
Hanford Tanks 241-C-202 and 241-C-203: Residual Waste **Contaminant Release Models and Supporting Data**

under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

> PACIFIC NORTHWEST NATIONAL LABORATORY operated by **BATTELLE** for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

> > Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401

fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847

> fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

W. J. Deutsch
K. M. Krupka
M. J. Lindberg
K. J. Cantrell
C. F. Brown
S. V Mattigod
H. T. Schaef
B. W. Arey

September 2007

Prepared for CH2M HILL Hanford Group, Inc., and the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352

Summary

As directed by Congress, the U.S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest.

CH2M HILL Hanford Group, Inc. is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining in Hanford Tanks 241-C-202 (C-202) and 241-C-203 (C-203). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank risk assessments performed by CH2M HILL Hanford Group, Inc. for DOE.

The contaminant release models developed for these tanks are based on empirical solubility release models. Sludge testing was not successful in identifying minerals in the solids that may be limiting contaminant release; thus, it was not possible to develop mechanistic release models for the residual sludge in these tanks. The empirical release models apply to two different tank scenarios. In the first scenario the tank is filled with a relatively inert material, such as sand, and the leaching solution that contacts sludge in the future is in equilibrium with calcite (CaCO₃). Equilibrium with calcite is the typical condition for Hanford vadose zone porewater and groundwater, and Ca²⁺ and CO₃²⁻/HCO₃⁻ are the common major cation and anions in solution. Alternatively, the tanks might be filled with a cementitious material, which would produce a Ca(OH)₂ dominated leaching solution while the cement is fresh. As the cement reacts with infiltrating water and ages, it would evolve to resemble the CaCO₃ solution of the first scenario. Empirical solubility release models for the primary contaminants of interest (U, Cr, and ⁹⁹Tc) have been developed from laboratory leaching tests of sludge samples using the Ca(OH)₂ and CaCO₃ leaching solutions. Results for ¹²⁹I results were below the detection limit.

Key results from this work are that future release concentrations from these tanks of the primary contaminants of concern in most cases represent less than 10% of the total contaminant concentration in the sludge. That is, the contaminants are not appreciably soluble in the Ca(OH)₂ and CaCO₃ leaching solutions. For example, the cumulative amount of U leached by the Ca(OH)₂ leaching solution during six sequential stages of leaching represented only 0.13% and 0.11% of the total uranium in tanks C-202 and C-203, respectively. The corresponding percentages of U leached by the CaCO₃ leaching solution were higher for tank C-202 (9.2%) and tank C-203 (7.4%), but were still a small percentage of the total U present in the residual sludge. The same low cumulative leachable percentages were found for ⁹⁹Tc, except for a possibly a higher leachable percentage of 26.2% for 99Tc in tank C-203 when leached with the Ca(OH)₂ solution. Previously, these contaminants have been considered to be much more leachable from the waste solids. Cr leachability is also less than 10% in all cases except for tank C-203 leached with the CaCO₃ solution in which a cumulative amount of 20% of the Cr was leached from the sludge. Note that the six-stage sequential leaching tests represent significant quantities of solution passing through the residual sludge relative to the amount of liquid filling the pores (a pore volume) of the material. For example, one pore volume for a 0.4 g sludge sample with an estimated bulk density of 1.6 g/cc and a porosity of 0.4 would equal 0.1 mL. At each stage of the sequential extractions, 30 mL of

extractant are used with each 0.4 g of sludge sample, thus the extractant solution volume represents 300 sludge sample pore volumes. The amount of time simulated by these leaching tests is a function of the future flow rate into the residual sludge, which is likely to be exceedingly low, and, consequently, the time frame is very long.

The primary product of sludge testing and model development is the measured total contaminant concentrations in the residual sludge and the estimated maximum release concentrations of the key contaminants for the two leaching scenarios. These data are compiled in Table 4.2. They can be used as source term values for the tank performance assessments.

Acknowledgments

The authors wish to acknowledge M. Connelly, J. G. Kristofzski, and F. J. Anderson at CH2M HILL Hanford Group, Inc. (Richland, Washington) for providing project funding and technical guidance. We greatly appreciate the technical reviews provided by F. M. Mann (CH2M HILL), M. I. Wood (Fluor Hanford, Inc., Richland, Washington), and R. J. Serne (PNNL). The authors would also like to thank W. Um, S. R. Baum, Eric Clayton, K. M. Geiszler, I. V. Kutnyakov, and R. D. Orr (all of PNNL) for participating in planning the laboratory tests and completing the chemical and radiochemical analyses of the solution samples from our studies. We are particularly grateful to Launa Morasch (PNNL) for completing the editorial review and Lila Andor and Kathy Neiderhiser (PNNL) for final word processing of this technical report.

Acronyms and Abbreviations

AEA alpha energy analysis

ASTM American Society for Testing and Materials

AMU atomic mass unit

BSE backscattered electron

CaCO₃ calcium carbonate Ca(OH)₂ calcium hydroxide

CCV continuing calibration verification

DDI double deionized (water)
DOE U.S. Department of Energy
DRC dynamic reaction cell

EDS energy dispersive spectrometry

EPA U.S. Environmental Protection Agency

EQL estimated quantitation limit

GEA gamma energy analysis
GWB Geochemist's Workbench®

H₂SO₄ sulfuric acid

HASQARD Hanford Analytical Services Quality Assurance Requirements Document

IC ion chromatography (chromatograph)

ICP-MS inductively coupled plasma-mass spectrometry (spectrometer)

ICP-OES inductively coupled plasma-optical emission spectroscopy (same as ICP-AES)

ICDD International Center for Diffraction Data

JCPDS Joint Committee on Powder Diffraction Standards

KOH potassium hydroxide KNO₃ potassium nitrate

LiBO₂ lithium metaborate LSC liquid scintillation

NDIR non-dispersive infrared

NIST National Institute of Standards and Technology

PDFTM powder diffraction file

PNNL Pacific Northwest National Laboratory

PUREX plutonium-uranium extraction

QA quality assurance

R&D research and development

SEM scanning electron microscopy (or microscope)

SI saturation index

SMBS Standards-Based Management system

TEM transmission electron microscopy (or microscope)

TC total carbon

TIC total inorganic carbon TOC total organic carbon

XAS x-ray absorption spectroscopy

XRD x-ray powder diffractometry analysis (commonly called x-ray diffraction)

Units of Measure

Å angstrom

 θ angle of incidence (Bragg angle)

 $\Delta_f G_{298}^{\circ}$ Gibbs energy of formation from the elements in their reference states at 298.15 K

°C temperature in degrees Celsius $[T(^{\circ}C) = T(K) - 273.15)]$

eV electron volt

g gram

K temperature in degrees (without degree symbol) Kelvin $[T(K) = T(^{\circ}C) + 273.15]$

K₂₉₈° equilibrium constant at 298.15 K

kcal kilocalorie, one calorie equals 4.1840 joules

keV kilo-electron volt

kJ kilojoule, one joule equals 4.1840 thermochemical calories

L liter

 $\begin{array}{lll} \mu & \text{micro (prefix, } 10^{\text{-6}}) \\ \mu eq & \text{microequivalent} \\ \mu g & \text{microgram} \\ \mu m & \text{micrometer} \\ M & \text{molarity, mol/L} \\ mg & \text{milligram} \\ mL & \text{milliliter} \end{array}$

mM molarity, millimol/L

mol mole

pg picogram (10⁻¹² grams) rpm revolution per minute

µmol micromol

I/I_o relative intensity of an XRD peak to the most intense peak

λ wavelengthwt% weight percent

Contents

Sun	nmar	y				
Ack	nowl	ledgmen	nts			
Acr	onyn	ns and A	bbreviations			
Uni	ts of	Measure	3			
1.0	Intro	oduction	1			
	1.1	1.1 Scope of Work				
	1.2	C-200	Series Tank Description			
2.0	Mat	erials ar	nd Laboratory Test Methods			
	2.1 C-202 and C-203 Sludge Samples					
	2.2	Sludge	Composition by Fusion Analysis and Acid Digestion			
	2.3	XRD A	Analysis			
	2.4	SEM/E	EDS Analysis			
	2.5	Tier 1	Tests			
		2.5.1	Moisture Content			
		2.5.2	Carbon Analysis			
		2.5.3	Single Contact Sludge Extraction Tests			
		2.5.4	Periodic Replenishment Sludge Extraction Tests			
		2.5.5	pH			
		2.5.6	Anion Analysis			
		2.5.7	Cations and Trace Metals			
		2.5.8	²³⁷ Np and ²³⁹ Pu Analysis			
		2.5.9	Alkalinity			
		2.5.10	¹²⁹ I Extraction and Analysis			
		2.5.11	Radioanalysis			
	2.6 Uranium Mineral Solubility Measurements					
3.0	Laboratory Results					
	3.1 Sludge Composition					
	3.2 ¹²⁹ I Extraction and Measurement					
	3.3	Water	Leaching Tests			
		3.3.1	Single-Contact Test Results			
		3.3.2	Water Extraction Periodic Replenishment Test Results			
	3.4	Ca(OH	() ₂ Solution Leaching Tests			
		3.4.1	Single Contact Ca(OH) ₂ Solution Test Results			
		3.4.2	Periodic Replenishment Ca(OH) ₂ Solution Test Results			
	3.5	CaCO ₃	Solution Leaching Tests			
		351	Single Contact CaCO ₃ Solution Contact Test Data			

		3.5.2	Periodic Replenishment CaCO ₃ Solution Extraction Data			
	3.6	XRD	Results			
		3.6.1	C-202 Post-Retrieval Residual Waste			
		3.6.2	C-203 Post-Retrieval Residual Sludge			
		3.6.3	Comparison of XRD Results for C-202 and C-203 Post-Retrieval Residual Sludge to Those for C-203 and C-204 Pre-Retrieval Waste			
	3.7	SEM/	EDS Results			
		3.7.1	C-202 Residual Sludge			
		3.7.2	C-203 Residual Sludge			
		3.7.3	Comparison of SEM/EDS Results for Residual Sludge to C-203 and C-204 Pre-Retrieval Sludge			
	3.8	Chron	nium Occurrence and Leaching			
	3.9	Miner	al Equilibrium			
	3.10) Urani	um Mineral Solubility Measurements			
4.0	Con	tamina	nt Release Model			
	4.1	4.1 Uranium, Chromium, and ⁹⁹ Tc Release Models				
	4.2		ation of the C-202 and C-203 Release Data with Fate and Transport ling Codes			
5.0	Con	clusion	ns			
6.0	Ref	erences	S			
		F x B – Σ	K-Ray Diffraction Patterns for Unleached and Leached Samples of Post- Retrieval Residual Waste from Tank C-202			
		F	Retrieval Residual Waste from Tank C-203			
App	endi		SEM Micrographs and EDS Results for Unleached Residual Waste from Fank C-202			
App	endi		SEM Micrographs and EDS Results for Leached Residual Waste from Fank C-202			
App	endi		SEM Micrographs and EDS Results for Unleached Residual Waste from Sample 19887 Tank C-203			
App	endi		SEM Micrographs and EDS Results for Leached Residual Waste from Fank C-203 (Sample 19887)			
Appendix G – SEM Micrographs and EDS Results for Unleached Residual Waste from Tank C-203 (Sample 19961)		SEM Micrographs and EDS Results for Unleached Residual Waste from Fank C-203 (Sample 19961)				
App	endi		SEM Micrographs and EDS Results for Leached Residual Waste from Fank C-203 (Sample 19961)			
Appendix I – Solution Concentrations in the Three Leachates Used on the Residual Sludge from Tanks C-202 and C-203 Water Contact Tests						
Anr	endi	x I _ (Themical Equilibrium Modeling Calculations			

Figures

1.1	Hanford C Tank Farm		
1.2	Tank C-204 Configuration		
2.1	C-202 Tank Sludge (Sample 19250)		
2.2	C-203 Tank Sludge (Sample 19887)		
2.3	C-203 Tank Sludge (Sample 19961)		
2.4	Exploded Schematic View of the XRD Sample Holder		
2.5	XRD Pattern for Collodion Film Measured in the Absence of Any Residual Waste Material		
3.1	As-Measured and Background-Subtracted XRD Patterns for the Sample of Unleached C-202 Post-Retrieval Residual Sludge		
3.2	As-Measured and Background-Subtracted XRD Patterns for the Sample of Unleached "Brown" C-203 Post-Retrieval Residual Sludge		
3.3	Backscattered Electron SEM Micrographs for Unleached, 1-Month Single-Contact DDI Water Extraction Leached, 1-Month Single-Contact Ca(OH) ₂ Leached, and 1-Month Single-Contact CaCO ₃ Leached Residual Sludge from Tank C-202		
3.4	Backscattered Electron Micrograph and Typical EDS Spectra for Particles Present in the Residual Waste SEM Sample from the 1-Month Single-Contact Leached DDI Water Extraction		
3.5	Ternary Plots of the EDS-Determined U-Na-Fe Concentrations Normalized to 100% for Unleached and Leached Samples of C-202 Residual Waste		
3.6	Backscattered Electron Micrographs Showing the Possible Presence of Two Types of U-Containing Solids – a Pitted or Porous Looking Aggregate and a Large Dense-Looking Solid in C-202 Unleached Residual Sludge		
3.7	Backscattered Electron Micrographs Showing Porous U-Containing Solid as a Coating and Intergrowth with Fe Oxide in 1-Month Single-Contact DDI Water Extraction Leached Solid from C-202 Residual Sludge		
3.8	Ternary Plot of the EDS-Determined U-Na-Ca Concentrations Normalized to 100% for Unleached and Leached Samples of C-202 Residual Sludge		
3.9	Backscattered Electron SEM Micrographs of Unleached and Sequential DDI Water Leached Samples of C-203 Residual Sludge from Sample 19887		
3.10	Typical Particles of U-Na-C-O-P±H in Unleached and Sequential DDI Water Leached Samples of C-203 Residual Sludge		
3.11	Particle of U-Na-C-O-P±H in the Unleached Sample of C-203 Residual Sludge from Sample 19887 Showing Hexagonal, Rod-Like Dissolution Cavities		
3.12	Backscattered Electron Micrographs Showing Porous, High Surface Area Characteristics of the U-Na-C-O-P±H Aggregate Solids in Unleached C-203 Residual Sludge		

3.13	BSE Micrograph and EDS Spectra for Sequentially DDI Water Leached Conglomerate of U-Na-C-O-P±H and Fe-Oxide Particle		
3.14	BSE Micrograph and Multi- and Single-Element EDS Maps for Conglomerate of U-Na-C-O-P±H and Fe-Oxide Particle		
3.15	BSE SEM Micrographs of 1-Month Single-Contact Ca(OH) ₂ Leach, Sequential Ca(OH) ₂ Leach, 1-Month Single-Contact CaCO ₃ Leach, and Sequential CaCO ₃ Leach Samples of C-203 Post-Retrieval Sludge from Sample 19961		
3.16	BSE SEM Micrographs and EDS Spectra for Typical U-Na-C-O-P Particle Aggregates in 1-Month Single-Contact Ca(OH) ₂ , Sequential Ca(OH) ₂ , 1-Month Single Contact CaCO ₃ , and Sequential CaCO ₃ Leach Samples of C-203 Residual Sludge from Sample 19961		
3.17	BSE Micrographs Showings Solids with Possible Crystal Faces in Unleached C-203 Residual Sludge		
3.18	Ternary Plots of the EDS-Determined U-Na-Fe Concentrations Normalized to 100% for Unleached and DDI Water Extraction Leached Samples of C-203 Residual Sludge from Sample 19887		
3.19	Ternary Plots of the EDS-Determined U-Na-Fe Concentrations Normalized to 100% for Unleached, DDI Water Leached, Ca(OH) ₂ Leached, and CaCO ₃ Leached Samples of C-203 Residual Sludge from Sample 19961		
3.20	Ternary Plots of the EDS-Determined U-Na-Ca Concentrations Normalized to 100% for Unleached, DDI Water Leached, Ca(OH) ₂ Leached, and CaCO ₃ Leached Samples of C-203 Residual Sludge from Sample 19961		
4.1	Source Release Model Development for Long-Term Performance Assessments		
	Tables		
2.1	Samples Provided to PNNL by 222-S Laboratory		
2.2	Digestion Factors for Sludge Solids Used for the EPA Acid Digestion and KOH-KNO ₃ Fusion Treatments		
2.3	Digestion Factors for Samples of C-202 and C-203 Sludge Solids Used for the Modified KOH-KNO ₃ Water Fusion Treatment to Measure ¹²⁹ I		
3.1	Moisture Contents of C-202 and C-203 Sludge Samples		
3.2	Carbon Contents of Tank C-202 and C-203 Sludge Samples		
3.3	Sludge Composition Measured by ICP-OES (Al through Cr)		
3.4	Sludge Composition Measured by ICP-OES (Cu through Pb)		
3.5	Sludge Composition Measured by ICP-OES (Se through Zr)		
3.6	Average Sludge Composition Measured by ICP-OES		
3.7	Sludge Composition Determined from ICP-MS Analysis		
3.8	Solution Composition Determined from ICP-MS Analysis		
3.9	Average Sludge Composition Measured by ICP-MS		

3.10	Concentrations of ⁹⁹ Tc and ²³⁸ U Measured by ICP-MS	3.12
3.11	Dominant Elemental Concentrations in Sludges	3.12
3.12	¹³⁷ Cs Concentrations in Sludge	3.13
3.13	⁹⁰ Sr Concentrations in Sludge	3.14
3.14	Actinide Concentrations in Sludge	3.15
3.15	Summary of ¹²⁹ I Concentrations for Modified KOH-KNO ₃ Water Fusion Extracts for Tanks C-202 and C-203 Sludge Samples	3.15
3.16	Sludge to DDI Ratios Used in Water Leaching Tests	3.16
3.17	Water Extract pH and Alkalinity Values	3.17
3.18	⁹⁹ Tc and ²³⁸ U Concentrations Extracted from Sludges from Single-Contact Water Leach Tests	3.17
3.19	Water-Leachable Percentages of ⁹⁹ Tc and ²³⁸ U Extracted from Sludge Samples	3.18
3.20	DDI Water-Leachable Average Metal Concentrations in Single-Contact Water Extractions	3.19
3.21	Percentages of DDI Water-Leachable Metals in Single-Contact Water Extractions	3.19
3.22	Average Extractable Anion Concentrations Determined from Single-Contact DDI Water Extractions	3.20
3.23	Extractable ¹³⁷ Cs Concentrations Determined from Single-Contact Water Extractions	3.21
3.24	Extractable ⁹⁰ Sr Concentrations Determined from Single-Contact DDI Water Extractions	3.22
3.25	Extractable Actinide Concentrations Determined from Single-Contact DDI Water Extractions	.22
3.26	Water-Leachable Percentage for Actinides in Single-Contact DDI Water Extractions 3	.23
3.27	Contact Times, pH Values, and Alkalinities for DDI Water Contact Periodic Replenishment Extractions	3.24
3.28	Sludge to DDI Ratios Used in Periodic Replenishment Leaching Tests	3.24
3.29	Carbon Content – Periodic Replenishment DDI Water Extractions	3.25
3.30	⁹⁹ Tc and ²³⁸ U Concentrations in Periodic Replenishment DDI Water Extractions	3.26
3.31	Water Leachable Percentages of ⁹⁹ Tc and ²³⁸ U in Periodic DDI Water Replenishment Extractions	3.27
3.32	Water-Leachable Average Metals in Periodic Replenishment DDI Water Extractions	3.28
3.33	Cumulative Percentages of Leachable Metals – Periodic Replenishment DDI Water Extractions	3.29
3.34	Average Extractable Concentrations of Anions – Periodic Replenishment DDI Water Extractions	3.30
3.35	¹³⁷ Cs Data – Periodic Replenishment DDI Water Extractions	3.31
3.36	⁹⁰ Sr Data – Periodic Replenishment DDI Water Extractions	3.31
3.37	Actinide Analysis for C-202 and C-203 Periodic Replenishment DDI Water Extractions	3.32
3.38	Water-Leachable Percentages of Actinides in C-202 and C-203 Periodic Replenishment DDI Water Extractions	3.33
3.39	Sludge to Ca(OH) ₂ Solution Used in Leaching Tests	3.34

3.40	Alkalinity and pH Values after 1 Month of Ca(OH) ₂ Solution Extraction		
3.41	Extractable ⁹⁹ Tc and ²³⁸ U after 1 Month of Ca(OH) ₂ Solution Extraction		
3.42	Percentages of ⁹⁹ Tc and ²³⁸ U Leached by Ca(OH) ₂ Solution		
3.43	Concentrations Selected Metals after 1 Month of Ca(OH) ₂ Solution Extractions		
3.44	Percentages of Ca(OH) ₂ Solution ExtracMetals after 1 Month Contact		
3.45	Concentrations Anions from 1 Month of Ca(OH) ₂ Solution Extractions		
3.46	127		
3.47	Percentage of Extractable ¹³⁷ Cs and ⁹⁰ Sr from 1 Month of Ca(OH) ₂ Solution Extraction		
3.48	Actinide Analysis for Single-Contact Ca(OH) ₂ Cement Extractions		
3.49	Cement-Leachable Percentages of Actinides in Single-Contact Ca(OH) ₂ Cement Extractions		
3.50	Sludge to Solution Ratios used in Periodic Replenishment Ca(OH) ₂ Leaching Tests		
3.51	Alkalinity and pH Values – Periodic Replenishment Extractions with Ca(OH) ₂ Solution		
3.52	Carbon Contents – Periodic Replenishment Extractions with Ca(OH) ₂ Solution		
3.53	Concentrations of Extractable ⁹⁹ Tc and ²³⁸ U – Periodic Replenishment Extractions with Ca(OH) ₂ Solution		
3.54	Ca(OH) ₂ Cement-Leachable Percentages of ⁹⁹ Tc and ²³⁸ U in Periodic Replenishment Extractions		
3.55	Average Extractable Concentrations of Selected Metals – Periodic Replenishment Extractions with Ca(OH) ₂ Solution		
3.56	Cumulative Fractions of Leachable Metals – Periodic Replenishment Extractions with Ca(OH) ₂ Solution		
3.57	Average Leachable Anion Concentrations – Periodic Replenishment Extraction Tests with Ca(OH) ₂ Solution		
3.58	Concentrations of ¹³⁷ Cs and ⁹⁰ Sr – Periodic Replenishment Extractions with Ca(OH) ₂ Solution		
3.59	Extractable Actinides Determined from Periodic Replenishment Ca(OH) ₂ Cement Extractions		
3.60	Cement-Leachable Percentage for Actinides in Periodic Replenishment Ca(OH) ₂ Cement Extracts Compared with Acid Analysis		
3.61	Sludge to CaCO ₃ Solution used in Leaching Extractions		
3.62	Leachable Alkalinity and pH Values after 1 Month of CaCO ₃ Solution Extraction		
3.63	Extractable ⁹⁹ Tc and ²³⁸ U after 1 Month of CaCO ₃ Solution Extraction		
3.64	CaCO ₃ Solution-Leachable Percentages of ⁹⁹ Tc and ²³⁸ U		
3.65	Extractable Metals Concentrations After 1 Month of CaCO ₃ Solution Extraction		
3.66	Percentages of CaCO ₃ Solution ExtracMetals After 1 Month Contact		
3.67	Extractable Anion Concentrations After 1 Month of CaCO ₃ Solution Extraction		
3.68	127 00		
3.69	Extractable ¹³⁷ Cs and ⁹⁰ Sr as a Percentage of Total Sludge Concentration		

3.70	Extractable Actinides Determined from Single-Contact CaCO ₃ Extractions		
3.71	Percentage of Extractable Actinides Determined from Single-Contact CaCO ₃ Extractions Compared with Acid Analysis		
3.72	Sludge to Solution Ratios used in Periodic Replenishment CaCO ₃ Leaching Tests		
3.73	Alkalinity and pH Values – Period Replenishment Extraction with CaCO ₃ Solution		
3.74	Extractable Carbon Contents Determined from Periodic Replenishment Extractions with CaCO ₃ Solution		
3.75	Extractable Concentrations of ⁹⁹ Tc and ²³⁸ U – Periodic Replenishment Extraction with CaCO ₃ Solution		
3.76	CaCO ₃ Solution Extractable Percentages of ⁹⁹ Tc and ²³⁸ U in Periodic Replenishment Extractions		
3.77	Average Extractable Concentrations Selected Metals – Periodic Replenishment Extraction with CaCO ₃ Solution		
3.78	Cumulative Percentages of Extractable Metals – Periodic Replenishment Extractions with CaCO ₃ Solution		
3.79	Average Extractable Concentrations of Anions – Periodic Replenishment Extractions with CaCO ₃ Solution		
3.80	Extractable Concentrations of ¹³⁷ Cs and ⁹⁰ Sr – Periodic Replenishment Extractions with CaCO ₃ Solution		
3.81	Cumulative Percentages of ¹³⁷ Cs and ⁹⁰ Sr Leached by CaCO ₃ Solution		
3.82	Extractable Actinide Determined for Periodic Replenishment CaCO ₃ Extractions		
3.83			
3.84	List of Appendices Containing the SEM Micrographs and EDS Analyses for the Unleached and Leached C-202 and C-203 Residual Sludge Samples		
3.85	Molar Ratios of Cr/Fe in Multiple Extractions and Sludge for C-202 and C-203 Post Retrieval Sludge Samples		
3.86	Calculated Saturation Indices for Significant Phases in Tank C-202 Water Extractions		
3.87	Calculated Saturation Indices for Significant Phases in Tank C-202 Ca(OH) ₂ Extractions		
3.88	Calculated Saturation Indices for Significant Phases in Tank C-202 CaCO ₃ Extractions		
3.89	Calculated Saturation Indices for Significant Phases in Tank C-203 Water Extractions		
3.90	Calculated Saturation Indices for Significant Phases in Tank C-203 Ca(OH) ₂ Extractions		
3.91	Calculated Saturation Indices for Significant Phases in Tank C-203 CaCO ₃ Extractions		
3.92	Na ₂ U ₂ O ₇ (am) Saturation Indices for C-203 Solubility Experiments		
4.1	Maximum Dissolved Concentrations Measured in Extraction Experiments and Total Sludge Concentrations Measured for U, Cr, ⁹⁹ Tc, and ¹²⁹ I		
4.2	Sludge and Contaminant Release Concentrations for Release Model		

1.0 Introduction

This report describes the development of release models for contaminants of concern that are present in residual waste in Hanford tanks 241-C-202 (C-202) and 241-C-203 (C-203) after final waste retrieval. These release models are necessary components of the tank performance assessments. From the perspective of long-term risk to the environment, the primary contaminants of concern are ⁹⁹Tc, ²³⁸U, ¹²⁹I, and Cr because of their mobility in the environment and, in the case of the radionuclides, their long half-lives. Sludges from tanks C-202 and C-203 were collected after final retrieval activities to characterize the geochemistry of the solids and to quantify the future release of the primary contaminants into water.

The remainder of this section describes the scope of work for laboratory testing and release model development as well as background information on the C-200 series tanks. The sludge samples and laboratory testing procedures for this project are described in Section 2 of this report, and the results are provided in Section 3. Release models are discussed in Section 4 and general conclusions in Section 5. Cited references are listed in Section 6, and supporting material is included in the appendices.

1.1 Scope of Work

Initial (Tier 1) laboratory tests were conducted to characterize the sludge and identify water-leachable constituents. The Tier 1 tests consisted primarily of fusion analysis and acid digestion, which measured elemental concentrations in the solid, and water leaching of contaminants from the sludge to evaluate their mobility in infiltrating water. Water leaching was conducted with double deionized water (DDI), Ca(OH)₂-saturated water, and CaCO₃-saturated water. The Ca(OH)₂ and CaCO₃ saturated solutions were used to mimic the initial and final status of a tank chemical system in which the void space above the residual waste is filled with cementitious grout, which is a possible tank fill material. Based on the results of the Tier 1 tests, additional analyses were performed to augment the characterization of the material and elucidate the controlling mechanism(s) for the release of contaminants. Tier 2 tests consisted of x-ray diffraction (XRD) and scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) analyses of the solids to identify reactive phases and uranium mineral solubility measurements to quantify the release of uranium from solid phases in the waste.

The laboratory results of sludge testing were used to develop source term models that describe the release of contaminants as infiltrating water contacts the solids in the future. These models simulate the geochemical system in the tank sludge and take into account interactions between the solution phase and the contaminant-containing solids. The release models are simplifications of the complex geochemical interactions occurring between the phases; however, they adequately represent the release of the key contaminants from the sludge as measured in laboratory tests.

1.2 C-200 Series Tank Description

The C-200 series consists of four single-shell underground waste tanks (C-201 through C-204) in the C Tank Farm in the 200 East Area of the Hanford Site (Figure 1.1). These C-200 series tanks are 6 m (20 ft) in diameter and have a capacity of 208,200 L (55,000 gal) when filled to a depth of 7.3 m (24 ft). Figure 1.2 is a schematic of the configuration of tank C-204.

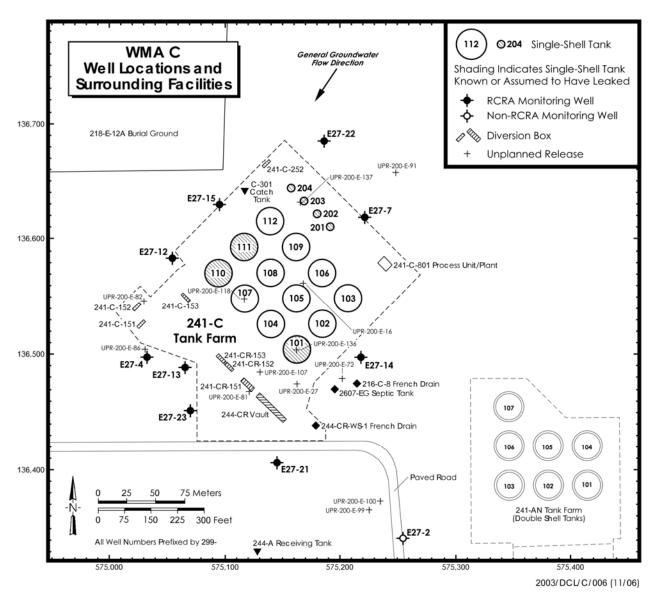


Figure 1.1. Hanford C Tank Farm

The history of waste transfers into and removals from these tanks provides an indication of the types of residual materials that may be present in the tanks. The following information on the C-200 series tank transfers is summarized from Johnson (2003).

• Metal waste transfers

- O November 1947 to January 31, 1948 four tanks filled with metal waste
 - Measurements on May 27, 1948 showed each tank had about 1.22 m (4 ft) of sludge and
 5.5 m (18 ft) of liquid above the sludge
- February 1952 metal waste began to be removed from these tanks by pumping and sluicing
- February 1955 removal complete; all sludge reportedly removed, as shown by visual inspections through a periscope (undoubtedly some residual waste remained)

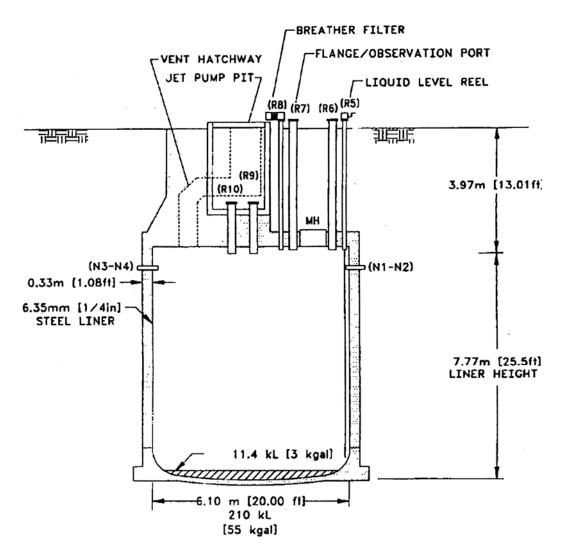


Figure 1.2. Tank C-204 Configuration (Conner 1996)

Hot Semiworks transfers

- May 1955 to November 1956 highly radioactive waste from research and development (R&D) of plutonium-uranium extraction (PUREX) process in the Hot Semiworks facility was concentrated to recover nitric acid, neutralized with sodium hydroxide solution, and transferred to the four tanks.
- May 1956 C-201 and C-202 were reported filled with this waste.
- November 1956 C-203 and C-204 were reported to contain 130,600 L (34,500 gal) of this waste

PUREX plant cold uranium run waste

- November 1955 C-203 and C-204 received waste from cold uranium runs as part of startup operations at the PUREX Plant
- No additional waste added after November 1956

- Supernatant removal
 - o January to March 1970 C-203: 19,000 gal pumped to C-109
 - April to June 1970 C-201 through C-204: supernatant pumped to C-104; with the exception of C-204, these tanks contained only a heel of sludge following the transfer of these amounts:
 - C-201: 204,400 L (54,000 gal)C-202: 208,198 L (55,000 gal)
 - C-203: 45,400 L (12,000 gal)
 - C-204: 53,000 L (14,000 gal) (contained 155,000 L [41,000 gal] of supernatant in June 1970)
 - o July 10, 1977 C-204: supernatant pumped out, leaving only 11,400 L (3,000 gal) in this tank
 - October 1980 C-201 through C-204 supernatant pumped into C-106 using a submersible pump
- Because of the limitations of sludge removal by sluicing and supernatant removal by pumping, some residual material remained in the tanks after the removal campaigns.

Two auger samples of the sludges in tank C-204 were collected in May 1995 (Conner 1996). At that time, it was estimated that the tank contained 11 kL (3 kgal, 1.3 ft) of waste in the form of sludge. The solid samples were analyzed for energetics, moisture, total alpha content, total organic carbon content, and organic compounds. The analytical results (on a wet weight basis) were:

• Percent water 56.95%

• Energetics 813 - >1,234 Joules/g (dry basis)

Total alpha 0.0322 μCi/g
 Total inorganic carbon 10,500 μgC/g
 Total organic carbon 126,000 μgC/g
 Tributyl phosphate 330,000 μg/g
 Dibutyl phosphate 2,000 μg/g

Tributyl phosphate was used as an organic solvent in several separations processes at the Hanford Site.

Final removal of waste was accomplished by CH2M HILL in August 2005 for tank C-202 and in March 2005 for C-203. A vacuum system was used to remove as much sludge as possible. A high-pressure water spray was used with the vacuum to break up the larger particles of waste that could not be removed solely by vacuum suction because of their size. Following retrieval, samples of the waste were collected for chemical analysis and testing. Samples analyzed and tested by Pacific Northwest National Laboratory (PNNL) are described in Section 2.

2.0 Materials and Laboratory Test Methods

This section provides a description of the sludge samples provided to PNNL and the various tests used to characterize the material, measure contaminant release, and identify controlling solids.

2.1 C-202 and C-203 Sludge Samples

Sludge samples from tanks C-202 and C-203 were collected by CH2M HILL Hanford Group, Inc. during post-retrieval activities in November and May 2005, respectively. The material from tank C-202 (sample 19250) was provided to PNNL on January 24, 2006, and the sludge from tank C-203 (samples 19887 and 19961) were provided on September 15, 2005 (Table 2.1). Figure 2.1 is a photograph of sample 19250 from tank C-202. Figure 2.2 shows sample 19887 from tank C-203 and Figure 2.3 shows sample 19961, also from tank C-203.

Table 2.1. Samples Provided to PNNL by 222-S Laboratory

Tank	Sample #	Sample Size (mL)	Labcore Number	Net Weight of Sample as Received (g)
241-C-202	19250	250	S06T000037	62.4
241-C-203	19887	250	S05T001015	27.9
241-C-203	19961	250	S05T001016	60.6

Figure 2.1. C-202 Tank Sludge (Sample 19250)

Figure 2.2. C-203 Tank Sludge (Sample 19887)

Figure 2.3. C-203 Tank Sludge (Sample 19961)

2.2 Sludge Composition by Fusion Analysis and Acid Digestion

The bulk compositions of the sludge solids were determined using accepted PNNL internal procedure AGG-ESL-001, *Solubilization of Metals from Solids Using a KOH-KNO*₃ *Fusion*^(a) and a modified version of U.S. Environmental Protection Agency (EPA) SW-846 Method 3052 (EPA 1996). These methods were used to measure the elemental composition of the sludge, but are not appropriate for the anion concentrations due to the addition of acids used in the analyses. The anion compositions were measured separately in solutions obtained by water leaching of the solids (see Section 2.5.6).

2.2

⁽a) Unpublished technical procedure. *Solubilization of Metals from Solids Using a KOH-KNO*₃ *Fusion*. AGG-ESL-001, Rev. 0, Pacific Northwest National Laboratory, Richland, Washington.

The potassium hydroxide (KOH)-potassium nitrate (KNO₃) fusion-dissolution procedure is the most commonly used method for solubilization of Hanford tank sludge samples for chemical analysis by inductively coupled plasma-mass spectroscopy (ICP-MS) and other methods (De Lorenzo et al. 1994; Simpson 1994; Fiskum et al. 2000; Smith et al. 2001). Benefits of this procedure include effective metathesizing of insoluble salts such as SrSO₄, PuPO₄, PuF₃, and ThF₃ into acid soluble hydroxides; completed fusion at relatively low temperature (550°C) compared to other fluxing agents, such as 1100°C for the lithium metaborate (LiBO₂) fluxing agent; and use of nickel or zirconium crucibles, as opposed to the more costly platinum crucibles, for the fusion. (b)

The KOH-KNO₃ fusion-dissolution procedure consists of chemical analyses of a solution resulting from water and acid dissolutions of a solid that has been fused at a high temperature with the caustic fluxing agent. In this procedure, 300 mg of tank waste sludge material was mixed with 6 mL of a 30% KOH and 3% KNO₃ solution as a fluxing agent in a zirconium crucible. The crucible was then placed in a 95°C oven and allowed to evaporate to dryness, after which it was covered and transferred to a muffle furnace preheated to 550°C. Fusion was accomplished by heating the sample/flux mixture for 60 minutes at 550°C. After 60 minutes, the crucible was removed from the furnace and allowed to cool to room temperature. The fused solid was then dissolved in DDI water. The resulting solution was transferred to a 50-mL centrifuge tube. The crucible was then triple-rinsed with a 1:1 mixture of concentrated sulfuric acid and 1M sodium bisulfite, and these solutions were also added to the centrifuge tube. An additional 5 to 15 mL of the sulfuric acid:sodium bisulfite solution was added to the centrifuge tube to facilitate total sample dissolution. Once sample dissolution was complete, the final solution volume in each centrifuge tube was determined gravimetrically and corrected for solution density.

Chemical analyses of an acid digestion of the sludge solids were also completed to compare the results with the KOH-KNO₃ fusion procedure. The basic procedure described in EPA SW-846 Method 3052 (EPA 1996) was used for acid digestion of the sludge. In this procedure, 300 mg of the sample is placed in a Teflon microwave digestion vessel and 10-mL water, 5-mL 16 M HNO₃, 2-mL 12 M HCl and 1-mL 29 M HF are added to the sample, the vessel is sealed and placed in a microwave-assisted digestion system. The samples are treated at the EPA recommended temperatures and times. The sample is then allowed to cool and 0.45 grams of boric acid is added to the digestate and shaken by hand. Samples are filtered through a 0.45-µm pore-size syringe filter prior to analysis. There were no visible solids when the digestion was complete.

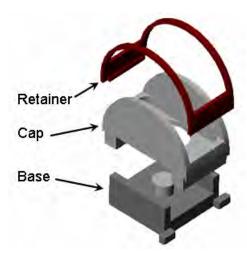
Table 2.2 lists the digestion factors (wet solid-to-solution ratios) for sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203) used for the KOH-KNO₃ fusion treatments and EPA acid digestions. These factors were calculated from the wet weight of sludge material divided by the volume of extracting solution. The digestion factors were then multiplied by the percent solids, as determined from moisture content analysis, to convert to a dry weight basis. All EPA acid-digestion and fused-sample solutions were filtered using 0.45-µm pore-size syringe filters prior to analysis. The dissolved metal concentrations and the total beta and total alpha activities for the filtered solutions were then analyzed by a combination of methods, including ICP-MS, inductively coupled plasma-optical emission spectroscopy (ICP-OES), and several radiochemical analytical techniques. These analytical methods are described in Lindberg and Deutsch (2003).

⁽b) Personal communication with WI Winters (CH2M HILL), December 22, 2003.

Table 2.2. Digestion Factors for Sludge Solids Used for the EPA Acid Digestion and KOH-KNO₃ **Fusion Treatments**

Treatment	Sample Number	Dry Weight Corrected Digestion Factor (g/L)	
	19250 (202)	5.15	
	19250 (202) Dup ^(a)	7.83	
KOH-KNO₃ fusion	19887 (203)	5.90	
KOH-KNO3 lusion	19887 (203) Dup	5.69	
	19961 (203)	6.43	
	19961 (203) Dup	6.88	
	19250 (202)	8.89	
	19250 (202) Dup	7.57	
	19250 (202) Trip ^(b)	7.43	
EPA Method 3052 acid digestion	19887 (203)	9.15	
digestion	19887 (203) Dup	5.72	
	19961 (203)	8.70	
	19961 (203) Dup	10.65	
(a) Dup = Duplicate sample.(b) Trip = Triplicate sample.			

XRD Analysis 2.3


Standard bulk powder XRD techniques were used to identify crystalline phases present in the following samples:

- Post-retrieval residual waste from tank C-202
 - Unleached solids
 - One-month single-contact leached DDI water extraction solids
 - One-month single-contact Ca(OH)₂ leached solids
 - One-month single-contact CaCO₃ leached solids
- Post-retrieval residual waste from tank C-203
 - Unleached brown, yellow, and orange solids separated from Sample 19887
 - Unleached brown, yellow, and orange solids separated from Sample 19961
 - One-month single-contact leached DDI water extraction of solids from Sample 19961
 - Sequential leached DDI water extraction of solids from Sample 19961
 - One-month Ca(OH)₂-leached solids from Sample 19961
 - Sequential Ca(OH)₂-leached solids from Sample 19961
 - One-month CaCO₃-leached solids from Sample 19961
 - Sequential CaCO₃-leached solids from Sample 19961

The DDI water extraction, Ca(OH)₂, and CaCO₃ leach tests are described in Sections 2.5.3 and 2.5.4. Based on visual inspection, samples 19887 and 19961 of unleached C-203 post-retrieval residual waste appeared to contain at least three separate phases based on color. Each sample consisted of a brown matrix that contained particles or aggregates which are approximately 1 to 2 mm in size or smaller and yellow or orange in color. Subsamples of the dominantly brown, yellow, and orange materials were separated from each sample by hand picking, and analyzed separately by XRD.

Because the residual waste samples were highly radioactive dispersible powders, it was necessary to prepare the XRD mounts of these samples inside a fumehood regulated for handling radioactive materials. Residual waste samples were prepared for XRD analysis by placing milligram quantities of each sample into a mixture of water and collodion solution. The collodion solution consists of 2% nitrocellulose dissolved in amyl acetate, and is an x-ray amorphous, viscous binder commonly used to make random powder mounts for XRD when only a limited amount of sample is available. A trace quantity of reference-material corundum powder (α -Al₂O₃, alumina) [National Institute of Standards and Technology Standard Reference Material (NIST SRM) 676] was added to each sample slurry as internal 2 θ standard to correct for any observed peak shifts due to slight misalignments of the mounted samples.

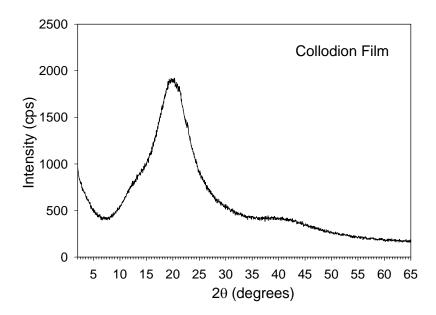

Using a pipette, each slurry was transferred onto a circular-shaped platform (1-cm [0.39-in.] diameter) and placed on top of the post located on the base inside a disposable XRD specimen holder (Figure 2.4). This specimen holder was designed specifically for safe handling of dispersible powders containing highly radioactive or hazardous materials (Strachan et al. 2003). After allowing samples to air dry overnight, the holder was assembled and a piece of Kapton[®] film was placed between the cap and the retainer. The holder was sealed with wicking glue and removed from the fumehood.

Figure 2.4. Exploded Schematic View of the XRD Sample Holder (Kapton[®] film not shown) (see Strachan et al. 2003)

Each sample was analyzed using a Scintag XRD unit equipped with a Peltier thermoelectrically-cooled detector and a copper x-ray tube. The diffractometer was operated at 45 kV and 40 mA. Individual scans were obtained from 2 to 65°2θ with a dwell time of 4 and 14 seconds. Scans were collected electronically and processed using the JADE[®] XRD pattern-processing software.

A sample consisting of only a dry film of the collodion solution was prepared and analyzed by XRD so that its contribution relative to the background signals of the XRD patterns for the residual waste samples could be quantified (Krupka et al. 2004). The resulting XRD pattern for the collodion solution film is shown in Figure 2.5. The most obvious feature of this diffraction pattern is the broad peak positioned between 10° and 30°2θ. The symmetry of this peak is characteristic of those resulting from the XRD of amorphous (noncrystalline) material. Although subtracting the collodion background from residual waste XRD patterns allows for better phase matching, this process may eliminate minor reflections and inconspicuous features of a pattern. Therefore, each as-measured XRD pattern was examined before and after background subtraction to ensure that the integrity of the pattern was maintained. For background subtraction, the JADE® software provides the user with control over the selection of background-subtraction points. This process allows a better fit to 2θ regions under broad reflections, such as those resulting from amorphous materials. On average, 30 to 40 background points were selected from each XRD pattern, and a cubic-spline curve was then fit through each set of points. Adjustments to this curve were made by selecting additional background points in regions of a pattern that were difficult to fit. Once a well-matched curve was fitted to a pattern, the background was subtracted from each as-measured XRD pattern, resulting in a smooth tracing.

Figure 2.5. XRD Pattern for Collodion Film Measured in the Absence of Any Residual Waste Material (from Krupka et al. 2004)

Identification of the mineral phases in the background-subtracted patterns was based on a comparison of the XRD patterns measured for the residual waste samples with the mineral powder diffraction files (PDFTM) published by the Joint Committee on Powder Diffraction Standards (JCPDS) International Center for Diffraction Data (ICDD). As a rule of thumb, a crystalline phase must be present at greater than 5 wt% of the total sample mass (greater than 1 wt% under optimum conditions) to be readily detected by XRD. In general, the measured peak intensities depend on several factors, including the combined mass of each crystalline phase in the sample. Due to the physical characteristics of these residual waste samples such as high radioactivity, high dispersibility, and variable moisture content, the mass of residual waste combined with the collodion solution for each XRD mount could not be controlled or easily determined. Dissimilarities in mineral segregation (settling) resulting from the different

densities of minerals mixed with the collodion solution and associated effects on relative peak intensities also influence the overall pattern intensity. The combined effect of these factors could have some effect on the characteristic mineral peak intensities, which precluded quantitative comparisons of peak intensities for equivalent reflections in background-subtracted XRD patterns for different residual waste samples.

2.4 SEM/EDS Analysis

SEM/EDS analyses were used to characterize the morphologies and compositions of solid phases present in the following residual waste samples:

• Tank C-202:

- Unleached solids
- One-month single-contact DDI water extraction leached solids
- One-month single-contact Ca(OH)₂ leached solids
- One-month single-contact CaCO₃ leached solids

• Tank C-203:

- Unleached yellow, brown, and orange solids separated from samples 19887 and 19961
- One-month single-contact DDI water extraction leached solids from samples 19887 and 19961
- Sequential DDI water extraction leached solids from samples 19887 and 19961
- One-month single-contact Ca(OH)₂-leached solids from sample 19961
- Sequential Ca(OH)₂-leached solids from sample 19961
- One-month single-contact CaCO₃-leached solids from sample 19961
- Sequential CaCO₃-leached solids from sample 19961

The DDI water extraction, Ca(OH)₂, and CaCO₃ leach tests are described in Sections 2.5.3 and 2.5.4. As noted in Section 2.3, the unleached C-203 residual waste appeared to contain at least three separate phases based on color. Subsamples of the dominantly brown matrix, and the yellow and orange particles or aggregates in this matrix were separated from each sample by hand and analyzed separately by SEM/EDS.

Multiple mounts were usually prepared of each sample to compensate for the possibility that one or more less-than-optimum mounts of a sample might occur, thus improving the likelihood of obtaining representative SEM images of each sample. The mounts used for SEM/EDS consisted of double-sided carbon tape attached to standard aluminum mounting stubs. For each mount, small aliquots of each sludge sample were placed on the exposed upper surface of the carbon tape using a micro spatula. Each mount was then coated with carbon using a vacuum sputter-coater to improve the conductivity of the samples and thus the quality of the SEM images and EDS signals.

A JEOL JSM-840 SEM was used for high-resolution imaging of micrometer/submicrometer-sized particles in the residual waste samples. The EDS system provided qualitative elemental analysis for scanned areas of particles. The SEM is equipped with an INCA Energy EDS System^(c) to automate the collection of EDS spectra over multi-micrometer-sized areas of an SEM-imaged sample. The EDS software was calibrated to a copper reference standard mounted on a specimen holder. Operating

⁽c) Oxford Instruments, Concord, Massachusetts.

conditions consisted of 10 to 20 keV for SEM imaging and 20 keV, 100 live seconds^(d) for the EDS analyses. The EDS analyses are limited to elements with atomic weights heavier than B (boron). Compositions determined by EDS are qualitative and have large uncertainties resulting from alignment artifacts caused by the variable sample and detector configurations that exist when different particles are imaged by SEM.

Photomicrographs of high-resolution secondary electron (SE) images and backscattered electron (BSE) images were obtained as digital images and stored in electronic format. To help identify particles that contain elements with large atomic numbers, such as uranium, the SEM was typically operated in the BSE mode. Secondary electrons are low-energy electrons ejected from the probed specimen as a result of inelastic collisions with beam electrons, whereas backscattered electrons are primary electrons emitted as a result of elastic collisions. Backscattered electron emission intensity is a function of the element's atomic number – the larger the atomic number, the brighter the signal. Backscattered electron images are obtained in exactly the same way as secondary electron images.

The entire area of each SEM mount was examined by SEM at low magnification (typically 50 to 100 times) to identify those particles and surface features that were typical or unusual for the sample. During this examination, SEM micrographs were recorded at low magnification (e.g., 100 times) for two areas of the mount to provide a general perspective of the sizes, types, and distributions of particles that make up each SEM mount. Within these imaged regions, additional SEM micrographs were recorded of several particles at greater magnifications to provide a more detailed representation of the particles' characteristics, and selected points on these particles were then analyzed by EDS. Depending on the perceived importance of such particles, regions on these particles were sometimes analyzed by SEM and EDS at even greater magnifications.

2.5 Tier 1 Tests

Tank waste samples were analyzed in a tiered approach similar to the one developed for investigating contaminant fate and transport issues associated with past single-shell tank leaks in the vadose zone. Such an approach allows for initial (Tier 1) screening of samples using relatively inexpensive analytical techniques. This is followed by an analysis of the data to determine the need for further testing (Tier 2). The Tier 1 tests are described in this section and the Tier 2 tests are described Sections 2.6 to 2.8.

All laboratory activities were conducted in accordance with the requirements of Title 10, Code of Federal Regulations, Part 830.120 "Quality Assurance" (10 FR 830.120) and the Hanford Analytical Services Quality Assurance Requirements Document (HASQARD; DOE 1998). These requirements were implemented using PNNL's online quality assurance (QA) Plan, "Conducting Analytical Work in Support of Regulatory Programs." PNNL's QA Plan is based on the requirements of DOE Order 414.1A as described in PNNL's Standards-Based Management System (SBMS), the HASQARD, relevant elements of NQA-1, as well as recognized industry standards (e.g., EPA, American Society for Testing and Materials [ASTM], American National Standards Institute).

-

⁽d) Live time is when (real time less dead time) the EDS system is available to detect incoming x-ray photons. Dead time is the portion of the total analyzing time that is actually spent processing or measuring x-rays. While each x-ray pulse is being measured, the system cannot measure another x-ray that may enter the detector and is, therefore, said to be "dead."

2.5.1 Moisture Content

The moisture contents of the tank waste samples were measured to calculate dry weight concentrations for constituents in the waste. Dry weight concentrations provide a consistent measurement unit for comparison purposes that eliminates the effect of variable water content on sample concentrations.

Gravimetric water content of the waste material was determined using the ASTM procedure D2216-98, Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM 1998) with the following minor exceptions: 1) the volume of sample recommended was decreased due to radiological concerns and 2) the sample was dried at a lower oven temperature, 105°C, for a longer period of time to prevent dehydration of the solids.

Sludge samples were placed in tared containers, weighed, and dried in an oven until a constant weight was achieved, usually 24 to 48 hours. The container was then removed from the oven, sealed, cooled, and weighed. All measurements were performed using a calibrated balance. The gravimetric water content is computed as the percentage change in soil weight before and after oven drying (i.e., [{wet weight - dry weight}/dry weight]).

2.5.2 Carbon Analysis

The analysis of the carbon content of solid and liquid samples is described in this section.

2.5.2.1 Carbon Content of Solids

The carbon content of solid samples is determined by the hot persulfate method. In this method, samples are treated by wet chemical oxidation by heating at 92 to 95°C with a solid potassium persulfate oxidant and liquid silver-ion catalyst. Sulfuric acid (H₂SO₄) is also used to convert carbon to carbon dioxide (CO₂). The CO₂ is swept away by an oxygen carrier gas and measured in a UIC Coulometrics Acid Module.

The method uses a two-step process allowing a separate measurement of total inorganic carbon (TIC) and total organic carbon (TOC) on the same sample. In this process, the sample is first acidified with heated sulfuric acid, converting inorganic carbonates to CO_2 (i.e., TIC analysis), then the persulfate solids and silver-catalyst solution is added and the organic carbon remaining in the sample is converted to CO_2 for TOC measurement. Total carbon (TC) for a solid sample is calculated from the sum of TIC and TOC.

2.5.2.2 Carbon Content of Liquids

The carbon content of liquid samples is determined using PNNL's technical procedure, which is similar to EPA SW-846 Method 9060A (EPA 2004). A Shimadzu Carbon analyzer Model TOC-V CSN with ASI module (auto sampler) is used for the analysis.

(e) Unpublished internal technical procedure: *Carbon Measured in Solids, Sludge, and Liquid Matrices*. RPG-CMC-385, Pacific Northwest National Laboratory, Richland, Washington.

⁽f) Unpublished internal technical procedure: *Operating of Carbon Analyzer (TOC-V + SSM-5000A + ASI (Shimadzu)*. AGG-TOC-001, Pacific Northwest National Laboratory, Richland, Washington.

Liquid samples are analyzed for TC by introducing a sample aliquot into a combustion chamber with an oxidation catalyst and heated to 680°C. The released carbon from the combustion is converted to CO₂, swept from the combustion chamber by ultra pure oxygen, dehumidified and scrubbed to remove halogens. The carrier gas then delivers the sample combustion products to the cell of a non-dispersive infrared (NDIR) gas analyzer where the carbon dioxide is detected and measured. The amount of CO₂ is proportional the total carbon content of the sample.

Liquid samples are analyzed for total organic carbon by first acidifying a sample aliquot with 3-M HCl to a pH less than 3 with sparging to remove the evolved inorganic carbon dioxide. The remaining acidified sample is introduced into a combustion chamber with an oxidation catalyst and heated to 680°C. The released carbon from the combustion is converted to CO₂, swept from the combustion chamber by ultra pure oxygen, dehumidified and scrubbed to remove halogens. The carrier gas then delivers the sample combustion products to the cell of a NDIR gas analyzer where the carbon dioxide is detected and measured. The amount of CO₂ measured is proportional the TOC content of the sample.

Inorganic carbon for a liquid sample is calculated from the difference of the TC and TOC.

2.5.3 Single Contact Sludge Extraction Tests

Water-soluble inorganic constituents were determined using a DDI water extraction method. The extract was prepared by adding 30 mL of DDI water to 0.200 to 0.600 g of the residual sludge contained in a 50-mL polypropylene centrifuge tube. The centrifuge tube was sealed, briefly shaken by hand, and then placed on a mechanical orbital shaker for 1 month. After shaking for the predetermined time, the tube was placed in a centrifuge and spun at 4,000 rpm for 20 minutes. The supernatant was carefully decanted and filtered through 0.45-µm pore size membrane. More details can be found in ASTM Procedure D3987-85, *Standard Test Method for Shake Extraction of Solid Waste with Water* (ASTM 1999).

To evaluate the leachability of constituents from residual sludge by a leaching solution produced from water contacting cementitious grout filling the tank above the sludge, a $Ca(OH)_2$ -saturated solution was prepared to simulate a leachant produced by fresh cement. A sufficient quantity of fresh $Ca(OH)_2$ (~ 1.4 g/L @ 25° C) was added to deionized water to just saturate the solution. Excess solid $Ca(OH)_2$ is undesirable because it will buffer the pH at a higher than expected value. Because CO_2 in air is very soluble in water at high pH and the resulting dissolved carbonate will precipitate as calcite in the $Ca(OH)_2$ -saturated solution, care was taken to minimize contact of the solution with air. When possible, Teflon containers were used because they have low air diffusion coefficients. Air space in the containers was also minimized and the vessel was tightly sealed to limit leakage of air into the vessel. The pH of an aliquot of the $Ca(OH)_2$ solution was measured as well as the dissolved calcium concentration. This solution was used to leach the sludges in the same manner as the DDI water leachant discussed in the previous paragraph.

To evaluate the leachability of constituents from residual sludge by a leaching solution produced from water contacting aged cement filling the tank above the sludge, a CaCO₃-saturated solution was prepared to simulate a leachant produced by aged cement. The calcite-saturated solution was prepared by adding excess powdered calcite to deionized water and stirring or shaking the mixture for 24 hours. The temperature during equilibration was a few degrees above room temperature. By preparing the solution at a slightly elevated temperature the possibility of calcite precipitation during the test at room temperature

was minimized. (Calcite undergoes retrograde solubility.) There was no need to minimize contact of this solution with the atmosphere. This solution was also used to leach the sludges in the same manner as the DDI water and Ca(OH)₂ leachants discussed in the previous paragraphs.

2.5.4 Periodic Replenishment Sludge Extraction Tests

Periodic replenishment tests were conducted on the samples of residual sludges from tanks C-202 and C-203. These tests were conducted with each of the DDI water, Ca(OH)₂-saturated, and CaCO₃-saturated leachants. In these tests, the leachant was periodically removed and replaced with an equal volume of fresh solution. This test was conducted to evaluate whether solution concentration might be limited by the solubility of one or more solid phases. For these tests, the samples were contacted with the separate leachants for a total of six times. The lengths of time (contact periods) between replenishment of leachant solutions were 1 day for stages 1, 2, 4, and 5; 3 days for stage 3, and 30 days for stage 6. The sludge samples were prepared and handled in the same manner as the single-contact water extracts for each repetitive step.

After these long-term tests, the samples were centrifuged and the supernatant carefully decanted and filtered through 0.45- μm pore size membranes prior to analysis for the same constituents as the shorter-term tests.

2.5.5 pH

The pH of the solutions was measured using a solid-state pH electrode and a pH meter calibrated with buffers bracketing the expected range. This measurement is similar to EPA SW-846, Method 9040C (EPA 2004).

2.5.6 Anion Analysis

Anion analysis was performed using an ion chromatograph. Fluoride, acetate, formate, chloride, nitrite, bromide, nitrate, carbonate, sulfate, oxalate, and phosphate were separated on a Dionex AS17 column with a gradient elution technique from 1-mM to 35-mM NaOH and measured using a conductivity detector. This methodology is similar to EPA SW-846, Method 9056 (EPA 1994) with the exception of using gradient elution with NaOH.

2.5.7 Cations and Trace Metals

Major cation analysis (including aluminum, silicon, calcium, magnesium, sodium, potassium, iron, and manganese) was performed by ICP-OES EPA SW-846 Method 6010B (EPA 1996). Trace metals analysis (including chromium, molybdenum, arsenic, selenium, cadmium, silver, lead, ⁹⁹Tc, and uranium isotopes) was performed by ICP-MS. This method is similar to EPA Method 6020 (EPA 1996).

For both ICP-OES and ICP-MS, high-purity calibration standards were used to generate calibration curves and to verify continuing calibration during the analysis. Dilutions of 10 times and 5 times were made for each sample and analyzed to investigate and correct for matrix interferences.

2.5.8 ²³⁷Np and ²³⁹Pu Analysis

ICP-MS is a widely accepted method for the determination of trace metals in solution. The instrument requires user calibration using multi-element standards with concentrations ranging from 5 pg/mL to 20 ng/mL. One area of concern in utilizing ICP-MS to measure actinide elements in tank waste extracts is the proximity in atomic mass of the elements of interest. It can be difficult to measure elements separated by only one atomic mass unit (AMU) when one element is present in trace quantities (²³⁷Np and ²³⁹Pu) while another element is present in macroscopic concentrations (²³⁸U). Under these circumstances, peak tailing from ²³⁸U can extend into the regions corresponding to ²³⁷Np and ²³⁹Pu, resulting in erroneously high reporting of total ²³⁷Np and ²³⁹Pu. During standard ICP-MS analysis of fusion digests and acid extracts of C-203 residual tank waste material, which contained in excess of 3 mg/L dissolved uranium (after dilution), an interferent was observed at atomic mass unit 239 that impacted the quantitative analysis of ²³⁹Pu. If the interferent were dissolved uranium, both ²³⁷Np and ²³⁹Pu would be affected in the same way. However, because the interferent only affected ²³⁹Pu measurements, our hypothesis was that UH formed after ionization of the sample and created a mass interferent at AMU 239. This hypothesis was confirmed by analyzing single-element standards of uranium ranging in concentration from 1 to 500 mg/L while monitoring instrument response (which was a linear increase as a function of uranium solution concentration) at AMU 237 and 239.

A key feature of the Perkin Elmer ELAN DRC II ICP-MS is the ability to inject a reaction gas, such as O_2 , CO_2 , or N_2O , into the first quadrupole chamber. In the case of uranium, this promotes the formation of uranium oxide species which are filtered out prior to injection into the second (and primary) quadrupole. This creates a significant reduction in the background signal over the key actinide atomic mass range (237-239), resulting in instrument limits of quantification in the range of 7.1 pCi/L for 237 Np and 310 pCi/L for 239 Pu. Successful analysis of fusions from tank C-106 residual sludge material using conventional ICP-MS analysis has been documented by Deutsch et al. (2005). However, tank C-106 sludge samples contained nearly three orders of magnitude less uranium than sludge samples from tanks C-202 and C-203. Therefore, a specialized ICP-MS technique was developed to facilitate the analysis of transuranics in sludge samples from tanks C-202 and C-203. Initial method development was performed using CO_2 as the reaction gas. Surrogate solutions of tank C-203 acid extracts containing 10 mg/L uranium with 0.1 μ g/L of 237 Np and 239 Pu were successfully analyzed using dynamic reaction cell (DRC) ICP-MS with CO_2 as the reaction gas.

Next, O₂ was tested as a reaction gas to determine its efficiency to react with uranium. The hypothesis was that if the efficiency of the reaction could be increased, more of the uranium could be removed, thereby lowering the limit of quantification for the analysis. This was tested by analyzing single-element standards of uranium ranging in concentration from 1 to 25 mg/L using the DRC-ICP-MS while monitoring instrument response at atomic mass units 238 and 239. With a flow rate of 0.15 mL/min, the uranium intensity at AMU 238 saturated the detector starting with the 1-mg/L uranium standard. Although the DRC was effective at removing a significant portion of the uranium, sufficient uranium persisted to cause detector saturation during the analysis. Ordinarily, AMU 238 would not be monitored during the analysis of ²³⁹Pu in the DRC mode; therefore, the fact that detector saturation occurred during analysis of the 1-mg/L uranium solution at this flow rate was not critical. What was more important was the impact at AMU 239. Using O₂ as the reaction gas, the count rate at AMU 239 increased as a function of increasing uranium solution concentration. However, the increase was relatively linear, which enabled a correction factor to be applied to the data. Performing this correction

resulted in count rates ranging from 1 to 26 cps at AMU 239 for uranium solutions ranging in concentration from 1 to 25 mg/L, respectively. Unfortunately, the rate of reaction between O_2 and plutonium was also extremely efficient; the plutonium was reacting nearly as quickly as the uranium contained in the sample. Given the large disparity between uranium and plutonium concentrations in these samples, coupled with the similar reaction rates of the two elements, has led us to conclude that O_2 is not a suitable reaction gas for this application.

The final reaction gas tested for its suitability to eliminate uranium interferences at AMU 239 was N_2O . This would hopefully demonstrate that N_2O had a higher affinity to react with uranium than plutonium, thereby leaving sufficient ²³⁹Pu post-reaction to make quantitative analysis feasible. While the plutonium did react much more slowly than the uranium using N_2O as the reaction gas, the stability of multiple measurements of a 1-ng/mL solution of ²³⁹Pu in 25 mg/L ²³⁸U was not sufficient to make quantitative analysis at the desired limit of quantification feasible.

Given the high dissolved uranium load in digests of most tank samples, and particularly the digests of C-202 and C-203 residual tank waste samples, matrix matching the samples was the most appropriate analytical approach. The DRC-ICP-MS analytical method, using CO₂ as the reaction gas, was not fully developed; therefore, the C-202 and C-203 residual tank waste samples were analyzed via conventional ICP-MS analysis using matrix matching to uranium. After reviewing previous work, we did not anticipate analyzing any tank waste fusions or acid extracts containing in excess of 2,500 mg/L dissolved uranium. Typically, dilutions of 100x on the tank waste extracts are performed prior to analyzing them via ICP-MS; therefore, the maximum dissolved uranium concentration anticipated at the time of analysis would be 25 mg/L. Based on this, calibration standards were set up for the ICP-MS with ²³⁹Pu concentrations ranging from 0.05 to 0.25 µg/L in the presence of 25-mg/L dissolved uranium. An estimated limit of quantification (EQL) for the analysis was determined using continuing calibration verification (CCV) standards ranging in concentration from 0.01 to 1.0 μ g/L ²³⁹Pu in the presence of 25 mg/L dissolved uranium. The background corrected data indicate that an instrument EQL for ²³⁹Pu using this analysis would be 0.05 µg/L (i.e., the 0.05 CCV standard was the lowest concentration standard accurately measured within 10% of its certified value). Given that this analysis was performed in the presence of 25 mg/L uranium, we have achieved quantitative results in solutions that contain in excess of 5 orders of magnitude more uranium than plutonium. Using this technique, our estimated sample EQL for ²³⁹Pu (and ²³⁷Np) in the C-202 and C-203 tank waste digests was 5 µg/L.

2.5.9 Alkalinity

The sample alkalinity was measured by standard titration. A volume of standardized sulfuric acid was added to the sample to an endpoint of pH 4.5 to measure total alkalinity. Alkalinity is reported is terms of an equivalent mass of CaCO₃. The alkalinity procedure is similar to Standard Method 2320 B (Clesceri et al. 1998).

2.5.10 129 Extraction and Analysis

From a long-term risk standpoint, ¹²⁹I is a key potential contaminant in residual Hanford tank waste. For this reason, its presence in the waste material and mobility in infiltrating water is of interest. Although iodine is generally considered mobile as a dissolved constituent in water, small partition coefficients (0.2 to 1 mL/g) are typically calculated when its uptake is measured on Hanford sediments

(Cantrell et al. 2003; Um et al. 2004). Therefore, it is imperative to identify an extraction method that will enable quantitative measurement of total iodine in solid samples such as tank waste.

Previous research (Brown et al. 2005) has shown the potential applicability of water leaches and KOH:KNO₃ water fusions for the removal of iodide from solid samples spiked with ¹²⁹I. The results from Brown et al. (2005) have led to the modification of the accepted PNNL internal procedure, (g) to determine the ¹²⁹I concentration in sludge solids. Using the updated procedure, 300 mg of the tank waste sludge material was mixed with 6 mL of a 30% KOH and 3% KNO₃ solution as a fluxing agent in a zirconium crucible. The crucible was then placed in a 95°C oven and allowed to evaporate to dryness, after which it was covered and transferred to a muffle furnace preheated to 550°C. Fusion was accomplished by heating the sample-flux mixture for 60 minutes at 550°C. After 60 minutes, the crucible was removed from the furnace and allowed to cool to ambient room temperature. The fused solid was then dissolved in DDI water. The resulting solution was transferred to a 50-mL centrifuge tube. The crucible was then triple-rinsed with a 1:1 mixture of concentrated sulfuric acid and 1M sodium bisulfite, and these solutions were also added to the centrifuge tube. An additional 5 to 15 mL of the sulfuric acid:sodium bisulfite mixture was added to the centrifuge tubes to facilitate total sample dissolution. Once sample dissolution was complete, the final solution volume in each centrifuge tube was determined gravimetrically and corrected for solution density. Finally, the samples were diluted using a 1% (by volume) Spectrasol CFA-C solution to ensure the samples were alkaline prior to analysis via ICP-MS.

Table 2.3 lists the digestion factors (wet solid-to-solution ratios) for the samples of C-202 and C-203 sludge solids used for the modified KOH-KNO₃ water fusion treatments to measure 129 I. These factors were calculated from the wet weight of sludge material divided by the volume of extracting solution. The digestion factors were then multiplied by the percent solids, as determined from moisture content analysis, to convert to a dry weight basis. The fused samples and the samples from the periodic replacement tests (Section 2.5.4) were analyzed for dissolved 129 I concentrations using a Perkin Elmer ELAN DRC II ICP-MS in the standard operation mode. Spectrasol CFA-C from Spectrasol, Inc. (Warwick, New York) was diluted in DDI water (18 M Ω -cm) to create a 1% working solution.

Table 2.3. Digestion Factors for Samples of C-202 and C-203 Sludge Solids Used for the Modified KOH-KNO₃ Water Fusion Treatment to Measure ¹²⁹I

	Sample Number	Dry Weight Corrected Digestion Factor (g/L)		
KOH-KNO ₃ water fusion	19250 (C-202)	5.79		
	19250 (C-202) Dup	6.16		
KOH-KNO ₃ water fusion	19887 (C-203)	5.90		
	19887 (C-203) Dup	5.69		
KOH-KNO ₃ water fusion	19961 (C-203)	6.43		
	19661 (C-203) Dup	6.88		
Dup = Duplicate.				

⁽g) Unpublished internal technical procedure: *Solubilization of Metals from Solids Using a KOH-KNO3 Fusion*. AGG-ESL-001 Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Calibration standards were prepared by diluting a 1 mg/L ¹²⁹I certified stock standard (NIST, Gaithersburg, Maryland) into appropriate volumes of the 1% Spectrasol CFA-C solution containing 5-ng/mL ¹²¹Sb as the internal standard to calibrate the ICP-MS for masses neighboring iodine. An independent calibration check standard was prepared from a 1-mg/L ¹²⁹I certified stock standard (Amersham, Piscataway, New Jersey) in 1% Spectrasol CFA-C. One percent Spectrasol CFA-C was used to prepare instrument blanks and was used as the rinse solution throughout the run.

2.5.11 Radioanalysis

In addition to the radionuclides ⁹⁹Tc, ¹²⁹I, ²³⁷Np, ²³⁸U, and ²³⁹Pu that were analyzed in solution by ICP-MS, short-lived radionuclides were analyzed by conventional counting methods as described below.

2.5.11.1 ¹³⁷Cs Analysis

¹³⁷Cs was measured in solution extracts by gamma energy analysis (GEA). The analyses were made using 60% efficient intrinsic-germanium gamma detectors. All germanium counters were efficiency calibrated for distinct geometries using mixed gamma standards traceable to the NIST. Direct solids, acid extracts, and water extracts were analyzed for gamma energy. Spectral analysis was conducted using libraries containing most mixed-fission products, activation products, and natural decay products. Control samples were run throughout the analysis to ensure correct operation of the detectors. The controls contained isotopes with photo peaks spanning the full detector range and were monitored for peak position, counting rate, and full-width half-maximum. Details are found in an internal PNNL procedure.^(h)

2.5.11.2 ⁹⁰Sr Analysis

Aliquots of filtered acid extracts, fusions, and water extracts were diluted in 8 M HNO₃ and submitted for strontium separation and analysis by internal PNNL procedure. A 0.1-5 mL aliquot of sample was spiked with ST tracer and passed through a SrSpec column (Eichrom Technologies, Chicago) to capture strontium. The columns were washed with 10 column volumes (20 mL) of 8 M nitric acid. The strontium was eluted from the SrSpec column into glass liquid scintillation vials using 15 mL of deionized water. The vials were placed under a heat lamp overnight to evaporate the water to dryness. A 15 mL Optifluor scintillation cocktail was added to each vial. Gamma spectroscopy was used to determine the chemical yield from the added ST tracer. The samples were then analyzed by liquid scintillation counting (LSC) to determine the amount of ST originally present in the sludge sample. A matrix spike, a blank spike, a duplicate, and blanks were run with each sample set to determine the efficiency of the separation procedure as well as the purity of reagents.

2.5.11.3 Actinide Analysis

Aliquots of filtered acid extracts and fusions are converted to concentrated HCl solutions, and then passed through a strong base anion exchanger. Uranium, plutonium, and neptunium load on to the column. Americium passes through and is collected for later analysis. Plutonium and neptunium are

-

⁽h) Unpublished internal technical procedure: *Gamma Energy Analysis, Operation, and Instrument Verification using Genie2000 Support Software*. RRK-001, Pacific Northwest National Laboratory, Richland, Washington.

⁽i) Unpublished internal technical procedure: Tc99 and Sr90 Analysis Using Eichrom TEVA-Spec and Sr-Spec Resin. PNL-RRL-003.2, Pacific Northwest National Laboratory, Richland, Washington.

eluted together with 6-M hydrochloric acid, iodide solution. Uranium is eluted last with dilute nitric acid. The separated actinides are co-precipitated with neodymium fluoride, collected on a membrane filter, mounted on a stainless steel disk, and dried, for counting by alpha spectroscopy. A matrix spike, a blank spike, a duplicate, and blanks were run with each sample set to determine the efficiency of the separation procedure as well as the purity of reagents. The separation, co-precipitation and AEA counting were performed using internal PNNL procedures. (i,k,l)

2.6 Uranium Mineral Solubility Measurements

Analysis of **pre-retrieval** C-203 sludge indicated that the majority of uranium is in the form of čejkaite $[Na_4(UO_2)(CO_3)_3]$ and a minor fraction in the form of clarkeite $[Na(UO_2)O(OH)(H_2O)_{0-1}]$ or $Na_2U_2O_7\cdot xH_2O$ (Deutsch et al. 2004). The retrieval process, which utilized water to enhance sludge removal, may have preferentially removed relatively soluble čejkaite, causing enrichment of clarkeite or $Na_2U_2O_7\cdot xH_2O$ in the sludge. Empirical solubility experiments were conducted on post retrieval C-203 sludge in an attempt to verify that the solubility of the residual phase is consistent with clarkeite or $Na_2U_2O_7\cdot xH_2O$. In previous work by Yamamura et al. (1998), the solubility of $Na_2U_2O_7\cdot xH_2O$ was determined. XRD analysis of the $Na_2U_2O_7\cdot xH_2O$ used in their work appears to be identical to the clarkeite or $Na_2U_2O_7\cdot xH_2O$ phase identified by XRD in C-203 sludge.

Empirical U solubility experiments were conducted using three different solutions. For each experimental solution used, four sequential contacts (stages) were made. For each contact, the equilibrated solution was removed and fresh solution added. The three solutions used were:

- 1. 1.0 M NaNO₃, 0.01 M NaOH for all four stages
- 2. 1.0 M NaOH for all four stages
- 3. 1.0 M NaNO3, 0.01 M NaOH for first three stages 0.01 M NaOH, 0.001 M Na₂CO₃ for the fourth stage only

The first two stages had durations of 24 hours, stage 3 lasted 1 week, and the duration of the fourth stage was 1 month.

High sodium concentrations were used in an attempt to dissolve any remaining čejkaite in the early stages, while avoiding the possible conversion of clarkeite or $Na_2U_2O_7\cdot xH_2O$ to schoepite [(UO₂)₈O₂(OH)₁₂·12(H₂O)] or metaschoepite [UO₃·n(H₂O)(n<2)]. Two different NaOH concentrations in the range used by Yamamura et al. (1998) were selected. Na_2CO_3 was only added on the fourth replenishment of the third solution, in case carbonate contamination becomes unavoidable. By adding a known concentration of carbonate, the impact of carbonate complexation can be readily accounted for in the solubility calculations.

Solid:solution ratios of approximately 0.3g to 30 mL were used for all experiments. C-203 sample 19961 was used for most of the experiments. For each of the three experimental solutions, three sludge

⁽j) Unpublished internal technical procedure: *Analysis of Environmental Water Samples for Actinides and Strontium-90.* RPG-CMC-4017, Rev. 0, Pacific Northwest National Laboratory, Richland, Washington.

⁽k) Unpublished internal technical procedure: *Coprecipitation Mounting of Actinides for Alpha Spectroscopy*. RPG-CMC-496, Rev. 0, Pacific Northwest National Laboratory, Richland, Washington.

⁽l) Unpublished internal technical procedure: *Solutions Analysis: Alpha Spectrometry*. RPG-CMC-422, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

samples were contacted with the sequence of solutions; a primary sample, a duplicate, and a yellow sample. The primary and duplicate samples were made using homogenized composite sample material collected from sample 19961. The third sludge sample used with each of the three experimental solutions was yellow material separated from the sample and then crushed prior to addition to the sample tube. For solutions 1 and 2, the yellow material was collected from sample 19961. Only enough yellow material from sample 19961 was available for solutions 1 and 2. As a result, yellow material collected from sample 19887 was used for solution 3. After completion of the experiments, each solution was analyzed for uranium by ICP-MS, sodium by ICP-OES, and carbonate using ion chromatography (IC) or the carbon analyzer described in Section 2.5.2.2.

3.0 Laboratory Results

This section includes the results of tests conducted on the residual sludge samples from tanks C-202 (sample 19250) and C-203 (samples 19887 and 19961). Section 3.1 includes a description of the sludge composition obtained from fusion and acid digestion methods. A discussion of the extraction of ¹²⁹I from the sludge and its measurement is provided in Section 3.2. The results of the sludge leaching tests that included batch and sequential leaching with DDI water, and leaching using Ca(OH)₂ and CaCO₃ solutions are described in Section 3.3.1. Section 3.3.5 describes the results of uranium mineral solubility determined from a set of leaching experiments. Sludge characterization data generated by using analytical methods such as XRD and SEM/EDS are discussed in Sections 3.4 and 3.5, respectively. Section 3.6 includes the results of actinide measurements using DRC ICP-MS methods.

3.1 Sludge Composition

An important component of contaminant release rate calculations is an accurate measurement of the total concentrations of the contaminants in the source material. As described in Section 2.2, the total metals and radionuclide concentrations of the sludges were measured using two methods (fusion analysis and acid digestion). The results of these analyses are described in this section. The anionic (nonmetal) composition of the sludge was estimated by water extraction as part of the Tier 1 analyses (Section 2.5.6). Tier 1 anion results are discussed in Section 3.3.1.

Table 3.1 lists the moisture content [((wet wt – dry wt)/dry wt) x 100%] of the C-202 and C-203 residual sludge samples used for the fusion extractions and EPA acid digestions. These values are used with the digestion factors (Table 2.2) to convert the solution analyses of the extracts from the treatments to dry weight solid concentrations. The moisture contents of the sludge samples ranged from 37.9 to 56.6%, suggesting that the samples were quite fine-grained (had large porosity) and were completely water saturated.

Table 3.1 . Moistur	e Contents of	C-202 and C	-203 Sludge Sa	amples [(wet wt – dr	y wt)/dry	/ wt]
----------------------------	---------------	-------------	----------------	----------	--------------	-----------	-------

Sample Number	Moisture Content				
19250 (202)	40.8%				
19250 (202) Dup	43.0%				
19887 (203)	40.2%				
19887 (203) Dup	37.9%				
19961 (203)	56.6%				
19961 (203) Dup	56.3%				
Dup = Duplicate sample.					

Concentrations listed in parentheses in the tables are defined as less than the EQL but greater than a zero instrument signal. These values are reported for informational purposes only. They may reflect actual concentrations that are real but have larger associated uncertainties than values above the EQL or may reflect values that were calculated from the instrument's background signal and are not representative of actual sludge composition. The EQL of an element is determined by analyzing a suite of CCV

standards at the beginning and end of each analytical run. The lowest CCV standard that is within $\pm 10\%$ of its certified value is multiplied by the dilution factor for the sample to determine the EQL for the element for the particular analytical run. The EQL may vary with each analysis depending on sample matrix, dilution factors, and instrument performance. Concentrations listed as less-than (<) values in the tables refer to instrument measurements that are less than zero. In these instances, the reported analyte concentration is assigned a value of "<EQL" using the EQL value appropriate for that particular analyte and set of analytical conditions.

The following discussion of element concentrations of the sludge is organized in terms of the analytical method used to measure concentrations in the solution extract. These methods were carbon analyzer, ICP-OES, ICP-MS, IC, GEA (¹³⁷Cs), and wet chemical separations and liquid scintillation counting (⁹⁰Sr). For the tables, the solution concentrations have been converted from a per-liter basis to a dry sludge mass basis. Each table provides results from the fusion analysis and EPA acid digestion methods.

Table 3.2 lists the carbon contents on the dry sludge basis for the C-202 and C-203 residual sludge samples. Average total carbon content of 19250 (C-202) was $4.37 \times 10^4 \, \mu g/g$ sludge whereas, in 19887 (C-203) and 19961 (C-203) were the TC were similar and measured to be $1.33 \times 10^4 \, \text{and} \, 1.18 \times 10^4 \, \mu g/g$ sludge respectively. In 19250 (C-202) the total average organic and inorganic contents were $4.37 \times 10^4 \, \text{and} \, 9.47 \times 10^3 \, \mu g/g$ sludge, respectively. In the C-202 tank sample, the bulk of the total carbon was mainly in the organic form (~80%). In 19887 (C-203) sample, the organic and inorganic carbon contents were $7.22 \times 10^3 \, \text{and} \, 6.05 \times 10^3 \, \mu g/g$ sludge respectively each constituting about one half of the total carbon (54 and 46%) in the sludge. In 19961 (C-203) sample, however, the organic and inorganic carbon contents were $7.89 \times 10^3 \, \text{and} \, 3.94 \times 10^3 \, \mu g/g$ sludge constituting about two-thirds and one-third of the total carbon (67 and 33%) mass, respectively.

The results of elemental analyses by ICP-OES are listed in Table 3.3 through Table 3.5. Because K and sulfur-containing compounds were used as the fluxing agent for the fusion technique, K and S fusion concentrations are not reported in these tables. Also, fusion was conducted in nickel crucibles; therefore, Ni fusion values listed in Table 3.4 are anomalous. Values for Na are not reported for the fusion analysis because sodium bisulfite was used in the fused sample dissolution process. Similarly, B values from acid digestion are not reported because boric acid was used in the process. Among the suite of thirty elements that were analyzed, only eleven elements were present above the instrumental detection limits in all samples. These elements included Ca, Cr, Mg, Mn, Na, Ni, P, Pb, Sr, Ti, and Zn. Additionally, Al, Co, Cu, Si, and Zr were present in detectable concentration in the sludge sample 18250 obtained from tank C-202. The elements that were present in significant concentrations are listed in Table 3.6. Typically, the major element concentrations (present in ≥1% of the dry sludge mass) determined by fusion and acid digestion methods agreed within 1 to 35%. However, in the case of Na, the values obtained by the fusion method for all sludge samples (C-202 and C-203 tank samples) were more than an order of magnitude higher than the values measured by the acid digestion method. Procedure blanks run with the fusion analyses showed the presence of high levels of Na that was likely introduced with the KOH-KNO₃ fluxes. This resulted in the discrepancy between the Na values measured by the fusion method and the acid digestion method. For the metals listed in Table 3.6, there is variability in concentrations between the fusion method and the EPA acid digestion technique, but the acid digestion method generally gives higher concentrations of the major metals by 10 to 40% compared to the concentrations measured by fusion extraction.

Table 3.2. Carbon Contents of Tank C-202 and C-203 Sludge Samples

	TC	тос	TIC	TIC
Sample Number		μg C/g Sludge-		μg CO ₃ /g Sludge
19250 (202)	4.47E+04	3.56E+04	9.12E+03	4.56E+04
19250 (202) Dup	4.27E+04	3.29E+04	9.82E+03	4.91E+04
19250 (202) Avg	4.37E+04	3.43E+04	9.47E+03	4.74E+04
19887 (203)	1.34E+04	7.50E+03	5.94E+03	2.97E+04
19887 (203) Dup	1.31E+04	6.95E+03	6.16E+03	3.08E+04
19961 (203)	1.13E+04	7.40E+03	3.85E+03	1.92E+04
19961 (203) Dup	1.24E+04	8.39E+03	4.04E+03	2.02E+04
19887 (203) Avg	1.33E+04	7.22E+03	6.05E+03	3.02E+04
19961 (203) Avg	1.18E+04	7.89E+03	3.94E+03	1.97E+04

Avg = Average.
Dup = Duplicate.
TC = Total carbon.

TIC = Total inorganic carbon. TOC = Total organic carbon.

 $\mu g C/g = Microgram of C per gram of sludge.$

 $\mu g CO_3/g = Microgram of CO_3$ (carbonate) per gram of sludge.

A comparison of the elemental composition between the sludge samples (Table 3.6) indicated that the sample 19250 (C-202) was significantly enriched in concentrations of Al (1.13 x 10^4 - 1.36 x 10^4 μ g/g sludge), Ca (9.61 x 10^3 - 1.45 x 10^4 μ g/g sludge), Cr (1.33 x 10^4 - 1.32 x 10^4 μ g/g sludge), Fe (1.19 x 10^5 - 1.22 x 10^5 μ g/g sludge), Mn (2.51 x 10^4 – 2.54 x 10^4 μ g/g sludge), and Si (5.84 x 10^3 – 2.50 x 10^4 μ g/g sludge) while being depleted in Na by about half and about two-thirds of P compared to the C-203 tank samples (19867 and 19961).

Major elemental components in sample 19250 (C-202) residual sludge that constituted between 1 to 10% by dry mass were Al, Ca, Cr, Na, Mn, P, and Si. Iron was also abundant (about 12% by dry mass) in this sample. Contrastingly, the major elements in the samples 19887 and 19961 from tank C-203 residual sludge were Fe, Na, and P which constituted about 1% to 10% of the dry sludge mass.

Table 3.3. Sludge Composition Measured by ICP-OES (Al through Cr)

	Al	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr
Sample Number					μg/g-dry S	Sludge				
				KOH-KNO	O ₃ Fusions					
19250 (C-202)	1.04E+04	(1.13E+01)	(1.04E+03)	(1.29E+01)	<2.43E+02	<4.85E+03	9.47E+03	<4.85E+01	(9.89E+01)	1.34E+04
19250 (C-202) Dup	1.22E+04	<6.38E+02	(5.88E+02)	<3.19E+01	<1.60E+02	<3.19E+03	9.75E+03	<3.19E+01	1.08E+02	1.32E+04
19887 (C-203)	<2.12E+02	(2.10E+02)	(7.40E+01)	<4.24E+01	<2.12E+01	<4.24E+02	3.87E+03	<2.12E+01	(1.00E+02)	9.14E+03
19887 (C-203) Dup	<2.20E+02	(1.74E+02)	(8.92E+01)	<4.39E+01	<2.20E+01	<4.39E+02	2.26E+03	<2.20E+01	(9.70E+01)	4.67E+03
19961 (C-203)	<1.94E+02	(1.78E+02)	(7.83E+01)	<3.89E+01	<1.94E+01	<3.89E+02	2.93E+03	<1.94E+01	(8.85E+01)	5.12E+03
19961 (C-203) Dup	<1.82E+02	(1.71E+02)	(6.76E+01)	<3.63E+01	<1.82E+01	<3.63E+02	2.58E+03	<1.82E+01	(8.31E+01)	4.72E+03
19250 (C-202) Avg	1.13E+04	(1.13E+01)	(8.15E+02)	(1.29E+01)	<2.01E+02	<4.02E+03	9.61E+03	<4.02E+01	1.04E+02	1.33E+04
19887 (C-203) Avg	<2.16E+02	(1.92E+02)	(8.16E+01)	<4.31E+01	<2.16E+01	<4.31E+02	3.06E+03	<2.16E+01	(9.87E+01)	6.90E+03
19961 (C-203) Avg	<1.88E+02	(1.75E+02)	(7.30E+01)	<3.76E+01	<1.88E+01	<3.76E+02	2.75E+03	<1.88E+01	(8.58E+01)	4.92E+03
				EPA Acid	Digestion					
19250 (C-202)	1.28E+04	<5.62E+02	N/A	1.98E+02	<1.41E+02	<2.81E+03	1.16E+04	<2.81E+01	1.15E+02	1.41E+04
19250 (C-202) Dup	1.12E+04	(5.76E+01)	N/A	1.93E+02	<1.65E+02	<3.30E+03	1.12E+04	<3.30E+01	1.13E+02	1.35E+04
19250 (C-202) Trip	1.68E+04	<6.73E+02	N/A	2.33E+02	<1.68E+02	<3.37E+03	2.06E+04	<3.37E+01	1.02E+02	1.19E+04
19887 (C-203)	<5.46E+02	(1.78E+02)	N/A	<1.09E+02	<1.09E+02	<1.09E+03	3.40E+03	<1.09E+02	(8.68E+01)	6.16E+03
19887 (C-203) Dup	<8.74E+02	(2.14E+02)	N/A	<1.75E+02	<1.75E+02	<1.75E+03	3.22E+03	<1.75E+02	(9.37E+01)	6.60E+03
19961 (C-203)	<5.75E+02	(1.79E+02)	N/A	<1.15E+02	<1.15E+02	<1.15E+03	3.08E+03	<1.15E+02	(8.50E+01)	5.58E+03
19961 (C-203) Dup	<4.69E+02	(1.75E+02)	N/A	<9.39E+01	<9.39E+01	<9.39E+02	2.86E+03	<9.39E+01	(8.71E+01)	5.28E+03
19250 (C-202) Avg	1.36E+04	(5.76E+01)	N/A	2.08E+02	<1.58E+02	<3.16E+03	1.45E+04	<3.16E+01	1.10E+02	1.32E+04
19887 (C-203) Avg	<7.10E+02	(1.96E+02)	N/A	<1.42E+02	<1.42E+02	<1.42E+03	3.31E+03	<1.42E+02	(9.02E+01)	6.38E+03
19961 (C-203) Avg	<5.22E+02	(1.77E+02)	N/A	<1.04E+02	<1.04E+02	<1.04E+03	2.97E+03	<1.04E+02	(8.60E+01)	5.43E+03

Avg = Average.

Dup = Duplicate.

EQL = Estimated quantitation limit.

N/A = Not analyzed; boric acid used in acid digestion.

Trip = Triplicate.
Concentrations listed in parentheses were <EQL.

Table 3.4. Sludge Composition Measured by ICP-OES (Cu through Pb)

	Cu	Fe	K	Li	Mg	Mn	Mo	Ni*	P	Pb
Sample Number					μg/g-dry	y Sludge				
				KOH-KN	O ₃ Fusions					
19250 (C-202)	3.80E+02	1.16E+05	NR	<2.43E+02	2.41E+03	2.47E+04	(1.20E+01)	4.57E+03	1.34E+04	(1.92E+02)
19250 (C-202) Dup	4.16E+02	1.23E+05	NR	<1.60E+02	2.47E+03	2.54E+04	<1.60E+02	6.28E+03	1.58E+04	(1.63E+02)
19887 (C-203)	(6.07E+01)	1.20E+04	NR	(4.06E+01)	7.18E+02	1.32E+03	(1.07E+00)	1.07E+03	4.38E+04	5.24E+02
19887 (C-203) Dup	(2.98E+01)	3.86E+03	NR	(4.20E+01)	5.86E+02	9.69E+02	<8.79E+01	1.60E+03	5.21E+04	5.80E+02
19961 (C-203)	(8.00E+01)	1.32E+04	NR	(3.07E+01)	6.63E+02	1.29E+03	(4.08E+01)	6.37E+03	3.74E+04	4.10E+02
19961 (C-203) Dup	(4.95E+01)	1.03E+04	NR	(2.81E+01)	6.01E+02	1.27E+03	(5.92E+01)	7.21E+02	3.93E+04	4.57E+02
19250 (C-202) Avg	3.98E+02	1.19E+05	NR	<2.01E+02	2.44E+03	2.51E+04	(1.20E+01)	5.43E+03	1.46E+04	(1.77E+02)
19887 (C-203) Avg	<4.52E+01	7.91E+03	NR	(4.13E+01)	6.52E+02	1.14E+03	(1.07E+00)	1.34E+03	4.80E+04	5.52E+02
19961 (C-203) Avg	<6.47E+01	1.18E+04	NR	(2.94E+01)	6.32E+02	1.28E+03	(5.00E+01)	3.54E+03	3.83E+04	4.34E+02
				EPA Acid	l Digestion					
19250 (C-202)	5.85E+02	1.26E+05	<1.41E+04	<1.41E+02	2.44E+03	2.72E+04	<1.41E+02	9.64E+03	1.53E+04	7.98E+03
19250 (C-202) Dup	5.75E+02	1.24E+05	<1.65E+04	<1.65E+02	2.42E+03	2.52E+04	<1.65E+02	9.29E+03	1.55E+04	8.58E+03
19250 (C-202) Trip	3.93E+02	1.14E+05	<1.68E+04	<1.68E+02	2.82E+03	2.47E+04	<1.68E+02	8.28E+03	1.77E+04	7.36E+03
19887 (C-203)	<1.09E+04	1.14E+04	<2.73E+05	(1.14E+02)	(8.41E+02)	8.12E+02	<5.46E+02	4.50E+02	3.72E+04	5.52E+03
19887 (C-203) Dup	<1.75E+04	2.19E+04	<4.37E+05	(1.44E+02)	(7.76E+02)	8.71E+02	<8.74E+02	4.27E+02	(3.88E+04)	6.38E+03
19961 (C-203)	<1.15E+04	1.74E+04	<2.87E+05	(1.17E+02)	(6.68E+02)	1.11E+03	<5.75E+02	5.97E+02	3.95E+04	5.60E+03
19961 (C-203) Dup	<9.39E+03	1.45E+04	<2.35E+05	(1.07E+02)	(6.30E+02)	1.03E+03	<4.69E+02	5.69E+02	3.84E+04	5.01E+03
19250 (C-202) Avg	5.18E+02	1.22E+05	<1.58E+04	<1.58E+02	2.56E+03	2.57E+04	<1.58E+02	9.07E+03	1.61E+04	7.98E+03
19887 (C-203) Avg	<1.42E+04	1.67E+04	<3.55E+05	(1.29E+02)	(8.09E+02)	8.42E+02	<7.10E+02	4.38E+02	3.80E+04	5.95E+03
19961 (C-203) Avg	<1.04E+04	1.60E+04	<2.61E+05	(1.12E+02)	(6.49E+02)	1.07E+03	<5.22E+02	5.83E+02	3.90E+04	5.30E+03

Avg = Average.

Dup = Duplicate.

EQL = Estimated quantitation limit.

Ni* = Nickel crucible used for fusion.

NR = Not reported - K is a major component of the fluxing agent used in the fusion analysis.

Concentrations listed in parentheses were <EQL.

 Table 3.5.
 Sludge Composition Measured by ICP-OES (Se through Zr)

	Se	Sr	Tl	V	Zn	Na	Si	S	Ti	Zr
Sample Number					μg/g-dry	Sludge				
				KOH-KN	O ₃ Fusions					
19250 (C-202)	<9.71E+03	1.18E+03	<4.85E+02	<2.43E+02	6.96E+02	NA	8.44E+03	N/A	8.85E+02	9.91E+01
19250 (C-202) Dup	<6.38E+03	1.14E+03	<3.19E+02	<1.60E+02	7.64E+02	NA	3.25E+03	N/A	8.32E+02	9.51E+01
19887 (C-203)	(1.35E+02)	3.16E+02	<4.24E+02	<1.06E+02	5.25E+02	NA	(3.20E+03)	N/A	3.50E+02	<4.24E+01
19887 (C-203) Dup	(1.82E+02)	4.04E+02	<4.39E+02	<1.10E+02	(2.82E+02)	NA	(1.91E+03)	N/A	2.45E+02	<4.39E+01
19961 (C-203)	(9.20E+01)	3.43E+02	<3.89E+02	<9.72E+01	5.49E+02	NA	(2.87E+03)	N/A	2.34E+02	<3.89E+01
19961 (C-203) Dup	(7.23E+01)	3.11E+02	<3.63E+02	<9.08E+01	4.41E+02	NA	(2.62E+03)	N/A	2.26E+02	<3.63E+01
19250 (C-202) Avg	<8.05E+03	1.16E+03	<4.02E+02	<2.01E+02	7.30E+02	NA	5.84E+03	N/A	8.58E+02	9.71E+01
19887 (C-203) Avg	(1.59E+02)	3.60E+02	<4.31E+02	<1.08E+02	4.03E+02	NA	(2.56E+03)	N/A	2.97E+02	<4.31E+01
19961 (C-203) Avg	(8.21E+01)	3.27E+02	<3.76E+02	<9.40E+01	4.95E+02	NA	(2.75E+03)	N/A	2.30E+02	<3.76E+01
				EPA Acid	l Digestion					
19250 (C-202)	<4.59E+02	1.45E+03	<2.81E+02	<7.03E+01	8.43E+02	5.32E+04	2.18E+04	(6.88E+01)	8.91E+02	1.63E+02
19250 (C-202) Dup	<4.13E+02	1.54E+03	<3.30E+02	<8.26E+01	8.21E+02	5.32E+04	1.41E+04	(2.78E+02)	9.05E+02	1.19E+02
19250 (C-202) Trip	<2.18E+02	1.54E+03	<3.37E+02	<8.41E+01	7.20E+02	7.00E+04	3.90E+04	(1.63E+00)	1.03E+03	1.27E+02
19887 (C-203)	<1.09E+03	3.96E+02	<1.09E+03	<2.73E+02	(6.58E+02)	9.77E+04	(4.01E+03)	<4.37E+03	4.01E+02	<1.09E+02
19887 (C-203) Dup	<1.75E+03	3.70E+02	<1.75E+03	<4.37E+02	(7.75E+02)	9.60E+04	(3.75E+03)	<7.00E+03	3.02E+02	<1.75E+02
19961 (C-203)	<1.15E+03	4.42E+02	<1.15E+03	<2.87E+02	(6.09E+02)	9.45E+04	(3.46E+03)	<4.60E+03	2.45E+02	<1.15E+02
19961 (C-203) Dup	<9.39E+02	4.26E+02	<9.39E+02	<2.35E+02	(4.55E+02)	9.49E+04	(2.75E+03)	<3.75E+03	2.37E+02	<9.39E+01
19250 (C-202) Avg	<3.63E+02	1.51E+03	<3.16E+02	<7.90E+01	7.95E+02	5.88E+04	2.50E+04	(1.16E+02)	9.43E+02	1.36E+02
19887 (C-203) Avg	<1.42E+03	3.83E+02	<1.42E+03	<3.55E+02	(7.17E+02)	9.69E+04	(3.88E+03)	<5.68E+03	3.52E+02	<1.42E+02
19961 (C-203) Avg	<1.04E+03	4.34E+02	<1.04E+03	<2.61E+02	(5.32E+02)	9.47E+04	(3.10E+03)	<4.18E+03	2.41E+02	<1.04E+02

Avg = Average.
Dup = Duplicate.
EQL = Estimated quantitation limit.
NA = Not applicable; sodium bisulfite used in the fused sample dissolution process.

Trip = Triplicate.

Concentrations listed in parentheses were <EQL.

Table 3.6. Average Sludge Composition Measured by ICP-OES

	19250 (C-202)	19250 (C-202)	19887 (C-203)	19887 (C-203)	19961 (C-203)	19961 (C-203)
	Fusion	Acid Digestion	Fusion	Acid Digestion	Fusion	Acid Digestion
Elements			μg/g-dry	Sludge		
Al	11,300	13,600	<216	<710	<188	<522
Ca	9,610	14,522	3,063	3,312	2,446	2,972
Cr	13,300	13,200	6,901	6,380	4,920	5,430
Cu	398	518	<45.2	<14,200	<64.7	<10,400
Fe	119,000	122,000	7,912	16,651	11,751	15,959
Mg	2,440	2,560	652	(809)	632	(649)
Mn	25,100	25,400	1,142	842	1,281	1,069
Na	NA*	58,800	NA*	96,863	NA*	94,672
Р	14,600	16,100	47,959	37,991	38,313	38,962
Pb	(177)	7,980	552	5,950	434	5,302
Si	5,840	25,000	(2,650)	(3,880)	(2,750)	(3,100)
Sr	1,160	1,510	360	383	327	434
Ti	858	943	297	352	230	241
Zn	730	795	403	(717)	495	(532)
Zr	97	136	<43.1	<142	<37.6	<104

Concentrations listed in parentheses were <EQL.

The elemental concentrations analyzed by ICP-MS are listed in Table 3.7 and Table 3.8. Because ICP-MS uses isotopic measurements, this analytical method for some metals can attain lower detection limits than ICP-OES, and thus allow more accurate measurements of trace metal concentrations in the sludge samples. Among the trace elements listed in the tables, Ag, Cd, Cr, Cu, Mo, Pb, Ru, and Sb were present in concentrations greater than their respective EQLs. The average concentrations of these elements based on isotopic measurements are listed in Table 3.9. The average ICP-MS Cr concentrations

< Values were less than instrumental detection limit.

NA* - Not applicable; sodium bisulfite used in the dissolution of the fused sludge.

 Table 3.7.
 Sludge Composition Determined from ICP-MS Analysis

			As - Total Based on	Se - Total Based on		Mo - Total Based	l on
	Cr – Total ^(a)	Cu - Total ^(b)	⁷⁵ As	⁸² Se	⁹⁵ Mo	⁹⁷ Mo	⁹⁸ Mo ^(c)
Sample Number			μg/	g-dry Sludge			
			KOH-KNO ₃ Fusions	S			
19250 (C-202)	9.67E+03	3.73E+02	<1.46E+01	<1.46E+02	6.30E+01	6.20E+01	5.82E+01
19250 (C-202) Dup	1.11E+04	4.03E+02	(1.78E+00)	<9.58E+01	3.84E+01	3.65E+01	3.29E+01
19887 (C-203)	4.55E+03	8.48E+01	<1.69E+01	N/A	1.15E+02	N/A	N/A
19887 (C-203) Dup	2.84E+03	(7.03E+01)	<1.76E+01	N/A	7.41E+01	N/A	N/A
19961 (C-203)	2.49E+03	(7.65E+01)	<1.56E+01	N/A	1.15E+02	N/A	N/A
19961 (C-203) Dup	2.37E+03	(6.67E+01)	<1.45E+01	N/A	1.33E+02	N/A	N/A
19250 (C-202) Avg	1.04E+04	3.88E+02	(1.78E+00)	<1.21E+02	5.07E+01	4.93E+01	4.55E+01
19887 (C-203) Avg	3.70E+03	7.75E+01	<1.73E+01		9.45E+01		
19961 (C-203) Avg	2.43E+03	(7.16E+01)	<1.50E+01		1.24E+02		
			EPA Acid Digestion	ļ			
19250 (C-202)	6.96E+03	2.51E+02	(2.16E+00)	<5.62E+01	1.62E+01	1.54E+01	1.23E+01
19250 (C-202) Dup	6.03E+03	3.07E+02	(1.99E+00)	<6.61E+01	1.56E+01	1.49E+01	1.19E+01
19250 (C-202) Trip	5.05E+03	2.17E+02	(1.22E+00)	<6.73E+01	1.47E+01	1.41E+01	1.11E+01
19887 (C-203)	4.40E+03	7.20E+01	(1.16E+01)	<5.46E+01	<2.73E+01	<2.73E+01	<2.73E+01
19887 (C-203) Dup	4.89E+03	6.57E+01	(9.92E+00)	<8.74E+01	<4.37E+01	<4.37E+01	<4.37E+01
19961 (C-203)	4.14E+03	6.27E+01	(2.98E+00)	<5.75E+01	(4.82E+00)	(2.25E+00)	(2.08E+00)
19961 (C-203) Dup	3.87E+03	5.44E+01	(4.35E+00)	<4.69E+01	(3.04E+00)	(1.10E+00)	(1.74E+00)
19250 (C-202) Avg	6.01E+03	2.58E+02	(1.79E+00)	<6.32E+01	1.55E+01	1.48E+01	1.18E+01
19887 (C-203) Avg	4.64E+03	6.89E+01	(1.08E+01)	<7.10E+01	<3.55E+01	<3.55E+01	<3.55E+01
19961 (C-203) Avg	4.01E+03	5.86E+01	(3.66E+00)	<5.22E+01	(3.93E+00)	(1.68E+00)	(1.91E+00)

 ⁽a) Cr results are based on the average of ⁵²Cr and ⁵³Cr for sample 19250 and ⁵³Cr for samples 19887 and 19961.
 (b) Cu results are based on the average of ⁶³Cu and ⁶⁵Cu for sample 19250 and ⁶⁵Cu for sample 19887 and 19961.
 (c) The indicated isotope is the suggested isotope for use to quantify the total concentration of that element.

N/A = Not analyzed.

 Table 3.8.
 Solution Composition Determined from ICP-MS Analysis

	Ru – Total	Based on	Ag – Total Based on	Cd – Total Based on	Sb – Total Based on	Pb – Total Based on
	¹⁰¹ Ru	¹⁰² Ru	¹⁰⁷ Ag ^(a)	¹¹⁴ Cd ^(b)	¹²¹ Sb	²⁰⁶ Pb ^(c)
Sample Number			μg/g	-dry Sludge		
		K	OH-KNO ₃ Fusions			
19250 (C-202)	2.77E+01	1.29E+01	1.15E+00	2.28E+01	4.36E+01	4.50E+01
19250 (C-202) Dup	2.76E+01	1.25E+01	1.06E+00	2.47E+01	2.87E+01	1.90E+01
19887 (C-203)	5.00E+00	2.44E+00	2.08E-01	1.76E+00	7.74E+00	8.56E+01
19887 (C-203) Dup	3.90E+00	1.84E+00	(1.53E-01)	1.35E+00	3.54E+00	1.27E+02
19961 (C-203)	5.68E+00	2.55E+00	3.17E-01	1.63E+00	6.66E+00	6.18E+01
19961 (C-203) Dup	4.30E+00	2.04E+00	2.45E-01	1.51E+00	5.54E+00	9.53E+01
19250 (C-202) Avg	2.77E+01	1.27E+01	1.10E+00	2.37E+01	3.61E+01	3.20E+01
19887 (C-203) Avg	4.45E+00	2.14E+00	1.80E-01	1.56E+00	5.64E+00	1.06E+02
19961 (C-203) Avg	4.99E+00	2.30E+00	2.81E-01	1.57E+00	6.10E+00	7.86E+01
	·	E	PA Acid Digestion			
19250 (C-202)	2.19E+01	1.01E+01	1.65E+00	2.28E+01	4.48E+01	7.43E+03
19250 (C-202) Dup	2.18E+01	1.00E+01	1.61E+00	2.14E+01	4.54E+01	7.70E+03
19250 (C-202) Trip	2.12E+01	9.85E+00	1.47E+00	2.15E+01	4.31E+01	6.80E+03
19887 (C-203)	<5.46E+01	<5.46E+01	(1.04E+00)	<1.09E+02	8.91E+00	4.26E+03
19887 (C-203) Dup	<8.74E+01	<8.74E+01	(8.92E-01)	<1.75E+02	9.19E+00	4.97E+03
19961 (C-203)	<5.75E+01	<5.75E+01	(3.68E-01)	<1.15E+02	1.02E+01	4.32E+03
19961 (C-203) Dup	<4.69E+01	<4.69E+01	(1.19E+00)	<9.39E+01	9.52E+00	3.92E+03
19250 (C-202) Avg	2.16E+01	9.98E+00	1.58E+00	2.19E+01	4.44E+01	7.31E+03
19887 (C-203) Avg	<7.10E+01	<7.10E+01	(9.65E-01)	<1.42E+02	9.05E+00	4.62E+03
19961 (C-203) Avg	<5.22E+01	<5.22E+01	(7.80E-01)	<1.04E+02	9.85E+00	4.12E+03

 ⁽a) Ag results are based on ¹⁰⁷Ag for samples 19887 and 19961 and the average of ¹⁰⁷Ag and ¹⁰⁹Ag for sample 19250.
 (b) Cd results are based on ¹¹⁴Cd for sample 19887 and 19961 and the average of ¹¹¹Cd and ¹¹⁴Cd for sample 19250.
 (c) Pb results are based on ²⁰⁶Pb for sample 19887 and 19961 and the average of ²⁰⁶Pb and ²⁰⁸Pb for sample 19250.

Table 3.9. Average Sludge Composition Measured by ICP-MS

	19250 (C-202)	19250 (C-202)	19887 (C-203)	19887 (C-203)	19961 (C-203)	19961 (C-203)
	Fusion	Acid Digestion	Fusion	Acid Digestion	Fusion	Acid Digestion
Elements	r usion	Digestion		dry Sludge	T usion	Digestion
¹⁰⁷ Ag	1.1	1.58	0.18	(0.97)	0.28	(0.78)
¹¹¹ Cd	23.7	21.9	1.56	<142	1.57	<104
⁵³ Cr	10,400	6,013	3,697	4,643	2,429	4,005
⁶⁵ Cu	388	258	78	69	72	59
⁹⁵ Mo	50.7	15.5	94.5	<35.5	123.9	(3.93)
²⁰⁸ Pb	32	7,310	106	4,620	78.6	4,120
¹⁰¹ Ru	27.7	21.6	4.5	<71	5.0	<52
¹²¹ Sb	36.1	44.4	5.6	9.1	6.1	9.85
Concentrati	ons listed in pa	rentheses were	<eql.< td=""><td></td><td></td><td></td></eql.<>			

(based on ⁵³Cr) in sample 19250 (C-202) measured by fusion and acid digestion were 10,400 and 6,013 µg/g sludge, respectively. These values based on isotopic measurements were 22% and 55% lower than the values determined by using the ICP-OES (13,300 and 13,200 µg/g sludge) method (Table 3.6). Measurements of Cr concentrations using fused and acid digested sample 19887 (C-203) yielded values of 3,697 and 4,643 µg/g sludge respectively. Similar measurements conducted on sample 19961 (C-203) showed Cr concentrations of 2,429 and 4,005 µg/g sludge, respectively. The average Cr values for sludges 19887 (C-203) and 19961 (C-203) determined by ICP-MS on acid digested samples were 26% and 39% higher than the average values measured on the fused samples. These values measured isotopically by ICP-MS were about 25 to 50% less than corresponding values measured by ICP-OES (Table 3.3 and Table 3.6). The average Pb concentrations in sludge 19250 (C-202) measured by fusion and acid digestion samples were 32 and 7,310 µg/g sludge, respectively. The fusion value is similar to the fusion value determined by ICP-OES (estimated at 177 µg/g sludge) and the acid digestion value is similar to the acid digestion values by ICP-OES (7,980 µg/g sludge). ICP-MS concentrations of Pb in sample 19887 (C-203) analyzed by fusion and acid digestion were 106 and 4,620 µg/g sludge, respectively, whereas in sludge sample 19961 (C-203), the corresponding concentrations were 78.6 and 4,120 µg/g sludge, respectively. These large discrepancies in Pb values determined on fused and acid digested sludge samples were also observed from measurements conducted using ICP-OES methods. Sulfuric acid is used to dissolve the fused sludge samples, and the presence of high concentrations of sulfate in solution probably leads to the precipitation of Pb sulfate from solution thereby lowering the dissolved Pb concentration. For this reason, the Pb concentrations determined from the EPA acid digestion Method 3052 (EPA 1996) are the more reliable values.

The average Cu concentrations in sludge sample 19250 (C-202) measured by fusion and acid digestion were 388 and 258 μ g/g sludge, respectively. These values agreed reasonably well with the values generated by the ICP-OES measurements (398 and 518 μ g/g of sludge) on fused and acid digested samples, respectively (Table 3.3 and Table 3.6). The Cu concentrations in fused and acid digested sludge sample 19887 from tank C-203 were measured to be 78 and 69 μ g/g of sludge, respectively, and in sample 19961, the corresponding Cu concentrations were 72 and 59 μ g/g of sludge, respectively. These data showed that the average Cu concentrations in both sludges were very low and similar in magnitude, and confirmed the consistency of values determined using the fusion and acid digestion methods.

The average concentrations of Mo determined on fusion and acid digested samples of all three sludge samples were typically very low and ranged from $\langle EQL \text{ to } 124 \mu g/g \text{ sludge}.$

The elements Ru and Sb were also detected in these sludge samples. Ru concentrations in sample 19250 (C-202) measured using fused and acid digested samples were 27.7 and 21.6 μ g/g sludge, respectively. Concentrations in fused sludge samples 19887 (C-203) and 19961 (C-203) were 4.5 and 5.0 μ g/g sludge, respectively. Concentrations of Sb measured in all three sludges using fused and acid digested samples were relatively consistent [19250 (C-202): 36.1 and 44.4 μ g/g sludge; 19887 (C-203): 5.6 and 6.1 μ g/g sludge; 19961 (C-203): 9.1 and 9.9 μ g/g sludge].

The very low detection limits attainable using the ICP-MS method on appropriately prepared samples were evident in the very low concentrations of Ag and Cd that were measured in these sludge samples. For instance, the average Ag concentrations in fused samples of 19250 (C-202), 19887 (C-203) and 19961 (C-203) sludges were 1.1, 0.18, and 0.28 μ g/g sludge, respectively. Similarly, Cd isotope concentrations measured in the same samples were 23.7, 1.56, and 1.57 μ g/g sludge, respectively.

The concentrations of 99 Tc and 238 U measured by ICP-MS are listed in Table 3.10. The 99 Tc concentrations measured on fused samples of sludges on average were 0.231 μ g/g sludge in 19250 (C-202), 0.0883 μ g/g sludge in 19887 (C-203), and 0.073 μ g/g sludge in 19961 (C-203). The comparable concentrations in acid digested samples of these sludges were 0.149 μ g/g sludge, 0.154 μ g/g sludge, and less than EQL of 0.0354 μ g/g sludge, respectively.

The ICP-MS analysis indicated that all the three sludge samples [19250 (C-202), 19887 (C-203), and 19961 (C-203)] contained very high concentrations of 238 U (Table 3.10). For instance, fused and acid digested samples of 19250 (C-202) sludge on average contained 2.36 x 10^5 µg/g sludge (23.6%) and 2.07 x 10^5 µg/g sludge (20.7%) 238 U, respectively. Sludge sample 19887 (C-203) contained on average, 6.37 x 10^5 µg/g sludge (63.7%) and 5.35 x 10^5 µg/g sludge (52.5%) of 238 U, respectively from the fusion and acid digestion analysis. Similarly, the fused and digested 19961 (C-203) samples contained average concentrations of 5.35 x 10^5 µg/g sludge (53.5%) and 4.85 x 10^5 µg/g sludge (48.5%) 238 U, respectively.

The elemental data from the ICP-OES and ICP-MS analyses indicated that the dominant constituents in 19250 (C-202), in decreasing order, were U, Na, Fe, Mn, and P (Table 3.11). In C-203 tank samples the principal sludge components (>1% by dry mass) were U, Na, P, and Fe (Table 3.11). These elements accounted for about 43 to 68% of the dry masses of these residual sludge samples.

The concentrations of 137 Cs and 90 Sr in sludges were measured on fused and acid digested samples using GEA and liquid scintillation counting, respectively. The average 137 Cs concentrations in fused samples of 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludges were 12.3, 27.5, and 22.1 μ Ci/g sludge, respectively (Table 3.12). The average concentrations of 13.8, 19.3, and 21.7 μ Ci/g sludge found in acid digested sludge samples (Table 3.12) were comparable in magnitude to the values obtained from fused samples. The average 90 Sr concentrations in acid digested 19250 (C-202), 19887 (C-203) and 19961 (C-203) sludge samples were 756, 338 and 390 μ Ci/g sludge, respectively (Table 3.13).

Table 3.10. Concentrations of ⁹⁹Tc and ²³⁸U Measured by ICP-MS

	⁹⁹ Tc	²³⁸ U
Sample Number	μg/g-dry	y Sludge
КОН-Н	KNO ₃ Fusions	
19250 (C-202)	2.38E-01	2.19E+05
19250 (C-202) Dup	2.24E-01	2.52E+05
19887 (C-203)	1.05E-01	6.49E+05
19887 (C-203) Dup	(7.21E-02)	6.26E+05
19961 (C-203)	(7.62E-02)	5.24E+05
19961 (C-203) Dup	(6.97E-02)	5.46E+05
19250 (C-202) Avg	2.31E-01	2.36E+05
19887 (C-203) Avg	8.83E-02	6.37E+05
19961 (C-203) Avg	7.30E-02	5.35E+05
EPA A	cid Digestion	
19250 (C-202)	1.36E-01	2.16E+05
19250 (C-202) Dup	1.57E-01	2.28E+05
19250 (C-202) Trip	1.53E-01	1.78E+05
19887 (C-203)	(2.03E-02)	5.30E+05
19887 (C-203) Dup	2.87E-01	5.21E+05
19961 (C-203)	(5.39E-02)	4.95E+05
19961 (C-203) Dup	(1.69E-02)	4.75E+05
19250 (C-202) Avg	1.49E-01	2.07E+05
19887 (C-203) Avg	1.54E-01	5.25E+05
19961 (C-203) Avg	(3.54E-02)	4.85E+05
Avg = average; Dup = d	uplicate; Trip =	triplicate.

