements. Similarly, a Type B uncertainty evaluation is performed by means other 
than statistical analysis, such as using expert judgment and process knowledge.  
 
The ISO does not discuss inferences from measurements that result from using measurement results in 
elaborate models, such as those used in radiation dose reconstruction for health studies. 
 
Some additional considerations of terminology are given in Appendix A. 

2.2 Two Kinds of Errors: Berkson and Classical 
 
In 1950, Joseph Berkson published a paper that distinguished two conceptually different kinds of errors 
(Berkson1950). Berkson discussed the effect such errors have on linear regression, giving examples from 
physics (voltage, current, and resistance in a DC circuit) and controlled toxicology experiments or clinical 
trials in which a dose of some agent is administered to groups of subjects. 

2.2.1 Classical Errors 
 
The first kind of error Berkson describes, now known as a classical error, is the difference between a 
measured or observed value z and the “true value” of a quantity x. If measurements are repeated with 
imprecise instruments, different results will be obtained for each measurement. If unbiased, the 
measurement results will be distributed about the “true value,” the measurand. In any case, for classical 
errors, the “observed” values are distributed about the true value. Classical errors are well understood and 
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are addressed by the ISO (1995). An uncertainty distribution is a probabilistic, numerical expression of 
how close the measurand x is likely to be to the observed value z. 

2.2.2 Berkson Errors 
 
The second kind of error that Berkson identified is commonly encountered in science, and in dose 
reconstruction, and has come to be known as a Berkson error. A Berkson error is also a difference 
between an “observed” value z and a true value x, but with an important distinction: Berkson errors occur 
when an “observed” value, such as a group mean, is assigned to multiple individuals who have 
“individual peculiarities” that result in their individual measurands being distributed about the assigned, 
“observed” value.  
 
Examples of this situation include “an experiment that uses a machine for delivering doses x, which are 
randomly distributed around the ‘dial-setting’ z on the machine, the experimenter being free to vary the 
dial” (Thomas, Stram, and Dwyer1993). An example in epidemiology is “an occupational study in which 
workers with the same job title w are assigned an exposure z based on the mean of area measurements; the 
true exposures x for individuals with the same job title would differ, but on average would tend to equal 
the area mean” (Thomas, Stram, and Dwyer1993). A third example is the use of the same internal 
dosimetry biokinetic models, such as the ICRP respiratory tract model and a specific plutonium biokinetic 
model, for a group of workers (Khokhryakov et al.2005). A final example is the use of the same 
calculational model, such as that of the ICRP (International Commission on Radiological Protection 
(ICRP)1996), to infer doses to tissues or organs based on corrected film dosimeter measurements 
(Smetanin, Vasilenko, and Scherpelz2007).   

2.2.3 Effect of Berkson Errors in Radiation Effects Research 
 
Berkson (1950) showed that the two types of errors in the independent variable, such as dose or exposure, 
have different effects on the inference of a dose-response relationship. This analysis has recently been 
extended (Armstrong1990; Stram and Kopecky2003). Other analyses have shown intricate effects when 
models are nonlinear (Thomas, Stram, and Dwyer1993; Armstrong1998; Stram et al.1999; Ron and 
Hoffman1999; Steenland, Deddens, and Zhao2000; Schafer and Gilbert2006; Kim, Yasui, and 
Burstyn2006; Küchenhoff, Bender, and Langner2007).  
 
Recently, Li et al. (2007) published a Monte Carlo expectation-maximization approach to “analysis of 
data subject to a combination of classical measurement error and correlated Berkson errors” as originally 
outlined by Mallick et al. (2002). This probably represents the state-of-the-art for analysis of such data. 
 
Cox and coauthors (1999) and Reeves et al. (1998) have illustrated the effect of classical and Berkson 
errors on linear regression lines. Their discussion is shown here, and generalized to include Berkson 
errors that include residual, but unknown, bias. 
 
To understand the effects of classical and Berkson uncertainties, and Berkson uncertainty with residual 
bias, a thought experiment was undertaken similar to that in Cox et al. (1999). Figure 1 shows a 
synthesized dose and response data set, with “true” doses DTrue ranging from about 50 to 150 (arbitrary 
units), and a linear response YTrue. Random, normally distributed scatter (“noise”) has been added to the 
true response to create YNoisy. On this and all subsequent graphs, YPerfect refers to a plot of true responses 
YTrue against true doses DTrue., even though the other points and lines are plotted against a different dose 
variable. 
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Figure 1. Synthetic dose-response data, showing true and noisy responses plotted as a function of true doses. 
 
Figure 2 shows the effect of classical uncertainty in the dose variable. Here, normally-distributed scatter 
or noise has been algebraically added to each DTrue to produce DNoisy. A linear regression of YNoisy (the 
same points as in Figure 1) shows bias towards the null, that is, a slope that is less than the true slope. 

Figure 2. Effect of classical uncertainty in the dose variable, showing bias towards the null. 
 
Figure 3 shows the effect of Berkson uncertainty in the dose variable. Here, 5 groups of 20 DTrue values 
have been formed. In each group, the corresponding 20 YNoisy values have been plotted at the same dose, 
equal to the true average of the DTrue values. A linear regression line is shown, but it is indistinguishable 
from the YPerfect line. When the average doses to the groups are known without bias, Berkson uncertainty 
does not produce bias towards the null. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

True Dose, D True

R
es

po
ns

e 
(Y

 o
r Y

N
oi

sy
)

YPerfect
YNoisy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

Classically Uncertain Dose, D Noisy

R
es

po
ns

e 
(Y

 o
r Y

N
oi

sy
)

YPerfect
YNoisy
YNoisy fit to DNoisy



5 

 
Figure 3. Effect of aggregating many response values at the unbiased mean value of the true doses in a group DGroup 
(Berkson uncertainty): no bias in the slope of the line. 
 
Going one step beyond Cox et al. (1999), Figure 4 shows the same groupings over DTrue, but with the 
mean of each group having some residual bias that is shared among all members of each dose group. Bias 
in the regression line can be towards or away from the null, and is largely driven by the high and low 
groups. In the case shown below, there is bias away from the null caused by the fact that the highest dose 
group has been randomly assigned a negative bias, and the lowest dose group has been randomly assigned 
a positive bias. With many groups and a larger range of doses, such a large bias is unlikely; bias towards 
the null or no bias are more likely but not certain. 

Figure 4. Effect of grouping as in Figure 3, but with residual bias in the group means. This example shows an 
unusual case of bias away from the null, where the slope of the dose-response curve is actually increased. 
 
The thought experiment illustrated in Figures 1-4 shows the well-established fact that classical and 
Berkson uncertainties can have different effects on the slope of a regression line of response versus dose. 
The combination of the two has not been studied. The 15-country nuclear worker study, for example, 
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assumes that its “bias correction factors” are correct on the average (Thierry-Chef et al.2007), as do other 
papers on Berkson uncertainty. 
 
A limitation of the discussion above and that in Cox et al. (1999) is that doses are in a relatively narrow 
range, whereas for the Mayak Production Association and the Techa River cohorts, doses span many 
orders of magnitude. To address this, a second thought experiment was done. Figure 5 shows a 
hypothetical dose-response data set plotted on a log-log graph. This time there are100 doses ranging from 
1 to 1000 (arbitrary units), with 1 being the 0.5 percentile and 1000 being the 99.5 percentile of a 
lognormal distribution. Such a distribution has a geometric mean dose of 31.6, a geometric standard 
deviation SG = 3.81, an arithmetic mean of 72, and a standard deviation of 174. A linear response with a 
slope of 0.01 was generated to yield YTrue, and then random noise was algebraically added to YTrue. The 
noise was normally distributed and proportional to the square root of YTrue . 

Figure 5. Thought experiment showing 100 true response values YTrue linearly related to 100 true dose values DTrue.  
 
