
PNNL-17237

Provenance Store Evaluation

PR Paulson
TD Gibson
KL Schuchardt
EG Stephan

March 2008

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by

BATTELLE
for the

UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America
Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov
Available to the public from the National Technical Information Service,

U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

PNNL-17237

Provenance Store Evaluation

P Paulson
T Gibson
K Schuchardt
E Stephan

March 2008

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

iii

Summary

Requirements for the provenance store and access API are developed. Existing RDF stores and
APIs are evaluated against the requirements and performance benchmarks. The team’s conclusion is
to use MySQL as a database backend, with a possible move to Oracle in the near-term future. Both
Jena and Sesame’s APIs will be supported, but new code will use the Jena API.

v

Contents

Summary ... iii
1. Functional and Performance Requirements .. 9

1.1. Provenance creation, recording, and querying .. 9

1.2. Provenance management .. 9

1.2.1 Data security, Reliability, Availability, and Fault-toleranance 9

1.2.2 Capacity, Scalability, and Extensibility .. 9

1.2.3 Access and Integrity .. 10

1.3. Speed and Latency Requirements ... 10

2. Evaluation of RDF Stores for Provenance Recording .. 11

3. Overview of Candidate RDF Stores ... 14

3.1. APIs ... 14

3.1.1 Jena ... 14

3.1.2 Sesame ... 14

3.1.3 Mulgara/Kowari .. 14

3.1.4 3Store ... 15

3.1.5 RDF Gateway ... 15

3.1.6 BigOWLIM ... 15

3.1.7 Garlik ... 16

3.1.8 OpenLink Virtuoso ... 16

3.1.9 AllegroGraph .. 16

3.2. Storage Engines ... 16

3.2.1 Full feature SQL-based Relational systems .. 16

3.2.2 Proprietary RDF stores ... 16

4. Previous evaluations of RDF Stores ... 17

5. Comparison Matrices .. 18

5.1. Storage Engine features .. 18

5.2. Server/API Software features .. 19

5.3. API/Backend Compatibility .. 19

5.4. Query Language Comparison .. 20

5.5. Performance Benchmarks .. 20

5.5.1 Data loading & Provenance insertion ... 20

5.5.2 Loading and querying LUBM data .. 21

vi

6. Conclusions .. 23

6.1. Backend Selection .. 23

6.2. API Selection .. 23

7. References ... 24

vii

Figures

Figure 5.1. Data loading and Capacity ... 20

viii

Tables

Table 2.1. Criteria applied to multiple system components ... 12
Table 2.2. Additional criteria for storage component ... 13
Table 5.1. Comparison of Storage Engine Features .. 18
Table 5.2. Server and API feature comparison .. 19
Table 5.3. Compatability between backends and APIs ... 19
Table 5.4. Query Language Comparison .. 20
Table 5.5. Load times for LUBM data .. 21
Table 5.6. Results for queries .. 22

9

1. Functional and Performance Requirements

We want to support the provenance steps described by (Groth, Miles et al. 2006).
(Munroe, Groth et al. 2006) specify 4 phases in the provenance lifecycle: creation, recording,
querying, and managing. The RDF based Provenance store should support each of the
phases.

1.1. Provenance creation, recording, and querying

The provenance store should provide APIs or web services to allow users to specify new
provenance information; it must also support the storage of a large amount of provenance
information. In addition, the store must support queries for all provenance related to some
data instance. This may require substantial time to transitively find all information related to
a data item.

1.2. Provenance management

The system needs to provide tools to support standard data-management tasks. These
tasks may include backups and restore, journaling and crash-recovery, purging, data-
reorganization, and storage optimization.

1.2.1 Data security, Reliability, Availability, and Fault-toleranance

Because the projected customers require global access, the system should be capable of
24X7 operations, which requires online data backup and recovery. Failure of the provenance
store should not prevent the execution of client processes; ideally, local provenance stores
can provide temporary storage in case of network or server failure. Fail-over processing
should be provided.