 Table 3.11.
 Dominant Elemental Concentrations in Sludges (% dry weight)

	19250 (C-202)		19887 (C-203)	19961 (C-203)				
	Fusion	Acid Digestion	Fusion	Acid Digestion	Fusion	Acid Digestion			
Elements		% Dry Mass of Sludge							
Fe	11.9	12.2	0.8	1.7	1.2	1.6			
Mn	2.5	2.5	0.1	0.1	0.1	0.1			
Na	NA*	5.9	NA*	9.7	NA*	9.5			
P	1.5	1.6	4.8	3.8	3.8	3.9			
U	23.6	20.7	63.7	52.5	53.5	48.5			

Concentrations listed in parentheses were <EQL.

NA* = Not applicable; sodium reagent used to dissolve fused sludge.

Table 3.12. ¹³⁷Cs Concentrations in Sludge

	¹³⁷ Cs	¹³⁷ Cs								
Sample Number	μCi/g-dry Sludge	μg/g-dry Sludge								
KOH-KNO ₃ Fusions										
19250 (C-202)	1.05E+01	1.21E-01								
19250 (C-202) Dup	1.41E+01	1.62E-01								
19887 (C-203)	2.48E+01	2.85E-01								
19887 (C-203) Dup	3.02E+01	3.47E-01								
19961 (C-203)	2.01E+01	2.31E-01								
19961 (C-203) Dup	2.41E+01	2.77E-01								
19250 (C-202) Avg	1.23E+01	1.41E-01								
19887 (C-203) Avg	2.75E+01	3.16E-01								
19961 (C-203) Avg	2.21E+01	2.54E-01								
	EPA Acid Digestion									
19250 (C-202)	1.37E+01	1.57E-01								
19250 (C-202) Dup	1.32E+01	1.51E-01								
19250 (C-202) Trip	1.47E+01	1.69E-01								
19887 (C-203)	1.79E+01	2.06E-01								
19887 (C-203) Dup	2.07E+01	2.38E-01								
19961 (C-203)	2.14E+01	2.46E-01								
19961 (C-203) Dup	2.19E+01	2.52E-01								
19250 (C-202) Avg	1.38E+01	1.59E-01								
19887 (C-203) Avg	1.93E+01	2.22E-01								
19961 (C-203) Avg	2.17E+01	2.49E-01								
Avg = Average. Dup = Duplicate. Trip = Triplicate.										

The concentrations of actinides in the sludge samples were measured using both fused and acid digested samples using ICP-MS methods unless noted (Table 3.14). The average ²³⁹Pu concentration in fusion sample 19250 (C-202) was found to be 55.9 µg/g sludge which was almost an order of magnitude less than the average concentration measured in the acid digested sample of 435 µg/g sludge. The average ²³⁹Pu fusion concentration in sample 19887 (C-203) was estimated at 1.78 µg/g sludge and was measured in sample 19961 (C-203) at 4.33 µg/g sludge. These values are up to a factor ten lower than the average ²³⁹Pu values (14.9 and 21.4 µg/g sludge) estimated for the acid digested samples. The average ²³⁷Np concentrations determined from fused and acid digested samples have similar concentrations. In fusion samples of 19250 (C-202), 19887 (C-203) and 19961 (C-203) sludges, the average ²³⁷Np concentrations were measured/estimated to be 0.361, 0.0685, and 0.0445 µg/g sludge, respectively. By comparison. ²³⁷Np concentrations in the same sludge samples that were acid digested were 2.16, 0.0485, and 0.0552 µg/g sludge, respectively. The concentrations of ²⁴¹Am in fused and acid digested fractions of 19250 (C-202) sludge sample were measured to be 0.23 and 0.45 µg/g sludge, respectively. The ²⁴¹Am concentrations in fused and acid digested fractions of sample 19887 (C-203) were 0.0055 and 0.012 µg/g sludge, respectively. The ²⁴¹Am concentrations in fused and acid digested fractions of sample 19961 (C-203) were 0.0065 and 0.017 µg/g sludge, respectively.

Table 3.13. 90Sr Concentrations in Sludge

	⁹⁰ Sr	⁹⁰ Sr									
Sample Number	μCi/g-dry Sludge	μg/g-dry Sludge									
KOH-KNO ₃ Fusions											
19250 (C-202)	604	4.31									
19250 (C-202) Dup	562	4.01									
19887 (C-203)	NA	NA									
19887 (C-203) Dup	NA	NA									
19961 (C-203)	NA	NA									
19961 (C-203) Dup	NA	NA									
19250 (C-202) Avg	583	4.16									
19887 (C-203) Avg	NA	NA									
19961 (C-203) Avg	NA	NA									
E	PA Acid Digestion										
19250 (C-202)	755	5.39									
19250 (C-202) Dup	752	5.37									
19250 (C-202) Trip	761	5.44									
19887 (C-203)	347	2.48									
19887 (C-203) Dup	328	2.34									
19961 (C-203)	401	2.87									
19961 (C-203) Dup	379	2.71									
19250 (C-202) Avg	756	5.40									
19887 (C-203) Avg	338	2.41									
19961 (C-203) Avg	390	2.79									
Avg = Average. Dup = Duplicate. Trip = Triplicate. NA = Not analyzed.											

3.2 ¹²⁹I Extraction and Measurement

Table 3.15 contains results of the 129 I analysis of the modified KOH:KNO₃ fusion/water extraction of sludge material from tanks C-202 and C-203. The data are reported as pCi 129 I per gram of sludge (calculated on a dry weight basis). ICP-MS analysis of 129 I was better than $\pm 10\%$ of certified reference standards, with a linear operating range extending three orders of magnitude (0.01 to 10 ng/mL).

The ¹²⁹I concentrations in solutions from the KOH:KNO₃ fusion/water extraction method were below the sample EQL for the analysis (see Section 3.1 for a discussion of EQL calculations). The instrument EQLs for these analyses were 4,500 pCi/L for the C-202 and C-203 residual waste samples, respectively. These instrument EQLs resulted in dilution-corrected sample EQLs ranging from 717 to 725 pCi/g sludge for the C-202 tank waste material and 584 to 681 pCi/g sludge for the C-203 tank waste material.

 Table 3.14.
 Actinide Concentrations in Sludge (measured using ICP-MS unless footnoted)

	237	Np	²³⁹ I	Pu	²⁴¹ Am									
Sample Number	μCi/g Sludge		μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge								
	KOH-KNO ₃ Fusions													
19250 (C-202)	2.54E-04	3.57E-01	3.36E+00	5.42E+01	8.95E-01	2.63E-01								
19250 (C-202) Dup	2.60E-04	3.66E-01	3.57E+00	5.76E+01	6.86E-01	2.02E-01								
19887 (C-203)	<3.61E-04	<5.08E-01	(9.61E-02)	(1.55E+00)	<2.88E+00	<8.47E-01								
19887 (C-203) Dup	(4.87E-05)	(6.85E-02)	(1.25E-01)	(2.02E+00)	1.86E-02 ^(a)	5.47E-03 ^(a)								
19961 (C-203)	(1.99E-05)	(2.80E-02)	2.45E-01	3.96E+00	2.15E-02 ^(a)	6.32E-03 ^(a)								
19961 (C-203) Dup	(4.33E-05)	(6.10E-02)	2.92E-01	4.71E+00	2.24E-02 ^(a)	6.58E-03 ^(a)								
19250 (C-202) Avg	2.57E-04	3.61E-01	3.46E+00	5.59E+01	7.91E-01	2.33E-01								
19887 (C-203) Avg	(4.87E-05)	(6.85E-02)	(1.11E-01)	(1.78E+00)	1.86E-02 ^(a)	5.47E-03 ^(a)								
19961 (C-203) Avg	(3.16E-05)	(4.45E-02)	2.69E-01	4.33E+00	2.19E-02 ^(a)	6.45E-03 ^(a)								
		EPA Acio	d Digestion											
19250 (C-202)	1.46E-03	2.05E+00	2.64E+01	4.25E+02	1.48E+00	4.36E-01								
19250 (C-202) Dup	1.55E-03	2.18E+00	2.74E+01	4.42E+02	1.58E+00	4.65E-01								
19250 (C-202) Trip	1.60E-03	2.26E+00	2.71E+01	4.38E+02	1.52E+00	4.46E-01								
19887 (C-203)	(5.03E-05)	(7.09E-02)	9.93E-01	1.60E+01	4.04E-02 ^(a)	1.19E-02 ^(a)								
19887 (C-203) Dup	(1.86E-05)	(2.62E-02)	8.58E-01	1.38E+01	3.81E-02 ^(a)	1.12E-02 ^(a)								
19961 (C-203)	(5.11E-05)	(7.20E-02)	1.38E+00	2.22E+01	5.79E-02 ^(a)	1.70E-02 ^(a)								
19961 (C-203) Dup	(2.73E-05)	(3.85E-02)	1.27E+00	2.05E+01	5.41E-02 ^(a)	1.59E-02 ^(a)								
19250 (C-202) Avg	1.54E-03	2.16E+00	2.70E+01	4.35E+02	1.53E+00	4.49E-01								
19887 (C-203) Avg	(3.45E-05)	(4.85E-02)	9.25E-01	1.49E+01	3.92E-02 ^(a)	1.15E-02 ^(a)								
19961 (C-203) Avg	(3.92E-05)	(5.52E-02)	1.33E+00	2.14E+01	5.60E-02 ^(a)	1.65E-02 ^(a)								
(a) Analyzed by Radioch Avg = Average.	emical Processir	ng Laboratory (RPL) using we	t chemical sep	aration and AE	A.								

Dup = Duplicate.

Table 3.15. Summary of ¹²⁹I Concentrations for Modified KOH-KNO₃ Water Fusion Extracts for Tanks C-202 and C-203 Sludge Samples

Tank	Sample Number	¹²⁹ I (pCi/g sludge)
C-202	19250	<725
	19250 Duplicate	<717
C-203	19887	<634
	19887 Duplicate	<584
C-203	19961	<681

Trip = Triplicate.

3.3 Water Leaching Tests

The data obtained from the water leaching tests on the three sludge samples [19250 (202), 19887 (203), and 19961 (203)] are presented and discussed in this section. The concentrations of the constituents in the water extracts tabulated in this section are expressed in units of μ Ci or μ g per gram of dry sludge. Concentrations on per liter basis of dissolved constituents are also listed in Appendix I. Results for ¹²⁹I in the single-contact and periodic replenishment tests are not included because they were below the detection limit.

3.3.1 Single-Contact Test Results

The single contact water-leach tests were run in duplicate with an equilibration time of one month. DDI water was used as a leachant. The results of these experiments are presented in this section. In addition, the first stage of the sequential extraction tests (Section 3.3.2) represents a 1-day water contact test, and the results of those tests are also provided in the tables in this section.

3.3.1.1 Digestion Factors and Moisture Contents – Single-Contact DDI Water Extracts

In these tests, 30 ml of DDI water was contacted with about 0.5 to 0.8 g of moist sludge. The moisture contents of these sludge samples ranged from 38 to 57% by mass (Table 3.1). The dry sludge masses calculated from moisture content measurements were used to compute the dry sludge to DDI water ratios (Table 3.16). These ratios ranged from about 6.47 to 17.55.

Sample Number	Sludge to DDI Water Ratio (g/L)
19250 (C-202)	9.17
19250 (C-202) Dup	6.47
19887 (C-203)	11.60
19887 (C-203) Dup	10.91
19961 (C-203)	13.30
19961 (C-203) Dup	17.55
All concentrations are cor	rected for the dry sludge basis.

Table 3.16. Sludge to DDI Ratios Used in Water Leaching Tests

3.3.1.2 Water Extract pH and Alkalinity – Single-Contact DDI Water Extracts

The average alkalinities and pH values measured in duplicate samples of each sludge DDI water extract are listed in Table 3.17. The pH values of all three sludge water extracts were alkaline in nature with the C-202 samples in the range of 8.18 to 9.00 and the C-203 samples in the range 10.47 to 10.88. The total alkalinities for C-202 sludge DDI water extracts ranged from 25.5 to 38.7 mg $CaCO_3/g$ sludge. The values for the C-203 sludge were in the range 42.3 to 48.8 mg $CaCO_3/g$ sludge (Table 3.17).

Table 3.17. Water Extract pH and Alkalinity Values

Sample Number	pН	Total Alkalinity as CaCO ₃ (mg/g sludge)						
19250 (C-202) 1 Day	8.18	38.7						
19250 (C-202) Dup 1 Day	8.72	32.0						
19250 (C-202) 1 Month	8.78	25.5						
19250 (C-202) Dup 1 Month	9.00	34.6						
19887 (C-203) 1 Day	10.66	42.3						
19887 (C-203) Dup 1 Day	10.63	44.2						
19887 (C-203) 1 Month	10.56	44.6						
19887 (C-203) Dup 1 Month	10.47	48.8						
19961 (C-203) 1 Day	10.88	45.3						
19961 (C-203) Dup 1 Day	10.88	43.4						
19961 (C-203) 1 Month	10.75	43.5						
19961 (C-203) Dup 1 Month	10.56	43.1						
Dup = Duplicate. All concentrations are corrected for the dry sludge basis.								

3.3.1.3 Extractable ⁹⁹Tc and ²³⁸U – Single-Contact Water Extracts

The radionuclides 99 Tc and 238 U pose a long-term environmental risk because of their long half lives and high mobility in the dissolved state. The concentrations of these two constituents mobilized in DDI water after 1 day and 1 month of contact with the C-202 and C-203 residual sludge samples are listed in Table 3.18. The concentrations of 99 Tc extracted from C-202 sludge in the single contact extracts were extremely low (0.0069 and 0.0093 μ g/g sludge). The extracts from the two sludge samples from tank C-203 contained 99 Tc concentrations that were estimated at 0.0023 and 0.0037 μ g/g sludge for the 1-day contact tests and below instrumental detection limits for the 1-month contact. When compared to the total 99 Tc in the sludge as measured by acid digestion of the sludges, these water leachable concentrations represent about 1 to 10% of the 99 Tc in the residual sludges (Table 3.19).

Table 3.18. ⁹⁹Tc and ²³⁸U Concentrations Extracted from Sludges from Single-Contact Water Leach Tests

	⁹⁹ Tc	²³⁸ U	⁹⁹ Tc	²³⁸ U
Sample Number	μg/g S	ludge	μCi/g	Sludge
19250 (202) Dup 1 Day Avg	9.34E-03	4,970	1.59E-04	1.69E-03
19250 (202) 1 Month Avg	6.89E-03	4,380	1.17E-04	1.49E-03
19887 (203) Dup 1 Day Avg	(2.30E-03)	29,800	(3.91E-05)	1.01E-02
19887 (203) 1 Month Avg	<4.45E-02	13,800	<7.56E-04	4.69E-03
19961 (203) Dup 1 Day Avg	(3.69E-03)	50,000	(6.27E-05)	1.70E-02
19961 (203) 1 Month Avg	<3.30E-02	12,100	<5.62E-04	4.13E-03
Avg = Average.				

Table 3.19. Water-Leachable Percentages of ⁹⁹Tc and ²³⁸U Extracted from Sludge Samples

	⁹⁹ Tc	²³⁸ U						
Sample Number	Percent Water Leachable							
19250 (202) Dup 1 Day Avg.	6.3	2.4						
19250 (202) 1 Month Avg.	4.6	2.11						
19887 (203) Dup 1 Day Avg.	(1.5)	5.7						
19887 (203) 1 Month Avg.	N/A	2.63						
19961 (203) Dup 1 Day Avg.	(10.4)	10.3						
19961 (203) 1 Month Avg.	N/A	2.50						
N/A = Technetium was not detected in these samples.								

N/A = Technetium was not detected in these samples. Total concentrations from EPA acid digestions.

The DDI water extracts from these sludges contained significant concentrations of 238 U. For instance, the 1-day extract from C-202 sludge contained an average 238 U concentration of 4.97 x 10^3 µg/g sludge (4,970 ppm) and the 1-day extracts from the C-203 sludges were found to contain 238 U concentrations of 2.98 x 10^4 µg/g sludge (29,800 ppm) and 5.0 x 10^4 µg/g sludge (50,000 ppm), respectively. The 1-month extract 238 U concentrations for each sample were slightly lower than the 1-day extracts. The percentages of leachable uranium for the samples have been calculated using the acid digestion concentrations for the total values. The leachable percentages are in the range of 2.1 to 10.3% (Table 3.19) suggesting that 238 U, like 99 Tc, is present in the sludges in a solid of relatively low solubility.

3.3.1.4 Extractable Metals Concentrations – Single-Contact DDI Water Extracts

Concentrations of a number of metals such as, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, Ti, Tl, V, Zn, and Zr in the DDI water extracts were measured by ICP-OES. Among these, only about a dozen metals were present in measurable concentrations (Table 3.20). The concentrations listed within parentheses indicate values that are less than EQL. These data showed that the two major DDI water leachable elements in all three sludge samples were Na and P. Extraction concentrations of Na in all three sludge samples were similar in magnitude. For example, the 1-month Na concentrations were $2.96 \times 104 \,\mu\text{g/g}$ sludge in $19250 \, (\text{C-}202), \, 2.79 \times 104 \,\mu\text{g/g}$ sludge in $19887 \, (\text{C-}203), \, \text{and} \, 2.82 \times 104 \,\mu\text{g/g}$ sludge in $19961 \, (\text{C-}203). \, \text{However}, \, 1\text{-month} \, \text{concentrations}$ of P in $19250 \, (\text{C-}202) \, \text{sludge}$ extract was $2.25 \times 103 \,\mu\text{g/g}$ sludge, which was about three to four times less than the P concentrations observed in the DDI water extracts of C-203 tank sludge samples $(6.5 \times 103 \,\mu\text{g/g} \, \text{sludge})$ sludge and $7.1 \times 103 \,\mu\text{g/g} \, \text{sludge}$ in $19887 \, \text{and} \, 1996$, respectively). Other elements with measurable leachability ($\sim 50 - 1,000 \,\mu\text{g/g} \, \text{sludge}$) included Al, Ca, Cr, Fe, Mn, and Pb (only in C-203 sludges). Metals with very low leachabilities (<EQL) present in these sludges were Mg, Ni, Sr, and Zn.

Percentages of total metals that were DDI water extractable are listed in Table 3.21. These results were computed on the basis of the total metal concentrations as measured in the acid digestion sludge extractions (Table 3.3 to Table 3.5). The 1-month data show that about a half (50.3%) of the total Na present in 19250 (202) and about a third (28.8 and 29.8%, respectively) of the Na inventory in the 19887 (203) and 19961 (203) residual sludge samples were present in readily leachable forms. Water leachable fractions of P for the 1-month tests constituted 14% of 19250 (C-202), 17.2% of 1987 (C-203), 18.3% of 19961 (203) of the total mass of P present in these residual sludges. Other measurable leachable metal

 Table 3.20.
 DDI Water-Leachable Average Metal Concentrations in Single-Contact Water Extractions

	Al	Ca	Cr	Fe	K	Mn	Na	Ni	P	Pb	Si	Sr	Zn
Sample Number		μg/g-dry Sludge											
19250 (202) 1 Day	211	(214)	207	772	(720)	165	28,000	56.3	2,130	(66.8)	<1,450	15.6	(10.4)
19250 (202) 1 Month	200	(145)	203	132	303	30.3	29,600	(12.3)	2,250	(23.3)	NA	(6.73)	(6.16)
19887 (203) 1 Day	97.2	214	995	704	<4,680	117	29,8004	87	8,450	3.29	(136)	22.4	(46.0)
19887 (203) 1 Month	168	184	560	301	<5,560	49.5	27,900	(41.6)	6,550	152	<4,450	(12.3)	(66.5)
19961 (203) 1 Day	(63.2)	311	1,610	1,640	<46,800	237	33,400	203	10,050	646	(192)	36.7	(70.4)
19961 (203) 1 Month	124	199	977	750	<4,130	119	28,200	(97.4)	7,130	250	<3,300	(13.7)	(67.3)

Table 3.21. Percentages of DDI Water-Leachable Metals in Single-Contact Water Extractions

	Al	Ca	Cr	Fe	K	Mn	Na	Ni	P	Pb	Si	Sr	Zn
Sample Number		Percent Water Leachable											
19250 (C-202) 1 Day	1.5%	(1.5%)	1.6%	0.6%	(4.6%)	0.6%	47.6%	0.6%	13.2%	(0.8%)	N/A	1.0%	(1.3%)
19250 (C-202) 1 Month	1.5%	(1.0%)	1.5%	0.1%	(1.9%)	0.1%	50.3%	(0.1%)	14%	(0.3%)	N/A	(0.4%)	(0.8%)
19887 (C-203) 1 Day	N/A	6.5%	15.6%	4.2%	N/A	13.9%	30.8%	19.9%	22.2%	5.5%	(3.5%)	5.8%	(6.4%)
19887 (C-203) 1 Month	N/A	5.6%	8.8%	1.8%	N/A	5.9%	28.8%	(9.5%)	17.2%	2.6%	N/A	(3.2%)	(9.3%)
19961 (C-203) 1 Day	N/A	10.5%	29.6%	10.3%	N/A	22.1%	35.3%	34.8%	27.0%	12.2%	(6.2%)	8.4%	(13.2%)
19961 (C-203) 1 Month	N/A	6.7%	18.0%	4.7%	N/A	11.1%	29.8%	(16.7%)	18.3%	4.7%	N/A	(3.2%)	(12.6%)
N/A = Not applicable; ana	lytes below	detection	limits.										

fractions were found only in C-203 tank sludge samples. These leachable metals consisted of Ca (5.6 and 6.7%), Cr (8.8 and 18.0%), Fe (1.8 and 4.7%), Mn (5.9 and 11.1%), and Pb (2.6 and 4.7%) in samples 19887 (C-203) and 19961 (C-203), respectively. These data show that Cr, Fe, Mn, and Pb are appreciably more DDI-water leachable from C-203 sludge sample 19887 than 19961. At this time, there are no discernable reasons for this differential leaching of these four elements from these two sludge samples from the same waste tank.

3.3.1.5 Extractable Anion Concentrations – Single-Contact Water Extracts

The concentrations of anions that were present in the DDI water extracts after 1-day and 1-month contact times were measured by ion chromatography (Table 3.22). The results for the 1-day contact are similar to the 1-month, and only the details of the 1-month results are discussed. Among the halides, fluoride in the DDI water extracts of all sludges was present in one and two orders of magnitude higher concentrations than chloride. Average concentrations of F and Cl in the 1-month 19250 (C-202) sample extracts were 4,290 and 165 μ g/g sludge, respectively. Extract concentrations of F, and Cl, in C-203 sludge samples were about half of what were measured in the C-202 1-month sludge extract [19887 (C-203), F: 2570 μ g/g sludge, Cl: 56μ g/g sludge and 19961 (C-203), F: 2760 μ g/g sludge, Cl: 83.1 μ g/g sludge].

Table 3.22. Average Extractable Anion Concentrations Determined from Single-Contact DDI Water Extractions

	Fluoride	Chloride	Nitrite	Nitrate	Carbonate ^(a)	Sulfate	Oxalate ^(a)	Phosphate ^(a)				
Sample Number		μg/g Sludge										
19250 (C-202) 1 Day	3,850	33.5	442	1,250	12,200	233	28,600	5,640				
19250 (C-202) 1 Month	4,290	165	474	1,760	13,300	207	27,600	6,260				
19887 (C-203) 1 Day	2,480	64.9	478	3,950	29,700	211	1,280	16,200				
19887 (C-203) 1 Month	2,570	56	456	3,900	32,300	198	1,270	18,100				
19961 (C-203) 1 Day	2,610	73.6	742	5,480	32,400	269	1,330	20,600				
19961 (C-203) 1 Month	2,760	83.1	786	5,800	29,700	279	1,400	19,000				

⁽a) Carbonate, oxalate and phosphate results are for information only. The QC standard for these three anion analyses was not within the ±10%. Oxalate numbers were background corrected.

Nitrate concentrations in the extracts were about 4 to 9 times higher than nitrite concentrations. Average nitrate and nitrite concentrations in 19250 (C-202) 1-month extracts were 1,760 and 474 μ g/g sludge respectively. Higher concentrations nitrate were found in C-203 tank sludge samples [19887 (203): 3,900 μ g/g sludge, and 19961 (C-203): 5,800 μ g/g sludge].

The 1-month extract concentration of carbonate in 19250 (C-202) was found to be 13.3 mg/g sludge. This value is about 40% less than the value computed from alkalimetric titrations (30.07 mg/g sludge, Table 3.17). Relatively higher carbonate concentrations were found in the C-203 tank sludge extracts [19887 (203): 32.3 mg/g sludge, and 19961 (C-203): 29.7 mg/g sludge]. These values on average were within 8% of the total alkalinity calculated from the alkalimetric titrations. Part of these differences in the

directly measured carbonate concentrations in the extracts and the corresponding calculated total alkalinity values may be attributable to the hydroxide alkalinities of these samples.

Relatively low concentrations of sulfate were found in the DDI water extracts of these sludge samples. The average 1-month contact sulfate concentrations were 207, 198, and 279 μ g/g sludge in extracts of 19250 (C-202), 19887 (C-203), and 19961 (C-203) samples, respectively.

Significant concentrations of phosphate were found in the 1-month DDI water extracts of these sludge samples. The phosphate concentrations in DDI water extracts from C-203 sludge samples 19887 and 19961 were 18,100 and 19,000 μ g/g sludge, respectively. These phosphate concentrations were about three times higher than what was measured in 19250 (C-202) sample extract (6,260 μ g/g sludge). In contrast, the 19250 (C-202) sludge extract contained very high oxalate concentration (27,600 μ g/g sludge) that exceeded the oxalate concentrations in C-203 tank sludge sample DDI water extracts by more than an order of magnitude [19887 (C-203): 1,270 μ g/g sludge, and 19961 (C-203): 1,400 μ g/g sludge].

3.3.1.6 Extractable ¹³⁷Cs and ⁹⁰Sr in Single-Contact DDI Water Extracts

The concentrations of 137 Cs in the sludge DDI water extracts after 1 month indicated that this radioisotope had extremely low leachabilities that were in the low microcuries per gram of sludge levels (Table 3.23). As an example, the average 137 Cs concentration in the 19250 (C-202) sludge DDI water extract was found to be 0.338 μ Ci/g sludge, whereas, 137 Cs concentrations in 19887 (C-203) and 19961 (C-203) sample extracts were measured at 0.385 μ Ci/g sludge and 0.593 μ Ci/g sludge, respectively. Therefore, the DDI water leachable fraction of 137 Cs in these sludge samples constituted on average 2.4, 2.0, and 2.7% of the total 137 Cs present in the 19250 (C-202), 19887 (C-203); and 19961 (C-203) sludge samples, respectively.

Table 3.23.	Extractable ¹³⁷ Cs	Concentrations	Determined from	Single-Contact	Water Extractions
-------------	-------------------------------	----------------	-----------------	----------------	-------------------

	¹³⁷ Cs			
	μCi/g Sludge	μg/g Sludge		
Sample Number	Water Extract			
19250 (C-202) 1 Day	0.646	7.42E-03		
19250 (C-202) 1 Month	0.338	3.89E-03		
19887 (C-203) 1 Day	0.681	7.83E-03		
19887 (C-203) 1 Month	0.385	4.42E-03		
19961 (C-203) 1 Day	1.58	1.82E-02		
19961 (C-203) 1 Month	0.593	6.82E-03		

The 90 Sr concentrations in the DDI water extracts are provided in Table 3.24. The 1-month C-202 extract of sample 19250 contained 9.93 μ Ci/g sludge 90 Sr, while the extracts of 19887 (C-203) and 19961 (C-203) sludge samples contained concentrations of 16.4 and 15.9 μ Ci/g sludge, respectively. These concentrations represented 1.3, 4.8, and 4.1% of the total 90 Sr present in these sludge samples.

Table 3.24. Extractable 90Sr Concentrations Determined from Single-Contact DDI Water Extractions

	⁹⁰ Sr		
	μCi/g Sludge	μg/g Sludge	
Sample Number	Water Extract		
19250 (C-202) 1 Day	20.7	0.148	
19250 (C-202) 1 Month	9.93	0.071	
19887 (C-203) 1 Day	21.0	0.150	
19887 (C-203) 1 Month	16.4	0.117	
19961 (C-203) 1 Day	39.4	0.281	
19961 (C-203) 1 Month	15.9	0.113	

3.3.1.7 Extractable Actinides - Single-Contact DDI Water Extracts

The DDI water leachable extractable actinide concentrations are listed in Table 3.25. The concentrations of actinides in these sludge DDI water extracts were in the order 239 Pu $>^{237}$ Np $>^{241}$ Am. The concentrations of 241 Am in the extracts were in all cases well below the EQL and/or instrument detection limits.

Table 3.25. Extractable Actinide Concentrations Determined from Single-Contact DDI Water Extractions

	²³⁷ Np		²³⁹ I	Pu	²⁴¹ Am		
Sample Number	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	
19250 (C-202) 1 Day	9.41E-05	1.33E-01	2.34E-01	3.78E+00	(1.16E-02)	(3.42E-03)	
19250 (C-202) 1 Month	(2.16E-05)	(3.04E-02)	6.09E-02	9.83E-01	(2.09E-03)	(6.14E-04)	
19887 (C-203) 1 Day	<5.32E-03	<7.49E-01	2.27E-01	3.66E+00	<6.37E-01	<1.87E-01	
19887 (C-203) 1 Month	<6.32E-04	<8.90E-01	<2.76E-01	<4.45E+00	<1.51E+01	<4.45E+00	
19961 (C-203) 1 Day	<5.56E-03	<7.82E-01	4.78E-01	7.71E+00	<6.65E-01	<1.96E-01	
19961 (C-203) 1 Month	<4.69E-04	<6.61E-01	(5.14E-02)	(8.28E-01)	<1.12E+01	<3.30E+00	

The 239 Pu concentrations in the 1-day DDI water extracts of sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203) were 3.78, 3.66, and 7.71 µg/g sludge respectively. These concentrations indicated that 0.87, 24.5, and 36.1% of the total 239 Pu contained in these sludge samples were in DDI-water extractable forms (Table 3.26). The 1-month water extract results generally had lower percentages of leachable 239 Pu.

The DDI water extracts contained very low concentrations of 237 Np. The only measured concentration was the 1-day sample 19250 (C-202) extract that contained 0.133 µg/g sludge 237 Np. This represented 6.1% of the total 237 Np in this sludge. The non-detect extractable concentration levels for the C-203 sludge samples were greater than the estimated total 237 Np concentrations in these samples; therefore, an estimate of maximum leachable 237 Np cannot be calculated.

Table 3.26. Water-Leachable Percentage for Actinides in Single-Contact DDI Water Extractions

	²³⁷ Np	²³⁹ Pu	²⁴¹ Am			
Sample Number	% Water Leachable					
19250 (202) 1 Day	6.1	0.87	(0.8)			
19250 (202) 1 Month	(1.40)	0.2	(0.1)			
19887 (203) 1 Day	N/A	24.5	N/A			
19887 (203) 1 Month	N/A	N/A	N/A			
19961 (203) 1 Day	N/A	36.1	N/A			
19961 (203) 1 Month	N/A	(0.24)	N/A			
N/A = Results below detection limit. Total concentrations from EPA acid digestions.						

The estimated DDI water extractable 241 Am concentration for the 1-day water leach of sample 19250 (C-202) was $0.00342~\mu\text{g/g}$ sludge, which represents 0.8% of the total 241 Am in this sludge sample. 241 Am was not detected in the water leaches for the C-203 sludge samples.

3.3.2 Water Extraction Periodic Replenishment Test Results

The periodic replenishment tests were conducted by repeatedly equilibrating duplicate sludge samples with 30 mL aliquots of fresh DDI water. Sequential contacts, 1, 2, 4, and 5 were for 1 day each, whereas, sequential contact 3 and 6 lasted 3 and 30 days, respectively (Table 3.27). The goal of the sequential leaching tests was to assess the long-term leaching characteristics of key contaminants and other constituents from these residual sludge samples. The results of these tests are presented in this section.

3.3.2.1 Digestion Factors and Moisture Contents – Periodic Replenishment DDI Water Extractions

In these tests, 30 ml of DDI water was contacted with about 0.3 to 0.6 g of moist sludge. The moisture contents of these sludge samples ranged from 38 to 57% by mass (Table 3.1). The dry sludge masses calculated from moisture content measurements were used to compute the dry sludge to DDI water ratios (Table 3.28). These ratios ranged from about 6.79 to 14.24.

3.3.2.2 Water Extract pH and Alkalinity – Periodic Replenishment Water Extractions

The average alkalinities and pH values measured in duplicate aliquots of DDI water extracts of each sludge sample at the end of each sequential contact are listed in Table 3.27. The pH values at all stages of extraction were alkaline in nature ranging between 7.43 - 8.74, 9.9 - 10.65, and 10.04 - 10.88 for the three sludge samples. The pH values for all sludge samples tended to decrease measurably in a step wise fashion from the initial to the fifth stage of extraction, and then increased slightly during the last extraction stage that lasted 30 days.

Table 3.27. Contact Times, pH Values, and Alkalinities for DDI Water Contact Periodic Replenishment Extractions

Sequential Contacts	Contact Duration (days)	рН	Total Alkalinity as CaCO ₃ (mg/g sludge)
	Sample 192	250 (C-202)	
1	1	8.45	35.4
2	1	8.34	10.3
3	3	8.09	7.07
4	1	7.94	4.31
5	1	7.43	3.70
6	30	8.74	8.74
	Sample 198	887 (C-203)	
1	1	10.65	43.3
2	1	10.50	14.8
3	3	10.27	10.3
4	1	10.55	8.94
5	1	9.90	6.36
6	30	10.49	12.7
	Sample 199	061 (C-203)	
1	1	10.88	44.4
2	1	10.81	14.1
3	3	10.51	10.8
4	1	10.51	9.66
5	1	10.04	8.17
6	30	10.45	12.7

Table 3.28. Sludge to DDI Ratios Used in Periodic Replenishment Leaching Tests

Sample Number	Sludge to DDI Water Ratio (g/L)			
19250 (202)	6.79			
19250 (202) Dup	6.99			
19887 (203)	14.24			
19887 (203) Dup	12.57			
19961 (203)	12.26			
19961 (203) Dup	13.34			
All concentrations are corrected for the dry sludge basis.				

For all samples the initial extraction mobilized the highest total alkalinity then alkalinity decreased with subsequent extraction stages but finally increased slightly during the last stage, a 30-day extraction. Typically, the total alkalinity dropped by about 65 to 70% from the initial extraction to the second extraction. For the 19250 (C-202) sludge, the sum of extractable total alkalinity from all six stages was 69.5 mg CaCO₃/g sludge, whereas, the sum of sequentially extracted alkalinities for 19887 (C-203) and 19961 (C-203) sludge samples were 96.4 and 99.8 mg CaCO₃/g sludge respectively. These six stages of sequential extractions mobilized more than twice the amount of alkalinity from each sludge sample as

compared to the alkalinities released by the single 30-day water extraction (Table 3.17). Also, a rebound in both pH and alkalinity values during the last extraction stage indicated that there are slowly water-releasable alkalinity components in all these sludge samples even after considerable water leaching.

3.3.2.3 Carbon Content – Periodic Replenishment DDI Water Extractions

Table 3.29 lists the carbon contents that were sequentially extractable from the C-202 and C-203 sludge samples. The bulk of the extractable carbon from all the sludge samples was mobilized during the first extraction. Approximately 41, 63, and 64% of the total carbon contents of samples 19250 (C-202), 19887 (C-203) and 19961 (C-203) were extracted during the first stage. The carbon extracted during the first stage consisted of mainly organic carbon that accounted for about 46 to 73% of the total organic carbon contents of these sludges.

Table 3.29. Carbon Content – Periodic Replenishment DDI Water Extractions

Sequential	Duration	TC	TOC	TIC
Contact	(Days)		mg C/g Sl	udge
		19250 (C-20	02)	
1	1	19.04	12.41	6.63
2	1	5.52	2.52	3.00
3	3	5.94	3.23	2.72
4	1	2.80	1.03	1.77
5	1	2.58	0.87	1.71
6	30	10.31	6.76	3.56
		19887 (C-20	03)	
1	1	8.68	3.99	4.70
2	1	1.63	0.54	1.28
3	3	1.11	0.36	1.11
4	1	0.60	0.36	0.60
5	1	0.52	0.36	0.52
6	30	1.30	0.36	1.30
		19961 (C-20	03)	
1	1	9.39	5.18	4.21
2	1	1.78	0.38	1.78
3	3	1.12	0.38	1.12
4	1	0.68	0.38	0.68
5	1	0.56	0.38	0.56
6	30	1.19	0.38	1.19
All concentr	ations are co	rrected for t	he dry sludge	e basis.

The organic and inorganic carbon contents of the DDI water leachates dropped off significantly from the first stage to the last stage of extraction for both C-203 residual sludge samples. During the prolonged final extraction stage, the organic concentration rebounded by a factor of about 8 in the C-202 sludge sample, whereas in the C-203 samples there was no rebound of organic carbon. For all three residual sludge samples, the total inorganic carbon increased by a factor of about 2 between the fifth and sixth stages of contact.

3.3.2.4 ⁹⁹Tc and ²³⁸U – Periodic Replenishment DDI Water Extracts

The concentrations of 99 Tc and 238 U mobilized in periodic replenishment DDI water extractions of the sludge samples are listed in Table 3.30. The concentration of 99 Tc in the first stage extract of sludge 19250 (C-202) was extremely low (0.0093 μ g/g sludge). Concentrations of 99 Tc for all subsequent stages for this sample were below detection limits. Extracts from all six stages of extraction from the two sludge samples from tank C-203 contained 99 Tc concentrations that were below instrumental detection limits. Sample 19250 (C-202) was calculated to have a measurable percentage (8.2%) of its total 99 Tc leached during the DDI water replenishment tests (Table 3.31); however, very little (<2%) of the total 99 Tc was leachable from sample 19887 (C-203). Approximately 10.4% of the total 99 Tc in sample 19961 (C-203) may have been leached from this sludge sample (Table 3.31) using DDI.

In contrast, extracts from these sludges obtained from all six stages contained significant concentrations of 238 U (Table 3.30). The initial extract from 19250 (C-202) sludge contained an average 238 U concentration of 4,970 µg/g sludge (4,970 ppm) and similarly, the first stage extracts from sludges 19887 (C-203) and 19961 (C-203) samples contained 238 U concentrations of 29,800 µg/g sludge and 50,000 µg/g sludge, respectively. The second through fifth stage extracts show a decreasing trend in 238 U concentrations. The last (6th) stage of prolonged extractions showed 238 U concentrations that had increased to levels

Table 3.30. 99Tc and 238U Concentrations in Periodic Replenishment DDI Water Extractions

Sequential	Contact Duration	⁹⁹ Tc	²³⁸ U	⁹⁹ Tc	²³⁸ U	
Contact	(days)	μg/g S	ludge	μCi/g Sludge		
		Sample 19250 ((C-202)			
1	1	9.34E-03	4,970	1.59E-04	1.69E-03	
2	1	(1.89E-03)	1,520	(3.22E-05)	5.17E-04	
3	3	(9.49E-04)	1,890	(1.61E-05)	6.42E-04	
4	1	<3.72E-03	796	<6.33E-05	2.71E-04	
5	1	<7.26E-03	627	<1.23E-04	2.13E-04	
6	30	<7.26E-03	5,510	<1.23E-04	1.87E-03	
		Sample 19887 ((C-203)			
1	1	(2.30E-03)	29,800	(3.91E-05)	1.01E-02	
2	1	<7.49E-03	11,100	<1.27E-04	3.78E-03	
3	3	<7.49E-03	11,700	<1.27E-04	3.99E-03	
4	1	<7.49E-03	2,420	<1.27E-04	8.22E-04	
5	1	<7.49E-03	2,820	<1.27E-04	9.58E-04	
6	30	<3.74E-02	33,400	<6.37E-04	1.14E-02	
		Sample 19961 ((C-203)			
1	1	(3.69E-03)	50,000	(6.27E-05)	1.70E-02	
2	1	<7.82E-03	8,870	<1.33E-04	3.02E-03	
3	3	<7.82E-03	8,650	<1.33E-04	2.94E-03	
4	1	<7.82E-03	1,730	<1.33E-04	5.87E-04	
5	1	<7.82E-03	3,090	<1.33E-04	1.05E-03	
6	30	<3.91E-02	13,800	<6.65E-04	4.69E-03	

Table 3.31. Water Leachable Percentages of ⁹⁹Tc and ²³⁸U in Periodic DDI Water Replenishment Extractions

	Contact Duration	⁹⁹ Tc	²³⁸ U		
Contact Stage	(days)	Percent Water	Leachable		
	C-202 (Sample 1	9250)			
1	1	6.3	2.4		
2	1	(1.3)	0.7		
3	3	(0.6)	0.9		
4	1	<eql< td=""><td>0.4</td></eql<>	0.4		
5	1	<eql< td=""><td>0.3</td></eql<>	0.3		
6	30	<eql< td=""><td>2.7</td></eql<>	2.7		
	C-203 (Sample 1	9887)			
1	1	(1.5)	5.7		
2	1	<eql< td=""><td>2.1</td></eql<>	2.1		
3	3	<eql< td=""><td>2.2</td></eql<>	2.2		
4	1	<eql< td=""><td>0.5</td></eql<>	0.5		
5	1	<eql< td=""><td>0.5</td></eql<>	0.5		
6	30	<eql< td=""><td>6.4</td></eql<>	6.4		
	C-203 (Sample 19	9961)			
1	1	(10.4)	10.3		
2	1	<eql< td=""><td>1.8</td></eql<>	1.8		
3	3	<eql< td=""><td>1.8</td></eql<>	1.8		
4	1	<eql< td=""><td>0.4</td></eql<>	0.4		
5	1	<eql< td=""><td>0.6</td></eql<>	0.6		
6	30	<eql< td=""><td>2.8</td></eql<>	2.8		
<eql= acid="" below="" concentrations="" digestions.<="" epa="" eql.="" from="" td="" the="" total=""></eql=>					

similar to what was observed during the first stage of extraction for samples 19250 (C-202) and 19887 (C-203), whereas the level in 19961 (C-203) increased significantly in the 6th stage but reached only about 28% of the first stage value. Such dissolution behavior may be indicative of two types of ²³⁸U solid phases in these sludges that have differing dissolution kinetics.

The total ²³⁸U leachable from all six sequential DDI water extractions constituted 8.0, 17, and 18% of the total ²³⁸U present in 19250 (C-202), 19887 (C-203) and 19961 (C-203) residual sludges, respectively (Table 3.31). These data indicate that the sums of ²³⁸U leached from all six stages of sequential extraction of these sludges were about 4 to 7 times more than the ²³⁸U extracted in the single 30-day contact test (Table 3.19).

3.3.2.5 Selected Metal Concentrations – Periodic Replenishment DDI Water Extractions

Concentrations of a number of metals such as, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, Ti, Tl, V, Zn, and Zr in the DDI water extracts were measured by ICP-OES. Among these, only about eleven metals were present in measurable concentrations

Table 3.32). The concentrations listed within parentheses indicate values that are less than the EQL. These data show that the two major leachable elements in all three sludge samples were Na and P. Extractable concentrations of Na in these sludge samples from all six DDI water extraction stages ranged form 1,710 to 33,200 µg/g sludge and P ranged from 237 to 10,400 µg/g sludge. The sequential leaching behaviors of Na and P from these sludges were similar to other constituents in that, following high concentrations in the first stage, significantly lower concentrations were observed in the subsequent four stages of extraction and then concentrations were enhanced noticeably in the final leach stage. Other elements in these sludges with measurable concentrations, such as Cr, Fe, Mn, Ni, and Pb, exhibited sequential leaching behaviors that were similar to that of major leachable elements. Metals with very low leachabilities (<EQL) present in these sludges include Mg, Ni, Sr, and Zn.

Table 3.32. Water-Leachable Average Metals in Periodic Replenishment DDI Water Extractions

Sequential	Al	Ba	Ca	Cr	Fe	Mn	Na	Ni	P	Pb	Sr
Contact					<u> </u>	ug/g Dry	Sludge				
	Sample 19250 (C-202)										
1	211	(2.8)	(214)	207	773	165	28,000	56	2,130	(66.8)	16
2	241	(1.9)	(162)	(67.0)	468	99	5,500	32	1,420	(40.8)	(8.6)
3	438	(2.2)	(175)	111	796	172	3,900	59	1,100	(66.5)	(10.9)
4	287	(1.7)	(139)	(36.0)	286	64	1,700	(25.8)	426	(24.1)	(4.8)
5	256	(2.8)	(132)	(24.3)	192	43	1,330	(16.5)	237	(23.0)	(4.7)
6	705	27.2	(302)	326	2,510	565	3,870	213	659	175	35
				San	nple 19887	(C-203)					
1	97.2	(11.1)	214	995	704	116.7	29,800	87.0	8,450	329	22.4
2	(34.9)	(13.4)	(139)	383	312	52.4	7,920	(37.4)	3,730	138	(9.8)
3	(13.9)	(13.1)	(145)	338	271	45.8	5,170	(30.8)	(2,500)	136	(9.7)
4	(18.6)	(6.9)	(88.3)	48	(46.4)	(6.6)	2,440	(6.2)	(1,120)	(19.1)	(2.7)
5	(33.0)	(5.0)	(69.3)	80	(62.0)	(9.4)	1,840	(7.3)	(752)	(30.8)	(3.0)
6	(38.9)	53.9	(185)	351	336	48.0	6,300	(35.3)	3,130	241	22.0
				San	nple 19961	(C-203)					
1	(66.0)	(19.6)	320.0	1,600	1617	236	33,000	198	10,430	642	37
2	(26.9)	(4.1)	(122.9)	317	375	54	8,050	44	(3,800)	156	(9.6)
3	(21.3)	(10.5)	(120)	236	286	41	5,030	(31)	(2,400)	133	(10.0)
4	(18.1)	(12.9)	(57.3)	38	(49)	(5.9)	2,430	(4.2)	(1,040)	23	(2.3)
5	(18.9)	(13.2)	(82.1)	54	(79)	(9.2)	1,780	(7.4)	(670)	38	(2.8)
6	(72.5)	46.1	(92.0)	159	166	22	4,440	(19)	(2,190)	164	(11.5)
	Values within parentheses were <eql. based="" duplicate="" measurements.<="" on="" td=""></eql.>										

The percentages of metals that were cumulatively extractable during the six-stage sequential DDI water leaching are listed in Table 3.33. These results were computed on the basis of the total metal concentrations as measured in the acid digested samples of the residual sludges (Table 3.3 to Table 3.5). The data show that about 75.3% of the total Na present in sample 19250 (C-202) and about 55.2 and 58.0% of the Na inventory in the samples 19887 (C-203) and 19961 (C-203), respectively, were present in readily water leachable forms. These data indicated that the six stage sequential extraction of these sludge samples released about twice the amount of Na that was leached in a single 30-day extraction (Table 3.20). Also the sequential extractions of these sludges released P that constituted 37% of sample

19250 (C-202), 51.8% of 19887 (C-203), and 52.6% of 19961 (C-203) of the total mass of P present in these sludges. The cumulative P released from these sludges by the sequential extractions was about three times the amount of P released from the single 1-month extraction.

Table 3.33. Cumulative Percentages of Leachable Metals – Periodic Replenishment DDI Water Extractions

	Sample 19250 (C-202)	Sample 19887 (C-203)	Sample 19961 (C-203)
Element	Cumulati	ve % - DDI Wate	r Soluble
Al	15.7		
Ca	(7.8)	(25)	26.7
Cr	(5.9)	34.4	44.1
Fe	4.1	10.4	16.1
Mn	4.3	33.1	34.3
Na	75.3	55.2	58.0
Ni	4.4	(47)	(69.5)
P	37.0	51.8	52.6
Pb	5.0	15	21.8

Values within parentheses were less than EQL.

Values calculated on the dry sludge basis.

Total concentrations from EPA acid digestions.

Sequential extractions also cumulatively mobilized high percentages other metals, namely Cr, Fe, Mn, and Pb. As compared to a single extraction, the sequential extraction released more than an order of magnitude higher fractions of Fe, Mn, and Pb from the 19250 (C-202) sludge and about 2 to 6 times more of these elements from the C-203 tank sludge samples. The continual leaching of these elements after six stages of sequential extractions indicates that, except for Na and P, the bulk of the elements such as Al, Ca, Fe, and Mn in these residual sludges may be present in less water-soluble forms that are hard to mobilize by repeated leaching with DDI water.

3.3.2.6 Anion Concentrations – Replenishment Water Extractions

The concentrations of anions that were extracted by the DDI water leaches after each stage of sequential extraction were measured by ion chromatography (IC) and are listed in Table 3.34. The initial extraction step mobilized very high concentrations of oxalate, carbonate, fluoride, phosphate and nitrate from the three residual sludge samples. The concentrations of extractable anions from subsequent stages diminished in some cases by more than an order of magnitude. These data indicate that the bulk of the extractable anions in these sludges would be mobilized in the initial stage of water extraction. As compared to the other anions, the slower release rate of phosphate from these sludge samples indicates the presence of phosphatic compounds of more limited solubility. These results indicate that all the major anions, except phosphate, in these sludges are highly water leachable.

Table 3.34. Average Extractable Concentrations of Anions – Periodic Replenishment DDI Water Extractions

Sequential	Fluoride	Chloride	Nitrite	Nitrate	Carbonate	Sulfate	Phosphate	Oxalate	
Contact				μ g/g]	Dry Sludge				
Sample 19250 (C-202)									
1	3,850	33.5	442	1,260	12,200	233	5,640	28,600	
2	1,020	8.0	<13.6	90	<7260	42	4,070	2,420	
3	618	7.8	<13.6	482	<7260	28	3,400	940	
4	85	3.9	<13.6	196	<7260	6.5	1,340	85	
5	62	8.1	<13.6	230	<7260	4.8	730	52	
6	390	99.2	43.1	1,280	<7260	19.2	2,550	267	
			Samı	ole 19887 (C	C-203)				
1	2,500	64.9	478	3,950	29,700	211	16,200	1,280	
2	135	29.5	<33.8	77.5	7,700	36.0	10,400	<25.8	
3	50.4	<18.0	<33.8	<32.4	4,650	<30.6	5,570	44.4	
4	10.9	<18.4	<33.8	<32.4	<3,750	<30.6	3,230	<25.8	
5	<8.8	20.3	<33.8	<32.4	<3,750	<30.6	1,860	<25.8	
6	36.8	<18.0	<33.8	<74.6	8,590	<30.6	3,530	<25.8	
			Samı	ole 19961 (0	C-203)				
1	2,610	73.6	742	5,480	32,400	269	20,600	1,330	
2	112	169	<35.3	71.4	8,300	58.8	10,350	350	
3	39.0	<18.8	<35.3	<33.9	4,300	<32.0	5,010	<27.0	
4	<10.4	<18.8	<35.3	<33.9	<3,900	<32.0	3,010	<27.0	
5	<9.2	21.4	<35.3	<33.9	<3,900	<32.0	1,680	<27.0	
6	30.5	22.4	<35.3	90.9	4,200	<32.0	5,140	<27.0	

The carbonate, oxalate and phosphate results are for information only. The QC standard for these three anion analyses was not within the $\pm 10\%$. Oxalate numbers were background corrected.

3.3.2.7 Concentrations ¹³⁷Cs and ⁹⁰Sr - Periodic Replenishment DDI Water Extractions

The concentrations of 137 Cs in the sludge as determined from all sequential extraction stages using DDI water indicated that this radioisotope had extremely low leachability that was in the low microcuries per gram of sludge (Table 3.35). As an example, the average 137 Cs concentration determined from the first stage extract of 19250 (C-202) sludge was found to be $0.646\,\mu\text{Ci/g}$ sludge, and 137 Cs concentrations in first stage extracts of 19887 (C-203) and 19961 (C-203) samples were measured at $0.681\,\mu\text{Ci/g}$ sludge and $1.58\,\mu\text{Ci/g}$ sludge, respectively. The cumulative totals released by the subsequent four stages of leaching equaled an amount similar to that of the first stage of leaching. The final leaching stage also released concentrations similar to that of the first stage extractions. The cumulative DDI water leachable fractions of 137 Cs in these sludge samples averaged 10.0, 12.4, and 15.8% of the total 137 Cs present in the 19250 (C-202), 19887 (C-203); and 19961 (C-203) sludge samples, respectively. The sequential extractions cumulatively leached about 4 to 6 times the amount of 137 Cs leached in the single 30-day DDI water extractions.

 90 Sr data for the periodic replenishment extractions are available for only the first, third, and sixth extractions (Table 3.36). Sample 19250 (C-202) released 20.7 μ Ci/g sludge of 90 Sr during the first contact, while samples 19887 (C-203) and 19961 (C-203) release 21.0 and 39.4 μ Ci/g sludge. For each sample, the amounts released by the subsequent third and sixth extractions were similar to the first extractions. This indicates that 90 Sr in these sludges exists in a continuously leachable form.

< Values were less than instrumental detection limit.

All values based on duplicate measurements.

Table 3.35. ¹³⁷Cs Data – Periodic Replenishment DDI Water Extractions

	Contact Duration	¹³⁷ Cs			
Sequential Contact	(days)	μCi/g Sludge	μg/g Sludge		
Sample 19260 (C-202)					
1	1	0.646	7.42E-03		
2	1	0.168	1.93E-03		
3	3	0.156	1.79E-03		
4	1	0.082	9.43E-04		
5	1	0.0505	5.80E-04		
6	30	0.278	3.20E-03		
	Sample 19887 (C-203))			
1	1	0.681	7.83E-03		
2	1	0.399	4.58E-03		
3	3	0.473	5.44E-03		
4	1	0.0708	8.13E-04		
5	1	0.0644	7.40E-04		
6	30	1.22	1.40E-02		
Sample 19961 (C-203)					
1	1	1.58	1.82E-02		
2	1	0.437	5.03E-03		
3	3	0.341	3.92E-03		
4	1	0.0459	5.28E-04		
5	1	0.0585	4.85E-04		
6	30	0.406	4.67E-03		
NA = Not analyzed.					

Table 3.36. ⁹⁰Sr Data – Periodic Replenishment DDI Water Extractions

	⁹⁰ Sr					
Sequential Contact	μCi/g Sludge	μg/g Sludge				
Sam	Sample 19260 (C-202)					
1	20.7	0.15				
3	15.4	0.11				
6	40.6	0.29				
Sample 19887 (C-203)						
1	21.0	0.15				
3	12.9	0.09				
6	24.5	0.17				
Sample 19961 (C-203)						
1	39.4	0.28				
3	12.7	0.09				
6	18.5	0.13				

3.3.2.8 Actinide Concentrations – Periodic Replenishment DDI Water Extractions

The concentrations of sequentially leachable actinides are listed in Table 3.37. The extractable concentrations of actinides in these sludges were in the order 239 Pu $> ^{237}$ Np $> ^{241}$ Am. The concentrations of 241 Am in all stages of sequential leaching were below the EQL and/or instrument detection limits.

Table 3.37. Actinide Analysis for C-202 and C-203 Periodic Replenishment DDI Water Extractions

	²³⁷ Np		²³⁹ Pu		²⁴¹ Am		
Sequential Contact	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	
	Sample 19250 (C-202)						
1	9.41E-05	1.33E-01	2.34E-01	3.78E+00	(1.16E-02)	(3.42E-03)	
2	5.12E-05	7.21E-02	1.29E-01	2.07E+00	(5.42E-03)	(1.59E-03)	
3	5.70E-05	8.02E-02	1.74E-01	2.81E+00	(9.64E-03)	(2.84E-03)	
4	(9.81E-06)	(1.38E-02)	6.82E-02	1.10E+00	(2.71E-03)	(7.98E-04)	
5	<5.15E-05	<7.26E-02	5.01E-02	8.09E-01	(1.95E-03)	(5.72E-04)	
6	(2.06E-05)	(2.91E-02)	6.10E-01	9.83E+00	5.02E-02	1.48E-02	
		Sample	e 19887 (C-203	3)			
1	<5.32E-03	<7.49E-01	2.27E-01	3.66E+00	<6.37E-01	<1.87E-01	
2	<5.32E-03	<7.49E-01	(2.04E-01)	(3.29E+00)	<6.37E-01	<1.87E-01	
3	<5.32E-03	<7.49E-01	(1.24E-01)	(2.00E+00)	<6.37E-01	<1.87E-01	
4	<5.32E-03	<7.49E-01	(1.56E-01)	(2.52E+00)	<6.37E-01	<1.87E-01	
5	<5.32E-03	<7.49E-01	(1.68E-01)	(2.72E+00)	<6.37E-01	<1.87E-01	
6	<5.32E-03	<7.49E-01	<2.32E-01	<3.74E+00	<1.27E+01	<3.74E+00	
	Sample 19961 (C-203)						
1	<5.56E-03	<7.82E-01	4.78E-01	7.71E+00	<6.65E-01	<1.96E-01	
2	<5.56E-03	<7.82E-01	(1.78E-01)	(2.87E+00)	<6.65E-01	<1.96E-01	
3	<5.56E-03	<7.82E-01	(1.85E-01)	(2.99E+00)	<6.65E-01	<1.96E-01	
4	<5.56E-03	<7.82E-01	(2.21E-01)	(3.57E+00)	<6.65E-01	<1.96E-01	
5	<5.56E-03	<7.82E-01	(1.84E-01)	(2.97E+00)	<6.65E-01	<1.96E-01	
6	<5.56E-03	<7.82E-01	<2.43E-01	<3.91E+00	<1.33E+01	<3.91E+00	
NA = Not analyzed.							

The 239 Pu concentrations in the first stage of leaching from sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203) were 3.78, 3.66, and 7.71 µg/g sludge, respectively. The concentrations of 239 Pu in the leachates from the second and third stage extractions of 19250 (C-202) sample were about 26–45% of the concentrations encountered in the first stage leachate. For the two C-203 tank sludge samples, the second and third stage extractions yielded estimated concentrations that were also much less than the concentrations of the first stage extracts. The final stage of extraction for sample 19250 (C-202) indicated an increase in concentrations of 239 Pu over that observed in the four previous stages of leaching. The cumulative leachable fractions of 239 Pu in sludge sample 19250 (C-202) was 4.7% (Table 3.38; therefore, these sequential extractions cumulatively removed about 5 times more 239 Pu than the single static extraction (Table 3.26). The cumulative percentage of leachable 239 Pu from the C-203 sludge

samples is less certain because most of the measurements are estimates; however, the measured amounts leached for the first stage of the extraction equate to 24.5 and 36.1% of the total ²³⁹Pu showing that it is much more leachable from these sludge samples than from the C-202 sample.

Table 3.38. Water-Leachable Percentages of Actinides in C-202 and C-203 Periodic Replenishment DDI Water Extractions

Sequential Contact	²³⁷ Np	²³⁹ Pu	²⁴¹ Am		
Percent Water Leachable					
Sample 19250 (C-202)					
1	6.1	0.87	(0.8)		
2	3.3	0.48	(0.4)		
3	3.7	0.65	(0.6)		
4	(0.6)	0.25	(0.2)		
5	<eql< td=""><td>0.19</td><td>(0.1)</td></eql<>	0.19	(0.1)		
6	1.3	2.26	3.3		
Sa	mple 19887 (C	(-203)			
1	<eql< td=""><td>24.5</td><td><eql< td=""></eql<></td></eql<>	24.5	<eql< td=""></eql<>		
2	<eql< td=""><td>(22.0)</td><td><eql< td=""></eql<></td></eql<>	(22.0)	<eql< td=""></eql<>		
3	<eql< td=""><td>(13.4)</td><td><eql< td=""></eql<></td></eql<>	(13.4)	<eql< td=""></eql<>		
4	<eql< td=""><td>(16.9)</td><td><eql< td=""></eql<></td></eql<>	(16.9)	<eql< td=""></eql<>		
5	<eql< td=""><td>(18.2)</td><td><eql< td=""></eql<></td></eql<>	(18.2)	<eql< td=""></eql<>		
6	<eql< td=""><td><eql< td=""><td><eql< td=""></eql<></td></eql<></td></eql<>	<eql< td=""><td><eql< td=""></eql<></td></eql<>	<eql< td=""></eql<>		
Sample 19961 (C-203)					
1	<eql< td=""><td>36.1</td><td><eql< td=""></eql<></td></eql<>	36.1	<eql< td=""></eql<>		
2	<eql< td=""><td>(13.4)</td><td><eql< td=""></eql<></td></eql<>	(13.4)	<eql< td=""></eql<>		
3	<eql< td=""><td>(14.0)</td><td><eql< td=""></eql<></td></eql<>	(14.0)	<eql< td=""></eql<>		
4	<eql< td=""><td>(16.7)</td><td><eql< td=""></eql<></td></eql<>	(16.7)	<eql< td=""></eql<>		
5	<eql< td=""><td>(13.9)</td><td><eql< td=""></eql<></td></eql<>	(13.9)	<eql< td=""></eql<>		
6	<eql< td=""><td><eql< td=""><td><eql< td=""></eql<></td></eql<></td></eql<>	<eql< td=""><td><eql< td=""></eql<></td></eql<>	<eql< td=""></eql<>		
Total concentrations from EPA acid digestions.					

Extracts from the various stages of sequential extraction for sample 19250 (C-202) contained very low concentrations of 237 Np. The highest concentration of 237 Np was observed in the first stage extract of this sample and had a value of $0.133~\mu g/g$ sludge (Table 3.37). Extractable 237 Np in subsequent sequential extracts was found to be less than the amount measured in the initial extract. The cumulative leachable fraction of 237 Np in sludge sample 19250 (C-202) was 15%. As compared to a single static extraction, the six stage sequential extraction cumulatively mobilized about 2.5 times more 237 Np from this sludge sample. Detectable quantities of 237 Np were not leachable from the C-203 sludge samples.

The 241 Am concentrations were estimated values in most cases for the DDI water extracts for sample 19250 (C-202). The only measured concentration was 0.0148 µg/g sludge for the sixth step of the extraction. Assuming the estimated values are correct, the cumulative percentage of 241 Am released during the sequential extractions is 5.4% (Table 3.38). Detectable quantities of 241 Am were not leachable from the C-203 sludge samples.

3.4 Ca(OH)₂ Solution Leaching Tests

The data obtained from the saturated $Ca(OH)_2$ solution leaching tests on the three sludge samples [19250 (C-202), 19887 (C-203), and 19961 (C-203)] are presented and discussed in this section. These tests were designed to evaluate the leaching of residual sludge constituents using a leaching solution derived from infiltrating water contacting fresh cement filling the tank above the sludge. Section 3.4.1 provides the results of single 30-day contacts of the leachant and sludge, and Section 3.4.2 discusses the periodic replenishment tests in which the sludge was contacted 6 times with the leaching solution. The concentrations of the constituents in the $Ca(OH)_2$ extracts tabulated in this section are expressed in units of μCi or μg per gram of dry sludge. Concentrations on a per liter basis of dissolved constituents are also listed in Appendix I. Results for ¹²⁹I in the single-contact and periodic replenishment tests are not included because they were below the detection limit.

3.4.1 Single Contact Ca(OH)₂ Solution Test Results

The single contact water-leach tests were run in duplicate with an equilibration time of 1 month. Saturated Ca(OH)₂ solution was used as a leachant. The results of these experiments are presented in this section.

3.4.1.1 Sludge to Ca(OH)₂ Solution Ratios Used in Single-Contact Extractions

In these tests, 30 ml of saturated Ca(OH)₂ solution was contacted with about 0.5 to 0.8 g of moist sludge. The moisture contents of these sludge samples ranged from 38 to 57% by mass (Table 3.1). The dry sludge masses calculated from moisture content measurements were used to compute the dry sludge to Ca(OH)₂ solution ratios (Table 3.39). These ratios ranged from about 11.04 to 19.45.

Sample Number	Sludge to Ca(OH) ₂ Solution Ratio (g/L)
19250 (C-202)	11.32
19250 (C-202) Dup	11.04
19887 (C-203)	17.35
19887 (C-203) Dup	19.13
19961 (C-203)	14.90
19961 (C-203) Dup	19.45
Dup = Duplicate. Sludge mass based on dr	v weight

Table 3.39. Sludge to Ca(OH)₂ Solution Used in Leaching Tests

3.4.1.2 Alkalinity and pH of Single-Contact Ca(OH)₂ Solution Extracts

The average alkalinities and pH values measured in duplicate extracts of each residual sludge are listed in Table 3.40. The pH values of leachates from all three sludge samples [19250 (C-202), 19887 (C-203), and 19961 (C-203)] were as expected, highly alkaline in nature (11.48, 11.61, and 11.92, respectively). The average total alkalinity for the 19250 (C-202) sludge was 53.7 mg CaCO₃/g sludge. The average total alkalinity for the 19887 (C-203) sludge sample was 70.1 mg CaCO₃/g sludge, and the corresponding value for the 19961 (C-203) sludge sample was 52.5 mg CaCO₃/g sludge (Table 3.40).

Because of the highly alkaline extractions, the measured alkalinity includes both hydroxide and carbonate alkalinities. There is a direct correlation between the measured alkalinity and the solid to solution ratio shown in Table 3.39 suggesting that the sludges release alkalinity producing soluble species.

Table 3.40. Alkalinity and pH Values after 1 Month of Ca(OH)₂ Solution Extraction

		Total Alkalinity (as CaCO ₃) at pH 4.5 Endpoint	Total Alkalinity (as CaCO ₃) at pH 4.5 Endpoint
Sample Number	pН	(mg/L)	(mg/g solid)
19250 (C-202)	11.50	591	52.3
19250 (C-202) Dup	11.46	610	55.3
19250 (C-202) Avg	11.48	600	53.7
19887 (C-203)	11.62	772	66.6
19887 (C-203) Dup	11.59	803	73.6
19961 (C-203)	11.89	811	61.0
19961 (C-203) Dup	11.95	772	44.0
19887 (C-203) Avg	11.61	787	70.1
19961 (C-203) Avg	11.92	791	52.5

3.4.1.3 Extractable 99 Tc and 238 U Determined from Single-Contact Ca(OH) $_2$ Solution Extractions

The concentrations of 99 Tc and 238 U mobilized in Ca(OH)₂ solution after 1 month of contact with the residual sludge samples obtained from tanks C-202 and C-203 are listed in Table 3.41. The extractable concentration of 99 Tc for sludge sample 19250 (C-202) was very low (estimated at 0.00518 μ g/g sludge), and the extracts from the two sludge samples from tank C-203 did not contain 99 Tc above its instrument detection limits. The percentage of total 99 Tc leached from tank C-202 sludge is 2.97% (Table 3.42), which is similar to the low percentage of 99 Tc leached using DDI water (Table 3.19).

Table 3.41. Extractable ⁹⁹Tc and ²³⁸U after 1 Month of Ca(OH)₂ Solution Extraction

	⁹⁹ Tc	²³⁸ U	⁹⁹ Tc	²³⁸ U
Sample Number	μg/g Sludge		μCi/g S	ludge
19250 (C-202)	(3.95E-03)	5.15E+01	(6.72E-05)	1.75E-05
19250 (C-202) Dup	4.89E-03	6.29E+01	8.32E-05	2.14E-05
19250 (C-202) Avg	4.42E-03	5.72E+01	7.52E-05	1.95E-05
19887 (C-203)	<2.88E-02	1.79E+02	<4.90E-04	6.07E-05
19887 (C-203) Dup	<2.61E-02	1.63E+02	<4.44E-04	5.55E-05
19961 (C-203)	<3.36E-02	2.03E+04	<5.71E-04	6.92E-03
19961 (C-203) Dup	<2.57E-02	3.04E+03	<4.37E-04	1.03E-03
19887 (C-203) Avg	<2.75E-02	1.71E+02	<4.67E-04	5.81E-05
19961 (C-203) Avg	<2.96E-02	1.17E+04	<5.04E-04	3.97E-03

Values within parentheses were less than EQL.

All concentrations are corrected for the dry sludge basis.

< Values were less than instrumental detection limit.

Table 3.42. Percentages^(a) of ⁹⁹Tc and ²³⁸U Leached by Ca(OH)₂ Solution

	⁹⁹ Tc	²³⁸ U
Sample Number	Percent Cem	ent Leachable
19250 (202)	2.97	0.03
19887 (203)	<eql< td=""><td>0.03</td></eql<>	0.03
19961 (203)	<eql< td=""><td>2.41</td></eql<>	2.41
<eql (a)="" =="" below="" concentrations="" eql.="" in<="" td="" total=""><td>sludges based on acid</td><td>digestion extractions.</td></eql>	sludges based on acid	digestion extractions.

The extracts from these sludges contained significant concentrations of 238 U (Table 3.41). For example, the extractable 238 U concentration from sample 19250 (C-202) contained an average of 57.2 µg/g sludge (ppm) and sludges 19887 (C-203) and 19961 (C-203) samples were found to contain average extractable 238 U concentrations of 171 µg/g sludge (ppm) and 11,700 µg/g sludge (ppm), respectively. These concentrations indicate that the fraction of the 238 U leachable in Ca(OH)₂ solution after 1 month of contact was on average 0.03, 0.03 and 2.41% of total 238 U present in the three samples (Table 3.42).

3.4.1.4 Extractable Metals Concentrations in Ca(OH)₂ Solution Water Extractions

Concentrations of a number of metals including Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, Ti, Tl, V, Zn, and Zr in the Ca(OH)₂ solution after extracting for 1 month were measured by ICP-OES. Among these, only a limited number of metals were present in measurable concentrations (Table 3.43). The concentrations listed within parentheses indicate values that are less than their respective EQLs. These data showed that the two major leachable elements in Ca(OH)₂ leach solutions in all three sludge samples were Na and P. Average extraction concentrations of Na in all three sludge samples were similar in magnitude namely, 20,900 μ g/g sludge in 19250 (C-202), 20,700 μ g/g sludge in 19887 (C-203), and 23,500 μ g/g sludge in 19961 (C-203). The average concentration of P in 19250 (C-202) sludge extract was 131 μ g/g sludge, which was about an order of magnitude less than the P concentrations observed in the extracts of the two C-203 tank sludge samples (1,410 μ g/g sludge (sample 1987) and 2,920 μ g/g sludge (sample 19961). Other elements with measurable leachability (100 to >1000 μ g/g sludge) included Al [only in sample 19250 (C-202)] Ca, Cr, Fe, and Pb.

Percentages of metals that were Ca(OH)₂ extractable are listed in Table 3.44. These results were computed on the basis of the total metal concentrations as measured in the acid digested samples (Table 3.3 through Table 3.5). The data show that about a third (35.5%) of the total Na present in sample 19250 (C-202) and 21.3 and 24.8% respectively of the Na inventory in the sample 19887 (C-203) and sample 19961 (C-203) were present in readily leachable forms. Leachable percentages of P in the Ca(OH)₂ solution were low constituting 0.8% of 19250 (C-202), 3.7% of 19887 (C-203), 7.5% of 19961 (C-203) of the total mass of P present in these sludges. The leachability of Cr in the three sludge samples was calculated to be 5.7%, 2.8%, and 10.0%, respectively. Other measurable leachable metal fractions were found only in C-203 tank sludge samples. These leachable metals consisted of Fe (0.03 and 2.1%), Mn (1.6 and 8.4%), and Pb (0.1 and 2.9%) in samples 19887 (C-203) and 19961 (C-203), respectively. Although there was no significant difference in the average leachable fractions of Na from the two C-203

sludge samples, sample 19961 (C-203) appeared to leach a greater fraction of Cr, Fe, Mn, P, Pb, and Zn compared to sample 19887 (C-203). At this time, there are no discernable reasons for this differential leaching of these elements from these two sludge samples from the same waste tank (C-203).

Table 3.43. Concentrations Selected Metals after 1 Month of Ca(OH)₂ Solution Extractions

	Al	Ca	Cr	Fe	Mg	Mn	Na	P	Pb	Zn
Sample Number					μg/g I	Ory Sludge	;			
19250 (C-202)	1,980	(561)	685	<44.2	<110	<11	20,200	123	<110	<55.2
19250 (C-202) Dup	2,050	(543)	827	<45.3	<113	<11.3	21,600	140	<113	<56.6
19250 (C-202) Avg	2,010	(552)	756	<44.7	<112	<11.2	20,900	131	<112	<55.9
19887 (C-203)	(202)	(73)	173	(7.4)	<288	<14.4	21,050	1,360	(7.9)	(69)
19887 (C-203) Dup	(180)	(60)	178	(3.9)	<261	<13.1	20,300	1,450	(2.8)	(41)
19961 (C-203)	(203)	3,190	833	596	(46)	90	28,700	4,180	269	(100)
19961 (C-203) Dup	(145)	725	255	84	<257	<12.9	18,280	1,660	(39)	(111)
19887 (C-203) Avg	(191)	(66)	176	(5.6)	<275	<13.7	20,700	1,410	(5.3)	(55)
19961 (C-203) Avg	(174)	1,956	544	340	(46)	53	23,500	2,920	154	(105)
Values within parenth	eses were l	ess than E	QL.			•				

Table 3.44. Percentages^(a) of Ca(OH)₂ Solution Extractable Metals after 1 Month Contact

	Al	Ca	Cr	Fe	Mg	Mn	Na	P	Pb	Zn
Sample Number		Percent Leachable								
19250 (C-202) Avg	14.8		5.7				35.5	0.8		
19887 (C-203) Avg			2.8	0.03		(1.6)	21.3	3.7	(0.1)	(4.2)
19961 (C-203) Avg		10.0 2.1 (7.1) (8.4) 24.8 7.5 2.9 (7.7)								
(a) Total concentrations based on acid digestion extractions. The numbers within parentheses were calculated on the basis of less than EOL values.										

3.4.1.5 Anion Concentrations in Single-Contact Ca(OH)₂ Solution Extractions

The concentrations of anions that were present in $Ca(OH)_2$ solution extracts after 1 month were measured by ion chromatography. The extractable anion concentrations calculated for the sludges are presented in Table 3.45. Among the halides, fluoride in the extracts of all residual sludges was present at 5 to 20 times higher concentrations than chloride. Average extractable concentrations of F and Cl determined for sample 19250 (C-202) were 1,800 and 112 μ g/g sludge, respectively. Extractable concentrations of F in C-203 sludge samples were about 35% to 40% lower than what was measured for C-202 sludge extracts [19887 (C-203): 1,200 μ g/g sludge, and 19961 (C-203): 1,100 μ g/g sludge]. Comparatively, the Cl concentrations in these two sludge samples were below the instrumental detection limits.

Table 3.45. Concentrations Anions from 1 Month of Ca(OH)₂ Solution Extractions

	Fluoride	Chloride	Nitrite	Nitrate	Carbonate	Sulfate	Phosphate	Oxalate
Sample Number				μg/g D	ry Sludge			
19250 (C-202)	1,900	108	342	1,600	26,600	219	<17.6	952
19250 (C-202) Dup	1,800	116	343	1,500	26,900	216	<18.0	1,050
19250 C-202) Avg	1,800	112	343	1,600	26,800	217	<17.8	1,000
19887 (C-203)	1,100	<136	265	2,400	<28,800	<236	2,700	1,010
19887 (C-203) Dup	1,200	<123	275	2,600	<26,100	<214	3,300	1,030
19961 (C-203)	1,400	<158	536	4,300	<36,700	<275	9,900	1,240
19961 (C-203) Dup	711	<121	303	2,500	<25,700	<210	4,300	738
19887 (C-203) Avg	1,200	<130	270	2,500	<27,500	<225	3,000	1,020
19961 (C-203) Avg	1,100	<140	420	3,400	<36,700	<242	7,100	990

The carbonate, oxalate and phosphate results are for information only. The QC standard for these three anion analyses was not within the $\pm 10\%$. Oxalate numbers were background corrected.

Nitrate concentrations in these sludge extracts were on average about 5 to 10 times higher than nitrite concentrations. Average extractable nitrate and nitrite concentrations in 19250 (C-202) sludge were 1,600 and 343 μ g/g sludge, respectively. Higher average nitrate concentrations were found in C-203 tank sludge samples [19887 (C-203): 2,500 μ g/g sludge and 19961 (C-203): 3,400 μ g/g sludge].

The average extractable concentration of carbonate in 19250 (C-202) was found to be 26.8 mg/g sludge. Relatively higher carbonate concentrations (qualitative measurements) may be present in the C-203 tank sludge extracts where the values are below a high detection limit [19887 (C-203): <27.5 mg/g sludge, and 19961 (C-203): <36.7 mg/g sludge].

Compared to the major anions, relatively low concentrations of sulfate were found in the water extracts of these sludge samples. The average extractable sulfate concentrations were 217, <225, and <242 μ g/g sludge for the three sludge samples.

Concentrations of extractable phosphate in 19887 (C-203) and 19961 (C-203) sludge sample extracts were 3.0 and 7.1 mg/g sludge, respectively. Contrastingly, the extractable phosphate concentrations from the 19250 (C-202) sample contained phosphate concentrations that were below the instrumental detection limit. The concentrations of oxalate in 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge extracts were determined to be 1,000 μ g/g sludge, 1,020 μ g/g sludge, and 990 μ g/g sludge, respectively.

3.4.1.6 Concentrations ¹³⁷Cs and ⁹⁰Sr in Single-Contact Ca(OH)₂ Solution Extractions

The concentrations of 137 Cs in the Ca(OH)₂ solution extracts indicate that this radioisotope had low leachability with concentrations that were in the low microcurie per gram sludge levels (Table 3.46). As an example, the average 137 Cs concentration in the 19250 (C-202) sludge extract was found to be 0.904 μ Ci/g sludge, whereas, 137 Cs concentrations in 19887 (C-203) and 19961 (C-203) sample extracts were measured at 0.207 μ Ci/g sludge and 0.772 μ Ci/g sludge, respectively. The leachable percentage of 137 Cs in these sludge samples constituted on average 6.5, 1.1, and 3.6% of the total 137 Cs present in the three sludge samples (Table 3.47).

Avg = Average.

Dup = Duplicate.

Table 3.46. Average Extractable Concentrations of ¹³⁷Cs and ⁹⁰Sr from 1 Month of Ca(OH)₂ Solution Extraction

	¹³⁷ C	s	⁹⁰ Sr						
Sample Number	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge					
19250 (C-202) Avg	0.904	1.04E-02	4.74	3.38E-02					
19887 (C-203) Avg	0.207	2.38E-03	0.492	3.51E-03					
19961 (C-203) Avg	0.772	8.87E-03	15.6	1.11E-01					
Avg = Average. All concentrations are co									

Table 3.47. Percentage of Extractable ¹³⁷Cs and ⁹⁰Sr from 1 Month of Ca(OH)₂ Solution Extraction

	¹³⁷ Cs	⁹⁰ Sr
Sample Number	Percent Ca(OH) ₂ Leachable
19250 (C-202) Avg	6.5	0.6
19887 (C-203) Avg	1.1	0.15%
19961 (C-203) Avg	3.6	3.98%
All concentrations are co Total sludge concentration		

 90 Sr concentrations in the Ca(OH)₂ solution extracts were present at slightly higher (3 to 20 times) concentrations than 137 Cs. The extractable 90 Sr concentrations of sludge samples 19250 (C-202), 19887 (C-203) and 19961 (C-203) contained 90 Sr concentrations of 4.74, 0.492, and 15.6 μ Ci/g sludge, respectively (Table 3.46). These concentrations represent 0.6%, 0.15%, and 3.98 % of the total 90 Sr present in these sludge samples (Table 3.47), which shows that 90 Sr is not very leachable from sludge in contact with a Ca(OH)₂ saturated solution.

3.4.1.7 Extractable Actinides Determined from Single-Contact Ca(OH)₂ Solution Extractions

The concentrations of Ca(OH)₂ solution leachable actinides are listed in Table 3.48. Only the concentrations of ²³⁹Pu in the extracts were present in detectable concentrations. The concentrations of ²³⁷Np and ²⁴¹Am were in all cases well below their respective EQL and/or instrument detection limits.

The 1-month extractable 239 Pu concentrations in the extracts of sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203) were 7.68 x $^{10^{-3}}$, 1.3 x $^{10^{-2}}$, and 1.56 µg/g sludge, respectively. These concentrations equate to leachable percentages of total 239 Pu in these sludge samples by a Ca(OH)₂ solution of 0.002, 0.09, and 7.3%, respectively (Table 3.49). The relatively high leachable percentage of 239 Pu of 7.3% for the 1-month leach of sample 19961 (C-203) is noteworthy, but the reason for this leachability is not known.

Table 3.48. Actinide Analysis for Single-Contact Ca(OH)₂ Cement Extractions

	²³⁷ Np		239	Pu	²⁴¹ Am	
Sample Number	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge
19250 (C-202) 1 Day	<9.55E-07	<1.34E-03	(2.91E-03)	(4.69E-02)	<2.29E-02	<6.72E-03
19250 (C-202) 1 Month	<6.35E-07	<8.95E-04	(4.76E-04)	(7.68E-03)	<1.52E-02	<4.47E-03
19887 (C-203) 1 Day	<6.31E-05	<8.89E-02	(1.73E-03)	(2.79E-02)	<1.51E+01	<4.44E+00
19887 (C-203) 1 Month	<3.90E-05	<5.49E-02	(8.08E-04)	(1.30E-02)	<9.34E+00	<2.75E+00
19961 (C-203) 1 Day	<6.21E-05	<8.75E-02	(1.34E-03)	(2.16E-02)	<1.49E+01	<4.37E+00
19961 (C-203) 1 Month	<4.21E-05	<5.93E-02	9.70E-02	1.56E+00	<1.01E+01	<2.96E+00

Table 3.49. Cement-Leachable Percentages of Actinides in Single-Contact Ca(OH)₂ Cement Extractions

	²³⁷ Np	²³⁹ Pu	²⁴¹ Am
Sample Number	Percent	Cement Leac	hable
19250 (C-202) 1 Day	< EQL	(0.01)	< EQL
19250 (C-202) 1 Month	< EQL	(0.002)	< EQL
19887 (C-203) 1 Day	< EQL	(0.19)	< EQL
19887 (C-203) 1 Month	< EQL	(0.09)	< EQL
19961 (C-203) 1 Day	< EQL	(0.14)	< EQL
19961 (C-203) 1 Month	< EQL	7.3	< EQL
Total concentrations from	EPA acid digestio	ns.	

3.4.2 Periodic Replenishment Ca(OH)₂ Solution Test Results

The periodic replenishment extraction tests were conducted by repeatedly equilibrating duplicate sludge samples with 30 mL aliquots of fresh Ca(OH)₂ solution. Sequential contacts 1, 2, 4, and 5 had a duration of 1 day each, whereas, sequential contacts 3 and 6 lasted 3 and 30 days, respectively. The goal of these sequential leaching tests was to assess the long-term leaching characteristics of key contaminants and other constituents from these sludge samples. The results of these tests are presented in this section.

3.4.2.1 Sludge to Ca(OH)₂ Solution Ratios used in Periodic Replenishment Extractions

In these tests, 30 ml aliquots of saturated $Ca(OH)_2$ saturated solutions were contacted with about 0.3 to 0.6 g of moist sludge. The moisture contents of these sludge samples ranged from 38 to 57% by mass (Table 3.1). The dry sludge masses calculated from moisture content measurements were used to compute the dry sludge to $Ca(OH)_2$ solution ratios (Table 3.50). These ratios ranged from about 6.84 to 12.4.

3.4.2.2 Alkalinity and pH of Ca(OH)₂ Solution Periodic Replenishment Extractions

The average alkalinities and pH values measured in duplicate samples of sludge from each tank at the end of each sequential contact are listed in Table 3.51. As expected from the use of a saturated Ca(OH)₂ solution as the leachant, the pH values of all three sludge samples at all stages of extraction were highly alkaline in nature ranging in values between 11.47 to 12.15. The pH values for all sludge samples tended to vary only by about 0.2 pH units between different extraction stages.

Table 3.50. Sludge to Solution Ratios used in Periodic Replenishment Ca(OH)₂ Leaching Tests

Sample Number	Dry Sludge to Ca(OH) ₂ Solution Ratios (g/L)
19250 (202)	8.15
19250 (202) Dup	6.84
19887 (203)	12.4
19887 (203) Dup	10.3
19961 (203)	10.8
19961 (203) Dup	12.1

Table 3.51. Alkalinity and pH Values – Periodic Replenishment Extractions with Ca(OH)₂ Solution

Sequential	Duration		Total Alkalinity (as CaCO ₃) @ pH 4.5 Endpoint	Total Alkalinity (as CaCO ₃) @ pH 4.5 Endpoint						
Contact	(Days)	pН	mg/L	mg/g Solid						
	19250 (C-202)									
1	1	11.47	666	89.8						
2	1	11.54	776	104						
3	3	11.57	865	116						
4	1	11.68	996	134						
5	1	11.70	1,040	141						
6	30	11.64	896	120						
		198	387 (C-203)							
1	1	11.67	803	60.0						
2	1	11.76	475	35.6						
3	3	11.70	440	33.1						
4	1	11.70	436	32.6						
5	1	11.82	571	43.1						
6	30	11.81	429	32.3						
		199	061 (C-203)							
1	1	11.88	838	65.3						
2	1	11.98	486	38.2						
3	3	11.83	390	30.5						
4	1	11.96	490	38.2						
5	1	12.15	710	55.3						
6	30	11.91	521	41.0						

The initial extraction of sample 19250 (C-202) mobilized less total alkalinity than the subsequent stages for this sample, whereas, for samples 19887 (C-203) and 19961 (C-203), the total alkalinity from the initial stage was higher than the values in subsequent extractions. For the 19250 (C-202) sludge, the sum of extractable total alkalinity from all six stages was 705 mg CaCO₃/g sludge, whereas, the sum of sequentially extracted alkalinities for samples 19887 (C-203) and 19961 (C-203) were 237 and 269 mg CaCO₃/g sludge, respectively. These six stages of sequential extractions cumulatively mobilized more

than an order of magnitude more total alkalinity from each sludge sample as compared to the total alkalinity released by a single 30-day extraction (Table 3.40), which suggests that the residual sludges contain some soluble species that titrate as alkalinity. Some of the alkalinity (i.e., hydroxyl) at each stage is due to the Ca(OH)₂ solution used as the leachant.

3.4.2.3 Carbon Contents – Ca(OH)₂ Solution Sequential Extractions

Table 3.52 lists the carbon contents that were sequentially extractable from the C-202 and C-203 residual sludge samples. The bulk of the extractable carbon from the C-203 sludge samples was mobilized during the first extraction. For instance, about 64 and 78% of the total carbon contents of 19887 (C-203) and 19961 (C-203) sludge samples were extracted during the first stage as compared to only about 20% of the total carbon extracted from 19250 (C-202) sludge sample. Cumulatively, the six sequential extractions leached 47% of the total carbon content of the 19250 (C-202) sludge sample, whereas, the extractions achieved complete removal of all the carbon contained in samples 19887 (C-203) and 19961 (C-203).

Table 3.52. Carbon Contents – Periodic Replenishment Extractions with Ca(OH)₂ Solution

Sequential	Duration	TC	тос	TIC						
Contact	(Days)	m	g C/g Slud	ge						
Sample 19250 (C-202)										
1	1	8.25	4.58	3.67						
2	1	3.13	1.52	1.62						
3	3	2.72	1.11	1.61						
4	1	2.08	0.84	1.24						
5	1	2.05	0.72	1.33						
6	30	2.66	1.51	1.15						
	Sample 19887 (C-203)									
1	1	8.49	4.14	4.35						
2	1	1.46	0.44	1.25						
3	3	1.09	< 0.43	1.09						
4	1	0.81	< 0.43	0.81						
5	1	0.47	< 0.43	0.47						
6	30	1.08	< 0.43	1.08						
	Sample	19961 (C-	203)							
1	1	9.21	5.49	3.72						
2	1	1.97	0.80	1.17						
3	3	1.01	< 0.42	1.01						
4	1	0.86	< 0.42	0.86						
5	1	0.73	< 0.42	0.73						
6	30	1.06	< 0.42	1.06						
All concentr	ations are co	rrected for	the dry slu	dge basis.						

3.4.2.4 Concentrations of ⁹⁹Tc and ²³⁸U in Ca(OH)₂ Solution Periodic Replenishment Extractions

The concentrations of 99 Tc and 238 U mobilized in periodic replenishment Ca(OH)₂ solution extractions of residual sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203) are listed in Table 3.53. The concentrations of 99 Tc in all stages of extraction from all the three sludge samples were below the instrumental detection limits, but estimated values of 5.22 x 10^{-3} µg/g sludge and 4.02 x 10^{-2} µg/g sludge were available for the first stage extraction of samples 19250 (C-202) and 19887 (C-203), respectively. The estimated percentage leachability of 99 Tc from the sludges for these two stages is 3.5% and 26.2% (Table 3.54).

Table 3.53. Concentrations of Extractable ⁹⁹Tc and ²³⁸U – Periodic Replenishment Extractions with Ca(OH)₂ Solution

Sequential	Duration	⁹⁹ Tc	²³⁸ U	⁹⁹ Tc	²³⁸ U				
Contact	(Days)	μg/g	Sludge	μCi/g Sludge					
	Sample 19250 (C-202)								
1	1	(5.22E-03)	194.	(8.88E-05)	6.61E-05				
2	1	<6.72E-03	22.5	<1.14E-04	7.64E-06				
3	3	<6.72E-03	16.7	<1.14E-04	5.69E-06				
4	1	<6.72E-03	11.4	<1.14E-04	3.88E-06				
5	1	<6.72E-03	12.9	<1.14E-04	4.37E-06				
6	30	(1.82E-03)	4.95	(3.10E-05)	1.68E-06				
		Sample 19	887 (C-203)						
1	1	(4.02E-02)	331.	(6.84E-04)	1.12E-04				
2	1	<4.44E-02	78.8	<7.55E-04	2.68E-05				
3	3	<4.44E-02	20.3	<7.55E-04	6.91E-06				
4	1	<4.44E-02	12.7	<7.55E-04	4.33E-06				
5	1	<4.44E-02	4.67	<7.55E-04	1.59E-06				
6	30	<4.44E-02	2.51	<7.55E-04	8.53E-07				
		Sample 19	961 (C-203)						
1	1	<4.37E-02	423.	<7.43E-04	1.44E-04				
2	1	<4.37E-02	204.	<7.43E-04	6.92E-05				
3	3	<4.37E-02	65.6	<7.43E-04	2.23E-05				
4	1	<4.37E-02	10.3	<7.43E-04	3.51E-06				
5	1	<3.88E-02	4.97	<6.59E-04	1.69E-06				
6	30	<2.57E-02	2.11	<4.37E-04	7.19E-07				

All concentrations are corrected for the dry sludge basis.

Values within parentheses were less than EQL.

In contrast to the generally nondetectable concentrations of ^{99}Tc in the Ca(OH)₂ solution extracts, all six sequential stages contained measurable concentrations of ^{238}U . For example, the initial extractable ^{238}U concentration from sample 19250 (C-202) contained an average ^{238}U concentration of 1.94 µg/g sludge (194 ppm). Similarly, the first stage extractable ^{238}U concentration from sludges 19887 (C-203) and 19961 (C-203) samples were 331 µg/g sludge and 423 µg/g sludge, respectively. The ^{238}U

< Values were less than instrumental detection limit.

extractabilities in the second stage and subsequent stages were typically one to two orders magnitude lower than the initial stage extractability. The first stage extraction from all the sludge samples removed significant fractions of the cumulative leachable ²³⁸U. For instance, the initial extractions of 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples mobilized about 74%, 74%, and 60% of the cumulative leachable ²³⁸U, respectively. However, the Ca(OH)₂ solution sequential extractions cumulatively mobilized only 0.13, 0.09 and 0.15% of the total acid digestable ²³⁸U contents of 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples, respectively (Table 3.54). For sludge samples 19250 (C-202) and 19887 (C-203), these are similar leachable concentrations as those measured for the single-contact, 1-month leach tests (Table 3.42); however, for sample 19961 (C-203) the single-contact, 1-month leach test extracted 2.41% of the total ²³⁸U in the sludge compared to 0.15% for the total amount removed by the sequential extractions. The total amount of ²³⁸U leached by the DDI sequential water extracts was much larger for samples 19250 (C-202, 7.4%), 19887 (C-203, 17.4%) and 19961 (C-203, 17.7%) than for the Ca(OH)₂ leached tests.

Table 3.54. Ca(OH)₂ Cement-Leachable Percentages of ⁹⁹Tc and ²³⁸U in Periodic Replenishment Extractions

Contact Stage	Contact Duration	⁹⁹ Tc	²³⁸ U					
(duration, days)	(duration, days) (days)		% Cement Leachable					
	Sample 19250 (C	-202)						
1	1	(3.5)	0.09					
2	1	< EQL	0.01					
3	3	< EQL	0.01					
4	1	< EQL	0.01					
5	1	< EQL	0.01					
6	30	(1.2)	0.002					
	Sample 19887 (C	-203)						
1	1	(26.2)	0.063					
2	1	< EQL	0.015					
3	3	< EQL	0.0039					
4	1	< EQL	0.0024					
5	1	< EQL	0.0009					
6	30	< EQL	0.0005					
	Sample 19961 (C	-203)						
1	1	< EQL	0.080					
2	1	< EQL	0.039					
3	3	< EQL	0.012					
4	1	< EQL	0.002					
5	1	< EQL	0.001					
6	30	< EQL	0.0004					
< EQL= below the EQL. Total concentrations based on EPA acid digestions.								

3.4.2.5 Extractable Metals Concentrations Determined from Ca(OH)₂ Solution Sequential Extractions

Concentrations of a number of metals including Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, Ti, Tl, V, Zn, and Zr in the extracts of six stage sequential leaching using Ca(OH)₂ solution were measured by ICP-OES. Among these, only four elements (Al, Cr, Na, and P) were present in measurable concentrations throughout the majority of the extractions (Table 3.55). The concentrations listed within parentheses indicate values that are less than EQL. These data showed that the major leachable element in all three sludge samples was Na. Initial extraction concentrations of Na from 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples were 36,800, 34,000, and 34,400 ppm, respectively. For all three sludge samples, the initial extraction mobilized the highest concentrations of Al, Cr, Na, and P. The sequential leaching behaviors of Na and P from these sludges were similar to other constituents in that following high concentrations in the first stage, significant reduction in concentrations were observed in the subsequent four stages of extraction and there was a slight enhancement in concentrations in the final stage, which was a 30-day extraction.

Table 3.55. Average Extractable Concentrations of Selected Metals – Periodic Replenishment Extractions with Ca(OH)₂ Solution

	Al	Cr	Na	P					
Sequential Contact		μg/g Dry Sludge							
,	Sample 19	250 (C-202	2)						
1	2,050	214	36,800	223					
2	1,260	(109)	6,740	(127)					
3	306	200	2,590	(110)					
4	148	(131)	677	(89)					
5	(49)	(48)	(411)	(72)					
6	224	407	1,090	(90)					
Sample 19887 (C-203)									
1	(194)	166	34,000	1,630					
2	(107)	(10)	16,200	(121)					
3	(33)	(34)	11,000	(59)					
4	(14)	(17)	11,300	(31)					
5	<222	(4)	4,180	(22)					
6	<222	151	5,120	(37)					
,	Sample 19	961 (C-203	3)						
1	(147)	236	34,400	1,870					
2	(143)	(16)	16,200	(186)					
3	(80)	64	12,100	(82)					
4	<219	(6)	7,500	(47)					
5	<219	(6)	2,300	(30)					
6	<219	269	4,700	(8)					
Values within parenthe Based on duplicate mea		-							

Percentages of metals that were cumulatively extractable during the six stage sequential leaching with Ca(OH)₂ solution are listed in Table 3.56. These results were computed on the basis of the total metal concentrations as measured in the acid digested samples of the sludges (Table 3.3 through Table 3.5). The Ca(OH)₂ extractions mobilized about 82% of the total Na present in 19250 (C-202) and about 84 and 82% of the Na inventory in the 19887 (C-203) and 19961 (C-203) sludge samples respectively (Table 3.56). The data indicate that the six stage sequential extraction of these sludge samples released about two to four times the amount of Na that was leached in the single 30-day extraction (Table 3.43). These extractions released P that constituted the following percentages of total mass of P present in these sludges: 3% of 19250 (C-202), 5% of 1987 (C-203), and 6% of 19961 (C-203) (Table 3.56). The cumulative P released from sample 19250 (C-202) by sequential extractions was about four times the amount of P released from the single 1-month extraction, however, there were no significant differences in P extracted by single 30-day vs. cumulative sequential extractions for the C-203 sludge samples. The percentages of Cr mobilized from 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples were 8, 5, and 11% respectively. These data indicated that the sequential extractions cumulatively mobilized Cr in quantities similar to that observed in single 30-day Ca(OH)₂ extracts. Sequential extractions of sludge sample 19250 (C-202) cumulatively mobilized a higher fraction of Al (30%) than the single 30-day extraction (15%). The data from sequential leaching of sludge samples with Ca(OH)₂ solution indicated that, except for a limited number of metals (Al, Cr, Na, and P), all other metals present in the sludges (Fe, Mn, Ni, Pb, Si, and Sr) were not leachable to any measurable degree.

Table 3.56. Cumulative Fractions of Leachable Metals – Periodic Replenishment Extractions with Ca(OH)₂ Solution

	Sample 19250 (C-202)	Sample 19887 (C-203)	Sample 19961 (C-203)				
Element	Cumulativ	ve % Ca(OH) ₂ Le	achable				
Al	30	(49)	(71)				
Cr	8	6	11				
Na	82	84	82				
P	4	5	6				
Values within parentheses are less than EQL. Values calculated on the dry sludge basis.							

3.4.2.6 Extractable Anions Determined from Ca(OH)₂ Solution Periodic Replenishment Extractions

The concentrations of anions that were present in the $Ca(OH)_2$ solution leaches after each stage of sequential extraction were measured by ion chromatography and are listed in Table 3.57.

The initial extraction step mobilized very high concentrations of fluoride, nitrite, nitrate, carbonate, phosphate and oxalate from most of the sludge samples. Extracts from subsequent stages contained concentrations of anions that were significantly lower, in some cases by more than an order of magnitude. These data indicate that the bulk of the extractable anions would be mobilized in the initial stage of extraction with a Ca(OH)₂ solution.

Table 3.57. Average Leachable Anion Concentrations – Periodic Replenishment Extraction Tests with Ca(OH)₂ Solution

Sequential	Fluoride	Chloride	Nitrite	Nitrate	Carbonate	Sulfate	Phosphate	Oxalate		
Contact				- μg/g Dry	Sludge					
Sample 19250 (C-202)										
1	2,920	43	472	1,630	26,020	325	89	2,860		
2	195	26	33	1,260	31,040	83	66	155		
3	77	24	27	755	32,800	60	54	145		
4	87	27	<13	92	38,900	75	31	145		
5	32	32	<13	101	39,600	99	29	137		
6	53	69	41	237	27,600	87	27	115		
			Samp	le 19887 (C-203)					
1	1,260	<210	<401	3,670	<44,000	<363	2,666	1,470		
2	111	<210	<401	<385	<44,000	<363	<449	< 307		
3	<104	<210	<401	<385	<44,000	<363	<449	<307		
4	<104	<210	<401	<385	<44,000	<363	<449	< 307		
5	<104	<210	<401	<385	<44,000	<363	<449	<307		
6	<104	<210	<401	<385	<44,000	<363	<449	< 307		
			Samp	le 19961 (C-203)					
1	668	< 206	496	2,700	43,700	<358	808	849		
2	834	< 206	513	2,800	62,600	<358	2,634	891		
3	<102	<206	<394	<379	<43,700	<358	<442	< 302		
4	<102	<206	<394	<379	<43,700	<358	<442	<302		
5	<102	<206	<394	<379	<43,700	<358	<442	< 302		
6	<102	<206	<394	<379	<43,700	<358	<442	<302		

The carbonate, oxalate and phosphate results are for information only. The QC standard for these three anion analyses was not within the $\pm 10\%$. Oxalate numbers were background corrected.

3.4.2.7 Extractable ¹³⁷Cs and ⁹⁰Sr Determined from Ca(OH)₂ Solution Periodic Replenishment Extractions

The extractable concentrations of ¹³⁷Cs determined from the Ca(OH)₂ solution extracts were at the low microcurie per gram level for all sequential extraction stages (Table 3.58). The extractable ¹³⁷Cs concentrations of the two C-203 sludges increased with each stage of extraction with the highest concentrations being present in the final stage extracts. For instance, in the initial extracts from the 19250 (C-203), 19887 (C-203) and 19961 (C-203) samples, extractable ¹³⁷Cs concentrations were measured at 2.71 μCi/g sludge, 0.219 μCi/g sludge and 0.276 μCi/g sludge, respectively; whereas, the final stage extracts from these samples contained extractable ¹³⁷Cs concentrations of 1.28, 8.98 and 7.19 μCi/g sludge, respectively. The cumulative leachable fractions of ¹³⁷Cs in these sludge samples were on average 76, 80, 57% of the total ¹³⁷Cs present in the 19250 (C-202), 19887 (C-203); and 19961 (C-203) sludge samples, respectively. The sequential extractions cumulatively leached more than an order of magnitude greater ¹³⁷Cs than was leached in the single contact 30-day extraction process (Table 3.46). The DDI water extractable ¹³⁷Cs was about a factor of 8 to 10 less leachable than that of the Ca(OH)₂ solution, and did not show such a large difference in leachability when comparing the single-contact DDI water extraction with the sequential extractions.

< Values were less than instrumental detection limit.

All values based on duplicate measurements.

Table 3.58. Concentrations of ¹³⁷Cs and ⁹⁰Sr – Periodic Replenishment Extractions with Ca(OH)₂ Solution

		137	Cs	90	Sr
Sequential Contact	Duration (Days)	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge
		250 (C-202)			
1	1	2.71	3.11E-02	9.71	0.069
2	1	3.51	4.04E-02	NM	NM
3	3	2.25	2.58E-02	94.7	0.68
4	1	0.54	6.23E-03	NM	NM
5	1	0.17	1.98E-03	NM	NM
6	30	1.28	1.48E-02	93.4	0.67
		Sample 198	387 (C-203)		
1	1	0.219	2.51E-03	<1.18E+00	<8.46E-03
2	1	0.516	5.93E-03	NM	NM
3	3	0.869	9.99E-03	4.32E+00	3.08E-02
4	1	2.36	2.71E-02	NM	NM
5	1	2.52	2.90E-02	NM	NM
6	30	8.98	1.03E-01	1.66E+01	1.18E-01
		Sample 199	061 (C-203)		
1	1	0.276	3.17E-03	<1.17E+00	<8.33E-03
2	1	0.321	3.68E-03	NM	NM
3	3	0.895	1.03E-02	<1.17E+00	<8.33E-03
4	1	2.30	2.64E-02	NM	NM
5	1	1.94	2.22E-02	NM	NM
6	30	6.69	7.69E-02	2.11E+01	1.50E-01

All concentrations are corrected for the dry sludge basis.

Values within parentheses were less than EQL.

< Values were less than instrumental detection limit.

NM = Not measured.

Values based on duplicate measurements.

The extractable ⁹⁰Sr concentrations determined from the first, third and sixth stages of the sequential extractions are listed in Table 3.58. For sample 19250 (C-202), the concentrations increase by about an order of magnitude between the first and third extraction. For samples 19887 (C-203) there was a slight increase and for 19961 (C-203) there was no apparent increase. The sixth extraction is similar to the third for sample 19250 (C-202), and increases another factor of 4 for sample 19887 (C-203) and a factor of 21 for samples 19961 (C-203). The leachable concentrations measured for the three extractions represent 26% of the total ⁹⁰Sr in sludge 19250 (C-202), 6.2% of the sample 19887 (C-203) total, and 5.7% of the total ⁹⁰Sr in 19961 (C-203). These results indicate that ⁹⁰Sr is not highly leachable from these sludges by a Ca(OH)₂ saturated solution; however, the leachability of both ¹³⁷Cs and ⁹⁰Sr appears to increase with leaching stage and contact time.

3.4.2.8 Extractable Actinides Determined from Ca(OH)₂ Solution Periodic Replenishment Extractions

The extractable actinide concentrations by the sequential extractions are listed in Table 3.59. The concentrations of 237 Np and 241 Am in these sludge extracts were all below their respective EQL and/or instrument detection limits during all six stages of extraction indicating that Ca(OH)₂ is an ineffective leachant for mobilizing these actinides from these sludge samples. Very small amounts ($\leq 0.01\%$) of 239 Pu

appear to be leachable from sample 19250 (C-202) at each sequential extraction stage; however, these concentrations are estimates (Table 3.59 and Table 3.60). Small amounts ($\leq 0.2\%$) of ²³⁹Pu were also measured to be potentially leachable from the two C-203 sludge samples in the first extraction only (Table 3.60).

Table 3.59. Extractable Actinides Determined from Periodic Replenishment Ca(OH)₂ Cement Extractions

	237	Np	239	Pu	²⁴¹ Am		
Sequential Contact	μCi/g μg/g Sludge Sludge				μCi/g Sludge	μg/g Sludge	
		Sample	e 19250 (C-202	2)			
1	<9.55E-07	<1.34E-03	(2.91E-03)	(4.69E-02)	<2.29E-02	<6.72E-03	
2	<9.55E-07	<1.34E-03	(8.21E-04)	(1.32E-02)	<2.29E-02	<6.72E-03	
3	<9.55E-07	<1.34E-03	(8.29E-04)	(1.34E-02)	<2.29E-02	<6.72E-03	
4	<9.55E-07	<1.34E-03	(6.90E-04)	(1.11E-02)	<2.29E-02	<6.72E-03	
5	<9.55E-07	<1.34E-03	(4.46E-04)	(7.19E-03)	<2.29E-02	<6.72E-03	
6	<9.55E-07	<1.34E-03	(3.56E-04)	(5.75E-03)	<2.29E-02	<6.72E-03	
		Sample	e 19887 (C-203	3)			
1	<6.31E-05	<8.89E-02	(1.73E-03)	(2.79E-02)	<1.51E+01	<4.44E+00	
2	<6.31E-05	<8.89E-02	<2.75E-02	<4.44E-01	<1.51E+01	<4.44E+00	
3	<6.31E-05	<8.89E-02	<2.75E-02	<4.44E-01	<1.51E+01	<4.44E+00	
4	<6.31E-05	<8.89E-02	<2.75E-02	<4.44E-01	<1.51E+01	<4.44E+00	
5	<6.31E-05	<8.89E-02	<2.75E-02	<4.44E-01	<1.51E+01	<4.44E+00	
6	<6.31E-05	<8.89E-02	<2.75E-02	<4.44E-01	<1.51E+01	<4.44E+00	
		Sample	e 19961 (C-203	3)			
1	<6.21E-05	<8.75E-02	(1.34E-03)	(2.16E-02)	<1.49E+01	<4.37E+00	
2	<6.21E-05	<8.75E-02	<2.71E-02	<4.37E-01	<1.49E+01	<4.37E+00	
3	<6.21E-05	<8.75E-02	<2.71E-02	<4.37E-01	<1.49E+01	<4.37E+00	
4	<6.21E-05	<8.75E-02	<2.71E-02	<4.37E-01	<1.49E+01	<4.37E+00	
5	<6.21E-05	<8.75E-02	<2.71E-02	<4.37E-01	<1.49E+01	<4.37E+00	
6	<6.21E-05	<8.75E-02	<2.71E-02	<4.37E-01	<1.49E+01	<4.37E+00	

3.5 CaCO₃ Solution Leaching Tests

The data obtained from the saturated CaCO₃ solution leaching tests on the three residual sludge samples [19250 (C-202), 19887 (C-203), and 19961 (C-203)] are presented and discussed in this section. These tests were designed to evaluate the leaching of sludge constituents by a leaching solution derived from contact of infiltrating water with aged cement filling the tank above the sludge. It is anticipated that calcite (CaCO₃) will control the major ion chemistry of water passing through aged cement overlying the sludge and that a Ca/CO₃ saturated leachant will be the appropriate leachant for mobilizing contaminants during this stage of a performance assessment. Section 3.5.1 provides the results of single 30-day contact tests of the solution and sludges, and Section 3.5.2 discusses the periodic replenishment tests in which the sludge was contacted 6 times with the leaching solution. The concentrations of the constituents in the saturated CaCO₃ solution extracts tabulated in this section are expressed in units of μCi or μg per gram of

dry sludge. Concentrations on a per liter basis of dissolved constituents are listed in Appendix I. Results for ¹²⁹I in the single-contact and periodic replenishment tests are not included because they were below the detection limit.

Table 3.60. Cement-Leachable Percentage for Actinides in Periodic Replenishment Ca(OH)₂ Cement Extracts Compared with Acid Analysis

Sequential Contact	²³⁷ Np	²³⁹ Pu	²⁴¹ Am						
Perc	ent Cement Le	achable							
Sample 19250 (C-202)									
1	< EQL	(0.01)	< EQL						
2	< EQL	(0.003)	< EQL						
3	< EQL	(0.003)	< EQL						
4	< EQL	(0.003)	< EQL						
5	< EQL	(0.002)	< EQL						
6	< EQL	(0.001)	< EQL						
Sa	mple 19887 (C	-203)							
1	< EQL	(0.19)	< EQL						
2	< EQL	<eql< td=""><td>< EQL</td></eql<>	< EQL						
3	< EQL	<eql< td=""><td>< EQL</td></eql<>	< EQL						
4	< EQL	<eql< td=""><td>< EQL</td></eql<>	< EQL						
5	< EQL	<eql< td=""><td>< EQL</td></eql<>	< EQL						
6	< EQL	<eql< td=""><td>< EQL</td></eql<>	< EQL						
Sa	mple 19961 (C	-203)							
1	< EQL	(0.14)	< EQL						
2	< EQL	< EQL	< EQL						
3	< EQL	< EQL	< EQL						
4	< EQL	< EQL	< EQL						
5	< EQL	< EQL	< EQL						
6	< EQL	< EQL	< EQL						
EQL = Estimated quantita	tion limit.								

3.5.1 Single Contact CaCO₃ Solution Contact Test Data

The single contact water-leach tests were run in duplicate with an equilibration time of 1 month. A saturated $CaCO_3$ solution was used as a leachant. The results of these experiments are presented in this section.

3.5.1.1 Sludge to CaCO₃ Solution Ratios used in Single-Contact Extractions

In these tests, 30 ml of CaCO₃ saturated solution was contacted with about 0.3 to 0.6 g of moist sludge. The moisture contents of these sludge samples ranged from 38 to 57% by mass (Table 3.1). The dry sludge masses calculated from moisture content measurements were used to compute the dry sludge to CaCO₃ solution ratios (Table 3.61). These ratios ranged from about 7.76 to 13.30 g/L.

Table 3.61. Sludge to CaCO₃ Solution used in Leaching Extractions

Sample Number	Sludge to CaCO ₃ Solution Ratios (g/L)					
19250 (C-202)	7.89					
19250 (C-202) Dup	7.76					
19887 (C-203)	13.30					
19887 (C-203) Dup	12.27					
19961 (C-203)	11.31					
19961 (C-203) Dup	11.05					
DUP = Duplicate. All concentrations are corrected for the dry sludge basis.						

3.5.1.2 Alkalinity and pH of Single Contact CaCO₃ Solution Extractions

The average leachable alkalinities and pH values measured in duplicate leachates of each sludge sample are listed in Table 3.47. The pH value of the leachate from sludge sample 19250 (C-202) was slightly alkaline (8.68) whereas, the leachates from C-203 tank sludge samples, [19887 (C-203) and 19961 (C-203)] were more alkaline at pH 10.45 and 10.60, respectively. The total leachable alkalinity for the 19250 (C-202) sludge was 35.8 mg CaCO₃/g sludge. The average total leachable alkalinity value for the 19887 (C-203) sludge sample was 64.8 and the corresponding value for 19961 (C-203) sludge sample was 46.4 mg CaCO₃/g sludge (Table 3.62).

Table 3.62. Leachable Alkalinity and pH Values after 1 Month of CaCO₃ Solution Extraction

		Total Alkalinity (as CaCO ₃) at pH 4.5 Endpoint	Total Alkalinity (as CaCO ₃) at pH 4.5 Endpoint
Sample Number	pН	mg/L	mg/g Solid
19250 (C-202)	8.80	278	35.2
19250 (C-202) Dup	8.56	282	36.3
19250 (C-202) Avg	8.68	280	35.8
19887 (C-203)	10.40	757	65.2
19887 (C-203) Dup	10.49	703	64.4
19961 (C-203)	10.51	695	52.3
19961 (C-203) Dup	10.69	710	40.5
19887 (C-203) Avg	10.45	730	64.8
19961 (C-203) Avg	10.60	703	46.4
Avg = Average. Dup = Duplicate.			

3.5.1.3 Extractable ⁹⁹Tc and ²³⁸U Determined from Single-Contact CaCO₃ Solution Extractions

The concentrations of 99 Tc and 238 U mobilized in CaCO₃ saturated leachates after a 1-month contact with the residual sludge samples [19250 (C-202), 19887 (C-203), and 19961 (C-203)] are listed in

Table 3.63. The concentrations of ⁹⁹Tc in each of the leachates of all sludge samples were less than EQL or instrumental detection limit. Where estimated concentrations are available, the calculated percentages of leachable ⁹⁹Tc from these sludges are 3.48% (19250, C-202) and 31% (19961, C-203) (Table 3.64).

Table 3.63. Extractable ⁹⁹Tc and ²³⁸U after 1 Month of CaCO₃ Solution Extraction

	⁹⁹ Tc	²³⁸ U	⁹⁹ Tc	²³⁸ U
Sample Number	μg/g \$	Sludge	μCi/g	Sludge
19250 (C-202)	(5.07E-03)	6,510	(8.62E-05)	2.21E-03
19250 (C-202) Dup	(5.28E-03)	5,880	(8.98E-05)	2.00E-03
19250 (C-202) Avg	(5.18E-03)	6,190	<8.80E-05	2.11E-03
19887 (C-203)	<3.76E-02	33,800	<6.39E-04	1.15E-02
19887 (C-203) Dup	<4.08E-02	12,200	<6.93E-04	4.15E-03
19961 (C-203)	(1.41E-02)	38,400	(2.40E-04)	1.31E-02
19961 (C-203) Dup	(8.15E-03)	45,700	(1.38E-04)	1.55E-02
19887 (C-203) Avg	<3.92E-02	23,000	<6.66E-04	7.82E-03
19961 (C-203) Avg	(1.11E-02)	42,100	(1.89E-04)	1.43E-02

Values within parentheses were less than EQL.

Table 3.64. CaCO₃ Solution-Leachable Percentages of ⁹⁹Tc and ²³⁸U

	⁹⁹ Tc	²³⁸ U					
Sample Number	Percent Leachable						
19250 (C-202)	(3.48)	2.99					
19887 (C-203)	< EQL	4.4					
19961 (C-203)	(31)	8.7					
<eql =="" below="" estimated="" limit.<="" quantitation="" td=""></eql>							

The extracts from these three sludge samples contained relatively high concentrations of 238 U. For example, the CaCO₃ leachate of sludge 19250 (C-202) contained an average 238 U concentration of 6,190 µg/g sludge and sludges 19887 (C-203) and 19961 (C-203) samples contained extractable 238 U concentrations of 23,000 µg/g sludge and 44,100 µg/g sludge, respectively. These concentrations indicate that the percentages of the 238 U leachable in CaCO₃ solution after 1 month of contact was on average 3, 4.4, and 8.7 % of the total 238 U present in 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludges, respectively (Table 3.64). These data suggest that 238 U concentrations in leachate from these sludges will be high during the CaCO₃ stage of release, but that the U solids in contact with the solution control the water leaching.

The percent leachable by the CaCO₃ solution for each sample was similar to that for the DDI water extractant; however, it was over 100 times higher than the amount leachable by the Ca(OH)₂ extractant for samples 19250 (C-202) and 19883 (C-203) and 3.6 times higher for sample 19961 (C-203).

< Values were less than instrumental detection limit.

All concentrations are corrected for the dry sludge basis.

3.5.1.4 Extractable Metals Determined from CaCO₃ Solution Extractions

Concentrations of a number of metals including Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, Ti, Tl, V, Zn, and Zr in the $CaCO_3$ solution after extracting for one month were measured by ICP-OES. Among these, only a limited number of metals were present in measurable concentrations (Table 3.65). The concentrations listed within parentheses indicate values that are less than EQL. These data show that the two major leachable elements by the $CaCO_3$ leach solution in all three sludge samples were Na and P. Average extractable concentrations of Na in all three sludge samples were similar in magnitude, namely 28,300 μ g/g sludge in 19250 (C-202), 27,800 μ g/g sludge in 19887 (C-203), and 32,400 μ g/g sludge in 19961 (C-203), respectively. However, the average extractable concentration of P in 19250 (C-202) sludge leachate was 1,980 μ g/g sludge, which was about three to four times less than the average extractable P concentrations observed in the leachates of C-203 tank sludge samples (5,590 μ g/g sludge and 8,470 μ g/g sludge in 19887 (C-203) and 19961 (C-203), respectively). Other elements with measurable leachability (>100 to <1500 μ g/g sludge) included Al, Ba, Ca, Cr, Fe, Mg, Mn, Ni, Pb, and Zn.