Figure 6 shows the effect of imposing a more realistic noise (error) distribution on doses. The noise was 
lognormally distributed with a geometric standard deviation of 2.5, a mean of 1, and random values from 
that distribution were used to multiply DTrue. When a uniformly-weighted linear regression is performed 
of Y on DNoisy,, the high-dose data dominate the fit, and it is little affected by the lower doses. The 
resulting line has a positive Y-intercept, and so appears as a curve that has a flat slope at low doses on a 
log-log plot. When a linear regression is performed of lnY on lnDNoisy, the fit is the expected straight line, 
but with visible bias towards the null, that is, decreased slope. 
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Figure 6. The effect of imposing a lognormally-distributed error distribution on DTrue.  
 
Continuing the line of reasoning in the first thought experiment, Figure 7 shows the effect of grouping the 
data into five dose groups with unbiased means. The slopes of the regression lines are almost identical to 
that of YTrue on DTrue. 

Figure 7. Grouping the response data on unbiased average dose in 5 groups, showing that Berkson error does not 
significantly affect the slope of the linear regression, whether done in linear space or log space. 
 
Finally, Figure 8 shows Berkson groupings with residual bias that is shared among all members of each 
dose group. The true means of the dose groups DGroup were multiplied by bias factors randomly chosen 
from a lognormal distribution with a geometric standard deviation of 1.5 and an arithmetic mean of 1. 
Here again, a uniformly-weighted linear regression is performed of YNoisy on DBiased Group. Again, the high-
dose data dominate the fit, and it is little affected by the lower doses. The resulting line happens to have a 
negative Y-intercept in this case, and so appears as a curve headed for negative response, which cannot be 
shown on a log-log plot. When a linear regression is performed of lnY Noisyon lnDBiased Group, the fit is the 
expected straight line, but with visible bias away from the null, that is, increased slope. Once again, this is 
due to the highest dose group happening to have a downward residual bias, and the lowest dose group 
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happening to have an upward residual bias. Bias towards the null or no bias are more likely but not 
certain. 
  

 
Figure 8. Effect of lognormally-distributed residual bias in the group doses.  
 
The two though experiments indicate why it is important to distinguish between classical and Berkson 
uncertainty.  

2.3 Shared and Unshared Errors 
 
Stram and Kopecky (2003) identified shared and unshared components of error. Their notation is mostly 
used here with the exception that D is reserved for “dose” rather than “disease.” For individual i, the true 
dose DTrue,i is related to the corrected dose DCorr,i by 

 ,A,SA,CorrM,SM,True iiii DD εεεε ++= . 1
where εSM is shared multiplicative error,  εM,i is unshared multiplicative error, εSA is shared additive error, 
and εA,i is unshared additive error. They assume that all ε are independent, with Expectation(εSM) = E(εSM) 
= E(εM,i) = 1 and E(εSA) = E(εA,i) = 0. This means that, on the average, DCorr,i is unbiased. It will be 
necessary to go beyond this unbiased assumption of Stram and Kopecky (2003), as was shown in the 
thought experiments above for group doses with residual bias. 
 
Thierry-Chef et al. (2007) give “intrinsic sampling variation in measurements inherent to different types 
of dosimeters, referred to as laboratory error” as an example of “errors that are independent from person 
to person, and are thus ‘unshared.’ For these errors, the ‘classical error’ model applies, in which the 
estimated values of the input date are assumed to be distributed around the true values of the input data 
for each subject.”  
 
By contrast, systematic corrections to dosimetry results are needed to remove bias due to over- or under-
response due to radiation energy and the geometry of irradiation. Such corrections are intended to 
“produce corrected doses that are, on average, unbiased estimates of the target dose of interest (e.g. organ 
doses)” (Thierry-Chef et al.2007). True doses for individual workers “may differ from the doses obtained 
by applying the group bias factor” and are thus unshared errors. Under the assumption that the “group 
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bias factors are estimated without error, the group mean doses (after the application of the bias factor) will 
be correct, and thus these errors follow a Berkson model.” 
 

2.4 Work on the Techa River Dosimetry System 
 
Napier (2007; 2008) has drafted an uncertainty proposal for the Techa River Dosimetry System. For each 
parameter in the Monte Carlo model, Napier identifies whether it is shared (and if so, among whom), and 
whether it is classical or Berkson.  
 
Much of the approach to reconstructing doses in the Techa River population differs from the approaches 
needed for the Mayak worker population. To the maximum extent possible, the two approaches should be 
coordinated and made to match where possible. 
 

2.5 Use of Uncertain Dosimetry Results in Epidemiology 
 
Recently, several authors have reported methods for using uncertain dosimetry data in epidemiology 
(Stayner et al.2007; Li et al.2007). There remain challenges in this area. 
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3 Correction Factors 
 
It is necessary to discuss raw dosimetry results and corrections to them. There are measured doses, 
corrected doses, and “true” doses.  

3.1 ISO Definitions 
 
The International Organization for Standardization (ISO; 1995) defines an uncorrected result as the result 
of a measurement before correction for systematic error. A corrected result is the result of a measurement 
after correction for systematic error. A correction is a value added algebraically to the uncorrected result 
of a measurement to compensate for systematic error. A correction factor is a numerical factor by which 
the uncorrected result of a measurement is multiplied to compensate for systematic error. 

3.2 Discussion of Previous Approaches to Correcting Dosimetry Results 
 
In the paper outlining approaches to managing errors and uncertainties for the “15 Country Study,” 
Thierry-Chef et al. (2007) define a “bias factor”1 B as 

  
DoseTrue

DoseMeasuredB = . 2

In ISO parlance, the “true dose” is not known or knowable, so “conventionally true dose” would be a 
better term, and adequate for this discussion: 

  
DoseTrueallyConvention

DoseMeasuredB = . 3

Thierry-Chef et al. assume that each component of bias is lognormally distributed. They explain that 
“systematic errors (i.e., biases, B) from each source of error were characterized and quantified, as well as 
the uncertainty (K) on these systematic errors. The interval (B/K, B×K) is the 95% confidence interval on 
the bias factor. Overall bias factors, B, are obtained by multiplying together individual bias factors: 

 . ∏=
i

iBB ” 4

“If Si is the standard deviation of lnBi and the Bi are independent, then the standard deviation of lnB is 
estimated by ∑=

i iSS 2 and the overall uncertainty, K, is given by 

  ).96.1exp( SK = ” 5
Note that, if the bias is lognormally distributed, K = SG

1.96, where SG is the geometric standard deviation. 
Thierry-Chef et al. state that “Correction Factors” for converting recorded doses to Hp(10) and organ 
doses were then derived as the mean of the lognormal distributions, i.e.  

 
. 

2
exp

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

S
BFactorCorrection ” 

6

                                                      
1 If B is used to correct for systematic error, ISO would call B a correction factor. 
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Thierry-Chef et al. do not explain how such Correction Factors are used.  
 
If Eqs. 2 and 3 are correct, then B must be the expectation value (arithmetic mean) of the bias factor. But 
Eq. 4 is only correct if the Bi are the geometric mean of the various lognormals. Similarly, the statement 
“The interval (B/K, B×K) is the 95% confidence interval on the bias factor” clearly implies that B is the 
geometric mean of the bias distribution. If B is the geometric mean, then Correction Factor in Eq. 6 is 
less than the geometric mean and cannot be the mean. If B is the arithmetic mean, then Eq. 6 specifies that 
Correction Factor is the geometric mean. Dividing a Measured Dose by such a Correction Factor would 
produce, “on the average,” a correct “Conventionally True Dose.” Equations 2-6 can only be 
simultaneously true if S is zero and Eq. 6 is simply Correction Factor = B. In that case, the arithmetic 
mean of a lognormal distribution is equal to the geometric mean. But since the B values given later in the 
paper, are not equal to 1, the equations cannot all be correct. 
 
This same difficulty, that is, the assumption that the arithmetic mean is equal to the geometric mean for a 
lognormally-distributed uncertainty, is encountered on page 62 in reference (15) of Thierry-Chef et al., 
which is the National Research Council book by Masse et al. (1989): “It should be noted that the mean of 
the lognormal distribution is a factor of exp(S2/2) higher than the median; however, this source of bias is 
negligible relative to the overall uncertainty and can be safely ignored for most purposes.” The method of 
Masse et al. (1989) was also used by Daniels and Schubauer-Berigan (2005), but those authors used the 
method of Fix et al. (2005) in subsequent work (Schubauer-Berigan et al.2007).  
 
