Provenance Store Evaluation

PR Paulson
TD Gibson
KL Schuchardt
EG Stephan

March 2008

Prepared for the U.S. Department of Energy
under Contract DE-ACO05-76R1.01830

PNNL-17237

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
Jor the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-ACO05-76RI1.01830

Printed in the United States of America
Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov
Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Provenance Store Evaluation

P Paulson
T Gibson
K Schuchardt
E Stephan

March 2008

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76R1.01830

Pacific Northwest National Laboratory
Richland, Washington 99352

PNNL-17237

Summary

Requirements for the provenance store and access API are developed. Existing RDF stores and
APIs are evaluated against the requirements and performance benchmarks. The team’s conclusion is
to use MySQL as a database backend, with a possible move to Oracle in the near-term future. Both
Jena and Sesame’s APIs will be supported, but new code will use the Jena API.

il

Contents

SUIMMIALY ..ttt b s es 1ii
1. Functional and Performance REqUITEMENTSc.cccviuiiriiieiiiriiieiiiiieiiceeeccenesees e secaceens 9
1.1. Provenance creation, recording, and QUELITINGcccevuiererririeemieriiereirieereiieeenesseenesesssesenns 9

1.2. Provenance management........coeciiiiiiimiemcscseseseseie ettt a st ae s 9

1.2.1 Data security, Reliability, Availability, and Fault-toleranancecccccoevvviiurininnne. 9

1.2.2 Capacity, Scalability, and Extensibility........cccocvuieiriviiciniiiiriccncceecenne 9

1.2.3 Access and INLEGIILY c.cuviiuiiiiiiciiiccc s 10

1.3. Speed and Latency REQUITEMENTScccvuiuiiiiiiiniiiiciiiciicicsss e 10

2. Evaluation of RDF Stores for Provenance Recordingcocvviiiiviiiiniiiniiiniicnccnines 11
3. Overview of Candidate RDE StOLesccuviiiiiiiiiiiiiiiciiccieicceetee e snaes 14
B APIS o 14

BT JNAuiiiiii s 14

3120 SESAMIE oottt 14

313 MUl@ara/KKOWALD c.ucuuceeecircieiiieiecicieieieeie ettt 14

B4 BELOTC et 15

3.1.5 RDF GAteWay...cciuiiiiiciiiiiiiiiiiiiiiciii st 15

3.1.6 BIZOWLIM....ooiiiiiiiiiiiiiicicic sttt 15

317 GatliK e 16

3.1.8 OpenLink VIFtUOSO ...ccccuiuiiiiiiiiiiiiiiciiiriiic e 16

3.1.9 Alle@fOGIaph.....iiieiiiiiiiiiii e 16

3.2, Sto1age ENGINES ..o 16

3.2.1 Full feature SQL-based Relational SYStems.........cccuvuiecuemririecuemrenicieirieciereieeneennes 16

3.2.2 Proprietary RDE StOr€S.....cccoiiiiiiiiiiiiiiniiiiiiiiiiicciciiiiiisssssssee e 16

4. Previous evaluations of RDE StOreS ...ttt 17
5. ComMPALISON IMALIICES ...ouviviiiiiiiiiii ettt 18
5.1. Storage ENgine fEaturesccccocuiuiiiiiiiiiiiiiiiiiiiiiiicc s 18

5.2. SEVEr/ API SOfTWALE fEATULES ...veveeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeseeeeeeseeseeseteseeseseestereesessestetesessesseneens 19

5.3. API/Backend Compatibilityc.cceeueveueuiuriiniiereiiieieiieieieiciesie e sessesssee e sesssseseessessssesaens 19

5.4. Query Language COMPALISONcucuiuiiiiiriiiiiiiiicicieieicieieteteist s ns 20

5.5. Performance Benchmarksccoooiiniiiniiicicccc e, 20

5.5.1 Data loading & Provenance iNSErtioN........oouievviieiueiriieuniiiieneisiienessisenesssssennns 20

5.5.2 Loading and querying LUBM data.......cccevuieieinicinmniicierieeeneeienseeeesseeenenene 21

O. CONCIUSIONS 1evttteeeeeeeeeee ettt e ettt ettt e et eeeeeeseaeee st eesseesaseesaseesaseeeanteesaseesaseesaseesaseesastesanaesansesssseesassessssesnnne
0.1, BACKENA SCIECHON ettt ettt ettt ettt et eeeeeeeeeeseeeeeseeeeeeeeseseesanaesaneeeesseesenaeseseesaaeenns
0.2 AP SCIECHOMN ettt ettt e e et e et et esaeesatesatesatesstesseesseessesasesssesasesssesasesasesnesnesnns