Percentages of metals that were CaCO₃ extractable are listed in Table 3.66. These results were computed on the basis of the total metal concentrations as measured in the acid digested samples (Table 3.3 through Table 3.5). The data show that about half (48.1%) of the total Na present in sample 19250 (C-202) was readily leachable, and 28.7% and 34.2% of the Na inventories in samples 19887 (C-203) and 19961 (C-203) were present in CaCO₃ solution leachable forms. Leachable percentages of P in CaCO₃ solution were lower, but appreciable, constituting 12.2% of 19250 (C-202), 14.7% of 19887 (C-203), 21.7% of 19961 (C-203) of the total mass of P present in these sludges. The leachability of Cr in 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples were calculated to be 1.5%, 11.6%, and 25.3%, respectively. Other measurable leachable metal percentages were found only in C-203 tank sludge samples. These leachable metals consisted of Fe (2.5% and 8.4%), Mn (8.5% and 18.3%), and Pb (3.2 and 10.4%) in samples 19887 (C-203) and 19961 (C-203), respectively. Although there were no significant differences in the average leachable fractions of Na from the C-203 sludge samples, sample 19961 (C-203) appeared to leach a greater fraction of Cr, Fe, Mn, P, and Pb compare to sample 19887 (C-203). At this time, there are no discernable reasons for this differential leaching of these elements from these two sludge samples from the same waste tank (C-203).

3.5.1.5 Extractable Anions Determined from Single Contact CaCO₃ Solution Extractions

The extractable concentrations of anions determined in $CaCO_3$ saturated leachates after 1 month of contact were measured by ion chromatography and the results are provided in Table 3.67. Fluoride extracted from all the sludge samples was present at a concentration at least an order of magnitude higher than chloride. Average concentrations of F and Cl in the 19250 (C-202) sludge leachates were 4,400 and 103 μ g/g sludge, respectively. Leachate concentrations of F in C-203 sludge samples were about 30% lower than what was measured in the C-202 sludge extract [19887 (C-203): 3,000 μ g/g sludge, and 19961 (C-203): 2,790 μ g/g sludge]. The Cl concentrations in the two C-203 sludge CaCO₃ leachates were below the instrumental detection limits.

Extractable nitrate concentrations in these sludge samples were on average about 5 to 10 times higher than nitrite concentrations. Average nitrate and nitrite concentrations in sample 19250 (C-202) extracts were 1,830 and 474 μ g/g sludge, respectively. Higher average nitrate concentrations were found in C-203 tank sludge samples [19887 (C-203): 4,360 μ g/g sludge and 19961 (C-203): 5,140 μ g/g sludge].

Table 3.65. Extractable Metals Concentrations After 1 Month of CaCO₃ Solution Extraction

	Al	Ba	Ca	Cr	Cu	Fe	Mg	Mn	Na	Ni	P	Pb	Zn
Sample Number						μg/g	Dry Sludg	e					
19250 (C-202)	158	38.7	(219)	208	(7.6)	166	<159	36.3	29,300	(19.2)	2,060	(34.5)	<79.3
19250 (C-202) Dup	139	30.5	(379)	197	(5.7)	144	<161	31.1	27,300	(18.1)	1,890	(20.8)	<80.5
19250 (C-202) Avg	148	34.6	(299)	203	(6.6)	155	<160	33.7	28,300	(18.7)	1,980	(27.6)	<79.9
19887 (C-203)	(106)	(8.10)	(275)	1,030	<7520	639	(57)	110	28,600	(77.2)	6,300	299	(69.2)
19887 (C-203) Dup	(127)	(4.99)	(72.1)	458	<8150	194	<408	32.9	27,100	<408	4,870	78.1	(40.7)
19961 (C-203)	(98.3)	(8.92)	(380)	1,260	<8840	1,200	(71.8)	175	32,000	(146)	8,200	493	(99.5)
19961 (C-203) Dup	(93.6)	(2.98)	(419)	1,490	<9050	1,490	(85.8)	216	32,700	(170)	8,730	605	(111)
19887 (C-203) Avg	(117)	(6.55)	(173)	743	<7840	417	(232)	71.6	27,800	(242)	5,590	189	(54.9)
19961 (C-203) Avg	(96)	(5.95)	(400)	1,380	<8940	1,340	(78.8)	195	32,400	(158)	8,470	549	(105)

Values within parentheses were less than estimated quantitation limit.

Table 3.66. Percentages of CaCO₃ Solution Extractable Metals After 1 Month Contact

	Al	Ba	Ca	Cr	Cu	Fe	Mg	Mn	Na	Ni	P	Pb	Zn
Sample Number		% CaCO ₃ Solution Leachable											
19250 (C-202) Avg	1.1	16.6		1.5	1.3	0.1		0.1	48.1	(0.2)	12.2	0.3	
19887 (C-203) Avg				11.6		2.5	(28.7)	8.5	28.7	(55.3)	14.7	3.2	(7.7)
19961 (C-203) Avg				25.3		8.4	(12.1)	18.3	34.2	(27.1)	21.7	10.4	(19.8)
The numbers within p	The numbers within parentheses were calculated on the basis of less than estimated quantitation limit values.												

< Values were less than instrumental detection limit.

Table 3.67. Extractable Anion Concentrations After 1 Month of CaCO₃ Solution Extraction

	Fluoride	Chloride	Nitrite	Nitrate	Carbonate	Sulfate	Phosphate	Oxalate
Sample Number		μg/g Dry Sludge						
19250 (C-202)	4,600	97	510	1,860	26,200	244	5,500	27,600
19250 (C-202) Dup	4,200	108	438	1,800	25,400	235	5,050	26,800
19250 (C-202) Avg	4,400	103	474	1,830	25,800	240	5,270	27,200
19887 (C-203)	2,930	<178	417	3,880	<37,600	<308	14,640	1,460
19887 (C-203) Dup	3,070	<192	502	4,840	<40,800	<333	15,600	1,730
19961 (C-203)	2,800	<209	636	5,120	<44,200	<362	18,500	1,360
19961 (C-203) Dup	2,780	<214	608	5,160	<45,300	<370	19,400	1,370
19887 (C-203) Avg	3,000	<185	459	4,360	<39,200	<321	15,100	1,600
19961 (C-203) Avg	2,790	<211	622	5,140	<44,700	<366	19,000	1,360

The carbonate, oxalate and phosphate results are for information only. The quality control standard for these three anion analyses was not within the $\pm 10\%$. Oxalate numbers were background corrected.

Relatively low concentrations of extractable sulfate were found in these sludge samples. The average concentrations were 240, <321, and $<366 \mu g/g$ sludge in extracts of samples 19250 (C-202), 19887 (C-203), and 19961 (C-203), respectively.

Significant concentrations of extractable phosphate, namely 15,100 and 19,000 μ g/g sludge, were found in the CaCO₃ leachates of sludge samples 19887 (C-203) and 19961 (C-203), respectively. Sample 19250 (C-202) contained an extractable phosphate concentration of only 5,270 μ g/g sludge. Similar amounts of extractable phosphate were found in these samples extracted with DDI water. Much lower concentrations of extractable phosphate were found in these samples extracted with the Ca(OH)₂ solution. The average extractable phosphate concentrations were: <17.8 μ g/g sludge for sample 19250 (C-202); 3,000 μ g/g sludge for sample 19887 (C-203); and 7,100 μ g/g sludge for sample 19961 (C-203). The lower concentrations of phosphate in the Ca(OH)₂ extracts may be due to the formation of apatite [Ca₃(PO₄)₂] under the high pH and Ca concentrations of these extractions.

The extractable concentrations of oxalate in the 19250 (C-202) sample averaged 27,200 $\mu g/g$ sludge which was about 20 times higher than oxalate concentrations of 1,600 $\mu g/g$ sludge and 1,360 $\mu g/g$ sludge in samples 19887 (C-203) and 19961 (C-203) sludge extracts, respectively. Similar amounts of extractable oxalate were found in these samples extracted with DDI water and with the C-203 samples extracted with the Ca(OH)2 solution. Much lower concentrations of extractable oxalate were found in sample 19250 (C-202) extracted with the Ca(OH)2 solution. The average extractable oxalate concentration for these samples was 1,000 $\mu g/g$ sludge. The lower concentrations of oxalate in the Ca(OH)2 extraction of sample 19250 (C-202) may be due to the formation of calcium oxalate [CaC2O4] under the high pH and Ca concentrations of this extraction.

3.5.1.6 Extractable ¹³⁷Cs and ⁹⁰Sr Determined from Single Contact CaCO₃ Solution Extractions

The extractable concentrations of 137 Cs in the CaCO₃ solution leachates indicate that this radioisotope had low leachability at the microcurie per gram level (Table 3.68). As an example, the average 137 Cs concentration in the 19250 (C-202) sludge extract was found to be 0.365 μ Ci/g sludge, and the concentrations in CaCO₃ leachates from sludges 19887 (C-203) and 19961 (C-203) were measured at

Avg = Average.

Dup = Duplicate.

 $0.884 \,\mu\text{Ci/g}$ sludge and $1.85 \,\mu\text{Ci/g}$ sludge, respectively. The leachable percentage of ^{137}Cs in these sludge samples constituted on average 2.6, 4.6, and 8.5% of the total ^{137}Cs present in the 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples, respectively (Table 3.69).

Table 3.68. Average Extractable Concentrations ¹³⁷Cs and ⁹⁰Sr After 1 Month of CaCO₃ Solution Extraction

¹³⁷ Cs		⁹⁰ Sr		
μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	
0.365	0.0042	13.0	0.0929	
0.884	0.010	23.4	0.167	
1.85	0.021	40.5	0.290	
	μCi/g Sludge 0.365 0.884	μCi/g Sludge Sludge 0.365 0.0042 0.884 0.010	μCi/g Sludge Sludge Sludge 0.365 0.0042 13.0 0.884 0.010 23.4	

Avg = Average.

All concentrations are corrected for the dry sludge basis.

Table 3.69. Extractable ¹³⁷Cs and ⁹⁰Sr as a Percentage of Total Sludge Concentration

-% CaCC 6	O ₃ Leachable
6	
U	1.7
6	6.9%
5	10.4%
	6 5 the dry sl

All concentrations are corrected for the dry sludge basis. Total sludge concentrations from acid digested samples.

The extractable 90 Sr concentrations in the CaCO₃ solution were present at levels in the range of 13 to 40 μ Ci/g sludge. The 19250 (C-202) sample extract measured 13.0 μ Ci/g sludge and the extractions of 19887 (C-203) and 19961 (C-203) sludge samples contained 90 Sr concentrations of 23.4 and 40.5 μ Ci/g sludge, respectively. These concentrations represented 1.7, 6.9, and 10.4% of the total 90 Sr present in these sludge samples (Table 3.69). The extractable percentage of sample 19250 (C-202) was similar to the DDI water extraction, where as the percentages for 19887 (C-203) and 19961 (C-203) were 5 to 10 times higher. The percentages compared to the Ca(OH)₂ solution extraction were greater by a factor of 2 to 46 times.

3.5.1.7 Extractable Actinides Determined from Single Contact CaCO₃ Solution Extractions

The CaCO₃ solution leachable actinides are listed in Table 3.70. The concentrations of ²³⁹Pu in the extracts were at measurable levels in all cases whereas the concentrations of ²³⁷Np were estimated in all cases and for ²⁴¹Am they were estimated for the sample from tank C-202 and below detection limit for tank C-203. The extractable ²³⁹Pu concentrations in the extracts of sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203) were 0.877, 2.16, and 6.08 μg/g sludge, respectively. These concentrations indicated that the ²³⁹Pu in these sludge samples had very low leachability (0.2% of the total) for tank C-202 and low leachability (14 and 28% of the total) tank C-203 in CaCO₃ solution (Table 3.71). The estimated leachability of ²³⁷Np for C-202 is 2.2% of the total and for C-203 it is 0.1 and 0.22%. The

estimated leachability of 241 Am from C-202 is 0.2% of the total. The extractable percentages are similar to those for the DDI water extractions for all samples. They are also similar to the Ca(OH)₂ extractions, except that much less 239 Pu was leached by the Ca(OH)₂ extractions for the three samples compared to the amount leached by the DDI water or CaCO₃ extractants.

Table 3.70. Extractable Actinides Determined from Single-Contact CaCO₃ Extractions

	²³⁷ Np		239	Pu	²⁴¹ Am	
Sample Number	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge
19250 (202) 1 Month	(3.39E-05)	(4.78E-02)	5.44E-02	8.77E-01	(3.26E-03)	(9.58E-04)
19887 (203) 1 Month	(2.31E-05)	(3.25E-02)	1.34E-01	2.16E+00	<1.33E+01	<3.92E+00
19961 (203) 1 Month	(4.92E-05)	(6.94E-02)	3.77E-01	6.08E+00	<1.52E+01	<4.47E+00

Table 3.71. Percentage of Extractable Actinides Determined from Single-Contact CaCO₃ Extractions Compared with Acid Analysis

	²³⁷ Np	²³⁹ Pu	²⁴¹ Am			
Sample Number	% CaCO ₃ Leachable					
19250 (202) 1 Month	(2.2)	0.2	(0.2)			
19887 (203) 1 Month	(0.10)	14	< EQL			
19961 (203) 1 Month	(0.22)	28	< EQL			
N/A = Results below detection limit. EQL = Estimated quantitation limit.						

3.5.2 Periodic Replenishment CaCO₃ Solution Extraction Data

The sequential extraction tests were conducted by repeatedly equilibrating duplicate sludge samples with 30 mL aliquots of fresh CaCO₃-saturated solution. Sequential contacts 1, 2, 4, and 5 had a duration of 1 day each, whereas, sequential contact 3 and 6 lasted 3 and 30 days, respectively. The goal of these sequential leaching tests was to assess the long-term leaching characteristics of key contaminants and other constituents from the sludge samples. The results of these tests are presented in this section.

3.5.2.1 Sludge to CaCO₃ Solution Ratios used in Periodic Replenishment Extractions

In these tests, 30 ml aliquots of saturated $CaCO_3$ solution were contacted with about 0.3 to 0.6 g of moist sludge. The moisture contents of these sludge samples ranged from 38 to 57% by mass (Table 3.1). The dry sludge masses calculated from moisture content measurements were used to compute the dry sludge to $CaCO_3$ solution ratios (Table 3.72). These ratios ranged from about 7.34 to 15.12.

3.5.2.2 Alkalinity and pH of CaCO₃ Solution Periodic Replenishment Extractions

The average alkalinities and pH values measured in duplicate leachates of each sludge sample at the end of each sequential contact are listed in Table 3.73. The pH values of all three sludge leachates at all stages of extraction were alkaline in nature ranging in values from 7.87 to 10.43. The pH values for all

sludge leachates initially tended to be higher and decreased with each succeeding stage of extraction, except during the last stage for the extracts from samples 19250 (C-202) and 19887 (C-203), which showed slight increases in pH values.

Table 3.72. Sludge to Solution Ratios used in Periodic Replenishment CaCO₃ Leaching Tests

Sample Number	Sludge to CaCO ₃ Solution Ratio (g/L)
19250 (C-202)	7.34
19250 (C-202) Dup	7.93
19887 (C-203)	13.71
19887 (C-203) Dup	15.12
19961 (C-203)	10.84
19961 (C-203) Dup	10.56
All concentrations are	corrected for the dry sludge basis.

Table 3.73. Alkalinity and pH Values – Period Replenishment Extraction with CaCO₃ Solution

G 41	D		Total Alkalinity (as CaCO ₃) at pH	Total Alkalinity (as CaCO ₃) at pH			
Sequential Contact	Duration (Days)	pН	4.5 Endpoint	4.5 Endpoint mg/g solid			
Contact	(Duys)	_	mg/L	mg/g soma			
	T		19250 (C-202)				
1	1	8.95	266	34.9			
2	1	8.21	102	13.4			
3	3	8.46	100	13.2			
4	1	7.87	77.2	10.1			
5	1	7.96	96.5	12.8			
6	30	8.40	118	15.4			
Sample 19886 (C-203)							
1	1	10.14	614	45.9			
2	1	10.01	228	16.9			
3	3	9.59	162	12.1			
4	1	9.53	124	9.3			
5	1	9.21	124	9.3			
6	30	9.50	181	13.5			
		Sample	19961 (C-203)				
1	1	10.43	560	43.8			
2	1	9.98	193	15.1			
3	3	9.65	147	11.4			
4	1	8.62	112	8.7			
5	1	8.64	112	8.8			
6	30	8.42	139	10.9			

Major fractions of alkalinities from these sludges were mobilized during the first two stages of extraction. For instance, the sum of alkalinities extracted during the two initial extraction stages comprised about 50%, 68%, and 75% of the total cumulative extractable alkalinities in samples 19250 (C-202), 19887 (C-203), and 19961 (C-203), respectively. For the 19250 (C-202) sludge, the sum of extractable total alkalinity from all six stages was 100 mg CaCO₃/g sludge, and the sums of extracted alkalinities for samples 1987 (C-203) and 19961 (C-203) were 107 and 99 mg CaCO₃/g sludge, respectively. Note that about 50 mg/L of the alkalinity is due to the CaCO₃ solution used for the extraction. These six stages of sequential extractions cumulatively mobilized about two to three time more total alkalinities from each sludge sample as compared to the total alkalinities released by the single 30-day extractions with CaCO₃ solution (Table 3.62).

3.5.2.3 Carbon Contents – CaCO₃ Solution Periodic Replenishment Extractions

Table 3.74 lists the carbon contents that were sequentially extractable from the C-202 and C-203 sludge samples. About 40%, 56%, and 54% of cumulatively extractable TC was extractable from the initial stage of extraction of sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203), respectively. About 46% of the cumulatively extracted carbon from 19250 (C202) sample was inorganic carbon; whereas, inorganic carbon constituted about 77 and 72% of the cumulative TC extracted from samples 19887 (C-203) and 19961 (C-203), respectively. A portion of the inorganic carbon measured in the leachates was due to the carbonate/bicarbonate component of the leachant.

Table 3.74. Extractable Carbon Contents Determined from Periodic Replenishment Extractions with CaCO₃ Solution

Sequential	Duration	TC	TOC	TIC			
Contact	(Days)	s)mg C/g Sludge					
	Sample	19250 (C-	202)				
1	1	19.8	12.6	7.26			
2	1	4.94	1.66	3.27			
3	3	7.20	3.67	3.53			
4	1	3.29	1.10	2.19			
5	1	2.21	0.58	1.64			
6	30	9.54	5.70	3.84			
Sample 19887 (C-203)							
1	1	7.88	2.99	4.89			
2	1	1.82	0.40	1.58			
3	3	1.28	0.34	1.28			
4	1	0.96	0.34	0.96			
5	1	0.87	0.34	0.87			
6	30	1.21	0.34	1.21			
	Sample	19961 (C-	203)				
1	1	9.33	4.43	4.90			
2	1	2.14	0.51	1.86			
3	3	1.68	0.45	1.68			
4	1	1.25	0.45	1.25			
5	1	1.20	0.45	1.20			
6	30	1.46	0.45	1.46			
All concentr	ations are co	rrected for	the dry slu	dge basis.			

3.5.2.4 Extractable ⁹⁹Tc and ²³⁸U Determined from CaCO₃ Solution Periodic Replenishment Extractions

The concentrations of 99 Tc and 238 U mobilized in sequential CaCO₃ solution extractions of sludge samples 19250 (C-202), 19887 (C-203), and 19961 (C-203) are listed in Table 3.75. The concentrations of 99 Tc in all stages of extraction from all the three sludge samples were below the instrumental detection limits, except for an estimated value of 4.99 x 10^{-3} µg/g sludge for the first extraction of sample 19250 (C-202). If this amount is correct, it represents 3.4% of the total 99 Tc in this sludge (Table 3.76). 99 Tc in these samples was not leachable to any detectable degree by the CaCO₃ solution. Similar low levels of 99 Tc leachability were measured or estimated for the DDI water and Ca(OH)₂ solution extractions with the exception being an estimated value of 26.2% extractability for the first contact of sample 19887 (C-203) with the Ca(OH)₂ extractant.

Table 3.75. Extractable Concentrations of 99 Tc and 238 U – Periodic Replenishment Extraction with CaCO₃ Solution

Sequential	Duration	⁹⁹ Tc	²³⁸ U	⁹⁹ Tc	²³⁸ U			
Contact	(Days)	μg/g Slı	udge	μCi/g S	Sludge			
	Sample 19250 (C-202)							
1	1	(4.99E-03)	7,250	(8.48E-05)	2.47E-03			
2	1	<6.56E-03	1,320	<1.11E-04	4.50E-04			
3	3	<6.56E-03	3,090	<1.11E-04	1.05E-03			
4	1	<6.56E-03	1,240	<1.11E-04	4.23E-04			
5	1	<6.56E-03	972	<1.11E-04	3.30E-04			
6	30	<6.56E-03	5,260	<1.11E-04	1.79E-03			
Sample 19887 (C-203)								
1	1	<3.48E-02	10,300	<5.91E-04	3.52E-03			
2	1	<3.48E-02	6,060	<5.91E-04	2.06E-03			
3	3	<2.35E-02	2,420	<4.00E-04	8.22E-04			
4	1	<3.48E-02	1,930	<5.91E-04	6.58E-04			
5	1	<3.48E-02	1,400	<5.91E-04	4.77E-04			
6	30	<3.48E-02	14,400	<5.91E-04	4.91E-03			
		Sample 19	961 (C-203)					
1	1	<2.64E-02	19,700	<4.48E-04	6.69E-03			
2	1	<4.67E-02	5,320	<7.95E-04	1.81E-03			
3	3	<4.67E-02	4,060	<7.95E-04	1.38E-03			
4	1	<4.67E-02	1,180	<7.95E-04	4.02E-04			
5	1	<4.67E-02	1,410	<7.95E-04	4.80E-04			
6	30	<4.67E-02	8,750	<7.95E-04	2.97E-03			

All concentrations are corrected for the dry sludge basis.

Values within parentheses were less than EQL.

< Values were less than instrumental detection limit.

Table 3.76. CaCO₃ Solution Extractable Percentages of ⁹⁹Tc and ²³⁸U in Periodic Replenishment Extractions

Contact Stage	Contact Duration	act Duration 99Tc					
(duration, days)	(days)	% Leachable in Ca	CO ₃ Solution				
Sample 19250 (C-202)							
1	1	(3.4)	3.50				
2	1	< EQL	0.64				
3	3	< EQL	1.49				
4	1	< EQL	0.60				
5	1	< EQL	0.47				
6	30	< EQL	2.54				
Sample 19887 (C-203)							
1	1	< EQL	2.0				
2	1	< EQL	1.2				
3	3	< EQL	0.5				
4	1	< EQL	0.4				
5	1	< EQL	0.3				
6	30	< EQL	2.7				
	Sample 19961 (C	(-203)					
1	1	< EQL	3.7				
2	1	< EQL	1.0				
3	3	< EQL	0.8				
4	1	< EQL	0.2				
5	1	< EQL	0.3				
6	30	< EQL	1.7				
<eql =="" below="" esting<="" td="" the=""><td>nated quantitation limit.</td><td></td><td></td></eql>	nated quantitation limit.						

In contrast, the CaCO $_3$ solution extracts from all six sequential stages contained measurable concentrations of 238 U (Table 3.75). For example, the average extractable 238 U concentration from the initial extract for 19250 (C-202) sludge contained a 238 U concentration of 7,250 µg/g sludge (ppm) and similarly, the first stage extracts from sludges 19887 (C-203) and 19961 (C-203) contained extractable 238 U concentrations of 10,300 µg/g sludge and 19,700 µg/g sludge, respectively. The 238 U extractabilities in the second and subsequent stages were typically two to six times less than the initial stage extractability. The first stage extraction from all the sludge samples removed about a third to half of the cumulative leachable 238 U from all six extraction stages. For instance, the initial extractions of the 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples mobilized about 37%, 28%, and 48% of the cumulative leachable 238 U, respectively.

The $CaCO_3$ solution sequential extractions cumulatively mobilized about 9.24, 6.97 and 8.33% of the total acid digestable ²³⁸U contents of the 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples, respectively (Table 3.76). These extractable percentages are generally less than those measured for the DDI water extractions and almost 100 time greater than the ²³⁸U extractability using the $Ca(OH)_2$ extractant.

3.5.2.5 Extractable Metals Determined from CaCO₃ Solution Sequential Extractions

Concentrations of a number of metals including Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Si, Sr, Ti, Tl, V, Zn, and Zr in the extracts of the six stage sequential leaching using CaCO₃ solution were measured by ICP-OES. Among these, only five elements, namely, Al, Cr, Fe, Na, and P were present in measurable concentrations. The extractable concentrations are shown in (Table 3.77). Concentrations listed within parentheses indicate values that are less than the EQL. These data show that the major leachable element in all three sludge samples was Na. Initial extractable concentrations of Na from 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge leachates were 29,300, 23,600, and 7,540 µg/g sludge, respectively. For all three sludge samples, the initial extraction generally mobilized the highest concentrations of Al, Cr, Fe, Na, and P. The sequential leaching behavior of Na and P from these sludges was similar to other constituents in that, following the high concentrations in the first stage, significant reduction in concentrations were observed in the subsequent four leaching stages with enhanced leaching in the final extraction stage.

Table 3.77. Average Extractable Concentrations Selected Metals – Periodic Replenishment Extraction with CaCO₃ Solution

Sequential	Al	Cr	Fe	Na	P			
Contact	-	με	g/g Dry Slu	udge				
Sample 19250 (C-202)								
1	172	255	1,200	29,300	1,990			
2	136	(109.2)	387	15,600	1,220			
3	196	(52.5)	369	5,120	726			
4	216	(76.5)	595	3,520	508			
5	(98.7)	(14.9)	(124)	1,920	(159)			
6	195	(57.2)	436	2,410	174			
Sample 19887 (C-203)								
1	(76.8)	386	218	23,600	5,620			
2	(30.1)	329	218	6,280	2,610			
3	(15.5)	92.4	(73.8)	3,790	1,370			
4	(15.9)	(37.5)	(35.7)	2,560	746			
5	<173.9	(20.6)	(22.2)	1,960	453			
6	(65.0)	278	199	3,390	1,190			
	Sa	mple 1996	61 (C-203)	_	_			
1	(73.8)	948	823	7,540	27,700			
2	(21.9)	108	143	2,600	6,420			
3	(27.6)	(44.2)	(59.6)	1,370	4,200			
4	(127.5)	(4.8)	(25.8)	(444)	2,360			
5	<233.7	(34.8)	(17.5)	(346)	2,090			
6	(80.5)	(76.0)	(89.4)	787	3,070			
	Values within parentheses were < estimated quantitation limit.							

Based on duplicate measurements.

Percentages of metals that were cumulatively extractable during the six-stage sequential leaching with CaCO₃ solution are listed in Table 3.78. These results were computed on the basis of the total metal concentrations as measured in the acid digested samples of the sludges (Table 3.3 through Table 3.5). These extractions mobilized about 77% of the total Na present in 19250 (C-202) and about 43 and 49% of the Na inventory in the 19887 (C-203) and 19961 (C-203) sludge samples, respectively. The data indicate that the six-stage sequential extraction of these sludge samples released on average about one and a half times the amount of Na that was leached in the single 30-day CaCO₃ extraction (Table 3.66). These extractions released P that constituted 25% of 19250 (C-202), 32% of 19887 (C-203), and 34% of 19961 (C-203) of the total mass of P present in these sludges. The cumulative P released from these sludge samples by sequential extractions were about twice the amount of P released from the single 1-month CaCO₃ extraction. The fractions of Cr mobilized from 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples were 5, 18, and 22 %, respectively. These data indicated that the sequential extractions using CaCO₃ leachant cumulatively mobilized Cr in quantities similar to that observed in single 30-day CaCO₃ extracts.

Table 3.78. Cumulative Percentages of Extractable Metals – Periodic Replenishment Extractions with CaCO₃ Solution

	19250 (C-202)	19887 (C-203)	19961 (C-203)			
Element	Cumulative % CaCO ₃ Leachable					
Al	8.8	28.6	(92.8)			
Cr	4.7	17.9	22.4			
Fe	3.2	(4.6)	7.3			
Na	76.9	42.9	48.5			
P	25.2	31.6	33.6			

Values within parentheses were less than the estimated quantitation limit.

Values calculated on the dry sludge basis.

Sequential extractions of 19250 (C-202), 19887 (C-203), and 19961 (C-203) samples cumulatively mobilized 9, 29, and 93% of the total Al and 3, 5, and 7% of the total Fe present in these sludge samples, respectively. Compared to the single 30-day CaCO₃ extraction data (Table 3.66), the sequential extractions mobilized significant fractions of Al but similar fractions of Fe from these sludges samples. These data from sequential leaching of sludge samples with CaCO₃ solution indicate that, except for a limited suite of elements (Al, Cr, Fe, Na, and P), all other analyzed metals were not leachable to a measurable degree.

3.5.2.6 Extractable Anions in CaCO₃ Solution Periodic Replenishment Extractions

The concentrations of anions that were present in the CaCO₃ leachates after each stage of sequential extraction were measured by IC. Extractable concentrations are listed in Table 3.79.

The initial extraction step mobilized very high concentrations of fluoride, nitrate, phosphate and oxalate and high concentrations of nitrite and sulfate from all the three sludge samples. (Approximately $3,000 \,\mu\text{g/g}$ sludge of the carbonate concentrations in the leachates are due to the CaCO₃ leachant used in the extractions.) Extracts from subsequent stages contained concentrations of anions that were

significantly reduced, in some cases by more than an order of magnitude. These data indicated that the bulk of the extractable anions would be mobilized during the initial stage of extraction with CaCO₃ solution.

Table 3.79. Average Extractable Concentrations of Anions – Periodic Replenishment Extractions with CaCO₃ Solution

Sequential	Fluoride	Chloride	Nitrite	Nitrate	Carbonate	Sulfate	Phosphate	Oxalate
Contact μg/g Dry Sludge							•	
	Sample 19250 (C-202)							
1	3,430	28	485	1,300	24,400	196	4,490	27,000
2	667	12	<12	96	<6,600	35	2,040	2,300
3	556	7	<12	369	<6,600	28	1,730	1,200
4	103	6	<12	141	<6,600	20	712	93
5	18	6	<12	127	<6,600	34	117	<45
6	286	212	33	1060	<6,600	34	885	463
			Sam	ple 19887 (0	C-203)			
1	2,370	164	354	3,380	<34,800	<284	15,000	1,150
2	169	<164	<314	<301	<34,800	<284	8,000	<240
3	<81	<164	<314	<301	<34,800	<284	4,090	<240
4	<81	<164	<314	<301	<34,800	<284	2,500	<240
5	<81	<164	<314	<301	<34,800	<284	1,440	<240
6	<81	<164	<314	<301	<34,800	<284	2,730	<240
	Sample 19961 (C-203)							
1	2,623	<221	632	5,150	<46,700	<382	21,100	1,330
2	<109	<221	<422	<405	<46,700	<382	8,730	<322
3	<109	<221	<422	<405	<46,700	<382	4,410	<322
4	<109	<221	<422	<405	<46,700	<382	1,400	<322
5	<109	<221	<422	<405	<46,700	<382	1,190	<322
6	<109	<221	<422	<405	<46,700	<382	1,940	<322

The carbonate, oxalate and phosphate results are for information only. The QC standard for these three anion analyses was not within the $\pm 10\%$. Oxalate numbers were background corrected.

3.5.2.7 Extractable ¹³⁷Cs and ⁹⁰Sr Determined from CaCO₃ Solution Periodic Replenishment Extractions

The extractable concentrations of 137 Cs in the CaCO₃ solution leachates for all three sludge samples were at the low microcurie per gram level (Table 3.80). In all cases, the 137 Cs concentrations in the extracts decreased with each stage of extraction with enhanced concentrations in the final 30-day stage extracts, except for sample 19961 (C-203) which continued to decline in concentration. For example, the initial leachate from the 19250 (C-202) sample had an extractable 137 Cs concentration of 0.68 μ Ci/g sludge which decreased to 0.14 μ Ci/g sludge by the fifth stage and then increased to 0.32 μ Ci/g sludge for the sixth leaching stage. The cumulative leachable fractions of 137 Cs in these sludge samples averaged 11%, 6.6%, and 5.3% of the total 137 Cs present in the 19250 (C-202), 19887 (C-203), and 19961 (C-203) sludge samples, respectively (Table 3.81). The sequential extractions cumulatively leached similar fractions of the total 137 Cs that were leached in the single 30-day CaCO₃ extraction process for the C-203 sludges and about 4 times the amount leached in the single contact leach of sludge C-202 (Table 3.69).

< Values were less than instrumental detection limit.

All values based on duplicate measurements.

The cumulative amount leached by the DDI water extraction was similar for sample 19250 (C-202) but about twice that for the C-203 samples. The amount of 137 Cs leached by the Ca(OH)₂ extracts was several times higher than that leached by the CaCO₃ solution and DDI water extractants.

Table 3.80. Extractable Concentrations of 137 Cs and 90 Sr – Periodic Replenishment Extractions with CaCO₃ Solution

		¹³⁷ Cs		⁹⁰ Sr			
Sequential Contact	Duration (Days)	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge		
Sample 19250 (C-202)							
1	1	0.68	7.82E-03	21.3	0.152		
2	1	0.135	1.55E-03	NM	NM		
3	3	0.214	2.46E-03	15.4	0.11		
4	1	0.088	1.01E-03	NM	NM		
5	1	0.14	1.61E-03	NM	NM		
6	30	0.323	3.71E-03	24.8	0.177		
	Sample 19887 (C-203)						
1	1	0.314	3.61E-03	1.03E+01	7.36E-02		
2	1	0.261	3.00E-03	NM	NM		
3	3	0.139	1.60E-03	5.39E+00	3.85E-02		
4	1	0.059	6.72E-04	NM	NM		
5	1	0.0597	6.87E-04	NM	NM		
6	30	0.444	5.10E-03	1.36E+01	9.72E-02		
Sample 19961 (C-203)							
1	1	0.668	7.67E-03	1.68E+01	1.20E-01		
2	1	0.209	2.40E-03	NM	NM		
3	3	0.129	1.49E-03	5.88E+00	4.20E-02		
4	1	0.0373	4.29E-04	NM	NM		
5	1	0.0736	8.47E-04	NM	NM		
6	30	0.0263	3.03E-04	9.59E+00	6.85E-02		

All concentrations are corrected for the dry sludge basis.

NM = Not measured.

Values based on duplicate measurements.

Table 3.81. Cumulative Percentages of ¹³⁷Cs and ⁹⁰Sr Leached by CaCO₃ Solution

	¹³⁷ Cs	⁹⁰ Sr		
Sample Number	% CaCO ₃ Leachable			
19250 (C-202) Avg	11	8.1		
19887 (C-203) Avg	6.6	8.67		
19961 (C-203) Avg	5.3	9.56		

All concentrations are corrected for the dry sludge basis. Total sludge concentrations from acid digested samples. The extractable ⁹⁰Sr concentrations determined from the first, third and sixth stages of the sequential CaCO₃ extractions are listed in Table 3.80. For each sludge leachate, the concentrations decrease between the first and third extractions and then increase for the 30-day (sixth) extraction. The leachable concentrations measured for the three extractions represent 8.1% of the total ⁹⁰Sr in sludge 19250 (C-202), 8.67% of the sample 19887 (C-203) total, and 9.56% of the total ⁹⁰Sr in 19961 (C-203). These results indicate that ⁹⁰Sr is not highly leachable from these sludges by a CaCO₃ saturated solution; however, the leachability appears to increase with contact time. The cumulative leachable percentages of ⁹⁰Sr were similar to the amounts leached in the single 30-day CaCO₃ extraction process for the C-203 sludges and was about 5 times greater than the single contact extraction for the C-202 sludge (Table 3.69). The cumulative amount of ⁹⁰Sr leached by the CaCO₃ extractant was similar to the cumulative amount leached by the DDI water extraction for sample 19250 (C-202) and the Ca(OH)₂ solution for the C-203 samples.

3.5.2.8 Extractable Actinide Concentrations Determined from CaCO₃ Solution Periodic Replenishment Extractions

The CaCO₃ leachate concentrations of sequentially leachable actinides are listed in Table 3.82. Extractable concentrations of ²³⁷Np were measurable at all stages for sample 19250 (C-202) and estimated for the first and second stages for the C-203 sludge samples. The total extractable percentage of ²³⁷Np in the C-202 sample is 8.5% and is less than 1% for the C-203 samples (Table 3.83).

Table 3.82. Extractable Actinide Determined for Periodic Replenishment CaCO₃ Extractions

	237	Np	²³⁹ Pu		241	Am	
Sequential Contact	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	μCi/g Sludge	μg/g Sludge	
Sample 19250 (C-202)							
1	4.37E-05	6.16E-02	2.30E-01	3.71E+00	<1.13E-02	<3.31E-03	
2	1.09E-05	1.53E-02	3.22E-02	5.19E-01	<1.20E-02	<3.53E-03	
3	1.88E-05	2.65E-02	1.66E-01	2.68E+00	<9.03E-03	<2.66E-03	
4	9.68E-06	1.36E-02	4.78E-02	7.71E-01	<1.54E-03	<4.52E-04	
5	1.25E-05	1.76E-02	5.61E-03	9.04E-02	<2.23E-02	<6.56E-03	
6	3.41E-05	4.80E-02	3.73E-01	6.02E+00	<2.79E-02	<8.20E-03	
		Sample	e 19887 (C-203	5)			
1	(1.08E-05)	(1.53E-02)	6.89E-02	1.11E+00	<1.18E+01	<3.48E+00	
2	(3.15E-05)	(4.44E-02)	4.89E-02	7.89E-01	<1.18E+01	<3.48E+00	
3	<2.99E-05	<4.21E-02	(1.95E-02)	(3.15E-01)	<1.18E+01	<3.48E+00	
4	<4.94E-05	<6.95E-02	(8.11E-03)	(1.31E-01)	<1.18E+01	<3.48E+00	
5	<4.94E-05	<6.95E-02	(5.16E-03)	(8.33E-02)	<1.18E+01	<3.48E+00	
6a	(1.73E-05)	(2.44E-02)	7.44E-02	1.20E+00	<1.18E+01	<3.48E+00	
Sample 19961 (C-203)							
1	(1.99E-05)	(2.80E-02)	2.24E-01	3.61E+00	<1.59E+01	<4.67E+00	
2	(3.72E-05)	(5.24E-02)	4.18E-02	6.75E-01	<1.59E+01	<4.67E+00	
3	<6.64E-05	<9.35E-02	(2.31E-02)	(3.73E-01)	<1.59E+01	<4.67E+00	
4	<6.64E-05	<9.35E-02	(5.51E-03)	(8.89E-02)	<1.59E+01	<4.67E+00	
5	<6.64E-05	<9.35E-02	(5.59E-03)	(9.01E-02)	<1.59E+01	<4.67E+00	
6a	<6.64E-05	<9.35E-02	4.62E-02	7.45E-01	<1.59E+01	<4.67E+00	

Table 3.83. Extractable Percentages for Actinides Determined from Periodic Replenishment CaCO₃ Extractions

Sequential Contact	²³⁷ Np	²³⁹ Pu	²⁴¹ Am				
% CaCO ₃ Extractable							
Sample 19250 (C-202)							
1	2.9	0.9	< EQL				
2	0.7	0.1	< EQL				
3	1.2	0.6	< EQL				
4	0.6	0.2	< EQL				
5	0.8	0.02	< EQL				
6	2.3	1.4	< EQL				
Sa	mple 19887 (C	(-203)					
1	(0.05)	2.1	< EQL				
2	(0.13)	1.53	< EQL				
3	< EQL	(0.61)	< EQL				
4	< EQL	(0.25)	< EQL				
5	< EQL	(0.16)	< EQL				
6	(0.07)	2.3	< EQL				
Sa	Sample 19961 (C-203)						
1	(0.08)	7.0	< EQL				
2	(0.16)	1.3	< EQL				
3	< EQL	(0.72)	< EQL				
4	< EQL	(0.17)	< EQL				
5	< EQL	(0.17)	< EQL				
6	< EQL	1.4	< EQL				
EQL = Estimated quantitation limit.							

²³⁹Pu was measured in all leachates for samples 19250 (C-202) and samples 19887 and 19961 for C-203, although some of the values are estimated. The cumulative percentages of extractable ²³⁹Pu for the 3 sludge samples are 3.2% (19250, C-202), 6.95% (19887, C-203), and 10.8% (19921, C-203) (Table 3.83).

The ²⁴¹Am concentrations in all the sequential extractions were below the instrument detection limit.

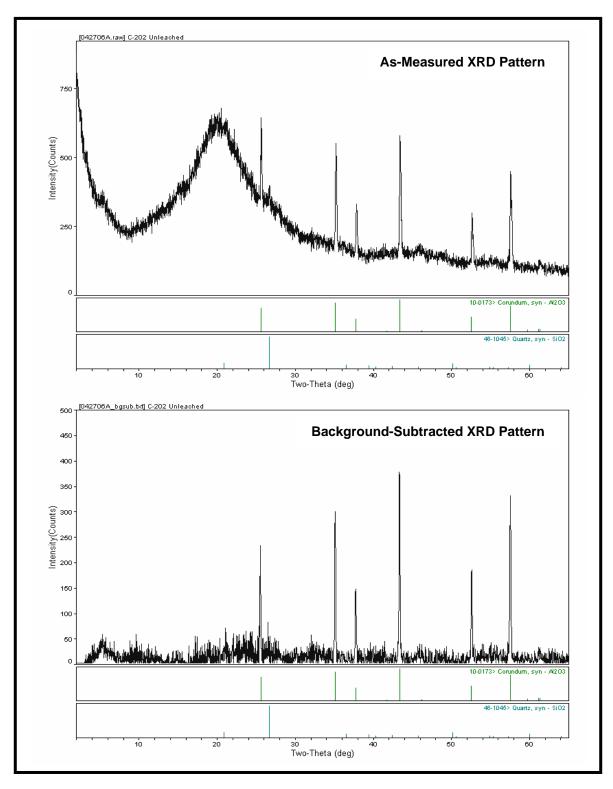
3.6 XRD Results

The as-measured and background-subtracted XRD patterns measured for the characterized samples of C-202 and C-203 post-retrieval residual waste are shown in Appendices A and B, respectively. Each pattern in this section and Appendices A and B is shown as a function of degrees 2θ based on $Cu_{K\alpha}$ radiation (λ =1.5406 Å). The vertical axis in each pattern represents the intensity or relative intensity of the XRD peaks. The XRD patterns show, for comparison purposes, one or more schematic database (PDF) patterns considered for phase identification. The height of each line in the schematic PDF patterns represents the relative intensity of an XRD peak (i.e., the most intense [the highest] peak has a relative

intensity [I/I_o] of 100%). Quantitative analyses of the relative masses of individual phases present in each solid sample were not estimated using these XRD patterns due to the factors discussed at the end of Section 2.3. A crystalline phase typically must be present at greater than 5 wt% of the total sample mass (greater than 1 wt% under optimum conditions) to be readily detected by XRD. Phase identification was based on a comparison of the peak reflections and intensities observed in each pattern to the mineral PDFTM published by the JCPDS ICDD. Phase identification from the XRD patterns was done in an iterative fashion by considering phases with particle compositions that were determined by SEM/EDS (see Section 3.7) as present in the unleached and leached residual sludge.

3.6.1 C-202 Post-Retrieval Residual Waste

Samples of unleached, 1-month single-contact leached DDI water extraction, 1-month single-contact Ca(OH)₂ leached, and 1-month single-contact CaCO₃ leached post-retrieval residual waste from tank C-202 were characterized by bulk XRD. Figure 3.1 shows the as-measured and background-subtracted XRD patterns for a sample of unleached C-202 post-retrieval residual sludge. The XRD results indicate that these samples contain mostly amorphous (non-crystalline) solids. All of the as-measured XRD patterns (e.g., see Figure 3.1) contained a broad diffraction profile (or hump) from approximately 10 to 30°2θ. This feature is indicative of diffraction from amorphous materials, which cannot be identified by XRD methods. Diffraction from the nitrocellulose binder contributed to this broad profile.


The XRD patterns for the other three C-202 residual waste samples (Appendix A) are similar to those shown in Figure 3.1. Except for the possible presence of quartz (SiO₂) in the sample of unleached residual waste (Figure 3.1), no crystalline phases other than corundum (used as a 2θ internal standard) were identified in the samples of unleached, 1-month single-contact leached DDI water extraction, 1-month single-contact Ca(OH)₂ leached, and 1-month single-contact CaCO₃ leached C-202 post-retrieval residual waste. Only one unidentified reflection was found in the XRD patterns for C-202 residual sludge. This was a low angle reflection at 15.02 °2θ (5.89 Å) noted in the XRD pattern for the 1-month single-contact Ca(OH)₂ leached sample. Otherwise, there were no major unassigned reflections in the XRD patterns for the C-202 post-retrieval residual waste samples, which suggests that these samples did not likely contain any major crystalline phases present at more than ~5-10 wt% of the sample mass.

Quartz was also identified in the 2-week DDI water-leached C-204 sludge (Deutsch et al. 2004; Krupka et al. 2006). Based on published tank chemistry and characterization information, quartz is not expected to be a component in these wastes. Because quartz is one of the principal minerals in Hanford sediments, its presence in the C-202 and C-204 samples likely resulted from blowing dust or sediment that fell into the tank during sampling or other tank operation activities.

3.6.2 C-203 Post-Retrieval Residual Sludge

Bulk XRD techniques were used to identify crystalline phases present in the following samples of C-202 post-retrieval residual sludge:

- Unleached brown, yellow, and orange solids separated from sample 19887
- Unleached brown, yellow, and orange solids separated from sample 19961
- One-month single-contact leached water extraction of solids from sample 19961
- Sequential leached water extraction of solids from sample 19961

Figure 3.1. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns (based on $Cu_{K\alpha}$ radiation, λ =1.5406 Å) for the Sample of Unleached C-202 Post-Retrieval Residual Sludge

- One-month Ca(OH)₂-leached solids from sample 19961
- Sequential Ca(OH)₂-leached solids from sample 19961
- One-month CaCO₃-leached solids from sample 19961
- Sequential CaCO₃-leached solids from sample 19961

Figure 3.2 shows a set of typical as-measured and background-subtracted XRD patterns measured for these six subsamples of C-203 residual sludge. Figure 3.2 contains the XRD patterns for dominantly brown material from sample 19887 of C-203 post-retrieval residual and the schematic database pattern for corundum (PDF #10-0173). Analysis of the XRD patterns for these C-203 samples indicates that these solids consisted of essentially all (~90% or more) amorphous (non-crystalline) material. This conclusion is based on the broad peak positioned between 10 and 30°20 with symmetry characteristic of XRD amorphous material, and the lack of any reflections that could not be attributed to the corundum (α -Al₂O₃) added to each XRD mount as an internal 20 standard, the Kapton® polyimide film used in the sample holder, or the nitrocellulose binder. A few of the XRD patterns contained a peak near at 3.0 °20. This peak was attributed to an instrument electronic spike, because when the corresponding sample was rerun, the spike was missing from the second diffraction pattern. A few of the XRD patterns did not produce any reflections for the internal standard, corundum. This was likely due to an insufficient amount of corundum being added in the sample mount.

3.6.3 Comparison of XRD Results for C-202 and C-203 Post-Retrieval Residual Sludge to Those for C-203 and C-204 Pre-Retrieval Waste

The XRD results for C-202 and C-203 post-retrieval residual sludges are generally consistent with those for the water-leached pre-retrieval wastes from tanks C-203 and C-204. Like the C-202 and C-203 residual sludges (see Figure 3.1 and Figure 3.2), the C-203 and C-204 water-leached pre-retrieval wastes contained mostly amorphous solids, and no significant quantities of any crystalline phases were detected in their bulk XRD patterns. The C-203 and C-204 water-leached pre-retrieval wastes may contain a small quantity of poorly crystalline clarkeite {ideal end-member formula Na[(UO₂)O(OH)](H₂O)₀₋₁} based on the small broad reflections observed at approximately 15, 27, 33, 46, and 49°20 in the background-subtracted patterns (Deutsch et al. 2004; Krupka et al. 2006). These five reflections correspond to the major reflections for clarkeite (PDF #50-1586). These five small broad reflections however were not detected in the XRD patterns for unleached and leached C-202 and C-203 post-retrieval residual sludges.

Čejkaite [Na₄(UO₂)(CO₃)₃] was the primary crystalline phase identified by bulk XRD in the unleached C-203 and C-204 pre-retrieval sludge and the yellow nugget material discovered embedded in the bulk unleached C-203 pre-retrieval sludge sample from sample 19649 (Deutsch et al. 2004; Krupka et al. 2006). The XRD pattern for the unleached yellow nugget material was also consistent with the possible presence of nitratine (soda niter, NaNO3) (PDF #36 1474) at a concentration that was estimated from relative peak heights to be significantly less than 25% of the čejkaite concentration (Deutsch et al. 2004; Krupka et al. 2006). The pre-retrieval yellow nugget material also contained a significant mass of non-crystalline component(s) based on the broad XRD peak observed in the as-measured pattern between 10 and 30°2θ. Neither čejkaite nor nitratine (both highly soluble phases) were identified in the XRD patterns for C-202 and C-203 post-retrieval residual sludges.

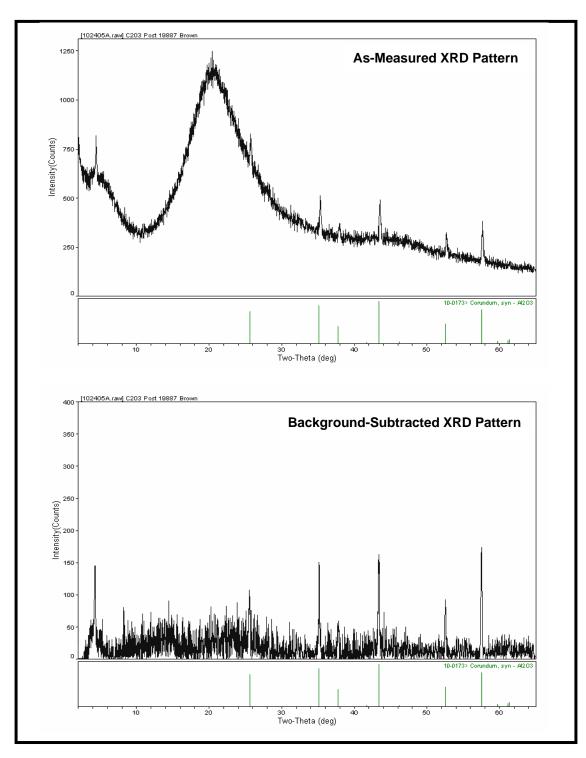


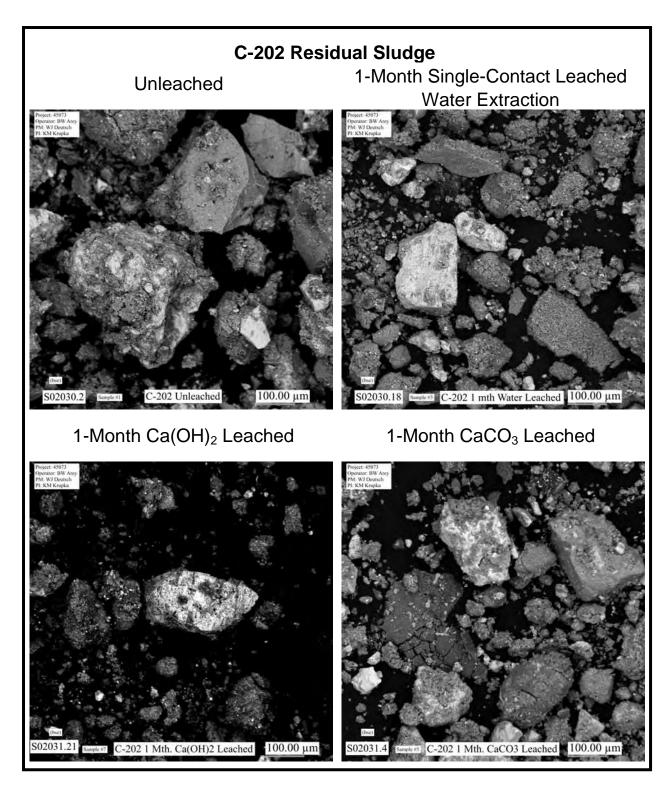
Figure 3.2. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns (based on $Cu_{K\alpha}$ radiation, λ =1.5406 Å) for the Sample of Unleached "Brown" C-203 Post-Retrieval Residual Sludge

Analyses by synchrotron-based μ XRD indicated the possible presence of goethite [α -FeO(OH)], maghemite (γ -Fe₂O₃), and the Na uranates clarkeite and/or Na₂U2O₇ in DDI water-leached pre-retrieval waste from tank C-203 (Deutsch et al. 2005). A synchrotron focused x-ray beam was used to collect transmission μ XRD patterns on several ~5- μ m diameter areas of relatively large (approximately 20 to 100 μ m) U- and Fe-rich particles identified by microscanning x-ray fluorescence (μ SXRF) in the sample of C-203 pre-retrieval waste. Although Deutsch et al. (2004) did not identify goethite or maghemite in their bulk XRD analyses of this same C-203 pre-retrieval sludge, they did determine the presence of Fe oxides by SEM/EDS. Similarly, the bulk XRD analyses of the post-retrieval (residual) sludge from tanks C-202 and C-203 did not indicate the presence of any crystalline Fe oxide phases. However, Fe-oxide particles often containing trace amounts of Mn, Cr, and sometimes Pb were discovered by SEM/EDS in the C-202 and C-203 post-retrieval (residual) sludges.

3.7 SEM/EDS Results

This section discusses the results of the SEM/EDS analyses for residual waste solids from tanks C-202 and C-203. Unless otherwise noted, the SEM micrographs and EDS information included in this section were selected because they show typical morphologies, sizes, surface textures, and compositions of particles in the mounts of residual sludge from the two tanks. All of the SEM micrographs and EDS analyses collected for the post-retrieval samples from tanks C-202 and C-203 are shown in the appendices listed in Table 3.84. Each appendix contains a series of micrographs of particles imaged by the SEM, EDS spectra and accompanying SEM images showing the locations on particles where the EDS analyses were made, and tables that summarize the elemental compositions (in atomic percent, at.%) derived from EDS analyses of areas of the individual particles.

Table 3.84. List of Appendices Containing the SEM Micrographs and EDS Analyses for the Unleached and Leached C-202 and C-203 Residual Sludge Samples


Tank	Type of Residual Waste Sample	Appendix
Sample 19250	Unleached	С
(C-202)	1-month single-contact DDI water extraction leached solids	D
	1-month single-contact Ca(OH) ₂ leached solids]
	1-month single-contact CaCO ₃ leached solids]
Sample 19887 (C-203)	Unleached – Mounts #1 (yellow solids), #3 (brown solids), and #5 (orange solids)	Е
	1-month single-contact DDI water extraction leached solids	F
	Sequential DDI water extraction leached solids]
Sample 19961 (C-203)	Unleached – Mounts #8 (yellow solids), #10 (brown solids), and #11 (orange solids)	G
	1-month single-contact DDI water extraction leached solids	Н
	Sequential DDI water extraction leached solids	
	1-month single-contact Ca(OH) ₂ leached solids	
	Sequential Ca(OH) ₂ leached solids	
	1-month single-contact CaCO ₃ leached solids	
	Sequential CaCO ₃ leached solids	

Readers are cautioned that elemental compositions determined by EDS are qualitative and have large uncertainties resulting from alignment artifacts caused by the variable sample and detector configurations that exist when different particles are imaged by SEM. Moreover, examination of the calculated elemental compositions based on the EDS analyses reported in Appendices C through H suggests that the EDS-determined concentrations of C and possibly O, which are the two lightest elements detected in these waste solids by EDS, are too large. This conclusion is based on comparison of the reported C and O concentrations to the expected C/O molar ratio if C was present in solid phase as carbonate (CO₃) and to the TOC concentrations measured in this study for the bulk unleached residual sludge. Although we believe that U-containing solids in these waste samples likely contain carbonate, the high C concentrations were likely affected by a measurement artifact and do not represent the total C content of these samples, but the reason is not known. There is no indication that this is due to excitation of x-rays from the C coating deposited on the samples or from the double-sided C tape that holds the sample particles to the Al specimen holders. Because of the qualitative nature of the EDS analyses and suspect C concentrations determined by EDS, molar ratios are therefore expected to provide a better way to interpret the EDS results than using the mass concentrations of individual elements. For this reason, the calculated EDS compositions in this report are listed in atomic percent, instead of weight percent, so that molar ratios could be used to make conclusions regarding the compositions of solids in the unleached and leached residual waste samples.

The micrographs presented in this section are typically reproduced at reduced size to conserve page space. To get a more detailed view of these micrographs, the reader is referred to Appendices C through H, where the micrographs are shown at a larger size. The name of each digital image file, sample identification number, and a size scale bar are given, respectively, at the bottom left, center, and right of each SEM micrograph (excluding those showing the locations of EDS analyses) in this report. Micrographs labeled BSE near the digital image file name indicate that the micrograph was collected with BSE imaging. In the appendices, particles outlined by squares or marked by arrows in a micrograph designate sample material that was imaged at higher magnification and is typically shown in the next figure of the series for that sample.

3.7.1 C-202 Residual Sludge

Figure 3.3 shows BSE SEM micrographs taken at low magnification of typical material present in the sample mounts of unleached and leached C-202 residual sludge. All of the analyzed samples contain a combination of individual and aggregate particles from several hundred to less than a micrometer in size. There were no apparent differences between the SEM/EDS results for the yellow, brown, and orange solids separated from the unleached C-202 residual sludge. The particles were nondescript and appeared to be amorphous due to a general absence of crystal faces. Because XRD analyses did not indicate the presence of any crystalline phases in these samples, it is assumed that the amorphous-looking particles are likely non-crystalline. However, without further studies at higher magnification at the submicrometer scale, such as with transmission electron microscopy (TEM), the non-crystallinity of these particles cannot be verified. The SEM samples of unleached C-202 residual waste also appear similar to the unleached C-203 post retrieval residual waste (see Section 3.7.2).

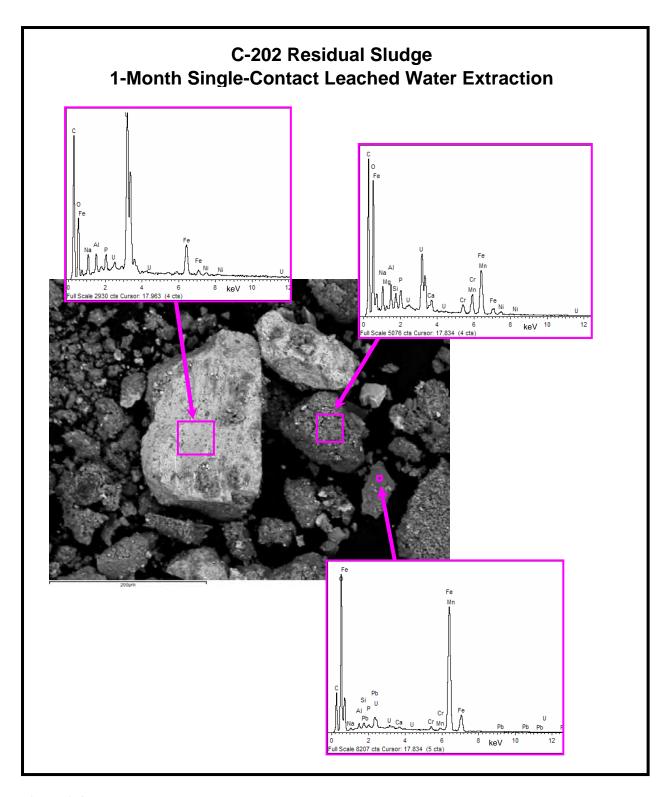


Figure 3.3. Backscattered Electron (BSE) SEM Micrographs for Unleached, 1-Month Single-Contact DDI Water Extraction Leached, 1-Month Single-Contact Ca(OH)₂ Leached, and 1-Month Single-Contact CaCO₃ Leached Residual Sludge from Tank C-202

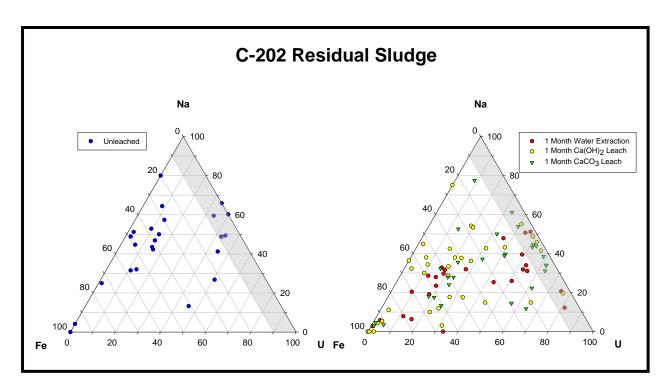

The C-202 residual sludge consists of particles generally having one of two common compositions. One composition consists of U, Na, C, O, P, and possibly H (H is not detectable by EDS). These are the bright white particles in Figure 3.3. The other composition is an Fe oxide that often contains trace amounts of Mn, Cr, and sometimes Pb. Particles and aggregates that are gray in Figure 3.3 consist in total or part of this Fe oxide solid (typically, the darker the gray – the greater the Fe oxide content of the aggregate). Because the material in the unleached and leached residual sludge samples contain mostly particle aggregates or individual grains with fine particles adhered to their surface, most EDS analyses indicate the presence of both U and Fe in most particles analyzed by EDS. Figure 3.4 shows typical EDS spectra for particles present in the SEM sample from the 1-month single-contact DDI water extraction leach. The two general compositions of particles present in the C-202 residual sludge are essentially the same as those determined for the unleached and leached C-203 samples discussed in the following section; however, the C-202 residual sludge (after leaching in DDI) appears to contain more Fe oxide particles relative to the U-containing phase than the unleached samples of C-203 residual waste.

Figure 3.5 contains ternary plots for the normalized concentrations (at %) of U, Na, and Fe (i.e., EDSdetermined concentrations [at.%] of U, Na, and Fe normalized to a total of 100%) for all C-202 particles (U-Na-C-O-P±H and Fe-O) analyzed by EDS. The compositions used to calculate the ternary plots for unleached and leached samples of C-202 residual waste in Figure 3.5 are listed in Appendices C and D, respectively. The ternary plots do not indicate any clustering of any specific particle compositions within this U-Na-Fe composition range. The U-Na-C-O-P±H and Fe-O phases are believed to have narrow ranges of specific compositions, and the scatter in EDS compositions in Figure 3.5 is believed to be due to the aggregate nature of these solids that resulted in most EDS analyses being composite analyses of both U-Na-C-O-P±H and Fe-O phases. For those analyses of unleached C-202 residual sludge that best reflect the compositions of just the U-Na-C-O-P±H particles (i.e., the normalized at.% values containing little or no Fe [shaded area where <10 normalized at.% Fe] in the left ternary plot in Figure 3.5), the Na/U ratios range approximately from 2:1 to 1:1. For the U-Na-C-O-P±H particles in the leached C-202 residual waste with little or no Fe (shaded area in right ternary plot in Figure 3.5), the Na/U ratios appear to be less than the unleached samples and typically range approximately from 1.5:1 to 0.4:1 with some Na/U ratios as low as 0.1:1. The reader is cautioned to use these ratios only to evaluate possible trends in the compositions of the different unleached and leached waste samples. These ratios must not be compared to those of known phases, because the plotted values are dependent on the elements selected to normalize the atomic percent values to 100%. The results in Figure 3.5 suggest that Na concentrations of the U-Na-C-O-P±H phase decreased as a result of the DDI water extraction, Ca(OH)₂, and CaCO₃ leaching. If so, these results imply the following:

- The leach product possibly may contain a mixture of the original U-Na-C-O-P±H phase and a new Na-poor or Na-absent U phase where its solubility was exceeded and then precipitated during the course of the leach study.
- The U-Na-C-O-P±H phase may be dissolving incongruently,
- The waste solids may contain a readily soluble Na phase that contains no U.
- The U-Na-C-O-P±H phase may consist of two or more U phases having similar compositions.

Figure 3.4. Backscattered Electron (BSE) Micrograph and Typical EDS Spectra for Particles Present in the Residual Waste SEM Sample from the 1-Month Single-Contact Leached DDI Water Extraction

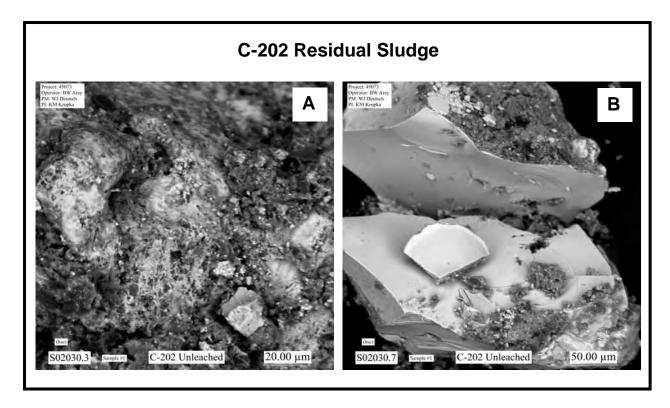


Figure 3.5. Ternary Plots of the EDS-Determined U-Na-Fe Concentrations (at.%) Normalized to 100% for Unleached (left diagram) and Leached (right diagram) Samples of C-202 Residual Waste

The SEM results do not provide any morphological evidence for the precipitation of a new Na-poor U phase. If such a phase exists in small quantity as a coating and/or submicrometer-sized intergranular phase, it would be difficult to discern by SEM and EDS. It is also not possible to use the SEM results to confirm or dispel the possibility that the U-Na-C-O-P±H phase is dissolving incongruently.

The observed decrease in Na concentrations in the residual leached solids could also have resulted from the dissolution of a readily soluble Na phase that contains no U, such as nitratine (soda niter, NaNO₃) which was found in the unleached (as-received) C-203 and C-204 pre-retrieval wastes (Deutsch et al. 2004; Krupka et al. 2006). However, there was no evidence from the SEM, EDS, or XRD analyses of such material being present in detectable quantity in post-retrieval sludge from C-202 or C-203. Compared to the BSE images for the U-Na-C-O-P±H particles, any particles and intergranular cement composed of nitratine would have appeared darker in BSE micrographs due to the absence of U. Also, N was not detected in any of the EDS spectra for any of the analyzed particles from the post retrieval sludges.

Some of the SEM micrographs however suggest that the C-202 residual sludge may contain more than one U-containing phase. For example, Figure 3.6 shows a pitted, porous-looking solid (micrograph A) and a large dense-looking particle (micrograph B) both with a U-Na-C-O-P±H composition but different from the standpoint of surface morphology. There are numerous examples of these two solid forms in the micrographs in the appendices for the C-202 unleached and leached samples, and for the C-203 unleached and leached residual waste as will be discussed in the next section. For some conglomerate particles, this porous U-containing solid appears as a coating or an intergrowth with Fe

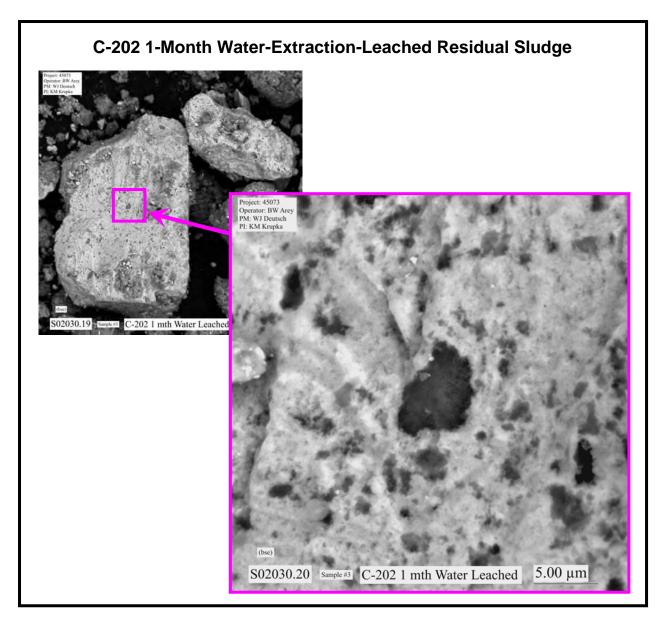


Figure 3.6. Backscattered Electron (BSE) Micrographs Showing the Possible Presence of Two Types of U-Containing Solids – a Pitted or Porous Looking Aggregate (micrograph A) and a Large Dense-Looking Solid (micrograph B) in C-202 Unleached Residual Sludge

oxide (Figure 3.7). If the Fe oxides contain any contaminants of concern, such as Cr or Tc, the release of such contaminants will be delayed until the U-Na-C-O-P±H solid has sufficiently dissolved and the Fe oxide is exposed to infiltrating pore fluid.

The EDS analyses of the leached C-202 residual waste samples also indicate that the Ca content of the U-containing phase present at the end of the Ca(OH)₂ and CaCO₃ leaches increased relative to that of the unleached and DDI water leached samples. Figure 3.8 contains a ternary plot of the normalized concentrations (at.%) of U, Na, and Ca (i.e., EDS-determined concentrations [at.%] of U, Na, and Fe normalized to a total of 100%) for particles analyzed by EDS. Note that the same colors were used for symbols for the different types of C-202 samples as plotted in Figure 3.5 and Figure 3.8. Figure 3.8 shows that Ca content of the Ca(OH)₂ and CaCO₃ leached solids has increased with respect to the Na concentrations. This effect is greatest in the Ca(OH)₂ leached solids. It is not possible from these SEM/EDS results to ascertain the mechanism, such as a Na/Ca exchange reaction, responsible for this shift in compositions.

The SEM/EDS analyses did not indicate the presence of Tc or I in any of particles present in the unleached or leached samples of residual sludge from tank C-202. Their detection was restricted by their low concentrations in the residual waste samples and their high minimum detection limits by EDS.

Figure 3.7. Backscattered Electron (BSE) Micrographs Showing Porous U-Containing Solid as a Coating and Intergrowth with Fe Oxide in 1-Month Single-Contact DDI Water Extraction Leached Solid from C-202 Residual Sludge

3.7.2 C-203 Residual Sludge

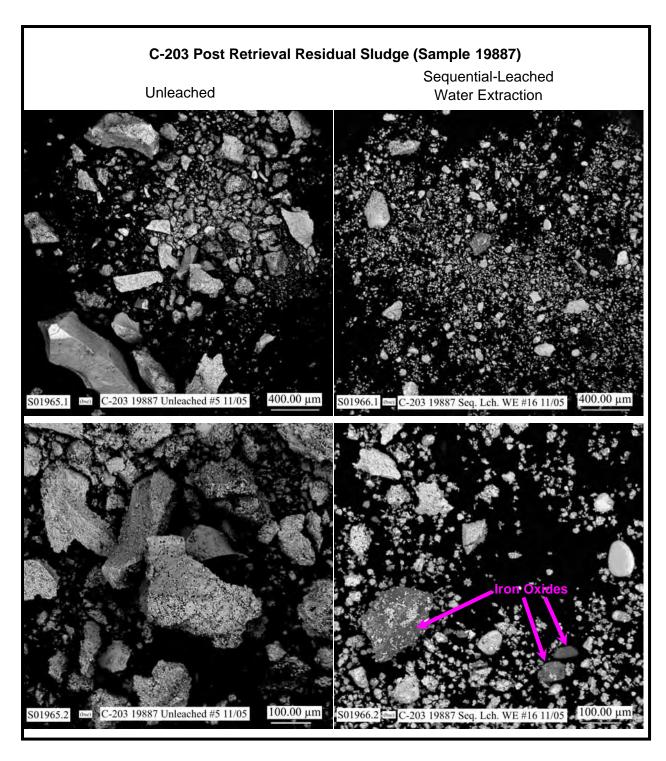

Figure 3.9 shows BSE SEM micrographs at low magnifications of unleached (micrographs on left side) and sequential-leached DDI water extraction (micrographs on right side) samples of C-203 residual waste from sample 1987. The SEM images and EDS results for the unleached and DDI water extraction samples from sample 19961 (sludge also from post-leached C-203) are similar to those obtained for samples from sample 1987. There were no apparent differences between the SEM/EDS results for the yellow, brown, and orange solids separated from the unleached C-203 residual waste from samples 19887 or 19961. All of the analyzed residual sludge samples contained mostly particle aggregates consisting of

Figure 3.8. Ternary Plot of the EDS-Determined U-Na-Ca Concentrations (at.%) Normalized to 100% for Unleached and Leached Samples of C-202 Residual Sludge

U, Na, C, O, P, sometimes with trace levels of Si and Al, and possibly H (H is not detectable by EDS). The unleached sludge (Figure 3.9) and 1-month single-contact DDI water leached samples (not shown in Figure 3.9) of C-203 residual waste appear to contain more large-particle aggregates than the sequential-leached DDI water extraction samples. Because this difference was observed for sequential DDI water leached samples from both 19887 and 19961 samples, this disaggregation is assumed to occur as a result of dissolution reactions during the sequential-leach testing and/or sample centrifugation at the end of each of the six leach steps, and not from preparation of the SEM mount.

The samples of unleached and DDI water extracted samples also contained a small number of Fe oxide particles (see dark gray Fe-oxide particles indicated in micrograph in lower right of Figure 3.9). These Fe-oxide particles were more apparent in the micrographs of the sequential-leached DDI water extracted samples. The Fe oxides often occur as large individual or conglomerate particles, and often contain low concentrations of Cr, Mn, Pb, and/or Cu. For the unleached and leached samples of C-202 and C-203 residual sludge, the Fe-containing particles (>1 at.% Fe) contained up to 0.8 at.% Mn (typically <0.5 at.%), 4.7 at.% Cr (typically <1.0 at.%), 0.9 at.% Pb (typically <0.5 at.%), and 1.6 at.% Cu (typically <0.5 at.%). Ni ($K_{\alpha 1}$ x-ray emission peak at 7.478 keV) was detected as a trace constituent (less than 1 wt.%) in only a few of all particle regions analyzed by EDS.

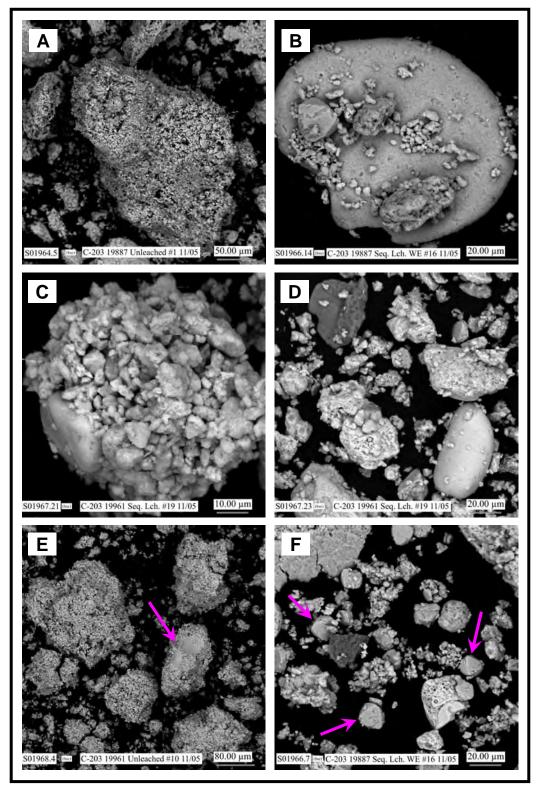
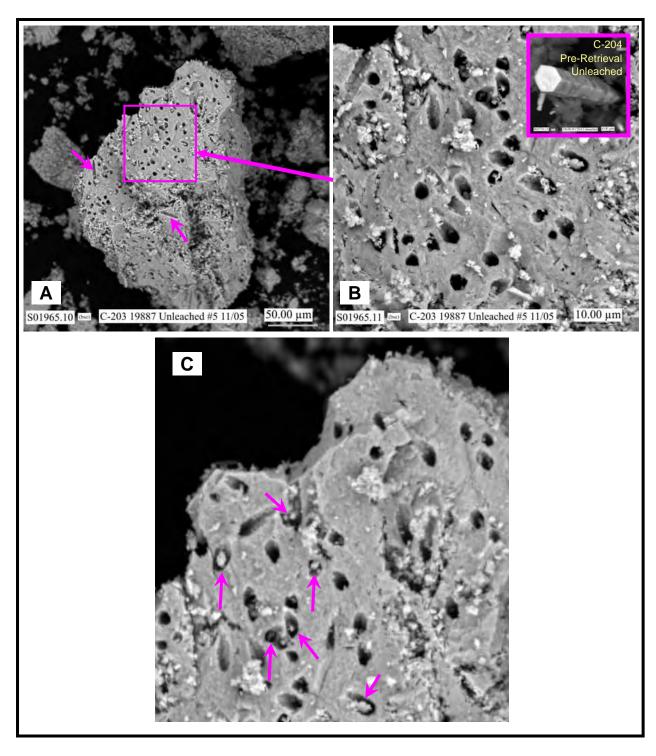

Figure 3.9. Backscattered Electron (BSE) SEM Micrographs of Unleached (left side) and Sequential DDI Water Leached (right side) Samples of C-203 Residual Sludge from Sample 19887. (The bottom row of micrographs show at higher magnification the particles near the center of the corresponding left and right micrographs in the top row.)

Figure 3.10 shows micrographs of U-Na-C-O-P±H (trace Al+Si) particles in the C-203 residual waste samples. The porous aggregates (micrograph A); large, dense, rounded particles (micrograph B) and conglomerates (micrograph C) are common in the unleached and sequential water leached C-203 samples. These porous aggregates and dense, rounded particles have noticeably different surface textures (micrograph D in Figure 3.10), and are similar to those observed in the C-202 residual waste. In some instances, the core material (particle marked by the arrow in micrograph E in Figure 3.10) of the porous aggregates appears to be no different than the dense rounded particles. The smooth concave surfaces on this aggregate represent the locations where large rounded particles were once attached to or pressed against this aggregate. A few particles were also observed (particles marked by the arrows in micrograph F in Figure 3.10) in the C-203 samples to have apparent pyramidal faces. As with the C-202 residual sludge samples, the surface textures and morphologies shown in Figure 3.10 are consistent with the presence of two or more types of U-Na-C-O-P±H phases in the unleached C-203 residual waste. Improved identification/characterization of these phases requires more detailed studies by other techniques such as transmission electron microscopy (TEM) and x-ray absorption spectroscopy (XAS).


Many of these U-Na-C-O-P±H (trace Al+Si) particles appear to contain dissolution pits (micrograph A in Figure 3.11) that at higher magnification (micrographs B and C in Figure 3.11), have internal facet angles of approximately 120°. Some of these cavities (see red arrows in micrograph A in Figure 3.11) also suggest that the dissolved phase might have been rod shaped. The cross sections of these dissolution pits are reminiscent of the hexagonal-like cross sections of the acicular crystals of čejkaite [Na₄(UO₂)(CO₃)₃] (see insert from Deutsch et al. [2004] in micrograph B in Figure 3.11) identified in unleached C-203 and C-204 pre-retrieval waste sludge. Because these hexagonal-like dissolution pits were identified in samples of unleached C-203 residual sludge, it is assumed that they exist in the actual residual waste still in the C-200 series tanks. Some of the dissolution pits may also contain remnant material of the phase that originally occurred in these cavities (see red arrows in micrograph C in Figure 3.11). Due to the small particle size of this remnant material, no differences could be detected by EDS in the compositions of this material and the host U-Na-C-O-P±H phase.

The porous aggregates of U-Na-C-O-P±H in the C-203 residual waste (e.g., see micrograph A in Figure 3.10) have complex surface textures. Figure 3.12 shows examples of these surfaces which are porous and have high surface areas.

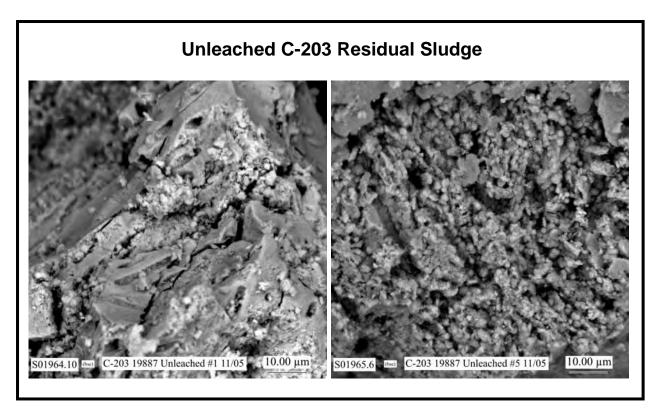
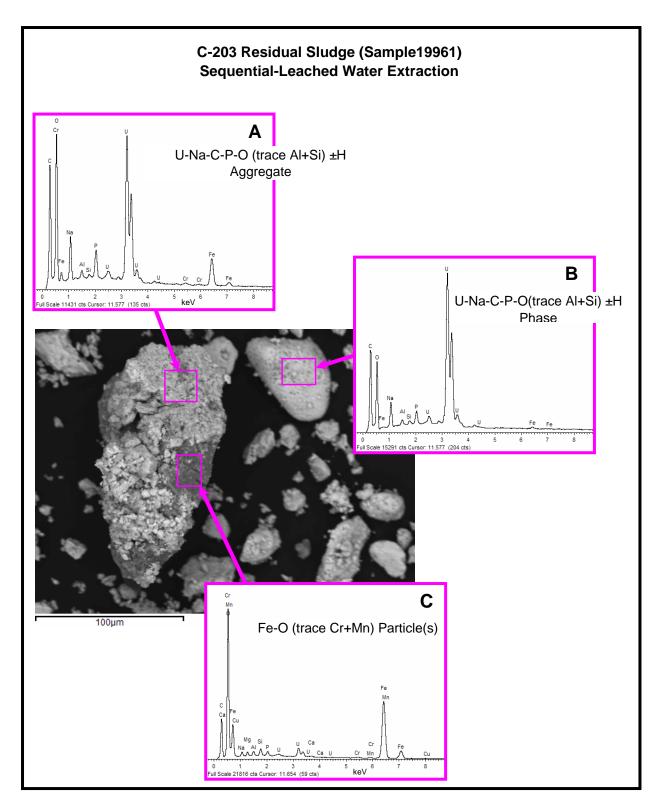

Some of these U-Na-C-O-P±H (trace Al+Si) particles also coat and/or cement Fe-oxide particle(s). Figure 3.13 and Figure 3.14 show micrographs, EDS spectra, and single- and multi-element EDS maps for one of these conglomerate particles. The single- and multi-element EDS maps in Figure 3.14 clearly show the regions of this coated or cemented particle that consist of Fe oxide. The small gray-white areas within the U-rich (red) areas in Figure 3.14B suggest that P distribution may not be uniform in these U-Na-C-O-P±H solids.

Figure 3.10. Typical Particles of U-Na-C-O-P±H (Trace Al+Si) in Unleached and Sequential DDI Water Leached Samples of C-203 Residual Sludge


Figure 3.11. Particle of U-Na-C-O-P±H in the Unleached Sample of C-203 Residual Sludge from Sample 19887 Showing Hexagonal, Rod-Like Dissolution Cavities

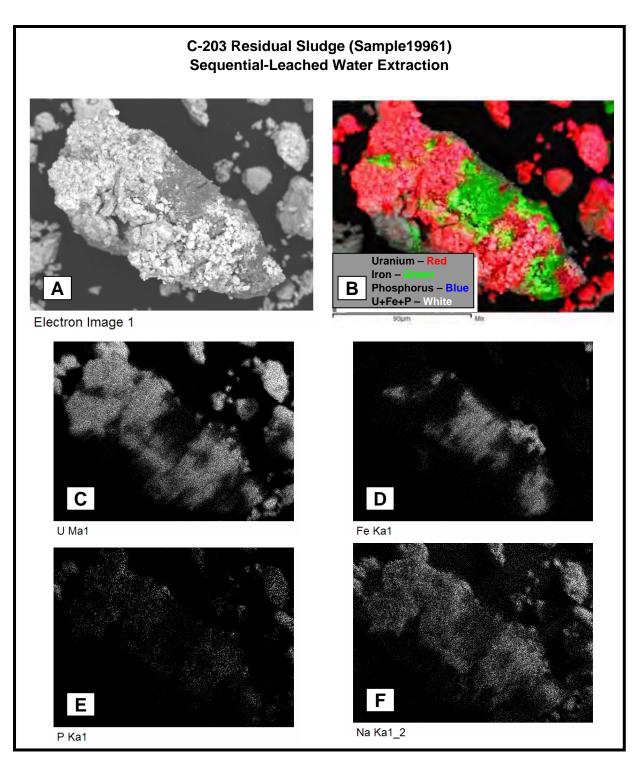
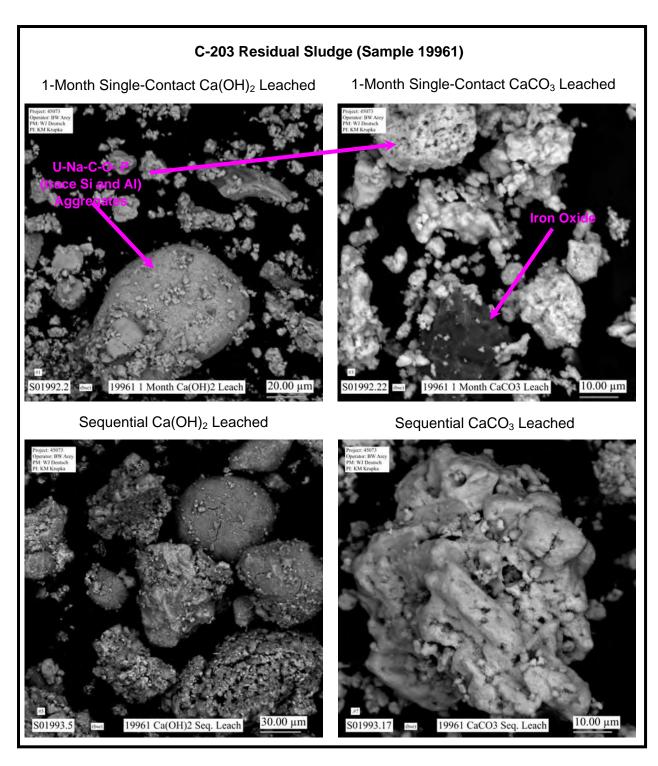
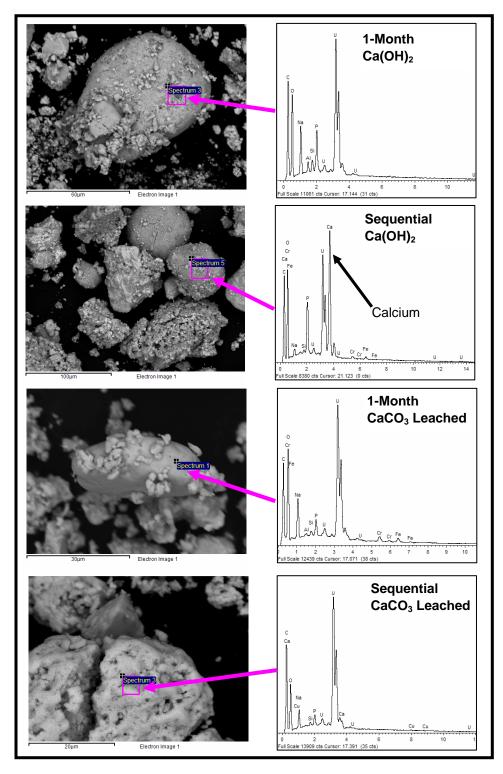

Figure 3.12. Backscattered Electron (BSE) Micrographs Showing Porous, High Surface Area Characteristics of the U-Na-C-O-P±H Aggregate Solids in Unleached C-203 Residual Sludge

Figure 3.15 and Figure 3.16 show BSE micrographs and EDS spectra of typical particles present in the 1-month single-contact Ca(OH)₂, sequential Ca(OH)₂, 1-month single-contact CaCO₃, and sequential CaCO₃ leach samples of C-203 residual sludge from sample 19961. These leached solids are similar to those identified in the samples of unleached, 1-month single-contact and six-step sequential DDI water leaches of C-203 residual sludge from samples 19887 and 19961. All of the analyzed samples contained mostly particle aggregates consisting of U, Na, C, O, and P; sometimes with trace levels of Si and Al; and possibly H (H is not detectable by EDS). The samples also contained some Fe oxide particles (see dark gray Fe-oxide particle indicated in micrograph in upper right of Figure 3.15). These Fe-oxide particles occurred as both large individual and conglomerate particles, and often contained low concentrations of Cr, Mn, Pb, and/or Cu.


As in the C-202 residual sludge samples, the particles in unleached and leached C-203 residual sludge samples were generally nondescript and appeared to be amorphous due to a general absence of crystal faces. This is consistent with the bulk XRD results which did not detect any crystalline phases. However, some particles, which typically were Fe oxides, with possible crystalline faces were observed by SEM in the C-203 residual sludge. Examples of such solids with possible crystalline faces are indicated by the arrows in the micrographs in Figure 3.17 for unleached residual sludge.


Figure 3.13. BSE Micrograph and EDS Spectra for Sequentially DDI Water Leached Conglomerate of U-Na-C-O-P±H (Trace Al+Si) and Fe-Oxide Particle(s)

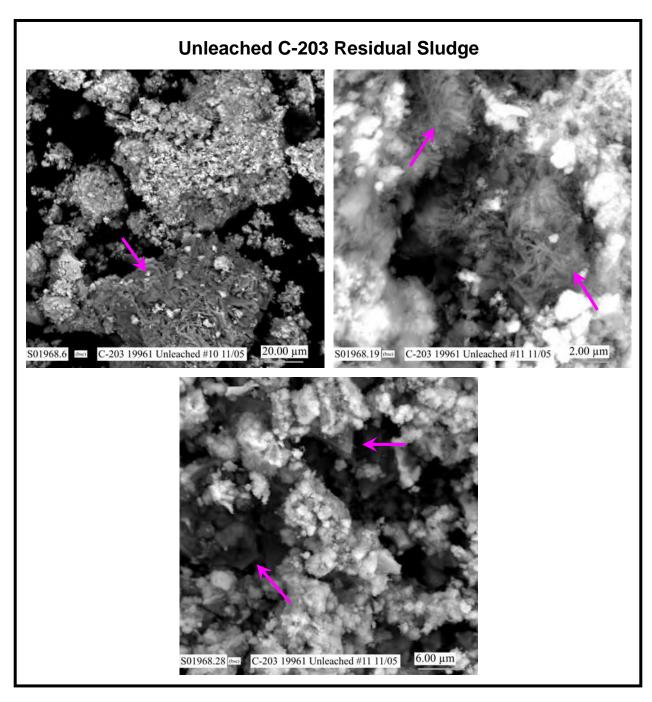

Figure 3.14. BSE Micrograph and Multi- and Single-Element EDS Maps for Conglomerate of U-Na-C-O-P±H (Trace Al+Si) and Fe-Oxide Particle(s). (Particle rotated approximately 45° counter clockwise relative to micrograph of same particle shown in Figure 3.13.)

Figure 3.15. BSE SEM Micrographs of 1-Month Single-Contact Ca(OH)₂ Leach, Sequential Ca(OH)₂ Leach, 1-Month Single-Contact CaCO₃ Leach, and Sequential CaCO₃ Leach Samples of C-203 Post-Retrieval (Residual) Sludge from Sample 19961

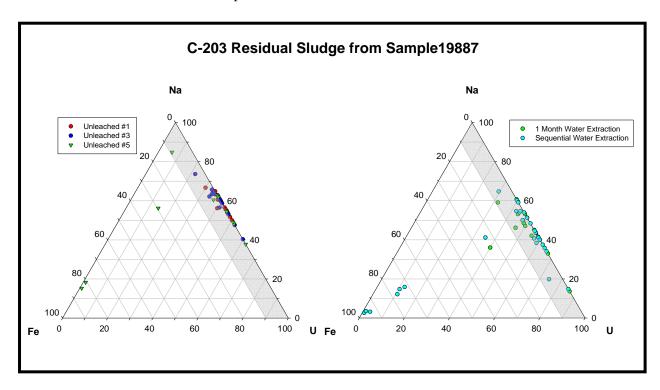


Figure 3.16. BSE SEM Micrographs and EDS Spectra for Typical U-Na-C-O-P Particle Aggregates in 1-Month Single-Contact Ca(OH)₂, Sequential Ca(OH)₂, 1-Month Single Contact CaCO₃, and Sequential CaCO₃ Leach Samples of C-203 Residual Sludge from Sample 19961

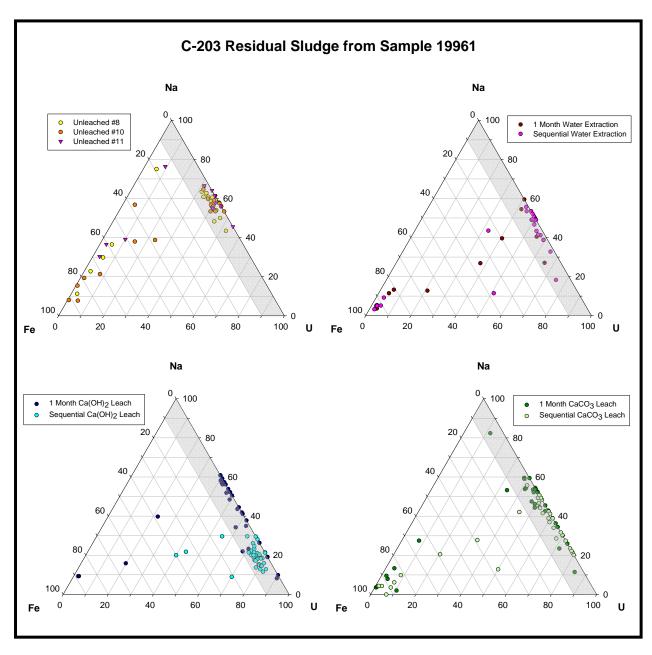
Figure 3.17. BSE Micrographs Showings Solids with Possible Crystal Faces (see arrows) in Unleached C-203 Residual Sludge

Figure 3.18 contains the ternary plots for the normalized concentrations (at.%) of U, Na, and Fe (i.e., EDS-determined concentrations [at.%] of U, Na, and Fe normalized to a total of 100%) for all particles (U-Na-C-O-P±H and Fe-O) analyzed by EDS in C-203 residual sludge from sample 19887. The compositions used to calculate the ternary plots for unleached and leached samples of C-203 residual waste in Figure 3.18 are listed in Appendices E and F, respectively. For those analyses of unleached C-203 residual sludge that contain little or no Fe [e.g., shaded area where <10 normalized at.% Fe] in left ternary plot in Figure 3.18, the Na/U ratios (based on normalized at.%) for the majority of the data points range approximately from 2:1 to 0.9:1 which is essentially the same range as the Na/U values determined for the unleached C-202 residual sludge. The values shown in the left ternary plot in Figure 3.18 also indicate that less Fe oxide particles were observed in the unleached C-203 solids from sample 19887 compared to the solids analyzed from unleached C-202 residual waste and unleached C-203 residual waste from sample 19961 (results discussed below). The Na/U ratios for particles in the DDI water leached C-203 samples with little or no Fe (shaded area in right ternary plot in Figure 3.18), are lower than those for the unleached particles, and range for the majority of the low Fe particles from approximately from 1.5:1 to 0.5:1 which is also consistent with the Na/U normalized at.% ratios for the leached C-202 residual sludge particles. Because the values in these ternary plots are dependent on the elements selected to normalize the atomic percent values to 100%, the reader is cautioned not to compare them to the U-Na-Fe molar ratios for known phases.

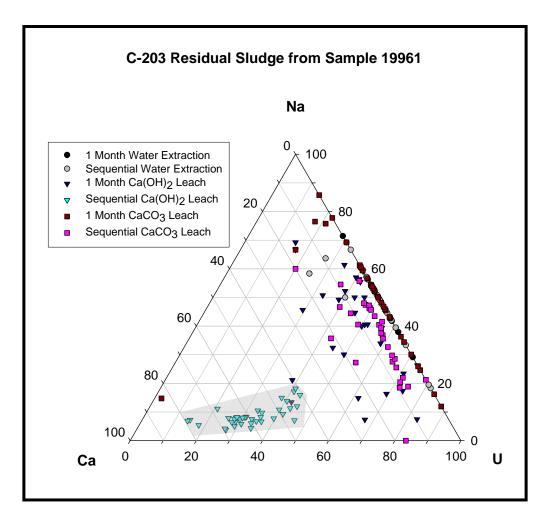
Figure 3.18. Ternary Plots of the EDS-Determined U-Na-Fe Concentrations (at.%) Normalized to 100% for Unleached (left diagram) and DDI Water Extraction Leached (right diagram) Samples of C-203 Residual Sludge from Sample 19887

Figure 3.19 contains the ternary plots for the normalized concentrations (at.%) of U, Na, and Fe for all C-203 residual sludge particles (U-Na-C-O-P±H and Fe-O) analyzed by EDS in unleached (upper left), DDI water extracted leached (upper right), Ca(OH)₂ leached (lower left), and CaCO₃ leached (lower right) samples from sample 19961. The results in Figure 3.19 suggest that Na concentrations of the U-Na-C-O-P±H phase decreased as a result of the DDI water extraction, Ca(OH)₂, and CaCO₃ leaches. The EDS values for the Ca(OH)₂ and CaCO₃ samples also show that for the particles that contain little or no Fe (e.g., shaded areas in lower left and lower right ternary plots in Figure 3.19), the sequential Ca(OH)₂ and possibly sequential CaCO₃ leaches appear to have removed more Na from the U-Na-C-O-P±H particles than the 1-month single-contact leaches using both leachants. This trend in Na/U ratios may be explained by the same reasons suggested for the results for the leached C-202 residual sludge samples. These include the possibilities that the U-Na-C-O-P±H solid may be dissolving incongruently, the leached sludge contains a mixture of the original U-Na-C-O-P±H phase and a new Na-poor or Na-absent U phase that precipitated during the leaching process, waste solids may contain a readily soluble Na phase that contains no U, and/or the U-Na-C-O-P±H solid consists of two or more U phases having similar compositions. As noted above for the leached C-202 residual sludge samples, the SEM/EDS results only provide some evidence for these possible reaction processes.

The EDS analyses also indicate that the U-Na-C-O-P particle aggregates from the 1-month single-contact and sequential Ca(OH)₂ leached and sequential CaCO₃ leached sludge samples contain significantly more Ca and less Na (dark blue triangles, light blue triangles, and light red squares, respectively). This is especially apparent for analyses of particles from the sequential Ca(OH)₂ leached samples (gray shaded area in Figure 3.20). This increase in Ca concentrations relative to Na is consistent with the results for Ca(OH)₂ and CaCO₃ leached samples of C-202 residual sludge (Figure 3.8). Unfortunately, the mechanism, such as a Na/Ca exchange reaction, responsible for this shift in compositions could not be determined.


The EDS analyses (see Tables H.5 and H.6 in Appendix H) also suggest that a Ca-containing U-Na-P-O±C phase may also be present in the 1-month single-contact Ca(OH)₂ leached samples. The EDS results indicate that for those particles having high Ca and high P concentrations, the U concentrations are also significantly greater (approximately five to ten times in at.%) than the U concentrations for the Ca-poor U-Na-C-O-P particles. Unfortunately, based on the SEM micrographs, there were no apparent differences in the morphologies of the Ca-rich versus Ca-poor U-Na-C-O-P particles.

The SEM/EDS analyses did not indicate the presence of Tc or I in any of particles present in the unleached or leached residual waste from tank C-203.


3.7.3 Comparison of SEM/EDS Results for Residual (Post Retrieval) Sludge to C-203 and C-204 Pre-Retrieval Sludge

The SEM/EDS results for C-202 and C-203 residual sludge are generally consistent with those for the water-leached pre-retrieval wastes from tanks C-203 and C-204. Studies of the C-203 and C-204 pre-retrieval wastes by Deutsch et al. (2004) did not include at that time the Ca(OH)₂ and CaCO₃ leach measurements used in our current testing methodology. Characterization studies of pre-retrieval wastes from tanks C-203 and C-204 identified the presence of čejkaite [Na₄(UO₂)(CO₃)₃] as the primary crystalline phase and the possible presence of nitratine (NaNO₃) in the unleached (as-received) C-203 and C-204 pre-retrieval wastes (Deutsch et al. 2004; Krupka et al. 2006). As expected, neither čejkaite nor nitratine

were identified in the SEM/EDS analyses of C-202 and C-203 residual sludge because sufficient water was used to retrieve (remove) wastes from the tanks. Because these phases are highly soluble, they likely dissolved during final waste retrieval operations and thus were not present in samples of C-202 and C-203 residual sludge used in the studies reported here. However, the hexagonal, rod-like dissolution pits observed in some of the U-Na-C-O-P±H residual (post-retrieval) particles (see Figure 3.11) are consistent with the possible prior existence of hexagonal, acicular crystals of čejkaite in this post-retrieval residual sludge.

Figure 3.19. Ternary Plots of the EDS-Determined U-Na-Fe Concentrations (at.%) Normalized to 100% for Unleached (upper left), DDI Water Leached (upper right), Ca(OH)₂ Leached (lower left), and CaCO₃ Leached (lower right) Samples of C-203 Residual Sludge from Sample 19961

Figure 3.20. Ternary Plots of the EDS-Determined U-Na-Ca Concentrations (at.%) Normalized to 100% for Unleached, DDI Water Leached, Ca(OH)₂ Leached, and CaCO₃ Leached Samples of C-203 Residual Sludge from Sample 19961

The identification of the possible presence of goethite [α -FeO(OH)], maghemite (γ -Fe₂O₃), and the Na uranates clarkeite Na[(UO₂)O(OH)](H₂O)₀₋₁] and/or Na₂U₂O₇ in the water-leached pre-retrieval waste from tank C-203 (Deutsch et al. 2004, 2005) is generally consistent with the Fe oxide and U-Na phases identified by SEM/EDS in the unleached and leached C-202 and C-203 (post retrieval) residual sludges. The pre-retrieval wastes from tanks C-203 and C-204 also contained a significant fraction of amorphous solids (Deutsch et al. 2004) as do the residual waste samples characterized in this study. Smooth, rounded, dense-looking particles, like those shown in micrographs B and D in Figure 3.10, composed of Na, U, O, and possibly C were also present in the unleached and DDI water-leached C-203 pre-retrieval waste, but not in unleached C-204 pre-retrieval waste sludge. The C-204 pre-retrieval waste also contained porous-looking particles or aggregates of sub-micrometer particles containing Al, Cr, Fe, Na, Ni, Si, U, P, O, and C, which are similar to the U-Na-C-O-P±H (trace Al+Si) particle aggregates identified in the C-202 and C-203 (post retrieval) residual sludge.

3.8 Chromium Occurrence and Leaching

Analyses of sludge samples by SEM/EDS (Section 3.7) indicate that chromium in C-202 post retrieval, C-203 pre-retrieval and C-203 post-retrieval samples is generally associated with iron oxides/ hydroxides. Because Cr and Fe appear to be associated in the sludge, Cr/Fe ratios in the multiple DDI water extractions for the post-retrieval (residual) samples were calculated and are shown in Table 3.85. The source of the data used for these calculations is provided in Appendix I (ICP-MS values were used for Cr). Note that some of the data used for the calculations are qualified values (below the quantitation limit). The molar Cr/Fe ratios in the DDI water extracts for the two C-203 samples are remarkably constant $(1.19 \pm 0.27 \text{ for } 19887 \text{ and } 0.84 \pm 0.16 \text{ for } 19961)$. It is also noteworthy that the average Cr/Fe ratios in the DDI water extracts are significantly greater than that ratio in the bulk sludge (0.44 for 19887 and 0.36 for 19961). The Cr/Fe ratios in the DDI water extracts for the C-202 sample (19250) is much more variable (0.31 ± 0.41) ; however, this sample has an average Cr/Fe ratio that is much higher than that of the sludge (0.13) as was the case for the C-203 samples. The elevated Cr/Fe ratios in water extracts relative to the sludge suggest that chromium is being released through dissolution of iron oxide/hydroxide and desorption of surface complexed chromate from iron oxide/hydroxide in the sludge. The high chromium concentrations measured in the extracts are significantly greater than that expected to be in equilibrium with freshly precipitated Cr(OH)₃ (Rai et al. 1987) and are therefore consistent with chromium in the form of chromate [Cr(VI)] and not Cr(III). For example, sample 19887 (C-203) single contact water extracts have Cr concentrations of approximately 2 x 10⁻⁵ mol/L at pH values of approximately 10.5. The total Cr³⁺ concentration in equilibrium with freshly precipitated Cr(OH)₃ at this pH is expected to be $<1.4 \times 10^{-7}$ (Rai et al. 1987). This concentration would decrease even further as the crystallinity of the Cr(OH)₃ phase increases.

The concentrations of iron in the Ca(OH)₂ extracts are significantly lower than in the DDI water extracts (Appendix I). The average Fe concentration in the C-202 Ca(OH)₂ extracts is $<9 \times 10^{-6}$ mol/L while the average for the DDI extracts is $9.1 \times 10^{-6} \pm 9.9 \times 10^{-6}$ mol/L; for the C-203 19887 sample, the average Fe concentration is $1.6 \times 10^{-6} \pm 0.6 \times 10^{-6}$ mol/L (Ca(OH)₂ extracts) and $6.8 \times 10^{-5} \pm 5.2 \times 10^{-5}$ mol/L (DDI extracts); and, for the C-203 19961 sample, the average Fe concentrations are $1.5 \times 10^{-5} \pm 4.2 \times 10^{-5}$ mol/L (Ca(OH)₂ extracts) and $1.1 \times 10^{-4} \pm 1.3 \times 10^{-4}$ mol/L (DDI extracts). For the Ca(OH)₂ extracts, the ratios of released chromium to iron are considerably greater, although much more variable than in the DDI water extracts. For the C-202 sample, the average and standard deviation of the Cr/Fe ratios are $>4.4 \pm 4.5$, and for the C-203 samples the values are 11.8 ± 13.7 (sample 19887) and 13.6 ± 18.4 (sample 19961). In the case of the C-202 Ca(OH)₂ extracts, the Fe concentrations were below the detection limit, resulting in Cr/Fe ratios that are prefaced with a > sign. Taken as a whole, the Ca(OH)₂ extract results are consistent with greater desorption of adsorbed chromate from the surfaces of the iron oxide/hydroxide due to competitive exchange with hydroxide ions and a decrease in anion adsorption (positively charged) sites under the high pH conditions (>12) of the Ca(OH)₂ extractions.

Results of the $CaCO_3$ extractions are similar to the DDI water extracts for the three residual sludge samples. For the C-202 sample, the average and standard deviation of the Cr/Fe ratios are 0.31 ± 0.37 , and for the C-203 samples the values are 1.49 ± 0.50 (sample 19887) and 0.77 ± 0.26 (sample 19961). The lower Cr/Fe ratios for the $CaCO_3$ extractions compared to the $Ca(OH)_2$ extractions is likely due to the lower pH conditions (8 to 10.5) of the $CaCO_3$ extractions compared to the pH values (>12) of the $Ca(OH)_2$ extractions. Lower pH values result in less desorption of chromate from the iron solids because of less competition by hydroxide ions and an increase in anion adsorption sites.

 Table 3.85.
 Molar Ratios of Cr/Fe in Multiple Extractions and Sludge for C-202 and C-203 Post Retrieval Sludge Samples

Sample	Extract	1 Mon	1 Mon dup	Stage 1	Stage 1 dup	Stage 2	Stage 2 dup	Stage 3	Stage 3 dup	Stage 4	Stage 4 dup	Stage 5	Stage 5 dup	Stage 6	Stage 6 dup	Average	Std. Dev.
	DDI Water	1.26	1.31	0.20	0.23	0.15	0.14	0.13	0.15	0.14	0.17	0.17	0.16	0.11	0.09	0.31	0.41
C-202 (19250)	Ca(OH) ₂	>15	>13	>2.9	>3.1	>1.7	>1.9	>3.1	>3.2	>2.0	>2.2	>0.7	>0.9	>5.5	>6.1	>4.4	>4.5
(1)230)	CaCO ₃	1.10	1.24	0.18	0.25	0.25	0.21	0.13	0.13	0.16	0.14	0.20	0.21	0.12	0.10	0.31	0.37
	sludge															0.13	
	DDI Water	1.82	1.79	1.15	1.16	1.09	1.06	1.01	1.14	1.00	1.02	1.22	1.25	1.05	0.93	1.19	0.27
C-203	Ca(OH) ₂	24.8	49.0	14.5	21.9	1.20	1.24	5.89	5.19	1.42	3.06	0.49	2.09	16.0	17.9	11.8	13.7
(19887)	CaCO ₃	1.46	2.52	2.42	1.53	1.60	1.31	1.58	1.26	1.39	0.81	1.39	0.65	1.59	1.28	1.49	0.50
	sludge															0.44	
	DDI Water	1.03	1.27	0.79	0.77	0.79	0.72	0.75	0.77	0.81	0.75	0.74	0.62	0.95	0.96	0.84	0.16
C-203 (19961)	Ca(OH) ₂	1.28	3.24	20.2	55.4	1.19	2.58	9.28	14.4	0.72	0.66	0.61	1.47	45.5	33.4	13.6	18.4
(19901)	CaCO ₃	0.94	0.85	1.12	1.06	0.81	0.82	0.83	0.76	0.45	0.32	0.61	0.32	0.87	1.04	0.77	0.26
	sludge															0.36	

3.9 Mineral Equilibrium

The dissolved concentrations in the leachates produced in the sludge extraction tests were used to calculate mineral saturation indices (SIs) that can identify solid phases in equilibrium with the leachates' compositions. Minerals with SI values near zero (~±0.5) are generally considered to be near equilibrium with the solution composition, more positive values are considered oversaturated and more negative values are considered undersaturated.

Appendix I contains the solution composition data used for the calculations. The React module of Geochemist's Workbench® (GWB) version 6.02 (Bethke 2006) was used to calculate the mineral SIs for these solutions. The thermodynamic database thermo.com.V8.R6+.dat was used with modifications that include solubility data for čejkaite [Na₄(UO₂)(CO₃)₃] (Felmy et al. 2005), becquerelite [Ca(UO₂)₆O₄(OH)₆·8H₂O] (Rai et al. 2002), sodium diuranate hydrate [Na₂U₂O₇·xH₂O] (Yamamura et al. 1998), an estimated value for Ca-autunite [Ca(UO₂)₂(PO₄)₂] (Langmuir 1978), and the stability constant for the dissolved species Ca₂UO₂(CO₃)₃(aq) (Kalmykov et al. 2000). The poorly crystalline phase [Na₂U₂O₇·xH₂O] (Yamamura et al. 1998) will be referred to as Na₂U₂O₇(am).

Results of the saturation index calculations for the three different C-202 sludge leachates are presented in Table 3.86 through Table 3.88. The deionized water [DDI] extract results are shown in Table 3.86, the Ca(OH)₂ saturated extracts results are shown in Table 3.87 and the CaCO₃ saturated extract results are shown in Table 3.88.

Table 3.86. Calculated Saturation Indices for Significant Phases in Tank C-202 Water Extractions

		DDI Wat	ter Extracts	s (Sample 1	19250)			
Phase	1 Day	1 Month	Stage 1 (1 day)	Stage 2 (1 day)	Stage 3 (3 days)	Stage 4 (1 day)	Stage 5 (1 day)	Stage 6 (30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7(c)$	<-3	-2.02	<-3	<-3	-1.97	<-3	<-3	-1.15
$Na_2U_2O_7$ (am)	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	<-3	<-3	<-3	<-3	-0.65	<-3	<-3	1.63
schoepite UO ₃ ·2H ₂ O	-1.13	-1.33	-1.13	-0.43	-0.11	-0.28	-0.25	0.21
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	2.82	1.27	2.82	4.21	3.90	4.46	4.19	-0.23
$(UO_2)_3(PO_4)_2\cdot 4H_2O$	-1.83	<-3	-1.83	0.41	-0.53	1.82	1.88	<-3
Fe(OH) ₃	2.32	1.60	2.32	2.04	2.33	1.78	1.58	2.73
gibbsite Al(OH) ₃	2.62	2.00	2.62	2.77	2.61	3.29	3.34	2.69
calcite CaCO ₃	-0.78	-0.50	-0.78	-1.32	-1.02	-2.22	-2.45	-0.76
dawsonite NaAlCO ₃ (OH) ₂	1.53	0.93	1.53	0.50	0.01	0.15	-0.02	0.08
rhodochrosite MnCO ₃	0.71	-0.44	0.71	0.08	0.14	-0.81	-1.16	0.61

Table 3.87. Calculated Saturation Indices for Significant Phases in Tank C-202 Ca(OH)₂ Extractions

		Ca(OH)	2 Extracts	(Sample 19	9250)			
Phase	1 Day	1 Month	Stage 1 (1 day)	Stage 2 (1 day)	Stage 3 (3 days)	Stage 4 (1 day)	Stage 5 (1 day)	Stage 6 (30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7(c)$	0.53	0.01	0.53	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7$ (am)	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
schoepite UO ₃ ·2H ₂ O	-2.74	-2.97	-2.74	<-3	<-3	<-3	<-3	<-3
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$(UO_2)_3(PO_4)_2\cdot 4H_2O$	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
Fe(OH) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
gibbsite Al(OH) ₃	0.31	0.49	0.31	0.02	-0.65	-1.01	-1.55	-0.75
calcite CaCO ₃	1.50	1.25	1.50	2.81	2.90	2.95	3.01	2.90
dawsonite NaAlCO ₃ (OH) ₂	-1.91	-1.83	-1.91	<-3	<-3	<-3	<-3	<-3
rhodochrosite MnCO ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3

Table 3.88. Calculated Saturation Indices for Significant Phases in Tank C-202 CaCO₃ Extractions

		CaCO ₃	Extracts (Sample 192	250)			
Phase	1 Day	1 Month	Stage 1 (1 day)	Stage 2 (1 day)	Stage 3 (3 days)	Stage 4 (1 day)	Stage 5 (1 day)	Stage 6 (30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7(c)$	-1.99	-2.36	-1.99	<-3	-2.60	<-3	<-3	<-3
Na ₂ U ₂ O ₇ (am)	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	<-3	<-3	<-3	<-3	-2.16	-1.93	<-3	-2.48
schoepite UO ₃ ·2H ₂ O	-1.44	-1.47	-1.44	-0.55	-0.34	-0.15	-0.36	-0.40
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	0.68	1.00	0.68	3.88	3.61	3.91	3.16	2.82
(UO ₂) ₃ (PO ₄) ₂ ·4H ₂ O	<-3	<-3	<-3	-0.24	-0.89	0.47	-0.28	-1.80
Fe(OH) ₃	2.41	1.64	2.41	1.45	1.22	1.63	0.62	2.37
gibbsite Al(OH) ₃	1.77	1.94	1.77	2.55	2.62	2.77	2.54	2.77
calcite CaCO ₃	0.12	-0.20	0.12	-0.97	-0.68	-1.21	-1.08	-0.53
dawsonite NaAlCO ₃ (OH) ₂	0.66	0.90	0.66	0.43	0.42	0.23	-0.32	0.50
rhodochrosite MnCO ₃	0.17	-0.39	0.17	-0.38	0.41	-0.27	-0.57	0.70

SI results for most of the uranium phases in the deionized water extracts of tank C-202 sludge, shown in Table 3.86, are significantly undersaturated. Schoepite $[UO_3 \cdot 2H_2O]$ appears to be near saturation only in the later extracts. Ca-autunite is highly oversaturated. The SI results for $(UO_2)_3(PO_4)_2 \cdot 4H_2O$ are erratic. These results suggest that schoepite or some other unidentified phase is controlling uranium solubility in the later extracts. Although uranium phases make up a substantial portion of the C-202 post-retrieval sludge (C-202 sludge is \approx 24 wt.% U), no crystalline phases were identified by XRD (see Section 3.6.1). If schoepite is controlling uranium solubility in the later DDI extracts, it is likely that schoepite formed as a result of incongruent dissolution of other amorphous uranium phases during the sequence of extractions. Precipitation of uranyl phosphates may be kinetically inhibited. For example, Wellman et al. (2005) observed the progressive conversion of uranyl-oxyhydroxides to uranyl-silicates and finally to uranyl-phosphate over a period of 1-2 months in concrete.

The saturation indices calculated for Fe(OH)₃ in the DDI water extracts of the tank C-202 post-retrieval sludge sample are relatively high with an average and standard deviation of 2.05 ± 0.43 . Gibbsite saturation indices in the C-202 DDI water extracts are also quite high with an average and standard deviation of 2.76 ± 0.45 . SI values for dawsonite [NaAlCO₃(OH)₂] are closer to equilibrium with an average and standard deviation of 0.45 ± 0.58 . SI values for calcite are somewhat undersaturated with an average and standard deviation of -1.29 ± 0.76 . Rhodochrosite [MnCO₃] appears to be near saturation in these extracts with an average SI and standard deviation of -0.12 ± 0.71 .