Masse and co-authors (1989) defined a bias factor, B, as 

 ,
Corr

Meas

D
D

B =  7

where DMeas is the measured dose and DCorr is the corrected dose2. If DMeas is the result of several 
simultaneous measurements, it is a weighted or unweighted average of those measurements (ISO 1995). If 
DMeas is the result of a single measurement, it is taken as the expectation value of repeated measurements 
of DMeas. This equation is the same as Eq. 2.  
 
 
Because DCorr is to be estimated from DMeas,  Eqn. 7 is rearranged to become 

 .Meas
Corr B

DD =  8

This rearrangement results in dividing by the bias factor. When an uncertainty distribution is applied to 
the bias factor, DMeas is divided by the uncertainty distribution. Dividing by probability distributions is not 
commonly done because there is no analytical solution for distributions other than the lognormal. It can 
be shown that there is only one distribution whose reciprocal is the same type of distribution as the 
original distribution; this is the lognormal. Furthermore, the reciprocal of a lognormal with a geometric 
mean (median) of 1 is the very same lognormal with the same geometric standard deviation. However, if 
the mean of the lognormal is taken as 1, then the mean of the reciprocal will not be 1, and using such a 
distribution in the denominator of an equation injects an unintended additional bias. Thus, dividing by a 
probability distribution is problematic and is likely to produce counter-intuitive results. 

                                                      
2 Masse et al. (1989) called this the “true value,” but it is really the measured value corrected for bias 
(systematic error). 



12 

3.3 Modification of Previous Approach that Doesn’t Assume that the Arithmetic and Geometric 
Means of a Lognormal Distribution Are Equal 

 
The difficulty of dividing by an asymmetric probability distribution was addressed by Fix et al. (2005) as 
reported by Scherpelz et al. (2005) and Strom et al. (2005). That method is reproduced here since it has 
not been widely published. It is shown here that assuming the arithmetic mean and median (geometric 
mean) are the same for a lognormally-distributed uncertainty is untenable when geometric standard 
deviations rise above 2, as they do for neutron doses.  
 
Fix et al. (2005) developed point estimates of the various components requiring bias correction factors, 
and used a variety of sources to develop lognormal uncertainty distributions for the various components 
of bias, such as radiation energy dependence and irradiation geometry dependence. However, the 
arithmetic mean of each component’s lognormal distribution was set to 1, so that, on average, each 
component of bias correction was unchanged. When the components were combined by multiplication, 
the geometric mean (median) of each lognormal distribution was multiplied together to get the geometric 
mean of the product distribution, and the standard deviations of the natural logarithms of each distribution 
combined in quadrature to yield the standard deviation of the logs of the product distribution. 
 
The solution to the difficulty of dividing by an asymmetric probability distribution is to define a new bias 
correction factor (formerly bias factor) B' that is the reciprocal of the bias factor in Eqn. 7 to produce a 
point estimate of the corrected dose: 

 .Meas
Meas

Point Corr, BD
B

D
D ′⋅==  9

When B' is later multiplied by a probability distribution representing uncertainty, the ordinary properties 
of uncertainty distributions can be applied. An illustration of this correction and the application of an 
uncertainty distribution to the correction is shown in Figure 9. 
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Figure 9. Correction of a dose DMeas to a point estimate of dose DCorr, Point by multiplying by a bias correction 
factor B'. The probability density function of DCorr, Dist is computed by applying a lognormal uncertainty 
distribution U whose arithmetic mean 1=U . In other words, B' is the arithmetic mean of a lognormal 
distribution whose geometric mean is less than B' 
 
For this work, B' represents the ISO correction factor for systematic error, and is comprised of the product 
of all multiplicative correction factors: 

 .
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Denoting a lognormal distribution as Λ(μ,σ 2), where μ denotes the logarithm of the geometric mean, and 
σ 2 denotes the square of the logarithm of the geometric standard deviation, it can be shown that the 
product of two lognormal distributions is lognormal: 
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(Aitchison and Brown 1981). This property permits relatively simple propagation of uncertainties 
associated with the various bias components B'i, but does not permit the propagation of other kinds of bias 
components, such as addition of constants. 
 
A discussion of the application of this method to the calculation of organ doses from external dosimeter 
readings is given in the Appendix. 

3.4 Asymmetry of Confidence Intervals about the Mean of a Lognormally-Distributed Variable  
 
A difficulty in this assumption that uncertainties are lognormally distributed arises from a property of the 
lognormal distribution that is mentioned by Masse et al. (1989) but assumed to be negligible (Masse et al. 
1989, p. 52).  When the logarithms of a variable are distributed normally, the central tendency of that 
distribution is the logarithm of the median (geometric mean), not the expectation value (arithmetic mean) 
(Aitchison and Brown1981; Strom and Stansbury2000). The value of the parameter that is needed as 
input to an epidemiology study is the latter, since it is an unbiased estimator of the parameter.  
 
For a lognormally distributed variable B', we denote the arithmetic mean by B′ , and the median 
(geometric mean) by 50B′ . Letting µ denote the average logarithm of the B', and SG denote the geometric 
standard deviation, we have 

 ),exp(50 μ=′B  12
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and 

 ),2/exp( 2sB +=′ μ  14
The difficulty is that a measured value is taken to be the expectation value (arithmetic mean) of a 
variable, namely, B′ , not the geometric mean of a variable, 50B′ . The ratio 50/ BB ′′ , called mean-to-
median ratio, is shown in Figure 10 and Table 3.1. Contrary to the claim in the NRC report (1989), the 
mean-to-median ratio is not negligible for geometric standard deviations (SGs) of 2 or more. 
 
For example, in Table 7 of Thierry-Chef et al. (2007), the largest bias and uncertainty values are for 
Facility-5, 1943-1952, where Bcolon is 2.31 and Kcolon is 1.99. The latter value implies that s = 0.351, with 
SG = 1.42 and 50/ BB ′′ = 1.064. While this is just over 6% different and not very important, when SG 
reaches 2, it’s a 27% difference. Thierry-Chef et al. did not have to address neutron doses inferred from 
neutron-to-gamma ratios, which have substantially larger SG values (Fix et al. 2005). A numerical 
example using larger SGs is shown in Appendix B. 
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Figure 10. Relationship of s, the natural logarithm of the geometric standard deviation (SG or GSD) and the 
mean-to-median ratio 50/ BB ′′  to the SG.  
 
 
Table 3.1. Relationship of s, the natural logarithm of the geometric standard deviation (SG) and the mean-to-
median ratio 50/ BB ′′  to the SG. 

SG s = ln(SG) mean/median =  50/ BB ′′  
1 0 1 

1.5 0.41 1.09 
2 0.69 1.27 

2.5 0.92 1.52 
3 1.10 1.83 

3.5 1.25 2.19 
4 1.39 2.61 

4.5 1.50 3.10 
5 1.61 3.65 

5.5 1.70 4.28 
6 1.79 4.98 

6.5 1.87 5.77 
7 1.95 6.64 
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The fact that this correction is not negligible leads to another difficulty. Since we want to use B′  rather 
than 50B′ we must account for the fact that the 2.5 %ile and 97.5 %ile points on the distribution are not 
symmetric about B′ , even though they are symmetric about 50B′ . This is illustrated in Figure 11 and 
Figure 12 for a lognormal uncertainty distribution U with an arithmetic mean of 1 and a SG of 3.  These 
figures illustrate that the 2.5% and 97.5% confidence intervals occur at 1.959963 or ~1.96 geometric 
standard deviations from the geometric mean (median). These are a factor of  

 96.1
G96.1 SK =  15

above or below the median. For a lognormal distribution with a SG of 3, K1.96 = 8.61. 
 