7. References

vi

Figure 5.1. Data loading and Capacity

vii

Tables

Table 2.1. Criteria applied to multiple SYStem COMPONENLS ...c.cvvreiecrerrerieererreeiereerieeeeneeeeeeerseeaesesseeaens 12
Table 2.2. Additional criteria for StOrage COMPONENL....c.cuiuiiieriiieiieriiiieieriiieieiicesesseees e seesaenens 13
Table 5.1. Comparison of Storage Engine Features. ..o 18
Table 5.2. Server and API feature COMPATISONccuviiiuciiiiiieiiiiciiicie e sesaenns 19
Table 5.3. Compatability between backends and APIs.........ccccvviiiiviiiiiniiiincccccceeens 19
Table 5.4. Query Language COMPATLISONcuuiuiiiiiiiiiiciicisiicisici it 20
Table 5.5. Load times for LUBM dataccccccuoiiiiiiiiiiiiiiiiiiicicicciceccsse s 21
Table 5.6. ReSUILS fOr QUETIES....c.euimiuiriiiiieiiicieieeeciete ettt eneae 22

viii

1. Functional and Performance Requirements

We want to support the provenance steps described by (Groth, Miles et al. 20006).
(Munroe, Groth et al. 20006) specify 4 phases in the provenance lifecycle: creation, recording,
querying, and managing. The RDF based Provenance store should support each of the
phases.

1.1. Provenance creation, recording, and querying

The provenance store should provide APIs or web services to allow users to specify new
provenance information; it must also support the storage of a large amount of provenance
information. In addition, the store must support queries for all provenance related to some
data instance. This may require substantial time to transitively find all information related to
a data item.

1.2. Provenance management

The system needs to provide tools to support standard data-management tasks. These
tasks may include backups and restore, journaling and crash-recovery, purging, data-
reorganization, and storage optimization.

1.2.1 Data security, Reliability, Availability, and Fault-toleranance

Because the projected customers require global access, the system should be capable of
24X7 operations, which requires online data backup and recovery. Failure of the provenance
store should not prevent the execution of client processes; ideally, local provenance stores
can provide temporary storage in case of network or server failure. Fail-over processing

should be provided.

1.2.2 Capacity, Scalability, and Extensibility

Provenance assertions will be generated for every intermediate result generated by the
system. We’re assuming that the result sets will have high granularity—that is, there will not
be provenance associated with each item in a dataset, but the data set as a whole. Historical
provenance records will be kept for a window, but a purge process can be created to remove
records which are unused.

We’re assuming this implies that the capacity must be at least on the order of millions of
data-items. Potentially, the system should be able to scale to the order or trillions of data-
items.

1.2.3 Access and Integrity

It is assumed that access to actual data-items will be controlled by client systems.
Although not envisioned for prototype systems, user-level access control should be
supported for provenance records.

The system should support ACID Transaction support and journaling. Once a client
receives confirmation of a commit, all p-assertions submitted as a transaction are guaranteed
to persist in the store; if confirmation of a commit is not sent, the persisted store will not
reflect any of the processing steps taken as part of the transaction.

1.3. Speed and Latency Requirements

For provenance creation, recording, and querying, the system should not cause
significant delays to client programs; as much as possible, any additional processing time
should be deterministic.

10

2. Evaluation of RDF Stores for Provenance Recording

Using the requirements as a guideline, we can come up with a set of dimensions that can
be used in evaluation of potential RDF Storage systems. The RDF stores under
consideration are composed of several components, some of which are interoperable
between systems. A preliminary decomposition identifies 3 system components—the storage
engine (such as MySQL tables or proprietary file system), API (such as Jena or OpenRdyf),
and the server software (Joseki is one example). Many of the dimensions described below
apply to only 1 component. In addition, some capabilities apply only to the query languages
the system’s API and server software support. Table 2.1 outlines criteria to evaluate system
components. Table 2.2 gives criteria that are only applicable to the server component.