SI results for uranium phases in the $Ca(OH)_2$ saturated extracts are all very undersaturated with the exception of $Na_2U_2O_7(c)$ which is near saturation in the initial extracts. These results indicate that some unidentified phase is controlling the dissolved uranium concentrations in these extracts or that dissolution/precipitation is kinetically inhibited and the dissolved uranium concentration is not controlled by mineral equilibrium.

Fe(OH)₃, dawsonite, and rhodochrosite are all highly undersaturated in the Ca(OH)₂ extracts. Gibbsite is initially near saturation, but becomes undersaturated in the later extracts. Calcite is initially oversaturated, becoming increasingly so in the later extracts.

The SI results for čejkaite, $Na_2U_2O_7(c)$, $Na_2U_2O_7(am)$, and becquerelite in the $CaCO_3$ saturated extracts are all very undersaturated. Schoepite and $(UO_2)_3(PO_4)_2\cdot 4H_2O$ approach saturation in some of the latter extracts. Ca-autunite is generally highly oversaturated in the $CaCO_3$ extracts. It would appear that schoepite or some other unidentified phase is controlling the dissolved uranium concentration in the $CaCO_3$ extracts.

As was the case for the DDI water extracts, the saturation indices calculated for Fe(OH)₃ and gibbsite in the CaCO₃ extracts are significantly oversaturated. For Fe(OH)₃, the average SI and standard deviation were calculated to be 1.62 ± 0.63 . The average and standard deviation of the SI values for gibbsite were calculated to be 2.42 ± 0.40 . As was the case for the DDI water extracts SI values for dawsonite are closer to equilibrium with an average and standard deviation of 0.40 ± 0.38 . SI values for calcite are slightly undersaturated with an average and standard deviation of -0.65 ± 0.49 . Rhodochrosite appears to be near saturation in these extracts with an average SI and standard deviation of -0.47 ± 0.48 .

Results of the saturation index calculations for C-203 post retrieval sludge samples 19887 and 19961 are presented in Table 3.89 for the deionized water [DDI] extracts, Table 3.90 for the Ca(OH)₂ saturated extracts, and Table 3.91 for the CaCO₃ saturated extracts.

Table 3.89. Calculated Saturation Indices for Significant Phases in Tank C-203 Water Extractions

		DDI W	ater Extract	s (Sample 19	9887)			
Phase	1 Day	1 Month	Stage 1 (1 day)	Stage 2 (1 day)	Stage 3 (3 days)	Stage 4 (1 day)	Stage 5 (1 day)	Stage 6 (30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7$ (c)	4.62	2.07	4.62	4.12	3.13	1.97	0.71	4.46
$Na_2U_2O_7$ (am)	2.1	-0.44	2.1	1.61	0.62	-0.54	-1.80	1.95
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	2.48	<-3	2.48	3.95	5.15	1.00	1.34	7.64
schoepite UO ₃ ·2H ₂ O	-0.08	-1.13	-0.08	0.19	0.44	-0.31	-0.14	0.74
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	-0.07	-2.12	-0.07	0.16	2.18	-1.34	0.57	1.68
Fe(OH) ₃	1.47	1.06	1.47	1.09	1.58	0.34	0.99	1.33
gibbsite Al(OH) ₃	0.08	0.42	0.08	-0.38	-0.42	-0.66	-0.03	0.03
calcite CaCO ₃	-0.49	-0.59	-0.49	-0.87	-0.40	-0.67	-0.44	-0.23
		DDI W	ater Extract	s (Sample 19	9961)			
	1		Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
Phase	Day	1 Month	(1 day)	(1 day)	(3 days)	(1 day)	(1 day)	(30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7$ (c)	6.26	3.67	6.26	3.63	3.19	1.02	-0.25	2.92
$Na_2U_2O_7$ (am)	3.75	1.16	3.75	1.12	0.68	-1.49	-2.76	0.41
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	6.49	-0.74	6.49	2.03	3.72	-0.93	-0.88	4.88
schoepite UO ₃ ·2H ₂ O	0.54	-0.61	0.54	-0.14	0.15	-0.59	-0.51	0.42
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	0.70	-1.35	0.70	-1.14	0.14	-1.80	-0.21	1.67
Fe(OH) ₃	1.52	1.42	1.52	0.80	1.12	0.43	1.07	1.28
gibbsite Al(OH) ₃	-0.33	0.08	-0.33	-0.64	-0.33	-0.48	0.16	0.47
calcite CaCO ₃	-0.74	-0.54	-0.74	-1.06	-0.64	-0.67	-0.25	-0.58

Evaluation of the deionized water extract results for uranium minerals indicate that čejkaite is undersaturated throughout all extraction stages. This means that čejkaite, if present in the sludge, is dissolving into the water, but not at a sufficient rate to achieve equilibrium dissolved concentrations of its constituents. Na₂U₂O₇(c), Na₂U₂O₇(am), and becquerelite are generally oversaturated except for some of the later stages where these phases become undersaturated. Because no crystalline phases containing uranium were identified in the C-203 post-retrieval sludge by XRD, Na₂U₂O₇(c) or becquerelite are not expected to occur in occur in the post-retrieval sludge in significant quantities. The high degree of oversaturation with respect to these phases suggests that their formation was kinetically inhibited during the leaching tests. Schoepite is near saturation throughout all DDI leaching stages. Although a number of the SIs calculated for Ca-autunite suggest that this phase could be near equilibrium, many of the autinite SI values are very erratic with some very high values and some very low values. As a result, it does not appear that this phase is able to exert significant control over the solubility of uranium in the C-203 residual sludge. As indicated previously, the formation of uranyl-phosphates appears to be kinetically limited. The average and standard deviation of the saturation indices for schoepite shown in Table 3.89 is -0.07 ± 0.53 . For Ca-autunite the average and standard deviation is -0.07 ± 1.35 . These results suggest that residual čejkaite in the post-retrieval sludge may be dissolving incongruently to form schoepite. It is also possible that if Na₂U₂O₇(am) occurs in these post-retrieval sludge samples, it may also be dissolving incongruently to form schoepite in some of the later stage extracts. Poorly crystalline clarkeite (Na₂U₂O₇), was tentatively identified in pre-retrieval C-203 sludge (Deutsch et al. 2004), suggesting the possible occurrence of Na₂U₂O₇(am) in C-203 post-retrieval sludge.

Table 3.90. Calculated Saturation Indices for Significant Phases in Tank C-203 Ca(OH)₂ Extractions

		Ca(OH	() ₂ Extracts	(Sample 1	.9887)			
Phase	1 Day	1 Month	Stage 1 (1 day)	Stage 2 (1 day)	Stage 3 (3 days)	Stage 4 (1 day)	Stage 5 (1 day)	Stage 6 (30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7(c)$	1.40	1.80	1.40	-0.02	-0.35	-1.22	-2.96	<-3
Na ₂ U ₂ O ₇ (am)	-1.11	-0.71	-1.11	-2.53	-2.86	<-3	<-3	<-3
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
schoepite UO ₃ ·2H ₂ O	-2.64	-2.38	-2.64	<-3	<-3	<-3	<-3	<-3
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	<-3	<-3	<-3	-	-	-	-	-
Fe(OH) ₃	-1.36	-1.39	-1.36	-1.60	-1.53	-1.42	-1.41	-1.48
gibbsite Al(OH) ₃	-0.67	-0.45	-0.67	-1.19	-1.24	-1.85	-2.69	-2.66
calcite CaCO ₃	-0.63	-0.51	-0.63	1.00	0.63	1.73	2.48	2.21
		Ca(OH	() ₂ Extracts	(Sample 1	9961)	_		-
Phase	1 Day	1 Month	Stage 1 (1 day)	Stage 2 (1 day)	Stage 3 (3 days)	Stage 4 (1 day)	Stage 5D (1 day)	Stage 6 (30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7(c)$	2.49	6.19	2.49	1.52	0.10	-1.84	<-3	-
Na ₂ U ₂ O ₇ (am)	-0.02	3.68	-0.02	-0.99	-2.41	<-3	<-3	-
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	<-3	3.14	<-3	<-3	<-3	<-3	<-3	-
schoepite UO ₃ ·2H ₂ O	-2.27	-0.52	-2.27	-2.62	<-3	<-3	<-3	-
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	<-3	<-3	<-3	<-3	-	-	-	-
Fe(OH) ₃	-1.57	0.18	-1.57	-1.56	-1.73	-1.41	-2.05	-
gibbsite Al(OH) ₃	-1.03	-0.79	-1.03	-1.16	-1.29	-2.80	<-3	-
calcite	-0.42	0.94	-0.42	-1.23	0.67	<-3	<-3	-

Several non-uranium containing phases that appeared to be near saturation and may be important from a contaminant release perspective are included in Table 3.89 through Table 3.91. These phases include Fe(OH)₃, gibbsite, and calcite. In the DDI water extract results for the C-203 sludge samples shown in Table 3.89, Fe(OH)₃ is consistently oversaturated with an average SI and standard deviation of 1.11 ± 0.38 . It is possible that the complex matrix of the tank waste resulted in an amorphous Fe(OH)₃ phase with a solubility constant that is somewhat greater than that used in the thermodynamic database. Despite extensive efforts to characterize Fe(OH)₃ solubility, ambiguities remain (Byrne and Luo 2000). Solubility constants for Fe(OH)₃ are known to vary over a considerable range. For example, solubility constants available for Fe(OH)₃ in GWB vary by as much as 0.8 log units. Non-filterable colloids could also account for the large range in reported solubility constants. Gibbsite appears to be near saturation with an average SI and standard deviation of -0.14 \pm 0.37 in the DDI leachates. Calcite is indicated to be somewhat undersaturated with an average SI and standard deviation of -0.58 \pm 0.22 in the DDI leachates for residual sludge from Tank C-203.

Table 3.91. Calculated Saturation Indices for Significant Phases in Tank C-203 CaCO₃ Extractions

		CaCO	3 Extracts	Sample 19	887)			
Phase	1 Day	1 Month	Stage 1 (1 day)	Stage 2 (1 day)	Stage 3 (3 days)	Stage 4 (1 day)	Stage 5 (1 day)	Stage 6 (30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7(c)$	-1.73	2.73	-1.73	2.03	-1.84	-0.85	-1.41	1.83
$Na_2U_2O_7$ (am)	<-3	0.22	<-3	-0.48	<-3	<-3	<-3	-0.68
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	<-3	-1.52	<-3	0.53	<-3	-3.00	<-3	4.56
schoepite UO ₃ ·2H ₂ O	-2.44	-0.71	-2.44	-0.32	-1.25	-0.72	-0.82	0.37
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	-3.0	-0.56	-3.0	0.73	-0.33	0.35	-0.11	2.74
Fe(OH) ₃	1.33	1.60	1.33	1.60	1.16	1.11	0.96	1.76
gibbsite Al(OH) ₃	0.74	0.37	0.74	0.13	0.57	0.42	-0.39	0.98
calcite CaCO ₃	-0.14	-0.12	-0.14	-0.27	-0.57	-0.59	-0.66	0.04
		CaCO	3 Extracts	Sample 19	961)			
			Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
Phase	1 Day	1 Month	(1 day)	(1 day)	(3 days)	(1 day)	(1 day)	(30 days)
čejkaite Na ₄ (UO ₂)(CO ₃) ₃	<-3	<-3	<-3	<-3	<-3	<-3	<-3	<-3
$Na_2U_2O_7(c)$	2.34	3.65	2.34	0.67	-1.20	<-3	-2.48	-0.42
$Na_2U_2O_7$ (am)	-0.17	1.15	-0.17	-1.83	<-3	<-3	<-3	-2.93
becquerelite Ca(UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	<-3	0.87	<-3	-1.69	<-3	<-3	<-3	2.19
schoepite UO ₃ ·2H ₂ O	-0.92	-0.34	-0.92	-0.60	-0.95	-0.45	-0.75	0.26
Ca-autunite Ca(UO ₂) ₂ (PO ₄) ₂	-1.43	-0.03	-1.43	0.42	-0.33	3.29	0.85	4.43
Fe(OH) ₃	1.51	1.70	1.51	1.42	1.02	0.98	0.92	1.76
gibbsite Al(OH) ₃	0.03	0.16	0.03	0.10	0.53	0.95	0.14	1.72
calcite CaCO ₃	-0.54	-0.22	-0.54	-0.48	-0.97	-1.29	-1.04	-0.44

The calculated SI results for the $Ca(OH)_2$ extracts for residual sludge C-203 in Table 3.90 also indicate that čejkaite is undersaturated throughout all extraction stages. With the exception of $Na_2U_2O_7(c)$ in some of the initial leaching stages, all other uranium phases were undersaturated throughout each of the extraction stages. Because no uranium-bearing crystalline phases were identified in the C-203 post-retrieval sludge by XRD, $Na_2U_2O_7(c)$ is not expected to occur in significant quantities. These results indicate that in the case of the $Ca(OH)_2$ extracts, čejkaite and possibly $Na_2U_2O_7(am)$ in the later stages, are dissolving to release uranium. As a result of the high pH of the $Ca(OH)_2$ extracts, schoepite is not stable and cannot limit the dissolved concentration of uranium in this system.

Fe(OH)₃, gibbsite, and calcite (in sample 19961) are all generally undersaturated in the C-203 sludge Ca(OH)₂ extracts shown in Table 3.90. In the later stages of the Ca(OH)₂ extracts of sample 19887, the calcite SI indices indicate significant oversaturation. The reason for these high SI values is unclear, but the measured calcium concentrations in these extracts appear to be anomalously high.

The SI results for the $CaCO_3$ extracts in Table 3.91 are similar to those of the $Ca(OH)_2$ extracts discussed previously, except that some of the $CaCO_3$ extracts appear to be near equilibrium with respect to Ca-autunite. The SI results for Ca-autunite have an average and standard deviation of 0.50 ± 1.91 . Although the average is near equilibrium, the high variability of the results indicates that this phase is not likely to exert significant control over the dissolved uranium concentration.

SI results for Fe(OH)₃, gibbsite, and calcite in the CaCO₃ extracts are similar to those observed for the water extracts. The average SI and standard deviation for Fe(OH)₃ is 1.35 ± 0.32 . Gibbsite appears to be near saturation with an average SI and standard deviation of 0.46 ± 0.52 . Calcite is indicated to be somewhat undersaturated with an average SI and standard deviation of -0.52 ± 0.38 .

3.10 Uranium Mineral Solubility Measurements

Empirical solubility experiments were conducted with several C-203 post-retrieval sludge samples in an attempt to determine if $Na_2U_2O_7(am)$ occurs in C-203 post-retrieval sludge. The experiments were designed so that, if $Na_2U_2O_7(am)$ was the dominant uranium phase in the sludge, it would remain stable and control the dissolved concentration of uranium in the experiments.

The analytical results of the experiments are provided in Appendix I. A summary of the mineral SI calculations conducted with these data for $Na_2U_2O_7(am)$ are shown in Table 3.92 and the details are found in the last portion of Appendix J starting on page J.254. Solutions with SI values near zero ($\approx\pm0.5$) are generally considered to be near equilibrium with the solid, more positive values are considered oversaturated and more negative values are considered undersaturated. The resulting saturation indices indicate significant oversaturation of the experimental solutions with respect to $Na_2U_2O_7(am)$ for all the experiments. In experiments 1 and 3, the degree of oversaturation is much higher for the 1 month contact times than for the shorter contact periods.

A number of reasons may account for the high degree of oversaturation with respect to $Na_2U_2O_7(am)$ calculated for these experiments. The most likely cause for the oversaturation is the presence of residual, soluble čejkaite in the sludge. It was anticipated that any residual čejkaite that occurred in these sludge samples would readily dissolve in the first 1-day leach. Apparently this did not happen as evidenced by the later contacts.

Another possible reason for the high SI values for $Na_2U_2O_7(am)$ includes erroneously low carbonate concentration measurements. Because uranium is strongly complexed by carbonate, increased carbonate concentrations cause an increase in the solubility of uranium minerals. Therefore, erroneously low carbonate concentrations measured in the solutions will result in calculated SI values that are high. The TIC concentrations used to calculate the carbonate concentration in these experiments appear to be suspect (see Appendix I). For example, it is known from the water leach experiments and TIC measurements on the sludge that significant amounts of carbonate occur in C-203 post-retrieval sludge. The results shown in Appendix I for experiment 2 indicate negative values for carbonate. The carbonate concentrations were determined from TIC measurements in the experimental solutions, which were determined by subtracting measured total organic carbon values from measured total carbon values. Because significantly negative values were determined for experiment 2, it seems likely that the carbonate values determined for experiments 1 and 3 are underestimated. Underestimated carbonate concentrations would result in calculated SI values that are erroneously high.

Table 3.92. $Na_2U_2O_7(am)$ Saturation Indices for C-203 Solubility Experiments

Sample	Stage	Leach Period	SI Na ₂ U ₂ O ₇ (am)
19661	1	1 Day	1.86
19661	2	1 Day	1.19
19661	3	1 Week	0.99
19661	4	1 Month	2.14
19661 Duplicate	1	1 Day	1.29
19661 Duplicate	2	1 Day	1.13
19661 Duplicate	3	1 Week	0.96
19661 Duplicate	4	1 Month	1.76
19661 Yellow	1	1 Day	1.64
19661 Yellow	2	1 Day	1.19
19661 Yellow	3	1 Week	0.97
19661 Yellow	4	1 Month	2.17
Experiment #2, 1.0 M Na	NO ₃ , 0.1 M NaOH	•	
Sample	Stage	Leach Period	SI Na ₂ U ₂ O ₇ (am)
19661	1	1 Day	3.51
19661	2	1 Day	3.01
19661	3	1 Week	2.55
19661	4	1 Month	2.00
19661 Duplicate	1	1 Day	3.49
19661 Duplicate	2	1 Day	3.04
19661 Duplicate	3	1 Week	2.53
19661 Duplicate	4	1 Month	2.21
19661 Yellow	1	1 Day	3.94
19661 Yellow	2	1 Day	3.61
19661 Yellow	3	1 Week	2.76
19661 Yellow	4	1 Month	2.16
Experiment #3, Stage 1-3	: 1.0 M NaNO ₃ , 0.01	M NaOH, Stage 4: 1.0 M	NaNO ₃ , 0.01 M NaOH, 0.001
Na_2CO_3			
Sample	Stage	Leach Period	SI Na ₂ U ₂ O ₇ (am)
19661	1	1 Day	0.67
19661	2	1 Day	0.97
19661	3	1 Week	0.84
19661	4	1 Month	3.76
19661 Duplicate	1	1 Day	1.12
19661 Duplicate	2	1 Day	0.98
19661 Duplicate	3	1 Week	0.94
19661 Duplicate	4	1 Month	3.90
19887 Yellow	1	1 Day	2.21
19887 Yellow	2	1 Day	2.41
19887 Yellow	3	1 Week	0.97
19667 TCHOW	3	1 W COR	0171

The method used to calculate activity coefficients in the thermodynamic model may be another possible reason for the high SI values that were calculated for $Na_2U_2O_7(am)$. Because of the relatively high ionic strength of the solutions (~1M), the Pitzer ion-interaction model (Pitzer and Mayorga 1973; Pitzer 1991) is the preferred method to account for ionic strength affects. This approach was not used because measured values for the ion-interaction parameters needed for all the species of interest are not currently available. Instead the "B-dot" method (an extended form of the Debye-Hückel equation) was used to calculate activity coefficients (Helgeson 1969). For the conditions used in the empirical solubility experiments (experiments 1 and 3, in particular), the dominant dissolved uranium species was calculated to be the monovalent $UO_2(OH)_3$ species. As a result of the low charge of this species, it is expected that errors due to inaccurate ionic strength corrections were not very significant.

Other possible reasons for the high $Na_2U_2O_7(am)$ SI values include the possibility that the K_{sp} value of Yamamura et al. (1998) used for this solid is not correct for the phase in our experiments and the possible formation of colloidal size uranium-bearing particles that could pass through the 0.45 μ m filters used to filter the solutions prior to analysis. Other workers measuring the solubility of UO_2^{2+} precipitates have used filters with much smaller pore sizes to avoid this problem (e.g., Rai et al. 2002; Yamamura et al. 1998).

Because of the elevated SI values calculated for $Na_2U_2O_7(am)$ in the solubility experiments, no definitive conclusions could be drawn from the results regarding the likely presence or absence of $Na_2U_2O_7(am)$ in C-203 post-retrieval sludge.

4.0 Contaminant Release Model

The primary objective of this project is to develop source release models for contaminants of concern present in residual tank waste. As shown in Figure 4.1, this consists of laboratory testing to produce contaminant release data and a conceptual source release model. The release model can then be incorporated into a fate and transport model as part of long-term performance assessment for the tanks. This section describes the conceptual release models developed for the primary contaminants of concern (²³⁸U, Cr, and ⁹⁹Tc) from the laboratory testing of residual sludge from the post-retrieved tanks C-202 and C-203. Results for ¹²⁹I were below the detection limit.

The contaminant release models for these tanks are based on empirical solubility release models. Post-retrieval sludge testing did not identify minerals in the residual solids that limit contaminant release, thus it was not possible to develop mechanistic release models for these post-retrieved tanks.

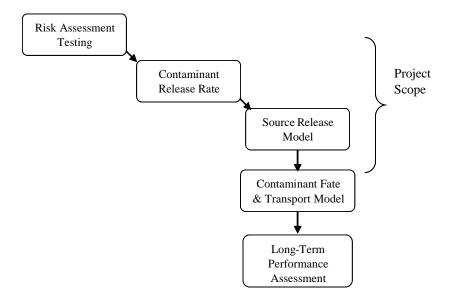


Figure 4.1. Source Release Model Development for Long-Term Performance Assessments

4.1 Uranium, Chromium, and ⁹⁹Tc Release Models

Two tank scenarios have been considered as part of the development of the contaminant release models for retrieved tanks C-202 and C-203. In the first scenario, it is assumed that the tanks are filled with a relatively inert material such as quartz sand or crushed basalt that does not significantly impact the chemistry of infiltration water that will contact the post-retrieval sludge. In this case, the composition of water contacting the post-retrieval sludge is assumed to be largely controlled by the solubility of CaCO₃ (calcite). Calcite is a ubiquitous component of most Hanford vadose zone sediments and future infiltrating water will likely equilibrate with this relatively soluble, reactive mineral.

In the second tank scenario, it is assumed that the tanks are filled with a cementitious grout. CaO is a major component of cement and readily reacts with water to form portlandite $[Ca(OH)_2]$. It is assumed that once the grout sets up some portion of its hydration product, the $Ca(OH)_2$, will remain unreacted in

the grout, and it will control the pH of the system. During this timeframe, the pH of the leaching solution generated by the grout is expected to be about 12.

As dissolved CO₂ in water contacts the grout, Ca(OH)₂ will react to form CaCO₃ (calcite). After all the available Ca(OH)₂ has been converted to calcite, the grout will be considered to have been aged. At this point, the characteristics of the leaching solution generated by water contacting grout will be largely controlled by the solubility of calcite and the partial pressure of CO₂ gas in the system. If the CO₂ partial pressure is the same as that in the atmosphere, the pH of the solution will be approximately 8.3.

Because of the high concentrations of uranium in C-202 and C-203 residual sludge and its relatively high leachability from these residual sludges, uranium is expected to be an important risk driver for these tanks. Results of the saturation index calculations, TIC measurements, and XRD results for the samples suggest that the dominant form of uranium in C-202 and C-203 residual sludge could be Na₂U₂O₇(am) and that a small but significant percentage of uranium may remain as čejkaite. However, the saturation index calculations and testing of the sludge did not identify a specific phase that controlled the release of uranium, or any of the other primary contaminants of concern, in the CaCO₃ or Ca(OH)₂ extracts, which are our simplified end member infiltrating waters for aged and fresh grout, respectively.

Because testing of the residual sludge did not identify mineral equilibrium as a control on contaminant release, a mechanistic release model for these residual sludges could not be developed. In place of a mechanistic model, an empirical solubility release model was selected as the most appropriate method to describe contaminant release for residual sludges in tanks C-202 and C-203. CaCO₃ extract compositions are expected to provide the most representative release concentrations of contaminants for the first scenario in which the pore water is in equilibrium with calcite. Ca(OH)₂ extract compositions are expected to provide the most representative release concentrations of contaminants for the first phase of the second scenario (fresh cement) and the CaCO₃ extract compositions are expected to provide the most representative release concentrations of contaminants for the second phase of the second scenario (aged cement/grout in which the Ca(OH)₂ has been converted to CaCO₃).

The empirical solubility approach is likely to provide the most accurate estimates for the near-term period. It is expected that for longer time periods, this method will significantly overestimate concentrations of released contaminants. This is supported by the results of the sequential extracts, which generally demonstrate that contaminant concentrations leached from the residual sludge drop off significantly with increasing contact number. In most cases, concentrations for measurable contaminants decreased by at least a factor of 10 between stage 1 and stage 5. A concentration rebound was sometimes observed in stage 6, which had a 1- month contact time (compared to 1 or 3 days for stages 1-5).

The maximum dissolved concentrations measured in the multiple extraction experiments and total concentrations present in the residual sludge for the contaminants of concern (U, Cr, and ⁹⁹Tc) for the Ca(OH)₂ and CaCO₃ extracts are shown in Table 4.1. The maximum values measured in each extraction experiment usually occurred in stage 1 (1-day contact) or the 1-month single-contact extraction, but in some cases the maximum concentration occurred in stage 6 (30-day contact). Chemical composition data for all the extraction experiments are tabulated in Appendix I. Total sludge concentrations shown in Table 4.1 were determined from either fusion or acid digestion, whichever produced the highest result (Section 3.1 contains the results of the sludge composition measurements).

Table 4.1. Maximum Dissolved Concentrations Measured in Extraction Experiments and Total Sludge Concentrations Measured for U, Cr, ⁹⁹Tc, and ¹²⁹I

Tank Sample	Extract Solution	Component	Sludge Conc. μg/g Sludge	Max. Release Conc. μg/L
19250 (C-202)	CaCO ₃	U	2.4×10^5	6.1 x 10 ⁴
	Ca(OH) ₂	U	2.4×10^5	1.7×10^3
	CaCO ₃	Cr	1.0×10^4	2.0×10^3
	Ca(OH) ₂	Cr	1.0×10^4	7.1×10^3
	CaCO ₃	⁹⁹ Tc	0.23	0.041
	Ca(OH) ₂	⁹⁹ Tc	0.23	0.054
19887 (C-203)	CaCO ₃	U	6.4×10^5	4.5×10^5
	Ca(OH) ₂	U	6.4×10^5	5.3×10^3
	CaCO ₃	Cr	4.6×10^3	1.2 x 10 ⁴
	Ca(OH) ₂	Cr	4.6×10^3	3.4×10^3
	CaCO ₃	⁹⁹ Tc	0.15	< 0.5
	Ca(OH) ₂	⁹⁹ Tc	0.15	<0.5
19961 (C-203)	CaCO ₃	U	5.4×10^5	5.1×10^5
	Ca(OH) ₂	U	5.4×10^5	3.0×10^5
	CaCO ₃	Cr	4.0×10^3	1.3 x 10 ⁴
	Ca(OH) ₂	Cr	4.0×10^3	1.1 x 10 ⁴
	CaCO ₃	⁹⁹ Tc	0.073	0.16
	Ca(OH) ₂	⁹⁹ Tc	0.073	0.38

Because two C-203 samples were analyzed, the highest value measured in the respective leachates from these two residual sludge samples was used for the release model. These values along with the C-202 release model values are provided in Table 4.2. Scenario 1 and Phase 2 of scenario 2 are indicated as calcite [CaCO₃]. Phase 1 of scenario 2 is indicated as fresh cement [Ca(OH)₂]. The uranium concentration in the C-202 sludge (2.4 x 10^5 µg/g sludge, 24%) is about half that of the C-203 sludge (5.9 x 10^5 µg/g sludge, 59%). It is also noteworthy that the calcite stage for both tanks has uranium release concentrations that are greater by factors of 36 (C-202) and 1.7 (C-203) than those of the fresh cement phase. For tank C-202 the maximum uranium release concentration (6.1 x 10^4 µg/L) is nearly ten times less than that for C-203 (5.1 x 10^5 µg/L). The maximum release concentration for the C-202 residual sludge during the fresh cement phase (1.7 x 10^3 µg/L) is more than one hundred times less than that from the C-203 residual sludge (3.0 x 10^5 µg/L) during this phase.

The Cr concentration in the C-202 residual sludge ($1.0 \times 10^4 \,\mu\text{g/g}$ sludge, 1%) is more than double that of the C-203 residual sludge ($4.3 \times 10^3 \,\mu\text{g/g}$ sludge, 0.43%). For tank C-202 residual sludge, Cr release concentrations ($2.0 \times 10^3 \,\mu\text{g/L}$) for the calcite stage are 28% of those for the fresh cement phase ($7.1 \times 10^3 \,\mu\text{g/L}$). In the case of tank C-203, the Cr release concentration ($1.3 \times 10^4 \,\mu\text{g/L}$) for the calcite stage is similar to the fresh cement phase ($1.1 \times 10^4 \,\mu\text{g/L}$). It had been hypothesized previously in Section 3.8 that the high pH (>12) of the fresh cement solution enhanced Cr release compared to the lower pH (8 to 10.5) of the calcite stage. This would explain the higher Cr release concentrations for residual sludge in tank C-202, but does not explain the similar release concentrations for tank C-203.

Table 4.2. Sludge and Contaminant Release Concentrations for Release Model

Tank	Release Scenario	Component	Sludge Conc. μg/g Sludge	Max. Release Conc. μg/L
C-202	Calcite [CaCO ₃]	U	2.4 x 10 ⁵	6.1 x 10 ⁴
	Fresh cement [Ca(OH) ₂]	U	2.4×10^5	1.7×10^3
	Calcite [CaCO ₃]	Cr	1.0 x 10 ⁴	2.0×10^3
	Fresh cement [Ca(OH) ₂]	Cr	1.0 x 10 ⁴	7.1×10^3
	Calcite [CaCO ₃]	⁹⁹ Tc	0.23	0.041
	Fresh cement [Ca(OH) ₂]	⁹⁹ Tc	0.23	0.054
C-203	Calcite [CaCO ₃]	U	5.9 x 10 ⁵	5.1×10^5
	Fresh cement [Ca(OH) ₂]	U	5.9×10^5	3.0×10^5
	Calcite [CaCO ₃]	Cr	4.3×10^3	1.3 x 10 ⁴
	Fresh cement [Ca(OH) ₂]	Cr	4.3×10^3	1.1×10^4
	Calcite [CaCO ₃]	⁹⁹ Tc	0.11	0.16
	Fresh cement [Ca(OH) ₂]	⁹⁹ Tc	0.11	0.38

The residual sludge concentration of 99 Tc in C-202 (2.3 x $10^{\text{-}1}$ µg/g sludge) is over twice that of C-203 (1.1 x $10^{\text{-}1}$ µg/g sludge). The 99 Tc release concentrations are generally based on estimated solution concentrations because levels were below the EQL. Maximum release concentrations determined for C-202 for the calcite scenario (4.1 x $10^{\text{-}2}$ µg/L) are similar to the C-202 fresh cement scenario (5.4 x $10^{\text{-}2}$ µg/L). For C-203, the maximum 99 Tc release concentrations are 1.6 x $10^{\text{-}1}$ µg/L for the calcite scenario and $3.8 \times 10^{\text{-}1}$ µg/L for the fresh cement scenario.

4.2 Integration of the C-202 and C-203 Release Data with Fate and Transport Modeling Codes

Selecting which release concentration data from Table 4.2 to use for scenario 1 in which the tank is filled with relatively inert solids is straightforward because the calcite [CaCO₃] values will be used for the entire modeling period. For scenario 2 in which a cementitious material is used to fill the tank, the decision on when to switch the release concentrations from those for fresh cement [Ca(OH)₂ stage] to those for aged grout (CaCO₃ stage) is somewhat problematic. The primary reason for this is the large uncertainty in how fast the grout will age. The aging process depends upon the rate of water infiltration as well as the surface area of grout that comes in contact with the water. Infiltration will be dependent upon precipitation, evaporation, effectiveness of surface barriers, etc. The surface area of grout will depend upon the size of the grout monolith, the physical integrity of the grout, and the geologic stability of the location where the grout monolith will exist. As cracks develop within the monolith, more surface area will become available to contact infiltrating water and to react with dissolved CO₂. Because the rates of these processes are largely unknown, an estimate of when to switch from the fresh cement to the aged cement scenario cannot be determined with confidence at this time. In the absence of a scientifically defensible method for selecting the time for this transition, a conservative approach is recommended. The most conservative approach would be to use the highest release concentration of the two scenarios for each contaminant listed in Table 4.2 over the entire modeling period.

5.0 Conclusions

This report provides the results of laboratory tests on post-retrieval (residual) sludge samples from Hanford tanks C-202 and C-203 and describes the development of source term release models for the primary contaminants of concern. The major conclusions from this work are discussed in this section.

The contaminant release models for these retrieved tanks are based on empirical solubility release models. Residual sludge testing did not identify minerals in the solids that limit contaminant release; thus, it was not possible to develop mechanistic release models for these retrieved tanks. The empirical release models apply to two different tank filling scenarios. In the first scenario the tank is filled with a relatively inert material, such as sand, and the leaching solution that contacts sludge in the future is in equilibrium with CaCO₃. Alternatively, the tanks might be filled with a cementitious material, which would produce a Ca(OH)₂ dominated leaching solution while the cement is fresh. As the cement reacts with infiltrating water and ages, it would evolve to resemble the CaCO₃ solution of the first scenario. It is not possible to predict the amount of time necessary for the transition from a Ca(OH)₂ to a CaCO₃ leaching solution for the second scenario, but it is likely to take hundreds if not thousands of years. Empirical solubility release models for the primary contaminants of interest (U, Cr, and ⁹⁹Tc) have been developed from laboratory leaching tests of residual (post-retrieval) sludge samples using Ca(OH)₂ and CaCO₃ leaching solutions.

Uranium in the residual sludge of tank C-202 was measured at a concentration of 240,000 μ g/g sludge (24%). For this tank, the maximum release concentration in the CaCO₃ solution extractions was 61,000 μ g/L and in the Ca(OH)₂ solution extractions it was 1,700 μ g/L. The high pH of the Ca(OH)₂ leaching solution (pH ~ 11.5) compared to the CaCO₃ solution (pH ~ 8.5) may have produced conditions in which the uranium minerals are less soluble in the Ca(OH)₂ leaching environment. The uranium concentration in tank C-203 residual sludge was 590,000 (μ g/g sludge) (59%). For this tank, the maximum uranium release concentration in the CaCO₃ solution extractions was 510,000 μ g/L and in the Ca(OH)₂ solution extractions it was 300,000 μ g/L. The residual uranium solids in this tank are much more soluble than those in tank C-202 under each of the leaching conditions. The presence of uranium minerals in these residual sludge samples was not identified by XRD or SEM/EDS analyses. In addition, saturation index calculations for the residual sludge leachates did not show equilibrium with any uranium solids.

An association was identified between chromium and iron in the residual sludges from the two tanks (Section 3.8). The analytical data suggest that chromium is present in the residual sludge as the chromate ($\text{CrO}_4^{2^-}$) species that is adsorbed onto the surface of the iron oxide/hydroxide solids and also incorporated into the structure of these solids. The release of chromium from the residual sludge would thus be controlled by both the desorption process and the dissolution of the iron oxide solids. Chromium in the residual sludge of tank C-202 was measured at a concentration of 10,000 µg/g sludge (1%). For this tank, the maximum release concentration in the CaCO_3 solution extractions was 2,000 µg/L and in the $\text{Ca}(\text{OH})_2$ solution extractions it was 7,100 µg/L. The high pH of the $\text{Ca}(\text{OH})_2$ leaching solution (pH ~ 11.5) compared to the $\text{Ca}(\text{CO}_3$ solution (pH ~ 8.5) may have enhanced the Cr desorption process leading to the higher dissolved Cr concentrations in the $\text{Ca}(\text{OH})_2$ leaching environment. The residual chromium

concentration in tank C-203 was 4,300 (μ g/g sludge) (0.43%). For this tank, the maximum chromium release concentration in the CaCO₃ solution extractions was 13,000 μ g/L and in the Ca(OH)₂ solution extractions it was 11,000 μ g/L.

The average 99 Tc concentration in the residual sludge from tank C-202 was measured at 0.23 µg/g sludge. The 99 Tc concentration in the CaCO₃ solution extractions was less than the detection limit for most of the tests; however, an estimated 99 Tc concentration was reported for the one-month single contact test. This value was 0.041 µg/L. Most of the 99 Tc concentrations in the Ca(OH)₂ solution extractions for tank C-202 were below the detection limit; however, one value was measured at 0.054 µg/L for the one-month single contact extraction and it was chosen as the 99 Tc release concentration. The average 99 Tc concentration in the residual sludge from tank C-203 was measured at 0.11 µg/g sludge. Most of the 99 Tc concentration measurements for both the CaCO₃ and Ca(OH)₂ extractions were less than the detection limit; however, estimated concentrations of 0.16 µg/L for the CaCO₃ solution extraction and 0.38 µg/L for the Ca(OH)₂ solution extraction were reported. These values represent the 99 Tc release concentrations for these stages of the release environment.

6.0 References

10 CFR 830.120. "Quality Assurance Requirements; Scope." *Code of Federal Regulations*, U.S. Department of Energy.

ASTM. 1998. D2216-98 Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. American Society for Testing and Materials, West Conshohocken, Pennsylvania.

ASTM. 1999. D3987-85 Standard Test Method for Shake Extraction of Solid Waste with Water. American Society for Testing and Materials, West Conshohocken, Pennsylvania.

Bethke CM. 2006. *The Geochemist's Workbench*[®], Release 6.0. Hydrogeology Program, University of Illinois, Urbana, Illinois.

Brown CF, KN Geiszler, and TS Vickerman. 2005. "Extraction and Quantitative Analysis of Iodine in Solid and Solution Matrices." *Analytical Chemistry* 77:7062-7066.

Bushaw RA. 2006. Final Report for Tank 241-C-202 Post Retrieval Solid Finger Trap Grab Samples. RPP-RPT-28734, ATL Internation Inc., Richland, Washington.

Byrne RH and Y Luo. 2000. "Direct Observations of Nonintegral Hydrous Ferric Oxide Solubility Products: K*SO = [Fe3+][H+]-2.86." *Geochimica et Cosmochimica Acta* 64:1873-1877.

Cantrell KJ, RJ Serne, and GV Last. 2003. *Hanford Contaminant Distribution Coefficient Database and Users Guide*. PNNL-13895 Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Clesceri LS, AE Greenberg, and AD Eaton. 1998. *Standard Methods for the Examination of Water and Wastewater*, 20th Edition. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C.

Conner JM. 1996. *Tank Characterization Report for Single-Shell Tank 241-C-204*. WHC-SD-WM-ER-479, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

De Lorenzo DS, AT DiCenso, DB Hiller, KW Johnson, JH Rutherford, DJ Smith, and BC Simpson. 1994. *Tank Characterization Reference Guide*. WHC-SD-WM-TI-648, Rev 0, prepared for Westinghouse Hanford Company by Los Alamos Technical Associates, Kennewick, Washington.

Deutsch WJ, KM Krupka, MJ Lindberg, KJ Cantrell, CF Brown, and HT Schaef. 2004. *Hanford Tanks* 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data. PNNL-14903, Pacific Northwest National Laboratory, Richland, Washington.

Deutsch WJ, KM Krupka, KJ Cantrell, CF Brown, MJ Lindberg, HT Schaef, SM Heald, BW Arey, and RK Kukkadapu. 2005. *Advances in Geochemical Testing of Key Contaminants in Residual Hanford Tank Waste*. PNNL-15372, Pacific Northwest National Laboratory, Richland, Washington.

DOE. 1998. *Hanford Analytical Services Quality Assurance Requirements Documents*. DOE/RL-96-68, HASQARD, Volumes 1, 2, 3, and 4. U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE Order 414.1A. 1999. "Quality Assurance." U.S. Department of Energy, Washington, D.C.

EPA. 1994. "Method 9056, Determination of Inorganic Anions by Ion Chromatography," Rev. 0. In *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.* EPA SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed September 11, 2007, at http://www.epa.gov/sw-846/9_series.htm

EPA. 1996. "Method 3052, Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices," Rev. 0. In *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods.* EPA SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Available at: http://www.epa.gov/epaoswer/hazwaste/test/3_series.htm

EPA. 1996. "Method 6010B, Inductively Coupled Plasma – Atomic Emission Spectrometry" Rev. 2. In *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. EPA SW-846, Online. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed September 11, 2007, at http://www.epa.gov/sw-846/6_series.htm

EPA. 1996. "Method 6020, Inductively Coupled Plasma – Mass Spectrometry," Rev. 0. In *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. EPA SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed September 11, 2007, at http://www.epa.gov/sw-846/6_series.htm

EPA. 2004. "Method 9040C, pH Electrometric Measurement," Rev. 3. In *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods*. EPA SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed September 11, 2007, at http://www.epa.gov/sw-846/9_series.htm

EPA. 2004. "Method 9060A. Total Organic Carbon," Rev. 1. In *Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods*. EPA SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. Accessed September 11, 2007, at http://www.epa.gov/epaoswer/hazwaste/test/pdfs/9060a.pdf

Felmy AR, Y Xia, and Z Wang. 2005. "The Solubility Product of NaUO₂PO₄·xH₂O Determined in Phosphate and Carbonate Solutions." *Radiochima Acta* 93(7):401-408.

Fiskum SK, CJ Barinaga, JP Bramson, KJ Carson, and JR DesChane. 2000. *Inorganic and Radio-chemical Analysis of 241-C-104 Tank Waste*. PNNL-13364 (WTP-RPT-007-Rev. 0) (formerly BNFL-RPT-043), Pacific Northwest National Laboratory, Richland, Washington.

Helgeson HC, JM Delany, HW Nesbitt, and DK Bird. 1978. "Summary and Critique of the Thermodynamic Properties of Rock-Forming Minerals." *American Journal of Science* 278-A:1-229.

Johnson ME. 2003. *Origin of Wastes in C-200 Series Single-Shell Tanks*. RPP-15408, CH2M HILL Hanford Group, Richland Washington.

Kalmykov S and GR Choppin. 2000. "Mixed Ca²⁺/UO₂²⁺/CO₃²⁻Complex Formation at Different Ionic Strengths." *Radiochima Acta* 88:603-606.

Krupka KM, WJ Deutsch, MJ Lindberg, KJ Cantrell, NJ Hess, HT Schaef, and BW Arey. 2004. *Hanford Tanks 241-AY-102 and 241-BX-101: Sludge Composition and Contaminant Release Data*. PNNL-14614, Pacific Northwest National Laboratory, Richland, Washington.

Krupka KM, HT Schaef, BW Arey, SM Heald, WJ Deutsch, MJ Lindberg, and KJ Cantrell. 2006. "Residual Waste from Hanford Tanks 241-C-203 and 241-C-204. 1. Solids Characterization." *Environmental Science and Technology* 40(12):3749-3754.

Langmuir D. 1978. "Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits." *Geochimica et Cosmochimica Acta* 42:547-569.

Lindberg MJ and WJ Deutsch. 2003. *Tank 241-AY-102 Data Report*. PNNL-14344, Pacific Northwest National Laboratory, Richland, Washington.

McKinney SG. 2005. Final Report for Tank 241-C-203 Post Retrieval Solid Finger Trap Grab Samples. RPP-RPT-26925, CH2M HILL Hanford Group, Inc., Richland, Washington.

Pitzer KS and G Mayorga. 1973. "Thermodynamics of Electrolytes. II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent." *Journal of Physical Chemistry* 77:2300-2308.

Pitzer KS. 1991. "Ion Interaction Approach: Theory and Data Correlation." In *Activity Coefficients in Electrolyte Solutions*, ed. KS Pitzer, Chap. 3, pp. 75-153, CRC Press, Boca Ratan, Florida.

Rai D, BM Sass, and DA Moore. 1987. "Chromium(III) Hydrolysis Constants and Solubility of Chromium(III) Hydroxide." *Inorganic Chemistry* 26:345-349.

Rai D, AR Felmy, NJ Hess, VL LeGore, and DE McCready. 2002. "Thermodynamics of the U(VI)-Ca²⁺-Cl⁻OH⁻H₂O System: Solubility Product of Becquerelite." *Radiochima Acta* 90:495-503.

Simpson BC. 1994. *Tank 241-T-111 Characterization Report*. WHC-EP-0806, Westinghouse Hanford Company, Richland, Washington.

Smith GL, DJ Bates, RW Goles, LR Greenwood, RC Lettau, GF Piepel, MJ Schweiger, HD Smith, MW Urie, and JJ Wagner. 2001. *Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes*. PNNL-13452, Pacific Northwest National Laboratory, Richland, Washington.

Strachan DM, HT Schaef, MJ Schweiger, KL Simmons, LJ Woodcock, and MK Krouse. 2003. "A Versatile and Inexpensive XRD Specimen Holder for Highly Radioactive or Hazardous Specimens." *Powder Diffraction* 18(1):23-28.

Um W, RJ Serne, and KM Krupka. 2004. "Linearity and Reversibility of Iodide Adsorption on Sediments from Hanford, Washington, Under Water-Saturated Conditions." *Water Research* 38:2009-2016.

Wellman DM, SV Mattigod, BW Arey, MI Wood, and SW Forrester. 2005. "In-Situ Identification of Uranium Minerals in Concrete." *Geochimica et Cosmochimica Acta* 69:A468, Suppl. S.

Yamamura T, A Kidtamura, A Fukui, S Nishikawa, T Yamamoto, and H Moriyama. 1998. "Solubility of U(VI) in Highly Basic Solutions." *Radiochima Acta* 83:139-146.

Appendix A

X-Ray Diffraction Patterns for Unleached and Leached Samples of Post-Retrieval Residual Waste from Tank C-202

Appendix A

X-Ray Diffraction Patterns for Unleached and Leached Samples of Post-Retrieval Residual Waste from Tank C-202

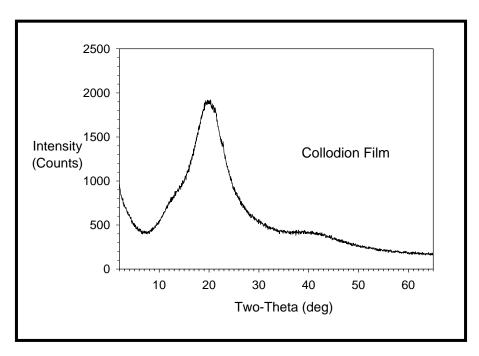
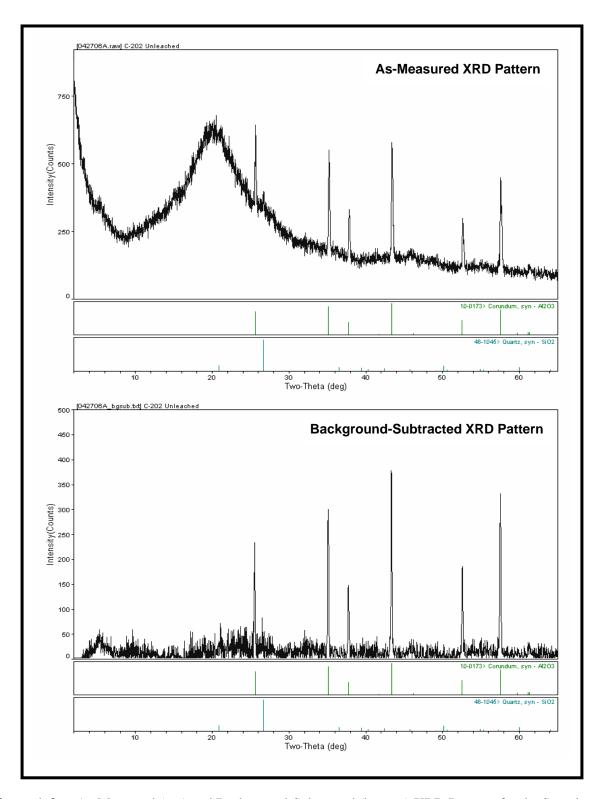
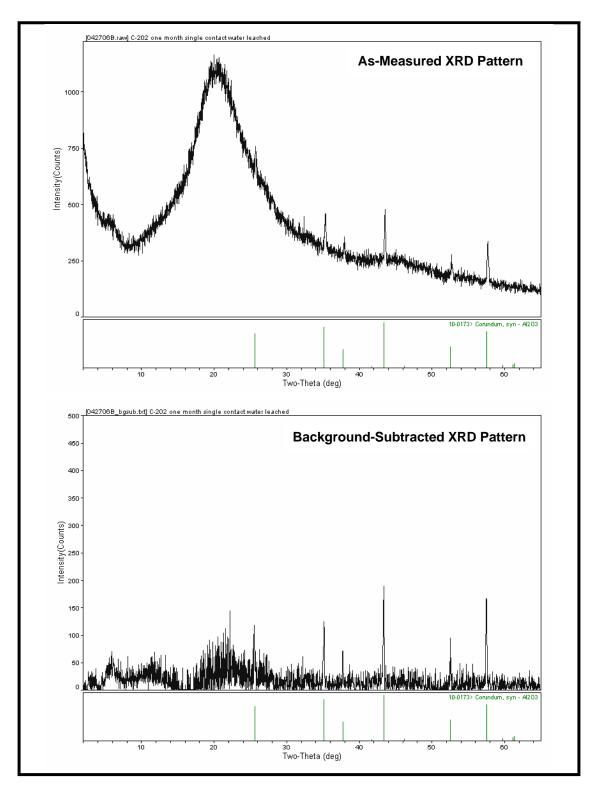
For comparison to the background signal in the as-measured XRD patterns included in this appendix and Appendix B, Figure A.1 shows the XRD pattern for collodion film measured in the absence of any sludge material and reported by Krupka et al. (2004). (a) This also appendix presents the as-measured and background-subtracted x-ray powder diffraction (XRD) patterns for the following samples of post-retrieval residual waste from tank 241-C-202 (C-202):

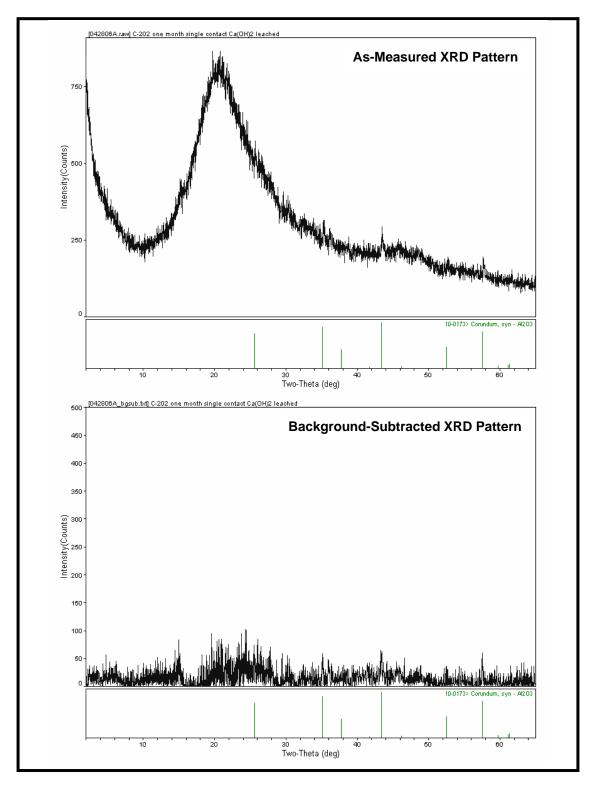
- Unleached solids (Figure A.2)
- One month single-contact leached water extraction solids (Figure A.3)
- One month single-contact Ca(OH)₂ leached solids (Figure A.4)
- One month single-contact CaCO₃ leached solids. (Figure A.5)

The instrumentation and procedures used for measuring, subtracting background, and interpreting the XRD patterns for these materials are described in the main report. The vertical axis in each of the following patterns represents the intensity in counts per second (cps) of the XRD peaks. The horizontal axis is in terms of degrees 2θ based on $Cu_{K\alpha}$ radiation (λ =1.5406 Å), and is related to d spacing according to the Bragg law (Cullity 1956). The XRD patterns show, for comparison purposes, the schematic database (PDF) pattern for corundum (used as a 2θ internal standard) and any other phases thought to be present in the sample mount. The height of each line in the schematic PDF patterns represents the relative intensity of an XRD peak (i.e., the most intense [the highest] peak has a relative intensity [I/Io] of 100%).

(b) Cullity BD. 1967. Elements of X-Ray Diffraction. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

Krupka KM, WJ Deutsch, MJ Lindberg, KJ Cantrell, NJ Hess, HT Schaef, and BW Arey. 2004. Hanford Tanks 241-AY-102 and 241-BX-101: Sludge Composition and Contaminant Release Data. PNNL-14614, Pacific Northwest National Laboratory, Richland, Washington.


Figure A.1. XRD Pattern for Collodion-Solution Film (from Krupka et al. 2004)

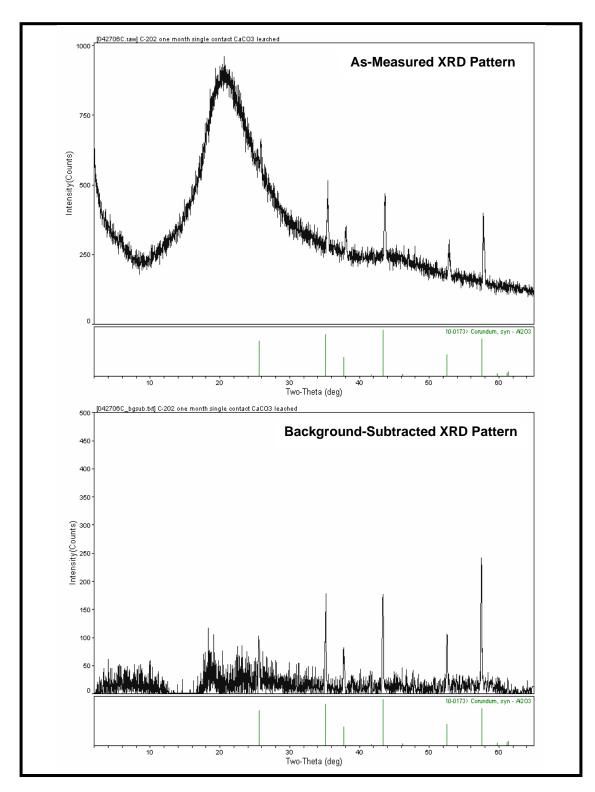

Figure A.2. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for the Sample of Unleached C-202 Post-Retrieval Residual Waste

Figure A.3. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for the Sample of One Month Single-Contact Leached Water Extraction C-202 Post-Retrieval Residual Waste

Figure A.4. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for the Sample of One Month Single-Contact Ca(OH)₂ Leached C-202 Post-Retrieval Residual Waste

Figure A.5. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for the Sample of One Month Single-Contact CaCO₃ Leached C-202 Post-Retrieval Residual Waste

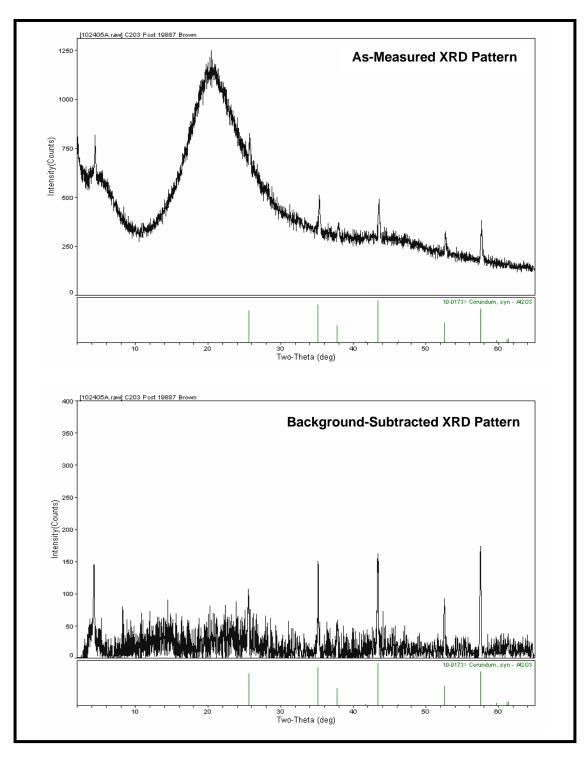
Appendix B

X-Ray Diffraction Patterns for Unleached and Leached Samples of Post-Retrieval Residual Waste from Tank C-203

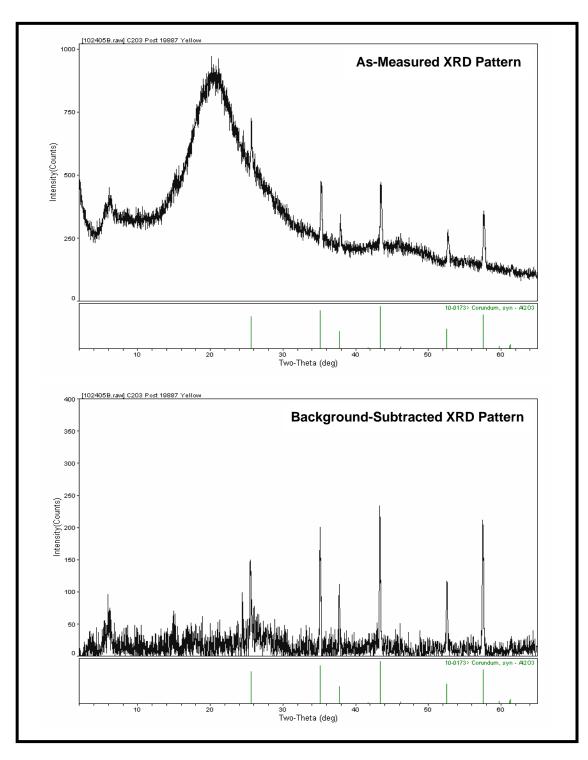
Appendix B

X-Ray Diffraction Patterns for Unleached and Leached Samples of Post-Retrieval Residual Waste from Tank C-203

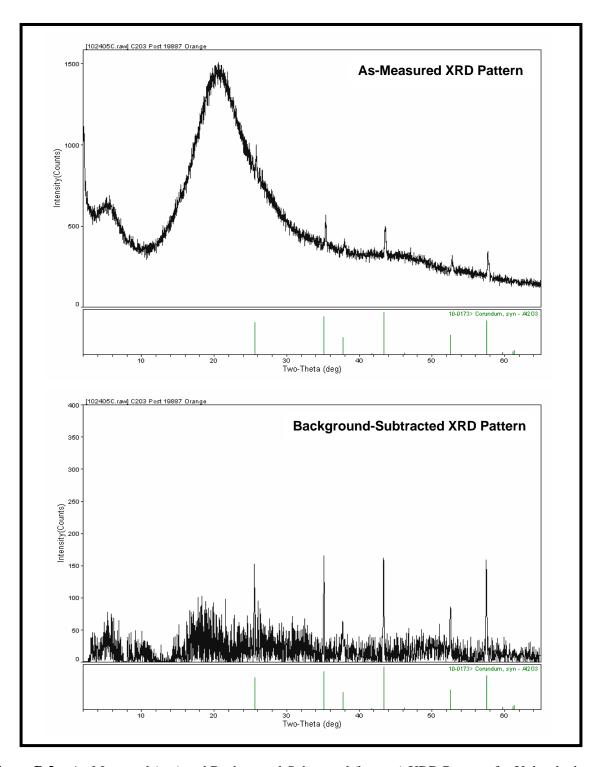
This appendix presents the as-measured and background-subtracted x-ray powder diffraction (XRD) patterns for the following samples of C-203 post-retrieval residual waste:

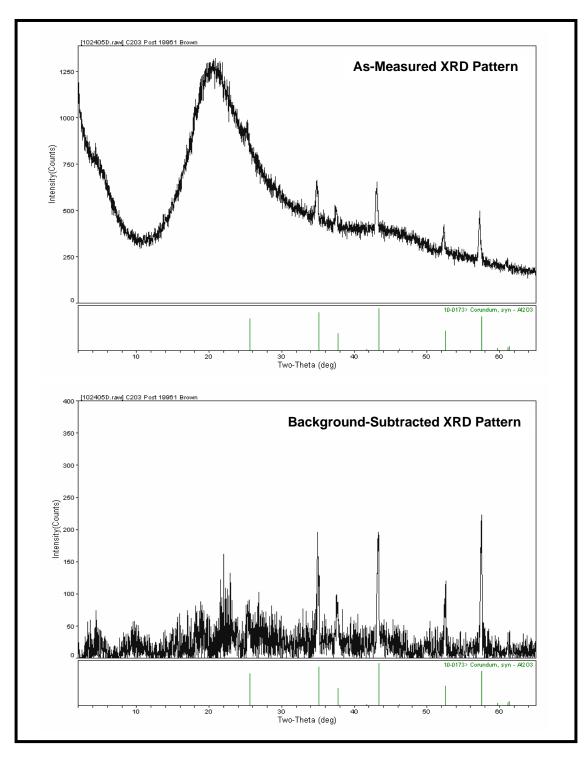

- Unleached brown, yellow, and orange solids separated from sample 19887 (Figures B.1 through B.3, respectively)
- Unleached brown, yellow, and orange solids separated from sample 19961(Figures B.4 through B.6, respectively)
- One month single-contact leached water extraction of solids from sample 19961 (Figure B.7)
- Sequential leached water extraction of solids from sample 19961 (Figure B.8)
- One month Ca(OH)₂-leached solids from sample 19961 (Figure B.9)
- Sequential Ca(OH)₂-leached solids from sample 19961 (Figure B.10)
- One month CaCO₃-leached solids from sample 19961 (Figure B.11)
- Sequential CaCO₃-leached solids from sample 19961 (Figure B.12)

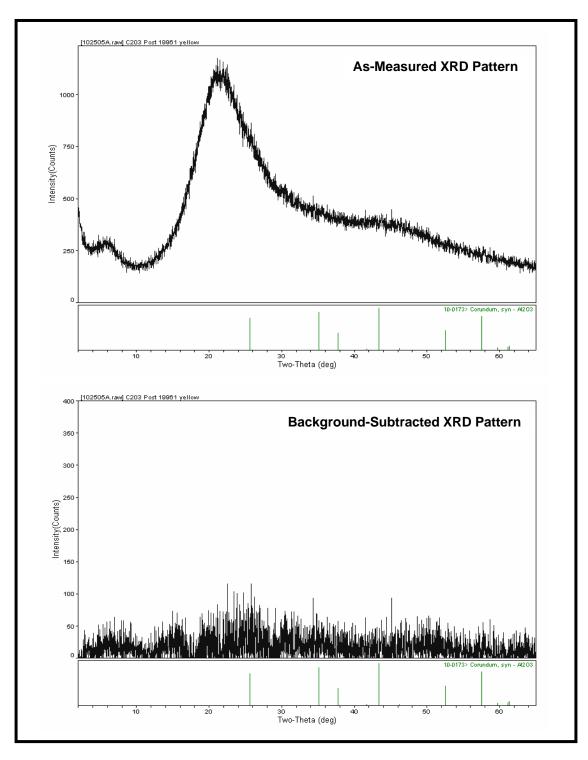
The instrumentation and procedures used for measuring, subtracting background, and interpreting the XRD patterns for these materials are described in the main report. The vertical axis in each of the following patterns represents the intensity in counts per second (cps) of the XRD peaks. The horizontal axis is in terms of degrees 2θ based on $Cu_{K\alpha}$ radiation (λ =1.5406 Å), and is related to d spacing according to the Bragg law (Cullity 1956). The XRD patterns show, for comparison purposes, the schematic database (PDF) pattern for corundum (used as a 2θ internal standard) and any other phases thought to be present in the sample mount. The height of each line in the schematic PDF patterns represents the relative intensity of an XRD peak (i.e., the most intense [the highest] peak has a relative intensity [I/I_o] of 100%).

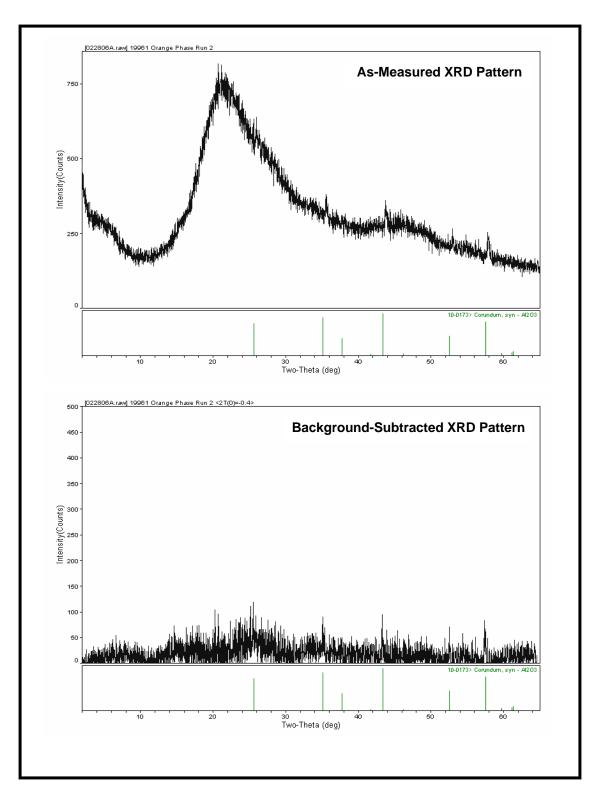

B.1

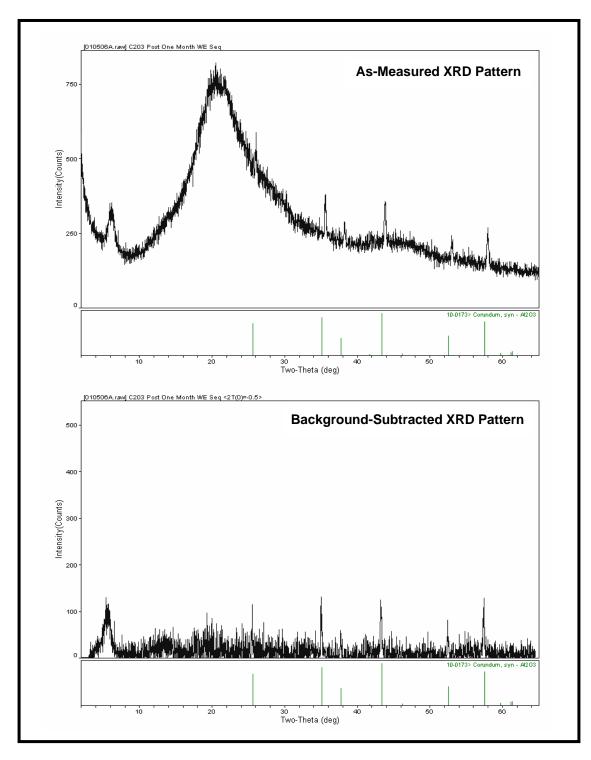
_

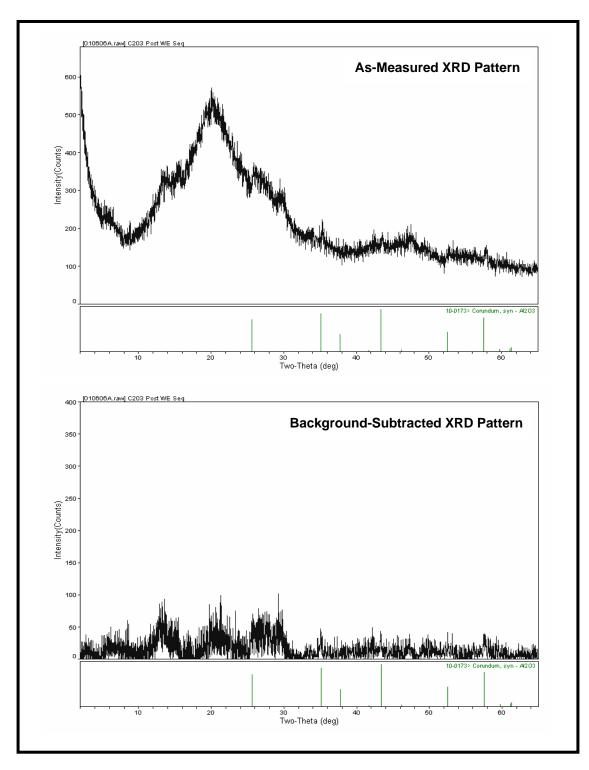

^(a) Cullity BD. 1967. *Elements of X-Ray Diffraction*. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

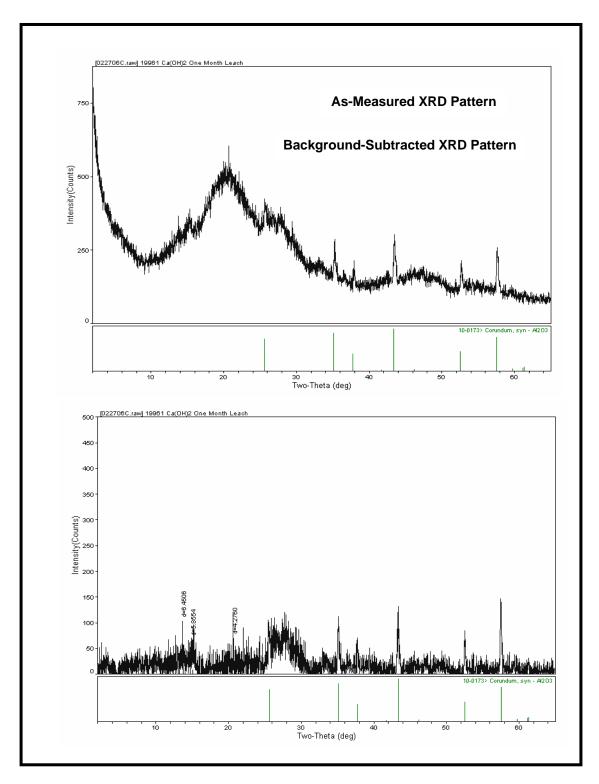

Figure B.1. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Unleached Brown Solids Separated from Sample 19887 of C-203 Post-Retrieval Residual Waste

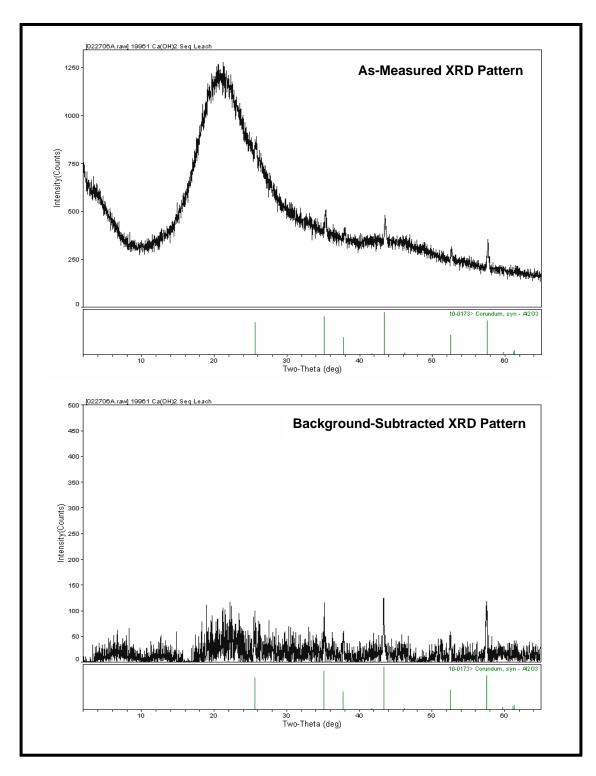

Figure B.2. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Unleached Yellow Solids Separated from Sample 19887 of C-203 Post-Retrieval Residual Waste

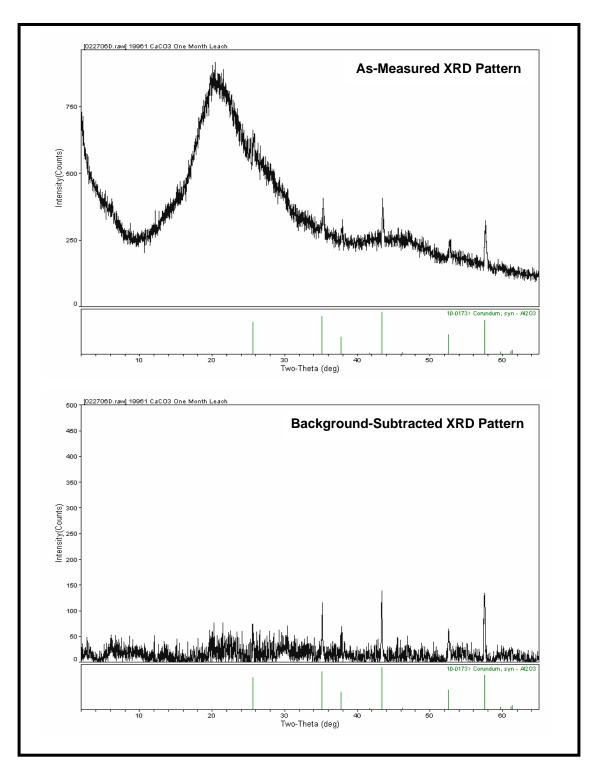

Figure B.3. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Unleached Orange Solids Separated from Sample 19887 of C-203 Post-Retrieval Residual Waste


Figure B.4. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Unleached Brown Solids Separated from Sample 19887 of C-203 Post-Retrieval Residual Waste


Figure B.5. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Unleached Yellow Solids Separated from Sample 19961 of C-203 Post-Retrieval Residual Waste


Figure B.6. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Unleached Orange Solids Separated from Sample 19961 of C-203 Post-Retrieval Residual Waste


Figure B.7. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for One Month Single-Contact Leached Water Extraction of Solids from Sample 19961 of C-203 Post-Retrieval Residual Waste


Figure B.8. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Sequential Leached Water Extraction of Solids from Sample 19961 of C-203 Post-Retrieval Residual Waste

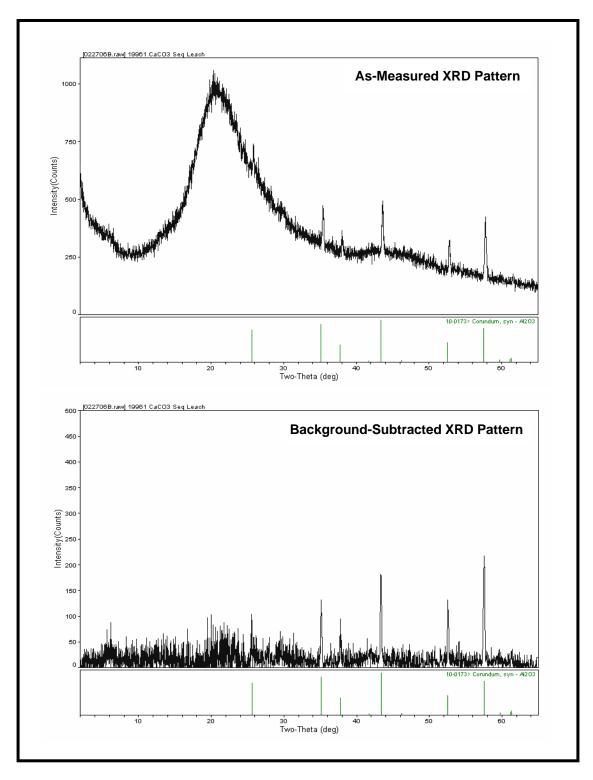

Figure B.9. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for One-Month Ca(OH)₂-Leached Solids from Sample 19961 of C-203 Post-Retrieval Residual Waste

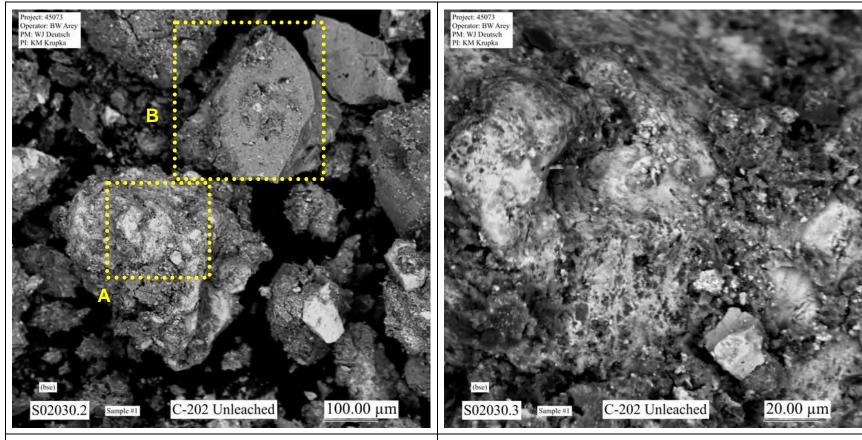
Figure B.10. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Sequential Ca(OH)₂-Leached Solids from Sample 19961 of C-203 Post-Retrieval Residual Waste

Figure B.11. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for One-Month CaCO₃-Leached Solids from Sample 19961 of C-203 Post-Retrieval Residual Waste

Figure B.12. As-Measured (top) and Background-Subtracted (bottom) XRD Patterns for Sequential CaCO₃-Leached Solids from Sample 19961 of C-203 Post-Retrieval Residual Waste

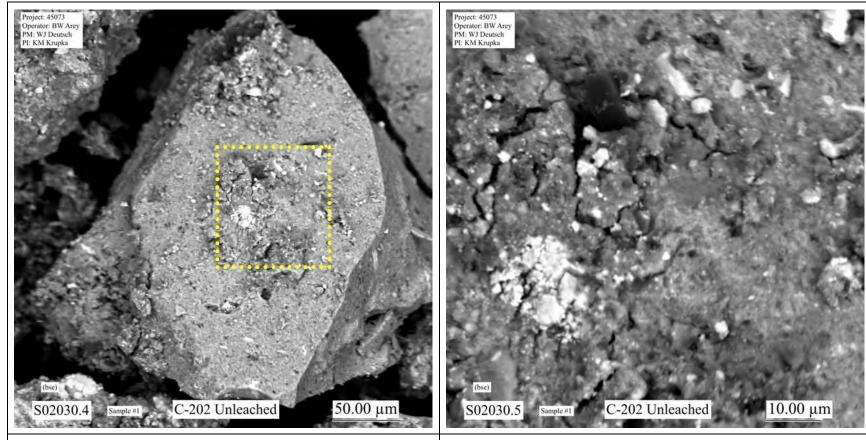
Appendix C

SEM Micrographs and EDS Results for Unleached Residual Waste from Tank C-202


Appendix C

SEM Micrographs and EDS Results for Unleached Residual Waste from Tank C-202

This appendix includes the scanning electron microscope (SEM) micrographs and the energy-dispersive spectroscopy (EDS) spectra for samples of unleached residual waste from tank C-202. The operating conditions for the SEM and procedures used for mounting the SEM samples are described in Section 3.7 of the main report.


The identification number for the digital micrograph image file, descriptor for the type of sample, and a size scale bar are given, respectively, at the bottom left, center, and right of each SEM micrograph in this appendix. Micrographs labeled by "BSE" to the immediate right of the digital image file number indicate that the micrograph was collected with backscattered electrons. Sample areas or particles identified by a yellow letter or arrow, and/or outlined by a yellow dotted-line square in a micrograph designate sample material that was imaged at higher magnification, which is typically shown in figure(s) that immediately follow in the series for that sample.

The SEM micrographs for this leached material are shown in Figures C.1 through C.11. The EDS spectra and estimated EDS atomic% compositions corresponding to these EDS spectra are given in Figures C.12 through C.17 and Tables C.1 and C.2, respectively.

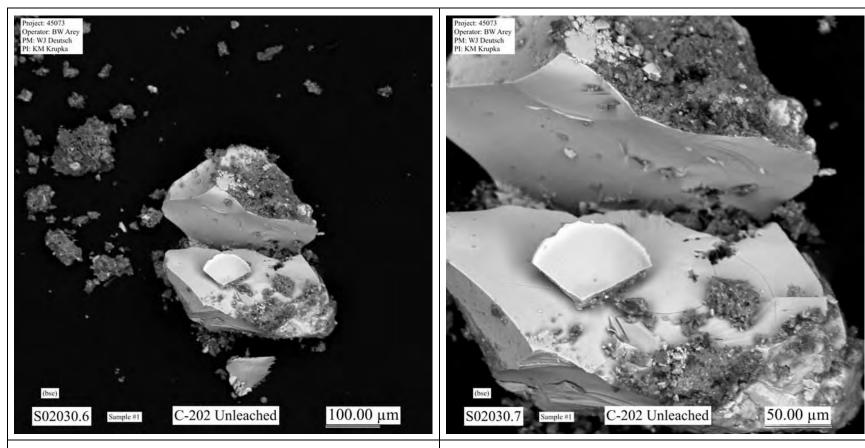

Figure C.1. Low Magnification SEM Micrograph Showing General Morphologies of Particles in the SEM Sample of Unleached Residual Waste from Tank C-202

Figure C.2. Micrograph Showing at Higher Magnification the Particle Aggregate in the Area Indicated by the Yellow Dotted-Line Square A in Figure C.1 (Areas where EDS analyses were made are shown in Figure C.12.)

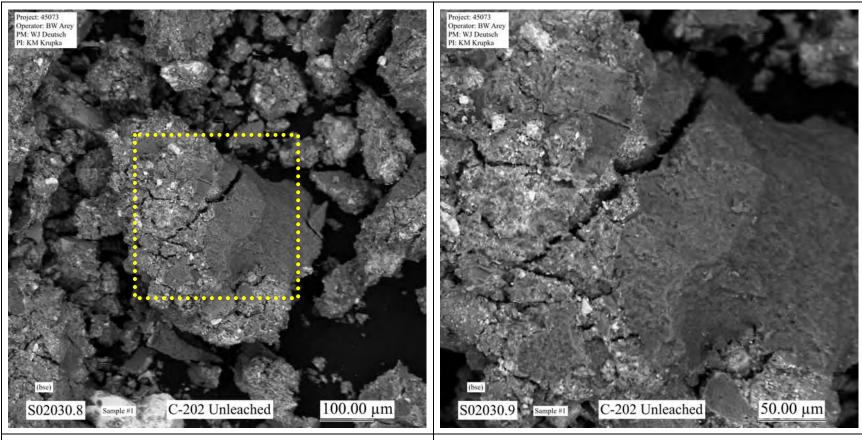

Figure C.3. Micrograph Showing at Higher Magnification the Particle in the Area Indicated by the Yellow Dotted-Line Square B in Figure C.1

Figure C.4. Micrograph Showing at Higher Magnification the Particle Indicated by the Yellow Dotted-Line Square in Figure C.3 (Areas where EDS analyses were made are shown in Figure C.13.)

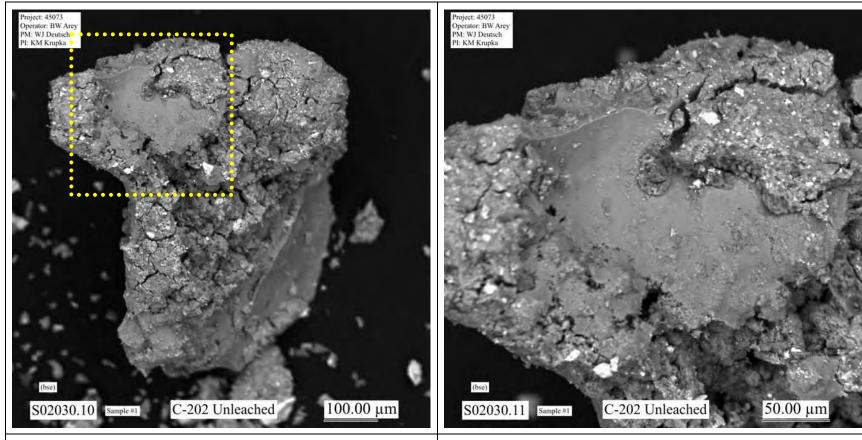

Figure C.5. Micrograph Showing Typical Particles in the SEM Sample of Unleached Residual Waste from Tank C-202

Figure C.6. Micrograph Showing at Higher Magnification the Particle at the center of Figure C.5 (Areas where EDS analyses were made are shown in Figure C.14.)

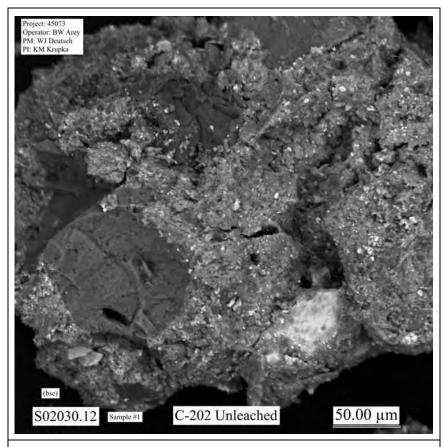

Figure C.7. Micrograph Showing Typical Particles in SEM Sample of Unleached Residual Waste from Tank C-202

Figure C.8. Micrograph Showing at Higher Magnification the Particle Indicated by the Yellow Dotted-Line Square in Figure C.7 (Areas where EDS analyses were made are shown in Figure C.15.)

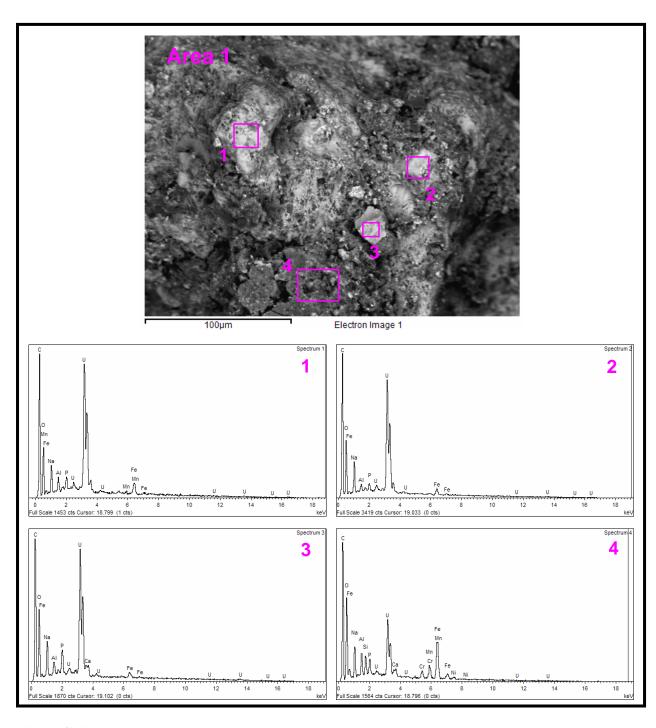
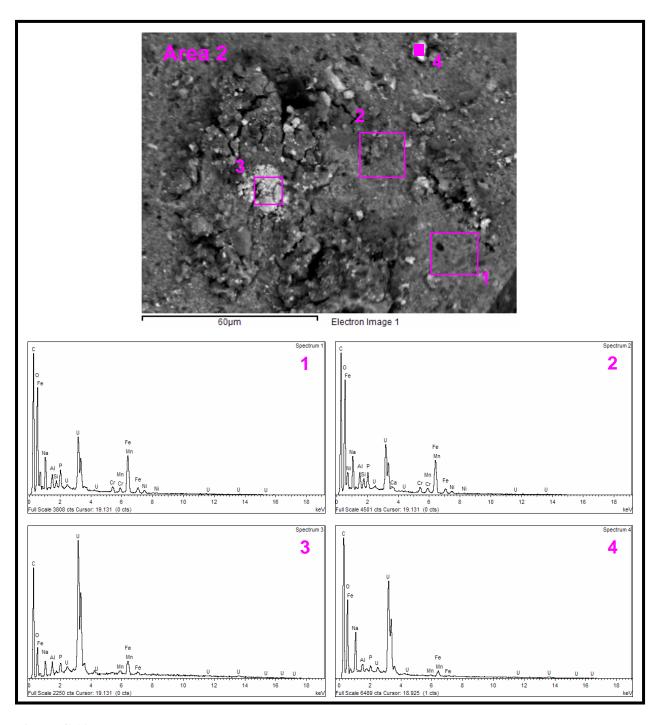
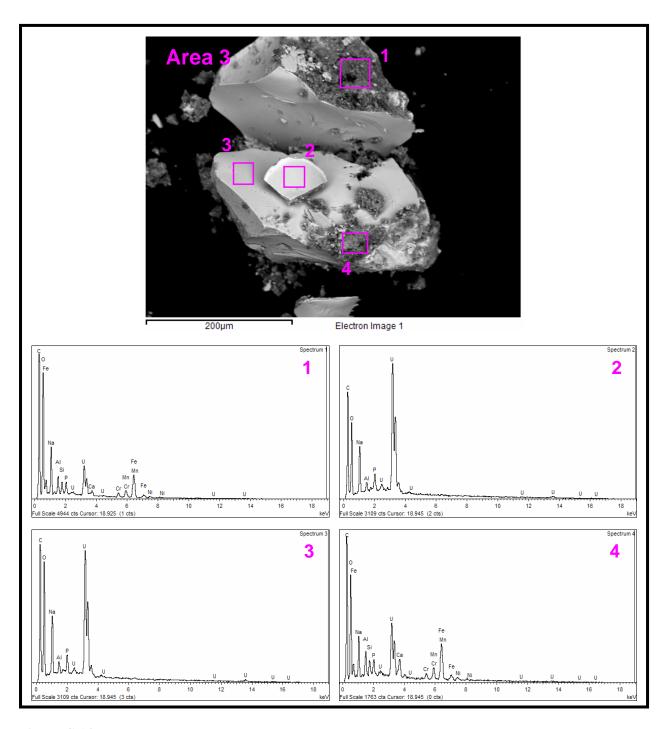
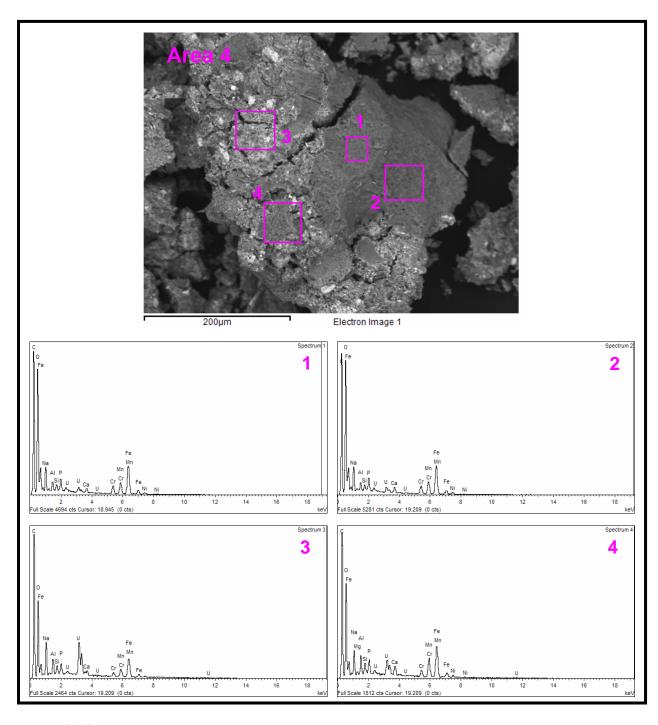
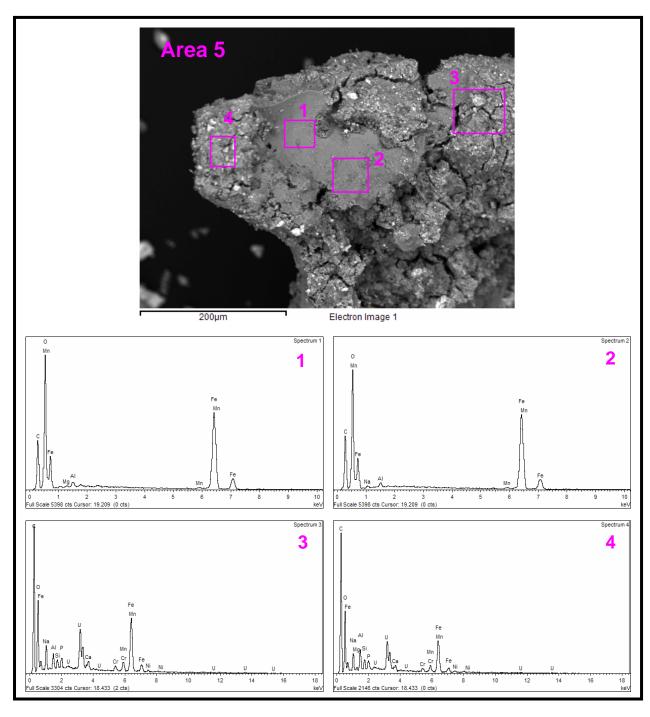


Figure C.9. Micrograph Showing Typical Particles in SEM Sample of Unleached Residual Waste from Tank C-202


Figure C.10. Micrograph Showing at Higher Magnification the Particle Indicated by the Yellow Dotted-Line Square in Figure C.9 (Areas where EDS analyses were made are shown in Figure C.17.)


Figure C.11. Micrograph Showing Typical Particles in SEM Sample of Unleached Residual Waste from Tank C-202 (Areas where EDS analyses were made are shown in Figure C.17.)


Figure C.12. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Unleached Residual Waste Sample from Tank C-202


Figure C.13. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Unleached Residual Waste Sample from Tank C-202

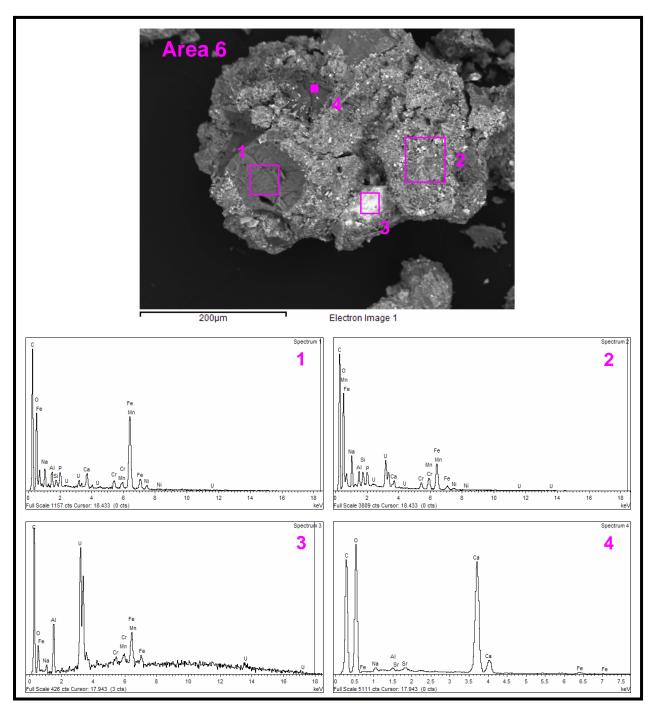

Figure C.14. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Unleached Residual Waste Sample from Tank C-202

Figure C.15. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Unleached Residual Waste Sample from Tank C-202

Figure C.16. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Unleached Residual Waste Sample from Tank C-202

Figure C.17. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Unleached Residual Waste Sample from Tank C-202

Table C.1. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures

Eigung No /			Atomic% ¹														
Figure No./ Area of Interest				Maj	or Cat	ions				Anions	32	Others					
	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	C ³	P	Al	Cu	Mg	Si		
	1	3.8	3.5	1.2	0.3				27	63	0.8	0.9					
C.12 / 1	2	3.4	3.9	0.7					30	61	0.4	0.5					
C.12 / 1	3	3.3	3.7	0.5				0.5	32	58	1.2	0.7					
	4	1.1	3.0	3.0	0.8	0.5	0.2	0.2	30	59	0.6	1.0			0.7		
	1	1.0	3.0	2.9	0.2	0.3	0.3		35	56	0.7	0.6			0.2		
C.13 / 2	2	0.9	3.0	2.5	0.2	0.3	0.2	0.1	37	54	0.6	0.7			0.4		
C.15 / 2	3	4.9	2.6	2.2	0.4				22	66	0.9	1.1					
	4	2.5	4.4	0.5	0.1				35	56	0.3	0.5					
	1	0.5	3.8	1.6	0.4	0.2	0.1	0.2	38	54	0.4	0.7			0.4		
C 14 / 2	2	3.9	5.9						38	51	1.0	0.6					
C.14/3	3	2.8	5.4						42	49	0.9						
	4	1.0	3.5	2.5	0.6	0.3	0.2	0.6	34	55	0.5	1.0			0.5		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table C.2. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures

Eigene No. /									Ato	omic %	(a)						
Figure No./ Area of				Maj	or Cat	ions			I	Anions ⁽	(b)	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	O	$\mathbf{C}^{(\mathbf{c})}$	P	Al	Cu	Mg	Si		
	1	0.1	2.1	2.1	0.7	0.4	0.1	0.1	39	55	0.4	0.3			0.2		
C.15/4	2	0.1	2.1	1.9	0.7	0.4	0.2	0.2	40	54	0.4	0.3			0.2		
C.13/4	3	0.7	3.1	1.6	0.5	0.2		0.2	32	60	0.4	0.7			0.3		
	4	0.3	2.1	2.3	1.0	0.4	0.2	0.4	33	59	0.5	0.7		0.2	0.4		
	1			9.5	0.1				50	40		0.4		0.2			
C.16/5	2		0.4	9.2	0.1				47	43		0.3					
C.10/3	3	0.8	2.3	4.2	0.6	0.3	0.2	0.3	27	63	0.4	0.7			0.3		
	4	0.7	1.7	2.9	0.4	0.2	0.2	0.2	28	64	0.4	1.0		0.2	0.5		
	1	0.1	1.8	5.3	0.3	0.4	0.4	0.5	27	62	0.5	0.7			0.2		
C.17/6	2	0.5	2.8	2.0	0.7	0.4	0.1	0.3	35	57	0.5	0.7			0.5		
C.17/0	3	3.8	1.1	3.4	0.6	0.5			16	71		3.5					
	4		0.4	0.1				4.4	54	41		0.1				Sr - 0.1	

⁽a) = Concentrations based on compositions (wt.%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

⁽b) = EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

⁽c) = Carbon concentrations (in italics) are suspect, and are likely too large.

Appendix D

SEM Micrographs and EDS Results for Leached Residual Waste from Tank C-202

Appendix D

SEM Micrographs and EDS Results for Leached Residual Waste from Tank C-202

This appendix includes the scanning electron microscope (SEM) micrographs and the energy-dispersive spectroscopy (EDS) spectra for samples of leached residual waste from tank C-202. These include the following types of samples:

- One month single-contact leached water extraction solids
- One month single-contact Ca(OH)₂ leached solids
- One month single-contact CaCO₃ leached solids

The operating conditions for the SEM and procedures used for mounting the SEM samples are described in Section 3.7 of the main report.

The identification number for the digital micrograph image file, descriptor for the type of sample, and a size scale bar are given, respectively, at the bottom left, center, and right of each SEM micrograph in this appendix. Micrographs labeled by "BSE" to the immediate right of the digital image file number indicate that the micrograph was collected with backscattered electrons. Sample areas or particles identified by a yellow letter or arrow, and/or outlined by a yellow dotted-line square in a micrograph designate sample material that was imaged at higher magnification, which is typically shown in figure(s) that immediately follow in the series for that sample. The figure and table numbers for the SEM micrographs and EDS analyses for the three types of leached C-202 residual waste analyzed by SEM/EDS are listed in Table D.1.

Table D.1. Figures and Tables Containing the SEM Micrographs and EDS Analyses for the Leached C-202 Residual Waste Samples Analyzed by SEM/EDS

Type of Residual Waste Sample	Figures with SEM Micrographs	Figures with EDS Spectra	Tables with EDS Atomic%
1-month single-contact leached water extraction solids	D.1 – D.8	D.9 – D.15	D.2 and D.3
1-month single-contact Ca(OH) ₂ leached solids	D.16 – D.27	D.28 – D.38	D.4, D.5, and D.6
1-month single-contact CaCO ₃ leached solids	D.39 – D.52	D.53 – D.60	D.7 and D.8

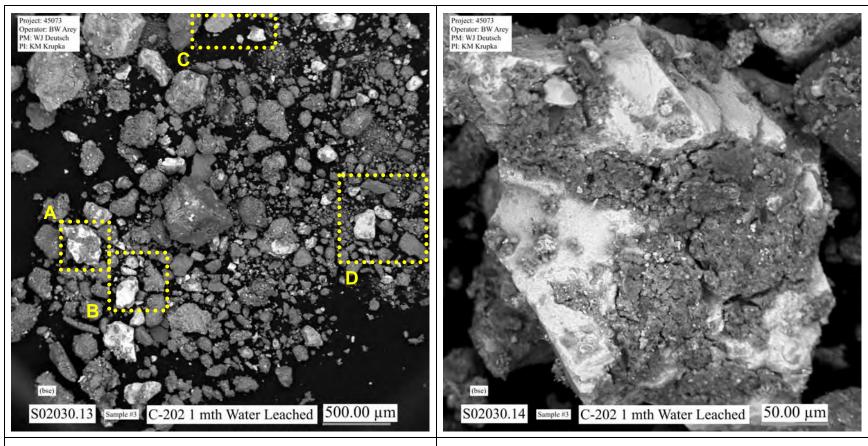


Figure D.1. Micrograph Showing at Low Magnification Typical Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202

Figure D.2. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square A in Figure D.1 (Areas where EDS analyses were made are shown in Figure D.9.)

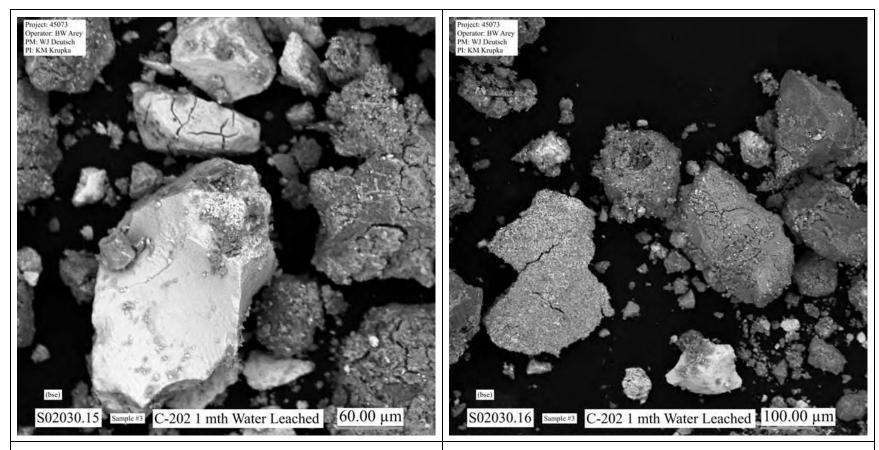
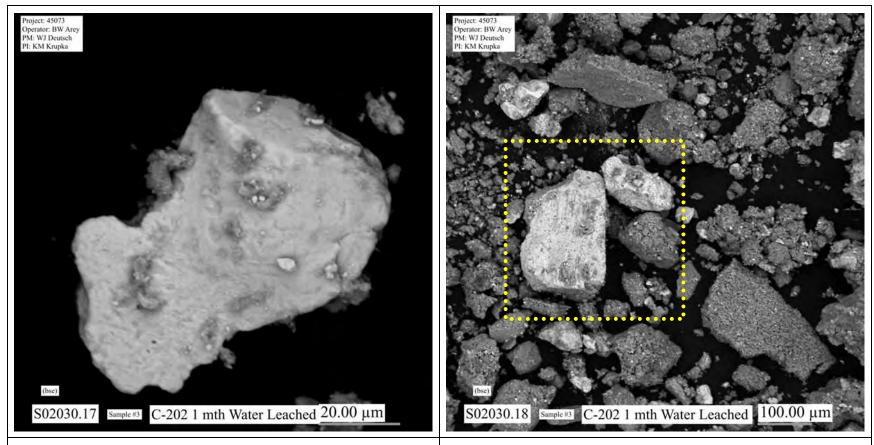



Figure D.3. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square B in Figure D.1 (Areas where EDS analyses were made are shown in Figure D.10.)

Figure D.4. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square C in Figure D.1 (Areas where EDS analyses were made are shown in Figure D.11.)

Figure D.5. Micrograph Showing Typical Particles in SEM Sample of SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202

Figure D.6. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square D in Figure D.1

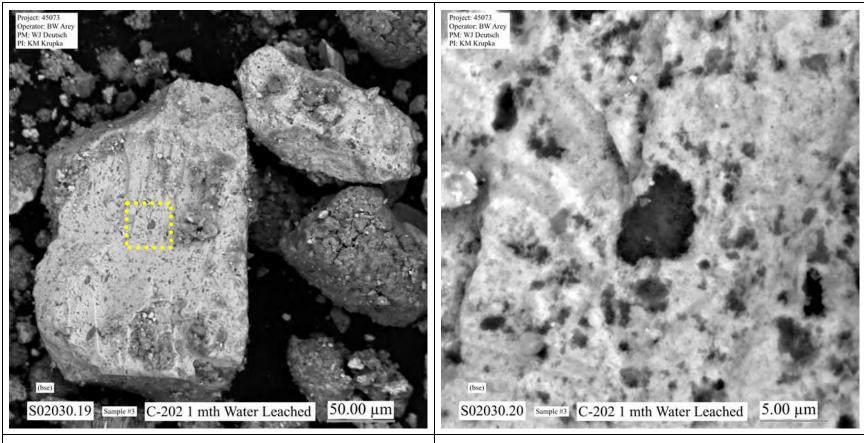
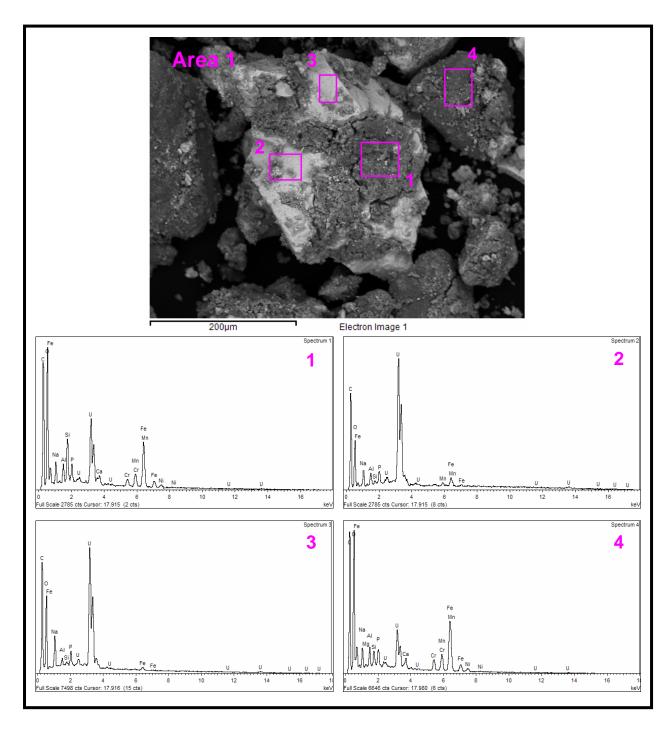
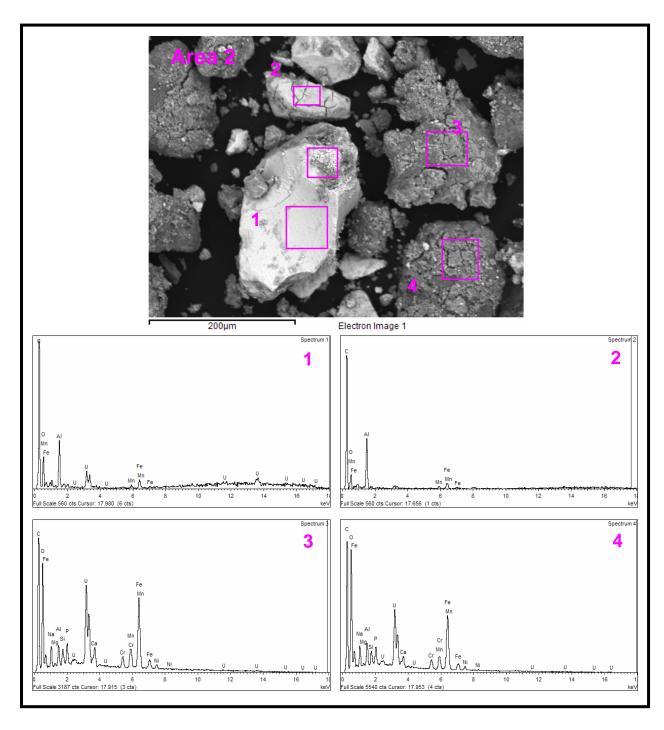
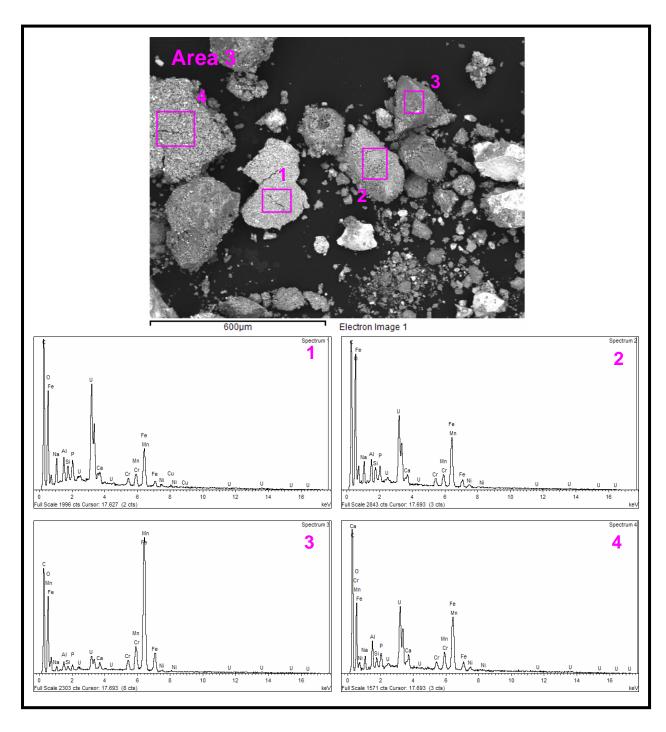
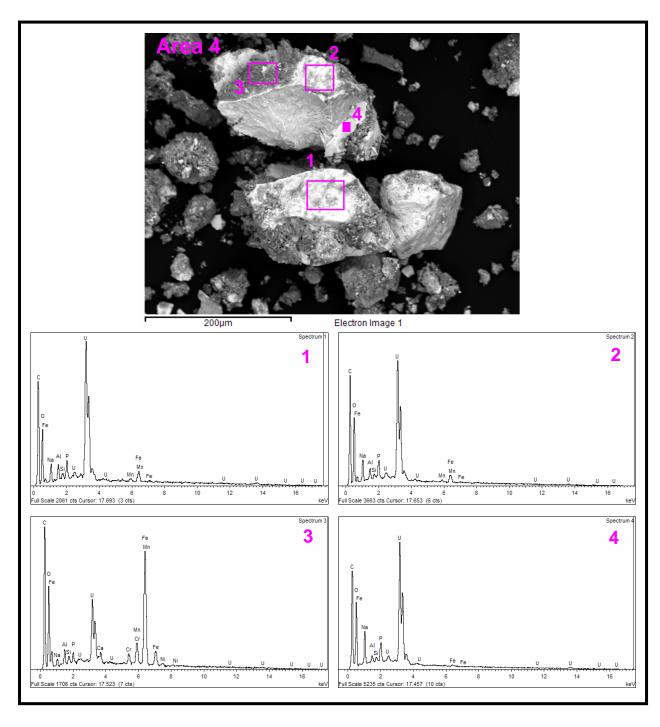
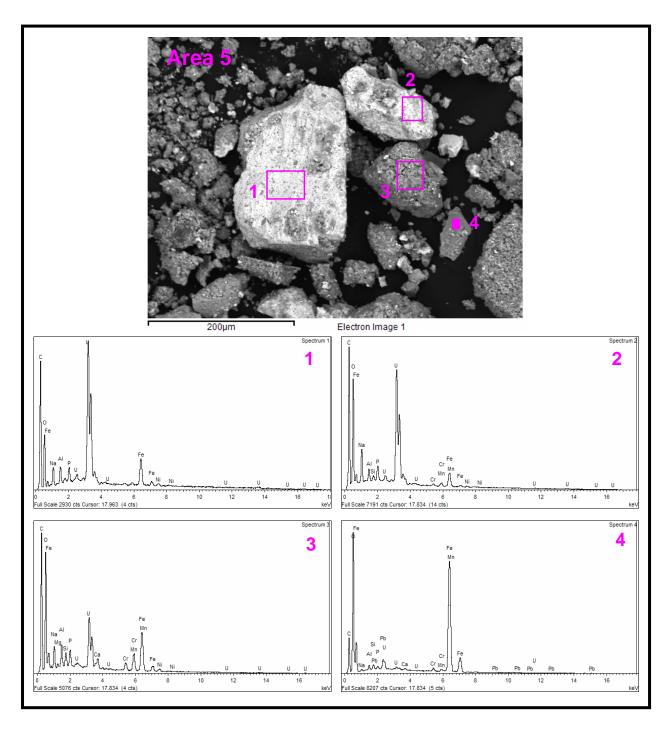
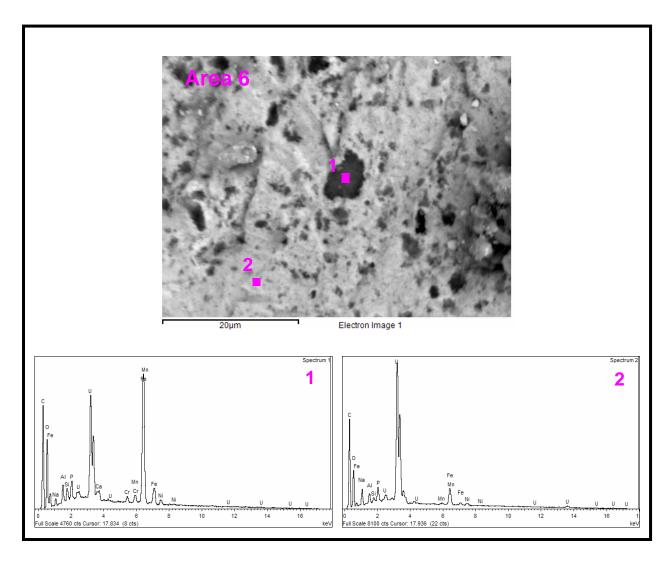




Figure D.7. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure D.6 (Areas where EDS analyses were made are shown in Figure D.13.)


Figure D.8. Micrograph Showing at Higher Magnification the Particle Area Indicated by the Yellow Dotted-Line Square in Figure D.7 (Areas where EDS analyses were made are shown in Figure D.14.)


Figure D.9. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202


Figure D.10. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202 (EDS spectrum for fifth box shown in above micrograph was not recorded.)