1.2.2 Capacity, Scalability, and Extensibility

Provenance assertions will be generated for every intermediate result generated by the
system. We’re assuming that the result sets will have high granularity—that is, there will not
be provenance associated with each item in a dataset, but the data set as a whole. Historical
provenance records will be kept for a window, but a purge process can be created to remove
records which are unused.

We’re assuming this implies that the capacity must be at least on the order of millions of
data-items. Potentially, the system should be able to scale to the order or trillions of data-
items.

10

1.2.3 Access and Integrity

It is assumed that access to actual data-items will be controlled by client systems.
Although not envisioned for prototype systems, user-level access control should be
supported for provenance records.

The system should support ACID Transaction support and journaling. Once a client
receives confirmation of a commit, all p-assertions submitted as a transaction are guaranteed
to persist in the store; if confirmation of a commit is not sent, the persisted store will not
reflect any of the processing steps taken as part of the transaction.

1.3. Speed and Latency Requirements

For provenance creation, recording, and querying, the system should not cause
significant delays to client programs; as much as possible, any additional processing time
should be deterministic.

11

2. Evaluation of RDF Stores for Provenance Recording

Using the requirements as a guideline, we can come up with a set of dimensions that can
be used in evaluation of potential RDF Storage systems. The RDF stores under
consideration are composed of several components, some of which are interoperable
between systems. A preliminary decomposition identifies 3 system components—the storage
engine (such as MySQL tables or proprietary file system), API (such as Jena or OpenRdf),
and the server software (Joseki is one example). Many of the dimensions described below
apply to only 1 component. In addition, some capabilities apply only to the query languages
the system’s API and server software support. Table 2.1 outlines criteria to evaluate system
components. Table 2.2 gives criteria that are only applicable to the server component.

12

T

ab
le

 2
.1

. C
rit

er
ia

 a
pp

lie
d

to
 m

ul
tip

le
 sy

st
em

 c
om

po
ne

nt
s

Cr
ite

riu
m

Re
qu

ire
me

nt
s

Co
mp

on
en

ts
D

esc
rip

tio
n

W
eb

In

te
rf

ac
e

1.
1

Se
rv

er
, A

PI

A
bi

lit
y

to
 su

pp
or

t p
ro

ve
na

nc
e

cr
ea

tio
n,

 re
co

rd
in

g,
 a

nd
 q

ue
ry

in
g

th
ro

ug
h

w
eb

 se
rv

ice
s

Q
ue

ry

lan
gu

ag
es

1.

1
Se

rv
er

, A
PI

Th

e
qu

er
y

lan
gu

ag
e

su
pp

or
te

d,
 th

e
ex

pr
es

siv
en

es
s o

f t
he

 q
ue

ry
 la

ng
ua

ge
, a

nd
 th

e
ac

ce
pt

an
ce

/s
up

po
rt

of

th
e

qu
er

y
lan

gu
ag

e.
Tr

an
sit

iv
ity

1.

1
(q

ue
ry

in
g)

Se

rv
er

, A
PI

So

m
e

qu
er

ies
 w

ill
 in

vo
lv

e
all

 it
em

s t
ha

t f
or

m
 th

e
pr

ov
en

an
ce

 o
f a

 p
ar

tic
ul

ar
 it

em
. S

in
ce

 e
xi

st
in

g
qu

er
y

lan
gu

ag
es

 su
ch

 a
s S

PA
RQ

L
do

 n
ot

 su
pp

or
t t

ra
ns

iti
vi

ty
, t

hi
s w

ill
 re

qu
ire

 w
alk

in
g

ba
ck

 th
ro

ug
h

pr
ov

en
an

ce
 c

ha
in

s.
H

ow
 th

is
sh

ou
ld

 b
e

im
pl

em
en

te
d

–
ba

tc
h

pr
oc

es
sin

g,
 in

te
ra

ct
iv

e
pr

oc
es

sin
g,

 o
r a

bu

ilt
-in

 re
as

on
er

—
is

an
 o

pe
n

pr
ob

lem
.