Because of the asymmetry, the confidence intervals about the mean of a lognormal distribution cannot be 
expressed by a single factor. Two new factors must be introduced. It is seen in Figures 11 and 12 that the 
97.5% confidence value for U occurs at a factor 

 )2/exp( 296.1
Mean Above 96.1 sSK G −=  16

above the mean, while the 2.5% confidence value for U occurs at a factor 

 )2/exp( 296.1
Mean Below 96.1 sSK G +=  17

below the mean. Note that exp(s2/2) is just the mean-to-median ratio from Table 1. For a lognormal 
distribution with a SG of 3, K1.96 Above Mean = (8.61)÷(1.828) = 4.71, while  
K1.96 Below Mean = (8.61)× (1.828) = 15.75. 

 
Figure 11. Probability density function for a lognormally distributed uncertainty distribution U with an 
arithmetic mean of 1 and a Sg of 3 plotted against U. The 97.5 and 2.5 percentile points are equal to the 
median (geometric mean) multiplied or divided by K1.96, respectively. However, the same is not true for the 
mean, which is the value that must be used to avoid biasing B'. 
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Figure 12. Lognormal distribution with an arithmetic mean of 1 and a SG of 3 plotted against the natural 
logarithm of U, the same distribution plotted in Figure 11. The 97.5 and 2.5 percentile points are equal to the 
median (geometric mean) multiplied or divided by K1.96, respectively, as shown by their symmetric 
distribution about the median. However, they are not symmetric about the mean, which is the value that must 
be used to avoid biasing B'. 
 
In what follows, lognormal uncertainty distributions U with arithmetic means of 1 are applied to 
multiplicative bias factors B', where  B' = 1/B. Thus, the mean of B'×U = B', and the confidence limits for 
B' are 
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4 Examples of Contributions to Bias Correction and Uncertainty in Dose Reconstruction 
 
There is an extensive body of work on uncertainty in dosimetry and in dose reconstruction, and guidance 
is currently under development by the U.S. National Council on Radiation Protection and Measurements 
(NCRP). 

4.1 Elements Contributing to Bias and Uncertainty for External Dosimetry 
 
Three distinct cases exist for dose reconstruction due to external irradiation: occupational neutrons, 
occupational photons, and medical exposures. 

4.1.1 Neutrons 
 
Fix et al. (2005) examined bias and uncertainty in external dosimetry for neutrons, posing 24 questions, as 
listed in Table 4.1. These questions are sufficiently generic to apply to Mayak. 
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Table 4.1. Topics to be addressed in the external dosimetry of neutrons that give rise to bias corrections and 
uncertainties. 
Name Question 
1. Unrecorded 

Offsite Dose 
Did an individual receive doses off-site during a given year that either were 
NOT measured or NOT transferred to the site where employment is? 

2. Recorded Offsite 
Dose 

Did an individual receive doses off-site during a given year that were 
transferred to the site where employment is? 

3. Neutron 
Monitoring 

Was there a neutron monitoring program during a given year? 

4. Measurement 
Technology 

What instrument or device was used to make measurements for a given subject 
during a given year? 

5. Calibration How was the instrument or device calibrated? 
 5.1. Is it known what neutron calibration source was used? 
 5.2. How certain is the primary spectrum of the calibration neutron source? 
 5.3. How well was the calibration neutron source characterized or 

calibrated? 
 5.4. How well the calibration facility was characterized for primary and 

scattered neutrons? 
6. Signal Fade How did the signal fade or deteriorate before processing? 
7. Reproducibility How consistently was the instrument or measuring device manufactured, 

processed and read out? 
8. Measurement 

Units 
What units was the measurement recorded in? 

9. Conversion 
Factors 

What conversion factors were applied to a measurement result? 

10. Workplace 
Neutron Spectra 

What neutron spectrum the worker was exposed to? 

11. Representativeness How well did the measurement represent the quantity of interest? 
12. Uniformity How uniform was the irradiation field that the worker was exposed to? 
13. Radiation Field 

Directional 
Characteristics 

What directions the neutrons were coming from (directional properties)? 

14. Mixed Radiation 
Field Response 
Characteristics 

What response did the neutron instrument or measuring device have to other 
types of radiation and to radioactive contamination? 

15. Morphological 
Similarity 

How physically similar was a particular individual to the calculational phantoms 
used in fluence to dose conversions? 

16. Censored Data Were results less than some threshold of detection or less than some threshold 
for recording censored? 

17. Missing data What were the procedures for lost or damaged dosimeters? 
18. Dosimeter 

Technology 
What dosimeter technology was employed? 

19. Dosimeters Worn Were dosimeters not worn when they were assumed to be worn (e.g., 
forgotten)? 

20. Data Recording 
Errors 

Were there errors in recordkeeping, transcription, keying, or personal identifiers 
(e.g., name changes, misspellings)? 

21. Imputed Dose 
Uncertainty 

What is the uncertainty in imputed doses? 
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For each of these questions, uncertainty distributions and, if needed, bias correction factors, were 
developed as a function of time, working conditions, and dosimeter technology. Most uncertainty 
distributions were taken as lognormal, multiplicative distributions. Some uncertainty components were 
algebraically additive. In cases where doses were imputed, that is, when doses were not based on 
individual dosimetry results but rather calculated from knowledge of workplace conditions and job titles 
or coworker measurements, large uncertainties resulted. 
 
Information in addition to dosimetry results is needed. For occupational external exposure to neutrons 
(both low- and high-LET components), consideration is needed of 

• Worker, workplace, and geometry considerations 
o imputation of neutron energy spectrum 
o imputation of angular exposure distribution by job title (fractions AP, PA, LAT, ROT, 

ISO) 
o imputation of Kn ≡ Dn/Dγ = (“gamma dose”)/(“neutron dose”) 

• imputed doses 
o gamma air absorbed dose/neutron ratios 

 

4.1.2 X- and Gamma Radiation 
 
An analogous list of questions, although somewhat shorter, can be posed for external dosimetry for 
photons (x- and gamma radiation). While bias correction factors have been developed for the Mayak 
worker study under JCCRER Project 2.4 (Smetanin, Vasilenko, and Scherpelz2007; Smetanin et al.2007; 
Vasilenko et al.2007d), quantitative expressions of uncertainty for these bias factors haven’t been 
developed. 
 
Information in addition to dosimetry results needed to assess uncertainty. There are a variety of sources of 
such information. Classical uncertainty will be assessed differently for different exposure/measurement 
groups for many time periods and dose measurement technologies or inference methods. Project 2.4 
personnel expect to begin to work out the details during a meeting in late May and early June 2008. 
JCCRER Project 2.4 researchers had already catalogued and completed assessment of uncertainty for 
many aspects of the dosimetry in DOSES-2005 (Vasilenko et al.2007c; Khokhryakov et al.2007; 
Vasilenko et al.2007a; Vasilenko et al.2007b). Using that notation, additional information should be 
codified as described below for occupational external photons. Similar approaches are taken for beta, 
neutron, medical, and internal irradiations. Each approach depends on exposure scenario and year. 
 
For occupational external exposures to photons, consideration must be made of the following points: 

• Worker, workplace, and geometry considerations 
o imputation of photon energy spectrum 
o imputation of angular exposure distribution by job title (fractions AP, PA, LAT, ROT, 

ISO) 
• Air absorbed dose assessment method 

o Dγ rec = C’γ rec × Dγ dos = C’γ rec × Cγ dos × Dγ arch, where C’γ rec ≡ 1/Cγ rec as defined in 
Vasilenko et al. (2007). Convert dosimeter result Dγ arch to air absorbed dose Dγ rec using 
units conversion factors, photon energy spectrum, angular exposure geometry of 
dosimeter on worker, and dosimeter response characteristics 

 IFK 
 IFK+Pb 
 IFKU 
 Pocket ion chambers 
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 Offiste dose reports 
o convert imputed dose result to air absorbed dose using photon energy spectrum, angular 

exposure geometry of worker, and dosimeter response characteristics 
 missing values during a monitoring period 
 exposed but unmonitored workers for whom doses are inferred from 

measurements on co-workers 
 exposed but unmonitored workers for whom doses are inferred from dose rate 

measurements and stay-times 
 exposed but unmonitored workers for whom doses are inferred from process 

knowledge and stay-times 
• Dγ org-i = Cγ org-i  × Dγ rec Conversion of air absorbed dose to organ dose 

o imputation of photon energy spectrum 
o imputation of angular exposure distribution by job title 
o calculation of organ doses 

• Uncertainties in Cγ org-i, C’γ rec, and Cγ dos are expressed as lognormal distributions with arithmetic 
means and geometric standard deviations as described in the Uncertainty Proposal. The values of 
the arithmetic means and geometric standard deviations are based on analysis of the factors 
considered above, much of which has already been done. Sensitivity analysis, e.g., Monte Carlo 
simulation of distributions using different worker and dosimeter exposure geometries, different 
photon spectra, variability in calibration curves, etc., can inform these choices. 