Figure D.11. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202

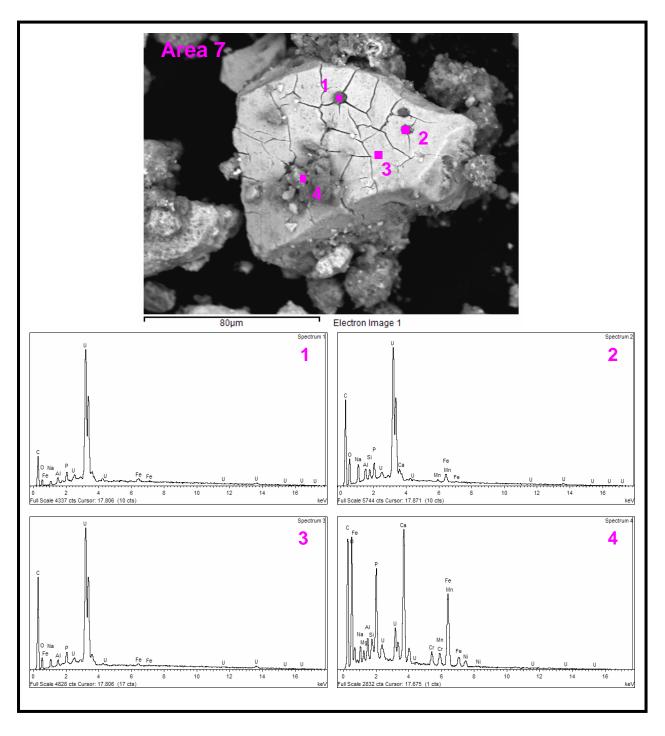

Figure D.12. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202

Figure D.13. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202

Figure D.14. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202

Figure D.15. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in SEM Sample of 1-Month Single-Contact Leached Water Extraction Residual Waste from Tank C-202

Table D.2. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for One Month Single-Contact Leached Water Extraction Solids

Figure No /			Atomic% ¹														
Figure No./ Area of				Maj	or Cat	ions				Anions	s ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	1.1	1.9	3.0	0.8	0.4	0.3	0.3	39	50	0.7	0.8			1.5		
D.9 / 1	2	4.8	2.7	1.2	0.4				32	56	1.0	1.1			0.3		
D.9 / 1	3	3.7	4.2	0.4					39	51	0.9	0.5			0.1		
	4	0.7	1.6	3.3	0.9	0.5	0.3	0.3	38	52	0.6	0.7		0.1	0.5		
	1	0.5		1.0	0.2				22	74		2.6					
D.10 / 2	2			0.7	0.3				13	82		3.0					
D.10 / 2	3	1.5	1.9	4.7	1.2	0.6	0.4	0.7	33	54	0.7	0.8		0.2	0.6		
	4	1.1	1.9	3.8	0.8	0.5	0.3	0.4	36	53	0.7	1.0		0.1	0.5		
	1	1.9	2.2	2.8	0.8	0.4	0.3	0.4	32	57	0.8	1.1	0.2		0.6		
D.11/3	2	1.2	1.9	3.3	0.6	0.4	0.3	0.3	38	53	0.6	0.9			0.5		
D.11 / 3	3	0.3	0.7	11	1.6	0.6	0.2	0.3	26	59	0.3	0.5			0.2		
	4	1.2	1.3	4.3	1.1	0.4	0.3	0.5	27	62	0.6	1.2			0.4		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

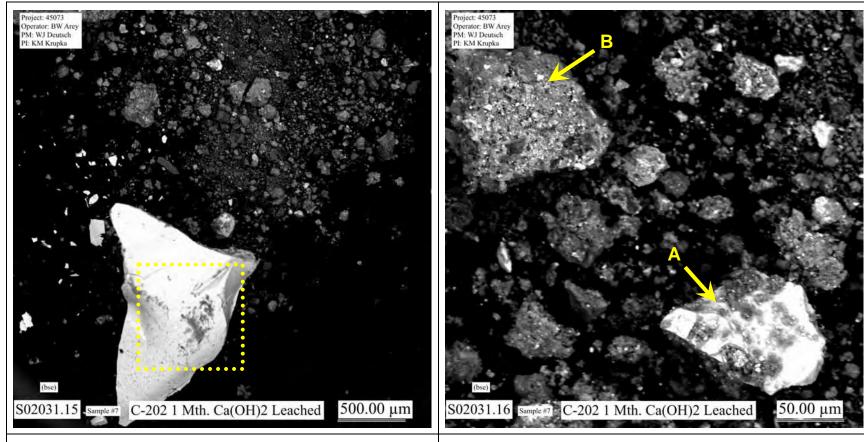
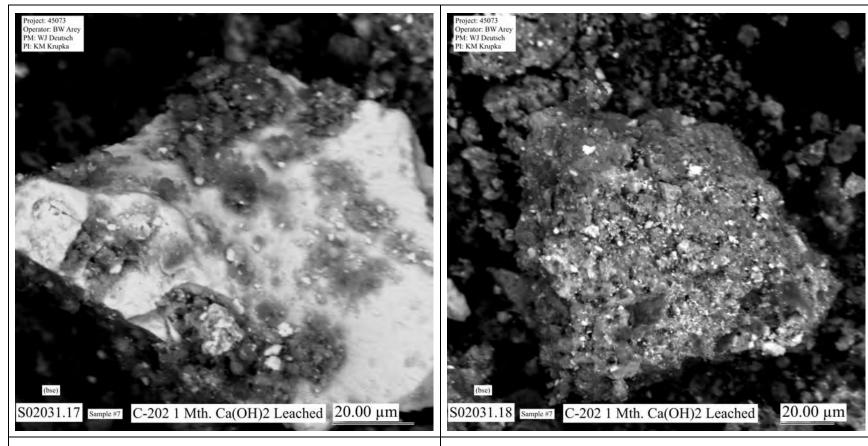

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table D.3. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for One Month Single-Contact Leached Water Extraction Solids

Figure No./			Atomic% ¹														
Area of				Maj	or Cat	ions				Anions	s ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	4.5	2.7	1.3	0.3				32	57	1.2	1.3			0.3		
D.12 / 4	2	3.7	3.0	0.9	0.2				35	55	1.1	0.8			0.3		
D.12/4	3	1.2	0.8	8.2	1.3	0.6	0.3	0.4	26	60	0.4	0.6			0.3		
	4	4.1	4.5	0.2					37	52	1.3	0.5			0.3		
	1	4.1	2.4	3.0			0.4		28	60	0.9	1.2					
D.13/5	2	2.5	3.3	1.1	0.2	0.1	0.1		39	52	0.7	0.6			0.2	W - 0.1	
D.13/3	3	0.9	1.8	2.8	1.0	0.4	0.2	0.3	37	54	0.6	0.9		0.2	0.5		
	4	0.1	0.4	14	0.2	0.2		0.1	50	34	0.2	0.4			0.3	Pb – 0.3	
D.14/6	1	2.3	0.9	11	0.6	0.4	0.6	0.4	25	56	0.9	1.0			0.6		
D.1470	2	5.7	2.9	2.6	0.2		0.5		26	59	1.2	0.9			0.4		
	1	16	2.4	1.3					16	59	2.7	2.1					
D.15 / 7	2	5.8	3.7	1.4	0.3			0.5	22	63	1.5	1.2			0.9		
D.13//	3	7.7	2.1	0.4					13	75	1.4	0.9					
	4	0.5	1.1	3.8	0.5	0.5	0.5	3.6	36	50	2.4	0.7		0.5	0.4	Pb – 0.2, W – 0.1	


^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron. 3 = Carbon concentrations (in italics) are suspect, and are likely too large.

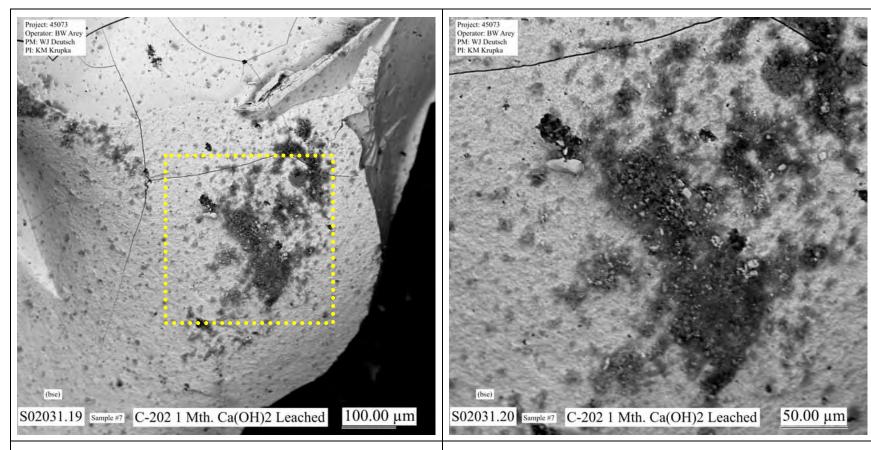

Figure D.16. Micrograph Showing at Low Magnification Typical Particles in SEM Sample of 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

Figure D.17. Micrograph Showing Typical Particles in SEM Sample of 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

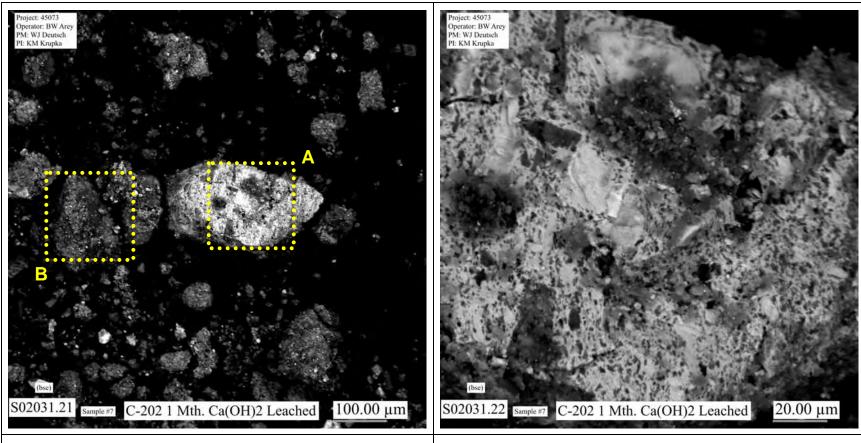

Figure D.18. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled A in Figure D.17 (Areas where EDS analyses were made are shown in Figure D.28.)

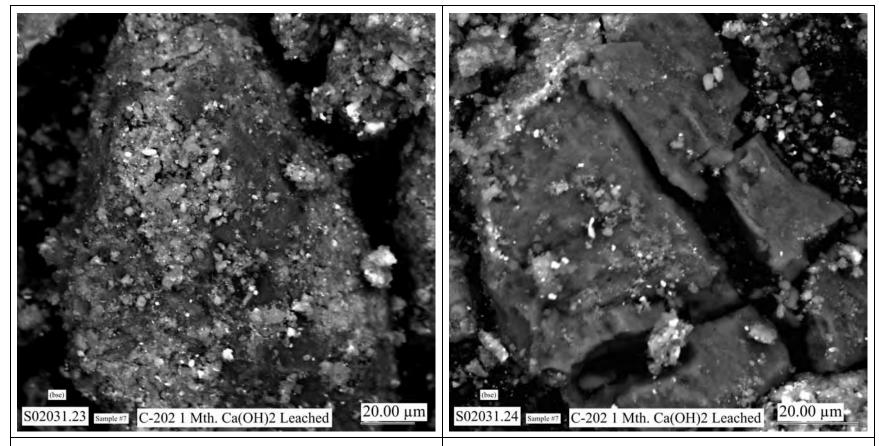
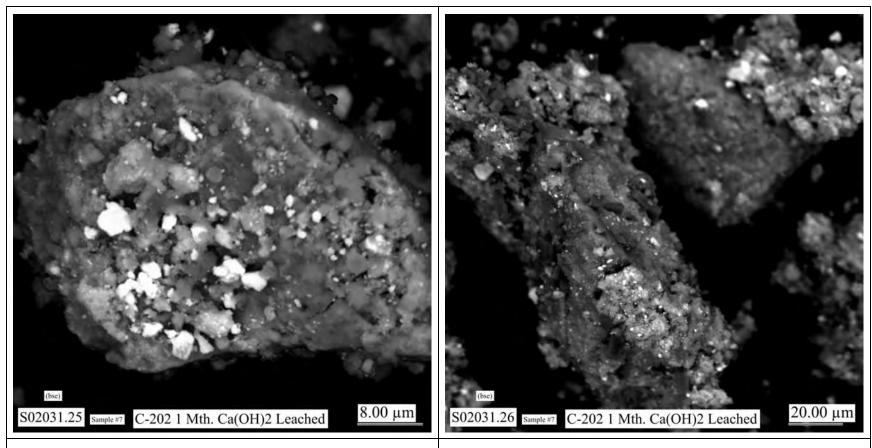
Figure D.19. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled B in Figure D.17 (Areas where EDS analyses were made are shown in Figure D.29.)

Figure D.20. Micrograph Showing at Higher Magnification the Particle Area Indicated by the Yellow Dotted-Line Square in Figure D.16

Figure D.21. Micrograph Showing at Higher Magnification the Particle Area Indicated by the Yellow Dotted-Line Square in Figure D.20 (Areas where EDS analyses were made are shown in Figure D.30.)

Figure D.22. Micrograph Showing at Low Magnification Typical Particles in SEM Sample of 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

Figure D.23. Micrograph Showing at Higher Magnification the Particle Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure D.22 (Areas where EDS analyses were made are shown in Figures D.31 and D.32.)

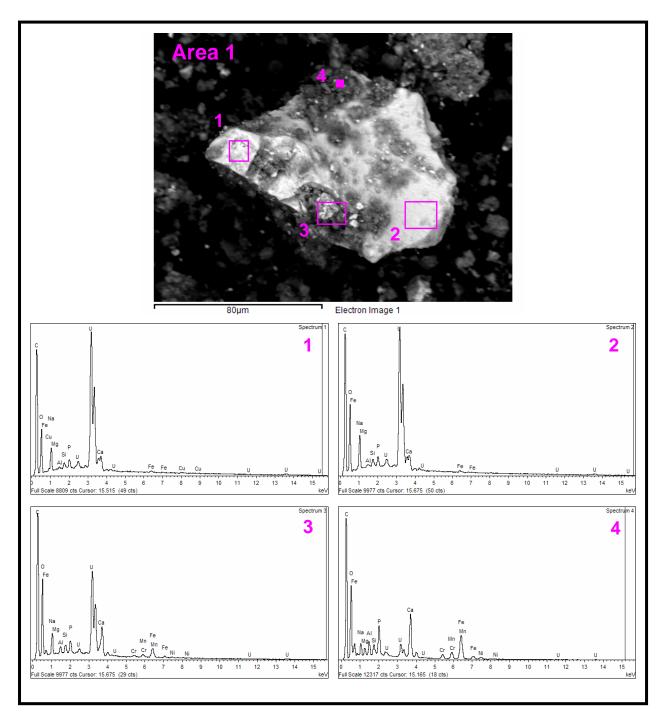

Figure D.24. Micrograph Showing at Higher Magnification the Particle Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure D.22 (Areas where EDS analyses were made are shown in Figures D.33 and D.34.)

Figure D.25. Micrograph Showing Typical Particles in SEM Sample of 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202 (Areas where EDS analyses were made are shown in Figure D.35.)

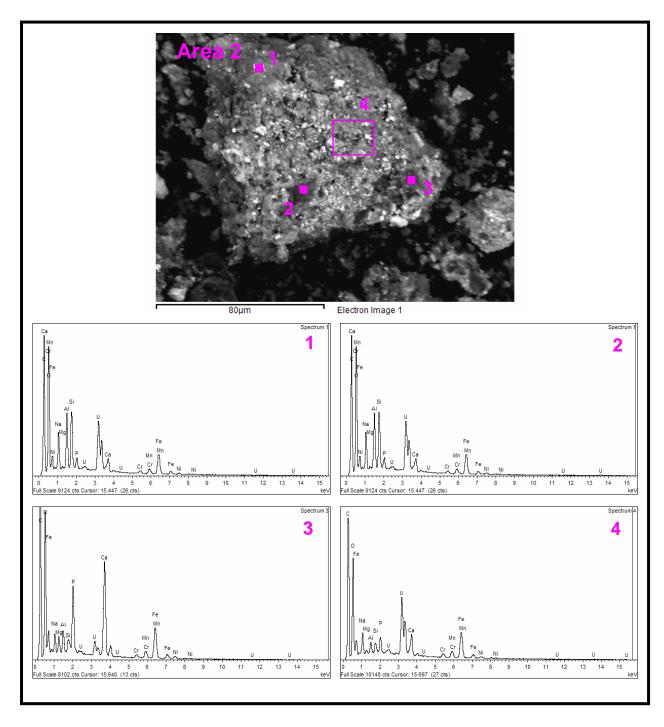
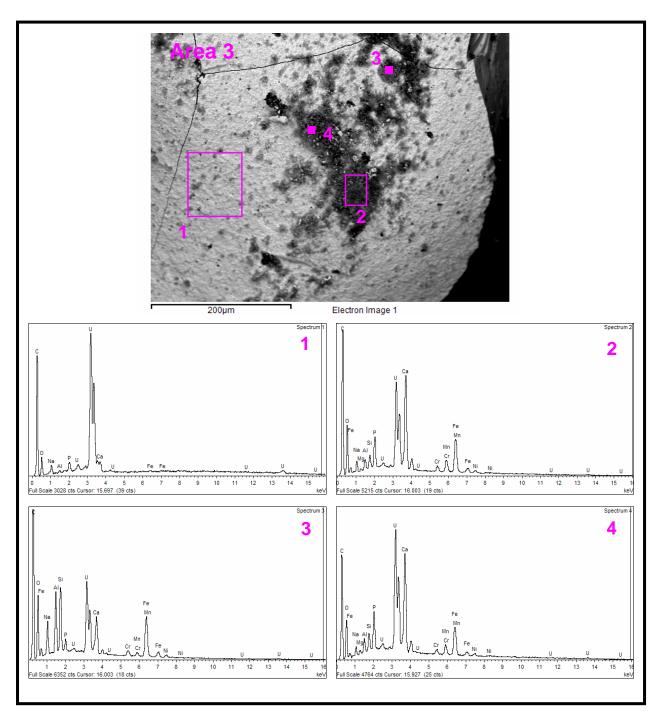
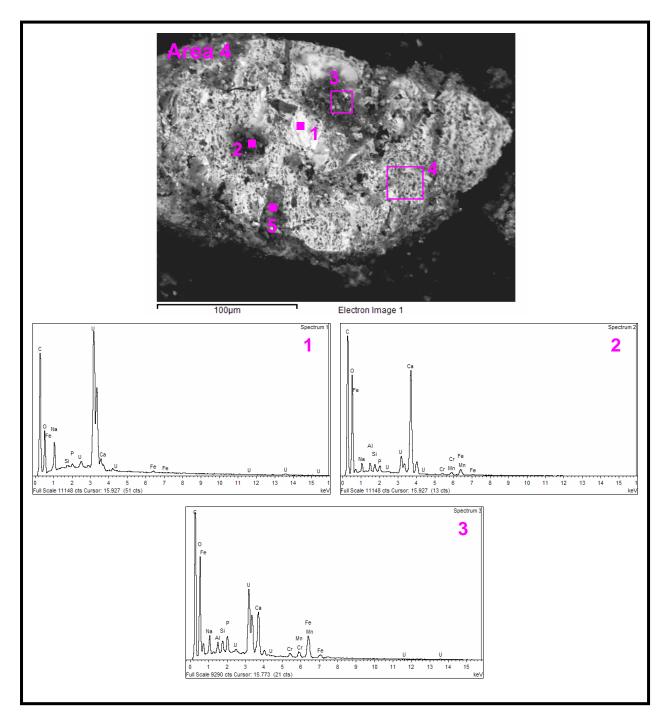
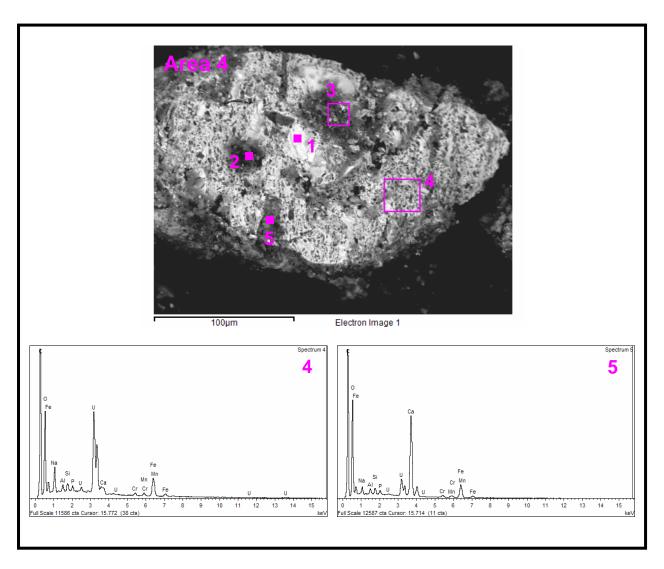
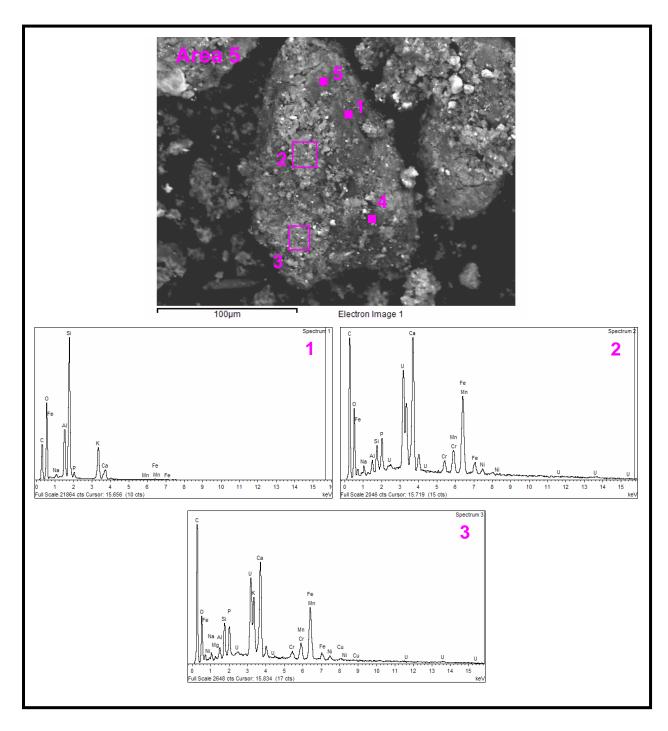


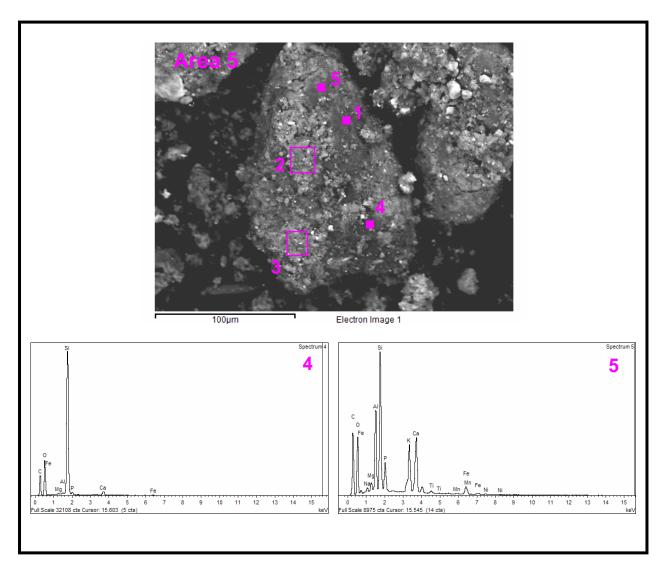
Figure D.26. Micrograph Showing Typical Particles in SEM Sample of 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202 (Areas where EDS analyses were made are shown in Figure D.36.)

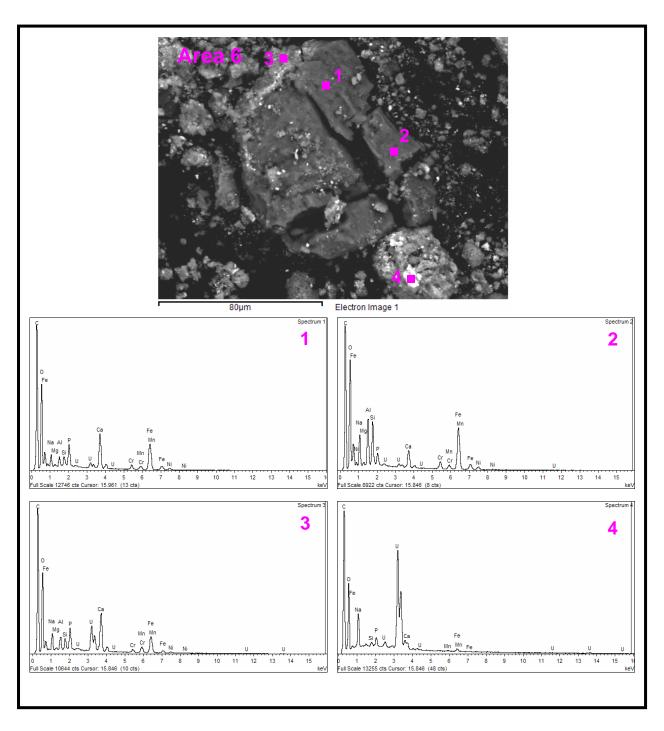

Figure D.27. Micrograph Showing Typical Particles in SEM Sample of 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202 (Areas where EDS analyses were made are shown in Figures D.37 and D.38.)

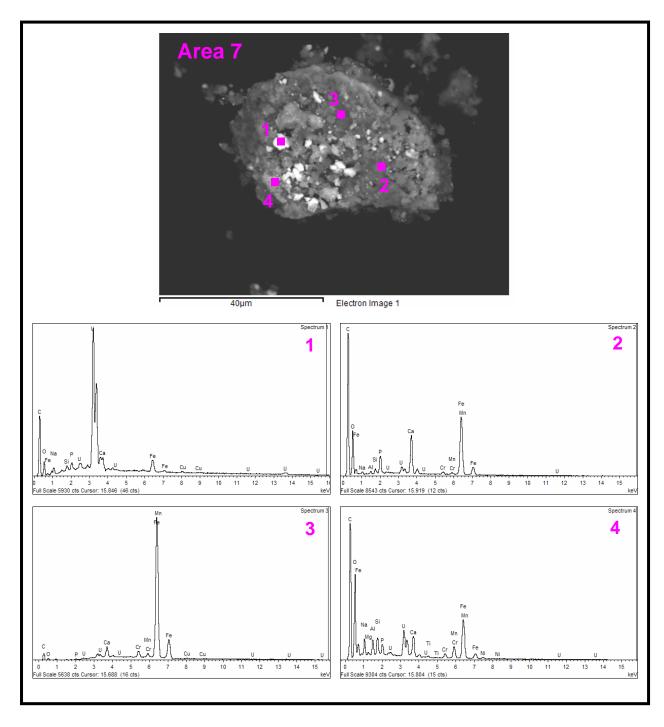

Figure D.28. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

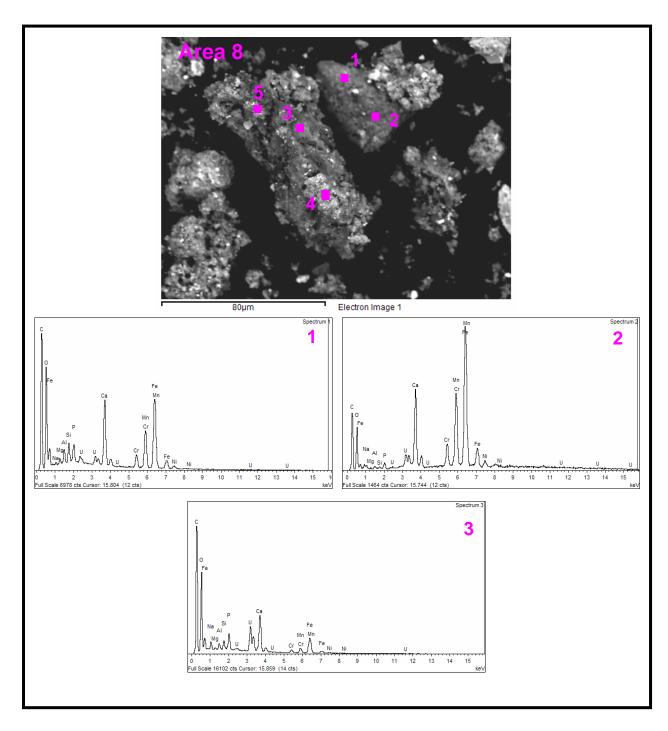

Figure D.29. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202


Figure D.30. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202


Figure D.31. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202


Figure D.32. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202


Figure D.33. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202


Figure D.34. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

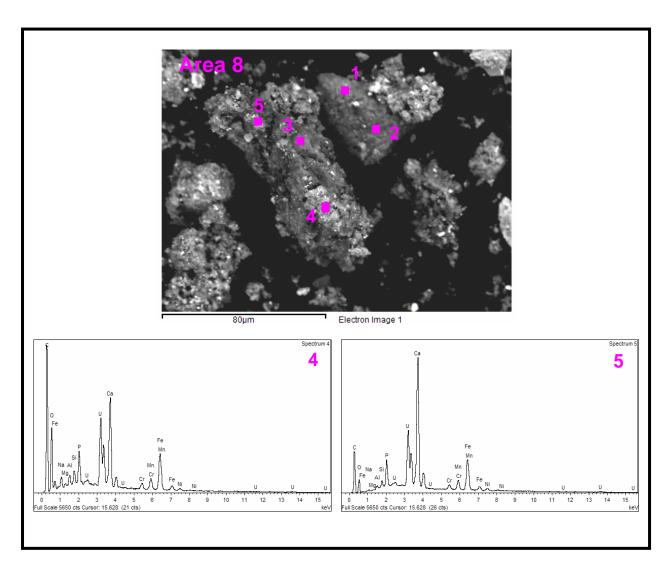

Figure D.35. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

Figure D.36. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

Figure D.37. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

Figure D.38. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Residual Waste from Tank C-202

Table D.4. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Ca(OH)₂ Leached Solids

Figure No./									I	Atomic	% ¹						
Area of		Major Cations								Anions ²			Others				
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	O	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	4.6	3.4	0.2				0.9	29	61	0.6		0.2		0.4		
D.28 / 1	2	3.9	3.9	0.2				0.7	34	56	0.6				0.4		
D.20 / 1	3	2.0	2.2	0.9	2.2	0.1	0.1	1.4	35	57	0.6	0.3	0.1		0.4		
	4	0.3	1.1	1.8	0.4	0.2	0.2	1.7	31	61	1.1	0.5		0.4	0.3		
	1	0.9	2.6	1.3	0.3	0.1	0.1	0.4	37	53	0.4	1.9		0.1	1.8		
D.29 / 2	2	0.2	0.6	4.6	0.8	0.9	0.5	0.5	33	58	0.3	0.3		0.1	0.3		
D.29 / 2	3	0.2	1.1	1.6	0.3	0.1	0.2	2.4	39	52	1.7	0.6		0.6	0.2		
	4	1.2	2.0	2.1	0.5	0.2	0.2	0.9	36	55	0.6	0.5	0.1	0.2	0.4		
	1	6.3	1.6	0.3				0.9	17	73	0.8	0.3					
D.30 / 3	2	1.9	1.0	2.8	0.8	0.4	0.2	4.1	24	62	1.4	0.5		0.1	0.6		
D.30 / 3	3	1.3	2.5	2.8	0.2	0.3	0.3	1.3	23	63	0.4	2.4			2.3		
	4	3.3	1.1	3.0	0.9	0.4	0.3	5.6	23	58	2.1	0.9		0.4	1.0		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table D.5. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Ca(OH)₂ Leached Solids

Figure No./									A	Atomic	% ¹						
Area of				Maj	jor Cat	ions				Anions	s ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	5.0	4.4	0.2				0.3	29	61	0.3				0.2		
D 21 0	2	0.3	0.8	0.4	0.2	0.1		4.1	44	50	0.2	0.3			0.3		
D.31 & D.32 / 4	3	1.3	1.7	1.7	0.4	0.3	0.1	1.7	37	54	0.6	0.5		0.1	0.4		
	4	1.9	2.6	1.6	0.2	0.2	0.1	0.3	35	57	0.2	0.3			0.3		
	5	0.4	0.7	1.0	0.1	0.1	0.1	3.3	42	52	0.1	0.2			0.2		
	1		0.3	0.1	<0.1			0.5	44	44	0.3	2.5			7.2	K – 1.7	
7.22 0	2	1.8	0.8	5.4	1.3	0.6	0.5	4.9	26	56	1.2	0.5			0.9		
D.33 & D.34 / 5	3	1.5	0.7	3.7	1.0	0.3	0.4	3.5	20	65	1.1	0.4	0.2	0.2	1.3	K – 0.4	
	4			0.1				0.4	38	49	0.3	0.1		0.1	12		
	5		0.4	0.7	< 0.1		0.1	2.3	32	52	1.3	3.1		0.4	5.4	K – 1.7, Ti – 0.1	
	1	0.1	1.0	2.0	0.2	0.3	0.2	1.3	34	59	0.8	0.4		0.1	0.3		
D.35 / 6	2	0.1	2.2	2.6	0.2	0.3	0.2	0.5	33	58	0.4	1.5		0.1	1.3	Pb - <0.1	
D. 33 / 0	3	0.5	1.4	1.4	0.4	0.2	0.1	1.6	34	59	0.8	0.5		0.1	0.4		
	4	2.8	3.8	0.3	0.1			0.3	34	58	0.5				0.2		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

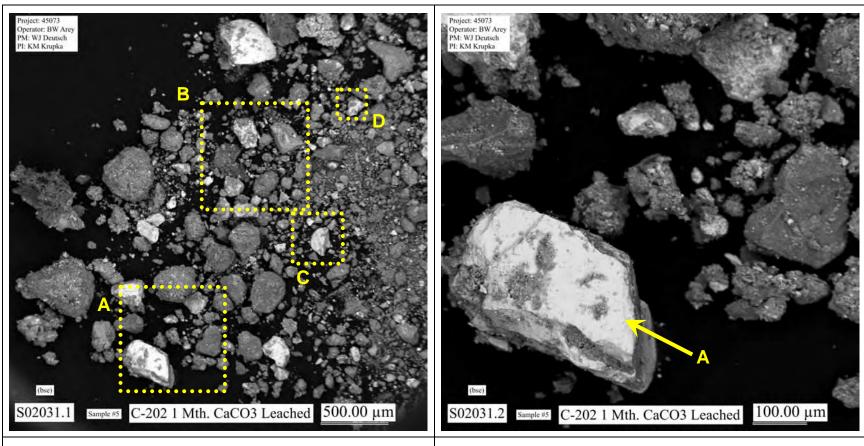
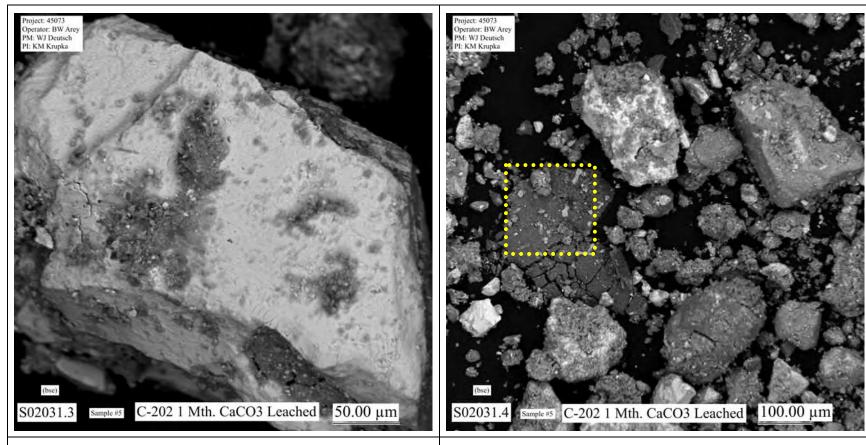
Table D.6. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Ca(OH)₂ Leached Solids

Eiguna No /			Atomic% ¹														
Figure No./ Area of Interest			Major Cations								32	Others					
	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	9.6	2.2	3.0				1.6	19	63	1.0		0.3		0.7		
D.36 / 7	2	0.2	0.3	5.1	0.1	0.1		1.6	23	68	0.8	0.1			0.2		
D.3077	3	0.4		59	1.0	1.7		2.1	2.6	32	0.3	0.2	0.5				
	4	0.5	1.5	3.0	0.7	0.3	0.1	0.8	33	58	0.4	0.7		0.2	0.7	Ti - 0.1	
	1	0.1	0.2	4.4	2.0	0.6	0.2	2.0	32	56	0.6	0.5		0.3	0.6		
	2	0.4		15	6.8	1.7	0.9	4.3	20	50	0.3						
D.37 & D.38 / 8	3	0.6	0.8	1.4	0.4	0.2	0.1	1.7	37	56	0.7	0.3	0.1	0.1	0.4		
2.507 0	4	1.4	0.9	2.8	0.7	0.4	0.2	3.6	28	60	1.3	0.4		0.2	0.5		
	5	3.1	0.3	6.5	1.7	0.7	0.5	14	18	51	3.0	0.4			0.7		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

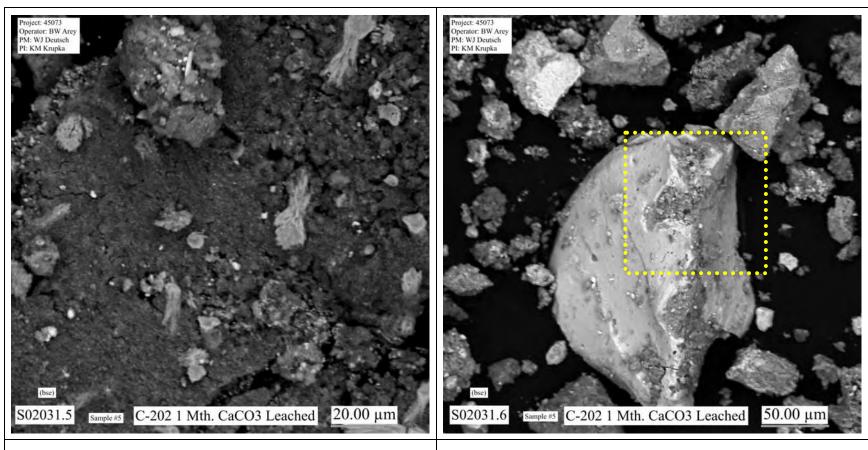

Figure D.39. Micrograph Showing at Low Magnification Typical Particles in SEM Sample of 1-Month Single-Contact $CaCO_3$ Leached Residual Waste from Tank C-202

Figure D.40. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure D.39

Figure D.41. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled A in Figure D.40 (Areas where EDS analyses were made are shown in Figure D.53.)

Figure D.42. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled B in Figure D.39

Figure D.43. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure D.42 (Areas where EDS analyses were made are shown in Figure D.54.)

Figure D.44. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled C in Figure D.39

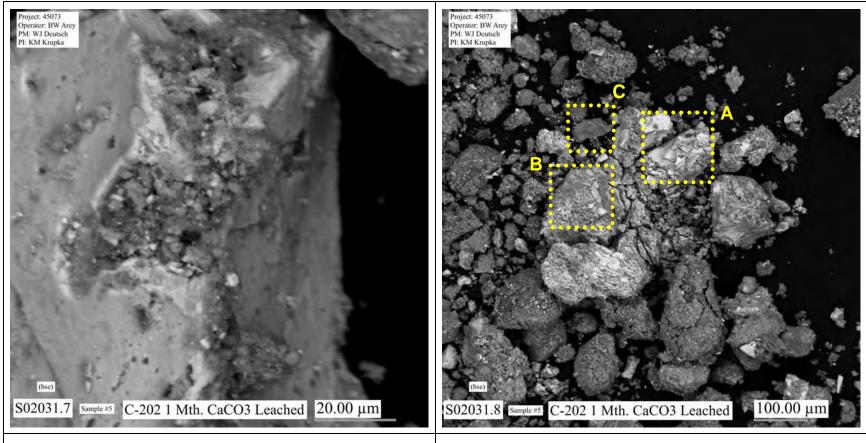


Figure D.45. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square in Figure D.44 (Areas where EDS analyses were made are shown in Figure D.55.)

Figure D.46. Micrograph Showing Typical Particles in SEM Sample of 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202

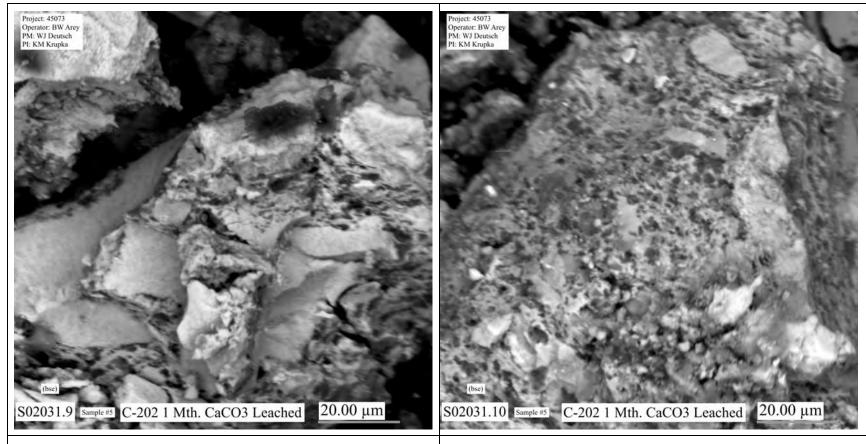
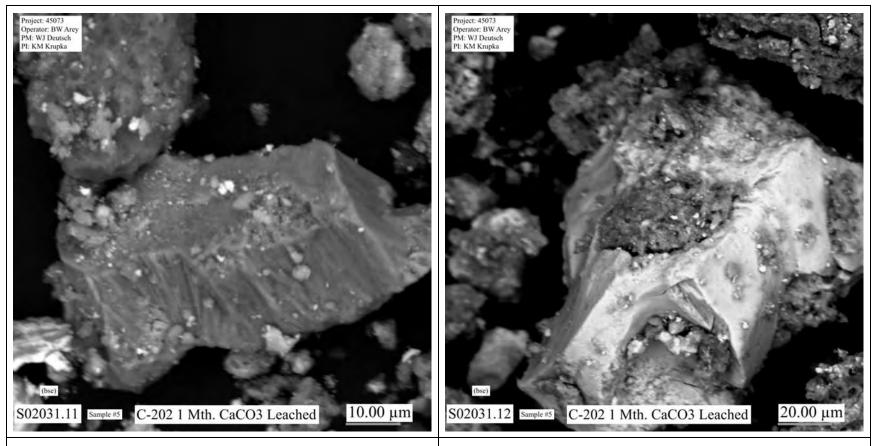
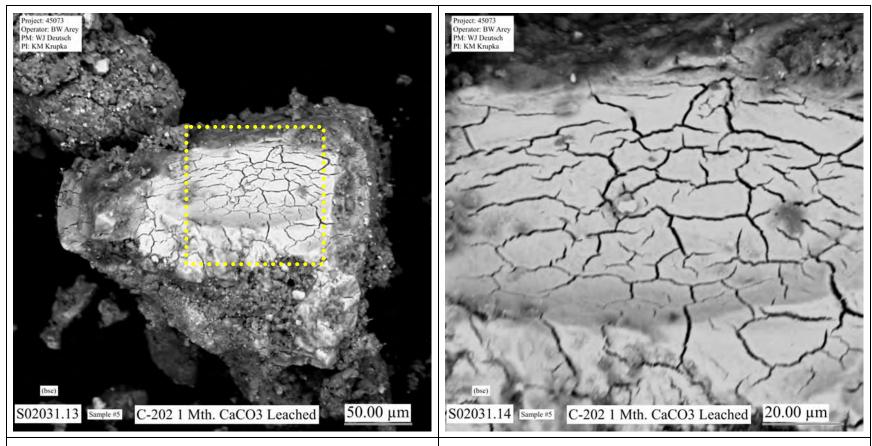


Figure D.47. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square Labeled A in Figure D.46 (Areas where EDS analyses were made are shown in Figure D.56.)

Figure D.48. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square Labeled B in Figure D.46 (Areas where EDS analyses were made are shown in Figure D.57.)

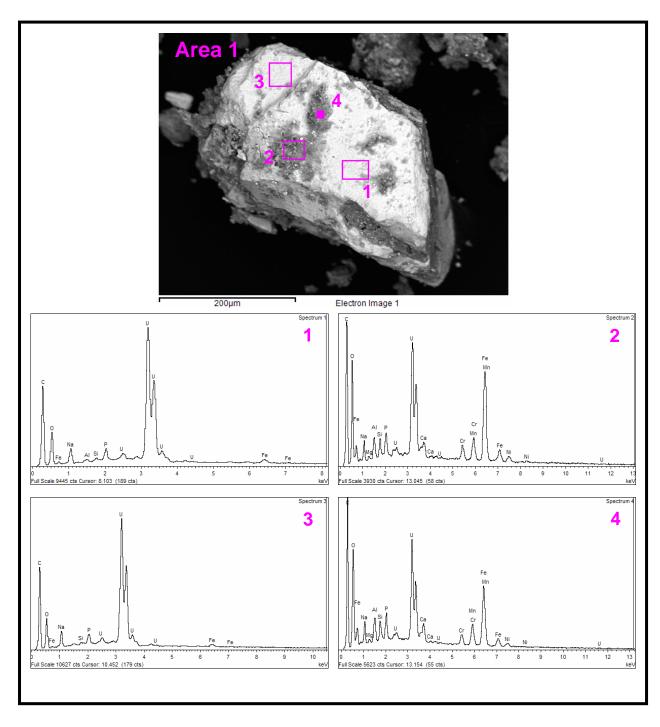

Figure D.49. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square Labeled C (Areas where EDS analyses were made are shown in Figure D.58.)

Figure D.50. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled D in Figure D.39 (Areas where EDS analyses were made are shown in Figure D.59.)

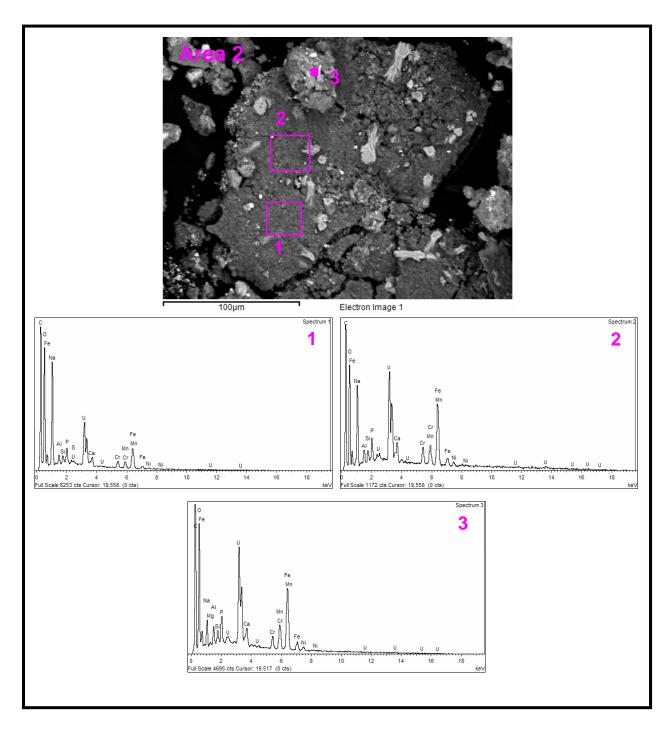
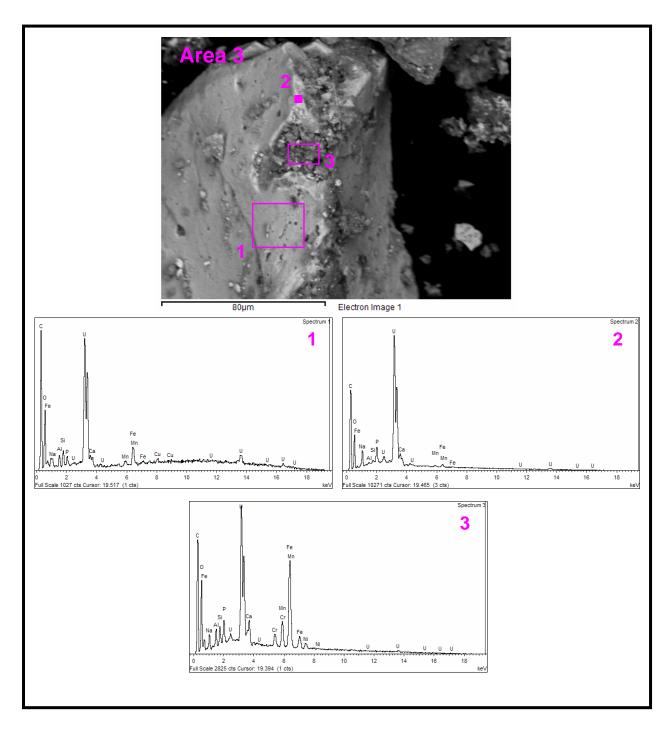
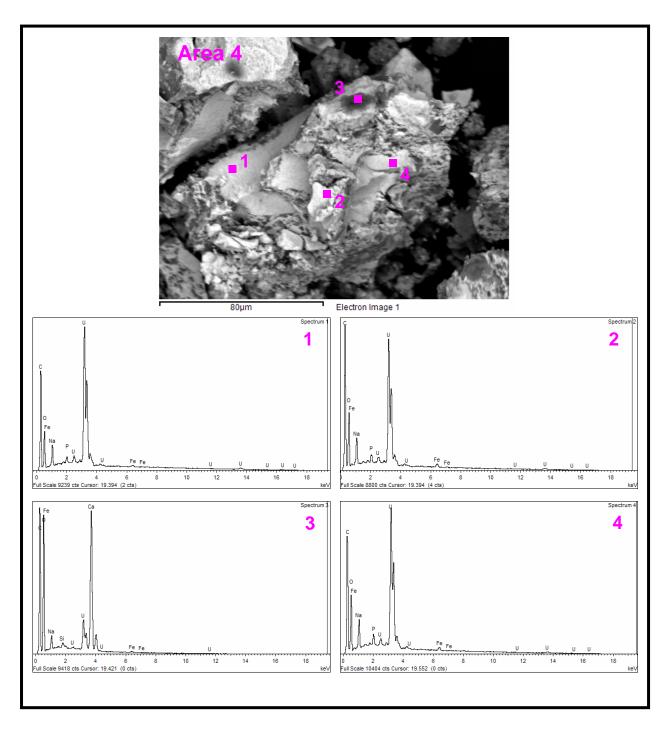
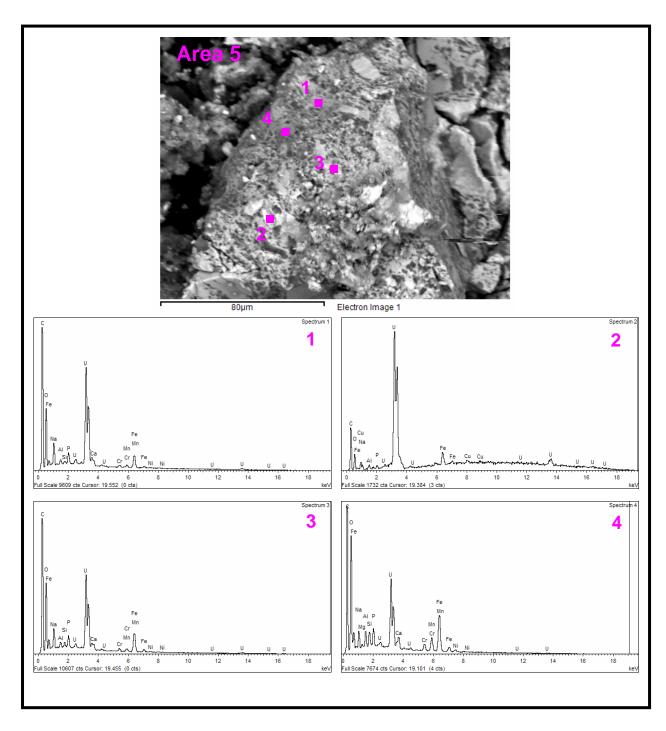
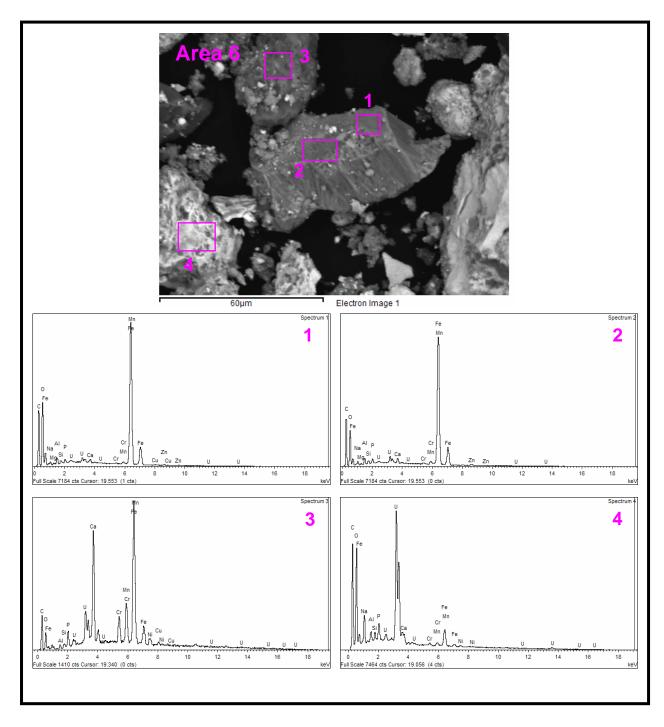


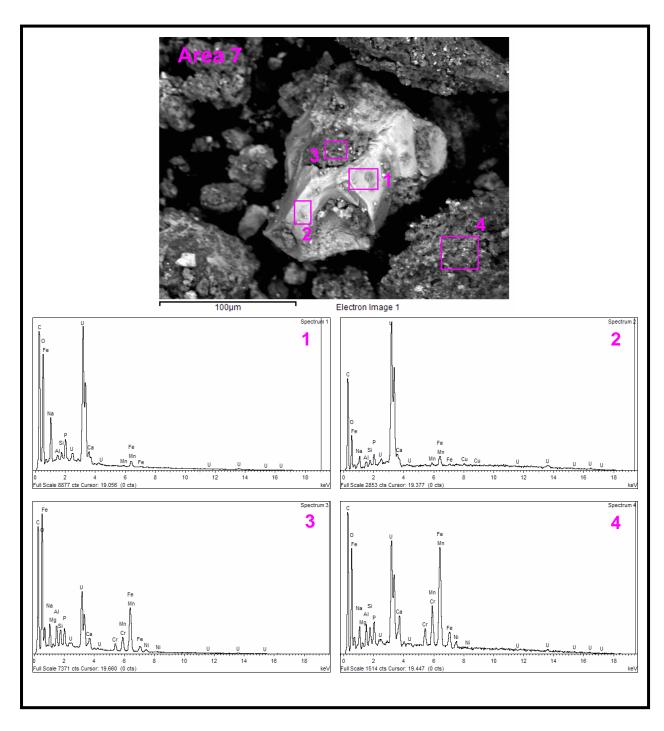
Figure D.51. Micrograph Showing Particles in SEM Sample of 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202


Figure D.52. Micrograph Showing at Higher Magnification the Particle Surface Indicated by the Yellow Dotted-Line Square in Figure D.51 (Areas where EDS analyses were made are shown in Figure D.60.)


Figure D.53. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202


Figure D.54. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202


Figure D.55. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202


Figure D.56. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202

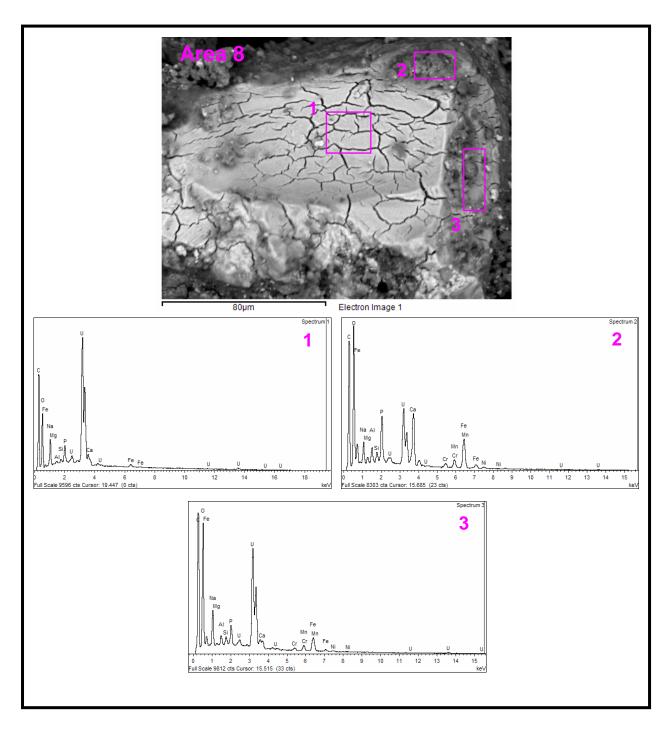

Figure D.57. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202

Figure D.58. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202

Figure D.59. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202

Figure D.60. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Residual Waste from Tank C-202

Table D.7. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact CaCO₃ Leached Solids

Figure No /									Ato	mic% ¹	[
Figure No./ Area of				Maj	jor Cat	ions			Anions ²			Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	C ³	P	Al	Cu	Mg	Si		
	1	6.5	3.2	0.6					30	58	1.2	0.2			0.3		
D.53 / 1	2	2.0	1.7	6.0	1.2	0.8	0.5	0.5	30	55	0.8	0.8		0.2	0.7		
D.33 / 1	3	6.4	3.5	0.4					28	60	1.0				0.2		
	4	1.8	1.8	3.9	1.2	0.6	0.3	0.6	30	57	0.9	0.9		0.2	0.6		
	1	0.8	7.2	1.3	0.3	0.4	0.1	0.3	36	53	0.5	0.4			0.2	S – 0.1	
D.54 / 2	2	1.6	6.1	3.9	1.0	0.8	0.4	0.6	30	54	0.8	0.5			0.4		
	3	1.7	2.2	4.0	1.4	0.6	0.3	0.6	35	52	0.9	0.7		0.2	0.4		
	1	3.5	0.9	1.8	0.4			0.5	28	62	0.5	0.7	0.6		0.9		
D.55 / 3	2	6.2	3.4	0.4	0.2			0.5	30	58	1.6	0.2			0.2		
	3	3.1	1.6	7.3	1.9	0.8	0.7	1.0	26	55	1.1	1.0			0.8		
	1	6.1	4.0	0.3					30	59	0.6						
D.56 / 4	2	3.8	3.2	0.4					30	62	0.5				< 0.1	W – 0.1	
D.50 / 4	3	0.6	1.1	0.1				5.0	51	42							
	4	4.7	4.1	0.4					34	56	0.8						

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

2 = EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table D.8. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact CaCO₃ Leached Solids

Eigene No /									Ato	mic% ¹	1						
Figure No./ Area of				Maj	jor Cat	ions				Anions	s^2	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	2.8	2.7	1.3	0.2	0.2	0.1	0.2	30	61	0.6	0.3			0.1		
D.57 / 5	2	11	2.0	4.1					24	56	0.6	0.8	1.3				
D.3773	3	2.0	2.3	1.9	0.2	0.2	0.1		32	59	0.6	0.3			0.3		
	4	1.3	1.5	2.6	0.8	0.4	0.2	0.4	36	54	0.7	0.6		0.2	0.5		
	1	0.2	0.5	16	0.2	0.1		0.2	28	53	0.2	0.5	0.1	0.2	0.2	Zn - 0.2	
D.58 / 6	2	0.2	0.9	18	0.3	0.1		0.3	20	58	0.4	0.7		0.2	0.3	Zn - 0.3	
D.38 / 0	3	1.2	0.8	21	5.0	2.9	1.6	8.4	12	45	1.5	0.5	0.6		0.3		
	4	3.5	3.3	1.7	0.3	0.1	0.1	0.4	42	47	0.9	0.6			0.5		
	1	3.1	4.2	0.5	0.1			0.2	41	50	1.0	0.2			0.3		
D.59 / 7	2	6.1	2.2	1.6	0.5			0.6	26	60	1.0	0.6	0.3		0.5		
D.39//	3	1.0	2.0	3.2	0.8	0.4	0.2	0.4	40	50	0.7	0.9		0.2	0.5	W - <0.1	
	4	1.8	1.8	6.4	2.1	0.8	0.5	1.0	28	55	0.8	0.9		0.3	0.6		
	1	4.7	3.9	0.3				0.3	35	54	1.3	0.2			0.2	W - <0.1	
D.60 / 8	2	1.0	1.6	1.9	0.4	0.2	0.1	1.7	42	48	1.5	0.6		0.3	0.3	Zn - 0.1	
	3	2.0	3.1	1.1	0.4	0.1	0.1	0.2	43	49	0.8	0.4		0.1	0.3	Ti - 0.1	

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

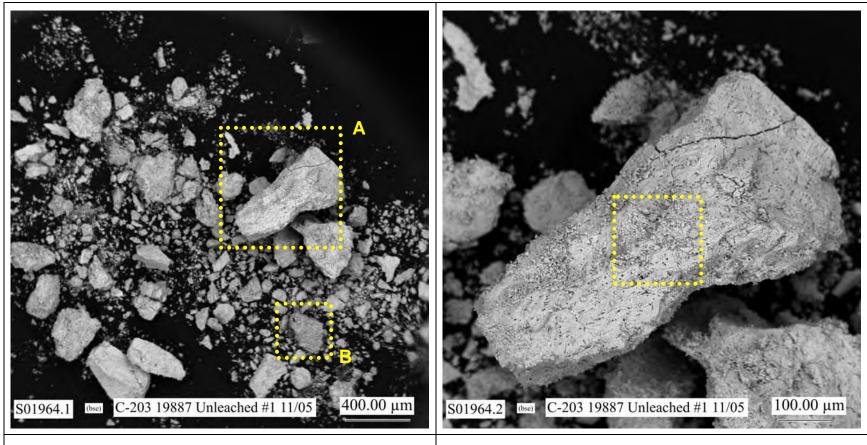
2 = EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

3 = Carbon concentrations (in italics) are suspect, and are likely too large.

Appendix E

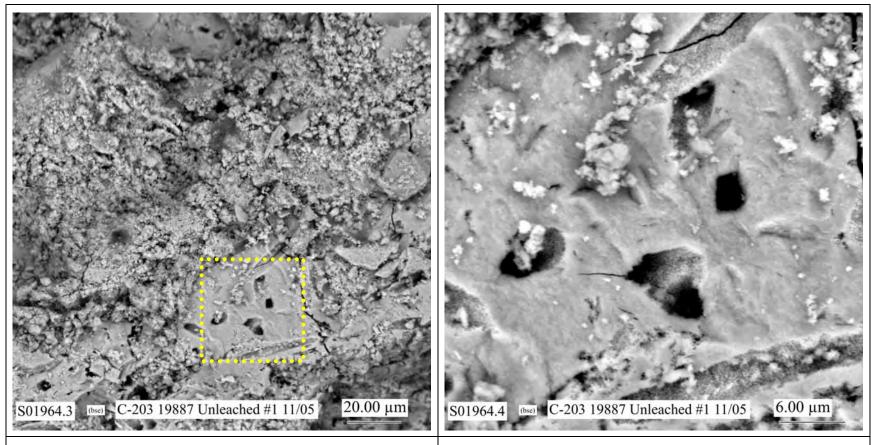
SEM Micrographs and EDS Results for Unleached Residual Waste from Sample 19887 Tank C-203

Appendix E


SEM Micrographs and EDS Results for Unleached Residual Waste from Sample 19887 Tank C-203

This appendix includes the scanning electron microscope (SEM) micrographs and the energy-dispersive spectroscopy (EDS) spectra for three sample mounts (#1, #3, and #5) of unleached residual waste from tank C-203 (sample 19887). The operating conditions for the SEM and procedures used for mounting the SEM samples are described in Section 3.7 of the main report.

The identification number for the digital micrograph image file, descriptor for the type of sample, and a size scale bar are given, respectively, at the bottom left, center, and right of each SEM micrograph in this appendix. Micrographs labeled by "BSE" to the immediate right of the digital image file number indicate that the micrograph was collected with backscattered electrons. Sample areas or particles identified by a yellow letter or arrow, and/or outlined by a yellow dotted-line square in a micrograph designate sample material that was imaged at higher magnification, which is typically shown in figure(s) that immediately follow in the series for that sample. The figure and table numbers for the SEM micrographs and EDS analyses for the three sample mounts of unleached C-203 (sample 19887) residual waste analyzed by SEM/EDS are listed in Table E.1.


Table E.1. Figures and Tables Containing the SEM Micrographs and EDS Analyses for Three Mounts of Unleached Residual Waste from Tank C-203 (Sample 19887)

Sample Mount Number	Figures with SEM Micrographs	Figures with EDS Spectra	Tables with EDS Atomic%
1 (Yellow Solids)	E.1 – E.16	E.17 – E.22	E.2 and E.3
3 (Brown Solids)	E.23 – E.34	E.35 – E.38	E.4
5 (Orange Solids)	E.39 – E.54	E.55 – E.58	E.5

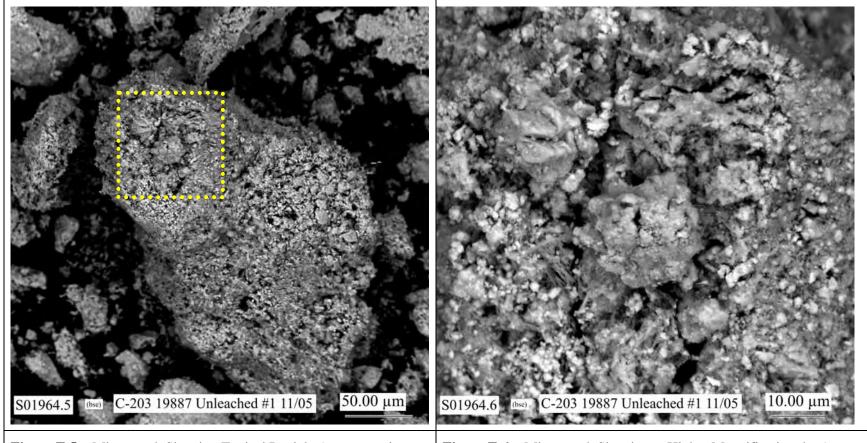

Figure E.1. Low Magnification SEM Micrograph Showing Typical Particles in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.2. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure E.1

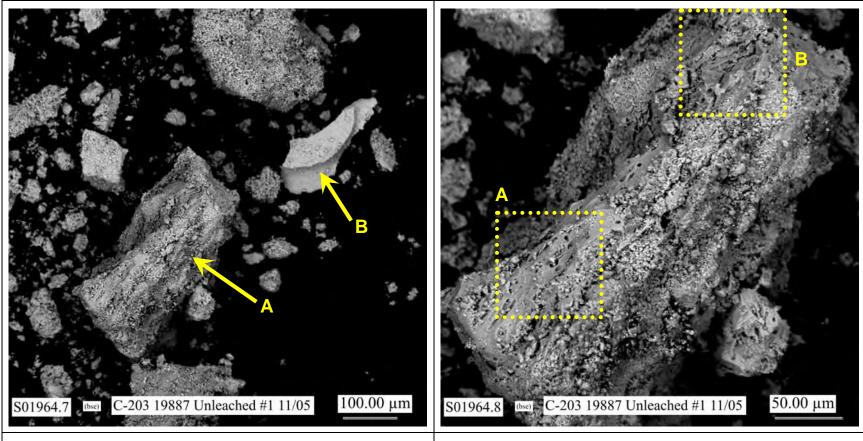

Figure E.3. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.2

Figure E.4. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.3 (Areas where EDS analyses were made are shown in Figure E.17.)

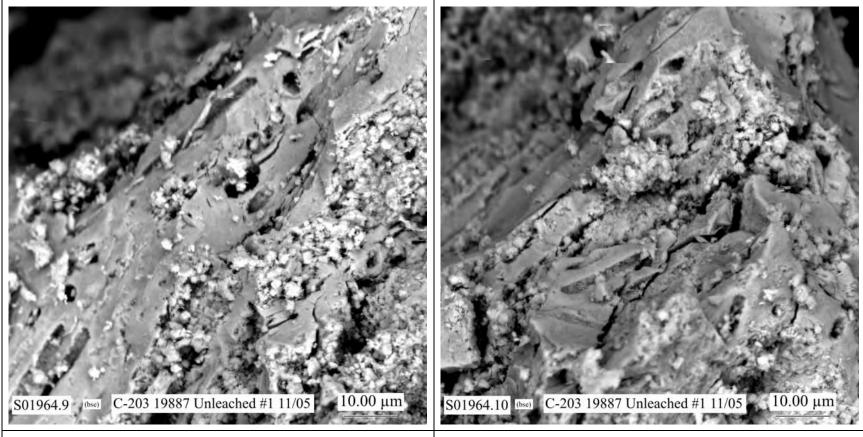

Figure E.5. Micrograph Showing Typical Particle Aggregates in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.6. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.5 (Areas where EDS analyses were made are shown in Figure E.18.)

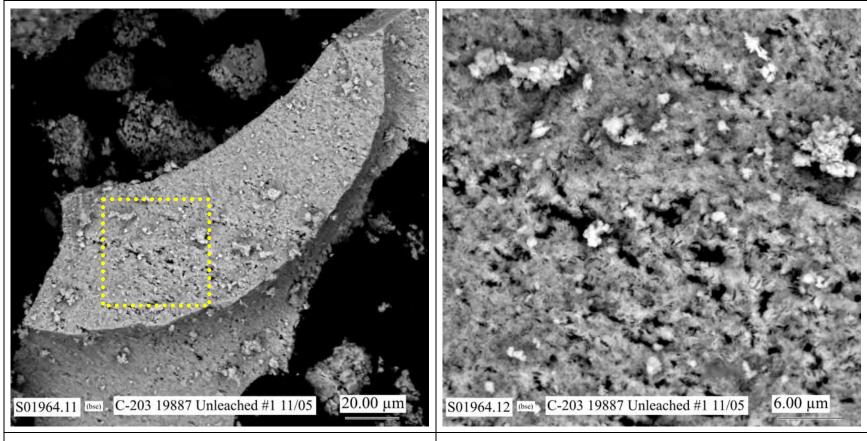

Figure E.7. Micrograph Showing Typical Particle Aggregates in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

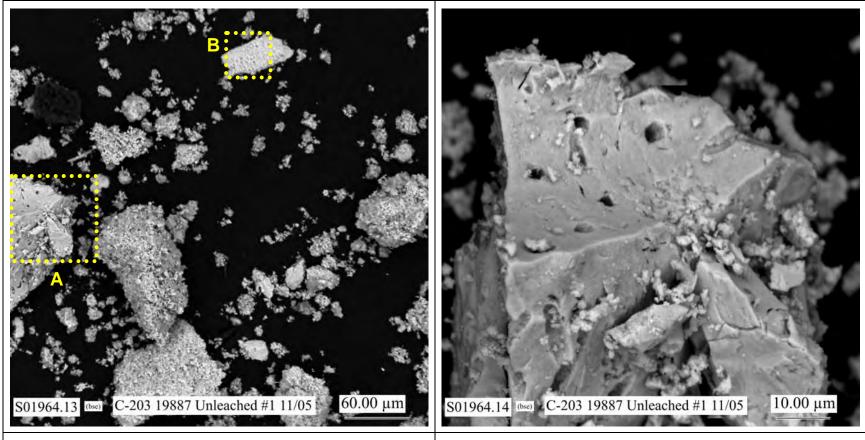
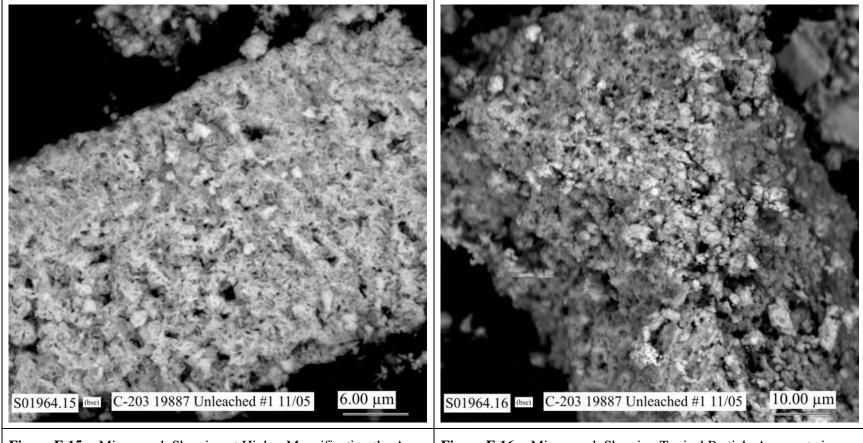
Figure E.8. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled A in Figure E.7

Figure E.9. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure E.8

Figure E.10. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure E.8 (Areas where EDS analyses were made are shown in Figure E.19.)

Figure E.11. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled B in Figure E.7 (Areas where EDS analyses were made are shown in Figure E.20.)

Figure E.12. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.11

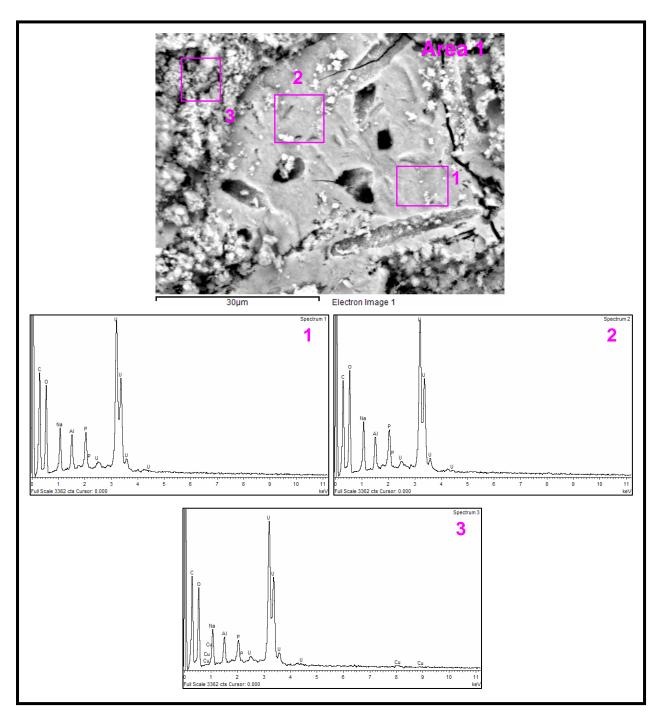

Figure E.13. Micrograph Showing Typical Particle Aggregates in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887) (Areas where EDS analyses were made are shown in Figures E.21 and E.22.)

Figure E.14. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure E.13

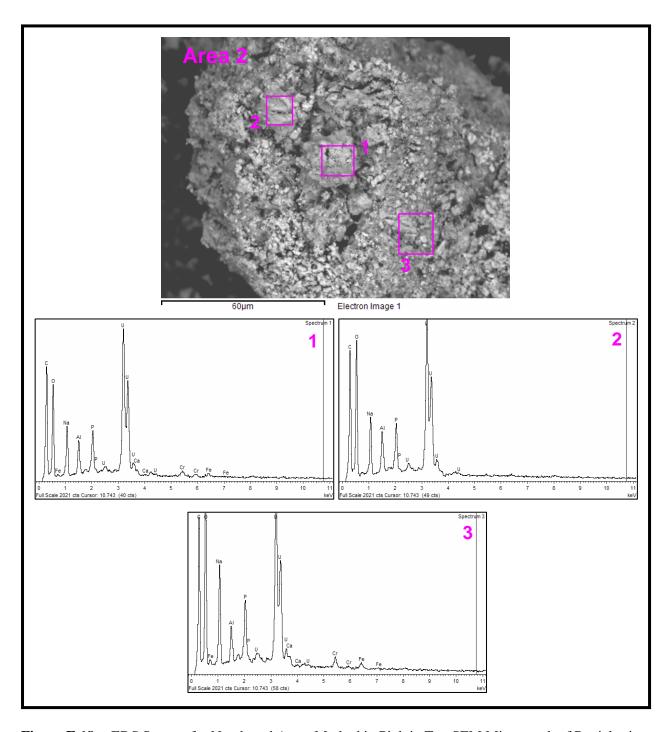
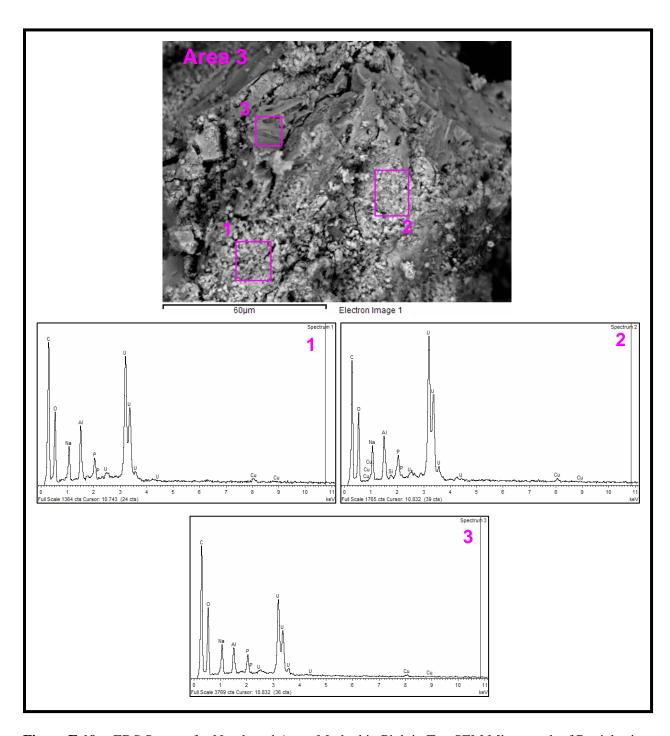
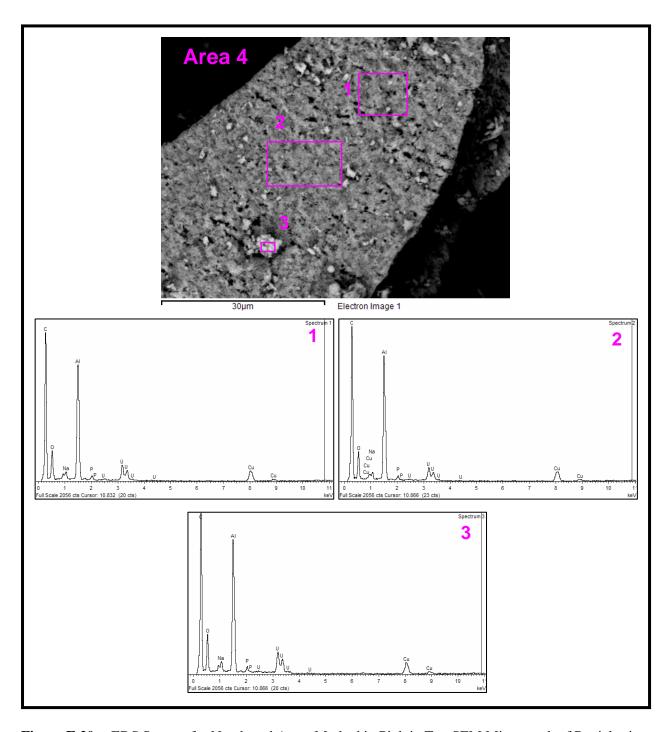
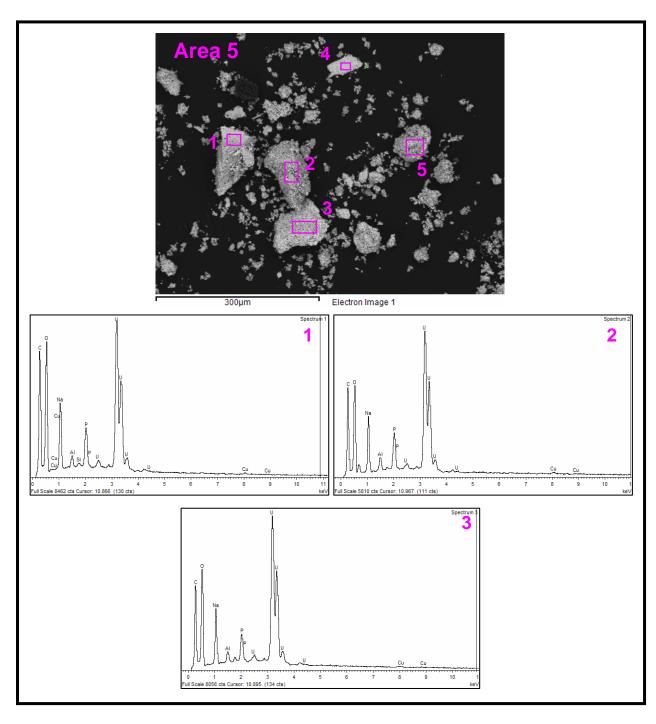


Figure E.15. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure E.13


Figure E.16. Micrograph Showing Typical Particle Aggregate in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)


Figure E.17. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)


Figure E.18. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

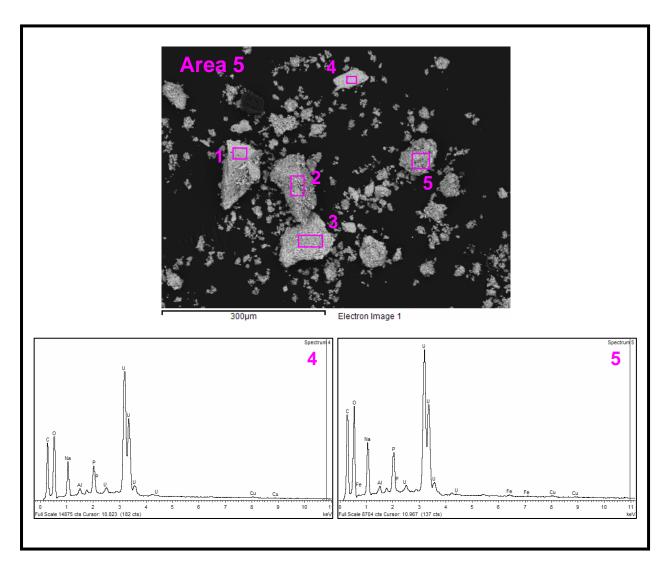

Figure E.19. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.20. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.21. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.22. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #1 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Table E.2. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount #1

Figure No./			Atomic% ¹														
Area of Interest				Maj	or Cat	ions			Anions ²			Others					
	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	O	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	4.1	4.7						39	48	2.0	2.2					
E.17 / 1	2	4.0	5.2						43	44	2.1	2.1					
	3	4.5	4.8						40	46	1.4	2.0	0.3				
	1	2.9	3.4						30	59	1.0	2.9	0.5				
E.18 / 2	2	3.8	3.8						32	56	1.1	2.7	0.4		0.3		
	3	2.1	3.1						33	59	1.0	1.6	0.3				
	1	3.6	5.0	0.3		0.4			38	49	2.0	1.9					
E.19/3	2	3.1	4.7						43	46	1.9	1.8					
	3	2.7	6.0	0.3		0.5		0.2	45	42	1.8	1.2			0.2		
	1	0.4	0.5						16	76	0.2	5.0	1.5			_	
E.20 / 4	2	0.3	0.5						15	77	0.2	5.0	1.4				
	3	0.4	0.6						17	76	0.2	4.7	1.3				

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table E.3. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount #1

Figure No./			Atomic% ¹																
Area of			Major Cations								Anions ²			Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si				
	1	3.2	5.9						43	45	1.7	0.6	0.2		0.1				
F 21 0	2	3.9	6.6						38	44	2.1	0.8	0.3			F – 4.5			
E.21 & E.22 / 5	3	4.5	7.0						44	41	1.7	0.7	0.2		0.3				
	4	5.5	6.5						43	41	2.5	0.6	0.2		0.3				
	5	4.2	6.6	0.1		0.1			42	43	2.4	0.5	0.2		0.3				

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

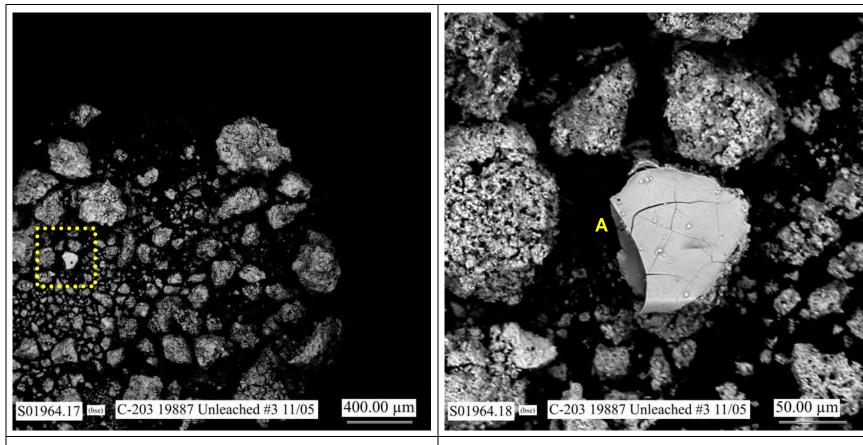
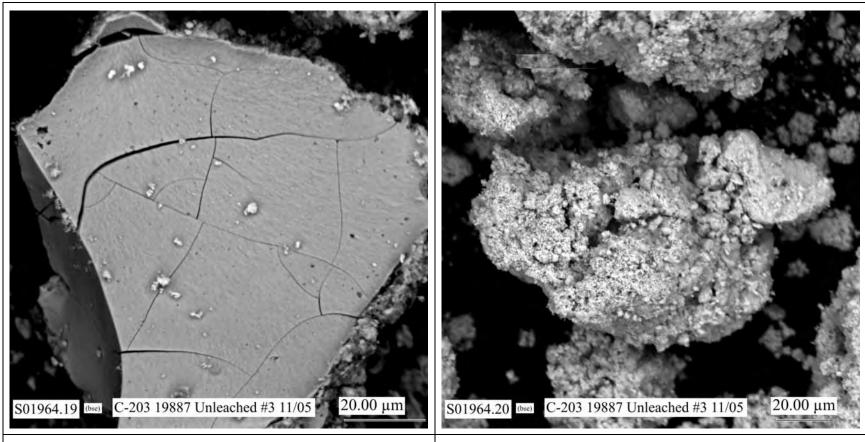
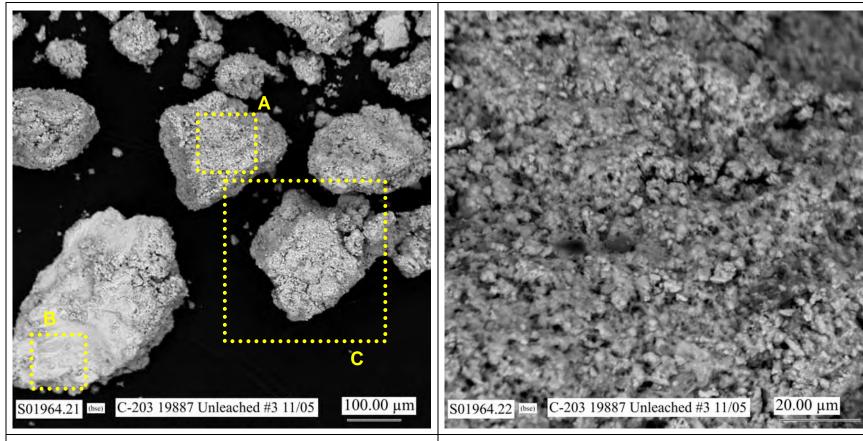
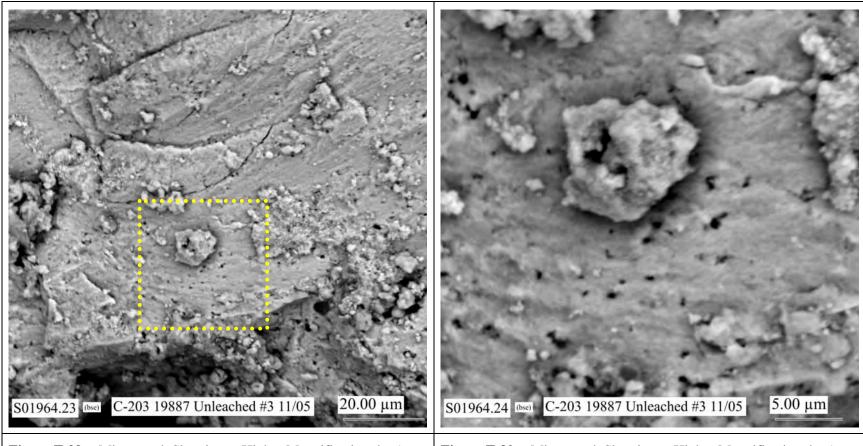



Figure E.23. Low Magnification Micrograph Showing Typical Particle Aggregates in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.24. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.23 (Areas where EDS analyses were made are shown in Figure E.35.)

Figure E.25. Micrograph Showing at Higher Magnification the Large Particle Labeled A in Figure E.22.)

Figure E.26. Micrograph Showing Typical Particle Aggregates in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887)

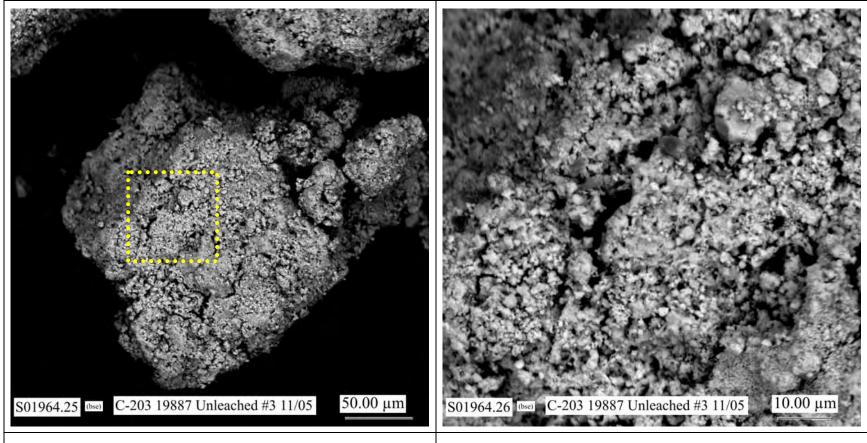

Figure E.27. Micrograph Showing Typical Particle Aggregates in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887) (Areas where EDS analyses were made are shown in Figures E.36 and E.37.)

Figure E.28. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure E.27

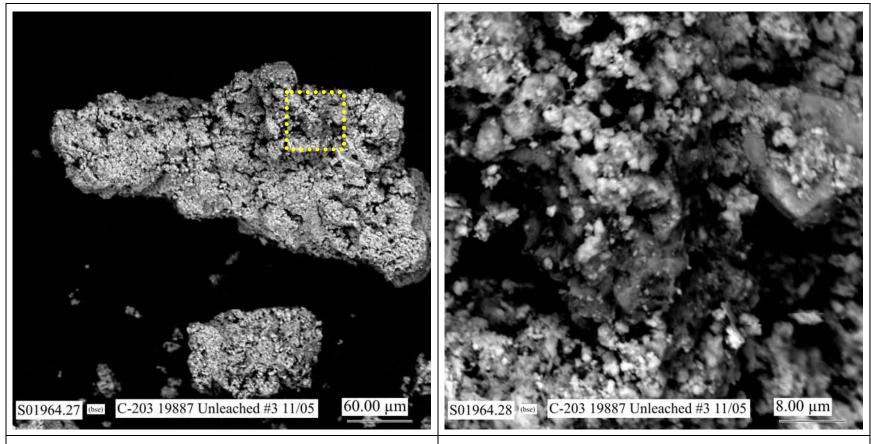

Figure E.29. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure E.27

Figure E.30. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.29

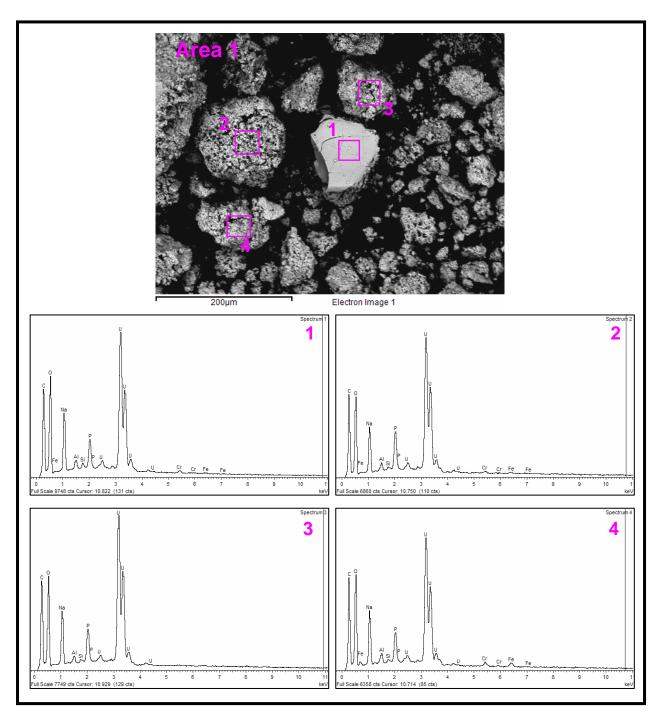

Figure E.31. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled C in Figure E.27

Figure E.32. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.31

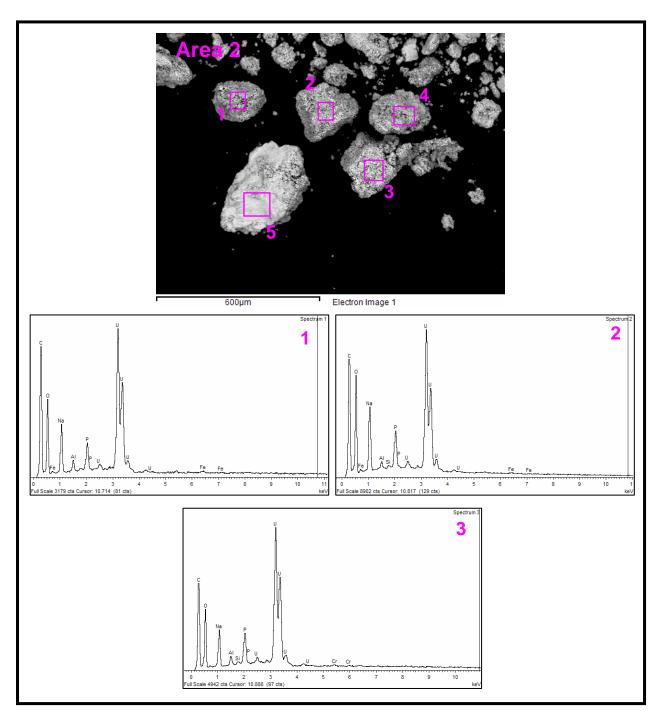
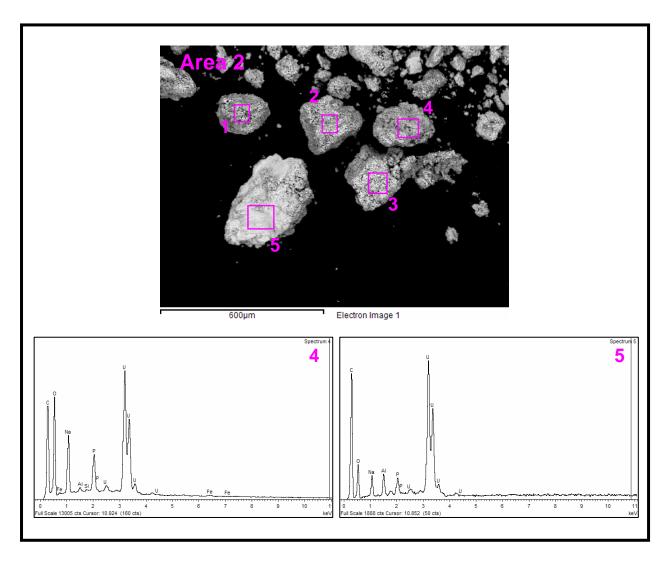


Figure E.33. Micrograph Showing Typical Particle Aggregates in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887)


Figure E.34. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.33 (Areas where EDS analyses were made are shown in Figure E.38.)

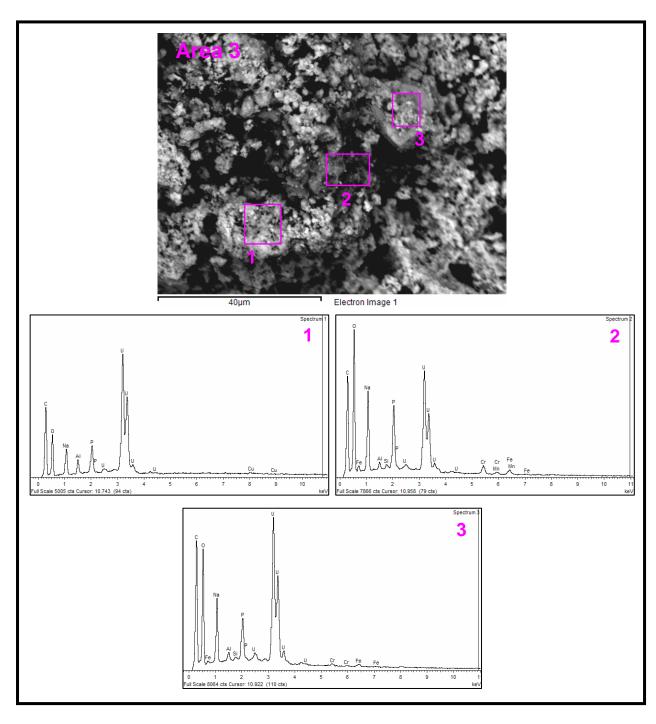

Figure E.35. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.36. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.37. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.38. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #3 of Unleached Residual Waste from Tank C-203 (Sample 19887)

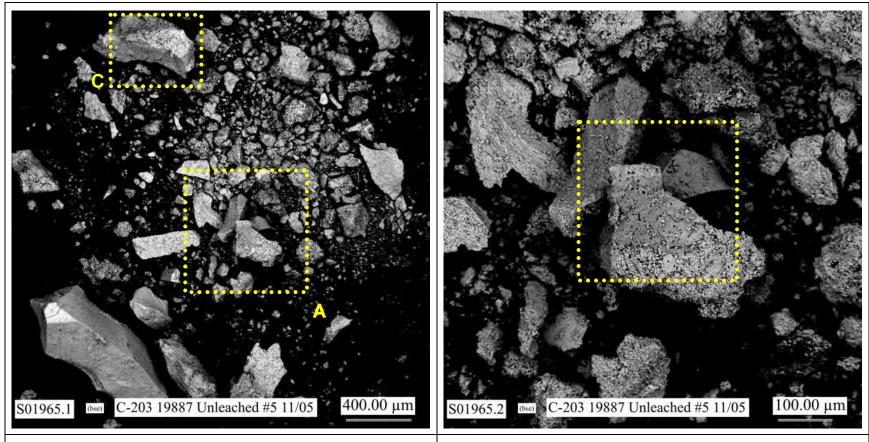
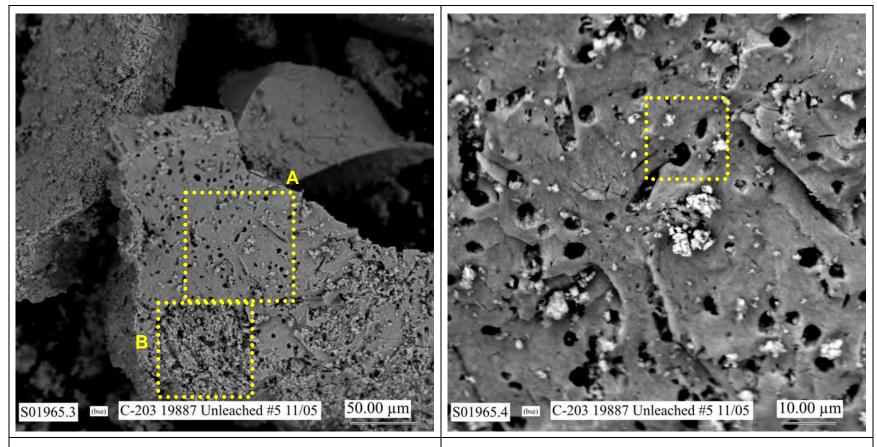

Table E.4. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount #3

Figure No./			Atomic% 1															
Area of		Major Cations								Anions ²			Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	O	C^3	P	Al	Cu	Mg	Si			
	1	3.9	6.9	0.1		0.2			44	43	1.6	0.6			0.3			
E. 35 / 1	2	4.3	6.1			0.2			40	46	2.5	0.6			0.1			
L. 33 / 1	3	4.4	6.7						43	44	2.0	0.5			0.2			
	4	3.5	6.4	0.4		0.3			41	45	1.7	0.6			0.2	F - 1.1		
	1	3.8	5.2	0.2					34	55	1.4	0.7						
E.36 &	2	3.4	6.4	0.1					39	49	1.8	0.4			0.1	F - 0.8		
E.36 & E.37 / 2	3	4.8	5.4			0.2			36	51	2.3	0.7			0.2			
L.37 / 2	4	3.4	6.7	0.1					43	45	2.1	0.2			0.1			
	5	4.6	3.1						23	67	1.2	1.8						
	1	5.3	4.8						32	53	2.5	1.5	0.3					
E.38 / 3	2	2.0	6.7	0.4	0.1	0.5			45	43	2.6	0.3			0.1			
	3	3.1	5.7	0.2		0.1			41	48	1.8	0.4			0.1			

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.


^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

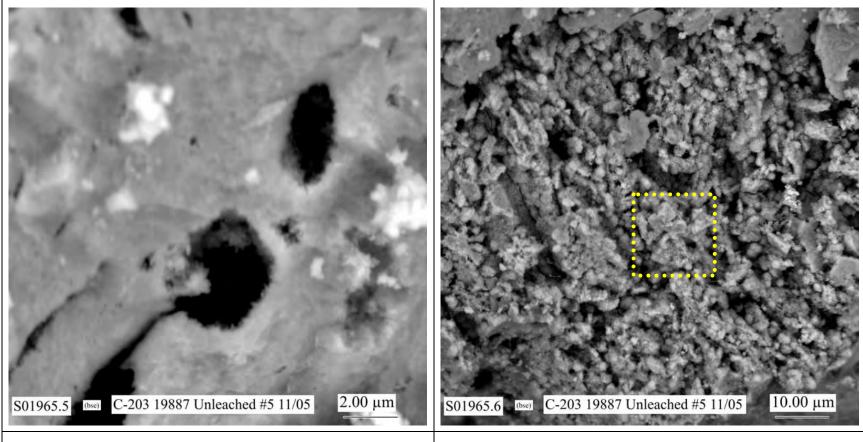

Figure E.39. Low Magnification Micrograph Showing Typical Particle Aggregates in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.40. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure E.39

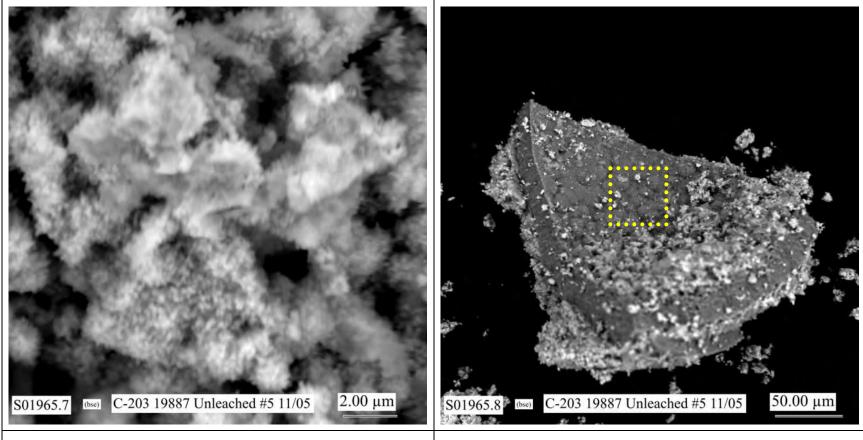

Figure E.41. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.40 (Areas where EDS analyses were made are shown in Figure E.55.)

Figure E.42. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure E.41

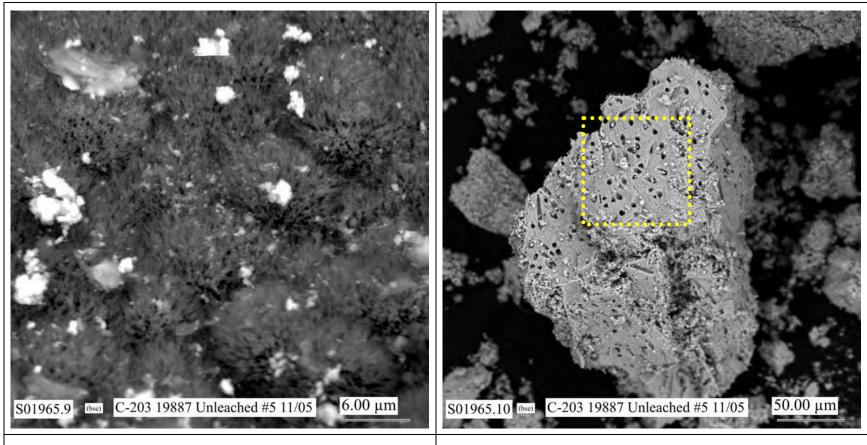

Figure E.43. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.42

Figure E.44. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure E.41

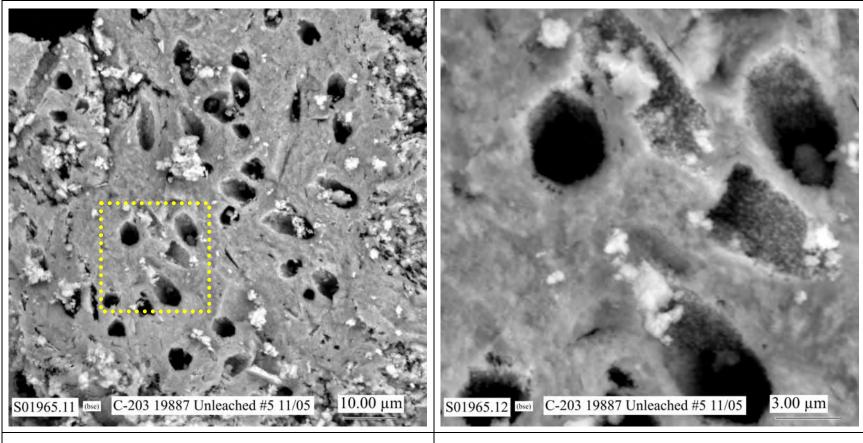

Figure E.45. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.44

Figure E.46. Micrograph Showing Typical Particles in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887) (Areas where EDS analyses were made are shown in Figure E.56.)

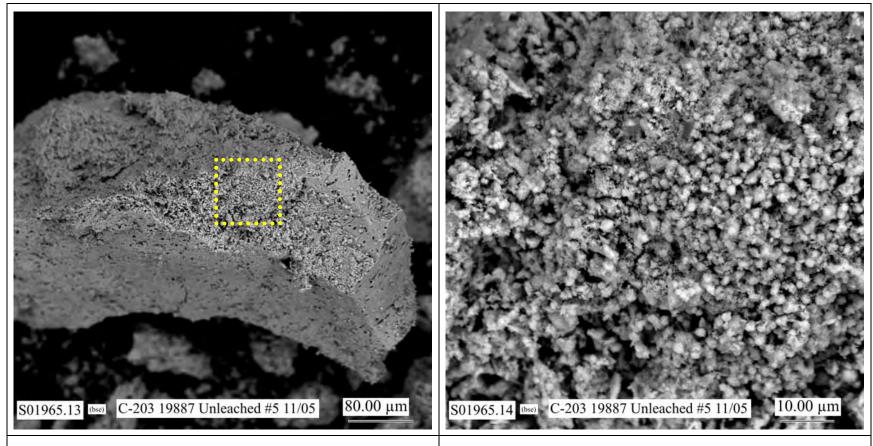

Figure E.47. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.46

Figure E.48. Micrograph Showing Typical Particles in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.49. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.48

Figure E.50. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.49

Figure E.51. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure E.39

Figure E.52. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.51

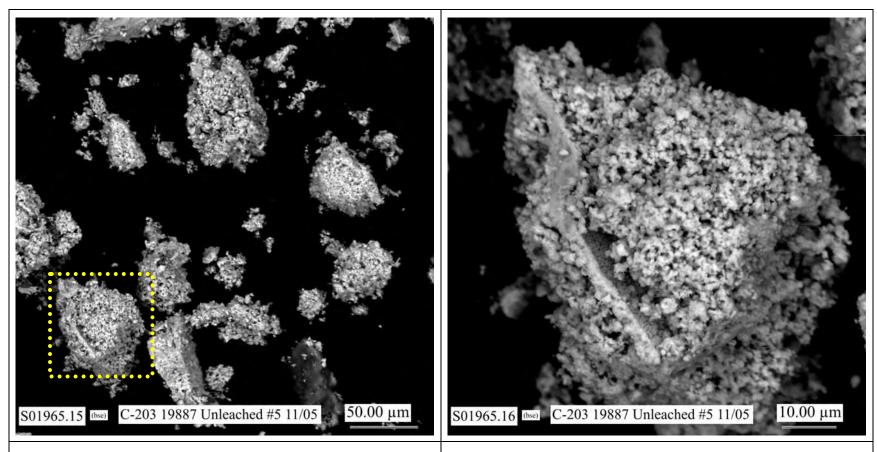
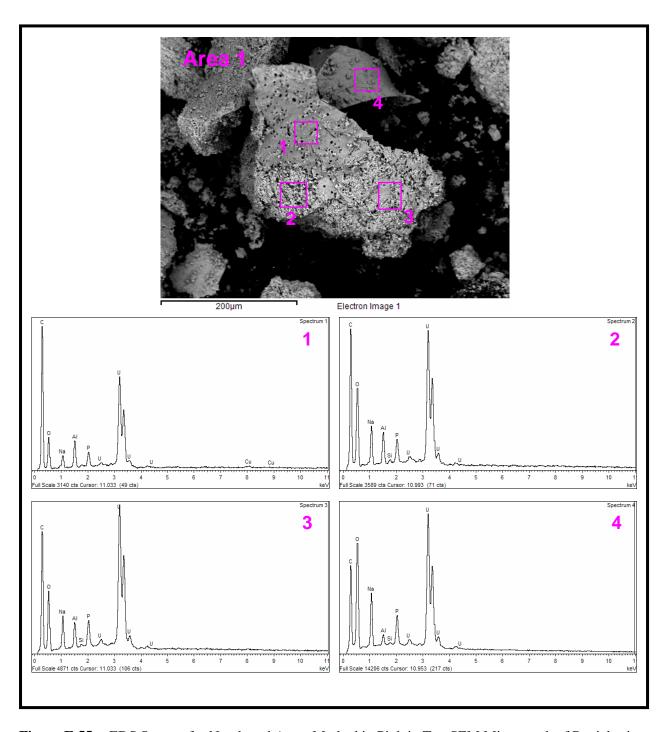
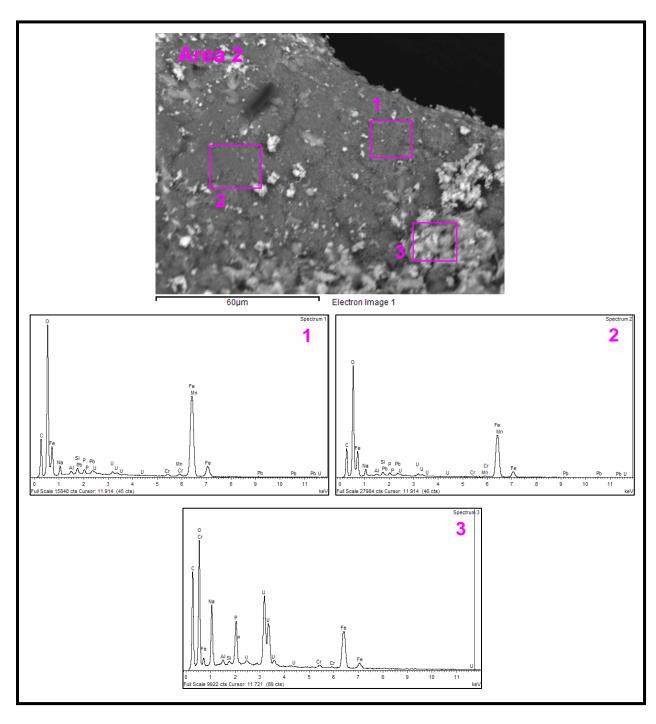
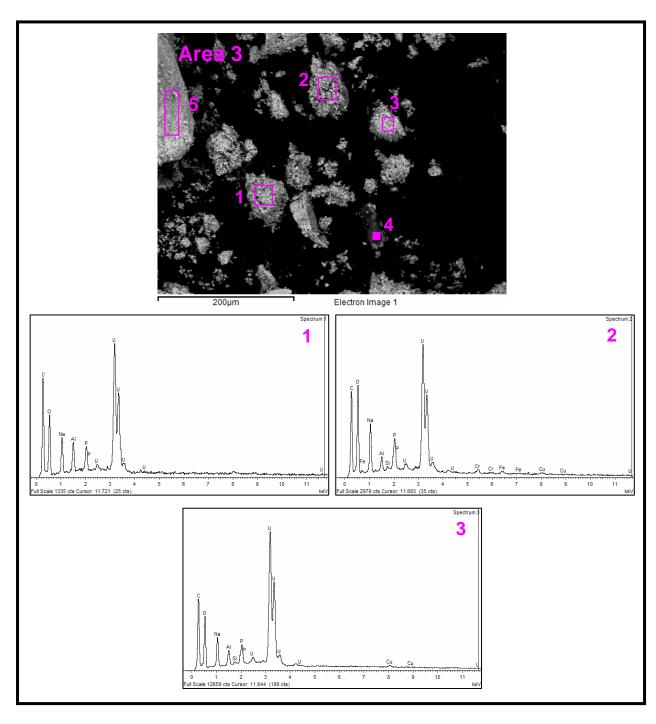




Figure E.53. Micrograph Showing Typical Particles in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887) (Areas where EDS analyses were made are shown in Figures E.57 and E.58.)


Figure E.54. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure E.53

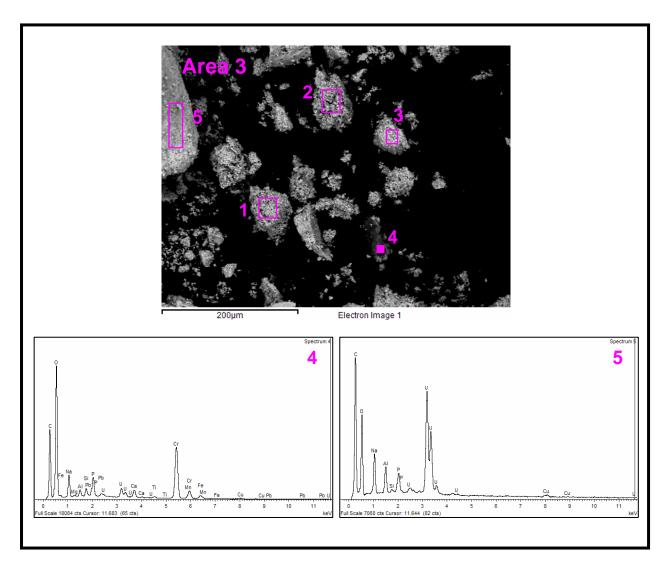

Figure E.55. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.56. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.57. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Figure E.58. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount #5 of Unleached Residual Waste from Tank C-203 (Sample 19887)

Table E.5. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount #5

Figure No./			Atomic% ¹														
Area of Interest		Major Cations								Anions	32	Others					
	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	C ³	P	Al	Cu	Mg	Si		
	1	2.8	1.7						21	71	0.9	1.9	0.2				
E.55 / 1	2	3.2	3.9						34	56	1.2	1.8			0.2		
E.33 / 1	3	4.1	3.8						31	57	1.5	1.7			0.2		
	4	3.8	6.4						46	41	1.7	0.7			0.1		
	1	0.1	1.8	9.9	0.2	0.1			53	34	0.3	0.2			0.4	Pb – 0.9	
E.56 / 2	2	0.1	1.7	7.5	0.1	0.1			55	34	0.2	0.2			0.3	Pb – 0.1	
	3	1.5	5.9	3.1		0.2			41	46	1.9	0.2			0.1		
	1	4.1	4.9						34	54	1.7	2.2					
	2	3.7	6.1	0.3		0.3			42	45	2.0	0.9	0.3		0.2		
E.57 & E.58 / 3	3	5.5	5.3						37	49	1.7	1.5	0.4		0.2		
5 / 6	4	0.2	2.8	0.3	0.1	4.1		0.4	47	43	1.0	0.4	0.1	0.1	0.4	Pb – 0.1, Ti – 0.1	
	5	2.4	3.9						35	56	0.9	1.4	0.3		0.1		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

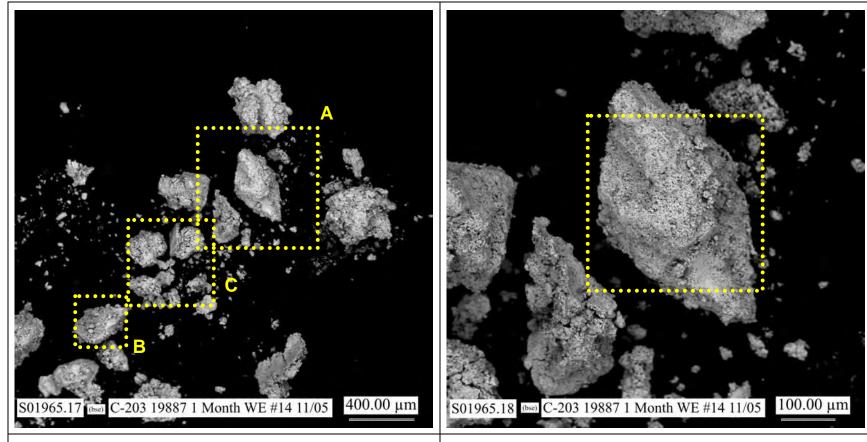
Appendix F

SEM Micrographs and EDS Results for Leached Residual Waste from Tank C-203 (Sample 19887)

Appendix F

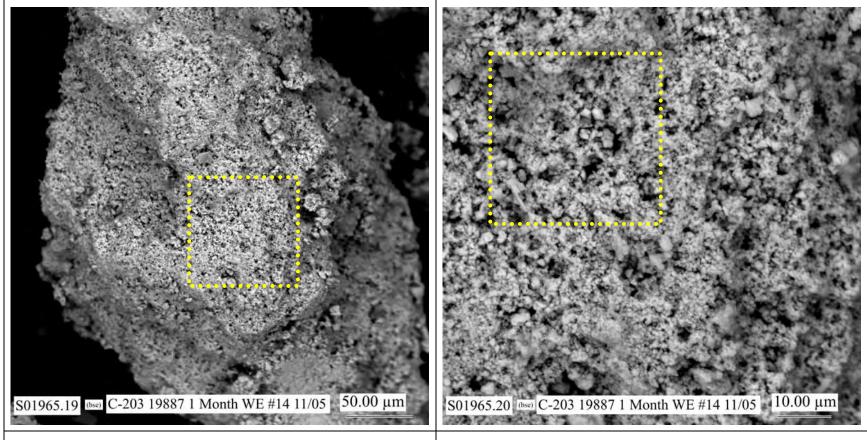
SEM Micrographs and EDS Results for Leached Residual Waste from Tank C-203 (Sample 19887)

This appendix includes the scanning electron microscope (SEM) micrographs and the energy-dispersive spectroscopy (EDS) spectra for samples of leached water extraction residual waste from tank C-203 (sample 1987). These include the following types of samples:


- One month single-contact leached water extraction solids
- Sequential leached water extraction solids

The operating conditions for the SEM and procedures used for mounting the SEM samples are described in Section 3.7 of the main report.