Re
ifi

ca
tio

n
1.

2
St

or
ag

e,A
PI

Fr

om
 th

e
us

er
’s

po
in

t o
f v

iew
, t

he
 R

D
F

st
or

e
w

ill
 c

on
ta

in
 st

at
em

en
ts

, o
r t

rip
le

s.
Fo

r d
at

a-
m

an
ag

em
en

t
pu

rp
os

es
, i

t m
ay

 b
e

us
ef

ul
 to

 st
or

e
m

et
ad

at
a

ab
ou

t t
ho

se
 st

at
em

en
ts

. A
 p

ur
e

RD
F

so
lu

tio
n

w
ou

ld
 c

re
at

e
rei

fie
d

st
at

em
en

ts
 in

 a
 se

pa
ra

te
 R

D
F

st
or

e—
pr

op
er

tie
s,

su
ch

 a
s l

as
t a

cc
es

s t
im

e,
re

qu
ire

d
ac

ce
ss

 p
riv

ile
ge

s,
an

d
ot

he
r h

ou
se

-k
ee

pi
ng

 d
et

ail
s,

ab
ou

t t
he

 ta
rg

et
 st

at
em

en
ts

 c
ou

ld
 th

en
 b

e
st

or
ed

. S
om

e
RD

F
st

or
es

,
ho

w
ev

er
, m

ig
ht

 su
pp

ly
lo

w
 le

ve
l a

cc
es

s t
o

th
e

st
at

em
en

ts
 in

sid
e

th
e

st
or

e,
su

pp
or

tin
g

th
is

fu
nc

tio
na

lit
y.

Th
is

fu
nc

tio
na

lly
 w

ill
 h

elp
 su

pp
or

t d
at

a
ba

ck
up

s,
in

cr
ea

se
 c

ap
ac

ity
 a

nd
 sc

ala
bi

lit
y

th
ro

ug
h

su
pp

or
t o

f
pu

rg
e

op
er

at
io

ns
, a

nd
 su

pp
or

t d
at

a
ac

ce
ss

 b
y

st
or

in
g

ac
ce

ss
 in

fo
rm

at
io

n
w

ith
 tr

ip
les

.
Co

m
m

un
ity

Su

pp
or

t
all

…

all
…

O

ng
oi

ng
 c

om
m

er
cia

l a
cc

ep
ta

nc
e

an
d

co
m

m
un

ity
 su

pp
or

t w
ill

 e
ns

ur
e

de
ve

lo
pm

en
t o

f n
ew

 m
an

ag
em

en
t

to
ol

s a
nd

 in
te

gr
at

io
n

w
ith

 n
ew

 te
ch

no
lo

gi
es

.
Sp

ee
d

an
d

La
te

nc
y

1.
3

St
or

ag
e,

Se
rv

er

Be
nc

hm
ar

ks
 sh

ou
ld

 b
e

de
ve

lo
pe

d
to

 e
va

lu
at

e
st

or
es

 in
 te

rm
s o

f t
he

 p
er

fo
rm

an
ce

 o
f i

ns
er

tio
n

of
 n

ew

pr
ov

en
an

ce
 re

co
rd

s u
sin

g
a w

eb
 in

te
rf

ac
e.

In
se

rti
on

 sh
ou

ld
 b

e
m

ea
su

re
d

in
to

 a
n

ex
ist

in
g

st
or

e
a

lar
ge

nu

m
be

r o
f t

rip
les

 in
 it

 (s
ay

 1
5M

?)
 a

nd
 th

e
pe

rf
or

m
an

ce
 o

f q
ue

rie
s a

cc
es

sin
g

pr
ov

en
an

ce
 in

fo
rm

at
io

n
us

in
g

a
w

eb
 in

te
rf

ac
e.