4.1.3 Medical Radiation Exposures 
 
Unlike x- and gamma radiation, reconstructing doses from medical radiation is not done on the basis of 
individual dosimetry. Rather, it is based on a review of a worker’s medical records for dates and kinds of 
exams, or, with less confidence, review of standard procedures at a plant regarding the kind and 
frequency of medical radiology exams during a worker’s time at the plant.  
 
Many factors that affect the dose to tissues or organs from medical radiography have been identified 
(Strom and Martin2004). These are listed, along with multiplicative ranges of observed dose, in Table 4.2. 
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Table 4.2. Factors affecting dose to tissues or organs from medical radiography.  
 
Technique and X-Ray Machine Characteristics Affect Tissue or Organ Dose 

 Characteristics of the X-ray machine 
  Inherent & added filtration: ×4 (at 100 kVp), ×10 (at 45 kVp) 
  Waveform (type of rectification): ×1.7 
  Type of target (e.g., tungsten/molybdenum): (74/42) = 1.76 (usu. ×1) 
  Condition of the target: ×1.5 
 “Technique” 
  Source-to-image distance (SID), source-to-skin distance (SSD): ×2 
  Accelerating potential (kilovolts peak): ∝(kVp)2.0-2.5; ×2 
  Timer error: ×2 or more 
  Charge used in each exposure, expressed as the product of exposure time(s) and tube current 

(mA), in mAs (or mC): ∝(mAs)1; see below 
Other Factors Affecting Dose to Tissue  or Organ 

 Projection, e.g., anterior-posterior (AP) lumbar spine 
 Degree to which the beam was collimated: ×1,000 
 Actual or probable number of retakes: ×2 
 Frequency of examination, e.g., annually: ×3 
 Method used to assign doses: ×3 or more 
  Rosenstein 1976 (incarnated as ICRP Pub. 34, 1982) 
  Rosenstein 1988 http://www.fda.gov/cdrh/ohip/organdose.html 
  NRPB’s SR-262 http://www.nrpb.org/publications/software/sr262.htm#r262 
  Finland’s PCXMC http://www.stuk.fi/pcxmc/  

Effects of Patient and Hardware Characteristics on Doses 
 Patient characteristics (i.e., thickness of the part X-rayed): ×3.5 for lumbar spine (LAT) with 0.9m  

SID 
 The projection: You can’t reconstruct dose without this! 
  Chest, Lumbar Spine, etc. 
  AP, LAT, PA, etc. 
 Whether a Potter-Bucky moving grid was used: ×6 
  if so, the type of grid (focused or unfocused, grid ratio) 
 The type of film or image receptor used 
  conventional radiography v. photofluorography: ×100 
  Film and screen combination (Bates 1969) 
   For a given screen, doses to produce O.D. = 1.0 range over a factor of 3.4, CV = 34%, 

GSD = 1.41 
   If screen is unknown, doses range over a factor of 15.2, CV = 67%, GSD = 2.04 
 How the film was developed:  ×2 or more 

 
Measurements on existing equipment can dramatically reduce uncertainty, but measurements don’t apply 
to individuals and thus individual variability still remains. The existence of a usable film places limits on 
some parameters, but doesn’t tell about collimation, filtration, film/screen, retakes, or patient thickness. 
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4.1.4 Intakes of Radionuclides 
 
For doses resulting from intakes of radionuclides, the important factors have been outlined in several 
recent papers (Bess et al.2007; Etherington et al.2006; Krahenbuhl et al.2005). Bayesian approaches to 
uncertainty are planned as well (Romanov et al.2007). Classification of uncertainty into shared and 
unshared components, as well as into classical and Berkson components, probably still remains to be 
done. 

4.2 Residual Systematic Error 
 
When bias corrections have been made as well as can be done, given uncertain knowledge of all the 
variables that contribute to bias, the resulting B' may differ systematically from the value B'True that would 
yield DTrue: 

 MeasResidMeasTrueTrue DBBDBD ′′=′=  19
The residual bias is shared by those individuals for whom it applies, but not by others. Residual, 
uncorrected bias is likely to differ for differing job titles, different work locations, and different years 
(e.g., as shielding or ventilation was installed to lower doses and intakes, work practices evolved to 
reduce doses, personal protective equipment introduced, etc.). Residual uncorrected bias is not discussed 
in any analyses of Berkson errors known to this author. Current authors are likely to state, “…if the group 
bias factors are estimated without error, the group mean doses (after application of the bias factor) will be 
correct, and thus these errors follow a ‘Berkson’ error model” (Thierry-Chef et al. 2007, referencing 
Schafer and Gilbert 2006), but not address what happens if there are residual errors in the “bias factors.”  
The fact that the residual uncorrected bias is unknown leads to a need to estimate its magnitude, which 
must be done by a Type B uncertainty analysis. 

4.3 Error, Variability, and Uncertainty 
 
It is clear that variability in characteristics of individuals, such as height, weight, metabolism, diet, 
lifestyle, work habits, and behaviors lead to individual differences from group means. If the true, unbiased 
group mean is known, then one can label these differences “errors” in the ISO sense of a difference 
between a measurand and a corrected measurement value. From the perspective of dose reconstruction for 
health effects research, such differences must be estimated and recorded as uncertainties. 
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5 Intra-individual Covariance of Annual Doses over Time 
 
André Bouville recently shared his “Rules for Dosimetry for Epidemiology,” which include “cooperate 
with the epidemiologists, calculate the annual absorbed dose to the organ of interest, give preference to 
measurements on individual subjects, ask the right questions during interviews, validate data and doses to 
eliminate bias, and estimate uncertainties as well as possible” (Strom2007). Often health effects studies 
do require annual organ doses. 
 
For the case of intakes of radionuclides that are tenaciously retained in the body, such as plutonium, 
americium, and strontium, uncertainties in corrected annual doses will be very highly correlated. The 
uncertainty of the sum of such annual doses, that is, corrected dose cumulated to some specified date, 
must be calculated with this covariance in mind. 
 
Likewise, uncertainties in corrected annual external dosimetry results for individuals will show some 
correlation over time for each individual. The uncertainty of the sum of such annual doses, that is, 
corrected dose cumulated to some specified date, must also be calculated with this covariance in mind. 
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6 A Proposal for a Numerical Expression of Uncertainty in Results of Dose Reconstruction to Be 
Applied Throughout JCCRER Project 2.4 

It is proposed that, for each individual i, each corrected annual dose in year y to a tissue or organ T, 
DCorr,C,T(i,y) be accompanied by expressions of uncertainty that are divided into classical and Berkson 
components, and that covariance among components of dose over an individual’s lifetime be included in 
the assessment of uncertainty in lifetime dose.  
 
Measurements on individual subjects include film badge results, bioassay results, and autopsy data. Each 
of these has associated measurement uncertainty that is a combination of random and systematic 
uncertainties. The uncertainties will be treated as a combined standard uncertainty following the ISO 
procedure (ISO 1995). 
 
Groups of individuals have corrected doses that are calculated by application of the same bias correction 
factors. All members in such groups share the uncertainty in those factors, including the residual 
uncorrected bias. True doses to individuals in the group may differ systematically from the bias corrected 
doses. Such Berkson errors become uncertainties when the dose is assigned to individuals. 

6.1 Specific Proposal for DOSES2008: The Dose-Uncertainty Vector 
 
For each individual i, each corrected annual dose (in dose category C) in year y to a tissue or organ T, the 
corrected dose DCorr,C,T(i,y) will have 5-part numerical expression of uncertainty. The combination of 
these variables is called a dose-uncertainty vector. 