The identification number for the digital micrograph image file, descriptor for the type of sample, and a size scale bar are given, respectively, at the bottom left, center, and right of each SEM micrograph in this appendix. Micrographs labeled by "BSE" to the immediate right of the digital image file number indicate that the micrograph was collected with backscattered electrons. Sample areas or particles identified by a yellow letter or arrow, and/or outlined by a yellow dotted-line square in a micrograph designate sample material that was imaged at higher magnification, which is typically shown in figure(s) that immediately follow in the series for that sample. The figure and table numbers for the SEM micrographs and EDS analyses for the leached water extraction solids of C-203 residual waste (sample 19887) analyzed by SEM/EDS are listed in Table F.1.


Table F.1. Figures and Tables Containing the SEM Micrographs and EDS Analyses for the Leached Water Extraction Solids of C-203 Residual Waste Analyzed by SEM/EDS

Type of Residual Waste Sample	Figures with SEM Micrographs	Figures with EDS Spectra	Tables with EDS Atomic%
One month single-contact leached water extraction solids	F.1 – F.11	F.12 – F.17	F.2
Sequential leached water extraction solids	F.18 – F.33	F.34 – F.45	F.3, F.4, and F.5

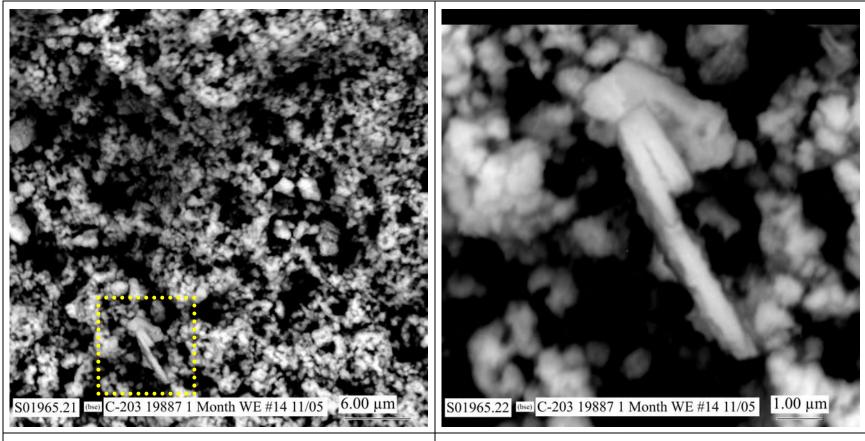

Figure F.1. Low Magnification Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact Water Extraction Solid from C-203 Residual Waste (Sample 19887)

Figure F.2. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure F.1

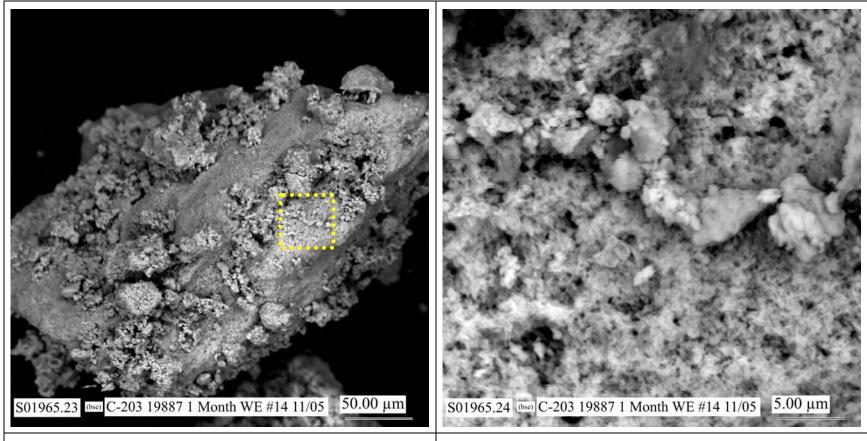

Figure F.3. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure F.2

Figure F.4. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure F.3

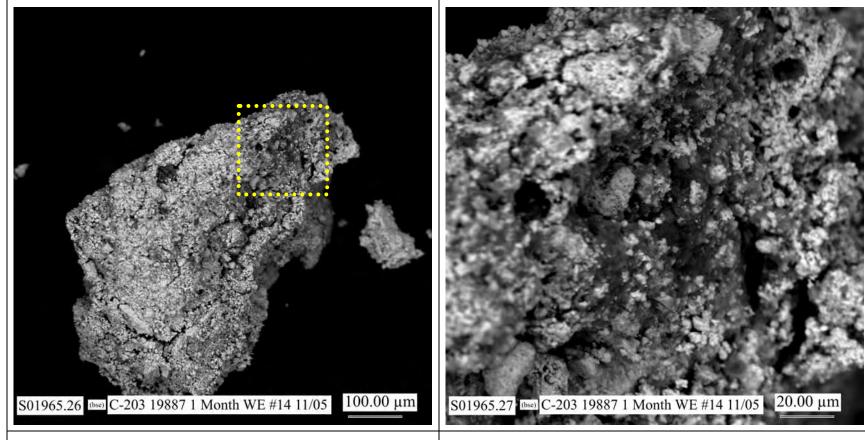

Figure F.5. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure F.4

Figure F.6. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure F.5 (Areas where EDS analyses were made are shown in Figure F.12.)

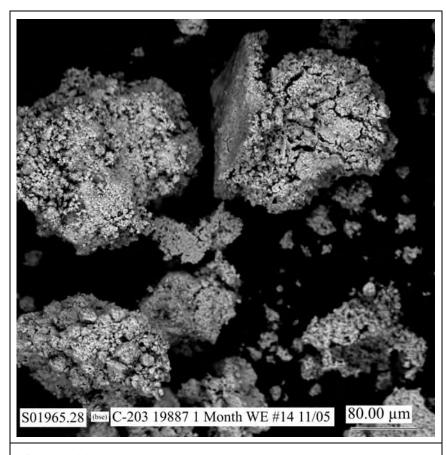

Figure F.7. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square Labeled B in Figure F.1

Figure F.8. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure F.7 (Areas where EDS analyses were made are shown in Figure F.13.)

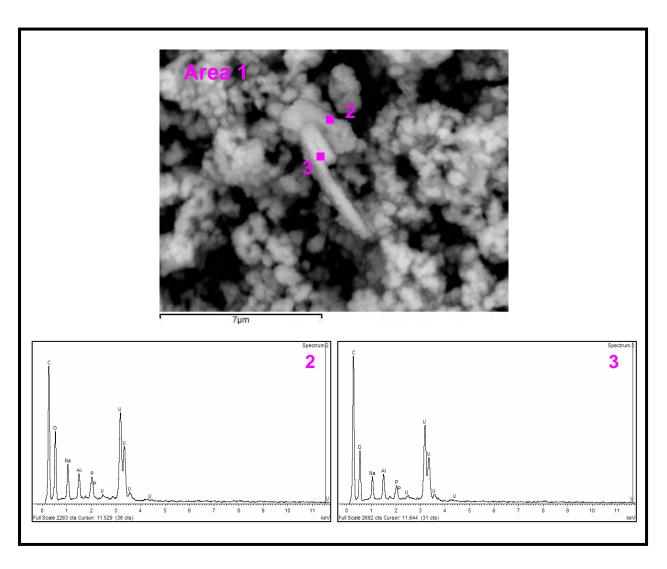
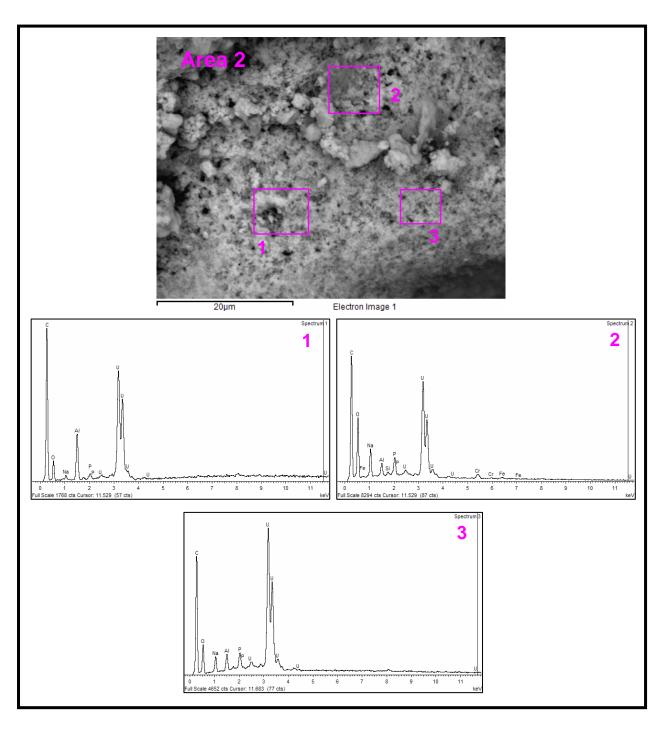
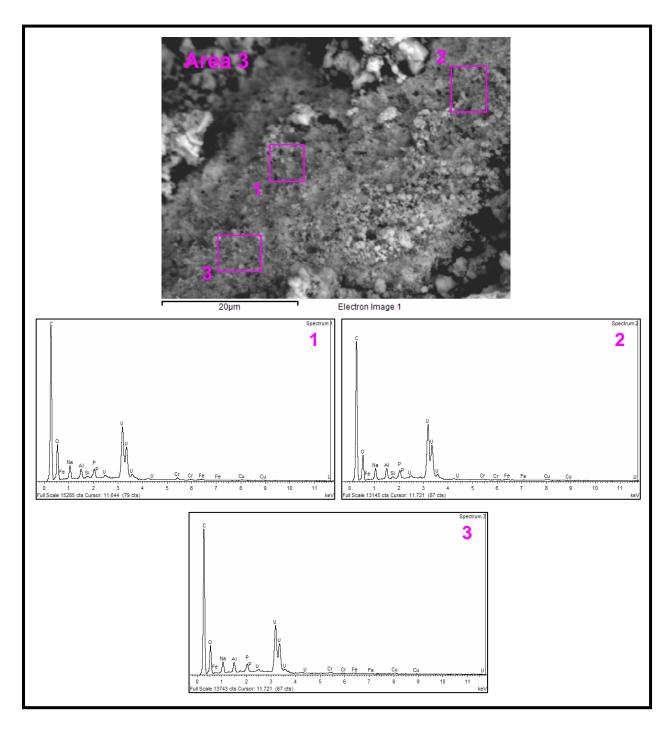
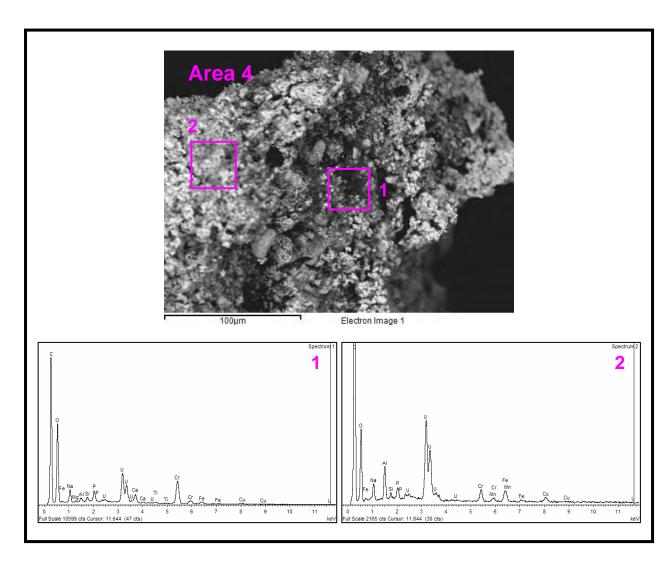
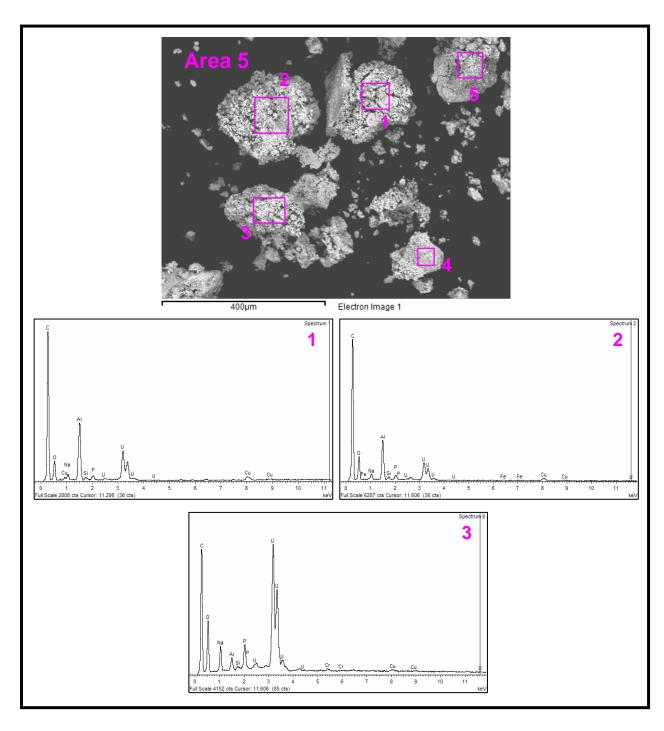


Figure F.9. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact Water Extraction Solid from C-203 Residual Waste (Sample 19888)


Figure F.10. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure F.9 (Areas where EDS analyses were made are shown in Figure F.15.)


Figure F.11. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled C in Figure F.1 (Areas where EDS analyses were made are shown in Figures F.16 and F.17.)


Figure F.12. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Leached Water Extraction Solids of C-203 Residual Waste (Sample 1987)


Figure F.13. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Leached Water Extraction Solids of C-203 Residual Waste (Sample 1987)

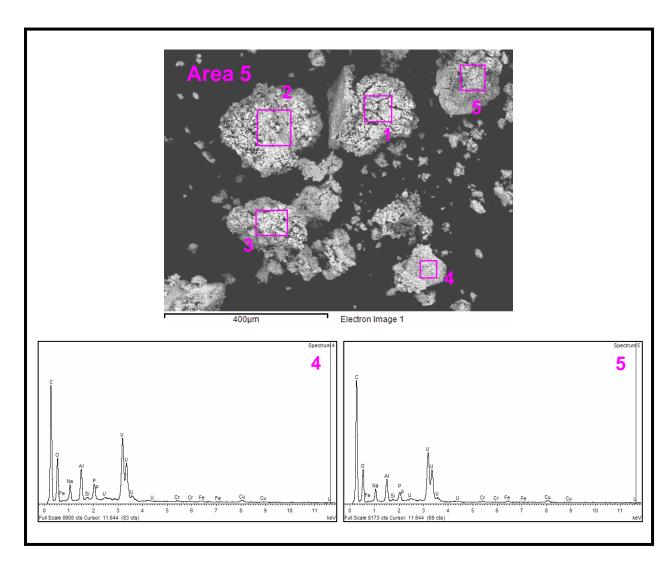

Figure F.14. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Leached Water Extraction Solids of C-203 Residual Waste (Sample 1987)

Figure F.15. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

Figure F.16. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Leached Water Extraction Solids of C-203 Residual Waste (Sample 1987)

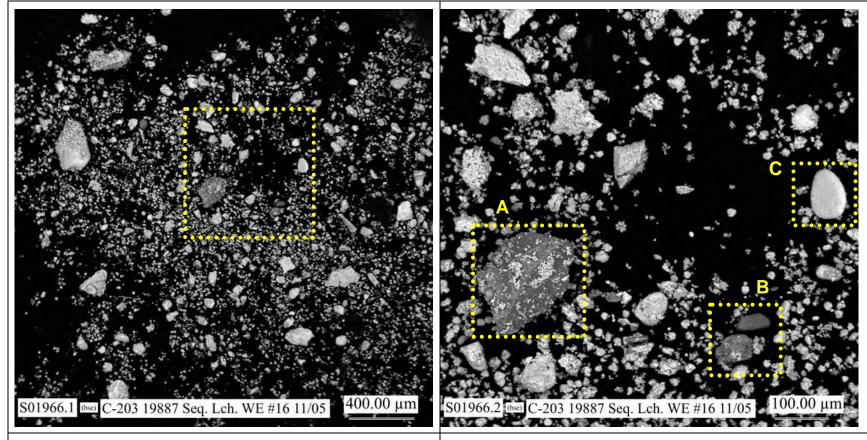

Figure F.17. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Leached Water Extraction Solids of C-203 Residual Waste (Sample 1987)

Table F.2. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Water Extraction Leached Solids

Eigene No. /			Atomic% ¹														
Figure No./ Area of				Maj	or Cat	ions				Anions	, ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	2.2	3.4						32	60	1.2	1.2					
F.12 / 1	2	2.3	3.4						33	59	1.1	1.4					
	3	2.2	2.5						28	65	0.8	1.6					
	1	3.8	0.6						15	77	0.4	3.6					
F.13 / 2	2	2.8	3.4	0.2		0.4			33	59	1.1	0.8			0.2		
	3	5.3	2.6						22	67	1.3	1.5					
	1	1.7	1.7	0.1		0.2			24	71	0.6	0.6	0.1		0.1		
F.14 / 3	2	2.1	1.6	0.1		0.1			21	74	0.6	0.8	0.1		0.1		
	3	1.7	1.6	0.1		0.1			22	73	0.6	0.7	0.2				
F.15 / 4	1	0.7	1.3	0.2		1.7		0.4	35	59	0.5	0.2	0.1	0.1	0.2	Ti - 0.1	
1.13 / 4	2	1.0	0.9	0.6	0.1	0.5			21	74	0.3	0.9	0.4		0.1		
	1	0.9	0.6						15	79	0.2	3.4	0.6		0.1		
7.4.0	2	0.6	0.6	0.1					18	77	0.3	2.3	0.5		0.2	Cl – 0.1	
F.16 & F.17 / 5	3	3.9	3.2			0.2			29	61	1.5	0.8	0.2		0.2		
	4	1.9	2.0	0.1		0.1			27	66	1.0	2.0	0.4		0.1	Cl – 0.1	
	5	1.7	1.7	0.1		0.1			24	69	0.6	1.6	0.4		0.1		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS. 2 = EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Figure F.18. Low Magnification Micrograph Showing Typical Particles in Sample of Sequential Water Extraction Solid from C-203 Residual Waste (Sample 19887)

Figure F.19. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure F.18

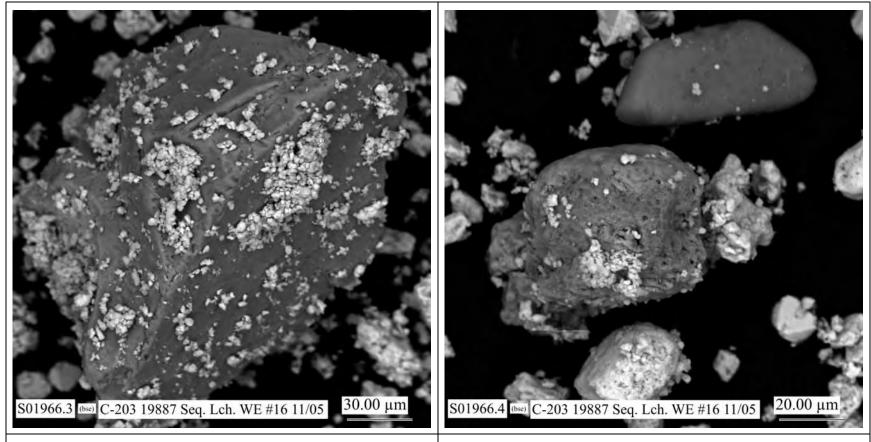
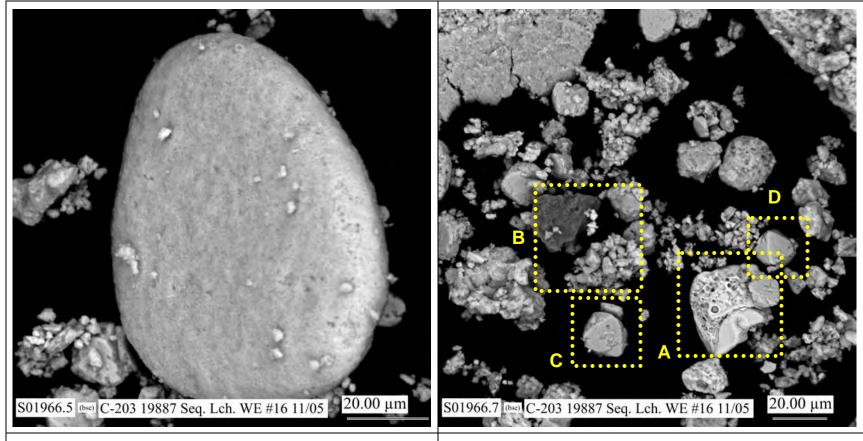
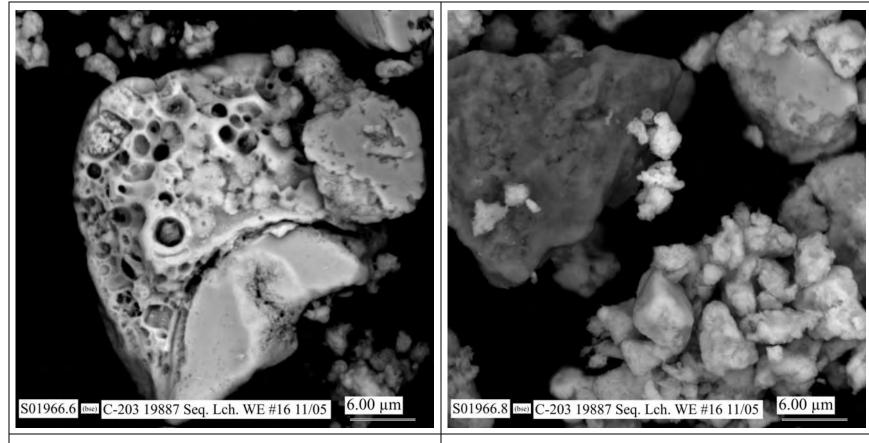


Figure F.20. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure F.19 (Areas where EDS analyses were made are shown in Figure F.34.)

Figure F.21. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled B in Figure F.19 (Areas where EDS analyses were made are shown in Figures F.35 and F.36.)

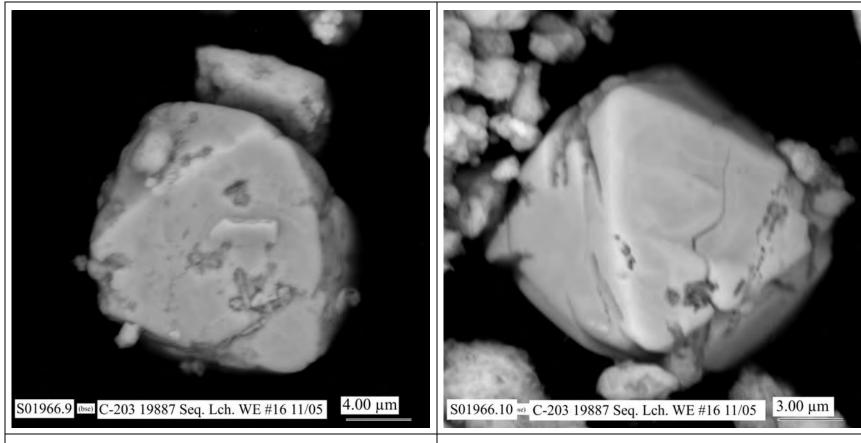

Figure F.22. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled C in Figure F.19 (Areas where EDS analyses were made are shown in Figure F.37.)

Figure F.23. Micrograph Showing Typical Particles in Sample of Sequential Water Extraction Solid from C-203 Residual Waste (Sample 19887)

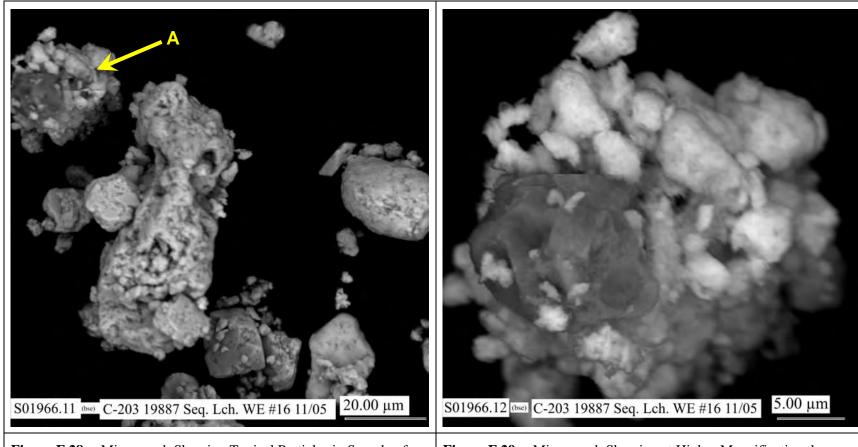

Figure F.24. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure F.23

Figure F.25. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled B in Figure F.23 (Areas where EDS analyses were made are shown in Figures F.38 and F.39.)

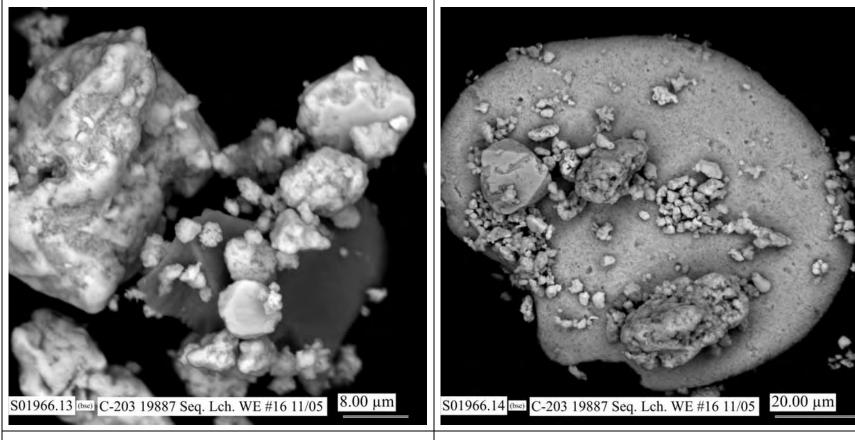

Figure F.26. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled C in Figure F.23

Figure F.27. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled C in Figure F.23

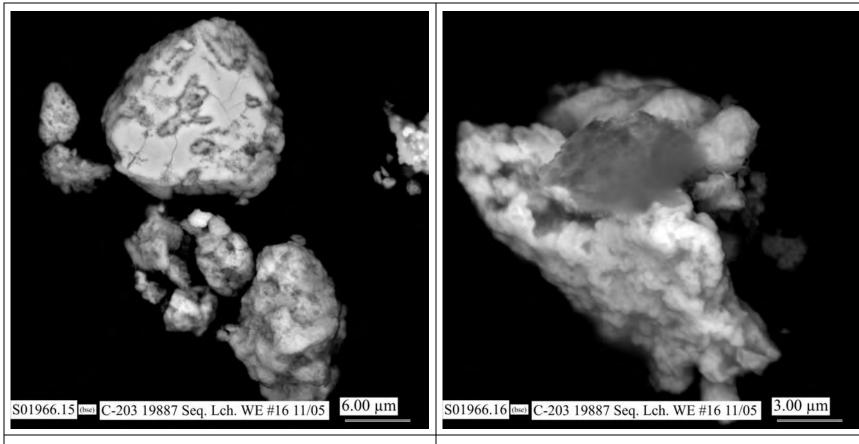

Figure F.28. Micrograph Showing Typical Particles in Sample of Sequential Water Extraction Solid from C-203 Residual Waste (Sample 19887) (Areas where EDS analyses were made are shown in Figure F.40.)

Figure F.29. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled A in Figure F.28 (Areas where EDS analyses were made are shown in Figure F.41.)

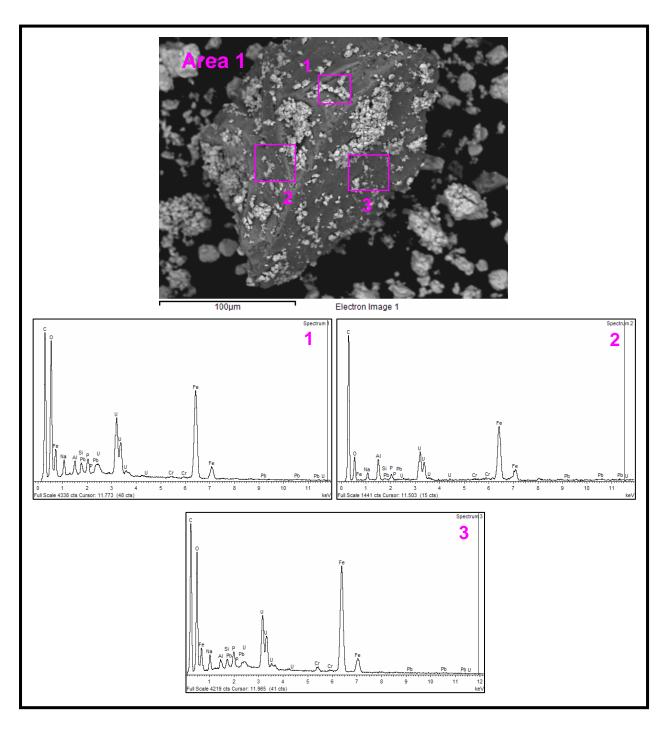

Figure F.30. Micrograph Showing Typical Particles in Sample of Sequential Water Extraction Solid from C-203 Residual Waste (Sample 19887) (Areas where EDS analyses were made are shown in Figure F.42.)

Figure F.31. Micrograph Showing Typical Particles in Sample of Sequential Water Extraction Solid from C-203 Residual Waste (Sample 19887) (Areas where EDS analyses were made are shown in Figure F.43.)

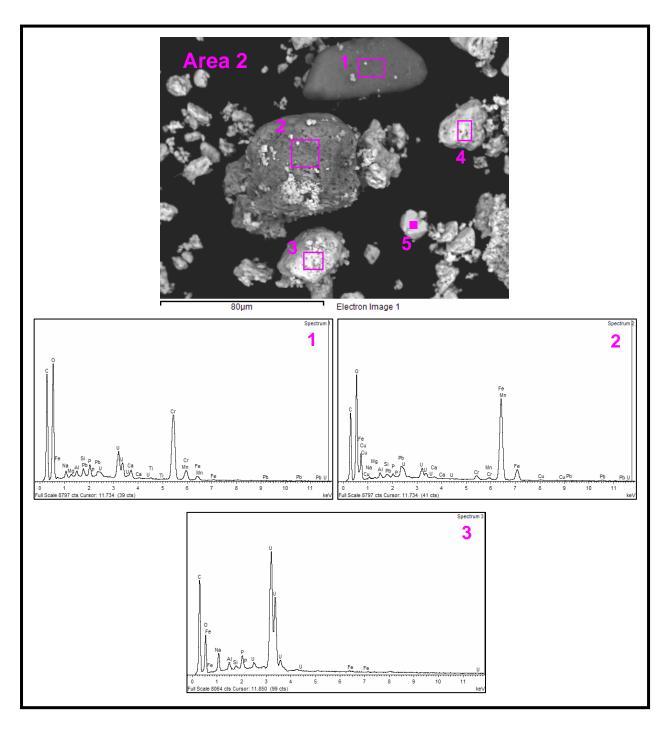
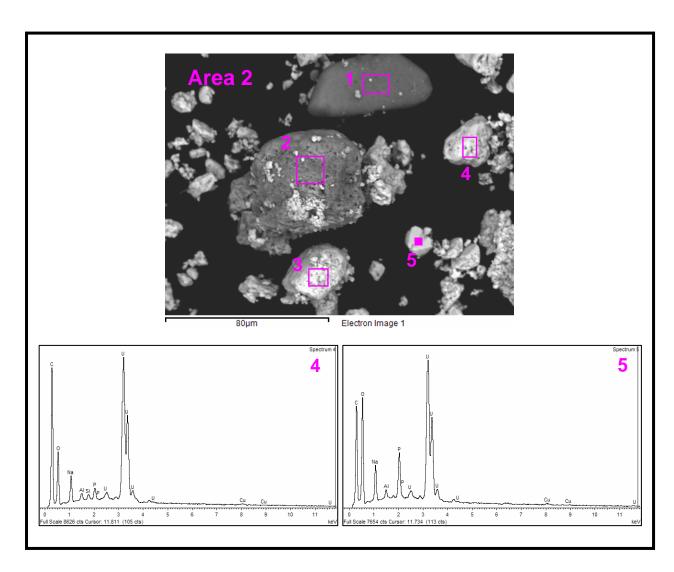
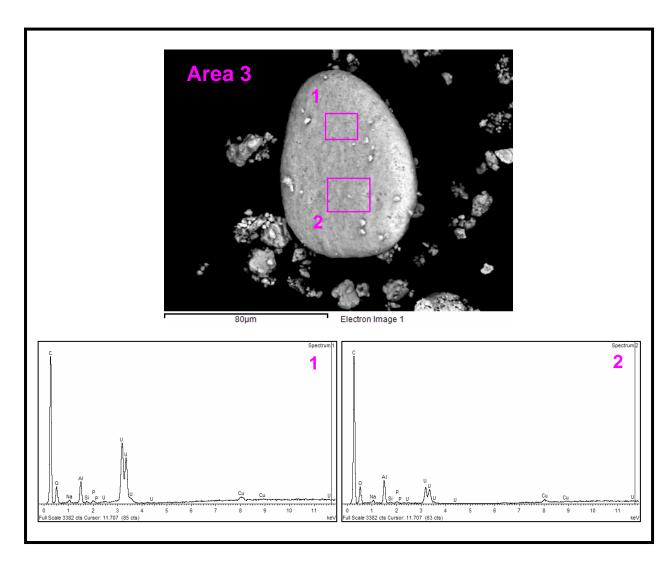
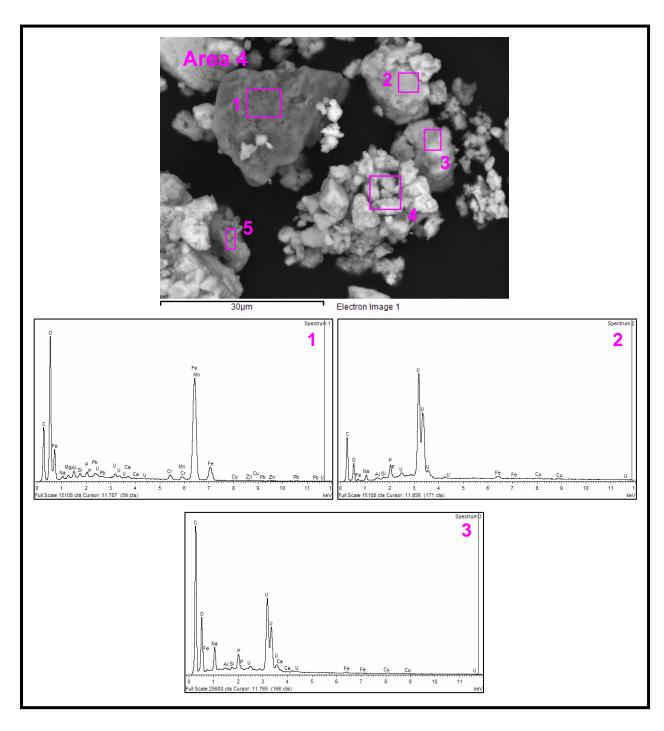
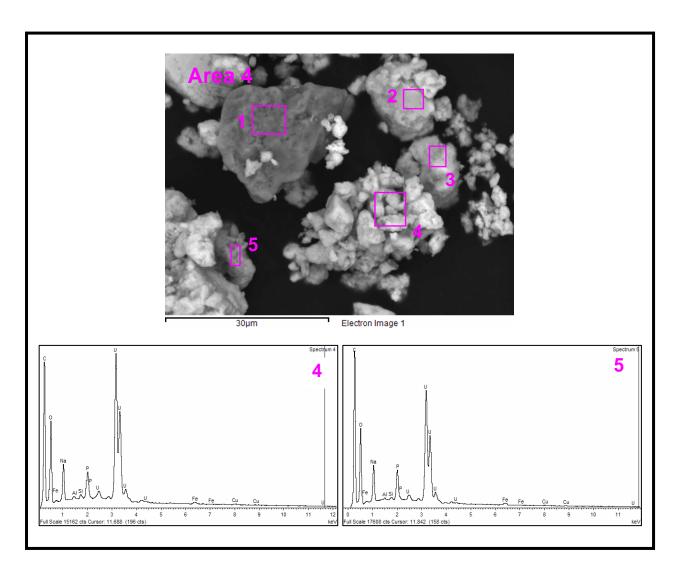


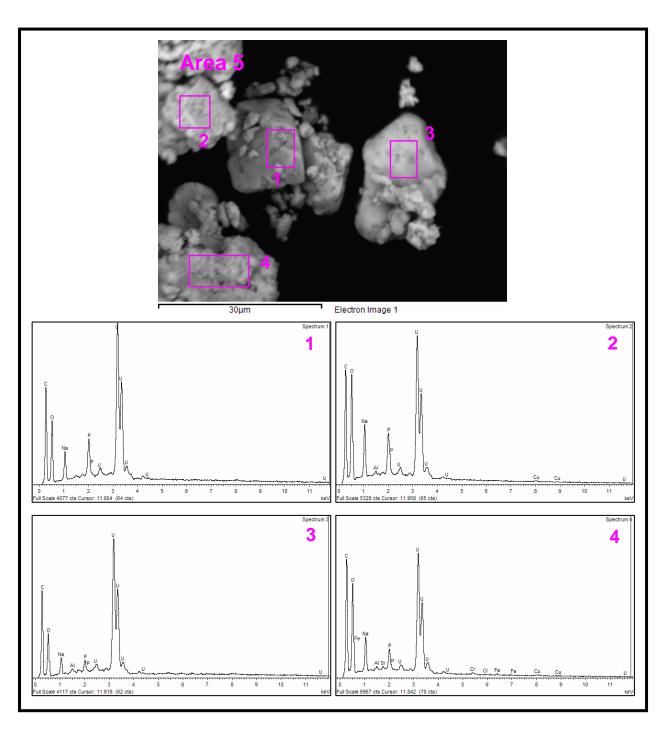
Figure F.32. Micrograph Showing Typical Particles in Sample of Sequential Water Extraction Solid from C-203 Residual Waste (Sample 19887) (Areas where EDS analyses were made are shown in Figure F.44.)

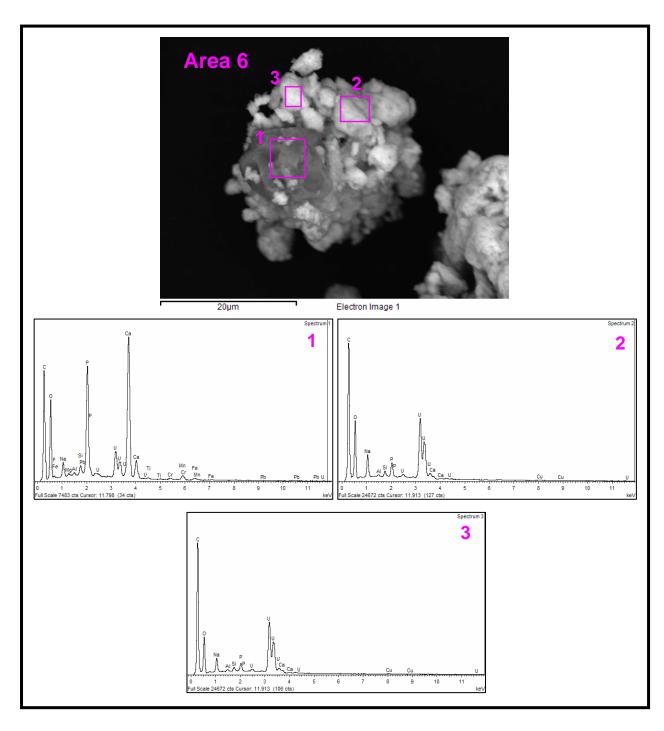

Figure F.33. Micrograph Showing Typical Particles in Sample of Sequential Water Extraction Solid from C-203
Residual Waste (Sample 19887) (Areas where EDS analyses were made are shown in Figure F.45.)

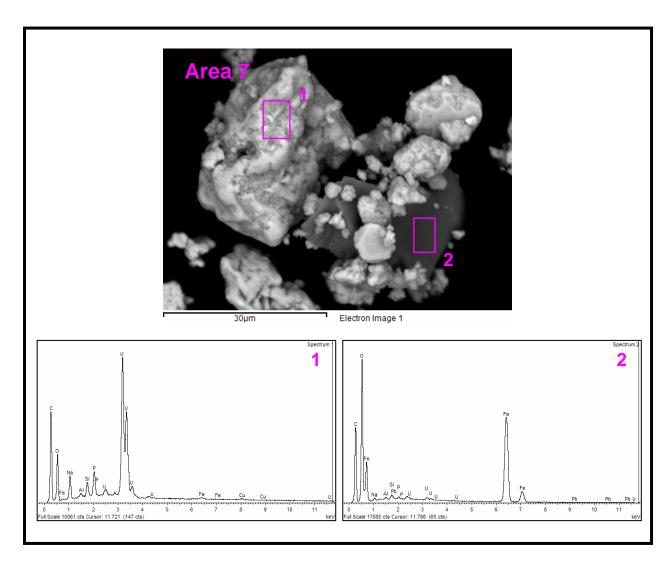

Figure F.34. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

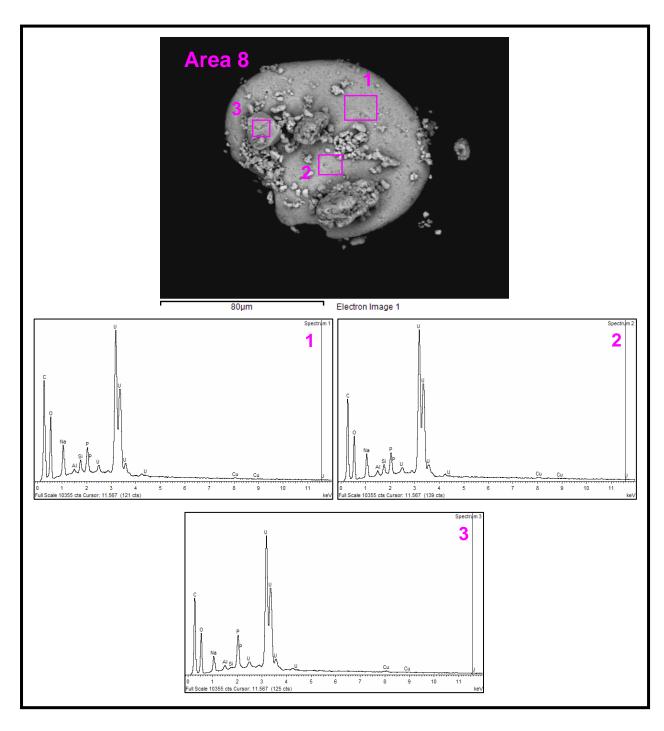

Figure F.35. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

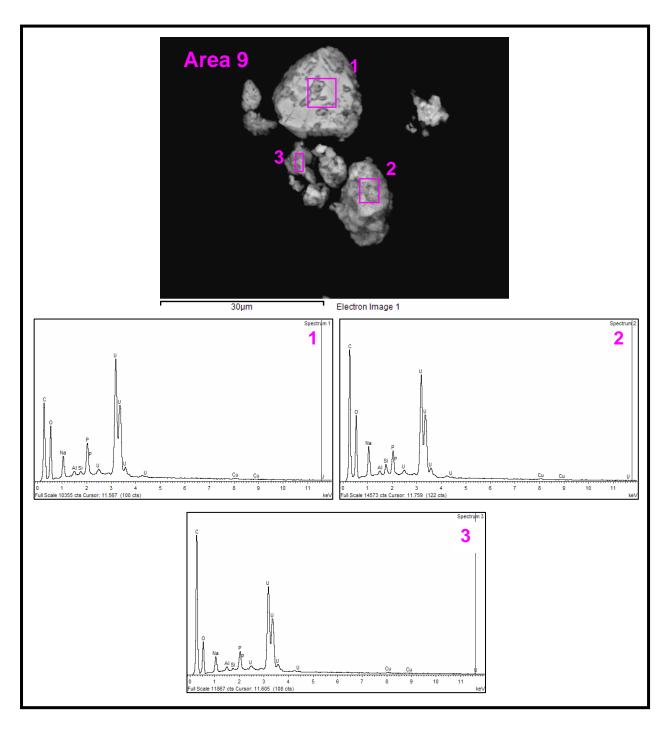

Figure F.36. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)


Figure F.37. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)


Figure F.38. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)


Figure F.39. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)


Figure F.40. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)


Figure F.41. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

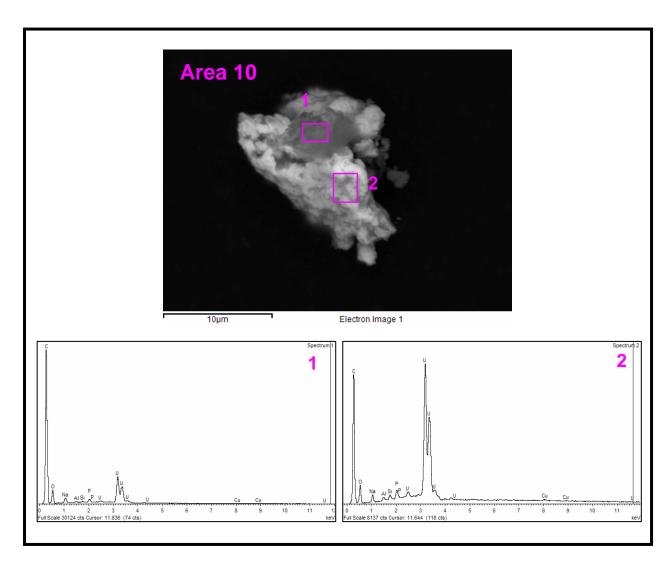

Figure F.42. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

Figure F.43. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

Figure F.44. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

Figure F.45. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19887)

Table F.3. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Water **Extraction Leached Solids**

Figure No./			Atomic% ¹														
Area of		Major Cations							Anions ²			Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	1.0	1.3	5.9		0.1			37	53	0.5	0.5			0.4	Pb – 0.1	
F.34 / 1	2	0.8	0.9	5.7					14	77	0.3	1.2	0.3				
	3	1.0	1.4	7.1		0.2		0.1	33	56	0.6	0.3			0.3		
	1	0.6	0.7	0.4	0.2	4.7		0.4	41	50	0.6	0.3		0.2	0.3	Pb – 0.1, Ti – 0.1	
	2	0.3	0.3	8.8	0.1	0.3		0.1	41	48	0.2	0.3	0.1	0.1	0.2	Pb – 0.3	
F.35 & F.36 / 2	3	5.1	3.3	0.2					29	60	1.1	0.7			0.3		
	4	4.3	3.3						29	61	0.7	0.5	0.2		0.3		
	5	3.7	3.9						44	45	2.4	0.5	0.2			W – 0.1	
F.37 / 3	1	2.3	0.4						15	80	0.2	1.8	0.8		0.1		
F.3//3	2	0.5	0.3						16	81	0.1	1.4	0.5		0.1	K – 0.2	

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

2 = EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

3 = Carbon concentrations (in italics) are suspect, and are likely too large.

Table F.4. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Water Extraction Leached Solids

Eigune No /			Atomic% ¹														
Figure No./ Area of		Major Cations								Anions	s ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	0.1	0.3	11	0.2	0.3		0.1	47	40	0.3	0.5	0.1	0.3	0.2	Pb - 0.1, Zn - 0.1	
T 20 0	2	8.6	2.3	0.7					28	57	2.4	0.3	0.5		0.2		
F.38 & F.39 / 4	3	2.2	2.7	0.1					30	64	0.9	0.1	0.1		0.1		
	4	3.6	3.8	0.2					35	55	1.3	0.1	0.1		0.2		
	5	2.7	3.5	0.2					33	59	1.4	0.1	0.1		0.1		
	1	5.3	4.1						36	52	2.5						
F.40 / 5	2	3.5	5.3						42	47	2.1	0.2	0.2				
r.40/3	3	6.1	3.4						34	55	1.1	0.3					
	4	3.3	4.1	0.1		0.1			41	50	1.1	0.2	0.2		0.2		
	1	0.5	1.1	0.1	0.3	0.1		5.2	36	51	3.7	0.1		0.1	0.3	F – 0.9, Pb - <0.1, Ti – 0.1	
F.41 / 6	2	1.8	2.6					0.1	32	62	0.8	0.1	0.1		0.3		
	3	1.9	2.0					0.1	27	68	0.6	0.1	0.1		0.3		
F 42 / 7	1	5.2	3.7	0.2					31	56	1.9	0.2	0.3		1.1		
F.42 / 7	2	0.1	0.3	8.1					46	45	0.1	0.1			0.2	Pb – 0.1	

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table F.5. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Water **Extraction Leached Solids**

Figure No./			Atomic% ¹														
Area of		Major Cations							Anions ²			Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	4.7	4.4						35	53	1.7	0.3	0.2		0.9		
F.43 / 8	2	5.9	4.2						32	55	1.9	0.4	0.3		0.9		
	3	5.8	3.0						32	56	3.0	0.5	0.3				
	1	4.6	3.7						36	52	2.6	0.4	0.2		0.3		
F.44 /9	2	2.9	3.4						32	59	1.3	0.3	0.1		0.6		
	3	3.0	2.1						22	71	1.2	0.3	0.2		0.1		
F.45 / 10	1	1.2	0.8						15	82	0.3	0.1	0.1		0.1		
F.45 / 10	2	5.7	1.4						16	75	0.8	0.3	0.3		0.4		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

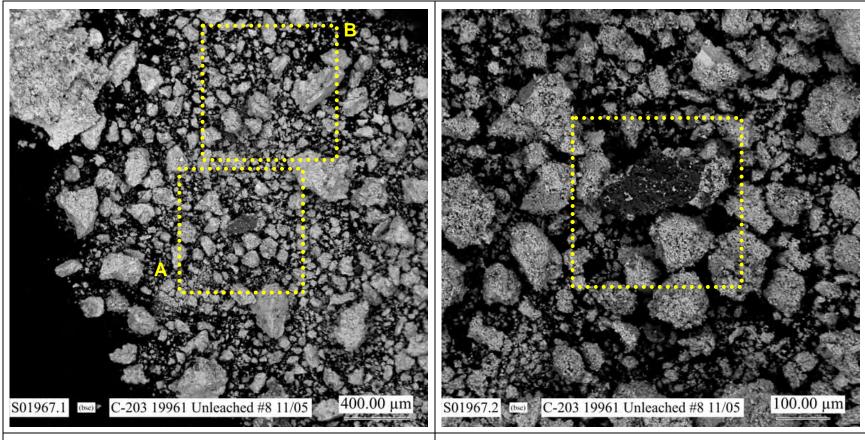
2 = EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

3 = Carbon concentrations (in italics) are suspect, and are likely too large.

Appendix G

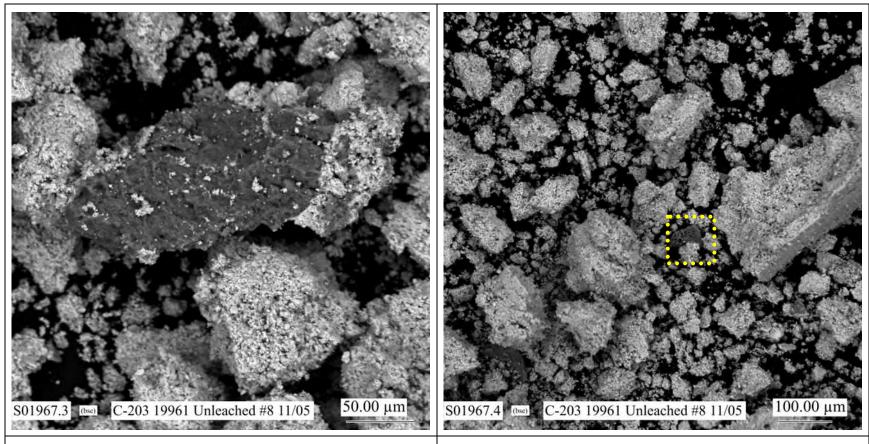
SEM Micrographs and EDS Results for Unleached Residual Waste from Tank C-203 (Sample 19961)

Appendix G


SEM Micrographs and EDS Results for Unleached Residual Waste from Tank C-203 (Sample 19961)

This appendix includes the scanning electron microscope (SEM) micrographs and the energy-dispersive spectroscopy (EDS) spectra for three sample mounts (8, 10, and11) of unleached residual waste from tank C-203 (sample 19961). The operating conditions for the SEM and procedures used for mounting the SEM samples are described in Section 3.7 of the main report.

The identification number for the digital micrograph image file, descriptor for the type of sample, and a size scale bar are given, respectively, at the bottom left, center, and right of each SEM micrograph in this appendix. Micrographs labeled by "BSE" to the immediate right of the digital image file number indicate that the micrograph was collected with backscattered electrons. Sample areas or particles identified by a yellow letter or arrow, and/or outlined by a yellow dotted-line square in a micrograph designate sample material that was imaged at higher magnification, which is typically shown in figure(s) that immediately follow in the series for that sample. The figure and table numbers for the SEM micrographs and EDS analyses for the three sample mounts of unleached C-203 (sample 19961) residual waste analyzed by SEM/EDS are listed in Table G.1.


Table G.1. Figures and Tables Containing the SEM Micrographs and EDS Analyses for Three Mounts of Unleached Residual Waste from Tank C-203 (Sample 19961)

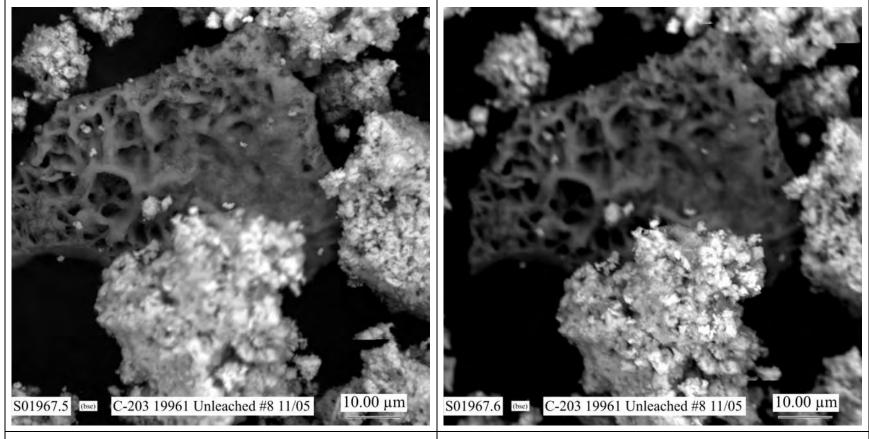
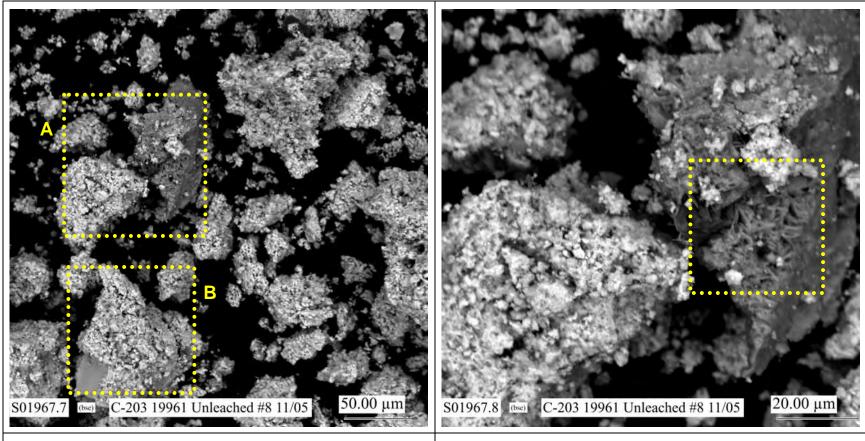
Sample Mount Number	Figures with SEM Micrographs	Figures with EDS Spectra	Tables with EDS Atomic%
8 (Yellow Solids)	G.1 – G.12	G.13 – G.19	G.2 and G.3
10 (Brown Solids)	G.20 – G.30	G.31 – G.38	G.4 and G.5
11 (Orange Solids)	G.39 – G.54	G.55 – G.58	G.6

Figure G.1. Low Magnification Micrograph Showing Typical Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.2. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure G.1 (Areas where EDS analyses were made are shown in Figures G.13 and G.14.)

Figure G.3. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure G.2

Figure G.4. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled B in Figure G.1

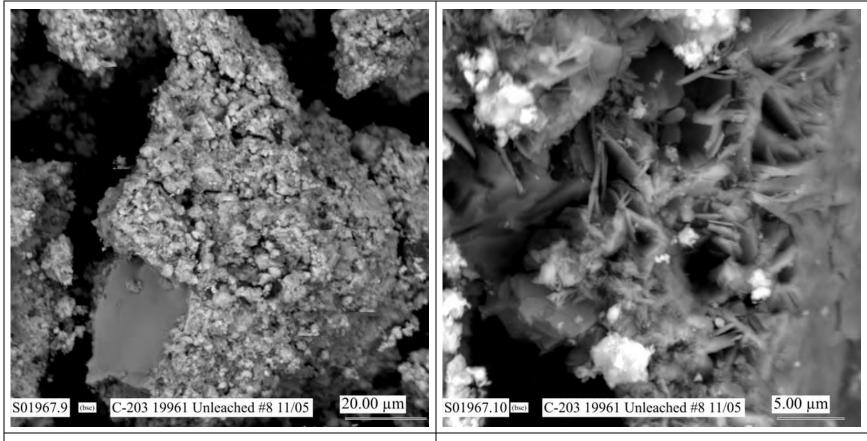

Figure G.5. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure G.4 (Focus set on large dark particle; compare to image in Figure G.6.) (Areas where EDS analyses were made are shown in Figure G.15.)

Figure G.6. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure G.4 (Focus changed to bright particle at bottom of micrograph relative to image in Figure G.5.)

Figure G.7. Micrograph Showing at Higher Magnification Typical Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.8. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure G.7 (Areas where EDS analyses were made are shown in Figure G.16.)

Figure G.9. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled B in Figure G.7 (Areas where EDS analyses were made are shown in Figure G.17.)

Figure G.10. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure G.8

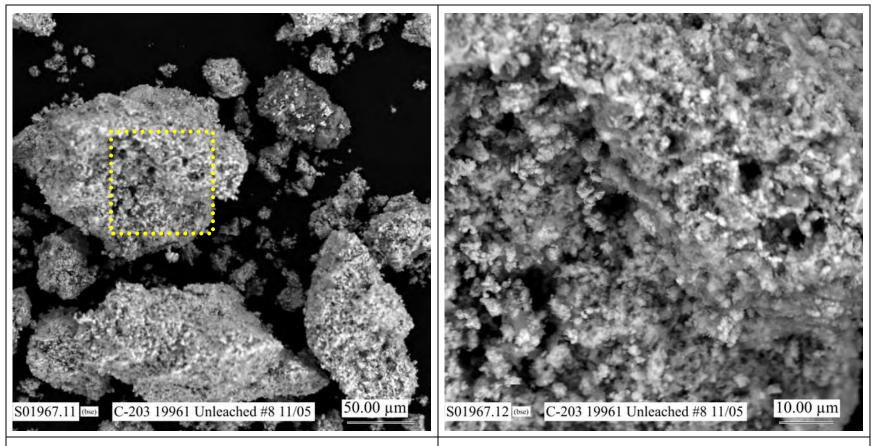
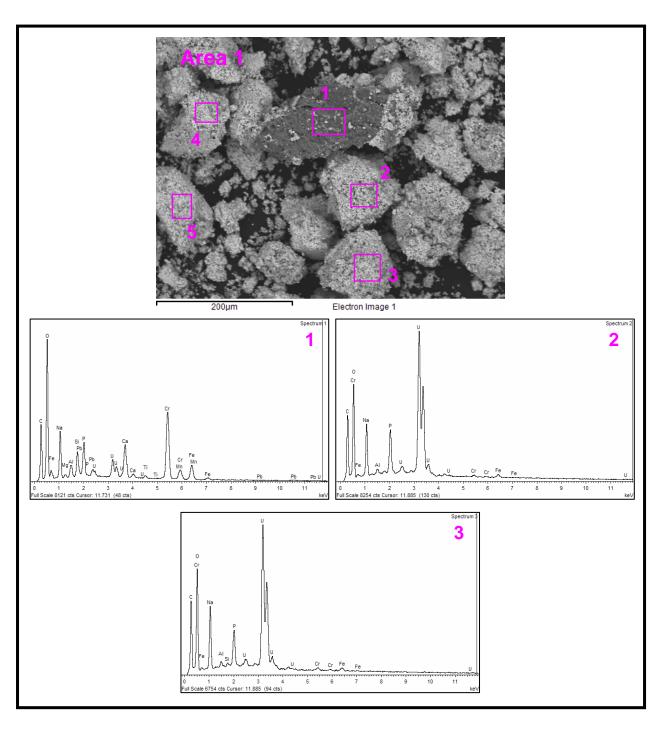
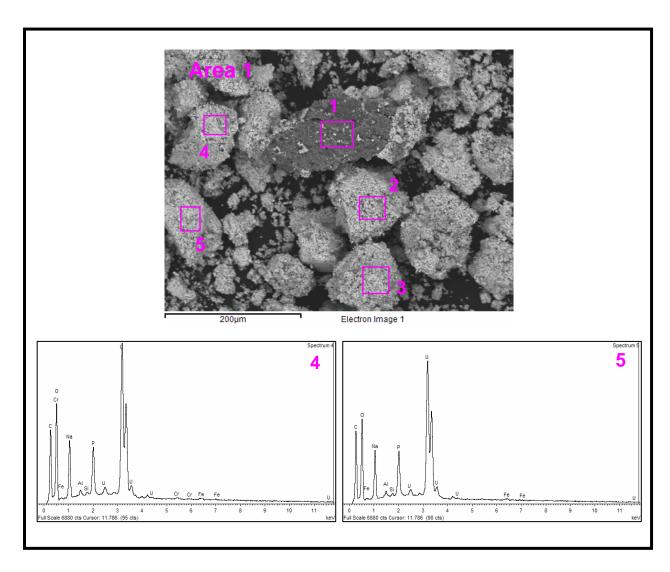
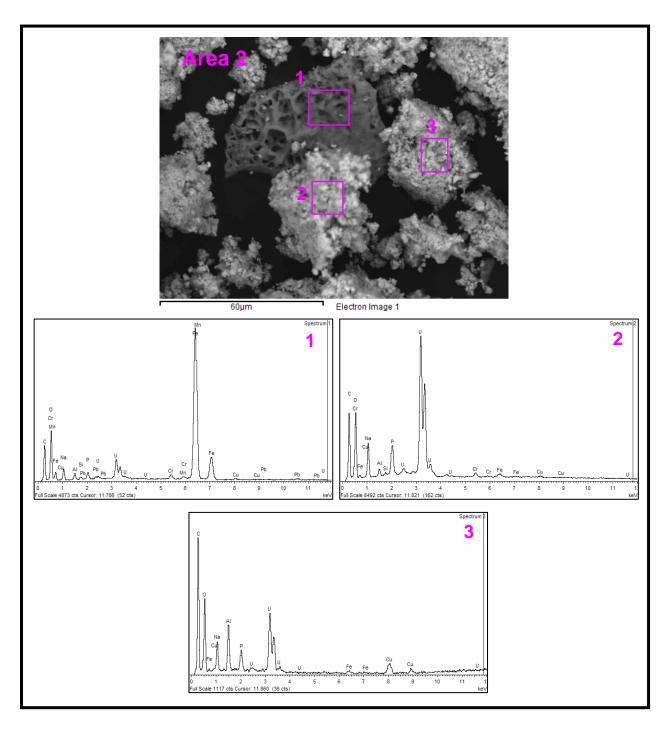
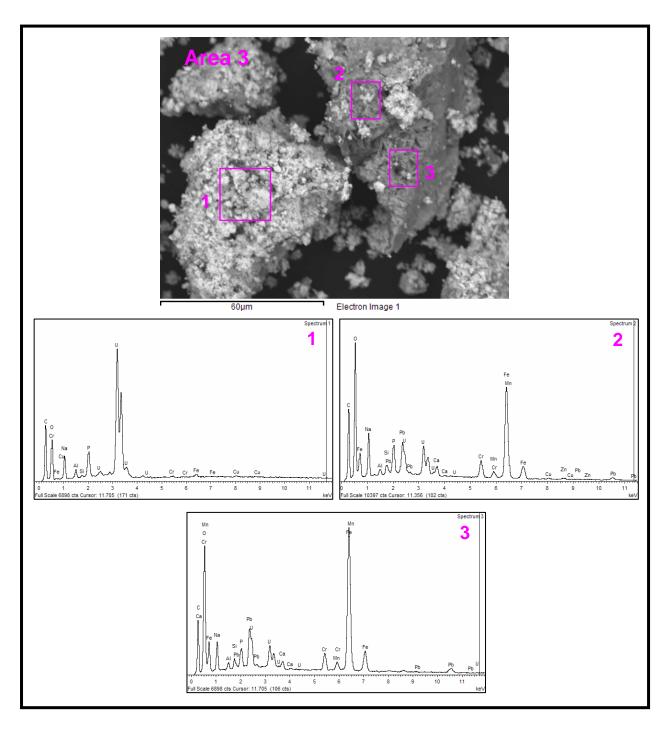
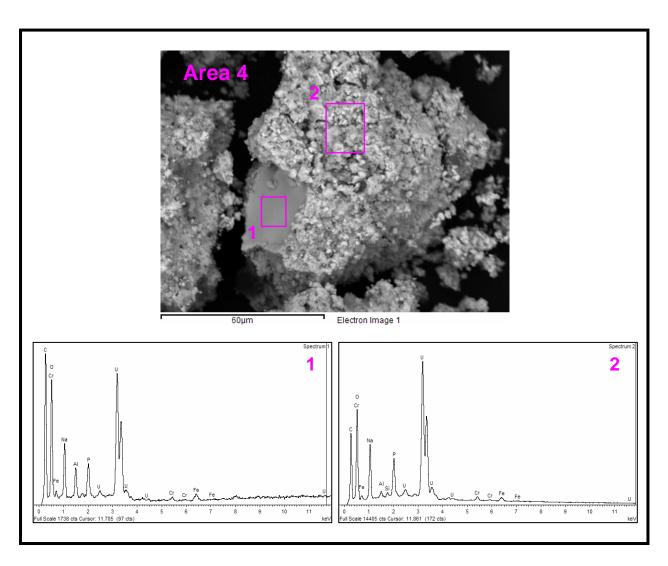
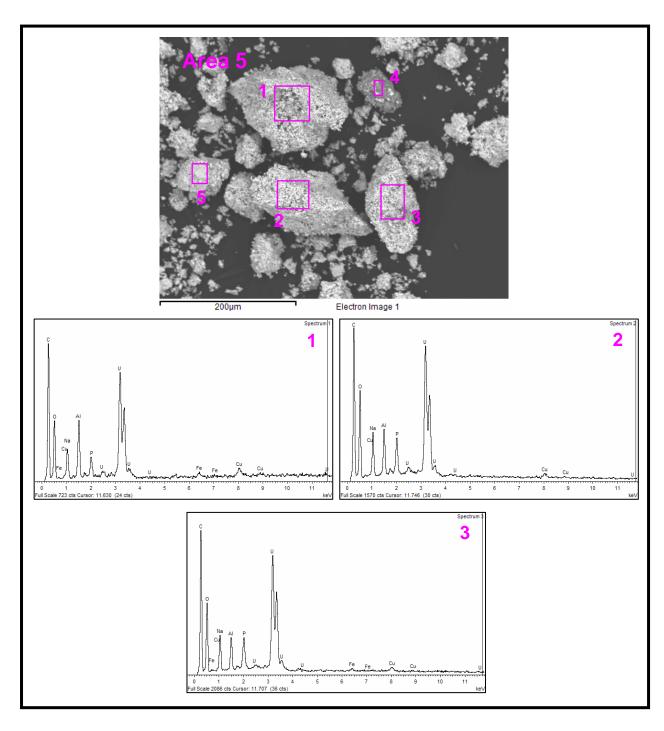




Figure G.11. Micrograph Showing Typical Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961) (Areas where EDS analyses were made are shown in Figures G.18 and G.19.)


Figure G.12. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square in Figure G.11


Figure G.13. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)


Figure G.14. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)


Figure G.15. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)

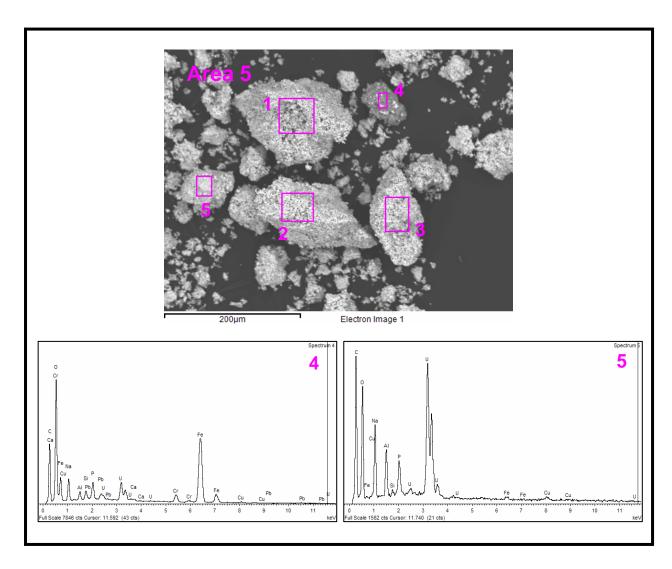

Figure G.16. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.17. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.18. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.19. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 8 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Table G.2. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount 8

Figure No./			Atomic% ¹														
Area of Interest				Maj	or Cat	ions				Anions	s^2	Others					
	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	0.4	5.1	1.3	0.1	4.7		1.5	47	37	1.6	0.6		0.2	1.1	Pb – 0.1, Ti – 0.1	
	2	4.7	7.2	0.4		0.2			47	38	2.9	0.3					
G.13 & G.14 / 1	3	4.3	7.9	0.4		0.3			46	38	2.2	0.3			0.2		
	4	4.7	7.5	0.2		0.1			45	39	2.9	0.4			0.2		
	5	4.5	6.7	0.1					43	42	3.0	0.4			0.2		
	1	0.7	3.0	23	0.2	0.4			25	45	0.6	0.7	0.3		0.2	Pb - 0.1	
G.14 / 2	2	5.4	5.8	0.4		0.5			41	44	2.3	0.7	0.2		0.2		
	3	1.3	2.6	0.2					30	61	0.9	2.2	1.5				
	1	6.4	5.3	0.5		0.2			35	48	2.6	1.0	0.4		0.2		
G.16/3	2	0.7	4.7	7.5	0.3	1.0		0.4	41	42	1.2	0.3	0.1		0.4	Pb – 0.5, Zn – 0.2	
	3	0.5	4.0	13.1	0.5	1.2		0.4	39	39	1.0	0.4			0.5	Pb - 0.8	
G.17 / 4	1	2.5	4.5	0.4		0.2			39	51	1.3	1.3					
	2	4.3	7.3	0.4		0.4			45	40	2.4	0.4			0.2		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron. 3 = Carbon concentrations (in italics) are suspect, and are likely too large.

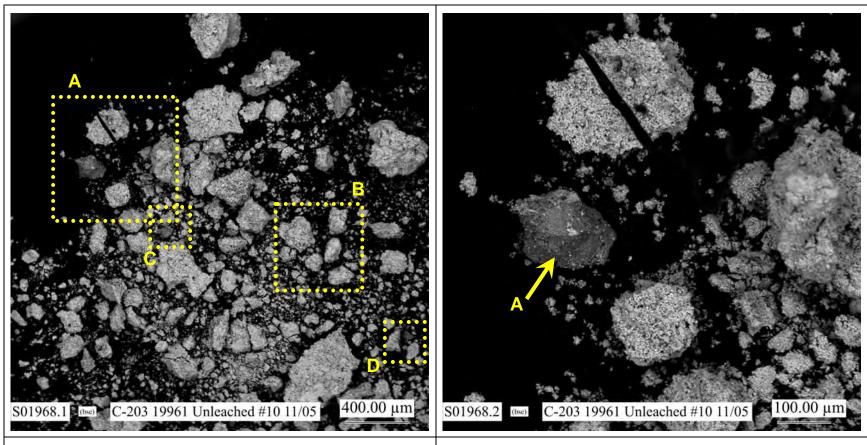
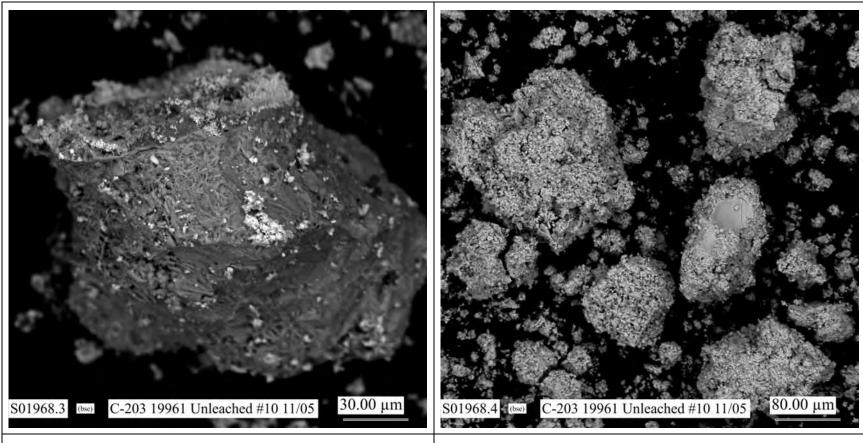

Table G.3. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount 8

Figure No./			Atomic% ¹														
Area of				Maj	jor Cat	ions				Anions	s^2	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	2.6	2.8	0.4					27	63	1.0	3.1	1.0				
G 10.0	2	2.7	3.7						33	57	1.6	2.2	0.5				
G.18 & G.19 / 5	3	2.7	3.4	0.2					30	60	1.4	1.8	0.5				
	4	0.5	3.1	6.8		0.6		0.1	45	42	1.0	0.6	0.1		0.5	Pb – 0.1	
	5	2.6	5.5	0.2					36	52	1.2	2.1	0.3		0.2		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.


^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

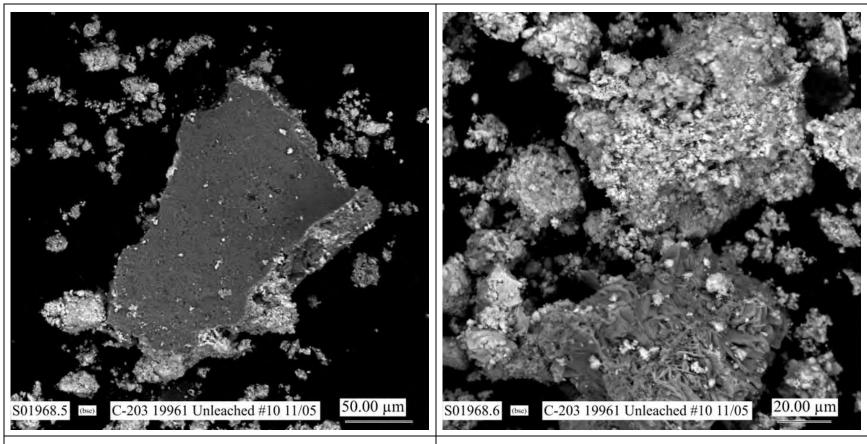

Figure G.20. Low Magnification Micrograph Showing Typical Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)

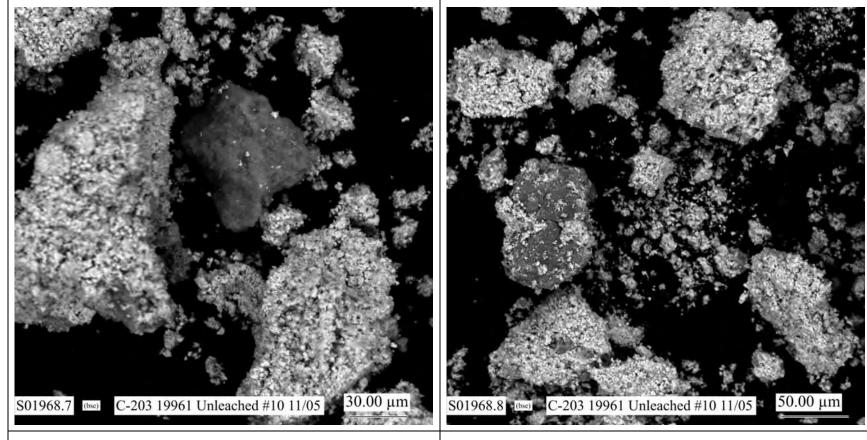
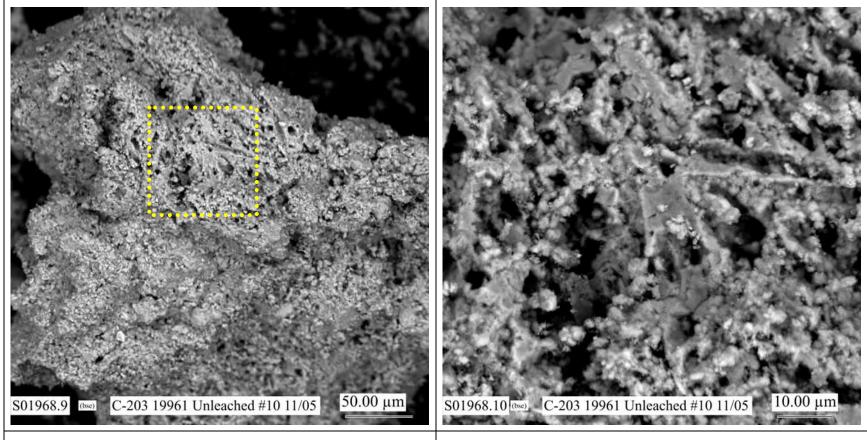
Figure G.21. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure G.20

Figure G.22. Micrograph Showing at Higher Magnification the Large Particle Labeled A in Figure G.21 (Areas where EDS analyses were made are shown in Figure G.31.)

Figure G.23. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled B in Figure G.20 (Areas where EDS analyses were made are shown in Figures G.32 and G.33.)

Figure G.24. Micrograph Showing Typical Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961) (Areas where EDS analyses were made are shown in Figure G.34.)

Figure G.25. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled C in Figure G.20 (Areas where EDS analyses were made are shown in Figure G.35.)

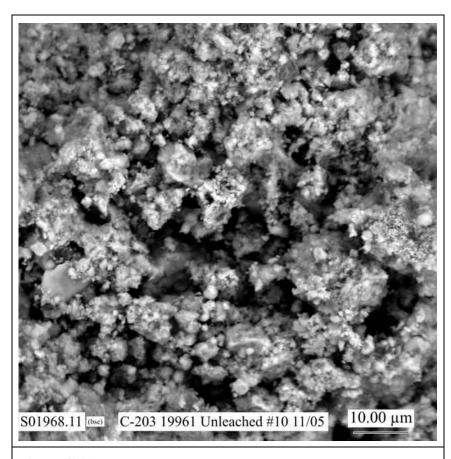

Figure G.26. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled D in Figure G.20 (Areas where EDS analyses were made are shown in Figure G.36.)

Figure G.27. Micrograph Showing Typical Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961) (Areas where EDS analyses were made are shown in Figures G.37 and G.38.)

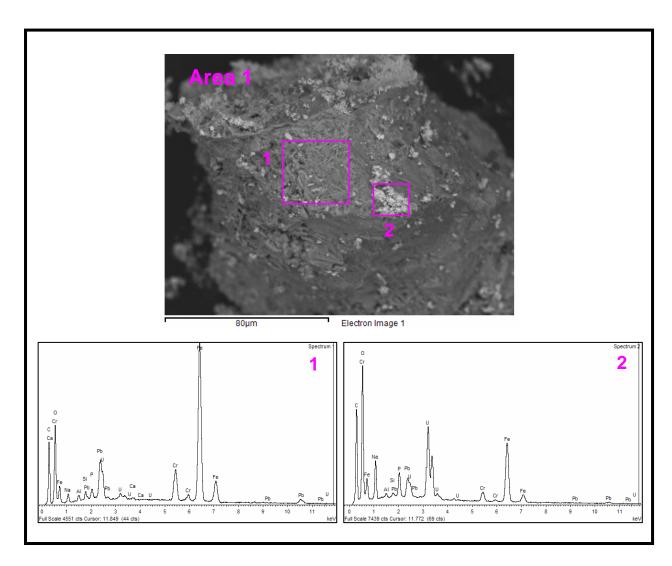
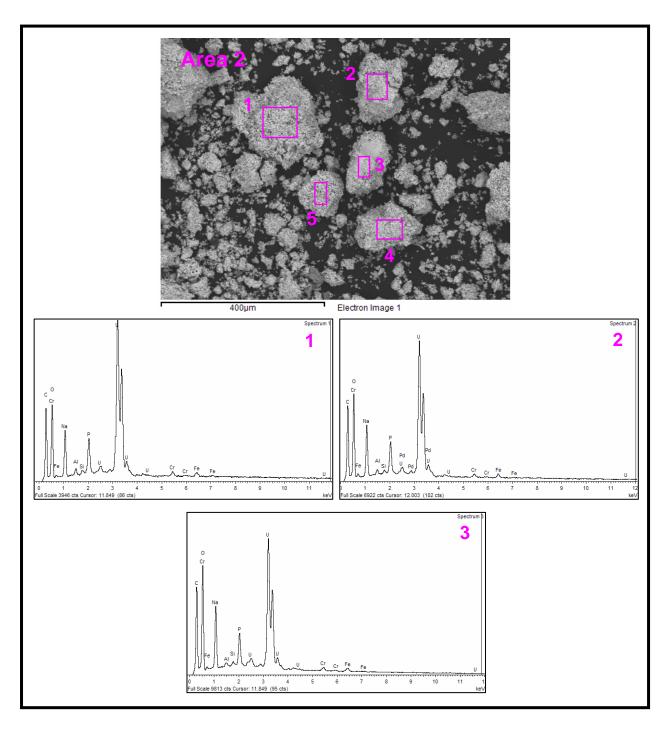
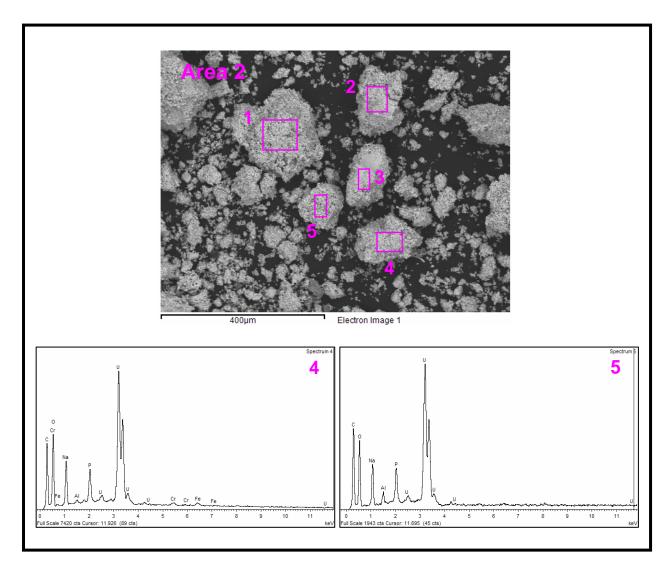
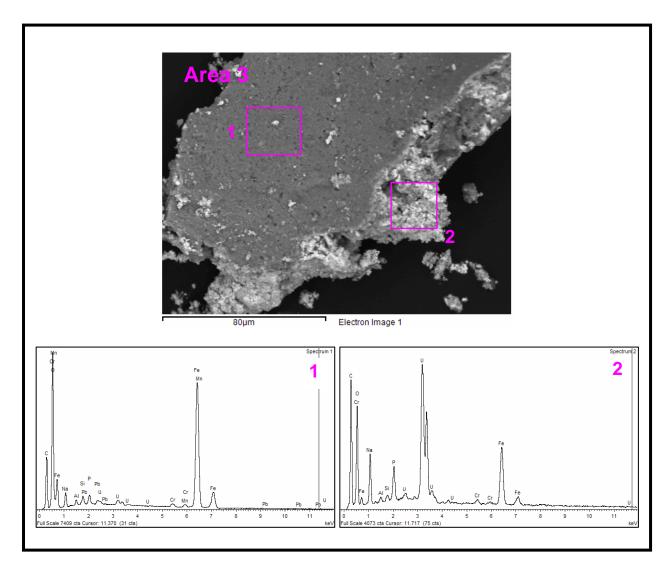
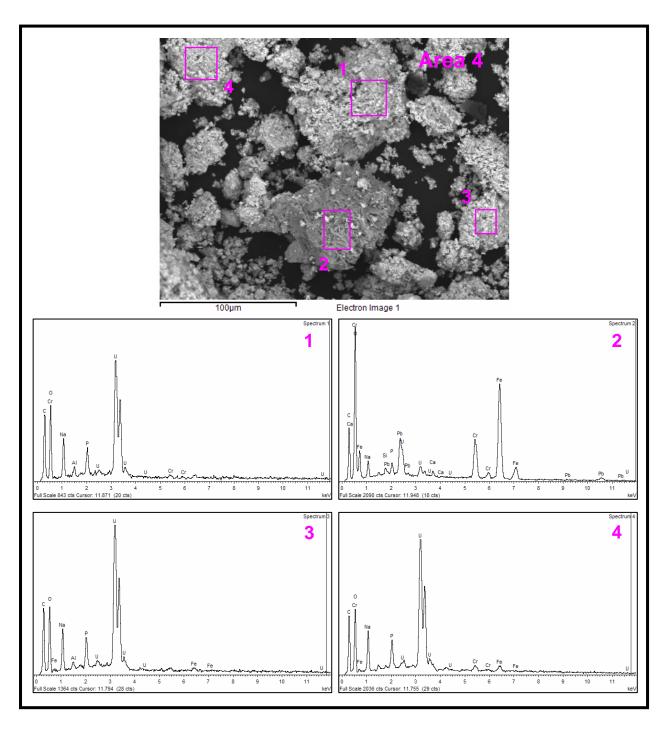


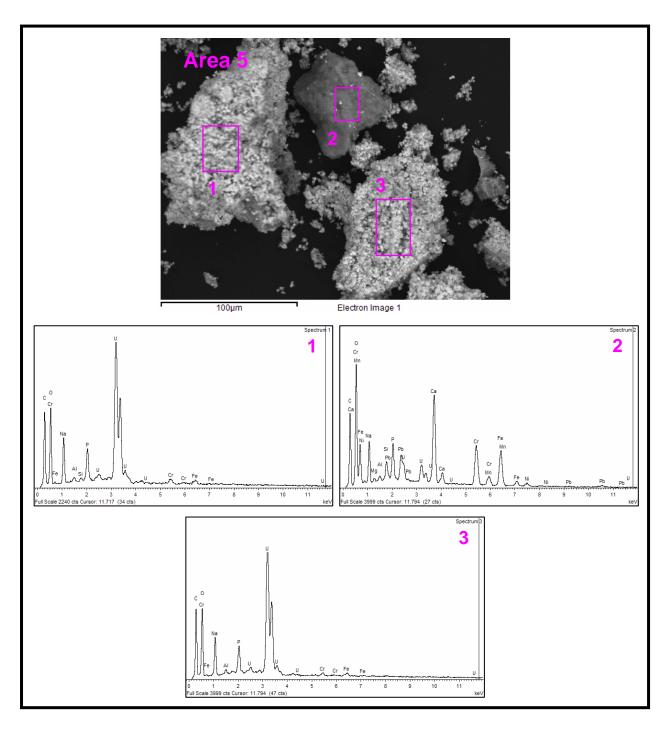
Figure G.28. Micrograph Showing Typical Particle Aggregate in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)

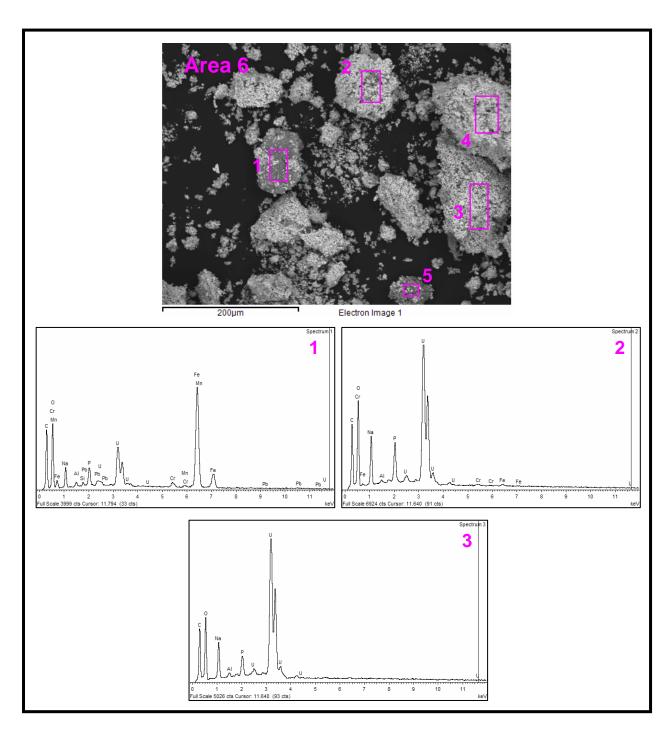

Figure G.29. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure G.28


Figure G.30. Micrograph Showing Typical Particle Aggregate in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)


Figure G.31. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)


Figure G.32. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)


Figure G.33. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)


Figure G.34. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)

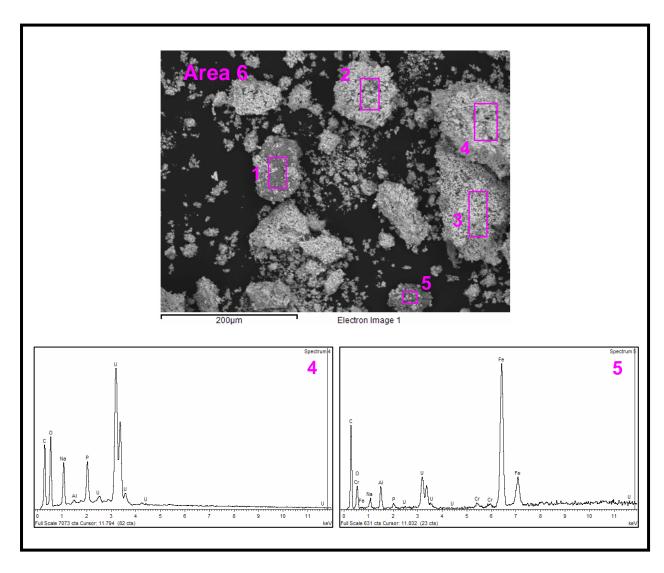

Figure G.35. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.36. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.37. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.38. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 10 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Table G.4. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount 10

Figure No./		Atomic% ¹															
Area of				Maj	or Cat	ions				Anions	s^2	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	\mathbb{C}^3	P	Al	Cu	Mg	Si		
G.31 / 1	1	0.1	1.4	16		2.3		0.1	28	50	0.6	0.4			0.5	Pb - 0.8	
0.51 / 1	2	1.6	4.1	5.1		0.6			43	44	1.1	0.2			0.2	Pb – 0.3	
	1	5.4	6.9	0.5		0.4			40	43	2.4	0.5			0.3		
C 22 0	2	4.6	7.6	0.5		0.3			45	39	2.3	0.4			0.2	Pd – 0.1	
G.32 & G.33 / 2	3	3.6	7.3	0.4		0.3			45	42	1.8	0.2			0.2		
	4	4.9	7.1	0.4		0.3			43	42	2.5	0.3					
	5	4.9	6.2						38	47	2.4	0.9					
G.34 / 3	1	0.1	2.2	12	0.2	0.2			45	39	0.5	0.3			0.5	Pb – 0.1	
0.54 / 5	2	2.9	4.8	4.7		0.3			34	52	1.5	0.3			0.3		
G.35 / 4	1	4.5	6.1			0.4			44	42	1.9	0.8					
	2	0.2	2.3	9.4		2.8		0.3	47	37	0.6				0.3	Pb - 0.7	
	3	5.6	7.0	0.5					41	43	2.5	0.6					
	4	5.4	7.1	0.8		0.7			42	42	2.4						

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

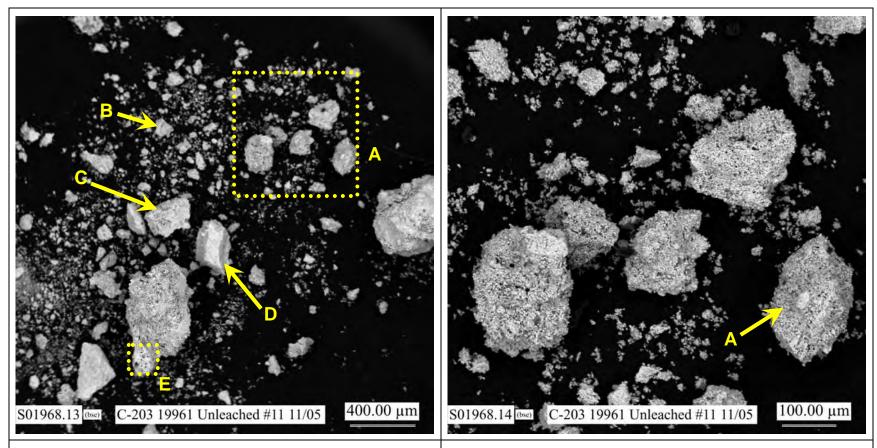
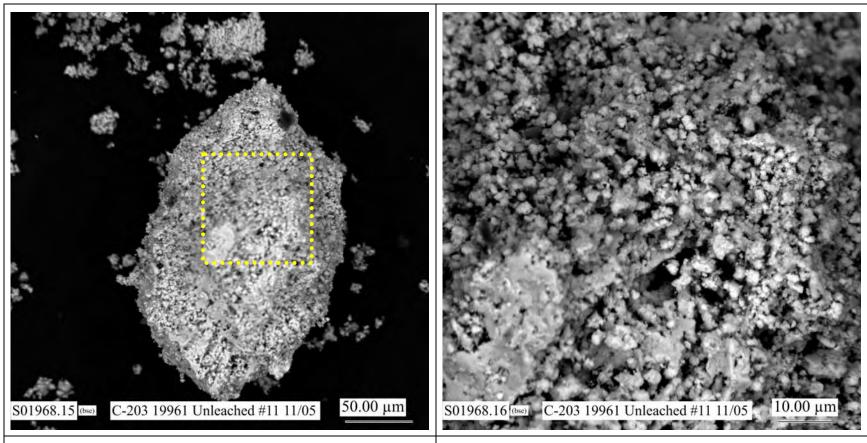

Table G.5. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount 10

Figure No./			Atomic% ¹														
Area of		Major Cations								Anions	s^2	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	C ³	P	Al	Cu	Mg	Si		
G.36 / 5	1	4.7	6.8	0.5		0.5			42	43	2.2	0.3			0.3		
	2	0.4	4.2	2.8	0.3	2.3	0.3	3.6	44	39	1.5	0.2		0.2	0.7	Pb - 0.4	
	3	4.5	6.2	0.4		0.3			42	45	2.1	0.4					
	1	4.8	7.2	0.2		0.1			46	39	2.8	0.2					
~	2	6.3	7.2						45	39	2.0	0.5					
G.37 & G.38 / 6	3	5.1	6.9						43	42	3.1	0.2					
	4	0.9	1.5	17		0.4			11	67	0.3	1.7					
	5	1.3	3.6	12	0.2	0.4			31	50	1.3	0.3			0.2	Pb – 0.1	

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.


^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

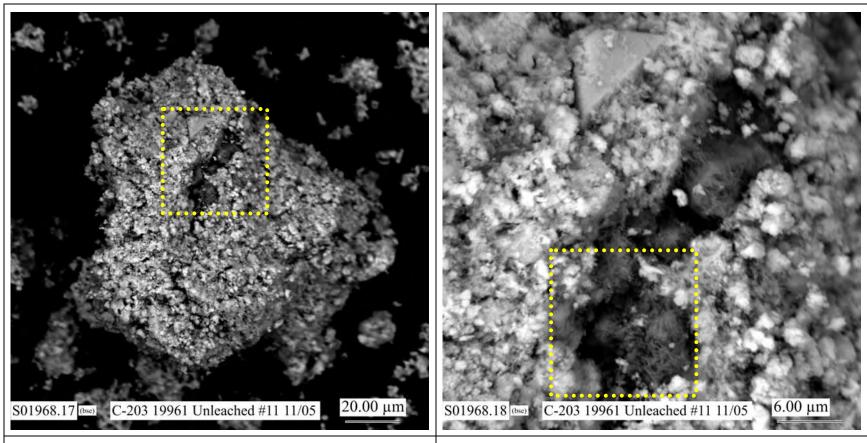

Figure G.39. Low Magnification Micrograph Showing Typical Particles in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.40. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure G.39

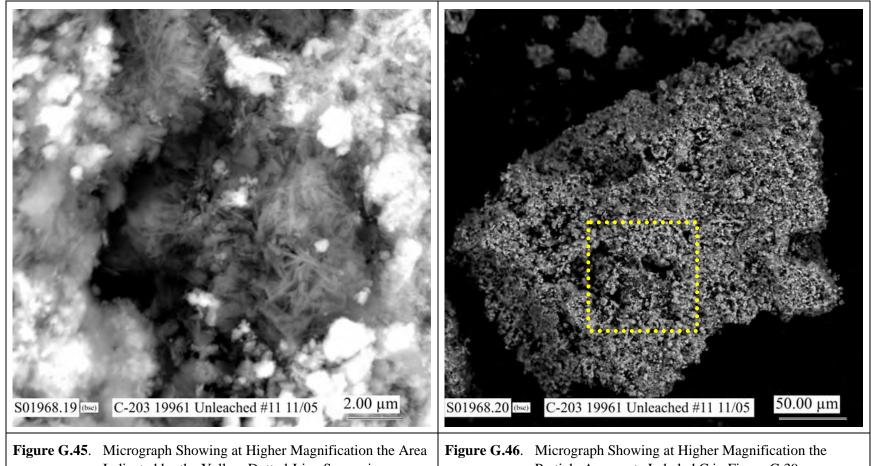

Figure G.41. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled A in Figure G.40

Figure G.42. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure G.41 (Areas where EDS analyses were made are shown in Figure G.55.)

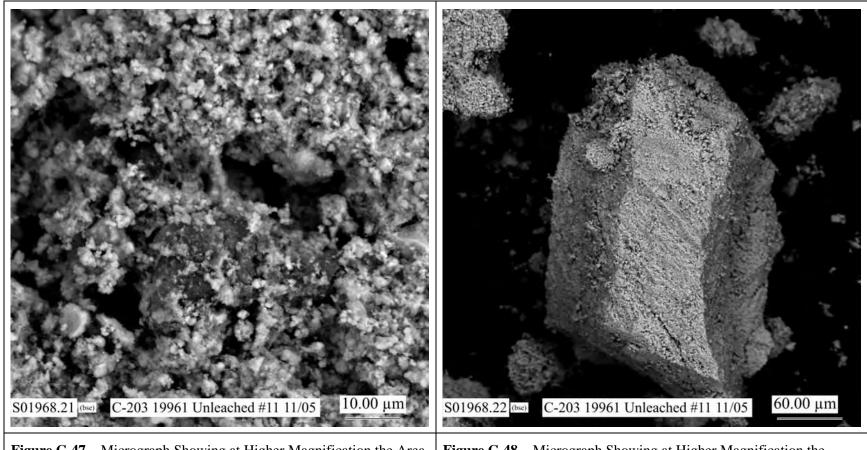
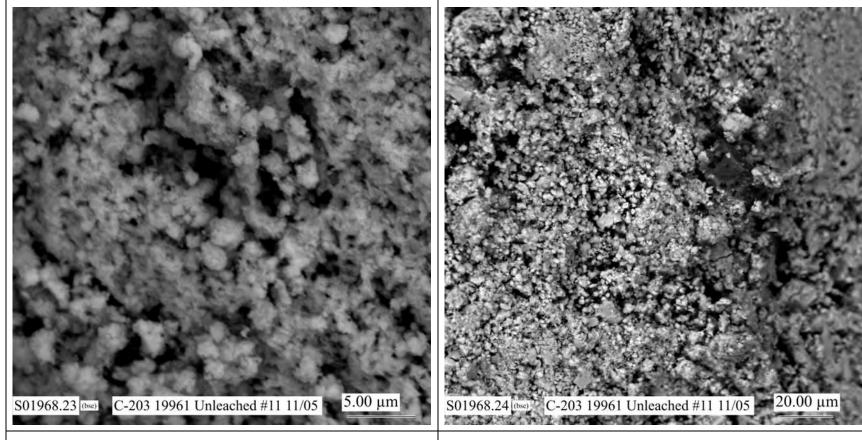

Figure G.43. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled B in Figure G.39

Figure G.44. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure G.43 (Areas where EDS analyses were made are shown in Figure G.56.)


Indicated by the Yellow Dotted-Line Square in Figure G.44

Particle Aggregate Labeled C in Figure G.39

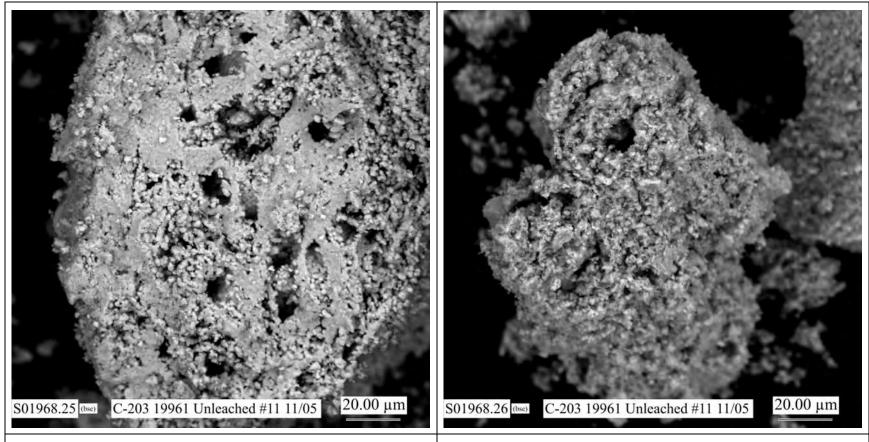

Figure G.47. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure G.46 (Areas where EDS analyses were made are shown in Figure G.57.)

Figure G.48. Micrograph Showing at Higher Magnification the Particle Labeled D in Figure G.39

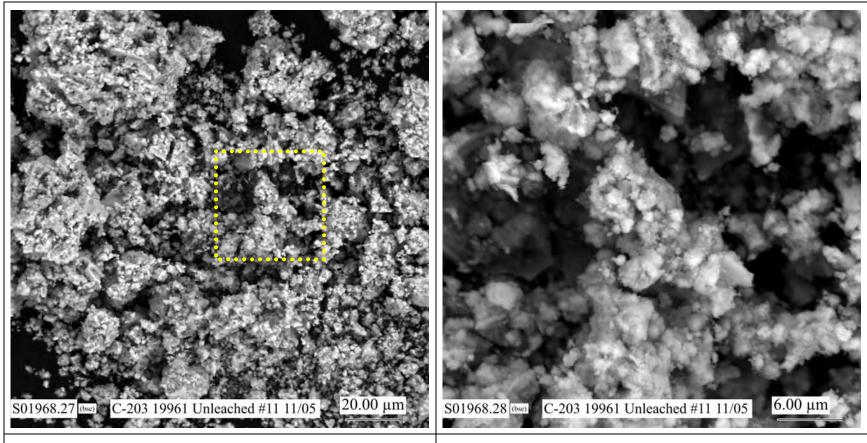

Figure G.49. Micrograph Showing at High Magnification Typical Particle Aggregate in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.50. Micrograph Showing Typical Particle Aggregate in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961) (Areas where EDS analyses were made are shown in Figure G.58.)

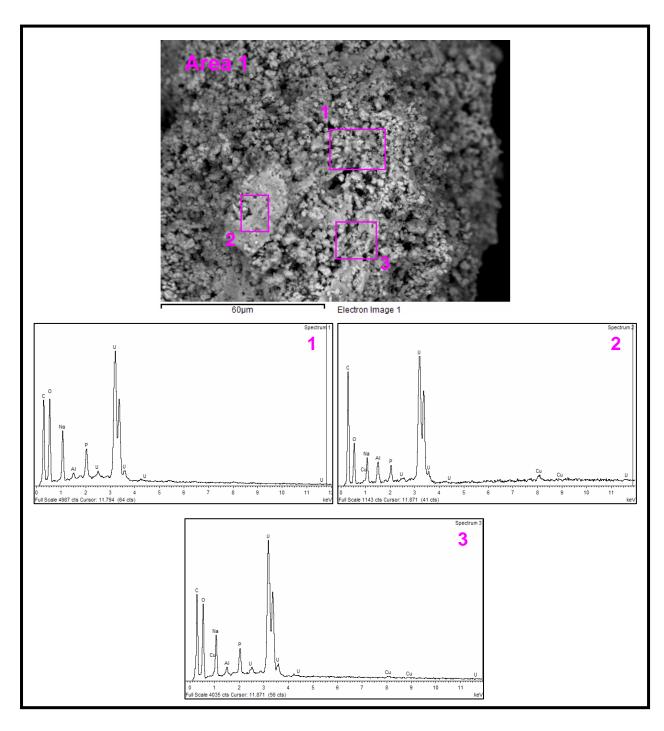

Figure G.51. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square Labeled E in Figure G.39

Figure G.52. Micrograph Showing Typical Particle Aggregate in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)

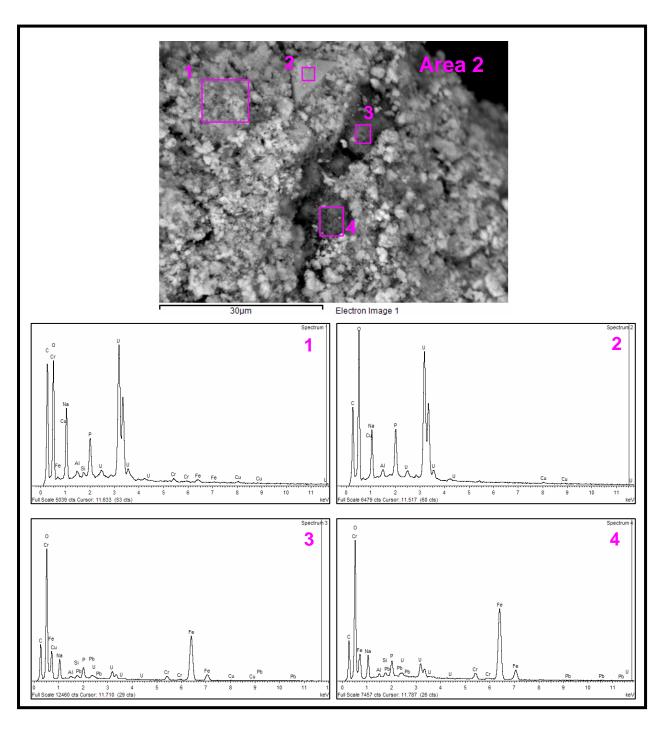
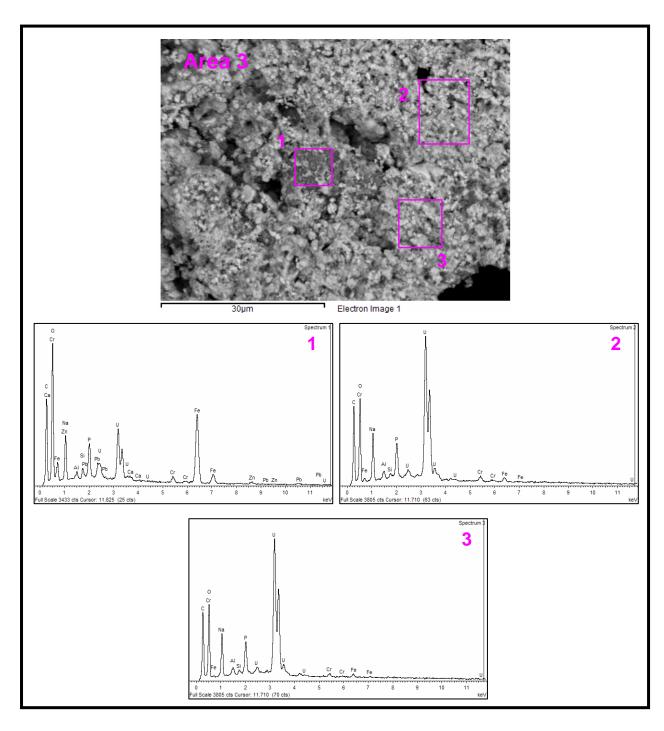


Figure G.53. Micrograph Showing Typical Particle Aggregate in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)


Figure G.54. Micrograph Showing at Higher Magnification the Particle Aggregate Indicated by the Yellow Dotted-Line Square in Figure G.53

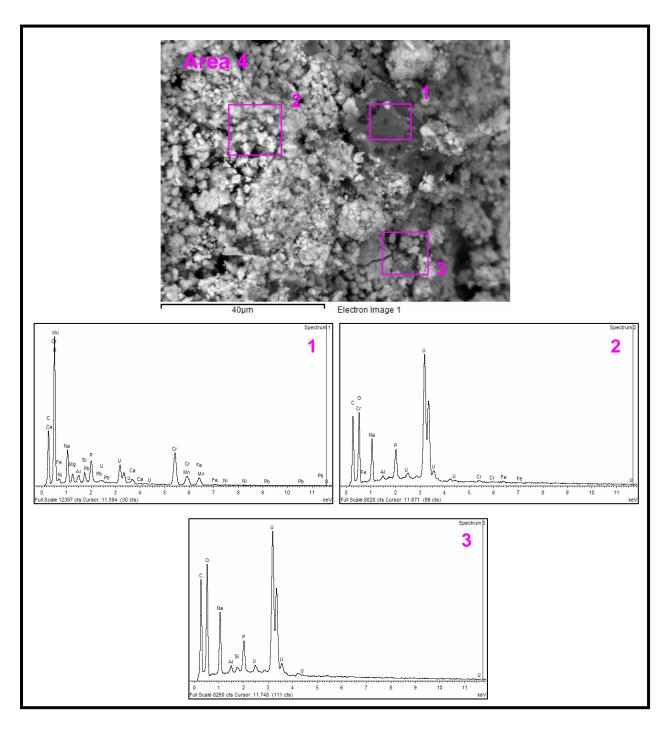

Figure G.55. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.56. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.57. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Figure G.58. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sample Mount 11 of Unleached Residual Waste from Tank C-203 (Sample 19961)

Table G.6. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Unleached Solids in Sample Mount 11

Eiguno No /									I	Atomic	% ¹						
Figure No./ Area of				Maj	jor Cat	ions				Anions	s ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	C ³	P	Al	Cu	Mg	Si		
	1	4.2	6.6						43	44	1.9	0.4					
G.55 / 1	2	4.3	3.6						26	63	1.1	1.7	0.9				
	3	4.6	5.9						40	47	1.8	0.5	0.3				
	1	3.0	6.4	0.2		0.2			42	46	1.7	0.2	0.2		0.2		
G.56 /2	2	3.3	5.3						54	35	2.4	0.4	0.2				
G.3072	3	0.3	3.8	6.3		0.4			54	34	0.8	0.2	0.1		0.2	Pb – 0.1	
	4	0.4	4.0	8.8		0.5			50	34	1.0	0.3			0.2	Pb – 0.1	
	1	1.1	4.3	5.6		0.4		0.2	42	44	1.5	0.3			0.5	Pb – 0.2, Zn – 0.3	
G.57 / 3	2	4.5	6.2	0.5		0.5			42	44	2.3	0.6			0.2		
	3	4.9	6.6	0.5		0.4			43	42	2.4	0.5			0.3		
	1	0.5	4.2	0.8	0.5	2.6	0.1	0.2	51	37	1.2	0.5		0.8	0.5	Pb - <0.1	
G.58 / 4	2	4.8	6.8	0.2		0.2			42	43	2.3	0.3					
	3	3.7	6.6						44	43	1.6	0.4			0.2		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron. 3 = Carbon concentrations (in italics) are suspect, and are likely too large.

Appendix H

SEM Micrographs and EDS Results for Leached Residual Waste from Tank C-203 (Sample 19961)

Appendix H

SEM Micrographs and EDS Results for Leached Residual Waste from Tank C-203 (Sample 19961)

This appendix includes the scanning electron microscope (SEM) micrographs and the energy-dispersive spectroscopy (EDS) spectra for samples of leached residual waste from tank C-203 (sample 19961). These include the following types of samples:

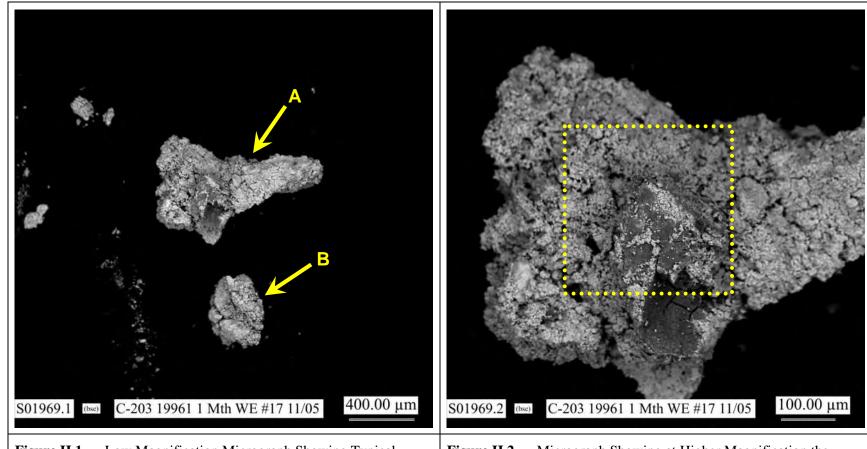
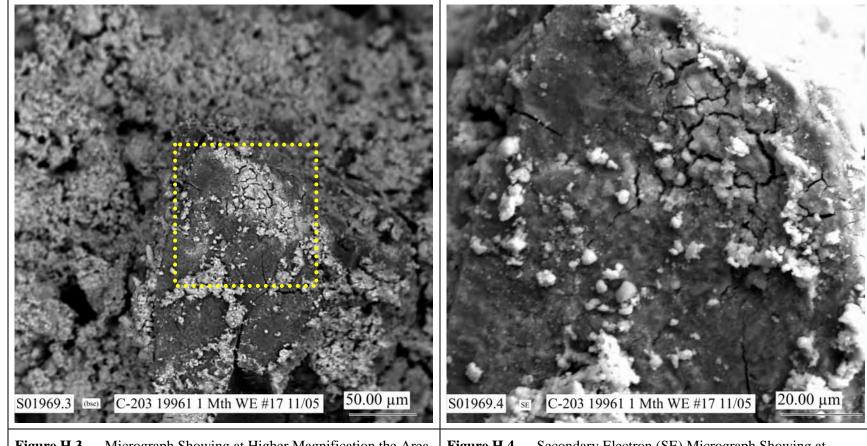
- One month single-contact leached water extraction solids
- Sequential leached water extraction solids
- One month single-contact Ca(OH)₂ leached solids
- Sequential Ca(OH)₂ leached solids
- One month single-contact CaCO₃ leached solids
- Sequential CaCO₃ leached solids

The operating conditions for the SEM and procedures used for mounting the SEM samples are described in Section 3.7 of the main report.

The identification number for the digital micrograph image file, descriptor for the type of sample, and a size scale bar are given, respectively, at the bottom left, center, and right of each SEM micrograph in this appendix. Micrographs labeled by "BSE" to the immediate right of the digital image file number indicate that the micrograph was collected with backscattered electrons. Sample areas or particles identified by a yellow letter or arrow, and/or outlined by a yellow dotted-line square in a micrograph designate sample material that was imaged at higher magnification, which is typically shown in figure(s) that immediately follow in the series for that sample. The figure and table numbers for the SEM micrographs and EDS analyses for leached C-203 (sample 19961) residual waste analyzed by SEM/EDS are listed in Table H.1.