11

4!

JOATOG
$230318 J(TY Jo £Lmoedes swnjoa aen[ead 01 pareard 2q pnoys sFewyduaq Apedes-ysy v 93e101g Tl faeden
‘swa[qoid Suryoo] [enualod Men(ead 01 A[SNOSULINWIS SUONFISUT
pue saonb wiojrod 01 PauSIsop aq PMOYS YFLWYdUaq PaUIqUIOd B ‘GONIPPE U "998JFaIUT oM € Sursn
UoNBWIOJuT 20uLuaA03d Furssoode soronb jo souewroyrad oy pue (GNGT Aes) 31 ur sa[din Jo Joqunu
98¥e[© 9301s SUNSIXD Uk 0IUT PIINSEIW 3] P[NOYS VONIISU] *908JINUT (M € SUISN SPFOIIT 90UEUIA0Kd JOATOG Kouaye|
MU JO UONIISUT JO 0ULWIOFF2d 91} JO SWI UT 9701 21en[eAd 03 podO[oAIP 9q PINOYS SYTEWYDIUIY 93er01g 1 put paadg
*SOT30[OUTI9) MU PIA UONEIZNUL PUE S[O0] 130ddng
JuSWSeULW MU Jo JudwdoPAdp axnsud [ia 1roddns Arunwwod pue 20urIdodde [ErIWWod Surosu() /2 e | Aunwwon)
*so[dIn M UONEBWIOJUT $$922¢ SuTrols Aq $s200¢ vep 33oddns pue ‘suonerado o3md
30 130ddns ysnoxyy Liqeess pue Loededs aseorour ‘sdnyoeq erep 1roddns djoy [im A[euonouny sryJ,
“firevonouny sy sunsoddns ©9301s 9U3 OPISUT SIUIWIIEIS) 0F $S920k [9A9] 0] A[ddns IS ‘Fossmoy
‘507018 J(TY SWOS "PIJOIS 9 U P[NOD SIUSWIEIS 323781 O} INOqE ‘S[re1ap Surdosy-asnoy Iopo pue
‘sagoyrarxd $s900€ parmbax ‘owmn ss900 Ise[st yons ‘soprodord—ozo1s J(TY eredas UT SIUSWIIS pazfial
918910 PO TonNN[os J(TY 2Mmd V ‘SIuswolels 9SOyl INOJE LILPELIdW 2J038 03 asn 9q Lew 1 ‘sasodind
JuSWwSeurw-eIep 10,1 'SR JO ‘SIUIWNEIS UTEIUO0d [[I 93018 ,J(TY O ‘M1A Jo jurod s Jasn oy WO | [V 95er101g 1 UONEIJINY
‘wapqoid uado ue SI—Iouo0sear u-i[mq
© J0 ‘Gurssad03d 2anseraiuT Surssaooxd yareq — paruowardwr 9q PNoys SIY) MOF] "SUTEYD 20ULBU2A03d
ysnoxyy yoeq Surem oxmbar [sip ‘Aransuen 1roddns 30U op TOYV IS St Yons sosendue| (Surfzonb)
Kxonb Sunsrxo 2ourg “wayr yemonsed € Jo 90UrU2A03d SU) WIOF JEY) SWAIT [[E JA[OAUT [[IA SILFNb owog | [V F9AF2g '1 Aranisues],
-ogen3ue £1onb o sogengue|
30 130oddns /90ur1doode oy pue OFengue] £7onb oy Jo ssouaArssardxo oy ‘parzoddns oFenSuer Aonb oy, | [V ‘FoATOg '1 L3900
20eJIIUT
$901ATIS M ySnoiyy Surkzonb pue ‘Gurprooas ‘woneard soueuasord 1zoddns 01 AmIqQy | [V FoAIOg I'1 QM
w011 Gr4953(T spuanoduo”) | spuaniadinbry N

syuouodwod wsAs apdnnuw 03 pardde eLII) *1°7 QL

¢l

¢S9IN[TE} 2FeMpIeY

jsureSe 102103d 01 SureuIno(puE YdEq[OF PUL ITWWOD PIM suondesuer) 13oddns 03015 J(TY 2 20 | €T1“1C1T 130ddng uonoesuer],