In
 a

dd
iti

on
, a

 c
om

bi
ne

d
be

nc
hm

ar
k

sh
ou

ld
 b

e
de

sig
ne

d
to

 p
er

fo
rm

 q
ue

rie
s a

nd

in
se

rti
on

s s
im

ul
ta

ne
ou

sly
 to

 e
va

lu
at

e
po

te
nt

ial
 lo

ck
in

g
pr

ob
lem

s.
Ca

pa
cit

y
1.

2.
2

St
or

ag
e,

Se
rv

er

A
 h

ig
h-

ca
pa

cit
y

be
nc

hm
ar

k
sh

ou
ld

 b
e

cr
ea

te
d

to
 e

va
lu

at
e

vo
lu

m
e

ca
pa

cit
y

of
 R

D
F

st
or

es

13

T
ab

le
 2

.2
. A

dd
iti

on
al

 c
rit

er
ia

 fo
r s

to
ra

ge
 c

om
po

ne
nt

Cr

ite
riu

m
Re

qu
ire

me
nt

s
D

esc
rip

tio
n

Ca
pa

cit
y

1.
2.

2
A

bi
lit

y
to

 st
or

e
a

lar
ge

 n
um

be
r o

f t
rip

les

M
ul

ti-
vo

lu
m

e
1.

2.
2

Sy
st

em
s t

ha
t s

up
po

rt
m

ul
ti-

vo
lu

m
e

RD
F

St
or

es
 w

ill
 si

m
pl

ify
 h

ig
h

ca
pa

cit
y

da
ta

-s
to

ra
ge

 a
nd

 sc
ale

-a
bi

lit
y.

D
at

a
M

an
ag

em
en

t
To

ol
s

1.
2

D
at

a
m

an
ag

em
en

t t
oo

ls
to

 su
pp

or
t m

ain
te

na
nc

e
of

 th
e

RD
F

St
or

e.

O
nl

in
e

Ba
ck

up
s

1.
2.

1
To

 su
pp

or
t R

eq
ui

re
m

en
t 1

.2
.1

, t
he

 R
D

F
st

or
e

sh
ou

ld
 id

ea
lly

 su
pp

or
t o

nl
in

e
ba

ck
up

s,
alt

ho
ug

h
th

is
co

ul
d

pr
ob

ab
ly

be
 h

an
dl

ed
 p

ro
ce

du
ra

lly
 w

ith
 m

os
t t

he
 sy

st
em

s b
ein

g
ev

alu
at

ed
.

Sh
ad

ow
in

g/
Re

pl
ica

tio
n

1.
2.

1
In

 o
rd

er
 to

 p
ro

vi
de

 ro
bu

st
ne

ss
 a

nd
 fa

il-
sa

fe
 o

pe
ra

tio
ns

, s
ys

te
m

s t
ha

t s
up

po
rt

da
ta

ba
se

 sh
ad

ow
in

g
w

ith

au
to

m
at

ic
re

pl
ica

tio
n

ar
e

de
sir

ab
le.

 T
hi

s w
ill

 a
llo

w
 a

ut
om

at
ic

fa
il-

ov
er

 to
 b

e
im

pl
em

en
te

d
so

 th
at

 u
pd

at
es

 c
an

be

 m
ad

e
on

 a
ny

 o
ne

 o
f s

ev
er

al
se

rv
er

s,
w

ith
 a

ll
se

rv
er

s k
ep

t i
n

sy
nc

 b
y

th
e

da
ta

 m
an

ag
em

en
t s

ys
te

m
 w

he
n

th
ey

co

m
e

ba
ck

 o
nl

in
e.

A
cc

es
s c

on
tro

l,
St

or
e

lev
el

1.
2.

3
D

oe
s t

he
 R

D
F

st
or

e
en

fo
rc

e
us

er
-le

ve
l a

cc
es

s c
on

tro
l o

n
th

e
RD

F
St

or
e?