6.1.1 Six Dose Categories 
 
For DOSES2008, it is proposed that separate files of DCorr,C,T(i,y) be created and maintained for 1) low-
LET gamma external occupational doses; 2) low-LET beta external occupational doses; 3) low-LET 
(neutron) external occupational doses; 4) high-LET (neutron) external occupational doses; 5) internal 
occupational doses; and 6) medical doses.  

6.1.2 Component 1: The Corrected Annual Dose DCorr,C,T(i,y) 
 
The dose value itself is the best corrected dose estimate, that is, the expectation value of the true dose 
given all that is known about the individual, the measurements on that individual, the workplace, and the 
measurements made in the workplace. The value recorded for DCorr is not a geometric mean, but an 
arithmetic mean. Work to create DCorr,C,T(i,y) values is well underway for all 5 categories of dose. 

6.1.3 Component 2: The Magnitude of the Uncertainty, SG 
 
For reasons described in Sections 3.3 and 3.4, the uncertainty is a lognormal distribution with an 
arithmetic mean of 1 and a geometric standard deviation SG determined as outlined below. 

6.1.4 Component 3: Apportionment of the Variance in Dose Uncertainty, fClassical 
 
The variance of this lognormal distribution is 
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The dose reconstruction team will create a variable fClassical equal to the fraction of this variance that is due 
to classical uncertainty. Implicitly, the balance of the variance is ascribed to Berkson uncertainty. 

6.1.5 Components 4 and 5: Covariance Over Time Expressed as a Correlation Coefficient r2(y) 
and Correlation Start Year yCrlt(y) 

 
A complete covariance matrix of all of an individual’s annual doses is impractical and unwieldy, and 
probably exceeds the needs of the epidemiologists at this point in our analyses.  
 
In its place, it is proposed to use the correlation coefficient r2(y) and a second variable, the year that the 
correlation (“Crlt”)  started yCrlt(y). Implicit in this structure is the idea that correlation of systematic bias 
will be constant over a particular dosimeter type (IFK, IFK+Pb, IFKU), a particular x-ray machine and 
technique, a particular job title that would be correlated with radiation fields or characteristics of a 
plutonium aerosol, and so on. For example, an r2 of 0.3 might be assigned to all of a single worker’s 
dosimetry results that were based on IFK dosimeter results, and would apply over all years during which 
that individual used an IFK dosimeter. 
 
It remains to be clarified whether and how correlation should be handled separately for classical and 
Berkson uncertainties, and for unshared and shared uncertainties. 

6.1.6 The 5-Component Dose-Uncertainty Vector 
 
Each dose-uncertainty vector consists of 5 components for each of the 5 categories of dose: [DCorr,C,T(i,y), 
SG, fClassical, r2(y), yCrlt(y)]. 

6.1.7 What Is Not Included in the Dose-Uncertainty Vector 
 
The existing papers on Berkson uncertainties do not recognize the possibility that individuals may be in 
one Berkson grouping for a period of time, and then migrate to another Berkson grouping. In fact, any 
time a worker changes job titles, he or she is leaving one Berkson grouping and entering another, if the 
new job title has a different energy spectrum of photons or neutrons. Similarly, everyone having chest x-
rays taken with one machine might have a component of Berkson uncertainty for that machine, while 
those who later have chest x-rays taken with another machine would have a component of Berkson 
uncertainty associated with that machine. Different dosimeter technologies will each be associated with 
one or more Berkson groupings of uncertainty. In works like that of Thierry-Chef et al. (2007), there are 
many categories of Berkson uncertainty, but it isn’t clear how the memberships and nature of these 
categories change over time. 
 
Using the same calculational dosimetry model, e.g., the Reference Man phantom used in ICRP 
Publication 74, for all workers when workers have individual differences from Reference Man should 
result in Berkson errors for individuals if Reference Man is correct on average for the population. The 
assumption that, on average, the Berkson error is ± (δ = 0) or ×÷ (ε = 1) has been made in all papers on 
the subject. However, if Reference Man is wrong on average for the population, a systematic error has 
been made, on the average, for everyone in the population. This error biases each individual’s Berkson 
error so that it is + (δ + b) and − (δ − b)  or × (ε / b) ÷ (ε × b). Every effort is made to remove such bias. 
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How one would assess residual bias that cannot be assessed or removed is unknown. If one can assess it, 
one removes it. If one cannot assess it, then it’s anyone’s guess how large it may be. 
 
Thus, the questions of “With whom is a particular Berkson grouping shared?” and “For how long is a 
particular Berkson grouping shared?” are not included in the dose-uncertainty vector proposed here. This 
may be a critical flaw, but developing a method to create and store this kind of information is a 
completely intractable problem at this point in the project. It could be true that, if Berkson groupings have 
few individuals, and the individuals change fairly often, that the effect of Berkson groupings on the dose-
response relationship and its confidence intervals will have to be reevaluated.  
 
Re-evaluation may be needed if individuals often change Berkson groups, and only small proportions of 
the population are in any single Berkson group at one time. It is unclear whether Berkson errors in this 
case would have the same effect as classical uncertainties. The rationale for this supposition comes from a 
thought experiment in which an extreme situation results in the total membership of each Berkson group 
being 1 individual. The transition from everyone being in a Berkson group to having several Berkson 
groups to having many Berkson groups to having a different Berkson “group” for each individual (i.e., no 
two individuals in the same group) would seem to make the distinction between Berkson and classical 
uncertainties disappear. Furthermore, even with Berkson groups with several or even many members, if 
individuals move in and out of the groups, it may be difficult to see the same effect. 
 
Specifically, for Mayak workers, an individual would be a member of one Berkson group based on job 
title, another based on work location, a third based on dosimeter type, a fourth based on the years during 
which various radiation protection measures were or were not present in his or her work location (i.e., 
shielding or containment or ventilation may have been introduced in one area sooner than in another 
area). To the extent that individuals changed job titles, membership would shift to some different Berkson 
groups. 
 
Finally, the currently proposed dose-uncertainty vector does not adequately deal with the possibility of 
zero or negative doses. This is discussed in Appendix C. 

6.2 Determining the Uncertainty Parameters of the Dose-Uncertainty Vector 
 
Due to limitations on time, resources, knowledge, and the utility of this approach to the epidemiologists, 
it is proposed that an expert-elicitation process be used to determine SG, fClassical, r2(y), yCrlt(y) for 
DOSES2008. Refinements of this process must await future funding. The expert-elicitation process will 
include discussions during meetings, exchanges of electronic mail, and telephone communications. The 
process will consider all previous work on uncertainties in doses for radiation health studies, with 
particular emphasis on products of Project 2.4 such as Krahenbuhl et al. (2005) and Zharov et al. (Zharov 
et al.2007). 
 
It is envisioned that the dose-uncertainty vectors may be fairly simple for DOSES2008, with categories 
for various times and conditions. A conceptual idea of the uncertainty portion of the dose-uncertainty 
vectors can be seen in Table 3  
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Table 3. Possible dose-uncertainty vectors with placeholder values. The DCorr,C,T(i,y) value is omitted, since it varies 
for individuals and years. This table is a very rough draft with sample values only. It is not intended to reflect 
historical values. 
 
Exp. Type Exposure Scenario years T SG fClassical r2(y) yCrlt(y) 
Ext. Low IFK – Workplace No. 1 49-53 all 1.9 0.5 0.2 1949 
Ext. Low IFK – Workplace No. 2 49-53 all 2.1 0.5 0.2 1949 
Ext. Low IFK+Pb – Workplace No. 1 54-62 all 1.7 0.5 0.2 1954 
Ext. Low IFK+Pb – Workplace No. 2 54-62 all 1.8 0.5 0.2 1954 
Ext. Low …       
Ext. High IFK – Workplace No. 1 49-53 all 3.5 0.4 0.3 1949 
Ext. High …       
Med. Chest film 48-60 lung 1.4 0.3 0.3 1948 
Med. Chest film 48-60 RBM 3 0.6 0.3 1948 
Med. …       
Int. Chemical Plant, with autopsy data 49-58 lung 2 0.7 0.95 1949 
Int. Chemical Plant, with autopsy data 49-58 liver 2 0.7 0.95 1949 
Int. Chemical Plant, with autopsy data 49-58 BS 2 0.7 0.95 1949 
Int. Chemical Plant, bioassay data only 49-58 lung 3 0.7 0.95 1949 
Int. Chemical Plant, bioassay data only 49-58 liver 3 0.7 0.95 1949 
Int. Chemical Plant, bioassay data only 49-58 BS 3 0.7 0.95 1949 
Int. …       
 
Table 3 is a very rough draft with sample values only. It is not intended to reflect historical values. 