(*--9sn 03 MITA YOTYM IPIIIP 01 IABY [[BS — yonw 10U L[qeqord ng) TOFTVOD $$900¢ [0A9]

U0 AI[IQIXa[J 39330 P[NOd SINGI(TY SUIAFOPUN 913 UIPIA SAIIA UO [07U0D $8909¢ s1roddns 1ey) 9301G ,J(TY UV cTl MITA [ORVO7) SS90V
‘¢z’ 1 yuawarmbar syzoddng *(39303s YOI M 01UT OF SIUSWIEIS YITYM — INIYJIP 2q [[AS P[nom

ST} JO USISOP) UONBWIOJUT 20ULU2A0Fd 01 §S220¢ SUIJOATOD ‘$230IS ,J(TY IUSIIIIP UT Pa30ls 9q 03 aduruar0xd [0A9]

JO S[OAD] JUIIIJJIP MO[[e P[NOM SIYT, $9301G J(Y Y2 UO [OFIVOD $SIIIE [DAI[-JOSN 9DIOJUD 9J03S ,J(TY 2P S90(J cTl 9J01G ‘[OFIVOD $SIIY
*OUIUO Ik WO
Koy woym widsAs JuswaSeuew v1ep o) Aq duks Ut 1doY SIOAIIS [[B YIM ‘SIDAJIS [PIOAIS JO JUO AUE UO IPLW 9q
ued saepdn Jer os paruswa[dwr 9q 03 I9A0-[TEJ JNEWOINE MO][E [[IAN SIY T, *9[qeFISIP 93¢ UONEddor onewoine

s Summopeys aseqerep 1roddns yey swasds ‘suonerado ayes-[rej pue ssamsnqor apraoid 01 3opIo uf 1’7’1 | uvoneorday /Sumopeyg
"parenyead Juroq swalshs o Isowr P A[[eanpadoid pajpuey] oq A[qeqoid

pmos siyp ysnoype ‘sdnsppeq auruo 1roddns A[[espr pinoys 23018 J(TY 2 ‘1°¢’ | 3uawaxmbay 130ddns o7, 171 sdnyoeg sunuQO

s[ooT,

*0301G J(TY 2 Jo 2duruanurew 130ddns 01 sjoo) 1uawaSeurw LIe(] 1 JuowaSeuLy BIe(]

“£1[1qe-a7eds pue 93esols-erep Lroededs ysiy Ajdwis [sox031g (T dwnjoa-pw 1roddns 1ey) swoalsdg 7Tl QWN[OA-INIA

so[dim jo Joqunu 983e[€ 93018 01 AIIQY 7T froeden

uoyduissa(J | spusmtalinbayy wnuady

Juouodwiod 93e10)S JOJ BLIAILID [BUONIPPY *T'T dqBL

3. Overview of Candidate RDF Stores

3.1. APIs
3.1.1 Jena

Jena (http://jena.sourceforge.net/) provides

1. An API for manipulating RDF graphs
2. Supportt for multiple reasoning engines — OWL-DL (through Pellet), OWL-Lite, and RDF
Schema
3. Support for multiple back-end storage systems, including
a. native support for in-memory graphs
b. RDBMS table storage, implemented for Oracle, SQL Server, MySQL, and Postgres
4. Supportt for the SPARQL query language
5. Server software (Joseki) that supports the SPARQL query language

Web soutces (http://esw.w3.org/topic/LargeTripleStores) indicate installations handling
200M triples using Postgres as the storage engine.

3.1.2 Sesame
Sesame provides

An API for manipulating RDF graphs
Server software that supports the SeRQL query language
Supportt for a proprietary, file-based storage system

Sl S

Reasoning over RDF Schema

Version 1.0 of Sesame also supported RDBMS table-based storage, but this has not yet
been implemented for version 2.0. I was unable to decipher the documentation for version
1.0 support. Web sources indicate fair performance with systems of up to 70M triples.