Table H.1. Figures and Tables Containing the SEM Micrographs and EDS Analyses for the Leached C-203 Residual Waste Samples (Sample 19961) Analyzed by SEM/EDS

Type of Residual Waste Sample	Figures with SEM Micrographs	Figures with EDS Spectra	Tables with EDS Atomic%
1-month single-contact leached water extraction solids	H.1 – H.12	H.13 – H.15	H.2
Sequential leached water extraction solids	H.16 – H.27	H.28 – H.35	H.3 and H.4
1-month single-contact Ca(OH) ₂ leached solids	H.36 – H.50	H.51 – H.61	H.5, H.6, and H.7
Sequential Ca(OH) ₂ leached solids	H.62 – H.73	H.74 – H.85	H.8, H.9, and H.10
1-month single-contact CaCO ₃ leached solids	H.86 – H.97	H.98 – H.107	H.11, H.12, and H.13
Sequential CaCO ₃ leached solids	H.108 – H.119	H.120 – H.129	H.14, H.15, and H.16

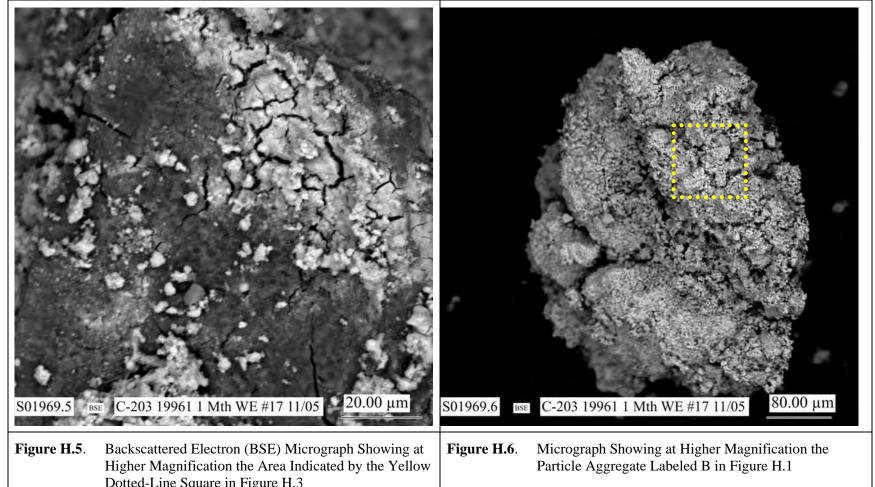

Figure H.1. Low Magnification Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact Leached Water Extraction Solid from C-203 Residual Waste (Sample 19961)

Figure H.2. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled A in Figure H.1

Figure H.3. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.2 (Areas where EDS analyses were made are shown in Figure H.13.)

Figure H.4. Secondary Electron (SE) Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.3

Dotted-Line Square in Figure H.3

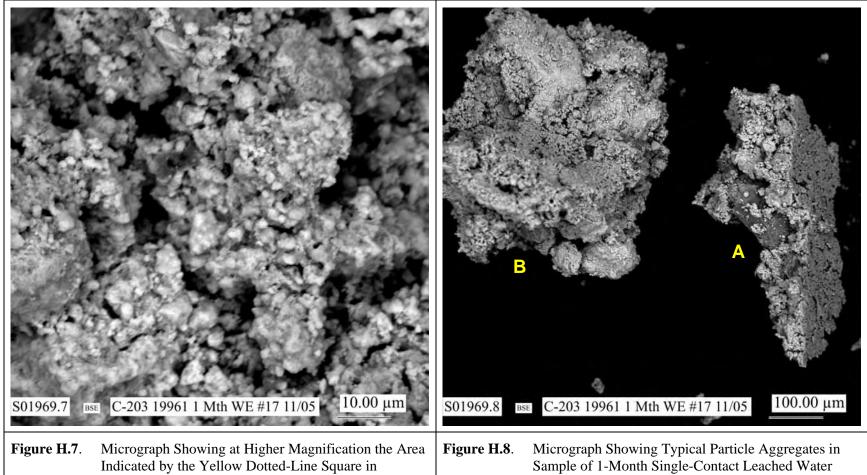
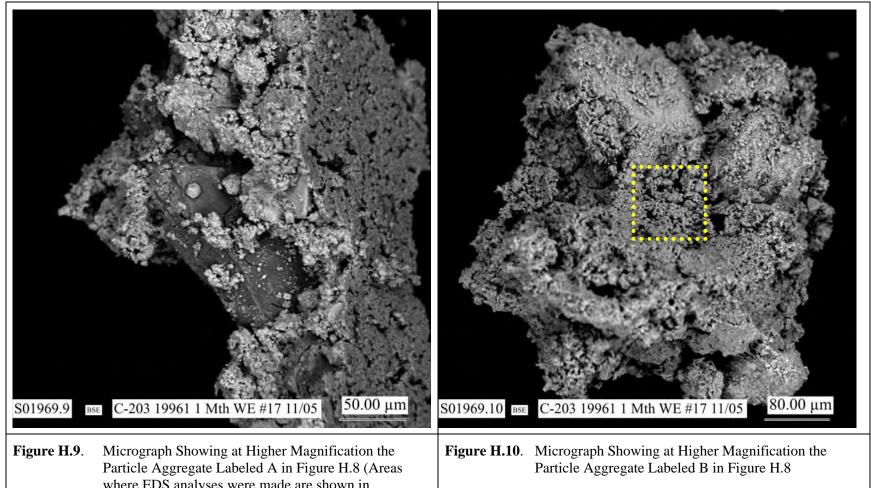



Figure H.6 (Areas where EDS analyses were made are shown in Figure H.14.)

Extraction Solid from C-203 Residual Waste (Sample 19961)

where EDS analyses were made are shown in Figure H.15.)

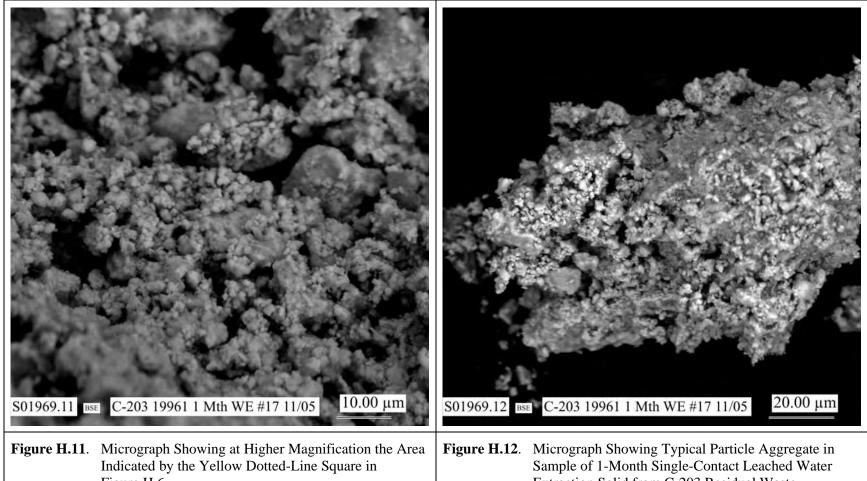
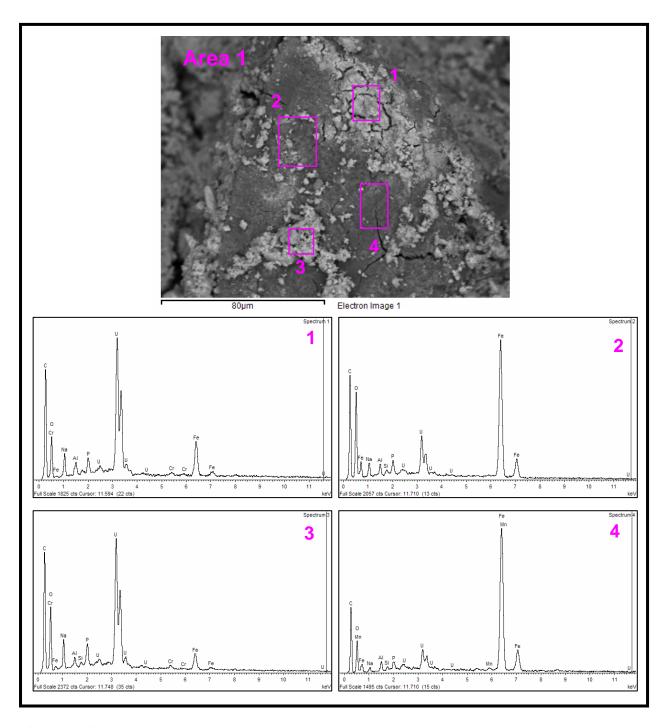
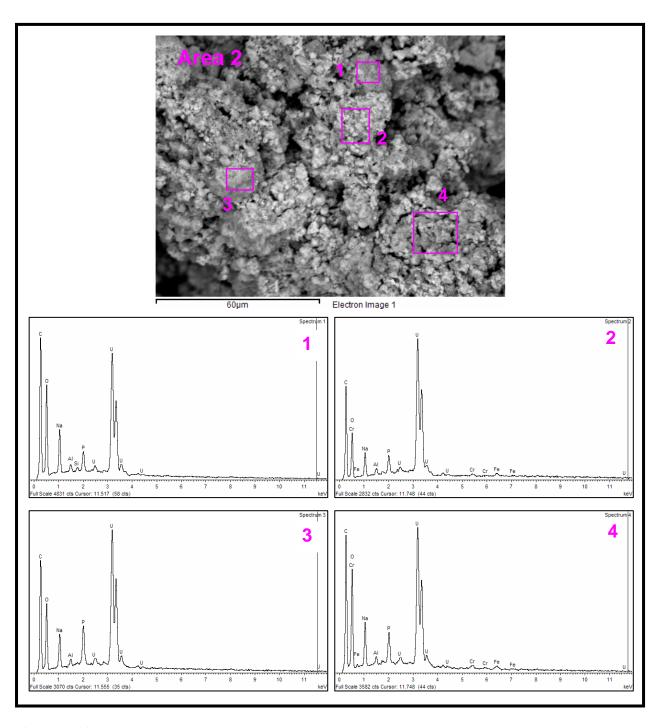




Figure H.6

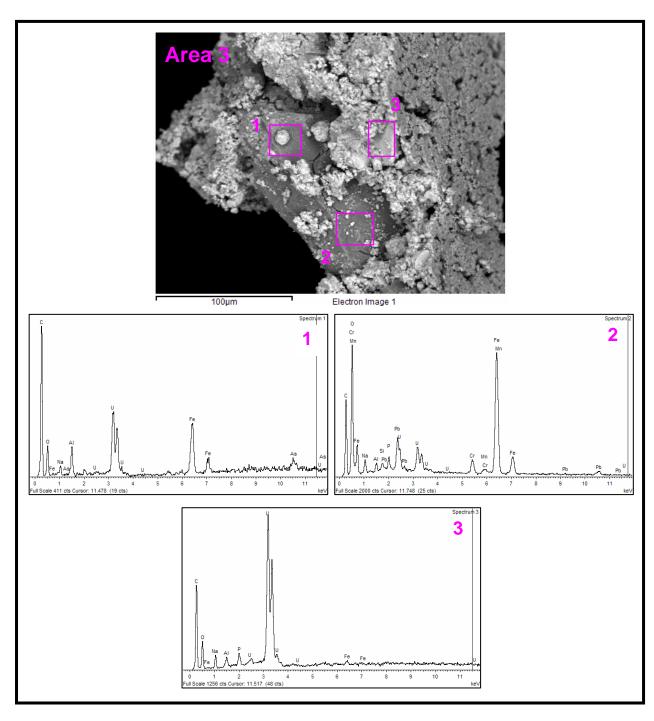

Extraction Solid from C-203 Residual Waste (Sample 19961)

Figure H.13. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.14. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

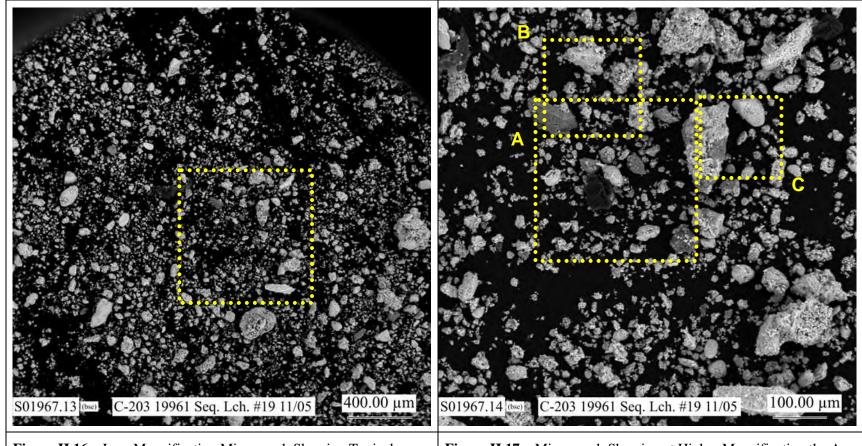
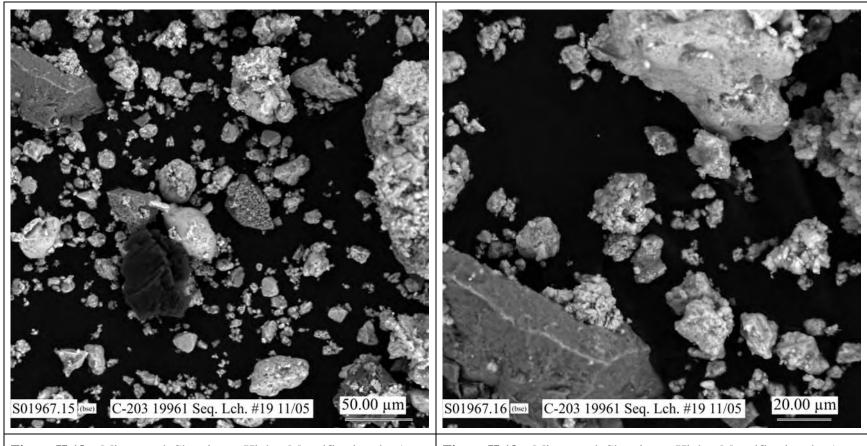

Figure H.15. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Table H.2. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Water Extraction Leached Solids

Figure No./									Ato	mic% ¹	l							
Area of				Maj	or Cat	ions				Anions	32	Others						
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si			
	1	4.6	3.3	4.4		0.3			24	61	1.1	1.0						
H.13 / 1	2	0.8	1.8	11					29	56	0.6	0.6			0.2			
11.13/1	3	3.7	3.6	1.8		0.3			32	57	1.3	0.6			0.3			
	4	0.6	0.7	18	0.3				16	63	0.6	0.8			0.2			
	1	3.0	4.4						38	53	1.0	0.4			0.2			
H.14 / 2	2	5.5	4.0	0.4		0.3			32	56	1.5	0.6						
П.14 / 2	3	4.1	4.1						34	55	2.3	0.5						
	4	3.3	4.3	0.3		0.3			38	52	1.5	0.4						
	1	1.8	1.1	5.7					17	73		1.8				As - <0.1		
H.15/3	2	0.6	1.5	11	0.2	0.8			39	45	0.6	0.5			0.3	Pb - 0.6		
	3	7.3	3.0	0.8					25	62	1.3	1.0						


^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron. 3 = Carbon concentrations (in italics) are suspect, and are likely too large.

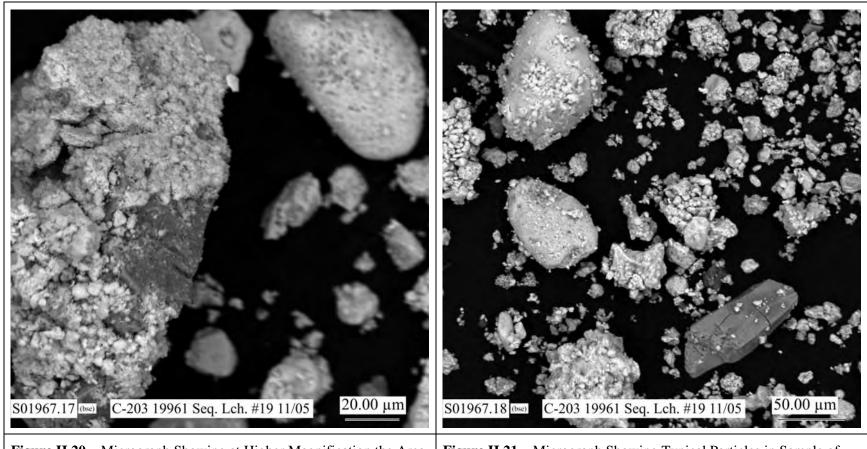

Figure H.16. Low Magnification Micrograph Showing Typical Particles in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961)

Figure H.17. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.16

Figure H.18. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure H.17

Figure H.19. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure H.17 (Areas where EDS analyses were made are shown in Figure H.28.)

Figure H.20. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled C in Figure H.17 (Areas where EDS analyses were made are shown in Figure H.29.)

Figure H.21. Micrograph Showing Typical Particles in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.30.)

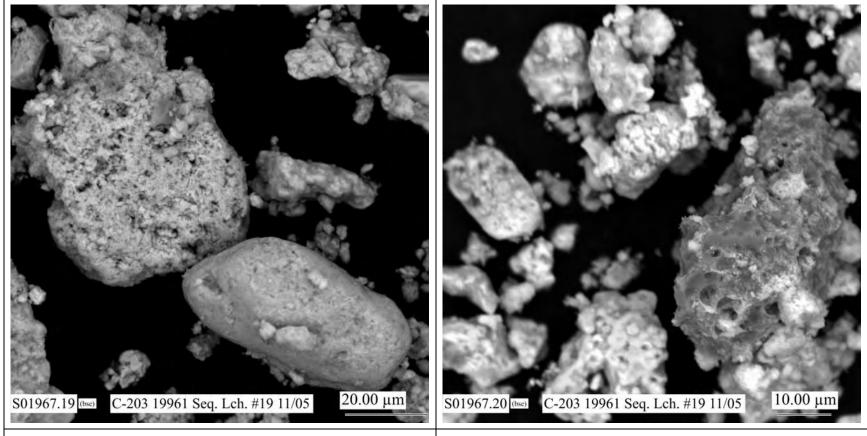
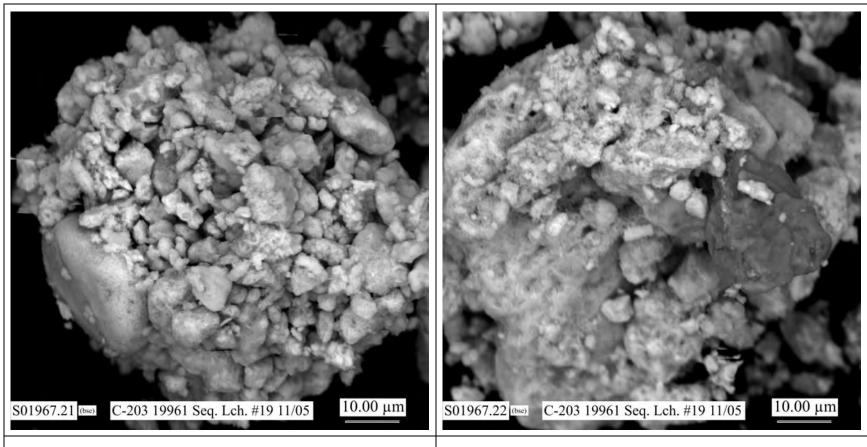



Figure H.22. Micrograph Showing Typical Particles in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.31.)

Figure H.23. Micrograph Showing Typical Particles in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.32.)

Figure H.24. Micrograph Showing Typical Particle Aggregates in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961)

Figure H.25. Micrograph Showing Typical Particle Aggregates in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.33.)

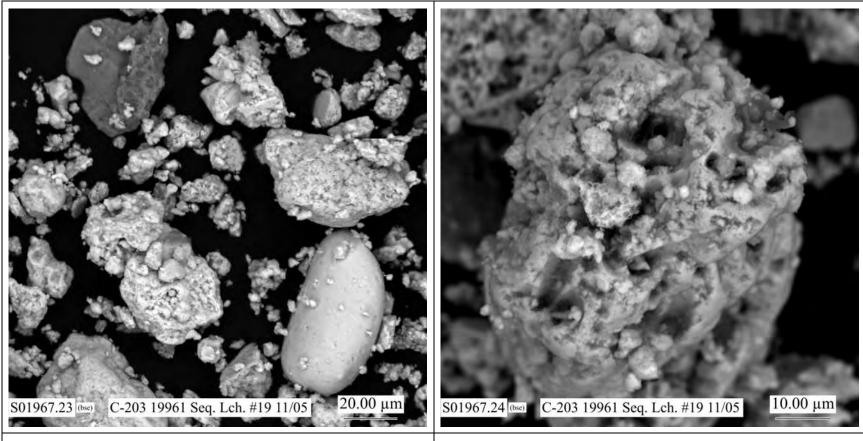
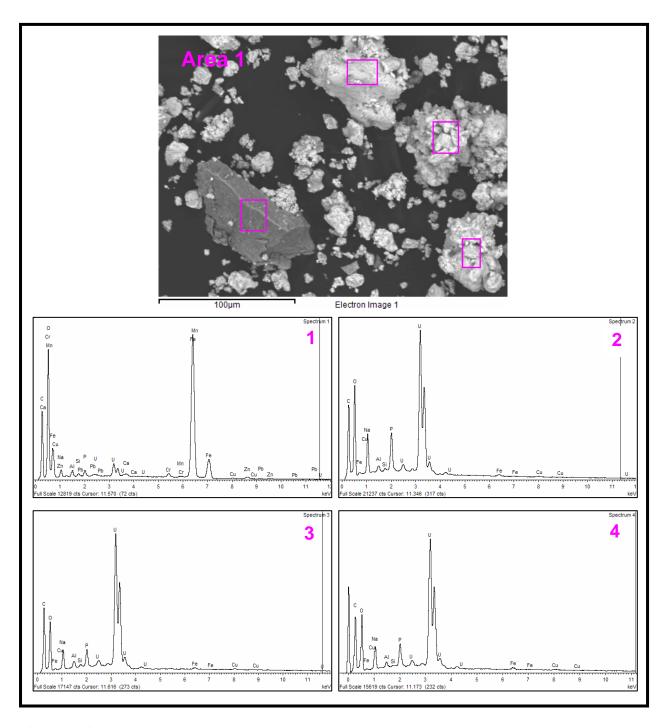
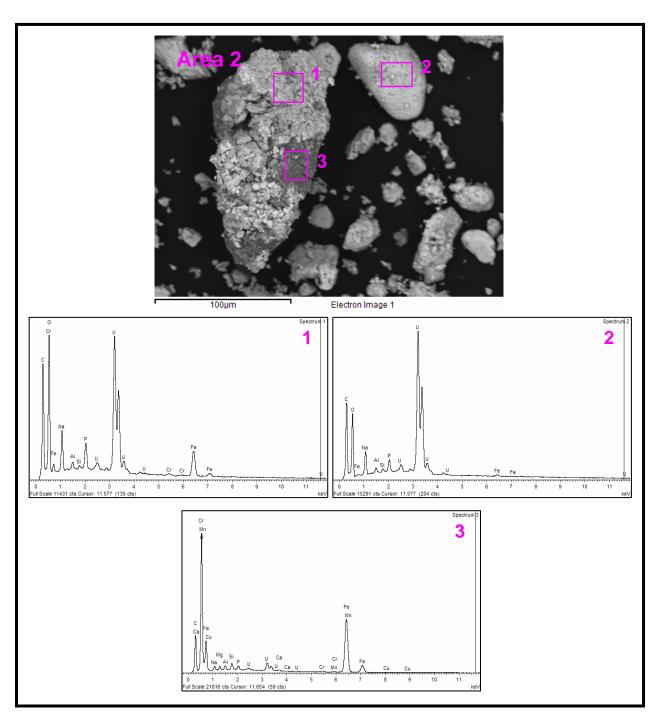
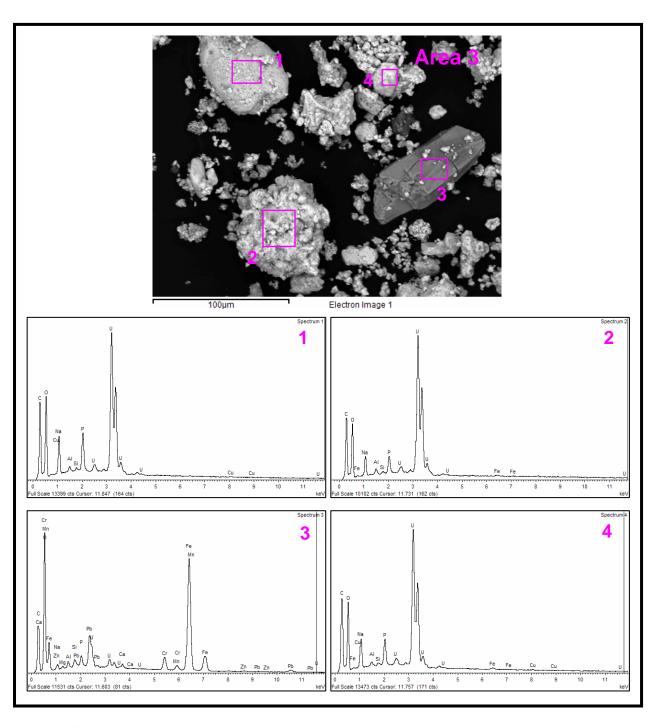
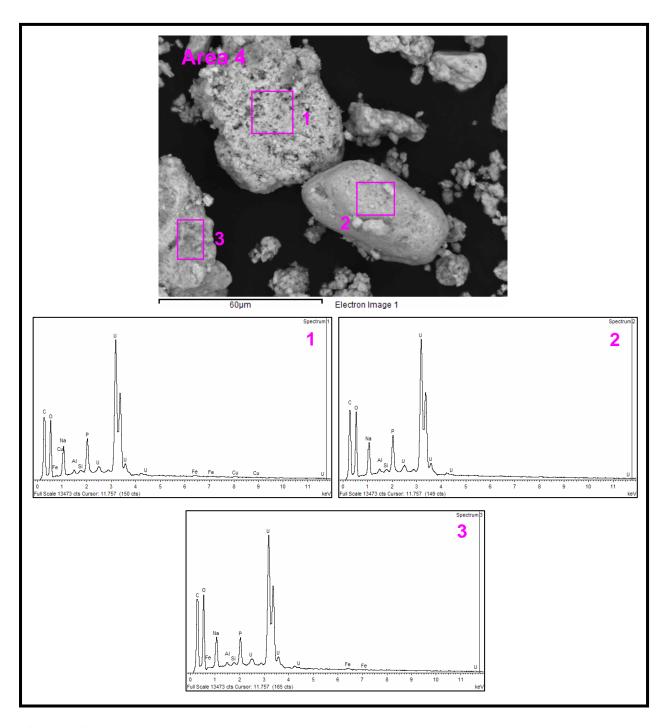




Figure H.26. Micrograph Showing Typical Particles in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.34 and H.35.)


Figure H.27. Micrograph Showing Typical Particle Aggregate in Sample of Sequential Leached Water Extraction Solids from C-203 Residual Waste (Sample 19961)


Figure H.28. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

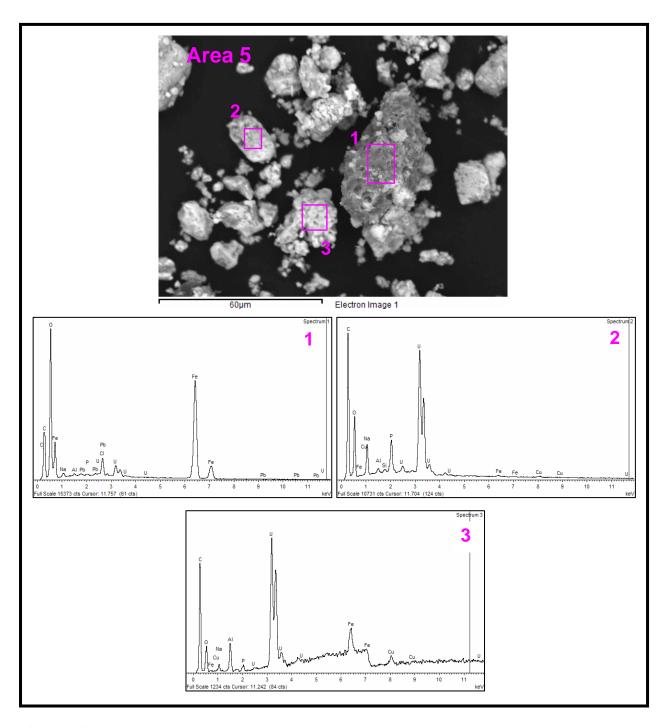
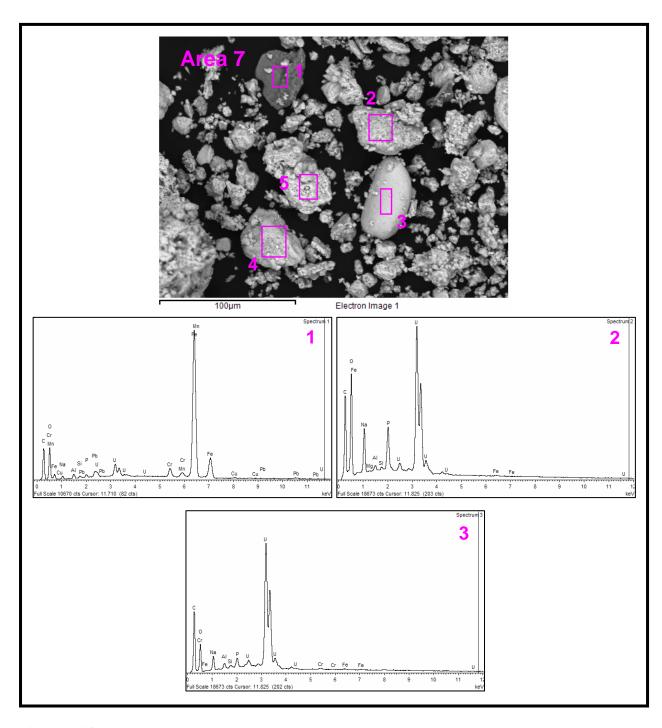

Figure H.29. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.30. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.31. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

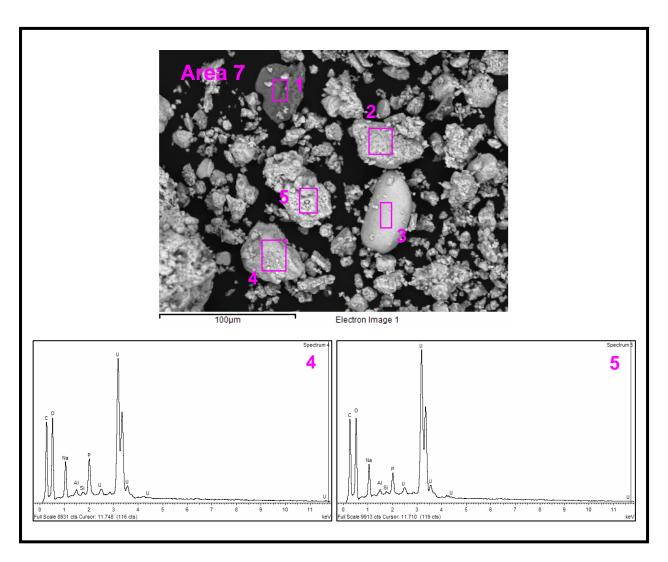

Figure H.32. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.33. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.34. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.35. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

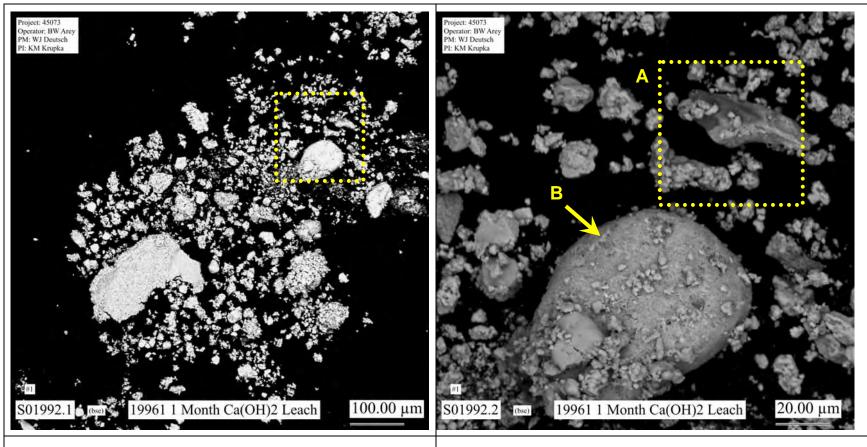
Table H.3. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Water Extraction Leached Solids

Figure No./									1	Atomic	% ¹							
Area of				Maj	jor Cat	ions				Anions	s ²	Others						
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si			
	1	0.3	0.7	13	0.1	0.2		0.1	39	45	0.3	0.4	0.1		0.1	Pb - <0.1, Zn - 0.4		
H. 28 / 1	2	4.6	5.5	0.2					46	41	2.5	0.4	0.1		0.2			
11. 20 / 1	3	6.3	4.1	0.2					39	48	1.7	0.7	0.2		0.2			
	4	6.1	4.9	0.3					43	42	2.3	0.6	0.2		0.1			
	1	3.0	4.0	2.2		0.1			46	43	1.2	0.4			0.1			
H.29 /2	2	5.8	4.2	0.2					43	45	1.0	0.4			0.3			
	3	0.3	0.8	7.6	0.1	0.1		< 0.1	56	33	0.3	0.4	0.1	0.5	0.5			
	1	4.7	5.4						43	44	2.7	0.4	0.1		0.2			
H.30 / 3	2	6.6	4.3	0.2					42	44	1.7	0.6			0.2			
п.зо/ з	3	0.3	0.7	12	0.3	1.0		0.2	47	37	0.6	0.4		0.2	0.4	Pb – 0.7, Zn – 0.1		
	4	5.3	4.8	0.2					42	45	2.1	0.3	0.2		0.2			
	1	5.7	5.5	0.1					40	45	3.0	0.4	0.2		0.2			
H.31 /4	2	5.2	5.4						41	45	2.9	0.3			0.2			
	3	4.9	4.9	0.2					45	43	2.1	0.3			0.2			

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

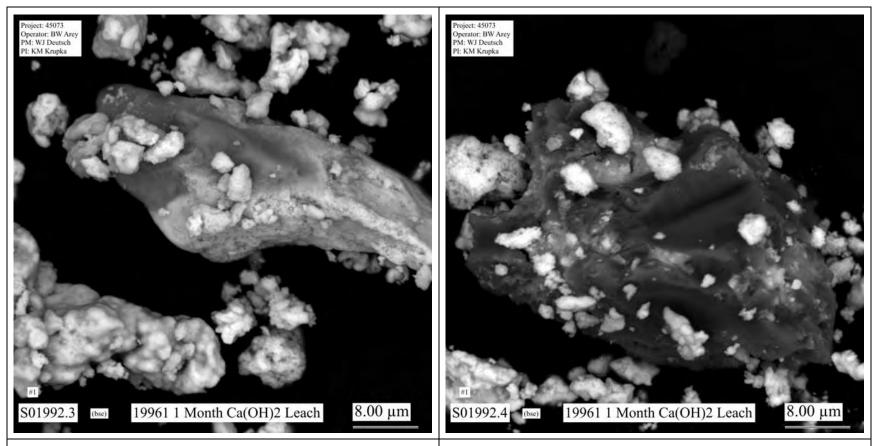
^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.


Table H.4. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Water Extraction Leached Solids

Eiguno No /									I	Atomic	% ¹						
Figure No./ Area of		Major Cations								Anions	s ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	O	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	0.3	0.6	11					50	38	0.1	0.1				Cl – 0.9, Pb - <0.1	
H.32 / 5	2	3.3	3.3	0.1					29	62	1.7	0.3	0.2		0.1		
	3	4.9	1.1	3.6					18	68	0.5	2.6	1.6				
	1	0.4	0.5	8.8	0.1	0.1		0.1	49	39	0.4	0.5		0.4	0.3	Pb – 0.2, Zn – 0.3	
H.33 / 6	2	5.9	4.4	0.3					43	44	1.5	0.4			0.2		
	3	10.3	2.5	0.9					26	58	1.6	1.5					
	1	0.6	0.9	26	0.5	1.0			20	49	0.3	0.6	0.2		0.2	Pb – 0.2	
	2	4.2	5.4	0.1					46	41	2.5	0.3		0.1	0.2		
H.34 and H.35 / 7	3	7.6	3.8	0.2		0.2			31	55	1.2	0.8			0.3		
	4	4.6	5.0						44	44	2.5	0.4			0.2		
	5	5.1	4.9						45	43	1.5	0.4			0.2		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.


^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Figure H.36. Low Magnification Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961)

Figure H.37. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.36

Figure H.38. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square Labeled A in Figure H.37 (Areas where EDS analyses were made are shown in Figure H.51.)

Figure H.39. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.52.)

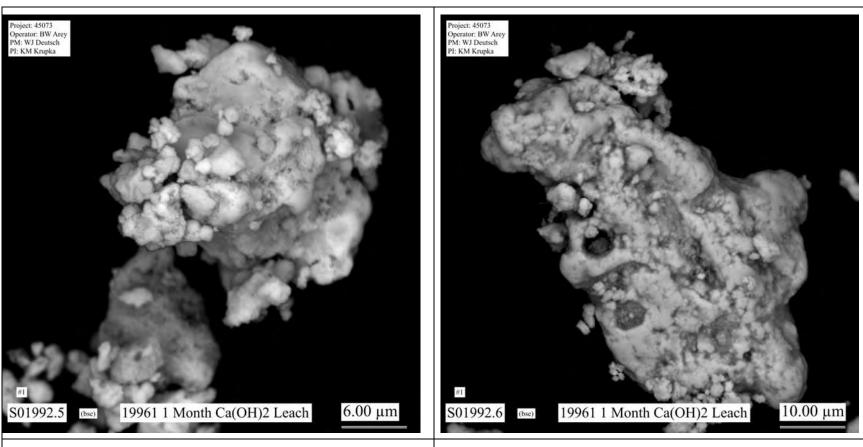
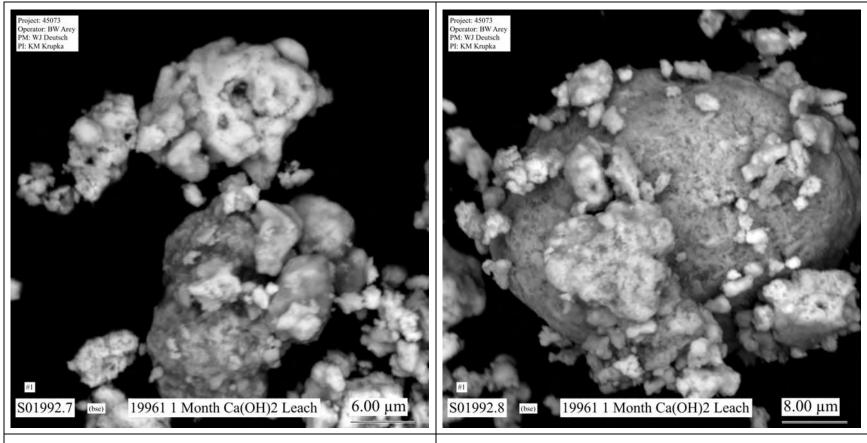
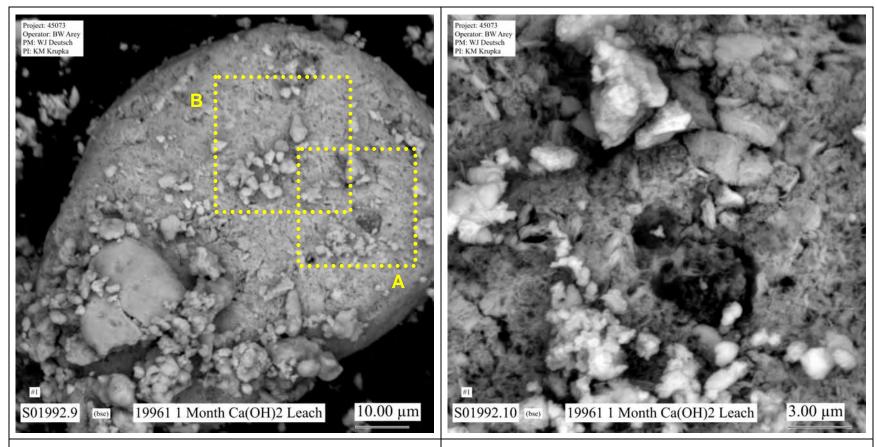


Figure H.40. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.53.)

Figure H.41. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.54 and H.55.)

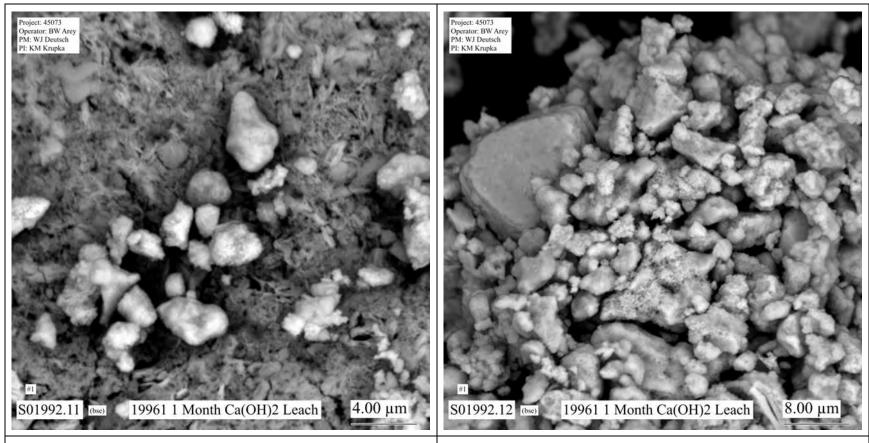

Figure H.42. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.56 and H.57.)

Figure H.43. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.58.)

Figure H.44. Micrograph Showing at Higher Magnification the Large Particle Aggregate Labeled B in Figure H.36 (Areas where EDS analyses were made are shown in Figure H.59.)

Figure H.45. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure H.44

Figure H.46. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled B in Figure H.44

Figure H.47. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961)

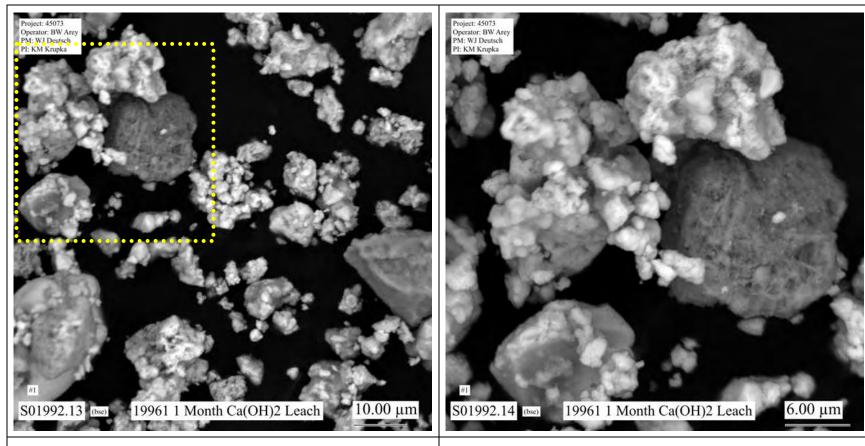
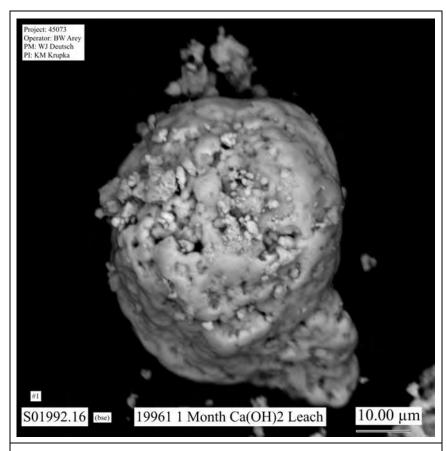
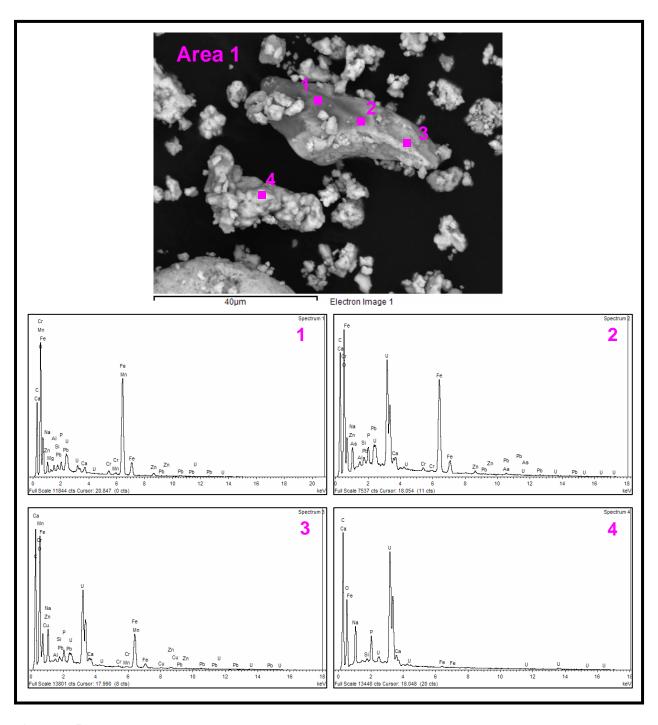
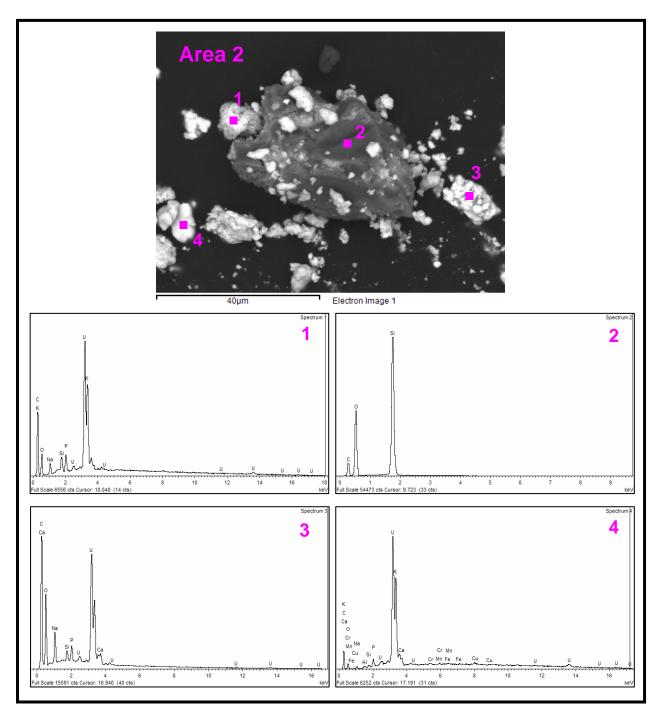
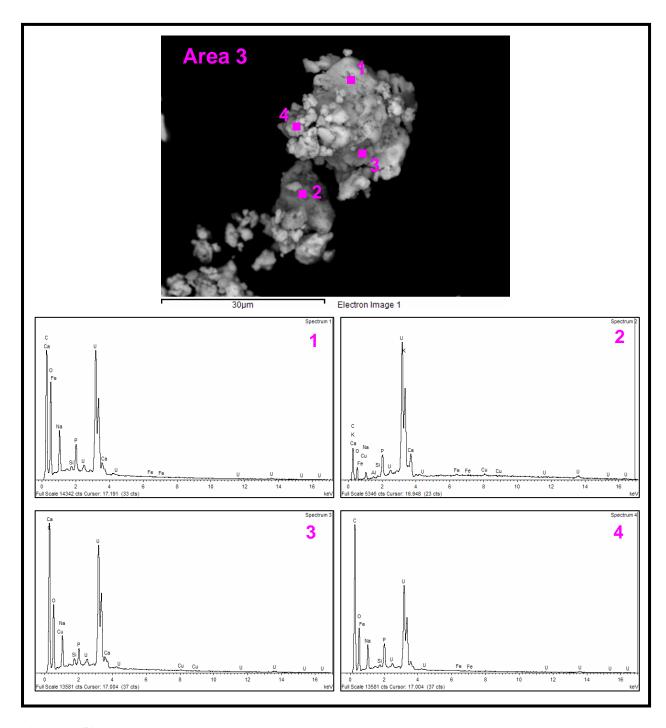
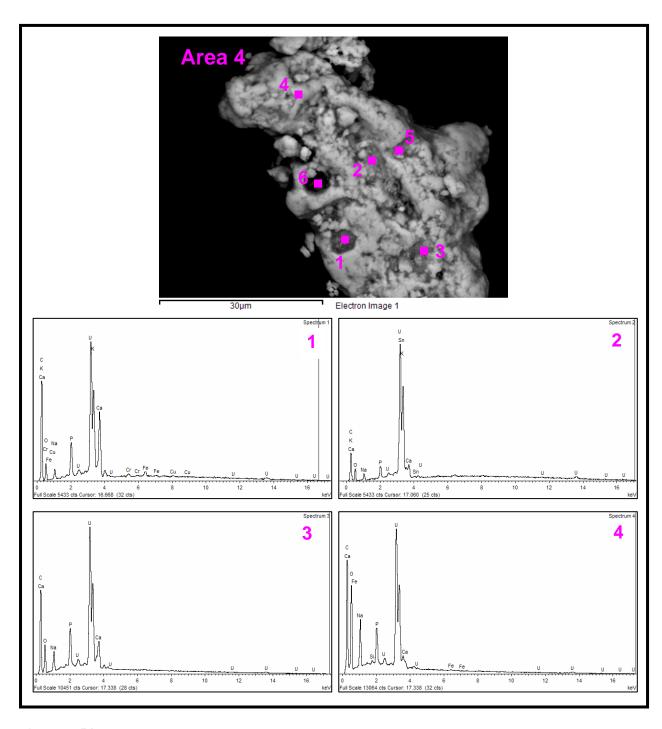
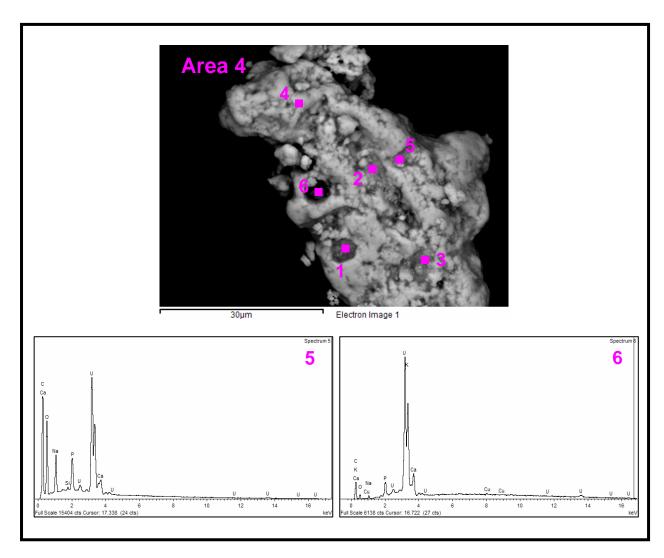




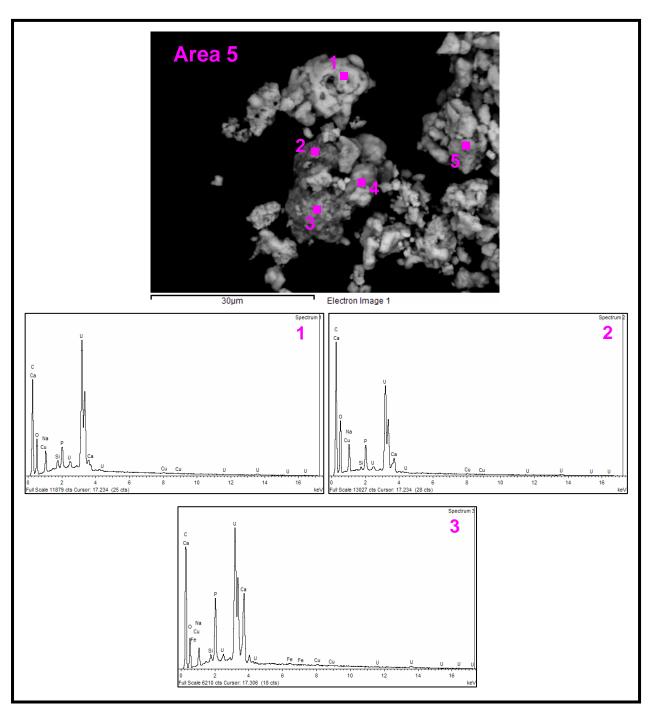
Figure H.48. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.60 and H.61.)

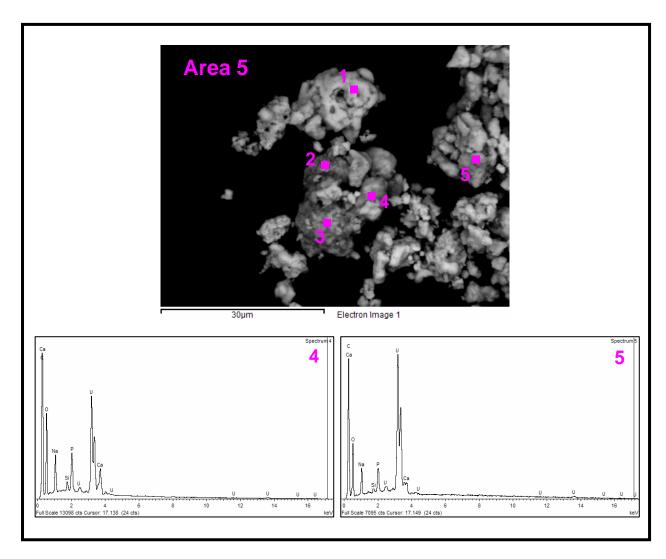

Figure H.49. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.48

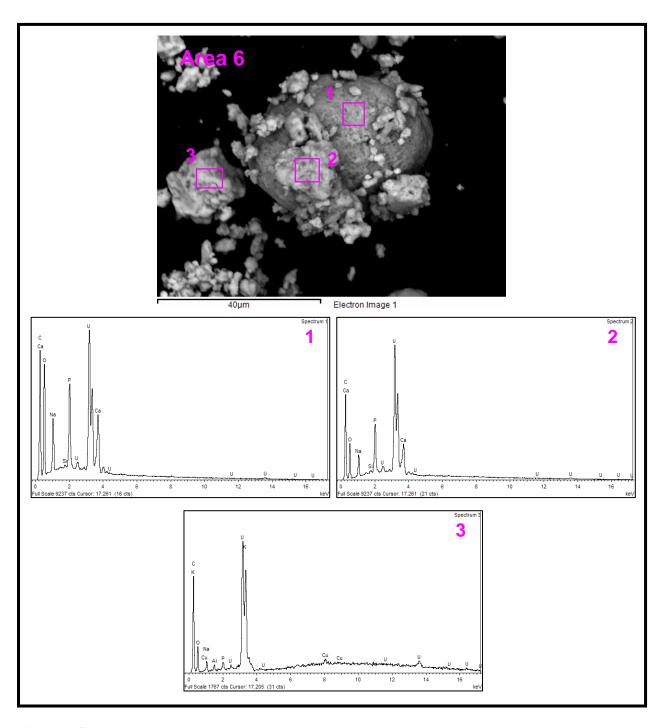

Figure H.50. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961)

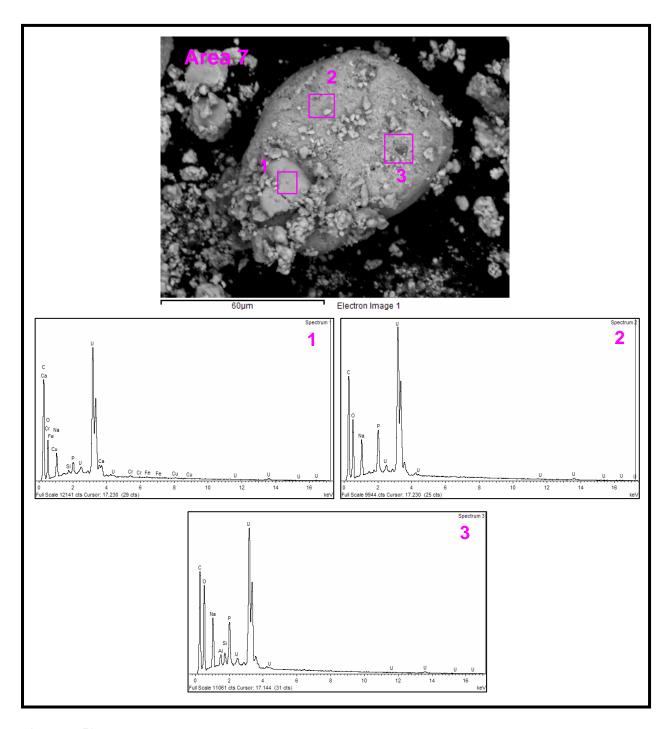

Figure H.51. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

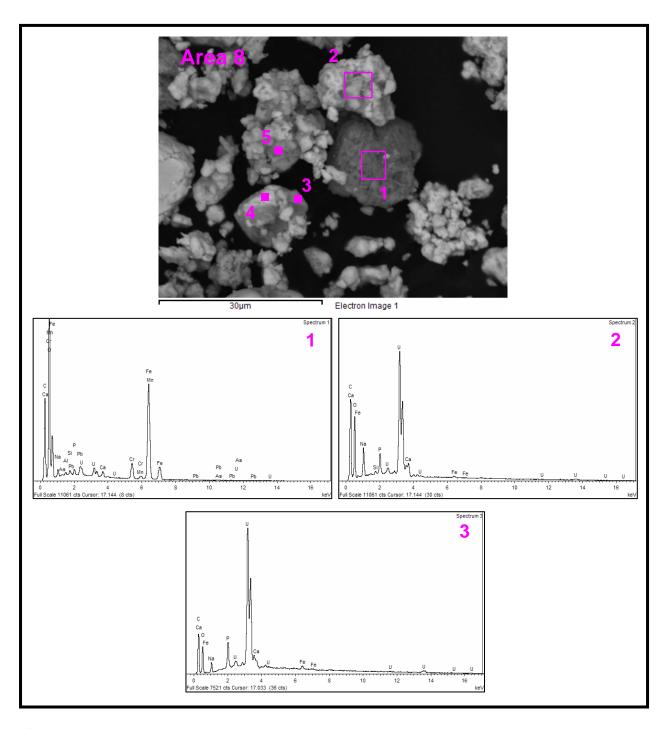

Figure H.52. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.53. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.54. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.55. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.56. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.57. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

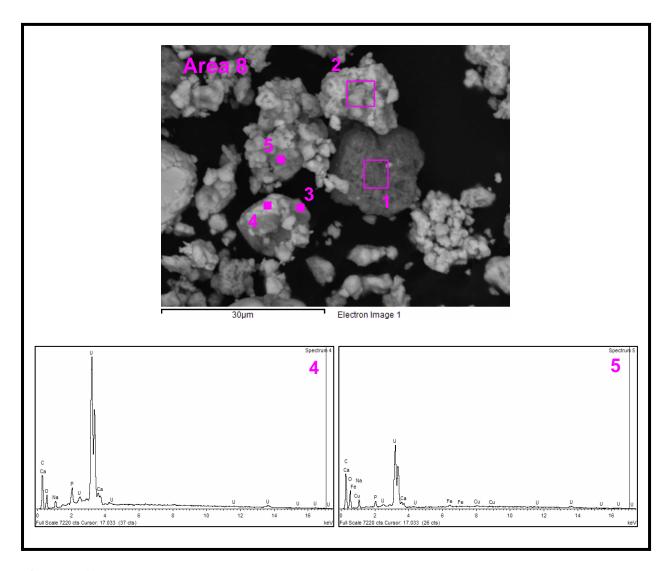

Figure H.58. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.59. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.60. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.61. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Table H.5. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Ca(OH)₂ Leached Solids

Figure No./			Atomic% ¹															
Area of Interest	Spectrum			Maj	or Cat	ions			Anions ²			Others						
		U	Na	Fe	Mn	Cr	Ni	Ca	O	\mathbb{C}^3	P	Al	Cu	Mg	Si			
H.51 / 1	1	0.2	0.9	8.6	0.1	0.2		0.2	42	46	0.4	0.3		0.2	0.3	Pb - 0.3, Zn - 0.5		
	2	2.0	1.6	6.5		0.2		0.4	40	47	0.6	0.2			0.3	As - <0.1, Pb – 0.3, Zn – 0.4		
11.51 / 1	3	1.5	2.7	2.6	< 0.1	0.1		0.2	41	51	0.5	0.1	0.1		0.2	Pb - 0.1, Zn - 0.2		
	4	3.1	4.1	0.1				0.2	33	58	1.4				0.2			
	1	7.3	2.6						23	63	2.1				1.5	K – 0.5		
H.52 / 2	2								54	33					13			
П.32 / 2	3	3.0	3.5					0.5	36	56	0.9				0.6			
	4	20	1.8	0.3	0.6	0.5		2.3	18	50	2.6	0.6	1.4		0.8	K – 1.5		
	1	3.2	4.4	0.1				0.2	39	51	1.4				0.2			
H.53 / 3	2	12	2.9	0.5				4.6	23	51	4.3	0.3	0.8		0.3	K – 0.4		
	3	3.3	3.6					0.3	32	59	0.9		0.1		0.4			
	4	2.5	2.8	0.1					26	67	1.4				0.2			

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

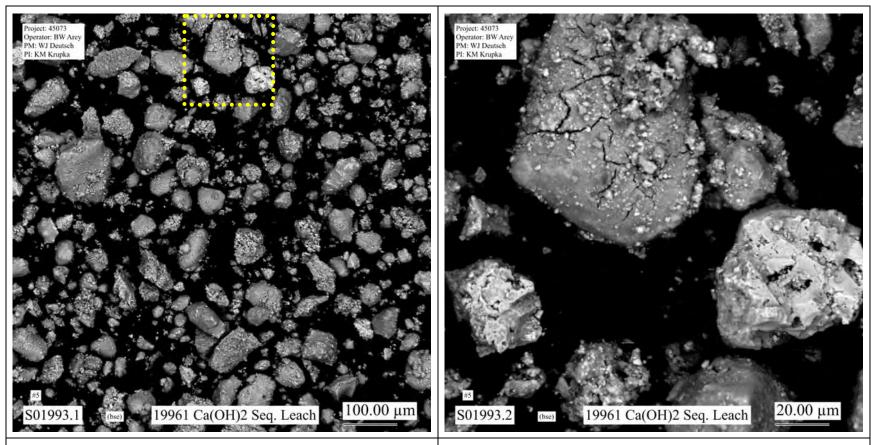
Table H.6. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Ca(OH)₂ Leached Solids

Figure No./			Atomic% ¹															
Area of		Major Cations								Anions ²			Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	\mathbb{C}^3	P	Al	Cu	Mg	Si			
	1	5.0	1.6	0.7		0.3		5.3	15	70	2.6		0.3			K – 0.1		
	2	14	3.3					2.9	27	47	2.9					K – 1.5, Sn – 0.9		
H.54 &	3	6.1	3.7					2.5	24	60	3.4							
H.55 /4	4	3.7	5.3	0.1				0.3	38	50	2.0				0.2			
	5	3.5	4.7					0.8	39	50	1.9				0.2			
	6	22	2.4					8.3	15	46	5.0		0.8			K – 0.6		
	1	5.3	3.7					0.4	27	61	1.8		0.2		0.7			
	2	2.5	3.2					0.8	30	62	1.5		0.1		0.2			
H.56 & H.57 / 5	3	4.0	2.2	0.1				4.2	20	66	3.7		0.2		0.5			
	4	2.2	3.4					1.1	35	56	1.7				0.4			
	5	4.0	3.2					0.7	29	61	1.4				0.2			

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

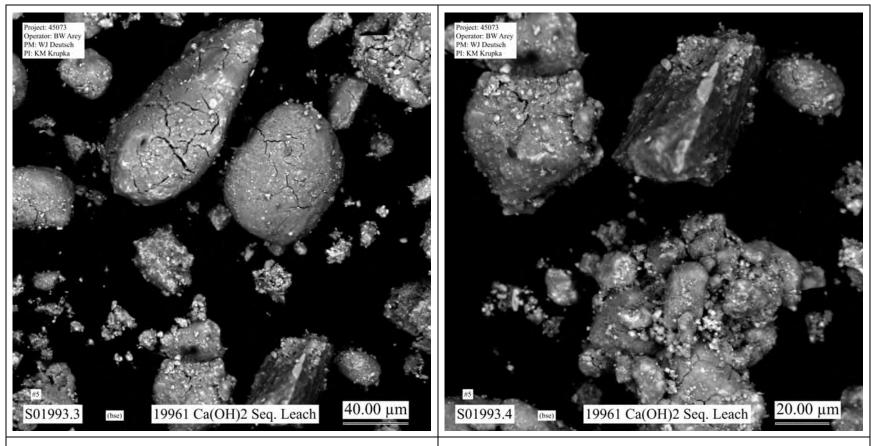
2 = EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.


Table H.7. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact Ca(OH)₂ Leached Solids

Eiguno No /		Atomic% 1															
Figure No./ Area of Interest		Major Cations								Anions	2	Others					
	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	C 3	P	Al	Cu	Mg	Si		
H.58 / 6	1	2.7	4.2					2.3	40	48	3.2				0.1		
	2	5.0	3.6					2.5	27	58	3.8				0.2		
	3	5.6	2.0						22	68	0.7	0.6	1.1			K – 0.9	
	1	5.2	4.1	0.1		0.2		0.8	29	59	1.0		0.1		0.2		
H.59 / 7	2	4.7	4.8						33	55	2.7						
	3	3.8	5.5						38	49	2.3	0.7			0.7		
	1	0.2	0.8	7.6	0.1	0.9		0.2	48	41	0.2	0.1			0.1	As - <0.1, Pb – 0.1	
** 40 0	2	4.7	4.6	0.2				1.0	40	48	1.6				0.2		
H.60 & H.61 / 8	3	10	3.3	0.9				0.8	34	46	4.1						
	4	14	3.3					1.7	25	52	3.5						
	5	6.4	3.7	0.7				0.8	33	54	1.2		0.5				

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.


^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

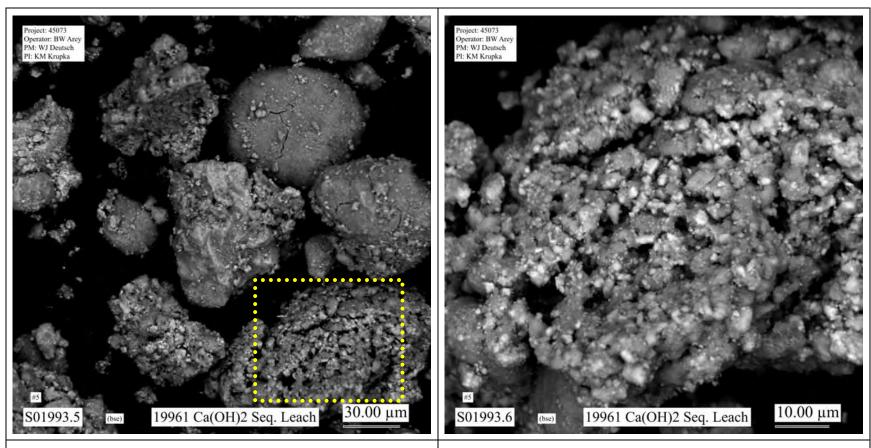

Figure H.62. Low Magnification Micrograph Showing Typical Particles in Sample of Sequential Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961)

Figure H.63. Micrograph Showing at Higher Magnification the Particles Indicated by the Yellow Dotted-Line Square in Figure H.36 (Areas where EDS analyses were made are shown in Figure H.74.)

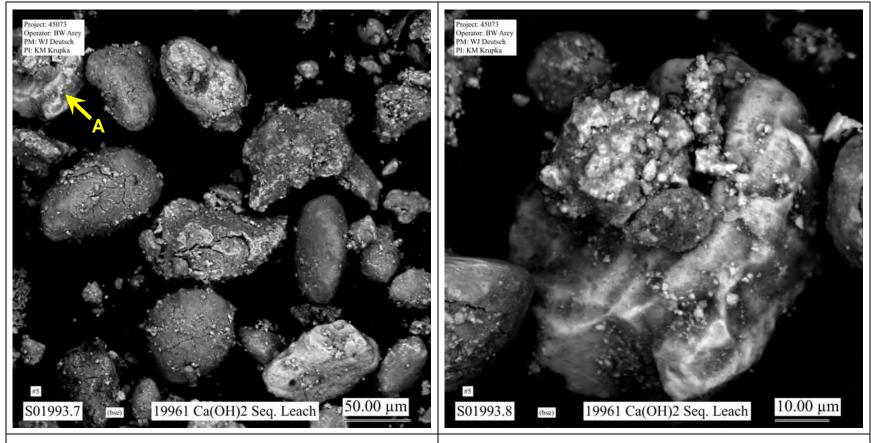

Figure H.64. Micrograph Showing Typical Particles in Sample of Sequential Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961)

Figure H.65. Micrograph Showing Typical Particles in Sample of Sequential Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.75.)

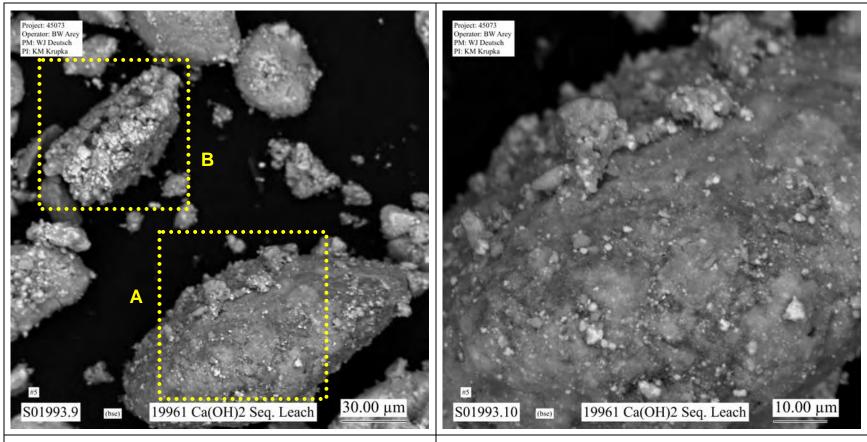

Figure H.66. Micrograph Showing Typical Particles in Sample of Sequential Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.76 and H.77.)

Figure H.67. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.66

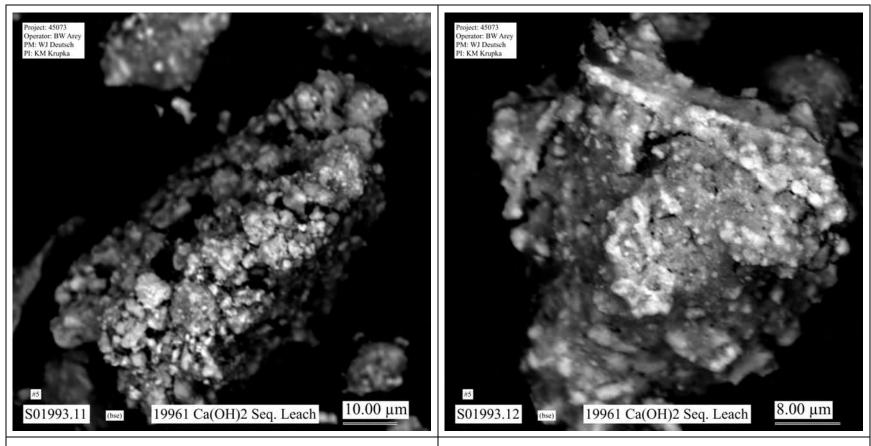

Figure H.68. Micrograph Showing Typical Particles in Sample of Sequential Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.78 and H.79.)

Figure H.69. Micrograph Showing at Higher Magnification the Particle Aggregate Labeled A in Figure H.68 (Areas where EDS analyses were made are shown in Figures H.80 and H.81.)

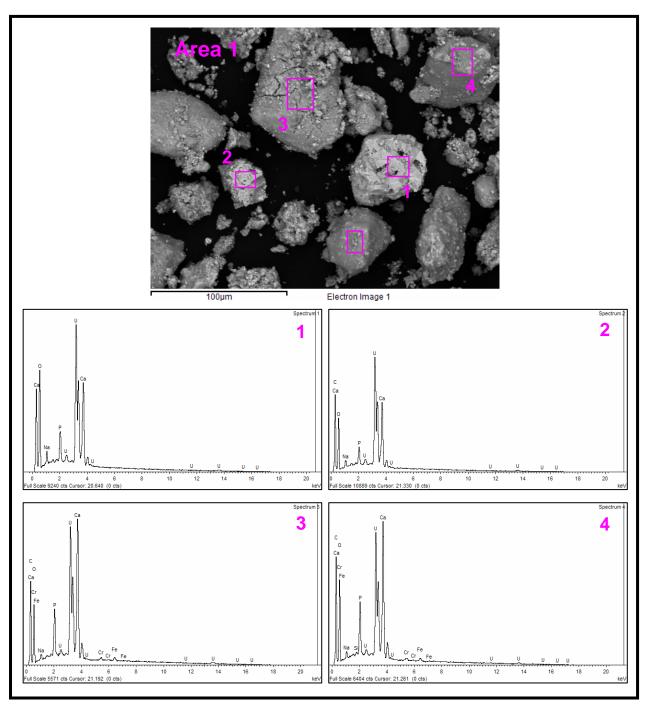

Figure H.70. Micrograph Showing Typical Particles in Sample of Sequential Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961)

Figure H.71. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square Labeled A in Figure H.70 (Areas where EDS analyses were made are shown in Figure H.82.)

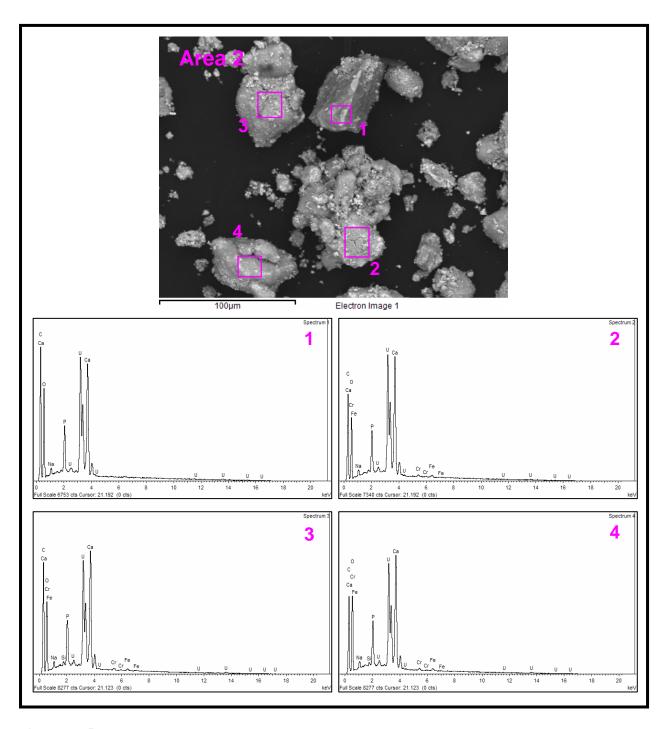
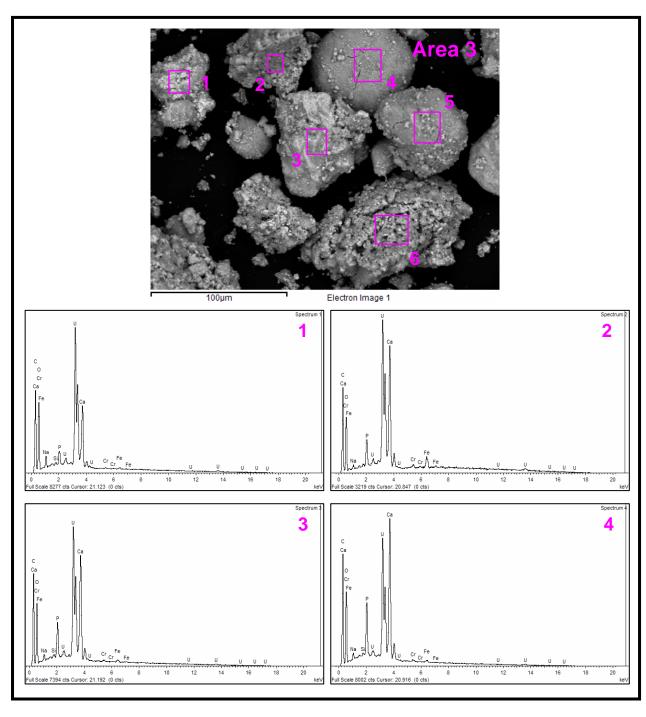
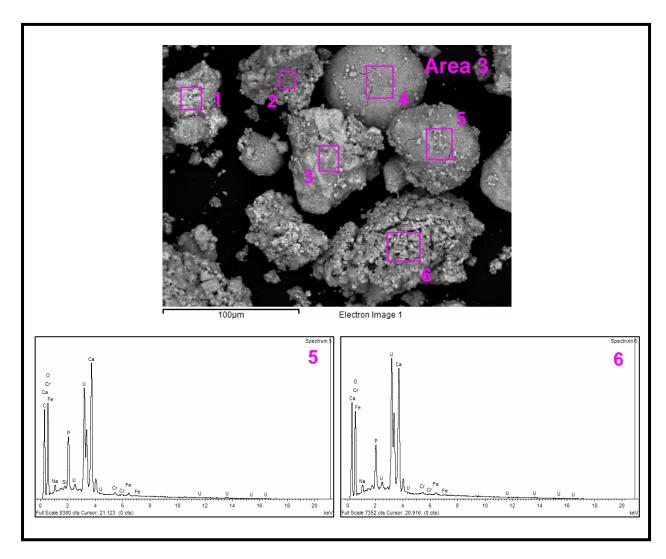
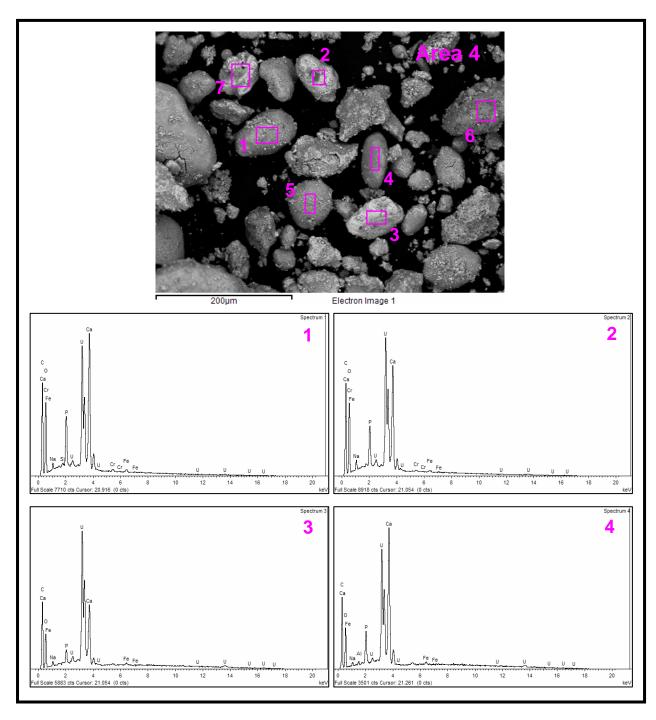
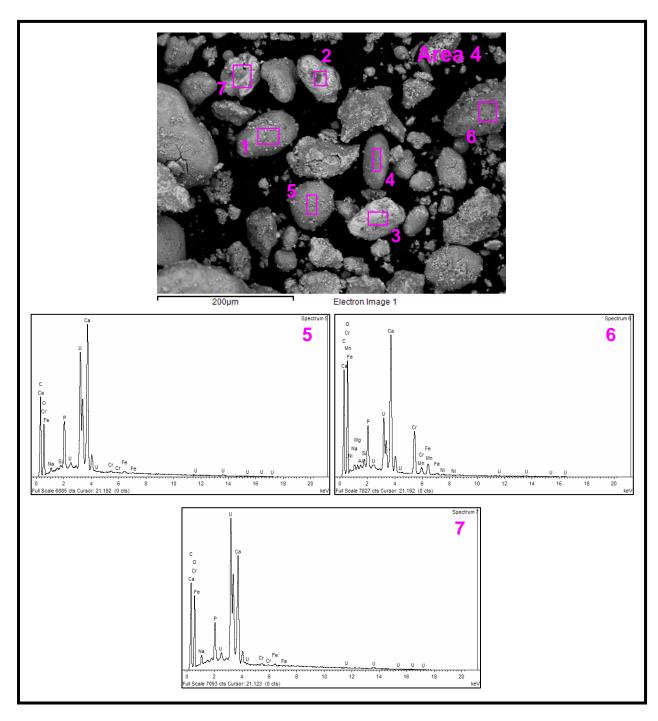


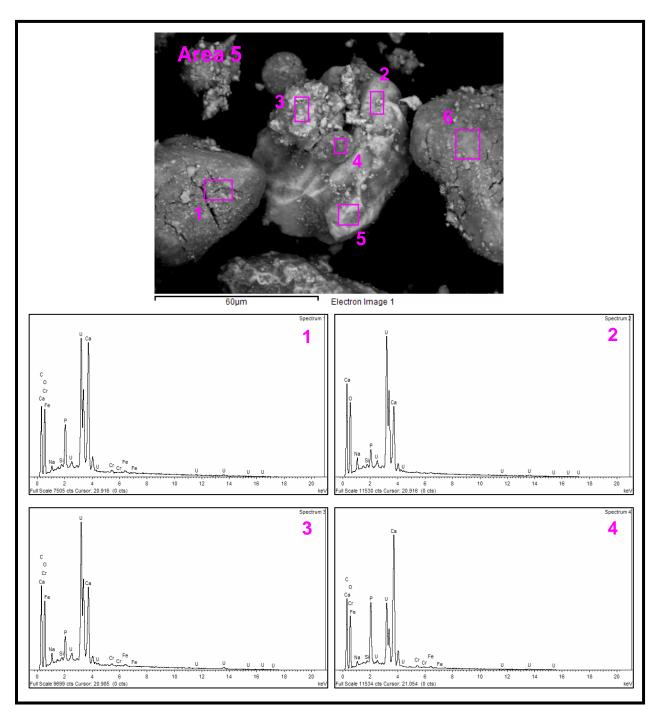
Figure H.72. Micrograph Showing at Higher Magnification Particle Aggregate Indicated by the Yellow Dotted-Line Square Labeled B in Figure H.70 (Areas where EDS analyses were made are shown in Figure H.83.)

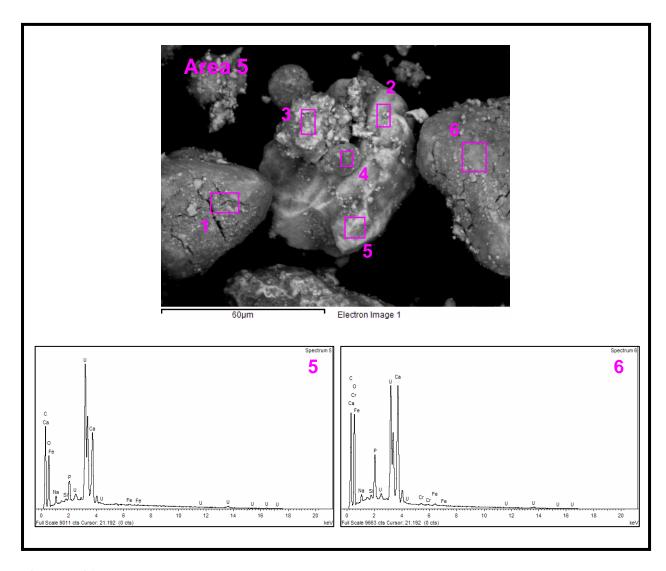

Figure H.73. Micrograph Showing Typical Particle Aggregate in Sample of Sequential Ca(OH)₂ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.84 and H.85.)

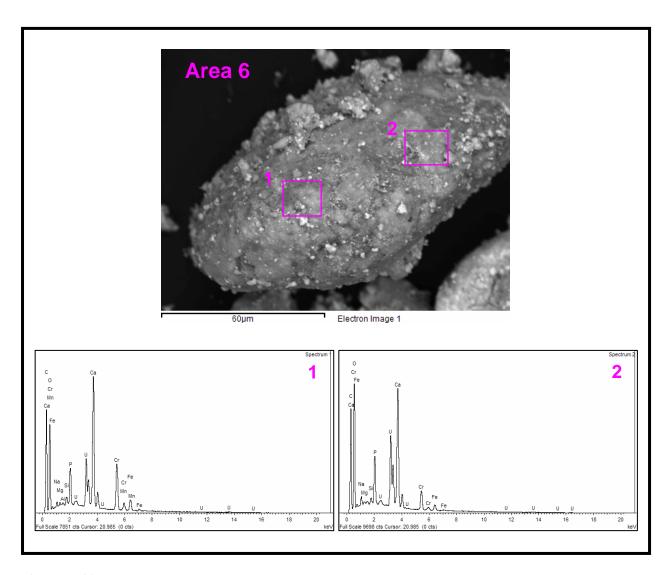

Figure H.74. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

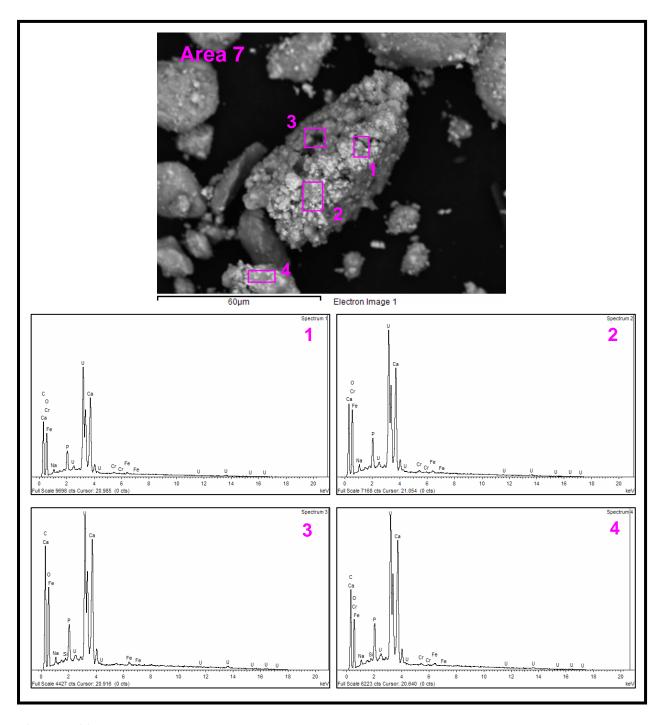

Figure H.75. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

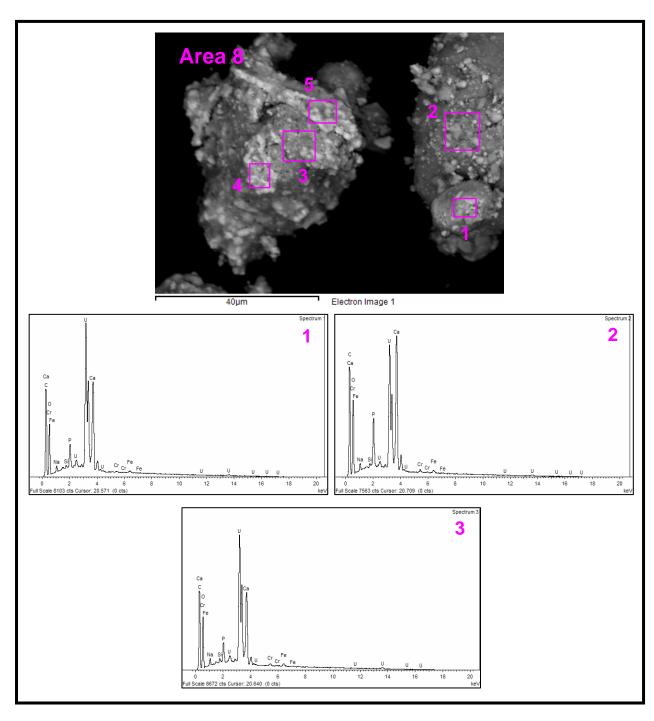

Figure H.76. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.77. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.78. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.79. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.80. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.81. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

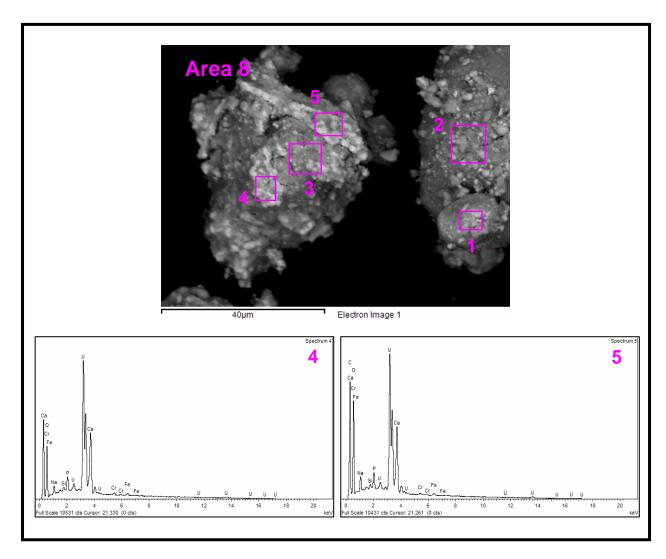

Figure H.82. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.83. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.84. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.85. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential Ca(OH)₂ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Table H.8. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Ca(OH)₂ Leached Solids

Figure No./									Ato	mic%	l					
Area of				Maj	or Cat	ions				Anions	2			0	thers	
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	C 3	P	Al	Cu	Mg	Si	
	1	4.1	1.6					5.0	51	36	1.8					
H.74 / 1	2	4.4	1.2					5.5	42	46	1.5					
11.7471	3	4.0	0.7	0.4		0.2		9.1	39	43	2.8					
	4	3.0	0.7	0.2		0.2		6.8	42	45	2.5				0.2	
	1	2.6	0.7					5.1	41	49	2.0					
H.75 / 2	2	3.6	0.9	0.3		0.2		7.7	41	44	2.6					
п./3/2	3	2.8	0.8	0.2		0.2		6.4	39	49	2.2				0.2	
	4	3.1	0.9	0.2		0.2		7.0	46	40	2.6				0.2	
	1	4.9	1.8	0.2		0.1		4.6	46	42	1.0				0.2	
	2	4.7	0.6	1.4		0.3		8.4	38	45	1.9					
H.76 &	3	4.1	0.8	0.3		0.2		6.9	40	46	2.1				0.2	
H.77 / 3	4	3.0	0.7	0.1		0.1		7.2	39	47	2.6				0.1	
	5	2.6	0.8	0.2		0.2		6.7	47	39	2.6				0.2	
	6	3.4	0.9	0.2		0.2		6.8	45	41	2.3					

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table H.9. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Ca(OH)₂ Leached Solids

Eigung No /									Ato	mic% ¹	l					
Figure No./ Area of				Maj	jor Cat	ions				Anions	s ²			0	thers	
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	C ³	P	Al	Cu	Mg	Si	
	1	3.3	0.9	0.3		0.2		7.7	41	44	2.6				0.2	
	2	3.8	1.2	0.2		0.1		6.4	41	44	2.4					
*** == 0	3	6.5	1.0	0.3				6.6	35	49	1.3					
H.78 & H.79 / 4	4	4.3	0.6	0.3				11	36	45	2.5	0.3				
	5	3.8	0.6	0.3		0.2		9.9	38	45	3.0				0.2	
	6	1.0	0.5	0.8	0.1	2.6	0.1	5.4	44	43	1.6	0.1		0.3	0.3	
	7	4.3	1.2	0.2		0.2		6.8	43	42	2.3					
	1	4.2	0.8	0.3		0.3		8.7	44	39	2.8				0.2	
	2	4.3	1.8					4.4	44	44	1.1				0.2	
H.80 &	3	4.7	1.6	0.2		0.2		5.3	44	43	1.6				0.2	
H.81 / 5	4	2.0	0.6	0.2		0.2		8.5	40	45	3.7				0.1	
	5	5.3	1.4	0.2				5.7	39	47	1.6				0.2	
	6	3.0	0.8	0.2		0.1		6.2	46	41	2.2				0.2	

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

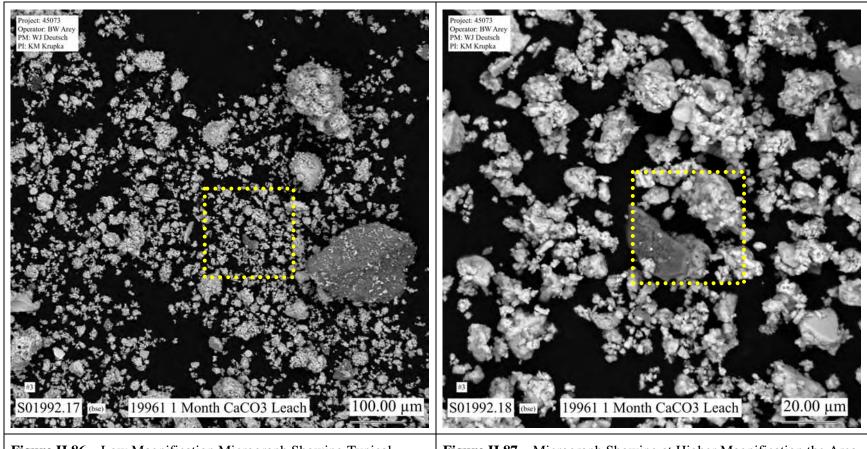
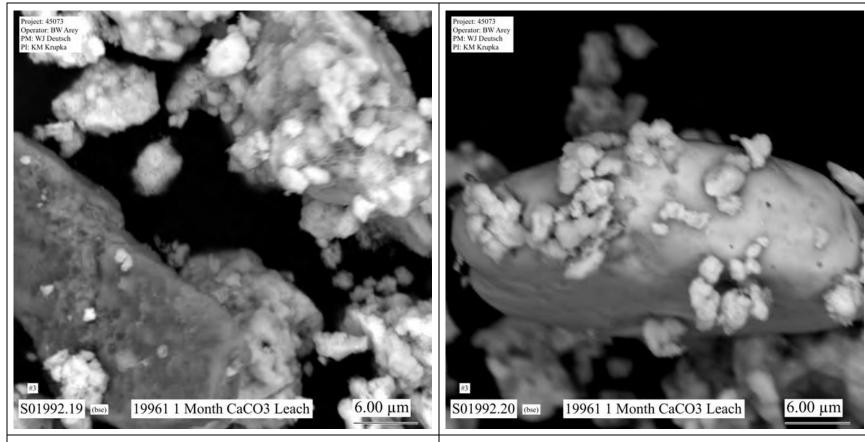

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron. 3 = Carbon concentrations (in italics) are suspect, and are likely too large.

Table H.10. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential Ca(OH)₂ Leached Solids

Figure No./									Ato	mic% ¹	Į.						
Area of				Maj	jor Cat	ions				Anions	s ²	Others					
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	O	\mathbb{C}^3	P	Al	Cu	Mg	Si		
H.82 / 6	1	1.0	0.5	1.0	0.1	3.2		5.7	40	47	1.6	0.1		0.2	0.3		
11.02 / 0	2	1.5	0.8	0.4		1.3		4.9	49	40	1.9			0.2	0.2		
	1	4.9	0.9	0.3		0.2		7.7	42	42	2.0						
H.83 / 7	2	4.7	1.1	0.2		0.2		7.5	45	39	2.1						
11.03 / /	3	3.5	0.8	0.3				6.3	40	47	1.7				0.2		
	4	5.0	0.9	0.3		0.1		9.0	37	45	2.6				0.2		
	1	5.1	1.0	0.2		0.1		6.8	37	47	1.7				0.2		
** 0.4.0	2	3.1	0.9	0.2		0.2		7.0	40	47	2.3				0.2		
H.84 & H.85 / 8	3	4.9	1.1	0.4		0.3		5.8	39	47	1.6				0.3		
	4	5.2	1.4	0.4		0.3		5.1	40	46	1.2				0.3		
	5	3.6	1.6	0.2		0.1		3.6	45	45	0.8				0.2		


^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron. 3 = Carbon concentrations (in italics) are suspect, and are likely too large.

Figure H.86. Low Magnification Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961)

Figure H.87. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.86

Figure H.88. Micrograph Showing at Higher Magnification the Area Indicated by the Yellow Dotted-Line Square in Figure H.87 (Areas where EDS analyses were made are shown in Figure H.98.)

Figure H.89. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.99.)

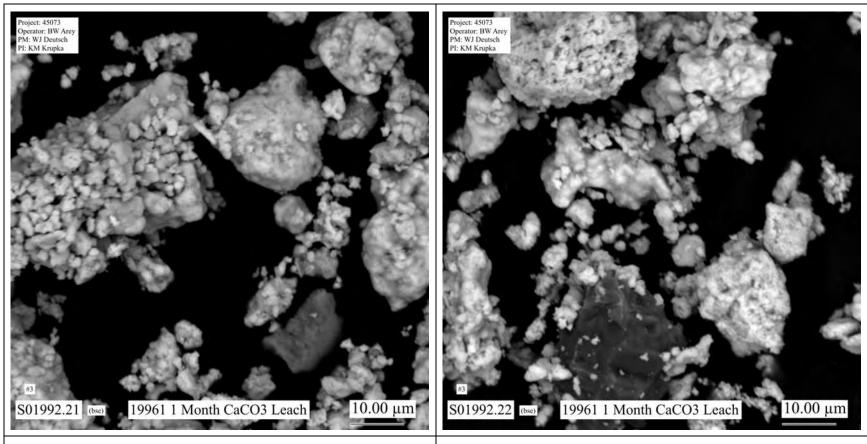


Figure H.90. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.100 and H.101.)

Figure H.91. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.102 and H.103.)

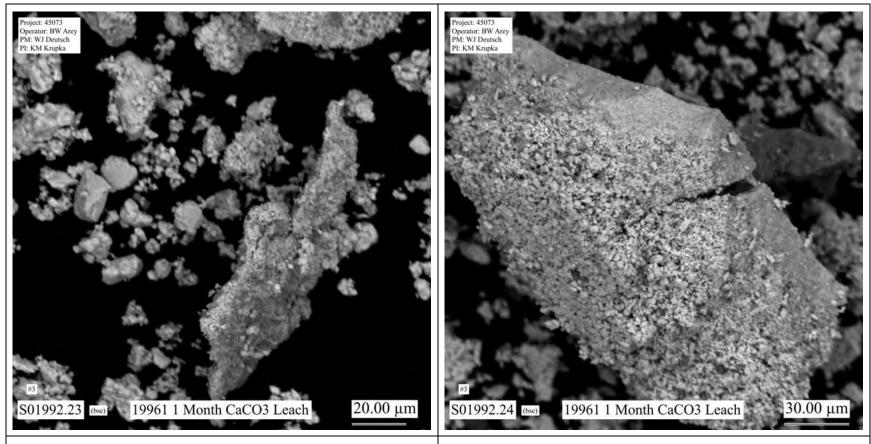
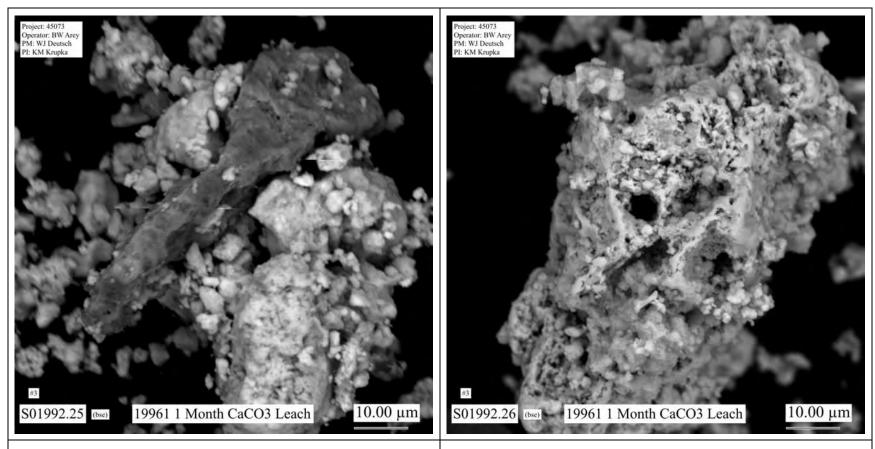
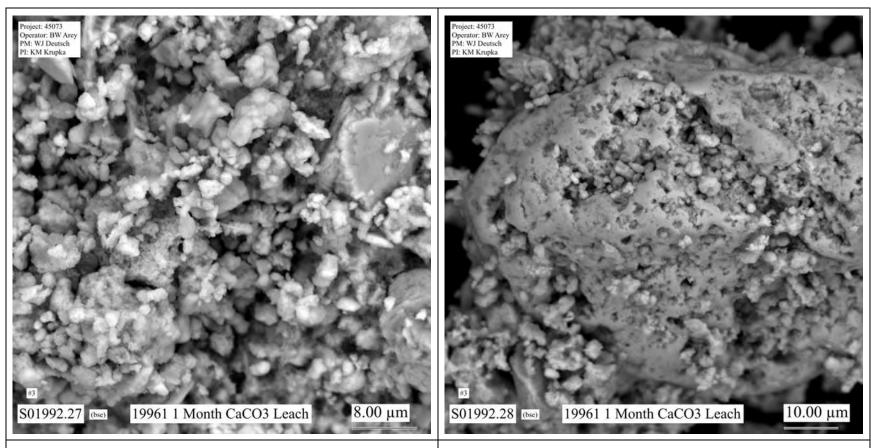


Figure H.92. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.104 and H.105.)

Figure H.93. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.106.)

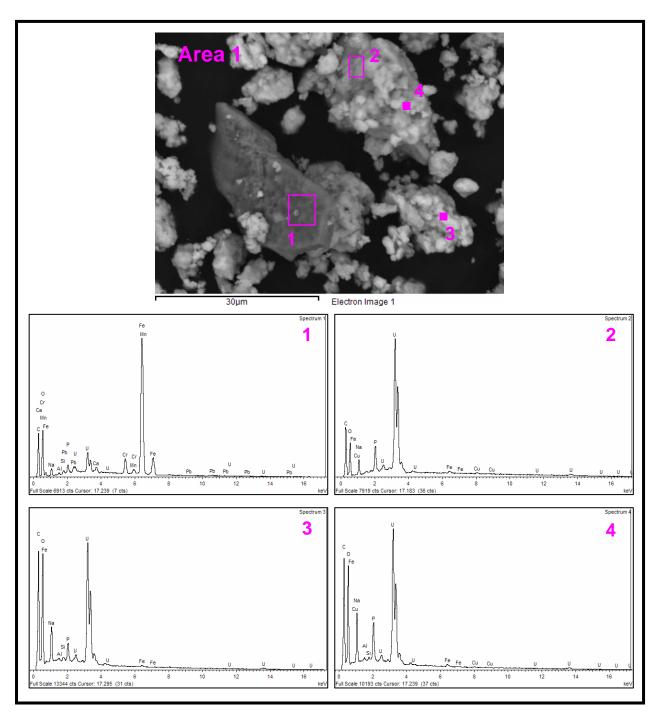

Figure H.94. Micrograph Showing Typical Particles in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.107.)

Figure H.95. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961)

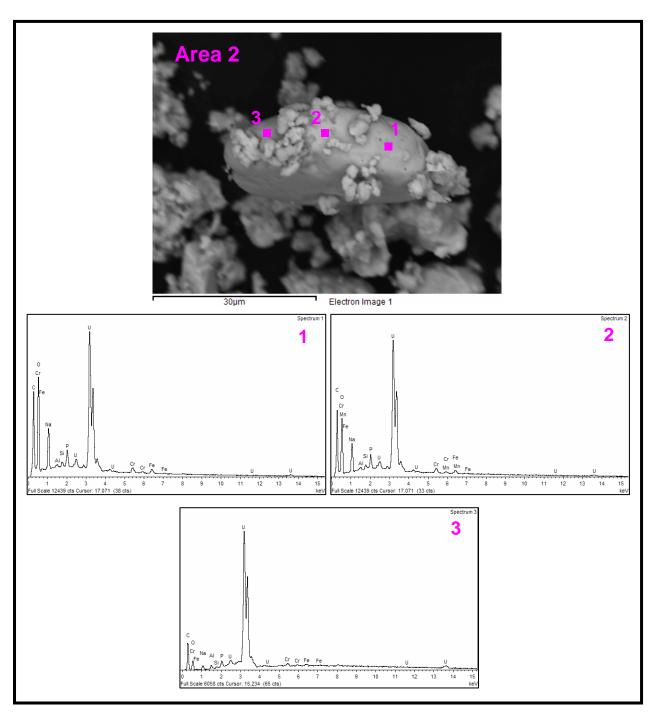
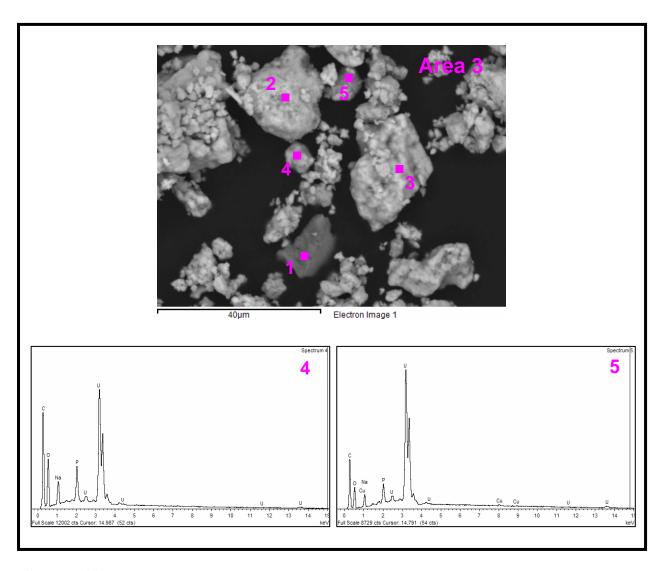
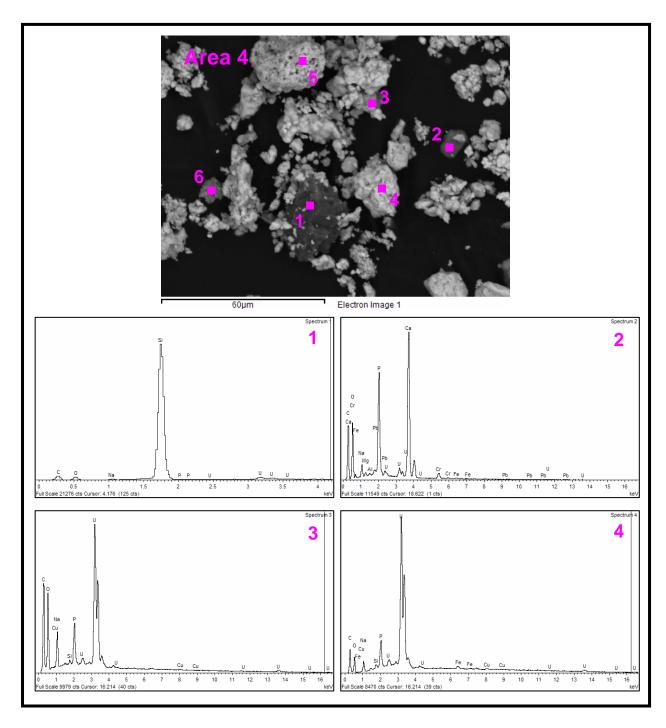
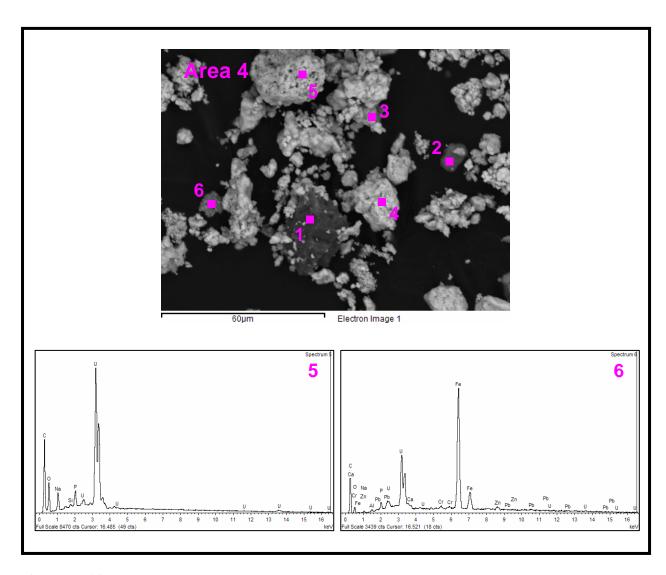


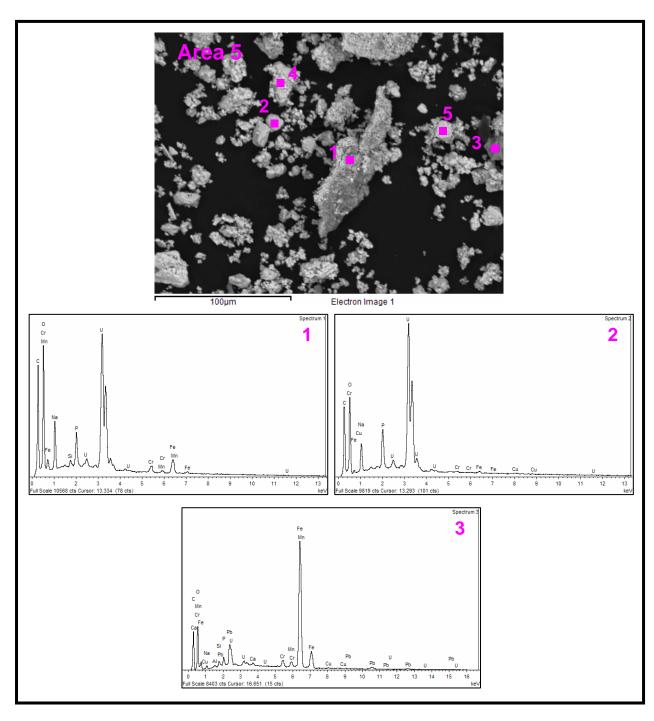
Figure H.96. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961)

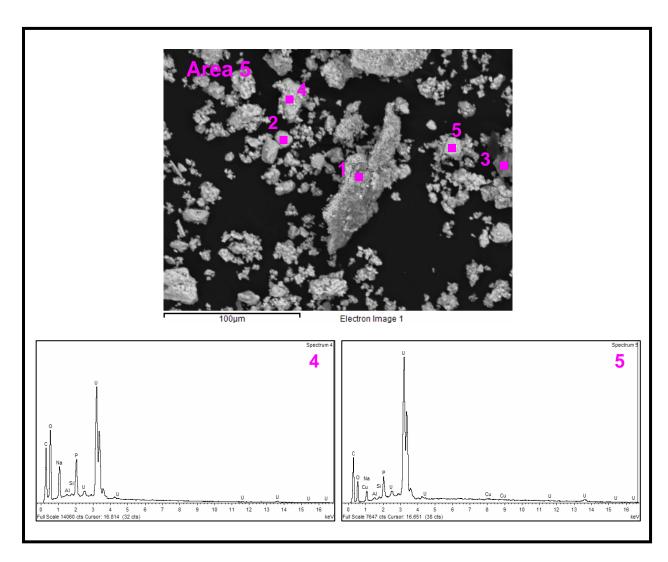

Figure H.97. Micrograph Showing Typical Particle Aggregate in Sample of 1-Month Single-Contact CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961)

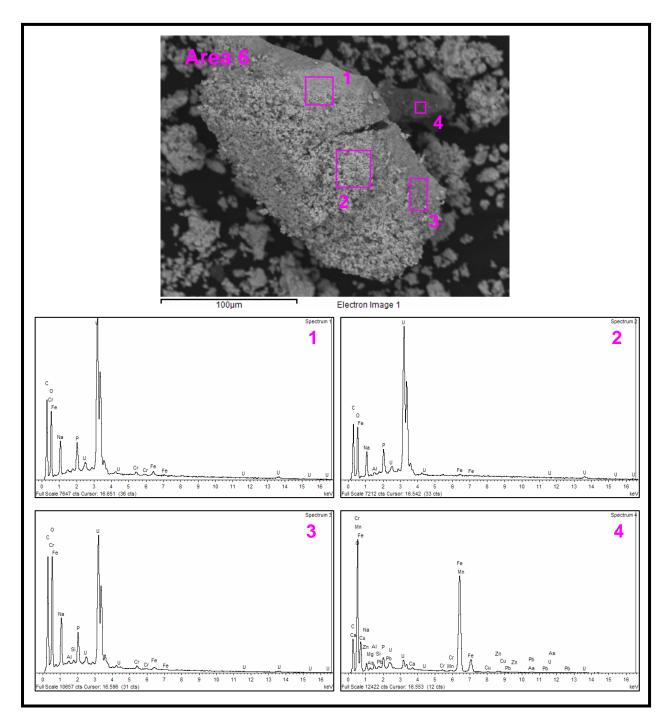

Figure H.98. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.99. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.100. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.101. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.102. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.103. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

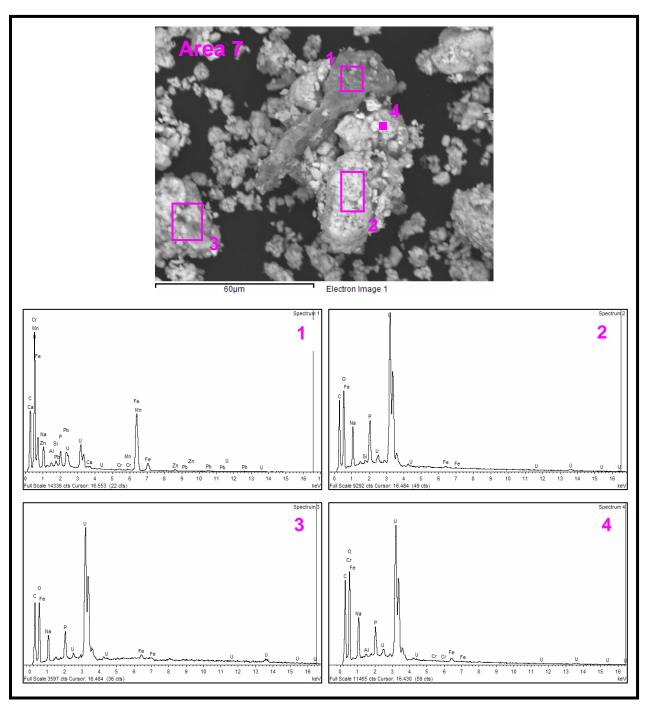

Figure H.104. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.105. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.106. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.107. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in 1-Month Single-Contact CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Table H.11. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact CaCO₃ Leached Solids

Figure No./										Atomio	c% ¹						
Area of				Maj	or Cat	ions				Anions	s ²	Others					
	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si		
	1	0.8	1.8	20	0.3	1.5			24	51	0.7	0.2	0.1		0.3	Pb - 0.2	
H.98 / 1	2	8.0	4.2						35	49	3.2		0.4				
11.90 / 1	3	3.2	3.8	0.1					46	46	1.0	0.1			0.2		
	4	3.4	5.3	0.2					41	48	2.0	0.1	0.1		0.2		
	1	4.3	5.6	0.5		0.5			46	42	1.2	0.2			0.3		
H.99 / 2	2	5.7	5.7	0.6	0.1	0.7			40	46	1.3	0.2			0.3		
	3	17	2.3	0.8		1.0			23	53	1.8	1.1			0.4		
	1	0.1	0.6	16	0.1				37	46	0.1	0.2				Zn - 0.1	
** 400 0	2	4.8	5.3						41	45	3.2	0.1			0.2		
H.100 & H.101 / 3	3	4.1	6.0						45	42	2.8				0.2		
	4	4.2	3.5						32	58	2.6						
	5	9.3	4.0						28	56	2.9		0.3				

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table H.12. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact CaCO₃ Leached Solids

Eigung No /									A	Atomic	% ¹							
Figure No./ Area of				Maj	jor Cat	ions				Anions	32	Others						
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si			
	1	0.4	0.3						13	54	0.2				33			
	2	0.2	1.4	0.1		0.4		7.9	40	44	5.0	0.1		0.2		Pb – 0.1		
** 102.0	3	4.5	4.9						40	48	2.6		0.1		0.3			
H.102 & H.103 / 4	4	15	4.9	1.0					29	43	5.8		0.5		0.8			
	5	7.2	4.1						29	58	1.7				0.3			
	6	3.1	0.6	26		0.4			5.3	61	1.0	0.4				Pb - 0.3, Zn - 1.4		
	7	0.6	2.1	13					44	41	0.5							
	1	3.1	4.9	1.2	0.1	0.5			44	44	1.6				0.3			
	2	5.3	4.5	0.3		0.1			45	42	2.9		0.2					
H.104 & H.105 / 5	3	0.2	0.8	19	0.7	0.7		0.2	25	51	0.7	0.2	0.1		0.5	Pb – 0.7		
	4	4.6	5.5						46	40	3.2	0.2			0.2			
	5	10	3.5						28	54	3.3	0.3	0.4		0.3			

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table H.13. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for 1-Month Single-Contact CaCO₃ Leached Solids

Figure No./			Atomic% ¹															
Area of				Maj	or Cat	ions				Anions	32	Others						
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	O	3	P	Al	Cu	Mg	Si			
	1	5.8	5.4	0.5		0.4			40	46	2.2							
H.106 / 6	2	7.1	5.4	0.2					41	43	2.5	0.3						
11.100 / 0	3	3.2	4.9	0.2		0.2			43	47	1.5	0.1			0.1			
	4	0.3	1.3	12	0.1	0.1		0.1	50	33	0.8	0.4	0.1	0.2	0.2	Pb – 0.2, Zn – 0.3		
	1	0.7	2.5	5.9	0.1	0.1		0.1	49	40	0.8	0.2			0.3	Pb – 0.3, Zn – 0.3		
	2	5.3	6.0	0.2					43	42	3.0				0.2			
H.107 / 7	3	5.8	5.1	0.6					42	44	2.4							
	4	4.2	5.5	0.4		0.1			44	44	1.9	0.2						
	5	0.6	0.7						18	77	0.7		0.5		0.7	Ce – 0.2, Y – 1.4		

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

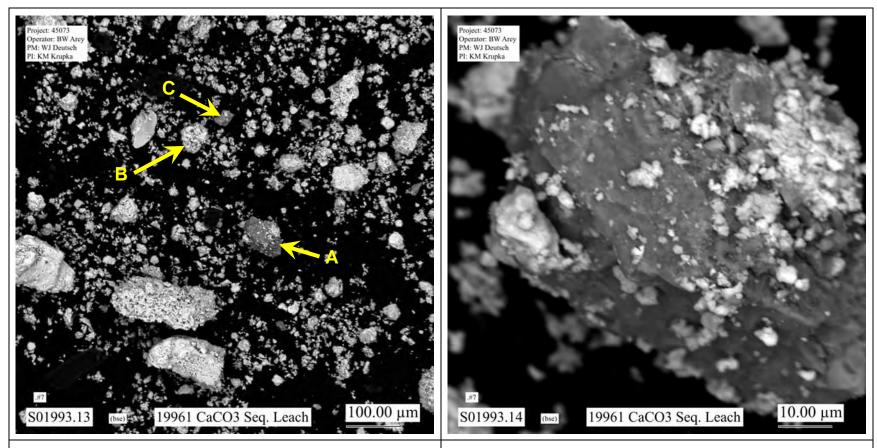
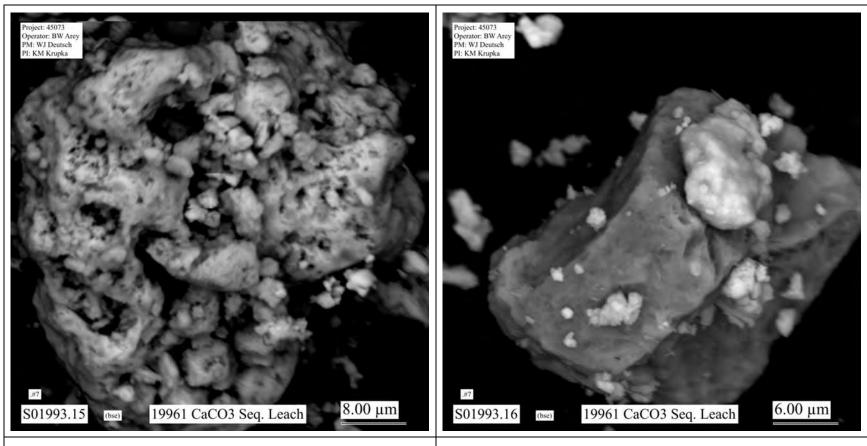
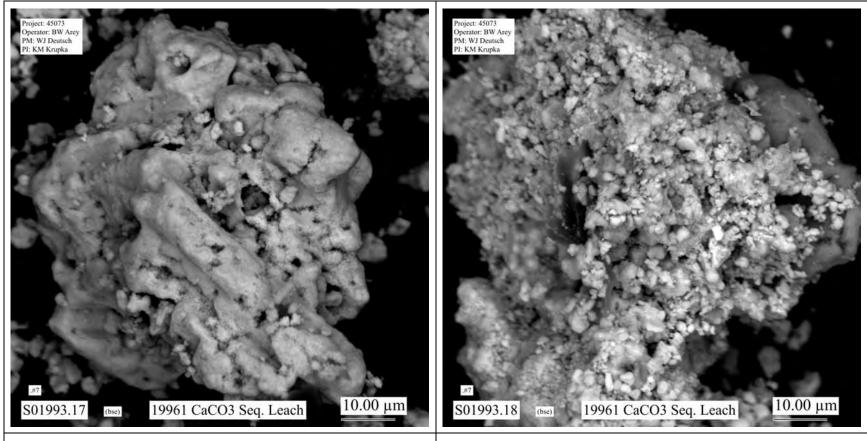
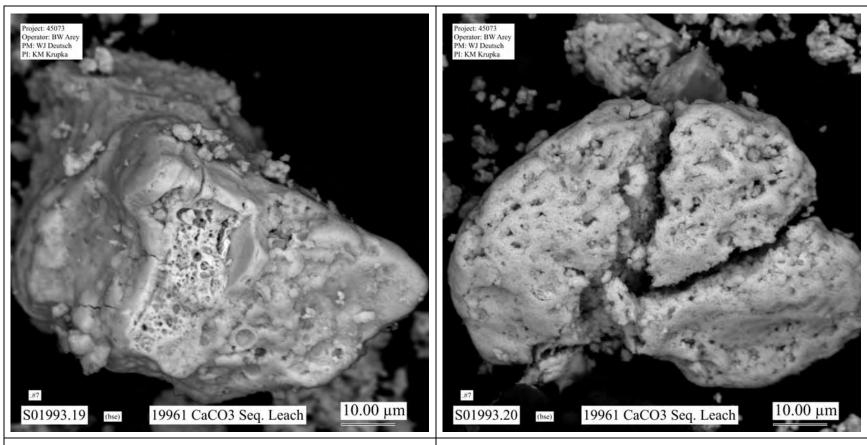



Figure H.108. Low Magnification Micrograph Showing Typical Particles in Sample of Sequential CaCO₃ Leached Solids from C 203 Residual Waste (Sample 19961)

Figure H.109. Micrograph Showing at Higher Magnification the Particle Labeled A in Figure H.108 (Areas where EDS analyses were made are shown in Figure H.120.)