6.3 Use of the Dose-Uncertainty Vector 
 
The existence of a unique dose-uncertainty vector for each annual tissue or organ dose, in the 3 categories 
of external occupational, internal occupational and medical doses, provides new opportunities for 
biostatisticians and epidemiologists.  

6.3.1 Cumulating Organ or Tissue Doses Up to a Certain Year 
 
The dose-uncertainty vectors for each of the 4 dose categories permits analysts to  

• add doses up to a certain year, such as 5 or 10 years before the diagnosis of a cancer 
• create an numerical expression of the uncertainty of that dose 
• determine the fraction of the variance in the dose that is due to classical and Berkson uncertainty 
• know that uncertainty correlation over years has been adequately accounted for 

6.3.2 Uncertainty Propagation for Cumulated Organ or Tissue Doses 
 
Explicit algorithms will be developed by the Project 2.4 team in cooperation with Project 1.1 and our 
customers, the epidemiologists and biostatisticians. Such algorithms will result in a cumulated dose-
uncertainty vector for each of the 4 categories of dose, but without r2(y) and yCrlt(y) since these will have 
been used to develop the SG and fClassical values. 

6.4 Proposed Milestones for the Uncertainty Task 
 
Proposed milestones for the uncertainty task are given in Table 4. 
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Table 4. Proposed milestones for the uncertainty task. TBD, to be determined. 
Number Date Milestone Who 
U1 TBD Reach agreement on Uncertainty Structure for 

future dosimetry databases 
US Researchers (Projects 
2.4 and 1.1), DOE Staff, 
RF Researchers including 
epdiemiologists and 
biostatisticians 

U2 TBD Finalize list of “Exposure Scenarios” in  in Table 
“Dose-uncertainty vectors with placeholder 
values” 

US Researchers (Project 
2.4), DOE Staff, RF 
Researchers (Dosimetrists 
at MPA and SUBI) 

U3 TBD Draft detailed criteria and methods for imputing 
or calculating the values of the dose-uncertainty 
vector for each “Exposure Scenario;” Implement 
discussion and training program for all of us on 
Berkson versus classical uncertainties and 
implement quality assurance program for 
Berkson/classical decisions 

“ 

U4 TBD Finalize criteria and methods for calculating the 
dose-uncertainty vector for each “Exposure 
Scenario” 

“ 

U5 TBD Complete dose-uncertainty vectors for 
DOSES2008  

“ 

U6 TBD Submit uncertainty manuscript to scientific 
journal 

“ 

 

6.5 Level of Effort  
 
A draft level of effort proposal appears in Table 5. 
 
Table 5. Draft Level of Effort. TBD = to be determined 

JCCRER Project Name 
Level of Effort, % of Full-
Time Equivalent (% FTE) 

2.4, Mayak Worker Dosimetry Strom 35 
2.4, Mayak Worker Dosimetry Scherpelz 20 
2.4, Mayak Worker Dosimetry Krahenbuhl TBD 
2.4, Mayak Worker Dosimetry Miller TBD 
2.4, Mayak Worker Dosimetry MPA TBD 
2.4, Mayak Worker Dosimetry SUBI TBD 
2.2, Mayak Worker Epidemiology Gilbert <5 
2.2, Mayak Worker Epidemiology SUBI TBD 
1.1, Techa River Population Dosimetry Napier <5 
1.1, Techa River Population Dosimetry Anspaugh <5 
1.1, Techa River Population Dosimetry URCRM TBD 
1.2b, Techa River Population Morbidity Davis TBD 
1.2b, Techa River Population Morbidity URCRM TBD 
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8 Appendix A: Terminology 
 
There are numerous issues regarding terminology that is used differently in different disciplines. For 
dosimetry, some of the issues to be sorted out are shown in Table 6. 
 
Table 6. Dosimetry terms and issues to be discussed and agreed on. 

On the one hand… On the other hand… 
measurand corrected measurement result 
true dose calculated dose 

estimated dose 
imputed dose 
modeled dose 
observed dose 
reconstructed dose 

variability uncertainty 
error uncertainty 
classical Berkson 
shared (across individuals) unshared 
bias 
systematic error 

precision 
random error 

independence correlation 
 
Sometimes the word “error” is used when “uncertainty” is intended, at least in the ISO GUM meaning of 
“uncertainty” (International Organization for Standardization (ISO)1995).  
 
There is concern about shared versus unshared uncertainty, about Berkson versus classical uncertainty. 
Careful attention must be given to the correct usage of these terms both in English and in Russian. 
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9 Appendix B: Propagation of Uncertainty for Lognormally-Distributed Correction Factors 
 
In studies of the health effects of ionizing radiation, it is often necessary to remove bias in the dose 
variable by correcting dosimetry measurements. When such corrections are lognormally distributed and 
multiplicative, as in Thierry-Chef et al. (2007) or Masse et al. (1989), care must be used in propagating 
uncertainty.  
 
This paper presents an argument that correction factors are the arithmetic means of lognormal 
distributions. Any other interpretation, such as the reasoning following Eq. (11) in Schafer and Gilbert 
(2006), results in biased corrected dose values. 
 
Note that in this presentation of the problem, corrected dose values are products of correction factors and 
measured doses, while in Thierry-Chef et al. (2007) or Masse et al. (1989), one must divide by correction 
factors. Dividing by probability distributions is less intuitive than multiplying by them, and leads to 
difficulties if they have any nonzero probability at zero or negative numbers. 
 

9.1 Point Estimates 
 
Consider a dosimeter such as a simple film badge that produces a reading DMeas which is a reasonably 
accurate dose to a dosimeter that is calibrated with a particular energy spectrum of gamma radiation in a 
particular irradiation geometry, e.g., normal to the dosimeter.  
 
Suppose A is a correction for energy response of the dosimeter for anterior-posterior (AP) irradiation so 
that the product ADMeas is the correct dose to air for AP irradiation in the energy spectrum of gamma 
radiation to which the worker was exposed, as opposed to the energy spectrum of the calibration 
radiation. Suppose B is a correction for the angular response of the dosimeter at that energy for the 
irradiation geometry in which it was believed to have been exposed (e.g., 50% AP and 50% rotational), so 
that the product ABDMeas is the air dose corrected for angular response. Suppose C is a correction from air 
dose to tissue or organ dose so that the product ABCDMeas is the correct tissue or organ dose. 
 
Suppose one wants to apply correction factors A, B, and C to a measured dose DMeas in such a way that, on 
the average, DCorr will be unbiased. If one does a deterministic calculation, 

 MeasCorr DCBAD ⋅⋅⋅=  21
the corrected dose is a simple product.  
 
Now suppose that one wants to require that the intermediate doses each be correct on the average: 

 

MeasOrgan  AngleEnergy Corr 

MeasAngleEnergy Corr 

MeasEnergyCorr 

DCBAD

DBAD

DAD

⋅⋅⋅=

⋅⋅=

⋅=

. 22

This seems simple enough if A, B, and C are point estimates. Suppose that DMeas has a value of 1, and that 
A, B, and C are 3, 2, and 4, respectively. Then DCorr Energy = 1 × 3 = 3,  DCorr Energy Angle = 1 × 3 × 2 = 6, and 
DCorr Energy Angle Organ = 1 × 3 × 2 × 4 = 24. 
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9.2 Normally-Distributed Correction Factors 
 
Now suppose that A, B, and C are uncertain, and are normally distributed. If the point estimate values of 
A, B, and C are used as the means of the normal distributions, and, say, each has a coefficient of variation 
(relative standard deviation) of 0.2 so that negative values are highly unlikely, then each of the values 
DCorr Energy, DCorr Energy Angle, and DCorr Energy Angle Organ will be unbiased on the average, with values of 3, 6 and 
24 as in the point estimate example. 
 