 T
hi

s w
ou

ld
 al

lo
w

 d
iff

er
en

t l
ev

els
 o

f
pr

ov
en

an
ce

 to
 b

e
st

or
ed

 in
 d

iff
er

en
t R

D
F

st
or

es
, c

on
tro

lli
ng

 a
cc

es
s t

o
pr

ov
en

an
ce

 in
fo

rm
at

io
n

(d
es

ig
n

of
 th

is
w

ou
ld

 st
ill

 b
e

di
ffi

cu
lt

–
w

hi
ch

 st
at

em
en

ts
 g

o
in

to
 w

hi
ch

 st
or

e?
).

Su
pp

or
ts

 re
qu

ire
m

en
t 1

.2
.3

.
A

cc
es

s C
on

tro
l,

V
iew

lev

el
1.

2.
3

A
n

RD
F

St
or

e
th

at
 su

pp
or

ts
ac

ce
ss

 c
on

tro
l o

n
vi

ew
s w

ith
in

 th
e

un
de

rly
in

g
RD

BM
S

co
ul

d
of

fe
r f

lex
ib

ili
ty

 o
n

ac
ce

ss
 c

on
tro

l.
(B

ut
 p

ro
ba

bl
y

no
t m

uc
h

–
st

ill
 h

av
e

to
 d

ec
id

e
w

hi
ch

 v
iew

 to
 u

se
…

.)
Tr

an
sa

ct
io

n
Su

pp
or

t
1.

2.
1,

 1
.2

.3

D
oe

s t
he

 R
D

F
St

or
e

su
pp

or
t t

ra
ns

ac
tio

ns
 w

ith
 c

om
m

it
an

d
ro

llb
ac

k
an

d
jo

ur
na

lin
g

to
 p

ro
te

ct
 a

ga
in

st

ha
rd

w
ar

e
fa

ilu
re

s?

14

3. Overview of Candidate RDF Stores

3.1. APIs

3.1.1 Jena

Jena (http://jena.sourceforge.net/) provides

1. An API for manipulating RDF graphs
2. Support for multiple reasoning engines – OWL-DL (through Pellet), OWL-Lite, and RDF

Schema
3. Support for multiple back-end storage systems, including

a. native support for in-memory graphs
b. RDBMS table storage, implemented for Oracle, SQL Server, MySQL, and Postgres

4. Support for the SPARQL query language
5. Server software (Joseki) that supports the SPARQL query language

Web sources (http://esw.w3.org/topic/LargeTripleStores) indicate installations handling
200M triples using Postgres as the storage engine.

3.1.2 Sesame

Sesame provides

1. An API for manipulating RDF graphs
2. Server software that supports the SeRQL query language
3. Support for a proprietary, file-based storage system
4. Reasoning over RDF Schema

Version 1.0 of Sesame also supported RDBMS table-based storage, but this has not yet
been implemented for version 2.0. I was unable to decipher the documentation for version
1.0 support. Web sources indicate fair performance with systems of up to 70M triples.

3.1.3 Mulgara/Kowari

Mulgara is an open-source fork of Kowari. The marketing literature indicates that the
design is meant to be scaleable to extremely large graphs. The system uses memory-mapped
files and is tailored to 64-bit systems. Web sources indicates good performance with stores
of 160M triples (http://esw.w3.org/topic/LargeTripleStores)

Mulgara provides:

1. A server supporting the Itql query/update language
2. A proprietary storage backend

15

3.1.4 3Store

Web sources (http://esw.w3.org/topic/LargeTripleStores) indicate successful
applications handling 100M triples. This product provides a C language library. Untested
since compiling on cygwin didn’t go very smoothly – probably best on a Unix or Macintosh,
but we’re currently benchmarking on a windows machine. Uses MySql as backend.

Provides

1. Sparql Support
2. Store-level access control
3. Uses MySQL

3.1.5 RDF Gateway

Web sources(http://esw.w3.org/topic/LargeTripleStores) indicate installations handling
262M triples.

1. Commercial, free for evaluation.
2. RDF Gateway is a complete application and web server that manages a built-in RDF Store.
3. A server supporting the proprietary RDFQL query language. It looks like SPARQL is also

supported
4. A proprietary storage backend
5. Access control using NT user and groups
6. Transaction Support
7. ‘context’ for statement could possibly support statement reification
8. content-level access control

We were unable to determine if on-line backups are supported.