3.1.3 Mulgara/Kowari

Mulgara is an open-source fork of Kowari. The marketing literature indicates that the
design is meant to be scaleable to extremely large graphs. The system uses memory-mapped
files and is tailored to 64-bit systems. Web sources indicates good performance with stores
of 160M triples (http://esw.w3.org/topic/LargeTripleStores)

Mulgara provides:

1. A server supporting the Itql query/update language
2. A proptietary storage backend

14

3.1.4 3Store

Web soutces (http://esw.w3.org/topic/LargeTripleStores) indicate successful
applications handling 100M triples. This product provides a C language library. Untested
since compiling on cygwin didn’t go very smoothly — probably best on a Unix or Macintosh,

but we’re currently benchmarking on a windows machine. Uses MySql as backend.
Provides
1. Sparql Support
2. Store-level access control

3. Uses MySQL

3.1.5 RDF Gateway

Web soutces(http://esw.w3.org/topic/LargeTripleStores) indicate installations handling
262M triples.

1. Commercial, free for evaluation.

2. RDF Gateway is a complete application and web server that manages a built-in RDF Store.
3. A server supporting the proprietary RDFQL query language. It looks like SPARQL is also
supported

A proprietary storage backend

Access control using NT user and groups

Transaction Support

‘context’ for statement could possibly support statement reification

® N o

content-level access control
We were unable to determine if on-line backups are supported.

Documentation for this product was too incomplete to allow me to easily code
benchmarks for it, although it appears feasible.

3.1.6 BigOWLIM

One source claimed that this system handled 1.06B statements — adding more statements
through OWL inferencing, with a load time was approximately 70 hrs.
(http://esw.w3.org/topic/LargeTripleStores).

BigOWLIM is a reasoning and persistence implementation for the Sesame framework. It
uses a proprietary disk storage system and implements RDFS and limited OWL entailment
(does not support OWL-Lite).

BigOWLIM is not open source—it was not tested due to licensing limitations.

15

3.1.7 Garlik

Handles 1.7B triples, according to http://esw.w3.org/topic/LargeTripleStores.
www.garlik.com describes a data-privacy monitoring company, very little information is
given about their technology. The RDF Store is apparently named JXT, but I found no more

information about it using Google.

3.1.8 OpenLink Virtuoso

http://esw.w3.org/topic/LargeTripleStores indicates this store handles over 1B triples.

This looks like a nice commercial product. Evaluation kits are available for 15 days—not
evaluated because we have no license. Supports Sparqgl.

3.1.9 AllegroGraph

Web sources and company information indicate AllegroGraph can handle billions of
triples (http://esw.w3.org/topic/LargeTripleStores).

AllegroGraph Allegro graph is single threaded server based rdf store. Multi-volume
support

AllegroGraph stores a triple store within a single directory

(http://www.franz.com/products/allegrograph/doc/lisp/reference-guide.html).

3.2. Storage Engines

3.2.1 Full feature SQL-based Relational systems

These systems provide scaleability, multi-volumen support, transaction support, and data
management tools. The systems include MySQL, Postgress, Oracle, and SQL server.

3.2.2 Proprietary RDF stores

Most of these systems offer little documentation that details the support given for data-
management tasks, multi-volume support, and transaction support. Proprietary stores
include AllegroGraph, the Sesame Native Store, and Mulgara.

16

4. Previous evaluations of RDF Stores

(Lee 2004) reviews several triple stores, including Jena, Kowari, 3Store, and Sesame. The
triple stores were tested in their performance for three specific application tasks—
‘configure’, ‘display’, and ‘browse’. In all 3 tasks, when accessing a 21M triple dataset over a
network connection, Sesame performed significantly better than the other contenders.

(Portwin and Parvatikar 2006) examined several RDF stores and chose Jena using
Postgres for several reasons, including the existence of proven data-management tools. They
found that neither Mulgara nor Sesame was as reliable and scaleable as Jena. They found that
while Jena’s RDF store was scaleable, its reasoner was not, and that further design decisions
were needed to determine how to best support certain types of reasoning. It was also found
that Joseki queries required reformulating for optimal results — logically equivelant queries
could have a tremendous difference in response times. (Note that this is also true of SQL
queries against an RDBMS store, though more kinks have probably been worked out over
the years)

TripCom (Triple Space Communication 2000) provides a good overview of the available
RDF stores and their characteristics, but does not report any peformance results.