9.3 Lognormally-Distributed Correction Factors 
 
Now suppose that A, B, and C are uncertain, and are lognormally distributed. Further, suppose that they 
have geometric standard deviations SG of 3, 2, and 4, respectively. If the point estimate value of A, 
namely, 3, is used as the geometric mean of a lognormal distribution, then DCorr Energy will have an average 
value of 3.81, not 3. If instead the point estimate value of A is used as the arithmetic mean of a lognormal 
distribution, then DCorr Energy will have the correct average value of 3. That is, the geometric mean of the 
lognormal distribution of A is 2.35, not 3.  
 
If the point estimate values of A and B, namely, 3 and 2, are used as the geometric means of lognormal 
distributions, then DCorr Energy Angle will have an average value of 13.9, not 3 × 2 = 6. If the point estimate 
values of A and B are used as the arithmetic means of lognormal distributions, then DCorr Energy Angle will 
have the correct average value of 6. The result is that the geometric mean of the lognormal distribution of 
A is 2.35, not 3, and the geometric mean of the lognormal distribution of B is 1.094, not 2. 
 
If the point estimate values of A, B and C, namely, 3, 2, and 4, are used as the geometric means of 
lognormal distributions, then DCorr Energy Angle Organ will have an average value of 146, not 3 × 2× 4 = 24. If 
the point estimate values of A, B and C are used as the arithmetic means of lognormal distributions, then 
DCorr Energy Angle Organ will have the correct average value of 24. This means that the geometric mean of the 
lognormal distribution of A is 2.35, not 3, and the geometric mean of the lognormal distribution of B is 
1.094, not 2, and the geometric mean of the lognormal distribution of C is 1.53, not 4. 
 
The results for these four thought experiments are found in Table 7. 
 

9.4 General Procedure for Propagating Lognormally Distributed Uncertainties 
 
If multiplicative correction factors Ai are unbiased, on the average, and are found to be lognormally 
distributed, then the correct propagation of uncertainty is to find the lognormal distribution whose 
arithmetic mean iA  is equal to the correction factor. The parameters of this lognormal distribution are the 
geometric mean AGM,i and geometric standard deviation SG,i. The former is 

 2/)(ln
GM,

2
G,e iS

ii AA −= . 23
The geometric mean of the lognormal distribution of the product of the multiplicative correction factors is  

 ∏=
i

iAA GM,overall GM, , 24

 while its geometric standard deviation is 
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= i

iS

S
2

G,ln

overall G, e . 25

The arithmetic mean of the multiplicative correction factors is simply the product of their arithmetic 
means:  

 ∏=
i

iAAoverall . 26

 This result corresponds to the point estimate case and the normal distribution case. 
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Table 7. Results of four thought experiments regarding the propagation of uncertainty when multiplying correction factors. In the point estimate 
and normal distribution cases, values are simply multiplied, and the question of whether they are arithmetic mean (average values or expectation 
values) or geometric mean (or median) values never arises. In the lognormal case, use of the point estimate values as geometric means (first 
“lognormal” row) alters the average result of the corrected dose value. A bar denotes an arithmetic mean; SD, standard deviation; GM, geometric 
mean; SG, geometric standard deviation; DMeas, result of dose measurement; DCorr, corrected dose value. 
 

Energy 
Correction Factor 

Angle Correction 
Factor 

Organ Correction 
Factor DCorr Energy DCorr Energy Angle 

DCorr Energy Angle 

Organ 

Uncertainty 
Distribution SD

A,  AGM, 
SG SD

B ,  BGM 
SG SD

C ,  CGM, 
SG DMeas 

Mean, 
SD 

GM, 
SG 

Mean, 
SD 

GM, 
SG 

Mean, 
SD 

GM, 
SG 

Point 
Estimate 

3 
- 

3 
- 

2 
- 

2 
- 

4 
- 

4 
- 1 3 

- 
3 
- 

6 
- 

6 
- 

24 
- 

24 
- 

Normal 
Distribution 

3 
0.6 

3 
- 

2 
0.4 

2 
- 

4 
0.8 

4 
- 1 3 

0.6 
3 
- 

6 
0.72 

6 
- 

24 
1.08 

24 
- 

Lognormal 
Distribution 

3.81 
2.35 

3 
2 

3.66 
8.57 

2 
3 

10.5 
61.0 

4 
4 1 3.81 

2.35 
3 
2 

13.9 
61.5 

6 
3.67 

145.9 
5242 

24 
6.68 

Lognormal 
Distribution 

3 
1.85 

2.36 
2 

2 
4.69 

1.09 
3 

4 
23.3 

1.53 
4 1 3 

1.85 
2.36 

2 
6 

26.4 
2.58 
3.67 

24 
862 

3.95 
6.68 
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10 Appendix C: Results that Are Small Compared to Measurement Uncertainty 
 
Under some circumstances, it may be necessary to admit the possibility that an uncertain dose may be 
zero. Under other circumstances, such as a low value of a bioassay measurement, there is a relatively 
large measurement uncertainty that includes zero and negative values. In these circumstances, a purely 
lognormal expression for uncertainty is inadequate. 
 
While neither a negative dose nor a negative activity has physical meaning, the difference between two 
doses or the difference between two activities can meaningfully be negative. An individual who receives a 
series of doses that are small compared to the measurement uncertainty can legitimately have a record of 
small positive and small negative results. 
 
If some components of uncertainty are lognormally distributed and combined as described above, and a 
component of uncertainty corresponding to measurement error that is normally distributed with a mean of 
0, then the resulting distribution may be a sum of a normal distribution and a lognormal distribution. 
 
Consider the case of DCorr Energy Angle Organ = 24, as in Appendix B. If, in addition to the correction factors A, 
B, and C, suppose the original DMeas = 1 was characterized by a normal distribution with a mean of 0 and 
a standard deviation of 2 as shown in Figure 13. Admittedly, this is a case in which DMeas would be 
regarded by many as not significantly different from 0, but it illustrates the problem well. Also, the 
geometric standard deviation of the correction factors is larger than is likely for most kinds of 
measurements, but it is chosen to illustrate an extreme case. 
 
In this example, the normal uncertainty is a classical uncertainty, and the correction factor uncertainty is 
almost entirely a Berkson uncertainty. 
 
Of course, a negative dose is not physically meaningful3. However, setting spurious negative doses to 
zero without equally compensating for equally spurious positive doses injects a positive bias into sums or 
averages of doses. 
 
Unlike the distribution of the product of lognormal distributions discussed in the main text and in 
Appendix B, the result of convolving the normal and lognormal distributions is a hybrid distribution that 
has no known analytical expression. 
 
One may wish for example to compute an annual dose from a series of monthly dosimeter results. If one 
adds doses with such hybrid uncertainty distributions, the classical measurement uncertainties will tend to 
cancel out, since the classical uncertainties are expected to be independent. The Berkson uncertainties will 
not diminish with addition. 
 
 

                                                      
3 Of course, a negative dose is meaningful if it is the differnce of two positive doses. 
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Figure 13. A measured dose with mean = 1 and Normally distributed uncertainty with standard deviation of 2 (pink 
curve). The correction factors discussed in Appendix B are distributed lognormally with geometric mean = 3.95, 
geometric standard deviation = 6.68, and arithmetic mean = 24 is shown as the dashed curve. The uncertainty 
distribution of the final corrected uncertain dose is approximated by the heavy blue curve calculated by Monte Carlo 
methods. The final corrected uncertain dose has an arithmetic mean = 24. 
 
The shape and characteristics of the resultant sum distribution are not known at this time, but research is 
currently underway to characterize such a distribution. Since it is probable that for reasonable dose 
characterization for epidemiology, dramatic simplifications will be needed, the adequacy of approaches to 
simplification is being studied, and manuscripts prepared for publication.
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