Documentation for this product was too incomplete to allow me to easily code
benchmarks for it, although it appears feasible.

3.1.6 BigOWLIM

One source claimed that this system handled 1.06B statements – adding more statements
through OWL inferencing, with a load time was approximately 70 hrs.
(http://esw.w3.org/topic/LargeTripleStores).

BigOWLIM is a reasoning and persistence implementation for the Sesame framework. It
uses a proprietary disk storage system and implements RDFS and limited OWL entailment
(does not support OWL-Lite).

BigOWLIM is not open source—it was not tested due to licensing limitations.

16

3.1.7 Garlik

Handles 1.7B triples, according to http://esw.w3.org/topic/LargeTripleStores.
www.garlik.com describes a data-privacy monitoring company, very little information is
given about their technology. The RDF Store is apparently named JXT, but I found no more
information about it using Google.

3.1.8 OpenLink Virtuoso

http://esw.w3.org/topic/LargeTripleStores indicates this store handles over 1B triples.
This looks like a nice commercial product. Evaluation kits are available for 15 days—not
evaluated because we have no license. Supports Sparql.

3.1.9 AllegroGraph

Web sources and company information indicate AllegroGraph can handle billions of
triples (http://esw.w3.org/topic/LargeTripleStores).

AllegroGraph Allegro graph is single threaded server based rdf store. Multi-volume
support

AllegroGraph stores a triple store within a single directory
(http://www.franz.com/products/allegrograph/doc/lisp/reference-guide.html).

3.2. Storage Engines

3.2.1 Full feature SQL-based Relational systems

These systems provide scaleability, multi-volumen support, transaction support, and data
management tools. The systems include MySQL, Postgress, Oracle, and SQL server.

3.2.2 Proprietary RDF stores

Most of these systems offer little documentation that details the support given for data-
management tasks, multi-volume support, and transaction support. Proprietary stores
include AllegroGraph, the Sesame Native Store, and Mulgara.

17

4. Previous evaluations of RDF Stores

(Lee 2004) reviews several triple stores, including Jena, Kowari, 3Store, and Sesame. The
triple stores were tested in their performance for three specific application tasks—
‘configure’, ‘display’, and ‘browse’. In all 3 tasks, when accessing a 21M triple dataset over a
network connection, Sesame performed significantly better than the other contenders.

(Portwin and Parvatikar 2006) examined several RDF stores and chose Jena using
Postgres for several reasons, including the existence of proven data-management tools. They
found that neither Mulgara nor Sesame was as reliable and scaleable as Jena. They found that
while Jena’s RDF store was scaleable, its reasoner was not, and that further design decisions
were needed to determine how to best support certain types of reasoning. It was also found
that Joseki queries required reformulating for optimal results – logically equivelant queries
could have a tremendous difference in response times. (Note that this is also true of SQL
queries against an RDBMS store, though more kinks have probably been worked out over
the years)

TripCom (Triple Space Communication 2006) provides a good overview of the available
RDF stores and their characteristics, but does not report any peformance results.

18

5. Comparison Matrices

5.1. Storage Engine features

Table 5.1. Comparison of Storage Engine Features
Engine Multi-

Volume
Mgnmt
Tools

Cmmty,
Cmmrcl
Support

Online
Backups

Shadowing Store
Access

View
Access

ACID

MySQL
/MyISAM

? Yes Yes Yes Yes Yes ? No

MySQL
/InnoDB

Yes Yes Yes Yes Yes Yes ? Yes

PostGres Yes Yes Yes Yes Yes ? Yes
AllegroGraph No Few Small No(?) No No No Yes
Sesame No Some Yes No (?) No No No Yes

(?)
Mulgara No No Small No(?) No (?) No No Yes

(?)
RDF Gateway ? Some Small ? No(?) Yes (?) Yes (?) Yes

(?)
BigOWLIM No Some Yes No (?) No No No Yes
OpenLink
Virtuoso

? Yes ? Yes Yes Yes ? Yes

Note that Oracle and SQL Server are not included in Table 5.1. It is assumed that, at the
least, they support at least the features supported by MySQL and Postgres.