17

5.1. Storage Engine features

5. Comparison Matrices

Table 5.1. Comparison of Storage Engine Features

Engine Multi- Mgnmt | Cmmty, Online Shadowing | Store View ACID
Volume | Tools Crmmrel Backups Access | Access
Support

MySQL ? Yes Yes Yes Yes Yes ? No

/MyISAM

MySQL Yes Yes Yes Yes Yes Yes ? Yes

/InnoDB

PostGres Yes Yes Yes Yes Yes ? Yes

AllegroGraph | No Few Small No(?) No No No Yes

Sesame No Some Yes No (?) No No No Yes
®)

Mulgara No No Small No(?) No (?) No No Yes
@)

RDF Gateway | ? Some Small ? No(?) Yes (?) | Yes (?) | Yes
@)

BigOWLIM No Some Yes No (?) No No No Yes

OpenLink ? Yes ? Yes Yes Yes ? Yes

Virtuoso

Note that Oracle and SQL Server are not included in Table 5.1. It is assumed that, at the
least, they support at least the features supported by MySQL and Postgres.

18

5.2. Server/API Software features

Table 5.2. Server and API feature comparison

System Creation Qunery support | Transitivity Reification Community Reasoning
Support
Joseki (Jena) Yes Sparql No Yes Yes OWL-DL
(through
Jena)
Sesame Yes SerQL No ? Yes RDEFS
Mulgara Yes Itql No ? Small Owl-Lite
3Store ? Sparql ? ? Small ?
RDF Gateway | Yes Proprietary | RDFS ? Small RDES
Reasoning (Some
OWL)
OpenLink Yes Sparq], No Yes Commercial | RDFS
Virtuoso Proprietary
AllegroGraph | Yes Spardq], Yes (Prolog) | Yes Small Useful
Prolog subset of
OWL

5.3. API/Backend Compatibility

Table does not include rows for systems that are the only users of their RDF store (i.e.,

AllegroGraph).
Table 5.3. Compatability between backends and APIs
System/ Backend MySql | Postgres Oracle Sq/ Sesame | Mugara
Server
Joseki (Jena) Y Y Y Y Y Y
Sesame N(1) N N N Y N
Mulgara N N N N N Y
3Store Y N N N N N
Notes

1) Was compatible in version 1, but not yet in version 2

19

5.4. Query Language Comparison

Table 5.4. Query Language Comparison

Langnage Updates? Community Standards Transitivity?
Support? Compliant?

Sparql No Yes Yes No

SerQL (Sesame) No Yes No No

Itql Yes Small No No(?)

Prolog No No No Yes

5.5. Performance Benchmarks

5.5.1 Dataloading & Provenance insertion

Data loading and provenance insertion are evaluated by loading small RDF files, each

representing a provenance record consisting of 5 triples, into the knowledge base. The
amount of time it takes to load 1000 such records is compared against the current size of the
knowledge base as an indication of system scalability. The results are graphed in Figure 5.1,

80000

70000

60000

oo L
|

40000 /

—— Jena/MySQL

—— Mulgara
Sesame?2
PostgreSQL

Elapsed time (seconds)

30000]

20000 }

10000

500000 1000000 1500000 2000000 2500000 3000000 3500000

Inserted Records

5.5.1.1 Notes

Figure 5.1. Data loading and Capacity

Jena with PostreSQL exhibits the best performance. Jena with MySQL exhibits scaleable
insertion behavior. SesameV2’s behavior is also scaleable.

20

The Mulgara benchmark application initially aborted with an out-of-memory error after
inserting 20000 records. Increasing memory for the server allowed more insertions to be
made, but it still aborted after 174000 records.

AllegroGraph’s documentation is very spotty on issues like backups and database
parameters. I had problems setting a parameter called ‘chunk size’. Setting it too small causes
one kind of error, too big another kind. How to select a size is not specified, but it depends,
I guess, on how many triples you plan to store. I was unable to determine a value that
worked for the rdf file addition task — the server aborted if the number was too large, and
created too many files if it was too small.