19

5.2. Server/API Software features

Table 5.2. Server and API feature comparison
System Creation Query support Transitivity Reification Community

Support
Reasoning

Joseki (Jena) Yes Sparql No Yes
(through
Jena)

Yes OWL-DL

Sesame Yes SerQL No ? Yes RDFS
Mulgara Yes Itql No ? Small Owl-Lite
3Store ? Sparql ? ? Small ?
RDF Gateway Yes Proprietary RDFS

Reasoning
? Small RDFS

(Some
OWL)

OpenLink
Virtuoso

Yes Sparql,
Proprietary

No Yes Commercial RDFS

AllegroGraph Yes Sparql,
Prolog

Yes (Prolog) Yes Small Useful
subset of
OWL

5.3. API/Backend Compatibility

Table does not include rows for systems that are the only users of their RDF store (i.e.,
AllegroGraph).

Table 5.3. Compatability between backends and APIs
System/Backend MySql Postgres Oracle Sql

Server
Sesame Mugara

Joseki (Jena) Y Y Y Y Y Y
Sesame N(1) N N N Y N
Mulgara N N N N N Y
3Store Y N N N N N

Notes

1) Was compatible in version 1, but not yet in version 2

20

5.4. Query Language Comparison

Table 5.4. Query Language Comparison
Language Updates? Community

Support?
Standards
Compliant?

Transitivity?

Sparql No Yes Yes No
SerQL (Sesame) No Yes No No
Itql Yes Small No No(?)
Prolog No No No Yes

5.5. Performance Benchmarks

5.5.1 Data loading & Provenance insertion

Data loading and provenance insertion are evaluated by loading small RDF files, each
representing a provenance record consisting of 5 triples, into the knowledge base. The
amount of time it takes to load 1000 such records is compared against the current size of the
knowledge base as an indication of system scalability. The results are graphed in Figure 5.1,

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

Inserted Records

El
ap

se
d

tim
e

(s
ec

on
ds

)

Jena/MySQL
Mulgara
Sesame2
PostgreSQL

Figure 5.1. Data loading and Capacity

5.5.1.1 Notes

Jena with PostreSQL exhibits the best performance. Jena with MySQL exhibits scaleable
insertion behavior. SesameV2’s behavior is also scaleable.

21

The Mulgara benchmark application initially aborted with an out-of-memory error after
inserting 20000 records. Increasing memory for the server allowed more insertions to be
made, but it still aborted after 174000 records.

AllegroGraph’s documentation is very spotty on issues like backups and database
parameters. I had problems setting a parameter called ‘chunk size’. Setting it too small causes
one kind of error, too big another kind. How to select a size is not specified, but it depends,
I guess, on how many triples you plan to store. I was unable to determine a value that
worked for the rdf file addition task – the server aborted if the number was too large, and
created too many files if it was too small.

5.5.2 Loading and querying LUBM data

Different conclusions are drawn when the size of the rdf dataset is increased. Tests using
the Lehigh University Benchmark (LUBM) (Guo, Pan et al. 2005). The LUBM

…is developed to facilitate the evaluation of Semantic Web
repositories in a standard and systematic way. The benchmark is
intended to evaluate the performance of those repositories with
respect to extensional queries over a large data set that commits to
a single realistic ontology. It consists of a university domain
ontology, customizable and repeatable synthetic data, a set of test
queries, and several performance metrics.(Semantic Web and Agent
Technologies Lab 2007).

Table 5.5. Load times for LUBM data
Dataset Sesame2 Load time (Seconds) Jena Load Time (seconds)
1 22,484 37,220
2 27,269 47,077
3 26,098 56,934

A second benchmark used LUBM datasets to compare Jena and Sesame2 in load times
and query performance. Three different LUBM datasets, each with approximately 6 million
triples, were loaded into Jena and Sesame2 backends. The Jena system used MySql as a
backend, Sesame used it’s native file store. The results, shown in Table 5.5, indicate that
while Jena is slower than Sesame2, the difference is not appreciably different for the size of
datasets considered. The average time for Sesame to add 6 triples to a dataset was 13
microseconds, the average time for Jena was 31 microseconds.

The query results, summarized in Table 5.6, however, indicate that there are serious
problems with Jena’s query engine in some cases.

22

Table 5.6. Results for queries
 Query Sesame 2 (ms) Jena (ms)
1 ?subj <named predicate> ?obj 235 395761
2 <named subject> $pred $obj 204 812
3 $sub $pred <named object> 188 860
4 $sub <named predicate> <named object>.

$sub $pred $obj
203 750

5 $sub $pred $obj FILTER($obj='Literal') 187 error: Out-of-memory
6 $sub $pred 'Literal' 188 593

error: no results
7 $sub $pred $obj FILTER regex($obj, 'Literal.') 187 error: Out-of-memory

23

6. Conclusions

6.1. Backend Selection

In the near future, we are still working with prototypes and data, and data integrity is not
a serious issue. The large scale LUBM benchmarks show that the Sesame2 native store’s
performance is orders of magnitude better than the current database backends in query
performance, so it will be used. Perhaps Sesame2 will support a different backend by the
time we need it.

In the long term, a backend that uses a standard industry database, such as MySQL,
Postgres, or Oracle is desired. Systems using native backends do not have the history that
gives our team confidence in they’re ability to provide database management tools, access
control, 24X7 access, online backups, etc. Jena has recently provided an additional backend
which can use commercial backends and is optimized for use on SPARQL Queries which
may fit the bill (SDB 2007). In the long term, using Oracle as the backend is desired, since it
is forseen that many customers will have experience with supporting Oracle. MySQL will be
considered because its open source, it is installed, and the team is familiar with it.

6.2. API Selection

Two APIs have strong community support and meet the requirements of the team: Jena
and Sesame1. Both can use MySql as a backend and both have similar strengths in
supporting queries and in manipulating RDF graphs. The other APIs seem are either only
available commercially, have limited community support, or are tied to proprietary backends.

Jena’s strengths are its support for a wide variety of backends, strong community
support, and support for complete OWL-DL reasoning. Drawbacks include a perception of
over-complexity of the API and weaknesses in the query optimizer (logically equivalent
queries can result in different execution times).

Sesame’s strengths include strong community support, reported faster access speed, and
previous usage at PNL. Its main drawback is lack of support for an RDBMS backend for the
current release—this makes direct performance comparisons difficult.

Given these difficulties and the functional similarity between the two APIs, both APIs
will be supported for the nonce.

24

7. References

Groth, P., S. Miles, et al. (2006). The Open Provenance Specification, The PROVENANCE
Consortium.

Guo, Y., Z. Pan, et al. (2005). "LUBM: A Benchmark for OWL Knowledge Base Systems."
Journal of Web Semantics 3(2): 158-182.

Lee, R. (2004). Scalability Report on Triple Store Applications. Cambridge, Mass., MIT.
Munroe, S., P. Groth, et al. (2006). Overview of the Provenance Specification Effort. The

Open Provenance Specification, The PROVENANCE Consortium.
Portwin, K. and P. Parvatikar (2006). Scaling Jena in a commerical environment: The

Ingenta MetaStore Project. Jena User Conference, Bristol, UK.
SDB(2007). "SDB - A SPARQL Database for Jena". http://jena.sourceforge.net/SDB/
Semantic Web and Agent Technologies Lab(2007). "LUBM Homepage".

http://swat.cse.lehigh.edu/projects/lubm/index.htm
Triple Space Communication (2006). Semantic-based Knowledge and Content Systems,

Triple Space Communication.