5.5.2 Loading and querying LUBM data

Different conclusions are drawn when the size of the rdf dataset is increased. Tests using
the Lehigh University Benchmark (LUBM) (Guo, Pan et al. 2005). The LUBM

...1s developed to facilitate the evaluation of Semantic Web
repositories in a standard and systematic way. The benchmark is
intended to evaluate the performance of those repositories with
respect to extensional queries over a large data set that commits to
a single realistic ontology. It consists of a university domain
ontology, customizable and repeatable synthetic data, a set of test
queries, and several performance metrics.(Semantic Web and Agent

Technologies Lab 2007).
Table 5.5. Load times for LUBM data
Dataset | Sesame2 Load time (Seconds) | Jena Load Time (seconds)
1 22,484 37,220
2 27,269 47,077
3 26,098 56,934

A second benchmark used LUBM datasets to compare Jena and Sesame?2 in load times
and query performance. Three different LUBM datasets, each with approximately 6 million
triples, were loaded into Jena and Sesame2 backends. The Jena system used MySql as a
backend, Sesame used it’s native file store. The results, shown in Table 5.5, indicate that
while Jena is slower than Sesame2, the difference is not appreciably different for the size of
datasets considered. The average time for Sesame to add 6 triples to a dataset was 13
microseconds, the average time for Jena was 31 microseconds.

The query results, summarized in Table 5.6, however, indicate that there are serious
problems with Jena’s query engine in some cases.

21

Table 5.6. Results for queries

Query Sesame 2 (ms) | Jena (ms)
1 | ?subj <named predicate> Pobj 235 395761
2 | <named subject> $pred $obj 204 812
3 | $sub $pred <named object> 188 860
4 | $sub <named predicate> <named object>. 203 750
$sub $pred $obj
5 | $sub $pred $obj FILTER ($obj="Literal’) 187 | error: Out-of-memory
6 | $sub $pred 'Literal' 188 593
error: no results
7 | $sub $pred $obj FILTER regex($obj, Literal.") 187 | error: Out-of-memory

22

6. Conclusions

6.1. Backend Selection

In the near future, we are still working with prototypes and data, and data integrity is not
a serious issue. The large scale LUBM benchmarks show that the Sesame?2 native store’s
performance is orders of magnitude better than the current database backends in query
performance, so it will be used. Perhaps Sesame2 will support a different backend by the
time we need it.

In the long term, a backend that uses a standard industry database, such as MySQL,
Postgres, or Oracle is desired. Systems using native backends do not have the history that
gives our team confidence in they’re ability to provide database management tools, access
control, 24X7 access, online backups, etc. Jena has recently provided an additional backend
which can use commercial backends and is optimized for use on SPARQL Queries which
may fit the bill (SDB 2007). In the long term, using Oracle as the backend is desired, since it
is forseen that many customers will have experience with supporting Oracle. MySQL will be
considered because its open source, it is installed, and the team is familiar with it.

6.2. API Selection

Two APIs have strong community support and meet the requirements of the team: Jena
and Sesamel. Both can use MySql as a backend and both have similar strengths in
supporting queries and in manipulating RDF graphs. The other APIs seem are either only
available commercially, have limited community support, or are tied to proprietary backends.

Jena’s strengths are its support for a wide variety of backends, strong community
support, and support for complete OWL-DL reasoning. Drawbacks include a perception of
over-complexity of the API and weaknesses in the query optimizer (logically equivalent
queries can result in different execution times).

Sesame’s strengths include strong community support, reported faster access speed, and
previous usage at PNL. Its main drawback is lack of support for an RDBMS backend for the
current release—this makes direct performance comparisons difficult.

Given these difficulties and the functional similarity between the two APIs, both APIs
will be supported for the nonce.

23

7. References

Groth, P., S. Miles, et al. (2006). The Open Provenance Specification, The PROVENANCE
Consortium.

Guo, Y., Z. Pan, et al. (2005). "LUBM: A Benchmark for OWL Knowledge Base Systems."
Journal of Web Semantics 3(2): 158-182.

Lee, R. (2004). Scalability Report on Triple Store Applications. Cambridge, Mass., MIT.

Munroe, S., P. Groth, et al. (2006). Overview of the Provenance Specification Effort. The
Open Provenance Specification, The PROVENANCE Consortium.

Portwin, K. and P. Parvatikar (2000). Scaling Jena in a commerical environment: The
Ingenta MetaStore Project. Jena User Conference, Bristol, UK.

SDB(2007). "SDB - A SPARQL Database for Jena". http://jena.sourceforge.net/SDB/

Semantic Web and Agent Technologies Lab(2007). "LUBM Homepage".
http://swat.cse.lehigh.edu/projects/lubm/index.htm

Triple Space Communication (2006). Semantic-based Knowledge and Content Systems,

Triple Space Communication.

24