Figure H.110. Micrograph Showing at Higher Magnification the Particle Labeled B in Figure H.108 (Areas where EDS analyses were made are shown in Figure H.121.)

Figure H.111. Micrograph Showing at Higher Magnification the Particle Labeled C in Figure H.108 (Areas where EDS analyses were made are shown in Figure H.122.)

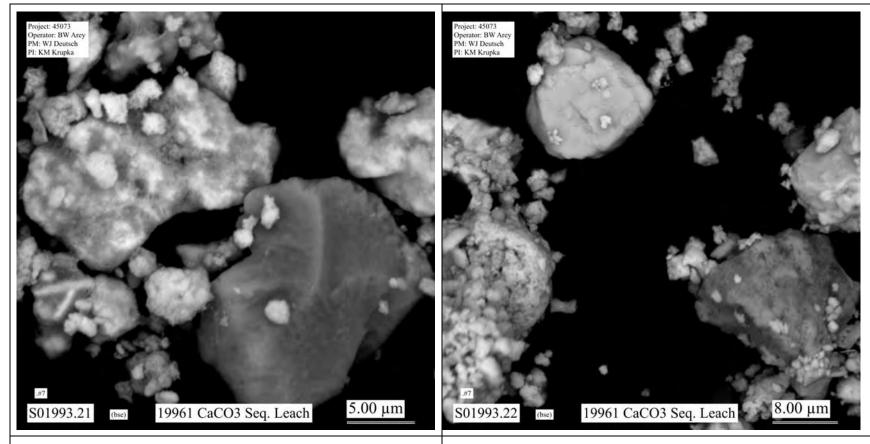

Figure H.112. Micrograph Showing Typical Particle Aggregate in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.123.)

Figure H.113. Micrograph Showing Typical Particle Aggregate in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.124 and H.125.)

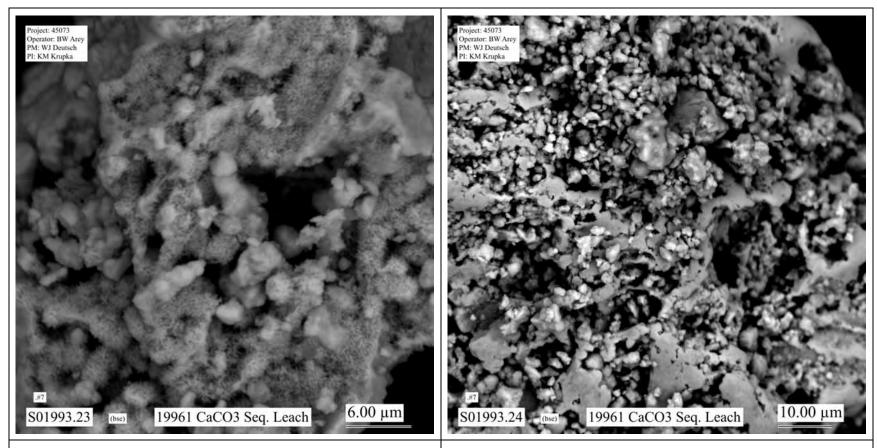

Figure H.114. Micrograph Showing Typical Particle in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961)

Figure H.115. Micrograph Showing Typical Particle in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.126.)

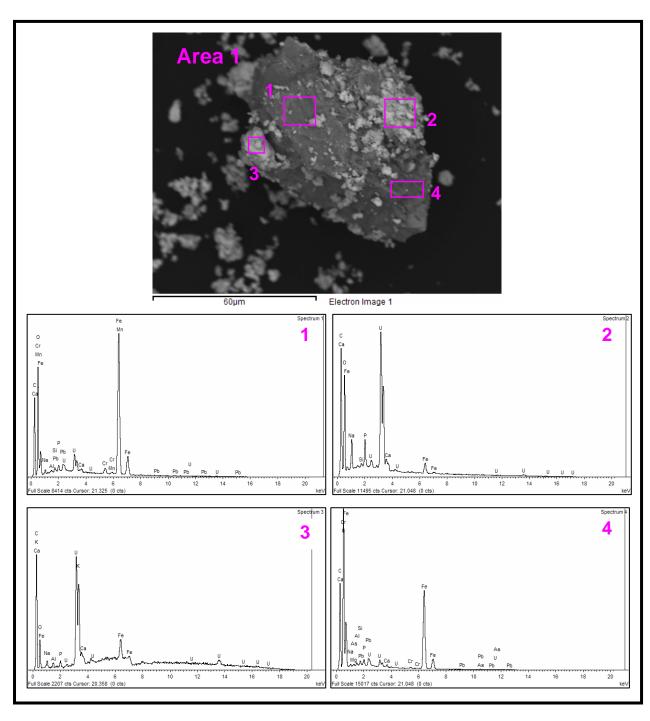

Figure H.116. Micrograph Showing Typical Particles in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figure H.127.)

Figure H.117. Micrograph Showing Typical Particles in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961) (Areas where EDS analyses were made are shown in Figures H.128 and H.129.)

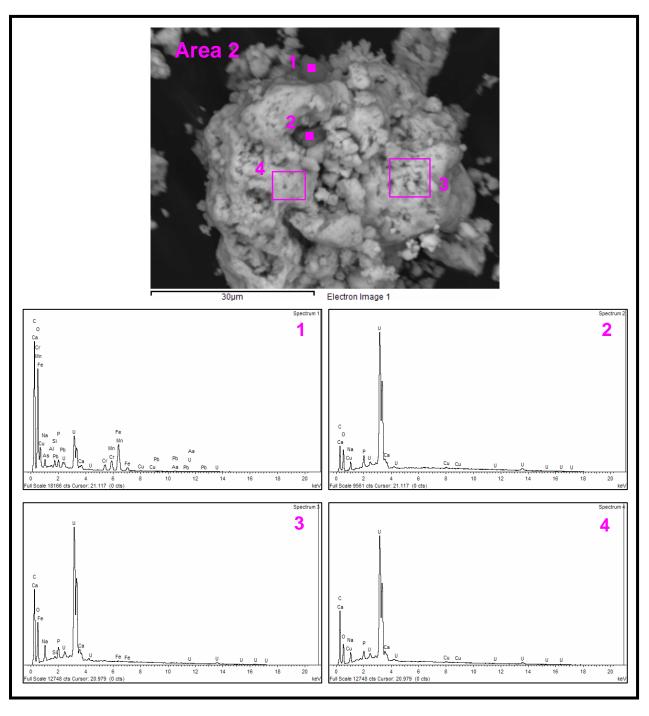
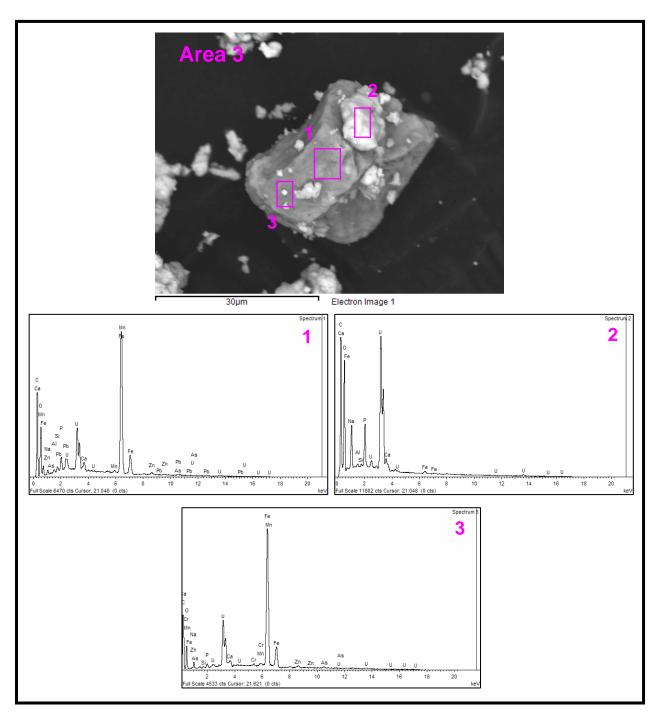
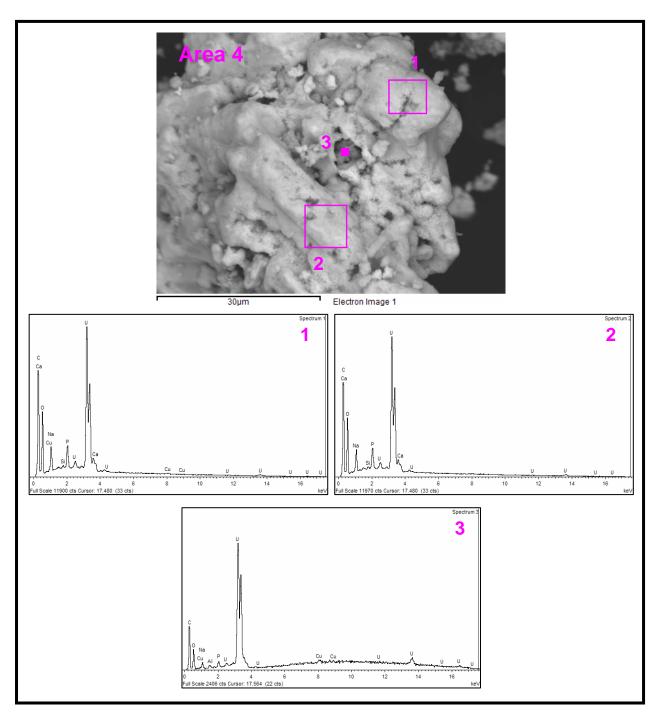
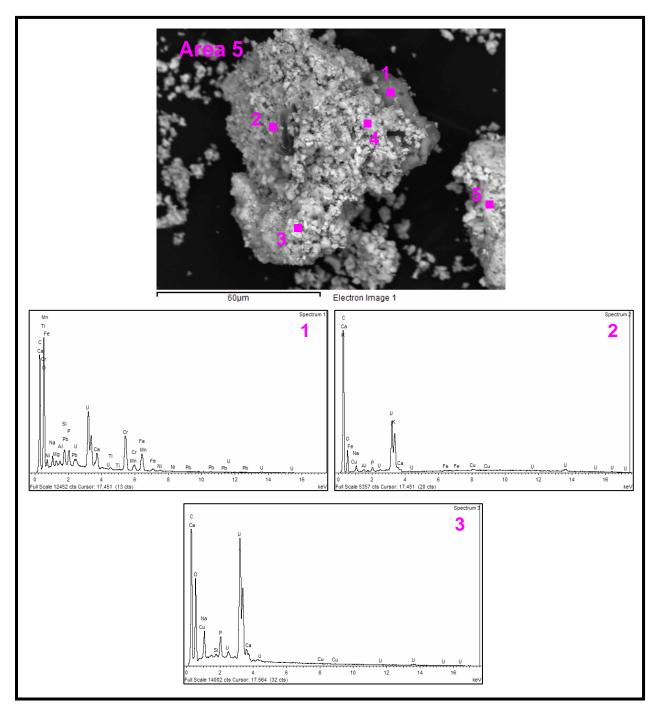
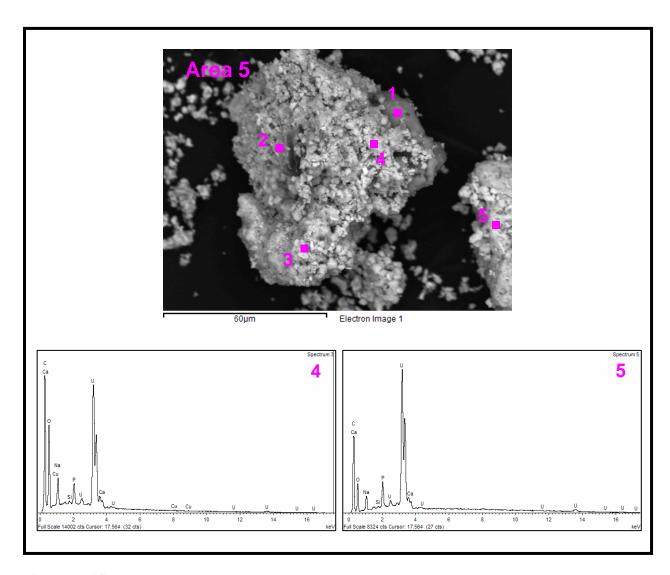


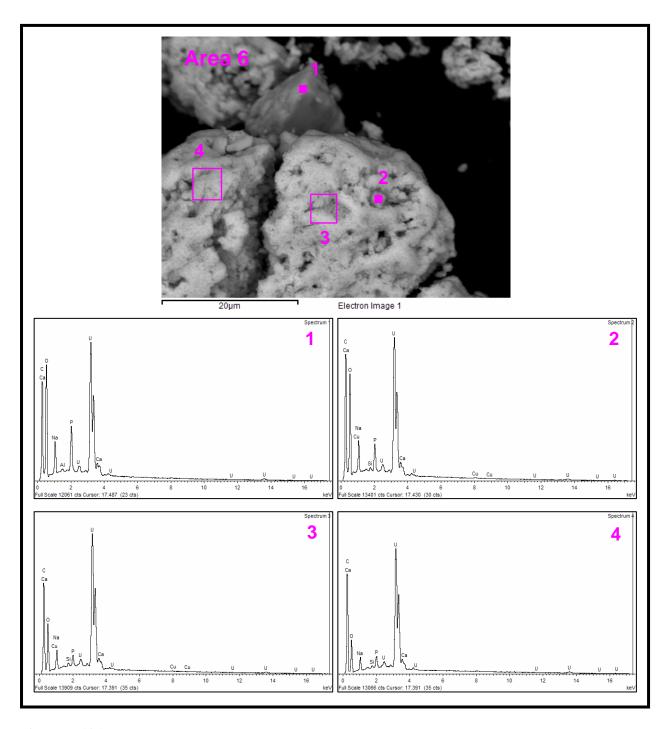
Figure H.118. Micrograph Showing Typical Particle Aggregate in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961)

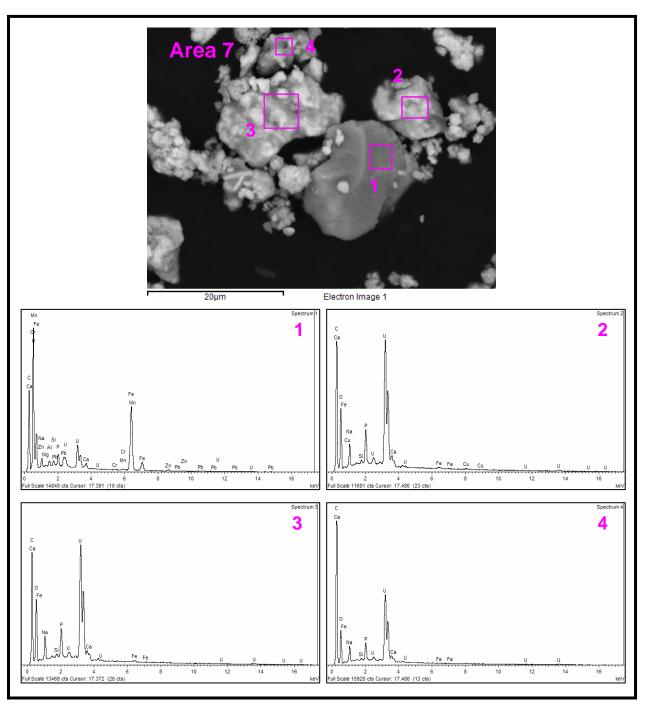

Figure H.119. Micrograph Showing Typical Particle Aggregate in Sample of Sequential CaCO₃ Leached Solids from C-203 Residual Waste (Sample 19961)

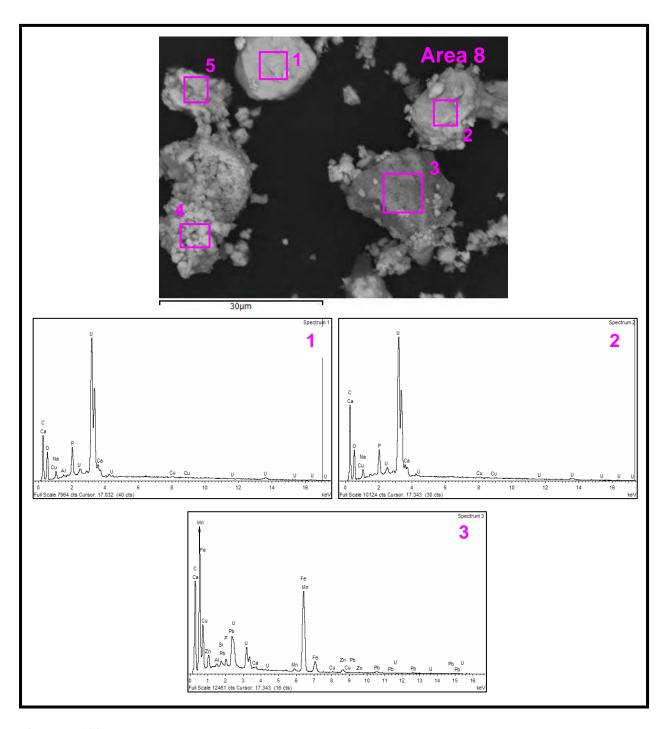

Figure H.120. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.121. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.122. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.123. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.124. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)


Figure H.125. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

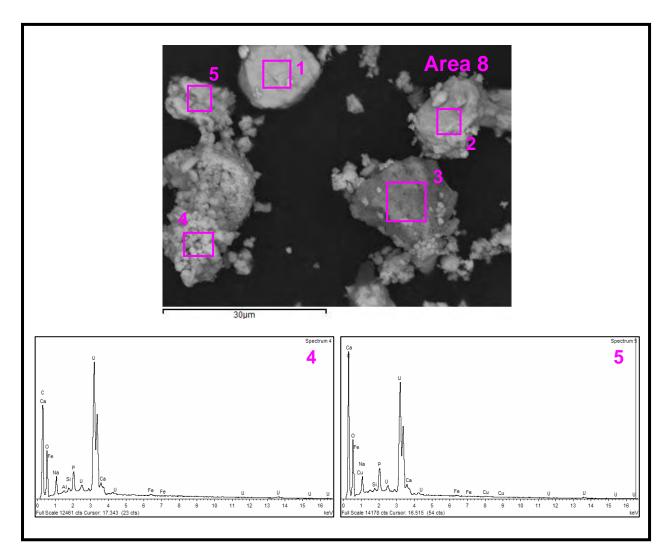

Figure H.126. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.127. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.128. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Figure H.129. EDS Spectra for Numbered Areas Marked in Pink in Top SEM Micrograph of Particles in Sequential CaCO₃ Leached Water Extraction Solids of C-203 Residual Waste (Sample 19961)

Table H.14. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential CaCO₃ Leached Solids

Figure No./										Ato	mic% ¹					
Area of				Maj	or Cat	ions				Anions	s^2				0	thers
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si	
	1	0.4	0.6	13	0.1	0.3		0.1	36	49	0.3	0.1			0.2	Pb - 0.1
H.120 / 1	2	3.4	3.2	1.0				0.3	40	50	1.4				0.2	
11.120 / 1	3	3.9	1.0	2.9				0.5	21	69	0.4	0.4				K – 0.7
	4	0.1	0.3	6.5		0.1		0.1	48	44	0.3	0.1		0.1	0.2	As - <0.1, Pb – 0.1
	1	0.8	0.8	2.3	0.8	0.4		0.2	39	55	0.3	0.1	0.6		0.3	Pb – 0.1
H.121 / 2	2	13	4.0					1.2	39	39	2.7		0.7			
11.121 / 2	3	6.4	3.4	0.2				0.6	35	53	1.1				0.2	
	4	9.0	3.4					0.9	27	58	1.4		0.3			
	1	1.2	0.6	15	0.2			0.4	21	60	0.8	0.2			0.3	As - <0.1, Pb – 0.2, Zn – 0.4
H.122 / 3	2	2.9	3.9	0.2				0.2	41	50	1.8	0.1			0.1	
	3	1.8	1.5	21	0.2	0.2		0.4	14	60	0.4				0.1	Zn – 0.5
	1	4.9	3.6					0.4	36	53	1.6		0.1		0.2	
H.123 / 4	2	5.0	3.5					0.4	37	52	1.6				0.2	
	3	10	2.7						31	53	1.0	0.5	1.4			

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table H.15. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential CaCO₃ Leached Solids

Eiguno No /									,	Atomic	2%1					
Figure No./ Area of				Maj	or Cat	ions				Anions	s ²				Othe	ers
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	О	\mathbb{C}^3	P	Al	Cu	Mg	Si	
	1	1.2	1.0	1.4	0.1	2.2	0.1	0.6	44	48	0.6	0.2		0.3	0.6	Pb – 0.1, Ti – 0.1
** 124.0	2	1.9	0.8	0.1				0.2	19	77	0.3	0.2	0.3			K – 0.3
H.124 & H.125 / 5	3	3.2	3.0					0.3	38	54	1.1		0.1		0.1	
	4	3.7	3.7	0.1				0.4	35	55	2.0		0.1			
	5	6.9	3.0					0.6	27	60	2.6				0.2	
	1	3.5	3.6					0.4	47	43	2.4	0.1				
H.126 / 6	2	3.5	3.4					0.3	43	48	1.4		0.1		0.2	
п.120 / б	3	5.5	3.5					0.5	35	54	1.0		0.1		0.3	
	4	5.4	2.5					0.5	28	63	1.1				0.2	
	1	0.6	0.7	5.8	0.1	0.1		0.2	47	44	0.5	0.3		0.1	0.2	Pb - 0.2, Zn - 0.2
H.127 / 7	2	3.6	2.7	0.2				0.2	32	59	2.0		0.1		0.2	
П.12///	3	3.6	3.0	0.2				0.3	35	56	1.8				0.2	
	4	2.3	2.1	0.1				0.2	23	71	1.1				0.1	

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Table H.16. Estimated EDS Compositions (atomic%) Corresponding to the EDS Spectra Shown in Previous Figures for Sequential CaCO₃ Leached Solids

Figure No./										Atomic	2% ¹					
Area of				Maj	or Cat	ions				Anions	32				Other	rs
Interest	Spectrum	U	Na	Fe	Mn	Cr	Ni	Ca	0	\mathbb{C}^3	P	Al	Cu	Mg	Si	
	1	9.1	2.3					0.8	34	49	3.9	0.3	0.4			
** 120.0	2	7.0	2.0					0.8	28	59	2.6		0.2			
H.128 & H.129 / 8	3	0.5		6.7	0.2			0.1	44	46	0.3	0.2	0.1		0.2	Pb – 0.5, Zn – 0.5
H.129 / 8	4	5.1	3.1	0.2				0.5	33	56	1.6	0.2			0.3	
	5	3.2	2.1	0.1				0.3	31	62	1.3		0.1		0.2	

^{1 =} Concentrations based on compositions (wt%) normalized to 100%. Concentrations listed as "<0.1" indicate that the corresponding element was detected based on close inspection of an expanded view of the EDS spectrum, but that the calculated concentration was less than 0.05 at.%. Empty cells indicate that the corresponding element was not detected by EDS.

^{2 =} EDS cannot detect hydrogen (H) or other elements with atomic numbers less than that of boron.

^{3 =} Carbon concentrations (in italics) are suspect, and are likely too large.

Appendix I

Solution Concentrations in the Three Leachates Used on the Residual Sludge fromTanks C-202 and C-203 Water Contact Tests

							Tank C-20	02 (19250) DDI	Water Leach Re								
				Contact							enishment Tests						
Parameter	Units	1 day	1 day (dup)	1 month	1 month (dup)	Stage 1		Stage 2	Stage 2 (dup)	Stage 3		Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
pH	std units	8.18 2.62E+02	8.72 2.24E+02	8.78 2.34E+02	9.00 2.24E+02	8.18 2.62E+02	8.72 2.24E+02	8.11 8.11E+01	8.57 6.02E+01	8.56 5.40E+01	7.62 4.32E+01	8.28 INS	7.59 3.01E+01	7.43 2.47E+01	7.43 2.62E+0	8.65 5.94E+01	5 8.82 1 6.10E+0
Alkalinity TIC	mg/L as CaCO3 mg C/L	4.64E+01	4.49E+01	5.04E+01	4.34E+01	4.64E+01	4.49E+01	2.07E+01	2.07E+01	1.82E+01	1.93E+01	1.22E+01	1.23E+01	1.04E+01	1.32E+0	3.94E+01 2.58E+01	1 2.32E+0
TOC	mg C/L	8.46E+01	8.63E+01	1.03E+02	7.85E+01	8.46E+01	8.63E+01	1.60E+01	1.87E+01	2.52E+01	1.93E+01	7.38E+00	6.77E+00	5.27E+00	6.72E+00	4.36E+01	1 4.95E+0
TC	mg C/L	1.31E+02	1.31E+02	1.54E+02	1.22E+02	1.31E+02	1.31E+02	3.67E+01	3.94E+01	4.34E+01	3.84E+01	1.95E+01	1.91E+01	1.57E+01	1.99E+0		
Radionuclides																	<u> </u>
⁹⁰ Sr	μCi/L	1.41E+02	1.44E+02	8.62E+01	6.76E+01	1.41E+02	1.44E+02			1.12E+02	9.94E+01					2.64E+02	2.96E+02
⁹⁹ Tc	mg/L	5.20E-05	7.70E-05	6.83E-05	(4.10E-05)	5.20E-05	7.70E-05	(1.60E-05)	(1.00E-05)	(9.00E-06	(4.00E-06)	(2.00E-06)	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	5 <5.00E-0:
²³⁸ U	mg/L	3.32E+01	3.53E+01	4.20E+01	2.70E+01	3.32E+01	3.53E+01	9.38E+00	1.16E+01	1.45E+01	1.15E+01	6.12E+00	4.84E+00	4.08E+00	4.56E+00	4.66E+01	2.91E+0
²³⁹ Pu*	μCi/L	1.35E+00	1.38E+00	6.08E-01	4.58E-01	1.35E+00	1.38E+00	6.51E-01	7.59E-01	1.17E+00	9.28E-01	4.64E-01	3.56E-01	2.30E-01	3.40E-01	3.85E+00	5.43E+0
237 Np*	μCi/L	2.59E-04	2.50E-04	2.68E-04	2.27E-04	2.59E-04	2.50E-04	6.60E-05	7.74E-05	8.48E-05	7.53E-05	3.34E-05	2.49E-05	1.85E-05	2.49E-05	5 2.31E-04	
²⁴¹ Am	μCi/L	(8.84E-02)	(7.14E-02)	(2.38E-02)	(1.02E-02)	(8.84E-02)	(7.14E-02)	(3.06E-02)	(4.42E-02)	(7.48E-02)	(5.78E-02)	(1.70E-02)	(2.04E-02)	<1.70E-01	(1.36E-02	2.72E-01	4.22E-0
*Pu and Np results may be bi				(2.36L=02)	(1.021:-02)	(8.8412-02)	(7.1413-02)	(3.00E-02)	(4.4213-02)	(7.4812-02)	(3.78E=02)	(1.70E-02)	(2.04E-02)	C1.70E-01	(1.3012-02	2.7215-01	4.22E-0
Metals	-																
Ag	mg/L	2.93E-04	2.60E-04	3.21E-04	2.61E-04	2.93E-04	2.60E-04	(7.45E-05)	(8.20E-05)	(1.06E-04)	(9.35E-05)	(3.95E-05)	(4.50E-05)	(2.80E-05)	(4.20E-05	3.25E-04	3.10E-0
Al	mg/L	1.45E+00 <2.00E+00	1.45E+00 <2.00E+00	1.35E+00 <2.00E+00	1.64E+00 <2.00E+00	1.45E+00	1.45E+00	1.65E+00	1.67E+00	3.12E+00	2.91E+00	2.25E+00	1.70E+00	1.80E+00	1.72E+00	4.72E+00	4.99E+00
As As 75	mg/L mg/L	<2.00E+00 (1.93E-03)	<2.00E+00 (1.89E-03)	<2.00E+00 (2.52E-03)	<2.00E+00 (2.42E-03)	<2.00E+00 (1.93E-03)	<2.00E+00 (1.89E-03)	<2.00E+00 (1.40E-03)	<2.00E+00 (2.23E-04)	<2.00E+00 (1.11E-03)	<2.00E+00 (5.51E-04)	<2.00E+00 (4.03E-04)	<2.00E+00 <5.00E-03	<2.00E+00 (1.23E-04)	<2.00E+00 (2.98E-04	<2.00E+00 (6.02E-04)	<2.00E+00 (5.07E-04)
B	mg/L	(8.28E+00)	(4.79E+00)	(1.73E+00)	(1.65E+00)	(8.28E+00)	(4.79E+00)	(3.47E+00)	(2.80E+00)	(2.45E+00)	(2.21E+00)	(2.15E+00)	(2.10E+00)	(1.23E-04) (1.99E+00)	(1.95E+00	(1.77E+00)	(1.75E+00
Ba	mg/L	(2.44E-02)	(1.41E-02)	2.24E-01	1.81E-01	(2.44E-02)	(1.41E-02)	(1.26E-02)	(1.33E-02)	(1.59E-02)	(1.43E-02)	(1.16E-02)	(1.23E-02)	(1.15E-02)	(2.74E-02	1.71E-01	2.04E-0
Be	mg/L	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-0	<5.00E-01	<5.00E-0
Bi Ca	mg/L	<1.00E+01 (1.39E+00)	<1.00E+01 (1.55E+00)	<1.00E+01 (1.02E+00)	<1.00E+01 (1.16E+00)	<1.00E+01 (1.39E+00)	<1.00E+01 (1.55E+00)	<1.00E+01 (1.06E+00)	<1.00E+01 (1.18E+00)	<1.00E+01 (1.21E+00)	<1.00E+01 (1.19E+00)	<1.00E+01 (9.98E-01)	<1.00E+01 (9.20E-01)	<1.00E+01 (9.14E-01)	<1.00E+01 (9.07E-01	<1.00E+01 (1.93E+00)	<1.00E+0 (2.24E+00
Cd ICP-MS	mg/L mg/L	1.19E-03	1.20E-03	5.04E-04	4.01E-04	1.19E-03	1.20E-03	6.26E-04	7.81E-04	1.21E+00	1.01E-03	5.02E-04	6.28E-04	(9.14E-01) 2.70E-04	4.60E-04	(1.93E+00) 4 3.89E-03	3 4.42E-03
Cd ICP-OES	mg/L	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-0	<1.00E-01	1 <1.00E-0
Со	mg/L	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-0	<2.50E-01	<2.50E-0
Cr ICP-MS	mg/L	1.06E+00	1.05E+00	1.38E+00	1.07E+00	1.06E+00	1.05E+00	4.23E-01	4.71E-01	7.52E-01	7.14E-01	2.95E-01	2.53E-01	1.62E-01	2.38E-0	1.50E+00	1.59E+0
Cr ICP-OES	mg/L	1.47E+00	1.38E+00 2.54E-02	1.86E+00	1.31E+00	1.47E+00	1.38E+00	(4.42E-01) 1.13E-02	(4.82E-01) 1.31E-02	8.40E-01	6.84E-01	(2.88E-01)	(2.06E-01) 7.98E-03	(1.43E-01) 5.03E-03	(1.93E-01	2.08E+00	2.42E+0
Cu ICP-MS Cu ICP-OES	mg/L mg/L	2.67E-02 (5.65E-02)	(5.91E-02)	1.51E-01 (5.04E-02)	1.77E-02 (4.75E-02)	2.67E-02 (5.65E-02)	2.54E-02 (5.91E-02)	(3.63E-02)	(3.24E-02)	1.77E-02 (3.84E-02)	1.65E-02 (3.47E-02)	7.77E-03 (2.43E-02)	7.98E-03 (2.19E-02)	5.03E-03 (2.68E-02)	7.26E-03 (3.13E-02	3.77E-02 (7.79E-02)	2 4.29E-02 (9.15E-02
Fe	mg/L	5.62E+00	5.01E+00	1.18E+00	8.76E-01	5.62E+00	5.01E+00	2.94E+00	3.51E+00	6.00E+00	4.96E+00	2.31E+00	1.63E+00	1.04E+00	1.61E+00	1.52E+01	1.94E+0
K	mg/L	(5.06E+00)	(4.86E+00)	(2.16E+00)	(2.39E+00)	(5.06E+00)	(4.86E+00)	(6.34E+00)	(7.41E+00)	(5.45E+00)	(5.80E+00)	(3.73E+00)	(4.68E+00)	(2.42E+00)	(4.17E+00	(5.80E+00)	(4.58E+00
Li	mg/L	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-0	<5.00E-01	<5.00E-0
Mg	mg/L	(1.12E-01)	(1.29E-01) 1.08E+00	(5.32E-02) 2.78E-01	(5.42E-02) 1.96E-01	(1.12E-01) 1.19E+00	(1.29E-01) 1.08E+00	(7.15E-02) 6.41E-01	(6.38E-02) 7.29E-01	(1.13E-01) 1.33E+00	(9.73E-02) 1.03E+00	(6.71E-02) 5.22E-01	(6.57E-02) 3.53E-01	(3.93E-02) 2.42E-01	(5.30E-02 3.46E-01	(3.38E-01) 3.38E+00	(4.97E-01 4.41E+0
Mn Mo	mg/L mg/L	1.19E+00 <5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	3.38E+00 <5.00E-01	4.41E+00 1 <5.00E-0
Mo 95	mg/L	1.11E-02	1.14E-02	2.04E-02	1.48E-02	1.11E-02	1.14E-02	2.80E-03	2.84E-03	3.01E-03	3.31E-03	9.49E-04	1.29E-03	1.04E-03	9.46E-04	4.28E-03	3.42E-0
Mo 97	mg/L	1.01E-02	1.03E-02	1.78E-02	1.27E-02	1.01E-02	1.03E-02	(2.01E-03)	(2.04E-03)	(2.22E-03)	(2.18E-03)	(6.40E-04)	(9.05E-04)	(6.35E-04)	(5.56E-04	3.59E-03	3 2.74E-03
Mo 98	mg/L	6.62E-03	6.88E-03	1.18E-02	8.24E-03	6.62E-03	6.88E-03	1.31E-03	1.31E-03	1.37E-03	1.42E-03	(3.79E-04)	(7.12E-04)	(4.72E-04)	(3.74E-04	2.58E-03	3 1.88E-0
Na No	mg/L	1.92E+02	1.94E+02 3.67E-01	2.57E+02 (1.21E-01)	2.01E+02 (7.44E-02)	1.92E+02 4.08E-01	1.94E+02	3.54E+01	3.97E+01 2.22E-01	2.60E+01 4.68E-01	2.75E+01 3.40E-01	1.18E+01 (1.87E-01)	1.17E+01 (1.68E-01)	8.52E+00 (9.08E-02)	9.78E+00 (1.37E-01	2.60E+01 1.33E+00	2.74E+0 1.60E+0
Ni P	mg/L mg/L	4.08E-01 1.44E+01	3.6/E-01 1.49E+01	1.86E+01	1.60E+01	4.08E-01 1.44E+01	3.67E-01 1.49E+01	2.14E-01 9.55E+00	2.22E-01 1.00E+01	7.57E+00	7.61E+00	2.97E+00	2.90E+00	(9.08E-02) 1.59E+00	1.69E+00	5.92E+00	3.11E+0
Pb ICP-MS	mg/L	3.68E-01	3.36E-01	1.29E-01	1.01E-01	3.68E-01	3.36E-01	2.03E-01	2.37E-01	3.62E-01	2.81E-01	1.44E-01	1.38E-01	8.77E-02	1.33E-0	1.17E+00	1.33E+0
Pb ICP-OES	mg/L	(4.76E-01)	(4.43E-01)	(1.80E-01)	(1.74E-01)	(4.76E-01)	(4.43E-01)	(2.17E-01)	(3.47E-01)	(5.17E-01)	(3.96E-01)	(2.09E-01)	(1.23E-01)	(1.43E-01)	(1.75E-01	1.07E+00	1.35E+0
Ru 101	mg/L	3.97E-03	3.77E-03	4.82E-03	3.39E-03	3.97E-03	3.77E-03	6.57E-04	7.67E-04	1.13E-03	9.69E-04	4.32E-04	4.08E-04	2.46E-04	3.69E-04	3.81E-03	3.88E-0
Ru 102 S	mg/L	1.80E-03 <4.00E+01	1.79E-03 <4.00E+01	2.25E-03 <4.00E+01	1.51E-03 <4.00E+01	1.80E-03 <4.00E+01	1.79E-03 <4.00E+01	2.74E-04 <4.00E+01	3.34E-04 <4.00E+01	4.97E-04 <4.00E+01	4.43E-04 <4.00E+01	1.78E-04 <4.00E+01	1.65E-04 <4.00E+01	9.10E-05 <4.00E+01	1.57E-04 <4.00E+0	1.70E-03 <4.00E+01	3 1.81E-03 1 <4.00E+0
Sb 121	mg/L mg/L	2.79E-02	2.70E-02	3.91E-02	3.50E-02	2.79E-02	2.70E-02	2.44E-02	2.64E-02	2.43E-02	2.48E-02	(9.16E-03)	(9.46E-03)	(6.05E-03)	(7.04E-03	2.63E-02	2 2.16E-0
Se	mg/L	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+01	<2.00E+0	<2.00E+01	2.00E+0
Se 82	mg/L	<5.00E-02	<5.00E-02	(2.80E-04)	(1.65E-03)	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02
Si	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+0	<1.00E+01	<1.00E+0
Sr Ti	mg/L mg/L	1.12E-01 (1.63E-02)	1.04E-01 (1.59E-02)	(5.25E-02) (6.40E-03)	(5.00E-02) (4.23E-03)	1.12E-01 (1.63E-02)	1.04E-01 (1.59E-02)	(5.55E-02) (7.76E-03)	(6.25E-02) (8.38E-03)	(8.18E-02) (1.32E-02)	(6.84E-02) (9.12E-03)	(3.82E-02) (5.75E-03)	(2.73E-02) (4.68E-03)	(2.83E-02) (3.11E-03)	(3.69E-02 (6.38E-03) 2.21E-01 (3.26E-02)	2.65E-0 (4.46E-02
TI	mg/L	<1.00E+00	<1.00E+00	<1.00E+00	<1.00E+00	<1.00E+00	<1.00E+00	<1.00E+00	<1.00E+00	<1.00E+00	(9.12E-03) (1.00E+00	<1.00E+00	<1.00E+00	(3.11E-03) <1.00E+00	<1.00E+00	(3.26E-02) (3.26E-02) (3.26E-02)	(4.46E-02) <1.00E+0
V	mg/L	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-0	<2.50E-01	<2.50E-0
Zn	mg/L	(4.42E-02)	(1.00E-01)	(4.58E-02)	(4.73E-02)	(4.42E-02)	(1.00E-01)	(2.02E-02)	(2.33E-02)	(4.27E-02)	(2.59E-02)	(1.22E-02)	(3.19E-02)	(9.35E-04)	(2.56E-02	(1.20E-01)	(1.63E-01
Zr	mg/L	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-0	<1.00E-01	<1.00E-0
Anions		\vdash				-			-		1		 	-		 	+
NO ₂ as NO2-	mg/L	3.11E+00	2.97E+00	4.57E+00	2.90E+00	3.11E+00	2.97E+00	<9.40E-02	<9.40E-02	<9.40E-02	9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	2.86E-01	3.08E-0
NO ₃ as NO3-	mg/L	8.81E+00	8.47E+00	1.54E+01	1.19E+01	8.81E+00	8.47E+00	6.40E-01	6.04E-01	3.26E+00	3.38E+00	1.39E+00	1.32E+00	1.58E+00	1.59E+00	8.45E+00	9.13E+0
CO ₃ ² ·	mg/L	1.09E+02	5.81E+01	1.29E+02	8.11E+01	1.09E+02	5.81E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+0	<5.00E+01	<5.00E+0
SO ₄ ² ·	mg/L	1.66E+00	1.54E+00	2.05E+00	1.23E+00	1.66E+00	1.54E+00	2.28E-01	3.45E-01	1.82E-01	2.04E-01	3.52E-02	5.40E-02	3.24E-02	3.33E-02	1.68E-01	9.53E-0
PO ₄ ³⁻ as PO ₄ ³⁻	mg/L	3.86E+01	3.92E+01	5.23E+01	4.41E+01	3.86E+01	3.92E+01	2.78E+01	2.82E+01	2.31E+01	2.39E+01	9.46E+00	8.97E+00	4.78E+00	5.28E+00	1.72E+01	1.79E+0
Cl'	mg/L	2.57E-01	2.04E-01	1.51E+00	1.08E+00	2.57E-01	2.04E-01	4.94E-02	6.04E-02	5.62E-02	5.11E-02	2.33E-02	3.10E-02	4.81E-02	6.38E-02	6.16E-01	7.53E-0
F'	mg/L	2.73E+01	2.57E+01	3.97E+01	2.75E+01	2.73E+01	2.57E+01	6.09E+00	7.92E+00	4.07E+00	4.46E+00	5.91E-01	6.20E-01	4.05E-01	4.49E-01	2.79E+00	2.57E+00
Oxalate*	mg/L	2.05E+02	1.89E+02	2.43E+02	1.85E+02	2.05E+02	1.89E+02	1.40E+01	1.94E+01	4.69E+00	8.31E+00	5.25E-01	6.53E-01	<3.45E-01	3.67E-0	1.95E+00	1.72E+0

* Oxalate results are for information only

		1				n-	Tank C-2	02 (19250) DDI	Water Leach Re								
Downston	Units	1 dos		Contact	1 th (-l)	Stern 1	Store 1 (dom)	St 2	Store 2 (dom)		lenishment Tests	P4 4	Store 4 (dom)	St 5	Store 5 (dom)	C+ 6	Etana 6 (dam)
Parameter pH	Units std units	1 day	1 day (dup)	1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
Alkalinity	mM as CaCO3	2.62E+00	2.24E+00	2.34E+00	2.24E+00	2.62E+00	2.24E+00	8.10E-01	6.02E-01	5.40E-0	1 4.32E-01	#VALUE	3.01E-01	2.47E-01	2.62E-01	5.94E-01	6.09E-0
TIC	mM C	3.87E+00	3.74E+00	4.20E+00	3.61E+00	3.87E+00	3.74E+00	1.73E+00	1.72E+00	1.51E+0		1.01E+00	1.02E+00	8.66E-01	1.10E+00	3.542-01	0.07L-0
TOC	mM C	7.05E+00	7.19E+00	8.61E+00	6.54E+00	7.05E+00	7.19E+00	1.33E+00	1.56E+00	2.10E+0	0 1.60E+00	6.15E-01	5.64E-01	4.39E-01	5.60E-01	i	1
TC	mM C	1.09E+01	1.09E+01	1.28E+01	1.02E+01	1.09E+01	1.09E+01	3.06E+00	3.28E+00	3.61E+0	0 3.20E+00	1.63E+00	1.59E+00	1.31E+00	1.66E+00)	
Radionuclides																	
⁹⁰ Sr	mM	1.12E-05	1.15E-05	6.84E-06	5.37E-06	1.12E-05	1.15E-05			8.92E-0	6 7.89E-06					2.10E-05	2.35E-0
⁹⁹ Tc	mM	5.26E-07	7.78E-07	6.89E-07	(4.14E-07)	5.26E-07	7.78E-07	(1.62E-07)	(1.01E-07)	(9.09E-08	(4.04E-08)	(2.02E-08)	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-0
²³⁸ U	mM	1.39E-01	1.48E-01	1.77E-01	1.13E-01	1.39E-01	1.48E-01	3.94E-02	4.88E-02	6.09E-02	2 4.82E-02	2.57E-02	2.03E-02	1.72E-02	1.92E-02	1.96E-01	1.22E-0
²³⁹ Pu*	mM	9.14E-04	9.28E-04	4.10E-04	3.09E-04	9.14E-04	9.28E-04	4.39E-04	5.12E-04	7.87E-0-	4 6.27E-04	3.13E-04	2.40E-04	1.55E-04	2.30E-04	2.60E-03	3.67E-0
²³⁷ Np*	mM	1.54E-06	1.49E-06	1.59E-06	1.35E-06	1.54E-06	1.49E-06	3.92E-07	4.60E-07	5.04E-0	7 4.47E-07	1.98E-07	1.48E-07	1.10E-07	1.48E-07	7 1.38E-06	1.76E-0
241 Am	mM	(1.08E-07)	(8.71E-08)	(2.90E-08)	(1.24E-08)	(1.08E-07)	(8.71E-08)	(3.73E-08)	(5.39E-08)	(9.13E-08		(2.07E-08)	(2.49E-08)	<2.07E-07	(1.66E-08)	3.32E-07	
*Pu and Np results may be b				(2.90E-08)	(1.24E-08)	(1.08E-07)	(8./IE-08)	(3./3E-08)	(5.39E-08)	(9.13E-08	(7.05E-08)	(2.07E-08)	(2.49E-08)	<2.0/E-0/	(1.00E-08)	3.32E-07	5.15E-0
Metals	nasca due to riigii v	Oramium Conc	intration.													1	
Ag	mM	2.72E-06	2.41E-06	2.98E-06	2.42E-06	2.72E-06	2.41E-06	(6.91E-07)	(7.60E-07)	(9.83E-07	(8.67E-07)	(3.66E-07)	(4.17E-07)	(2.60E-07)	(3.89E-07)	3.01E-06	2.87E-0
Al		5.36E-02	5.39E-02	4.99E-02	6.07E-02	5.36E-02	5.39E-02	6.12E-02	6.17E-02	1.16E-0	1 1.08E-01	8.33E-02	6.31E-02	6.68E-02	6.39E-07	2 1.75E-01	1.85E-0
Al As	mM mM	<2.67E-02	5.39E-02 <2.67E-02	<2.67E-02	6.07E-02 <2.67E-02	5.36E-02 <2.67E-02	5.39E-02 <2.67E-02	6.12E-02 <2.67E-02	6.17E-02 <2.67E-02	<2.67E-0	1 1.08E-01 2 <2.67E-02	8.33E-02 <2.67E-02	6.31E-02 <2.67E-02	6.68E-02 <2.67E-02	6.39E-02 <2.67E-02	2 1./5E-01 2 <2.67E-02	1.85E-0 2.67E-0
As 75	mM	(2.57E-05)	(2.53E-05)	(3.36E-05)	(3.23E-05)	(2.57E-05)	(2.53E-05)	(1.87E-05)	(2.97E-06)	(1.48E-05	(7.35E-06)	(5.37E-06)	<6.67E-05	(1.64E-06)	(3.97E-06	(8.03E-06)	(6.76E-06
B	mM	(7.66E-01)	(4.43E-01)	(1.60E-01)	(1.53E-01)	(7.66E-01)	(4.43E-01)	(3.21E-01)	(2.59E-01)	(2.27E-01) (2.05E-01)	(1.99E-01)	(1.95E-01)	(1.84E-01)	(1.80E-01)	(1.64E-01)	(1.62E-01
Ba	mM	(1.77E-04)	(1.03E-04)	1.63E-03	1.32E-03	(1.77E-04)	(1.03E-04)	(9.17E-05)	(9.68E-05)	(1.16E-04) (1.04E-04)	(8.46E-05)	(8.94E-05)	(8.39E-05)	(1.99E-04	1.25E-03	1.49E-0
Be	mM	<5.55E-02	<5.55E-0	2 <5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02							
Bi	mM	<4.79E-02	<4.79E-03		<4.79E-02	<4.79E-02	<4.79E-02	<4.79E-02	2 <4.79E-02	<4.79E-02							
Ca	mM	(3.47E-02)	(3.87E-02)	(2.55E-02)	(2.90E-02)	(3.47E-02)	(3.87E-02)	(2.64E-02)	(2.94E-02)	(3.02E-02	(2.98E-02)	(2.49E-02)	(2.30E-02)	(2.28E-02)	(2.26E-02)	(4.83E-02)	(5.58E-02
Cd ICP-MS	mM	1.06E-05	1.06E-05	4.48E-06	3.57E-06	1.06E-05	1.06E-05	5.56E-06	6.95E-06	1.08E-0:	5 8.95E-06	4.47E-06	5.59E-06	2.40E-06	4.09E-06	3.46E-05	3.93E-0
Cd ICP-OES	mM	<8.90E-04	<8.90E-0	4 <8.90E-04	<8.90E-04	<8.90E-04	<8.90E-04	<8.90E-04	4 <8.90E-04	<8.90E-0							
Co Cr ICP-MS	mM mM	<4.24E-03 2.04E-02	<4.24E-03 2.02E-02	<4.24E-03 2.66E-02	<4.24E-03 2.05E-02	<4.24E-03 2.04E-02	<4.24E-03 2.02E-02	<4.24E-03 8.14E-03	<4.24E-03 9.06E-03	<4.24E-03	3 <4.24E-03 2 1.37E-02	<4.24E-03 5.67E-03	<4.24E-03 4.86E-03	<4.24E-03 3.11E-03	<4.24E-03 4.58E-03	3 <4.24E-03 3 2.88E-02	<4.24E-03 3.05E-03
Cr ICP-OES	mM	2.82E-02	2.65E-02	3.58E-02	2.52E-02	2.04E-02 2.82E-02	2.65E-02	(8.49E-03)	(9.28E-03)	1.43E-0.		(5.54E-03)	(3.96E-03)	(2.75E-03)	(3.71E-03	2.88E-02 4.01E-02	4.65E-0
Cu ICP-MS	mM	4.20E-04	4.00E-04	2.38E-02	2.78E-04	4.20E-04	4.00E-04	1.78E-04	2.07E-04	2.78E-0	4 2.60E-04	1.22E-04	1.26E-04	7.91E-05	1.14E-04	5.93E-04	6.75E-04
Cu ICP-OES	mM	(8.89E-04)	(9.29E-04)	(7.92E-04)	(7.47E-04)	(8.89E-04)	(9.29E-04)	(5.71E-04)	(5.10E-04)	(6.04E-04		(3.83E-04)	(3.45E-04)	(4.22E-04)	(4.92E-04)	(1.23E-03)	(1.44E-03
Fe	mM	1.01E-01	8.97E-02	2.11E-02	1.57E-02	1.01E-01	8.97E-02	5.27E-02	6.28E-02	1.07E-0	1 8.87E-02	4.13E-02	2.92E-02	1.87E-02	2.89E-02	2.73E-01	3.47E-01
K	mM	(1.30E-01)	(1.24E-01)	(5.53E-02)	(6.11E-02)	(1.30E-01)	(1.24E-01)	(1.62E-01)	(1.90E-01)	(1.39E-01	(1.48E-01)	(9.54E-02)	(1.20E-01)	(6.20E-02)	(1.07E-01)	(1.48E-01)	(1.17E-01
Li	mM	<7.20E-02	<7.20E-03	2 <7.20E-02	<7.20E-02	<7.20E-02	<7.20E-02	<7.20E-02	<7.20E-02	<7.20E-02							
Mg	mM	(4.62E-03)	(5.31E-03)	(2.19E-03)	(2.23E-03)	(4.62E-03)	(5.31E-03)	(2.94E-03)	(2.63E-03)	(4.63E-03	(4.01E-03)	(2.76E-03)	(2.70E-03)	(1.62E-03)	(2.18E-03)	(1.39E-02)	(2.04E-02
Mn	mM	2.17E-02	1.96E-02	5.05E-03	3.56E-03	2.17E-02	1.96E-02	1.17E-02	1.33E-02	2.43E-0		9.51E-03	6.42E-03	4.41E-03	6.31E-03	6.15E-02	8.03E-0
Mo Mo 95	mM mM	<5.21E-03 1.17E-04	<5.21E-03 1.20E-04	<5.21E-03 2.15E-04	<5.21E-03 1.56E-04	<5.21E-03 1.17E-04	<5.21E-03 1.20E-04	<5.21E-03 2.95E-05	<5.21E-03 2.99E-05	<5.21E-0: 3.17E-0:	3 <5.21E-03 5 3.49E-05	<5.21E-03 9.99E-06	<5.21E-03 1.36E-05	<5.21E-03 1.09E-05	<5.21E-03 9.96E-06	5 <5.21E-03 4.50E-05	<5.21E-03 3.60E-03
Mo 97	mM	1.04E-04	1.06E-04	1.84E-04	1.31E-04	1.04E-04	1.06E-04	(2.07E-05)	(2.10E-05)	(2.29E-05) (2.24E-05)	(6.60E-06)	(9.33E-06)	(6.55E-06)	(5.73E-06	3.70E-05	2.83E-05
Mo 98	mM	6.75E-05	7.02E-05	1.20E-04	8.40E-05	6.75E-05	7.02E-05	1.33E-05	1.34E-05	1.40E-0:	5 1.44E-05	(3.87E-06)	(7.27E-06)	(4.82E-06)	(3.82E-06	2.63E-05	1.92E-05
Na	mM	8.34E+00	8.45E+00	1.12E+01	8.76E+00	8.34E+00	8.45E+00	1.54E+00	1.72E+00	1.13E+0		5.15E-01	5.10E-01	3.71E-01	4.26E-01	1.13E+00	1.19E+00
Ni	mM	6.96E-03	6.25E-03	(2.06E-03)	(1.27E-03)	6.96E-03	6.25E-03	3.64E-03	3.78E-03	7.98E-0		(3.18E-03)	(2.86E-03)	(1.55E-03)	(2.34E-03)	2.27E-02	2.73E-0
P	mM	4.66E-01	4.81E-01	6.01E-01	5.16E-01	4.66E-01	4.81E-01	3.08E-01	3.23E-01	2.45E-0	1 2.46E-01	9.59E-02	9.37E-02	5.12E-02	5.45E-02	1.91E-01	1.00E-0
Pb	mM	1.78E-03	1.62E-03	6.22E-04	4.89E-04	1.78E-03	1.62E-03	9.81E-04	1.14E-03	1.75E-0:	3 1.36E-03	6.96E-04	6.68E-04	4.23E-04	6.43E-04	5.67E-03	6.43E-0
Pb	mM	(2.30E-03)	(2.14E-03)	(8.67E-04)	(8.40E-04)	(2.30E-03)	(2.14E-03)	(1.05E-03)	(1.68E-03)	(2.50E-03	(1.91E-03)	(1.01E-03)	(5.92E-04)	(6.88E-04)	(8.45E-04)	5.18E-03	6.49E-0
Ru 101 Ru 102	mM	3.93E-05	3.73E-05 1.75E-05	4.77E-05	3.36E-05 1.48E-05	3.93E-05 1.77E-05	3.73E-05	6.50E-06	7.59E-06	1.11E-0:	5 9.59E-06	4.28E-06	4.04E-06	2.44E-06	3.65E-06	3.77E-05	3.85E-0
Ru 102 S	mM mM	1.77E-05 <1.25E+00	1.75E-05 <1.25E+00	2.20E-05 <1.25E+00	<1.48E-05 <1.25E+00	1.7/E-05 <1.25E+00	1.75E-05 <1.25E+00	2.69E-06 <1.25E+00	3.27E-06 <1.25E+00	4.87E-0 <1.25E+0	6 4.34E-06 0 <1.25E+00	1.75E-06 <1.25E+00	1.62E-06 <1.25E+00	8.92E-07 <1.25E+00	1.54E-06 <1.25E+00	1.66E-05 <1.25E+00	1.77E-0: <1.25E+0
Sb 121	mM	2.31E-04	2.23E+00	3.23E-04	2.89E-04	2.31E-04	2.23E-04	2.02E-04	2.18E-04	2.01E-0		(7.57E-05)	(7.82E-05)	(5.00E-05)	(5.82E-05)	2.17E-04	1.79E-0
Se	mM	<2.53E-04	<2.53E-04	<2.53E-01	<2.53E-01	<2.53E-04	<2.53E-01	<2.53E-01	<2.53E-01	<2.53E-0	1 <2.53E-01	<2.53E-01	<2.53E-01	<2.53E-01	<2.53E-01	<2.53E-01	<2.53E-0
Se 82	mM	<6.10E-04	<6.10E-04	(3.41E-06)	(2.02E-05)	<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-0		<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	4 <6.10E-04	<6.10E-0
Si	mM	<3.56E-01	<3.56E-0	1 <3.56E-01	<3.56E-01	<3.56E-01	<3.56E-01	<3.56E-01	<3.56E-01	<3.56E-0							
Sr	mM	1.27E-03	1.18E-03	(5.99E-04)	(5.71E-04)	1.27E-03	1.18E-03	(6.34E-04)	(7.14E-04)	(9.34E-04) (7.80E-04)	(4.36E-04)	(3.12E-04)	(3.22E-04)	(4.21E-04)	2.52E-03	3.03E-03
Ti	mM	(3.41E-04)	(3.32E-04)	(1.34E-04)	(8.84E-05)	(3.41E-04)	(3.32E-04)	(1.62E-04)	(1.75E-04)	(2.77E-04		(1.20E-04)	(9.78E-05)	(6.50E-05)	(1.33E-04)	(6.81E-04)	(9.32E-04
Tl	mM M	<4.89E-03	<4.89E-0	3 <4.89E-03	<4.89E-03	<4.89E-03	<4.89E-03	<4.89E-03	<4.89E-03	<4.89E-0							
V Zn	mM mM	<4.91E-03	<4.91E-03 (1.53E-03)	<4.91E-03 (7.01E-04)	<4.91E-03 (7.23E-04)	<4.91E-03 (6.75E-04)	<4.91E-03 (1.53E-03)	<4.91E-03 (3.09E-04)	<4.91E-03 (3.56E-04)	<4.91E-03	3 <4.91E-03 (3.97E-04)	<4.91E-03 (1.87E-04)	<4.91E-03 (4.87E-04)	<4.91E-03 (1.43E-05)	<4.91E-03 (3.92E-04)	3 <4.91E-03 (1.84E-03)	<4.91E-0 (2.49E-03
Zn Zr	mM mM	(6.75E-04) <1.10E-03	(1.53E-03) <1.10E-03	<1.10E-03	<1.10E-03	(6./5E-04) <1.10E-03	(1.53E-03) <1.10E-03	(3.09E-04) <1.10E-03	(3.56E-04) <1.10E-03	(6.52E-04 <1.10E-0	3 <1.10E-03	<1.10E-03	(4.8/E-04) <1.10E-03	(1.43E-05) <1.10E-03	<1.10E-03	(1.84E-03) 3 <1.10E-03	(2.49E-03 <1.10E-03
-4		VI.10L-03	1.10L-03	11.1017-03	VI.10L-03	VI.10L-03	1.10L-03	\\U_003	V2.10L-03	VI.10E-0.	1.101-03	1.1012-03	VI.1012-03	V2.10L203	\1.10L=0.		11.1015-0.
Anions									l	1	1		1	1	1	1	1
NO ₂ ° as NO2-	mM	6.76E-02	6.45E-02	9.92E-02	6.31E-02	6.76E-02	6.45E-02	<2.04E-03	<2.04E-03	<2.04E-0	3 <2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	6.22E-03	6.70E-0
NO ₃ as NO ₃ -		+		2.48E-01		1.42E-01	1.37E-01	1.03E-02	9.74E-03	5.25E-0	2 5.45E-02	2.24E-02	2.12E-02	2.55E-02	2.56E-02	1.36E-01	
	mM	1.42E-01	1.37E-01		1.92E-01												1.47E-0
CO ₃ ² ·	mM	1.82E+00	9.68E-01	2.15E+00	1.35E+00	1.82E+00	9.68E-01	<8.33E-01	<8.33E-01	<8.33E-0	1 <8.33E-01	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-0
SO ₄ ² ·	mM	1.73E-02	1.60E-02	2.14E-02	1.28E-02	1.73E-02	1.60E-02	2.38E-03	3.59E-03	1.90E-0	3 2.12E-03	3.67E-04	5.62E-04	3.37E-04	3.46E-04	1.74E-03	9.92E-0
PO ₄ as PO ₄ 3.	mM	4.06E-01	4.12E-01	5.51E-01	4.64E-01	4.06E-01	4.12E-01	2.93E-01	2.96E-01	2.43E-0	1 2.51E-01	9.96E-02	9.45E-02	5.04E-02	5.56E-02	1.81E-01	1.89E-0
CI.	mM	7.24E-03	5.77E-03	4.25E-02	3.04E-02	7.24E-03	5.77E-03	1.40E-03	1.70E-03	1.59E-0	3 1.44E-03	6.58E-04	8.74E-04	1.36E-03	1.80E-03	3 1.74E-02	2.12E-0
F	mM	1.43E+00	1.35E+00	2.09E+00	1.45E+00	1.43E+00	1.35E+00	3.20E-01	4.17E-01	2.14E-0	1 2.34E-01	3.11E-02	3.26E-02	2.13E-02	2.37E-02	1.47E-01	1.35E-0
Oxalate*	mM	2.33E+00	2.14E+00	2.76E+00	2.10E+00	2.33E+00	2.14E+00	1.59E-01	2.20E-01	5.33E-0		5.97E-03	7.42E-03	<3.92E-03	4.17E-03	2.22E-02	1.96E-0

^{*} Oxalate results are for information only

						П	Tank C-20	03 (19887) DDI	Water Leach Re								
Paramatar	Units	1 3		Contact	1 month (Jun)	Stogo 1	Stage 1 (Jun)	Store 2	Stage 2 (Jun)		Etago 3 (dup)	Storo A	Stage 4 (Jun)	Stage 5	Stago 5 (Jun)	Store 6	Stage 6 (Jun)
Parameter nH		1 day 10.66	1 day (dup) 10.63	1 month 10.56	1 month (dup) 10.47		Stage 1 (dup) 10.63	Stage 2 10.70	Stage 2 (dup) 10.29	Stage 3		Stage 4	Stage 4 (dup)	Stage 5 9.94	Stage 5 (dup)	Stage 6 10.41	Stage 6 (dup)
Alkalinity	std units mg/L as CaCO3	6.02E+02	5.56E+02	5.17E+02	5.33E+02	10.66 6.02E+02	5.56E+02	1.93E+02	2.01E+02	10.11 1.54E+02	1 10.43 2 1.24E+02	10.61 1.24E+02	10.49 1.16E+02	9.94 8.49E+01	8.49E+01	1.78E+02	10.5 1.62E+0
TIC	mg C/L	6.76E+01	5.84E+01	5.63E+01	5.76E+01	6.76E+01	5.84E+01	9.42E+00	2.38E+01	1.77E+01	1.23E+01	8.84E+00	7.33E+00	7.31E+00	6.60E+00	2.00E+01	1.52E+0
TOC	mg C/L	5.56E+01	5.11E+01	3.71E+01	3.66E+01	5.56E+01	5.11E+01	1.00E+01	<4.82E+00	<4.82E+00		<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+0
TC	mg C/L	1.23E+02	1.10E+02	9.33E+01	9.42E+01	1.23E+02	1.10E+02	1.95E+01	2.38E+01	1.77E+01	1.23E+01	8.84E+00	7.33E+00	7.31E+00	6.60E+00	2.00E+01	1.52E+0
Radionuclides																	
⁹⁰ Sг	μCi/L	3.08E+02	2.55E+02	1.75E+02	1.92E+02	3.08E+02	2.55E+02			1.93E+02	2 1.53E+02					3.48E+02	3.07E+0
⁹⁹ Tc	mg/L	(3.12E-05)	(3.03E-05)	<5.00E-04	<5.00E-04	(3.12E-05)	(3.03E-05)	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	4 <5.00E-04	<5.00E-0
²³⁸ U	mg/L	3.85E+02	4.08E+02	1.55E+02	1.55E+02	3.85E+02	4.08E+02	1.63E+02	1.36E+02	1.87E+02	1.30E+02	3.86E+01	2.67E+01	3.56E+01	3.94E+01	4.70E+02	4.25E+0
²³⁹ Pu*	μCi/L	3.94E+00	2.79E+00	9.45E-01	9.32E-01	3.94E+00	2.79E+00	1.37E+00	1.19E+00	1.49E+00	1.02E+00	3.13E-01	2.19E-01	2.98E-01	3.57E-01	1.77E+00	1.68E+0
²³⁷ Np*	μCi/L	1.44E-02	1.29E-02	(1.44E-04)	(1.40E-04)	1.44E-02	1.29E-02	6.21E-03	5.80E-03	8.41E-03	5.60E-03	1.60E-03	7.31E-04	1.54E-03	1.73E-03	5.59E-04	4.92E-0
²⁴¹ Am	μCi/L	<8.50E+00	<8.50E+00	<1.70E+02	<1.70E+02	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	1.70E+02	1.70E+0
* Pu and Np Results may be	biased high due to	U concentration	n.														
Metals		(1.00E.02)	(C 12E 04)	(2.000.04)	(1 BOT 04)	(1.02E.02)	(C 12E 04)	-5 OOF 02	-5 OOT 02	-5 OOF 03	.5 OOF 02	-5 OOF 03	.5 OOF 03	-5 00E 02	-5 00F 03	(2.705.04)	(1.70E.04
Ag 107 Al	mg/L mg/L	(1.02E-03) 1.30E+00	(6.13E-04) 1.30E+00	(2.00E-04) 2.25E+00	(1.80E-04) 1.54E+00	(1.02E-03) 1.30E+00	(6.13E-04) 1.30E+00	<5.00E-03 (4.69E-01)	<5.00E-03 (4.63E-01)	<5.00E-03 (1.09E-01)	3 <5.00E-03 (2.54E-01)	<5.00E-03 (1.95E-01)	<5.00E-03 (2.96E-01)	<5.00E-03 (1.74E-01)	<5.00E-03 (6.77E-01)	(2.70E-04) (6.09E-01)	(1.70E-04 (4.40E-01
As	mg/L	<2.50E+00	<2.50E+00	<1.25E+00	<1.25E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	(2.54E-01) (2.50E+00	<2.50E+00	(2.96E-01) (2.50E+00	<2.50E+00	<2.50E+00	0.09E-01) 0 <1.25E+00	<1.25E+0
As 75	mg/L	(9.81E-03)	(9.19E-03)	<1.00E-01	<1.00E-01	(9.81E-03)	(9.19E-03)	(6.15E-03)	(5.25E-03)	(6.85E-03)	(1.71E-03)	(5.37E-03)	(2.25E-03)	(6.73E-03)	(2.50E-03)	<1.00E-01	<1.00E-0
В	mg/L	(3.37E-01)	<2.50E+00	<2.50E+00	<2.50E+00	(3.37E-01)	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+0
Ba	mg/L	(3.33E-02)	<2.50E-01	(1.55E-01)	4.79E-01	(3.33E-02)	<2.50E-01	<2.50E-01	(1.16E-01)	2.83E-01		(1.34E-01)	(5.48E-02)	(5.93E-02)	(7.25E-02)	5.80E-01	8.42E-0
Be D;	mg/L	<2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <1.25E+00	<2.50E-01 <1.25E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <1.25E+00	<2.50E-0 <1.25E+0
Bi Ca	mg/L mg/L	<2.50E+00 3.22E+00	<2.50E+00 2.55E+00	<1.25E+00 (1.54E+00)	<1.25E+00 2.57E+00	<2.50E+00 3.22E+00	<2.50E+00 2.55E+00	<2.50E+00 (1.98E+00)	<2.50E+00 (1.75E+00)	<2.50E+00 (2.34E+00)	<2.50E+00 (1.59E+00)	<2.50E+00 (9.89E-01)	<2.50E+00 (1.35E+00)	<2.50E+00 (8.69E-01)	<2.50E+00 (9.76E-01)	<1.25E+00 2.86E+00	<1.25E+00 (2.13E+00
Cd	mg/L	<2.50E-01	<2.50E-01	<1.25E-01	<1.25E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<1.25E-01	<1.25E-0
Cd 114	mg/L	<1.00E-01	<1.00E-01	(7.20E-04)	(5.00E-04)	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	(1.08E-03)	(9.70E-04
Co	mg/L	(1.09E-01)	(1.04E-01)	(5.60E-02)	(3.66E-02)	(1.09E-01)	(1.04E-01)	(5.31E-02)	(5.41E-02)	(4.87E-02)	(3.57E-02)	(3.34E-02)	(2.82E-02)	(2.02E-02)	(3.42E-02)	(9.81E-02)	(1.00E-01
Cr Cr 52	mg/L	1.55E+01	1.13E+01	6.34E+00	6.25E+00 5.75E+00	1.55E+01	1.13E+01	5.91E+00 4.86E+00	4.42E+00 3.72E+00	5.31E+00 4.24E+00	3.82E+00 3.15E+00	6.82E-01	5.99E-01 5.53E-01	1.05E+00 9.46E-01	1.08E+00 9.91E-01	4.95E+00 4.39E+00	4.46E+00
Cr 53 Cu	mg/L mg/L	1.18E+01 <2.50E+01	8.91E+00 <2.50E+01	5.83E+00 <5.00E+01	<5.00E+01	1.18E+01 <2.50E+01	8.91E+00 <2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	3.13E+00 1 <2.50E+01	6.37E-01 <2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	4.39E+00 1 <5.00E+01	4.00E+0 <5.00E+0
Cu 65	mg/L	7.44E-02	5.78E-02	3.10E-02	2.72E-02	7.44E-02	5.78E-02	3.81E-02	3.60E-02	3.43E-02	2.44E-02	(4.50E-03)	(2.88E-03)	(7.64E-03)	(5.98E-03	5.95E-02	4.10E-02
Fe	mg/L	1.09E+01	8.11E+00	3.38E+00	3.39E+00	1.09E+01	8.11E+00	4.70E+00	3.71E+00	4.41E+00	2.92E+00	(6.72E-01)	(5.74E-01)	(8.19E-01)	(8.37E-01)	4.39E+00	4.55E+0
K	mg/L	<6.25E+02	<6.25E+02	<6.25E+01	<6.25E+01	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	2 <6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	2 <6.25E+01	<6.25E+0
Li Mg	mg/L mg/L	<2.50E+00 (8.00E-01)	<2.50E+00 (5.98E-01)	<5.00E+00 (3.86E-01)	<5.00E+00 (3.99E-01)	<2.50E+00 (8.00E-01)	<2.50E+00 (5.98E-01)	<2.50E+00 (3.43E-01)	<2.50E+00 (3.32E-01)	<2.50E+00 (3.61E-01)	<2.50E+00 (2.76E-01)	<2.50E+00 (1.15E-01)	<2.50E+00 (1.77E-01)	<2.50E+00 (1.04E-01)	<2.50E+00 (1.06E-01)	<5.00E+00 (6.12E-01)	<5.00E+00 (5.41E-01
Mn	mg/L	1.85E+00	1.30E+00	5.55E-01	5.57E-01	1.85E+00	1.30E+00	8.37E-01)	5.78E-01	7.76E-01	4.65E-01	(9.93E-02)	(7.92E-02)	(1.27E-01)	(1.24E-01)	6.87E-01	6.00E-0
Mo	mg/L	<1.25E+00	<1.25E+00	<2.50E+00	<2.50E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<2.50E+00	<2.50E+0
Mo 95	mg/L	(6.55E-03)	(4.06E-03)	(3.76E-03)	(4.63E-03)	(6.55E-03)	(4.06E-03)	(9.40E-04)	(1.52E-03)	(1.33E-03)	(1.02E-03)	(9.50E-04)	<2.50E-02	(5.30E-04)	<2.50E-02	(1.72E-03)	(1.72E-03
Mo 97	mg/L	(5.99E-03)	(3.74E-03)	(3.48E-03)	(3.94E-03)	(5.99E-03)	(3.74E-03)	(6.10E-03)	(6.87E-03)	<2.50E-02	2 <2.50E-02	<2.50E-02	<2.50E-02	<2.50E-02	<2.50E-02	(1.26E-03)	(1.13E-03
Mo 98 Na	mg/L mg/L	(5.10E-03) 4.26E+02	(2.56E-03) 3.73E+02	(3.29E-03) 3.21E+02	(3.03E-03) 3.07E+02	(5.10E-03) 4.26E+02	(2.56E-03) 3.73E+02	(5.14E-03) 1.11E+02	(5.66E-03) 1.01E+02	<2.50E-02 7.54E+01	2 <2.50E-02 6.35E+01	<2.50E-02 3.50E+01	<2.50E-02 3.04E+01	<2.50E-02 2.53E+01	<2.50E-02 2.39E+01	2 (1.27E-03) 8.75E+01	(1.21E-03 8.12E+0
Ni Ni	mg/L	1.42E+00	9.38E-01	(4.70E-01)	(4.65E-01)	1.42E+00	9.38E-01	6.07E-01	(4.05E-01)	5.51E-01	(2.87E-01)	(1.01E-01)	(6.71E-02)	(1.07E-01)	(8.83E-02	(5.23E-01)	(4.26E-01
P	mg/L	1.19E+02	1.07E+02	7.89E+01	6.86E+01	1.19E+02	1.07E+02	(5.33E+01)	(4.66E+01)	(3.73E+01)	(3.03E+01)	(1.64E+01)	(1.35E+01)	(1.05E+01)	(9.61E+00)	4.37E+01	4.01E+0
Pb	mg/L	5.28E+00	3.61E+00	1.70E+00	1.71E+00	5.28E+00	3.61E+00	2.02E+00	1.69E+00	2.16E+00	1.50E+00	(2.94E-01)	(2.21E-01)	(3.80E-01)	(4.39E-01)	3.40E+00	3.06E+0
Pb 206 Ru 101	mg/L	4.13E+00 (1.21E-02)	2.92E+00 (5.41E-03)	1.61E+00 (1.78E-03)	1.53E+00 (2.30E-03)	4.13E+00 (1.21E-02)	2.92E+00 (5.41E-03)	1.77E+00 <5.00E-02	1.41E+00 <5.00E-02	1.80E+00 <5.00E-02	1.24E+00 2 <5.00E-02	3.03E-01 <5.00E-02	2.51E-01 2 <5.00E-02	4.00E-01 <5.00E-02	4.12E-01 <5.00E-02	2.98E+00 2 (3.13E-03)	2.62E+0 (3.24E-03
Ru 101	mg/L mg/L	(9.20E-03)	(2.54E-03)	(9.20E-04)	(1.01E-03)	(9.20E-03)	(2.54E-03)	<5.00E-02	<5.00E-02	<5.00E-02	2 <5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02	(1.56E-03)	(1.55E-03
S S	mg/L	(1.65E+00)	(1.35E+00)	<1.00E+02	<1.00E+02	(1.65E+00)	(1.35E+00)	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	(1.50E-05) 1 <1.00E+02	<1.00E+02
Sb 121	mg/L	1.98E-02	1.59E-02	7.34E-03	7.31E-03	1.98E-02	1.59E-02	1.06E-02	9.35E-03	8.58E-03	7.68E-03	(4.85E-03)	(4.21E-03)	(4.54E-03)	(3.44E-03)	8.98E-03	9.18E-0
Se	mg/L	<2.50E+00	<2.50E+00	<2.50E+01	<2.50E+01	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00		<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+01	<2.50E+0
Se 82 Si	mg/L mg/L	<5.00E-02 (2.34E+00)	<5.00E-02 (1.34E+00)	<5.00E+01	<5.00E+01	<5.00E-02 (2.34E+00)	<5.00E-02 (1.34E+00)	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	2 <5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	2 <5.00E+01	<5.00E+0
Sr	mg/L	3.43E-01	2.60E-01	(1.31E-01)	(1.45E-01)	3.43E-01	2.60E-01	(1.39E-01)	(1.23E-01)	(1.53E-01)	(1.08E-01)	(4.02E-02)	(3.27E-02)	(3.81E-02)	(4.25E-02)	(3.09E-01)	(2.79E-01
Ti	mg/L	(1.91E-01)	(1.39E-01)	(6.81E-02)	(6.42E-02)	(1.91E-01)	(1.39E-01)	(7.57E-02)	(6.60E-02)	(8.41E-02)	(5.84E-02)	(2.49E-02)	(2.32E-02)	(2.26E-02)	(2.18E-02)	(1.40E-01)	(1.26E-01
Tl	mg/L	<2.50E+00	<2.50E+00	<5.00E+00	<5.00E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<5.00E+00	<5.00E+0
V	mg/L	<6.25E-01	<6.25E-01	<2.50E+00	<2.50E+00	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<2.50E+00	<2.50E+0
Zn Zr	mg/L mg/L	(6.83E-01) <2.50E-01	(5.54E-01) <2.50E-01	(6.85E-01) <6.25E-01	(8.06E-01) <6.25E-01	(6.83E-01) <2.50E-01	(5.54E-01) <2.50E-01	(3.78E-01) <2.50E-01	(5.78E-01) <2.50E-01	(5.45E-01) <2.50E-01	(1.48E+00) (2.50E-01	(3.70E-01) <2.50E-01	(2.74E-01) <2.50E-01	(2.02E-01) <2.50E-01	(2.73E-01) <2.50E-01	(9.80E-01) (6.25E-01	(9.68E-01 <6.25E-0
* Cr 53 and Pb 206 concents				.U.2317-U1	-U.ZJL*U1	\2.J0L-01	\2.J0L-01	\2.50L-01	-2.5015-01	\Z.JOL-01	-2.301-01	12.5015-01	\2.50L*01	.2.5015-01	\Z.J0L*01	-5.251-01	.5.25250
Anions																	
NO ₂ as NO2-	mg/L	6.89E+00	5.94E+00	4.82E+00	5.41E+00	6.89E+00	5.94E+00	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-0
NO ₃ as NO3-	mg/L	5.66E+01	4.93E+01	4.16E+01	4.60E+01	5.66E+01	4.93E+01	1.60E+00	5.39E-01	<4.33E-01	<4.33E-01	<4.33E-01	<4.33E-01	<4.33E-01	<4.33E-01	1.09E+00	9.16E-0
CO ₃ ² *	mg/L	4.18E+02	3.77E+02	3.61E+02	3.66E+02	4.18E+02	3.77E+02	1.15E+02	9.20E+01	7.35E+01	5.20E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	1.18E+02	1.11E+0
SO ₄ ² ·	mg/L	3.16E+00	2.52E+00	2.07E+00	2.38E+00	3.16E+00	2.52E+00	5.62E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-0
PO ₄ 3. as PO ₄ 3. *	mg/L	2.09E+02	2.24E+02	2.21E+02	1.87E+02	2.09E+02	2.24E+02	1.51E+02	1.29E+02	7.70E+01	1	4.59E+01		2.65E+01	2.35E+01	1	4.90E+0
Cl'	mg/L	1.06E+00	6.98E-01	6.10E-01	6.49E-01	1.06E+00	6.98E-01	5.69E-01	<2.40E-01	<2.40E-01	7.20E+01 <2.40E-01	2.52E-01	<2.40E-01	<2.40E-01	2.99E-01	4.51E+01 <2.40E-01	<2.40E-0
r.	mg/L	3.55E+01	3.10E+01	2.84E+01	2.93E+01	3.55E+01	3.10E+01	1.99E+00	1.62E+00	7.59E-01	5.96E-01	2.52E-01 1.63E-01	1.30E-01	<2.40E-01 <1.17E-01	<1.17E-01	5.00E-01	4.82E-0
Oxalate*	mg/L mg/L	5.55E+01 1.83E+01	1.61E+01	2.84E+01 1.37E+01	2.93E+01 1.48E+01	3.55E+01 1.83E+01	3.10E+01 1.61E+01	<3.45E-01	<3.45E-01	<3.45E-01	3.96E-01 8.12E-01	<3.45E-01	<3.45E-01	<1.17E-01 <3.45E-01	<1.17E-01	3.00E-01 3.45E-01	4.82E-0 <3.45E-0
						110021101	er were backgrou		-JUI	-JJL-01	3.121201	JUI	J.TJL*01	-5.7515-01	\J.7JL*01	JJL-01	JTJE-

^{*} The carbonate, oxalate and phosphate results are for information only. QC was not within procedural limits. Oxalate number were background corrected.

	ı	1	a: :			П	Tank C-20	3 (19887) DDI	Water Leach Re								
Domonoston	I Inite	1 4		Contact	1 th (-l)	Store 1	Steam 1 (dom)	St 2	Store 2 (dom)		enishment Tests	St 4	Etana 4 (dom)	C4 5	Etana E (dam)	St 6	Store 6 (dom)
Parameter pH	Units std units	1 day	1 day (dup)	1 montn	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
Alkalinity	mM as CaCO3	6.02E+00	5.55E+00	5.17E+00	5.32E+00	6.02E+00	5.55E+00	1.93E+00	2.01E+00	1.54E+00	1.23E±00	1.23E+00	1.16E+00	8.48E-01	8.48E-01	1 1.77E+00	1.62E+0
TIC	mM C	5.63E+00	4.87E+00	4.69E+00	4.80E+00	5.63E+00	4.87E+00	7.85E-01	1.98E+00	1.34E+00	1.02E+00	7.37E-01	6.11E-01	6.09E-01	5.50E-0	1 1.//E+00	1.02E+0
TOC	mM C	4.63E+00	4.87E+00 4.26E+00	3.09E+00	3.05E+00	4.63E+00	4.87E+00 4.26E+00	8.37E-01	<4.02E-01	<4.02E-01	1.02E+00 4.02E-01	<4.02E-01	<4.02E-01	<4.02E-01	<4.02E-0	1	1
TC	mM C	1.03E+01	9.13E+00	7.78E+00	7.85E+00	1.03E+01	9.13E+00	1.62E+00	1.98E+00	1.48E+00		7.37E-01					1
ic	mivi C	1.03L±01	9.13E±00	7.78E±00	7.63E±00	1.0312701	9.13E±00	1.02L+00	1.56E±00	1.46LT00	1.02E+00	7.5712-01	0.1112-01	0.0912-01	J.J0E-01	1	
Radionuclides														1		1	†
90 _{C-}	mM	2.44E-05	2.03E-05	1.39E-05	1.52E-05	2.44E-05	2.03E-05			1.53E-05	1.21E-05			1		2.76E-05	5 2.44E-0
Sr oo														ļ			
⁹⁹ Tc	mM	(3.15E-07)	(3.06E-07)	<5.05E-06	<5.05E-06	(3.15E-07)	(3.06E-07)	<1.01E-06	<1.01E-06	<1.01E-06	<1.01E-06	<1.01E-06	<1.01E-06	<1.01E-06	<1.01E-06	6 <5.05E-06	5 <5.05E-0
²³⁸ U	mM	1.62E+00	1.71E+00	6.51E-01	6.52E-01	1.62E+00	1.71E+00	6.83E-01	5.70E-01	7.84E-01	5.46E-01	1.62E-01	1.12E-01	1.50E-01	1.66E-01	1 1.97E+00	1.78E+0
²³⁹ Pu*	mM	2.66E-03	1.88E-03	6.38E-04	6.29E-04	2.66E-03	1.88E-03	9.25E-04	8.02E-04	1.00E-03	6.88E-04	2.11E-04	1.48E-04	2.01E-04	2.41E-04	4 1.20E-03	3 1.13E-0
²³⁷ Np*	mM	8.56E-05	7.64E-05	(8.54E-07)	(8.33E-07)	8.56E-05	7.64E-05	3.69E-05	3.45E-05	5.00E-05	3.33E-05	9.49E-06	4.35E-06	9.16E-06	1.03E-05	5 3.32E-06	5 2.92E-0
241		<1.04E-05					1						1				
* Do and No Decoles man be	mM		<1.04E-05	<2.07E-04	<2.07E-04	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	5 2.07E-04	2.0/E-0
* Pu and Np Results may be Metals	biased nigh due to	U concentratio	on.										1	-	ļ	1	
	mM	(9.53E-06)	(5.72E-06)	(1.87E-06)	(1.68E-06)	(9.53E-06)	(5.72E-06)	<4.67E-05	<4.67E-05	<4.67E-05	5 <4.67E-05	<4.67E-05	<4.67E-05	<4.67E-05	<4.67E-05	5 (2.52E-06)) (1.59E-06
Ag 107			(,	(,												
Al	mM	4.81E-02	4.80E-02	8.34E-02	5.72E-02	4.81E-02	4.80E-02	(1.74E-02)	(1.71E-02)	(4.03E-03)	(9.42E-03)	(7.23E-03)	(1.10E-02)	(6.47E-03)	(2.51E-02	(2.26E-02)	(1.63E-02
As	mM	<3.34E-02	<3.34E-02	<1.67E-02	<1.67E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	2 <1.67E-02	<1.67E-0
As 75	mM	(1.31E-04)	(1.22E-04)	<1.33E-03	<1.33E-03	(1.31E-04)	(1.22E-04)	(8.20E-05)	(7.00E-05)	(9.13E-05)	(2.28E-05)	(7.16E-05)	(3.00E-05)	(8.97E-05)	(3.33E-05	<1.33E-03	3 <1.33E-0
В	mM	(3.12E-02)	<2.31E-01	<2.31E-01	<2.31E-01	(3.12E-02)	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-0	1 <2.31E-01	<2.31E-0
Ba	mM	(2.42E-04)	<1.82E-03	(1.13E-03)	3.49E-03	(2.42E-04)	<1.82E-03	<1.82E-03	(8.47E-04)	2.06E-03	(5.77E-04)	(9.78E-04)	(3.99E-04)	(4.32E-04)	(5.28E-04) 4.23E-03	6.13E-0
Be	mM	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	2 <2.77E-02	2 <2.77E-0							
Bi	mM	<1.20E-02	<1.20E-02	<5.98E-03	<5.98E-03	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	2 <5.98E-03	<5.98E-0
Ca	mM	8.02E-02	6.36E-02	(3.84E-02)	6.40E-02	8.02E-02	6.36E-02	(4.93E-02)	(4.38E-02)	(5.84E-02)	(3.96E-02)	(2.47E-02)	(3.36E-02)	(2.17E-02)	(2.43E-02		
Cd	mM	<2.22E-03	<2.22E-03	<1.11E-03	<1.11E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	3 <1.11E-03	<1.11E-0
Cd 114	mM	<8.77E-04	<8.77E-04	(6.32E-06)	(4.39E-06)	<8.77E-04	<8.77E-04	<8.77E-04	<8.77E-04	<8.77E-04	4 <8.77E-04	<8.77E-04	<8.77E-04	<8.77E-04	<8.77E-04		(8.51E-06
Co	mM	(1.84E-03)	(1.76E-03)	(9.49E-04)	(6.22E-04)	(1.84E-03)	(1.76E-03)	(9.00E-04)	(9.18E-04)	(8.26E-04)		(5.66E-04)			(5.80E-04		(1.70E-03
Cr	mM	2.98E-01	2.18E-01	1.22E-01	1.20E-01	2.98E-01	2.18E-01	1.14E-01	8.49E-02	1.02E-01	7.34E-02	1.31E-02	1.15E-02	2.02E-02	2.07E-02		2 8.58E-0
Cr 53 *	mM	2.23E-01	1.68E-01	1.10E-01	1.09E-01	2.23E-01	1.68E-01	9.18E-02	7.01E-02	8.01E-02	5.95E-02	1.20E-02	1.04E-02	1.78E-02	1.87E-02	2 8.28E-02	7.54E-0
Cu	mM	<3.93E-01	<3.93E-01	<7.87E-01	<7.87E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-0		<7.87E-0
Cu 65	mM	1.14E-03	8.90E-04	<4.77E-04	<4.19E-04	1.14E-03	8.90E-04	5.86E-04	5.53E-04	5.27E-04	3.76E-04	(6.92E-05)	(4.43E-05)	(1.18E-04)	(9.20E-05		<6.31E-0
Fe	mM	1.94E-01	1.45E-01	6.05E-02	6.07E-02	1.94E-01	1.45E-01	8.41E-02	6.64E-02	7.90E-02	5.23E-02	(1.20E-02)	(1.03E-02)	(1.47E-02)	(1.50E-02	7.87E-02	2 8.16E-0
K	mM	<1.60E+01	<1.60E+01	<1.60E+00	<1.60E+00	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+0	1 <1.60E+00	<1.60E+0
Li	mM	<3.60E-01	<3.60E-01	<7.20E-01	<7.20E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-0	1 <7.20E-01	<7.20E-0
Mg	mM	(3.29E-02)	(2.46E-02)	(1.59E-02)	(1.64E-02)	(3.29E-02)	(2.46E-02)	(1.41E-02)	(1.37E-02)	(1.48E-02)	(1.13E-02)	(4.74E-03)	(7.27E-03)	(4.30E-03)	(4.37E-03) (2.52E-02)) (2.23E-02
Mn	mM	3.37E-02	2.36E-02	1.01E-02	1.01E-02	3.37E-02	2.36E-02	1.52E-02	1.05E-02	1.41E-02	8.47E-03	(1.81E-03)	(1.44E-03)	(2.32E-03)	(2.26E-03) 1.25E-02	2 1.09E-0
Mo	mM	<1.30E-02	<1.30E-02	<2.61E-02	<2.61E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02		<1.30E-02			<1.30E-02		
Mo 95 Mo 97	mM mM	(6.55E-05) (6.31E-05)	(4.06E-05) (3.93E-05)	(3.76E-05) (3.66E-05)	(4.63E-05) (4.15E-05)	(6.55E-05) (6.31E-05)	(4.06E-05) (3.93E-05)	(9.40E-06) (6.42E-05)	(1.52E-05) (7.23E-05)	(1.33E-05) <2.63E-04	(1.02E-05) 4 <2.63E-04	(9.50E-06) <2.63E-04	<2.50E-04 <2.63E-04	(5.30E-06) <2.63E-04	<2.50E-04 <2.63E-04		(1.72E-05) (1.19E-05
Mo 98		(5.20E-05)	(2.61E-05)	(3.35E-05)	(4.15E-05) (3.09E-05)	(5.20E-05)	(3.93E-05) (2.61E-05)	(5.24E-05)	(7.23E-05) (5.78E-05)	<2.65E-04		<2.55E-04			<2.63E-04 <2.55E-04		(1.19E-05) (1.23E-05
Mo 98 Na	mM mM	1.85E+01	1.62E+01	1.39E+01	1.34E+01	(5.20E-05) 1.85E+01	(2.61E-05) 1.62E+01	(5.24E-05) 4.84E+00	4.38E+00	<2.55E-04 3.28E+00	2.76E+00	<2.55E-04 1.52E+00	<2.55E-04 1.32E+00	<2.55E-04 1.10E+00	<2.55E-04 1.04E+00) (1.23E-03) 3.53E+0
Na Ni	mM	2.41E-02	1.62E+01 1.60E-02	(8.01E-03)	(7.92E-03)	2.41E-02	1.60E-02	4.84E+00 1.03E-02	4.38E+00 (6.90E-03)	9.40E-03	3 (4.90E-03)	(1.72E-03)	(1.14E-03)	(1.82E-03)	1.04E+00 (1.50E-03) (8.91E-03)) (7.25E-03
P	mM	3.86E+00	3.46E+00	2.55E+00	2.22E+00	3.86E+00	3.46E+00	(1.72E+00)	(0.90E-03) (1.50E+00)	(1.20E+00)	(9.78E-01)	(5.31E-01)	(4.37E-01)	(3.41E-01)	(3.10E-03		0 1.30E+0
Pb	mM	2.55E-02	1.74E-02	8.23E-03	8.26E-03	2.55E-02	1.74E-02	9.75E-03	8.15E-03	1.04E-02	7.23E-03	(1.42E-03)	(1.07E-03)	(3.41E-01) (1.84E-03)	(2.12E-03		1.30E+0 2 1.48E-0
Pb 206 *	mM	2.00E-02	1.42E-02	7.80E-03	7.42E-03	2.00E-02	1.42E-02	8.61E-03	6.84E-03	8.72E-03	6.00E-03	1.47E-03	1.22E-03	1.94E-03	2.00E-03	3 1.45E-02	2 1.48E-0 2 1.27E-0
Pt 206 ** Ru 101	mM	(1.20E-04)	(5.36E-05)	(1.76E-05)	(2.28E-05)	(1.20E-02)	(5.36E-05)	<4.95E-04	6.84E-03 <4.95E-04	8.72E-03 <4.95E-04	6.00E-03 4 <4.95E-04	<4.95E-04	1.22E-03 <4.95E-04	1.94E-03 4.95E-04	2.00E-0.	4 (3.10E-05)	(3.21E-05
Ru 101	mM	(9.02E-04)	(2.49E-05)	(9.02E-06)	(9.90E-06)	(9.02E-05)	(2.49E-05)	<4.90E-04	<4.90E-04	<4.90E-04	4.93E-04 4 <4.90E-04	<4.90E-04	<4.90E-04	<4.90E-04	<4.90E-04	4 (3.10E-03) 4 (1.53E-05)	(3.21E-03) (1.52E-05
Ku 102	mM	(5.15E-02)	(4.22E-02)	<3.12E+00	<3.12E+00	(5.15E-02)	(4.22E-02)	<3.12E-01	<3.12E-01	<3.12E-01	<3.12E-01	<3.12E-01	<3.12E-01	<3.12E-01	<3.12E-0	1 <3.12E+00	3.12E+0
Sb 121	mM	1.64E-04	1.31E-04	6.07E-05	6.04E-05	1.64E-04	1.31E-04	8.74E-05	7.73E-05	7.09E-05	6.35E-05	(4.01E-05)	(3.48E-05)	(3.75E-05)	(2.84E-05	7.42E-05	7.59E-0
Se Se	mM	<3.17E-02	<3.17E-04	<3.17E-01	<3.17E-01	<3.17E-02	<3.17E-02	<3.17E-02	<3.17E-02	<3.17E-02	3.17E-02	<3.17E-02	<3.17E-02	3.17E-02	<3.17E-03		3.17E-0
Se 82	mM	<6.10E-04	<6.10E-04	O.1712-01	S.172-01	<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	4 <6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04		. J.17L-0
Si	mM	(8.34E-02)	(4.78E-02)	<1.78E+00	<1.78E+00	(8.34E-02)	(4.78E-02)	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-0		<1.78E+0
Sr	mM	3.91E-03	2.97E-03	(1.49E-03)	(1.65E-03)	3.91E-03	2.97E-03	(1.58E-03)	(1.40E-03)	(1.74E-03)	(1.23E-03)	(4.59E-04)	(3.74E-04)	(4.35E-04)	(4.85E-04		(3.19E-03
Ti	mM	(3.98E-03)	(2.89E-03)	(1.42E-03)	(1.34E-03)	(3.98E-03)	(2.89E-03)	(1.58E-03)	(1.38E-03)	(1.74E-03)	(1.22E-03)	(5.20E-04)	(4.85E-04)	(4.72E-04)	(4.56E-04		(2.63E-03
Tl	mM	<1.22E-02	<1.22E-02	<2.45E-02	<2.45E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	2 <2.45E-02	2 <2.45E-0
V	mM	<1.23E-02	<1.23E-02	<4.91E-02	<4.91E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	2 <1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02		2 <4.91E-0
Zn	mM	(1.04E-02)	(8.47E-03)	(1.05E-02)	(1.23E-02)	(1.04E-02)	(8.47E-03)	(5.78E-03)	(8.83E-03)	(8.33E-03)	(2.26E-02)	(5.66E-03)	(4.19E-03)	(3.09E-03)	(4.18E-03) (1.48E-02
Zr	mM	<2.74E-03	<2.74E-03	<6.85E-03	<6.85E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	3 <2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03		
* Cr 53 and Pb 206 concentr											İ		1	i i	1	1	1
Anions												ĺ	Ì	İ		İ	
NO ₂ as NO2-	mM	1.50E-01	1.29E-01	1.05E-01	1.18E-01	1.50E-01	1.29E-01	<9.80E-03	<9.80E-03	<9.80E-03	3 <9.80E-03	<9.80E-03	<9.80E-03	<9.80E-03	<9.80E-03	3 <9.80E-03	3 <9.80E-0
NO ₃ as NO3-	mM	9.13E-01	7.95E-01	6.71E-01	7.42E-01	9.13E-01	7.95E-01	2.58E-02	8.68E-03	<6.98E-03	<6.98E-03	<6.98E-03	<6.98E-03	<6.98E-03	<6.98E-03	3 1.75E-02	2 1.48E-0
CO ₃ ² *	mM	6.96E+00	6.28E+00	6.02E+00	6.09E+00	6.96E+00	6.28E+00	1.91E+00	1.53E+00	1.22E+00	8.67E-01	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-0	1 1.97E+00	1.86E+0
SO ₄ ² ·	mM	3.29E-02	2.62E-02	2.16E-02	2.48E-02	3.29E-02	2.62E-02	5.85E-03	<4.26E-03	<4.26E-03	3 <4.26E-03	<4.26E-03	<4.26E-03	<4.26E-03	<4.26E-03	3 <4.26E-03	3 <4.26E-0
PO ₄ as PO ₄ **	mM	2.20E+00	2.36E+00	2.33E+00	1.97E+00	2.20E+00	2.36E+00	1.59E+00	1.36E+00	8.11E-01	7.58E-01	4.84E-01	4.29E-01	2.79E-01	2.47E-01		5.16E-0
CI [*]	mM	2.98E-02	1.97E-02	1.72E-02	1.83E-02	2.98E-02	1.97E-02	1.61E-02	<6.77E-03	<6.77E-03	<6.77E-03	7.12E-03	<6.77E-03	<6.77E-03	8.44E-03	3 <6.77E-03	<6.77E-0
rs.	mM	1.87E+00	1.63E+00	1.49E+00	1.54E+00	1.87E+00	1.63E+00	1.05E-01	8.55E-02	4.00E-02	3.14E-02	8.57E-03	6.83E-03	<6.16E-03	<6.16E-03	3 2.63E-02	2.54E-0
F	IIIIVI																

^{*}The carbonate, oxalate and phosphate results are for information only. QC was not within procedural limits. Oxalate number were background corrected.

							Tank C-20	03 (19961) DDI	Water Leach Res								
	**			Contact			la I		la a (1		enishment Tests	0. 1	In: 471.3	In a	a. 571.)	la: c	To see
Parameter	Units	1 day 10.88	1 day (dup) 10.88	1 month 10.75	1 month (dup) 10.56		Stage 1 (dup) 10.88	Stage 2 10.85		Stage 3 10.52		Stage 4 10.48	Stage 4 (dup) 10.53	Stage 5 9.89	Stage 5 (dup) 10.18		Stage 6 (dup)
Alkalinity	std units mg/L as CaCO3	5.56E+02	5.79E+02	5.79E+02	7.57E+02	10.88 5.56E+02	5.79E+02	1.62E+02	10.76 2.01E+02	1.24E+02	2 1.54E+02	1.24E+02	1.24E+02	1.08E+02	1 00E+02	3 10.15 2 1.62E+02	10.75 1.62E+02
TIC	mg C/L	5.06E+01	5.74E+01	6.15E+01	6.37E+01	5.06E+01	5.74E+01	2.32E+01	2.22E+01	1.49E+01	1.37E+01	8.40E+00	8.92E+00	7.62E+00	6.76E+00	1.52E+01	1.53E+01
TOC	mg C/L	6.55E+01	6.69E+01	6.45E+01	7.78E+01	6.55E+01	6.69E+01	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00
TC	mg C/L	1.16E+02	1.24E+02	1.26E+02	1.42E+02	1.16E+02	1.24E+02	2.32E+01	2.22E+01	1.49E+01	1.37E+01	8.40E+00	8.92E+00	7.62E+00	6.76E+00	1.52E+01	1.53E+01
Radionuclides																	
⁹⁰ Sr	μCi/L	4.90E+02	5.17E+02	2.72E+02	1.98E+02	4.90E+02	5.17E+02			1.36E+02	1.92E+02					2.72E+02	1.98E+02
⁹⁹ Tc	mg/L	(3.48E-05)	(6.05E-05)	<5.00E-04	<5.00E-04	(3.48E-05)	(6.05E-05)	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	<1.00E-04	4 <5.00E-04	<5.00E-04
²³⁸ U	mg/L	7.46E+02	5.24E+02	2.35E+02	1.16E+02	7.46E+02	5.24E+02	8.16E+01	1.48E+02	9.59E+01	1.27E+02	2.24E+01	2.16E+01	3.00E+01	4.97E+01	1.87E+02	1.65E+02
²³⁹ Pu*	μCi/L	6.02E+00	6.54E+00	2.51E+00	1.71E+00	6.02E+00	6.54E+00	1.01E+00	1.84E+00	9.25E-01	1.47E+00	2.14E-01	2.13E-01	2.62E-01	2.46E-01	1.31E+00	9.95E-01
²³⁷ Np*	μCi/L	1.96E-02	2.03E-02	(2.68E-04)	(1.42E-04)	1.96E-02	2.03E-02	3.42E-03	6.72E-03	3.27E-03	6.72E-03	7.38E-04	6.39E-04	7.67E-04	1.58E-03	2.18E-04	1.78E-04
²⁴¹ Am	μCi/L	<8.50E+00	<8.50E+00	<1.70E+02	<1.70E+02	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<8.50E+00	<1.70E+02	<1.70E+02
* Pu and Np Results may be	biased high due to	U concentration	n.														
Metals																	
Ag 107	mg/L	(8.30E-04) (8.43E-01)	(1.06E-03) (8.44E-01)	(5.30E-04) 1.60E+00	(5.20E-04) 2.25E+00	(8.30E-04) (8.43E-01)	(1.06E-03) (8.44E-01)	<5.00E-03 (3.58E-01)	<5.00E-03 (3.28E-01)	<5.00E-03 (3.33E-01)	3 <5.00E-03 (2.07E-01)	<5.00E-03 (2.14E-01)	<5.00E-03 (2.51E-01)	<5.00E-03 (2.40E-01)	<5.00E-03 (2.44E-01)	(1.60E-04) (9.23E-01)	(2.00E-04) (9.31E-01)
Al As	mg/L mg/L	(8.43E-01) <2.50E+00	(8.44E-01) <2.50E+00	<1.25E+00	2.25E+00 <1.25E+00	(8.43E-01) <2.50E+00	(8.44E-01) <2.50E+00	(3.58E-01) <2.50E+00	(3.28E-01) <2.50E+00	(3.33E-01) <2.50E+00	(2.0/E-01) (2.50E+00	<2.50E+00	(2.51E-01) <2.50E+00	(2.40E-01) <2.50E+00	<2.50E+00	(9.23E-01) <1.25E+00	(9.31E-01) <1.25E+00
As 75	mg/L	(1.55E-02)	(1.71E-02)	<1.00E-01	<1.00E-01	(1.55E-02)	(1.71E-02)	(1.97E-03)	(8.01E-03)	(1.71E-03)	(6.25E-03)	(1.38E-03)	(5.56E-03)	(2.47E-03)	(5.89E-03)	<1.00E-01	<1.00E-01
В	mg/L	<2.50E+00 <2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00							
Ba	mg/L	<2.50E-01	<2.50E-01	2.71E-01	4.19E-01	<2.50E-01	<2.50E-01	(2.85E-02)	(7.81E-02)	(6.69E-02)	(2.06E-01)	(9.72E-02)	(2.39E-01)	(1.99E-01)	(1.36E-01)	5.89E-01	5.88E-0
Be	mg/L	<2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <1.25E+00	<2.50E-01 <1.25E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	<2.50E-01 <2.50E+00	1 <2.50E-01 <1.25E+00	<2.50E-01 <1.25E+00
Bi Ca	mg/L mg/L	<2.50E+00 4.03E+00	<2.50E+00 4.15E+00	<1.25E+00 2.83E+00	<1.25E+00 3.25E+00	<2.50E+00 4.03E+00	<2.50E+00 4.15E+00	<2.50E+00 (1.34E+00)	<2.50E+00 (1.82E+00)	<2.50E+00 (1.47E+00)	<2.50E+00 (1.61E+00)	<2.50E+00 (6.55E-01)	<2.50E+00 (8.17E-01)	<2.50E+00 (9.13E-01)	<2.50E+00 (1.20E+00)	(1.25E+00) (1.30E+00)	<1.25E+00 (1.04E+00)
Cd	mg/L	<2.50E-01	<2.50E-01	<1.25E-01	<1.25E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<1.25E-01	<1.25E-01
Cd 114	mg/L	<1.00E-01	<1.00E-01	(2.19E-03)	(2.24E-03)	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	(7.80E-04)	(5.70E-04)
Co	mg/L	(1.35E-01)	(1.31E-01)	(5.10E-02)	(5.67E-02)	(1.35E-01)	(1.31E-01)	(3.82E-02)	(5.42E-02)	(5.34E-02)	(3.66E-02)	(2.95E-02)	(2.39E-02)	(2.32E-02)	(2.79E-02)	(7.41E-02)	(6.48E-02
Cr	mg/L	1.93E+01	2.15E+01	1.42E+01	1.56E+01	1.93E+01	2.15E+01	2.77E+00	5.45E+00	2.67E+00		5.07E-01	4.71E-01	6.84E-01	6.99E-01	2.24E+00	1.79E+00
Cr 53 * Cu	mg/L mg/L	1.44E+01 <2.50E+01	1.56E+01 <2.50E+01	1.13E+01 <5.00E+01	1.27E+01 <5.00E+01	1.44E+01 <2.50E+01	1.56E+01 <2.50E+01	2.43E+00 <2.50E+01	4.29E+00 <2.50E+01	2.31E+00 <2.50E+01	2.88E+00 <2.50E+01	4.71E-01 <2.50E+01	4.31E-01 <2.50E+01	6.32E-01 <2.50E+01	6.35E-01 <2.50E+01	2.08E+00 <5.00E+01	1.67E+00 <5.00E+01
Cu 65	mg/L	9.81E-02	1.10E-01	6.73E-02	7.23E-02	9.81E-02	1.10E-01	2.34E-02	5.22E-02	2.09E-02	2.58E-02	(2.91E-03)	(2.60E-03)	(5.99E-03)	(4.75E-03)	(2.29E-02)	(1.96E-02)
Fe	mg/L	1.95E+01	2.19E+01	1.18E+01	1.08E+01	1.95E+01	2.19E+01	3.31E+00	6.41E+00	3.31E+00	4.02E+00	(6.25E-01)	(6.20E-01)	(9.22E-01)	(1.11E+00)	2.36E+00	1.87E+00
K	mg/L	<6.25E+02	<6.25E+02	<6.25E+01	<6.25E+01	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+02	<6.25E+01	<6.25E+01
Li Mg	mg/L mg/L	<2.50E+00 (1.00E+00)	<2.50E+00 (1.11E+00)	<5.00E+00 (6.85E-01)	<5.00E+00 (6.38E-01)	<2.50E+00 (1.00E+00)	<2.50E+00 (1.11E+00)	<2.50E+00 (2.24E-01)	<2.50E+00 (3.56E-01)	<2.50E+00 (2.28E-01)	<2.50E+00 (2.92E-01)	<2.50E+00 (7.64E-02)	<2.50E+00 (8.20E-02)	<2.50E+00 (9.52E-02)	<2.50E+00 (1.09E-01)	<5.00E+00 (3.30E-01)	<5.00E+00 (2.82E-01)
Mn	mg/L	2.88E+00	3.16E+00)	1.83E+00	1.75E+00	2.88E+00	3.16E+00	4.70E-01)	9.27E-01	4.68E-01	5.87E-01	(7.83E-02)	(7.17E-02)	(9.32E-02) (1.15E-01)	(1.09E-01) (1.21E-01)	3.10E-01	2.35E-01
Mo	mg/L	<1.25E+00	<1.25E+00	<2.50E+00	<2.50E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00		<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<2.50E+00	<2.50E+00
Mo 95	mg/L	(6.04E-03)	(7.52E-03)	6.72E-03	9.23E-03	(6.04E-03)	(7.52E-03)	(1.90E-03)	(1.80E-03)	(2.41E-03)	(5.90E-04)	<2.50E-02	(1.00E-03)	<2.50E-02	(2.20E-04)	(1.97E-03)	(1.35E-03)
Mo 97	mg/L	<2.50E-02	<2.50E-02	(7.07E-03)	(8.99E-03)	<2.50E-02	<2.50E-02	<2.50E-02	<2.50E-02	<2.50E-02	2 <2.50E-02	<2.50E-02	<2.50E-02	<2.50E-02	<2.50E-02	(1.51E-03)	(7.70E-04)
Mo 98 Na	mg/L mg/L	<2.50E-02 4.04E+02	<2.50E-02 4.46E+02	5.38E-03 3.92E+02	6.78E-03 4.71E+02	<2.50E-02 4.04E+02	<2.50E-02 4.46E+02	<2.50E-02 9.41E+01	<2.50E-02 1.13E+02	<2.50E-02 6.14E+01	2 <2.50E-02 6.73E+01	<2.50E-02 3.00E+01	<2.50E-02 3.22E+01	<2.50E-02 2.20E+01	<2.50E-02 2.35E+01	2 (1.39E-03) 5.67E+01	(7.20E-04) 5.67E+01
Ni	mg/L	2.38E+00	2.70E+00	(1.51E+00)	(1.42E+00)	2.38E+00	2.70E+00	(4.11E-01)	7.38E-01	(3.57E-01)	(4.41E-01)	(5.23E-02)	(5.41E-02)	(9.46E-02)	(9.36E-02)	(2.55E-01)	(2.29E-01)
P	mg/L	1.27E+02	1.40E+02	1.01E+02	1.17E+02	1.27E+02	1.40E+02	(4.50E+01)	(5.23E+01)	(2.87E+01)	(3.19E+01)	(1.27E+01)	(1.39E+01)	(7.99E+00)	(9.18E+00)	2.80E+01	2.78E+01
Pb	mg/L	7.81E+00	8.63E+00	4.20E+00	3.24E+00	7.81E+00	8.63E+00	1.37E+00	2.68E+00	1.38E+00	2.03E+00	3.14E-01	2.68E-01	4.16E-01	5.61E-01	2.41E+00	1.75E+00
Pb 206 * Ru 101	mg/L	6.27E+00	6.76E+00 (4.04E-03)	3.59E+00 (3.24E-03)	2.94E+00 (3.64E-03)	6.27E+00 (4.23E-03)	6.76E+00 (4.04E-03)	1.19E+00 <5.00E-02	2.17E+00 <5.00E-02	1.19E+00 <5.00E-02	1.61E+00 2 <5.00E-02	2.89E-01 <5.00E-02	2.54E-01 <5.00E-02	4.07E-01 <5.00E-02	4.32E-01 <5.00E-02	2.16E+00	1.63E+00
Ru 101 Ru 102	mg/L mg/L	(4.23E-03) (2.32E-03)	(1.62E-03)	(3.24E-03) (1.61E-03)	(3.64E-03) (1.67E-03)	(4.23E-03) (2.32E-03)	(4.04E-03) (1.62E-03)	<5.00E-02	<5.00E-02	<5.00E-02	2 <5.00E-02 2 <5.00E-02	<5.00E-02	<5.00E-02	<5.00E-02 <5.00E-02	<5.00E-02	2 (2.08E-03) 2 (9.70E-04)	(1.57E-03 (9.60E-04
S S	mg/L	(1.40E+00)	(1.06E+00)	<1.00E+02	(1.61E+00)	(2.32E=03) (1.40E+00)	(1.06E+00)	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	(9.70E-04) 1 <1.00E+02	(9.00E+02)
Sb 121	mg/L	2.48E-02	2.69E-02	1.26E-02	1.01E-02	2.48E-02	2.69E-02	9.63E-03	1.17E-02	6.95E-03	7.59E-03	(4.37E-03)	(5.06E-03)	(4.14E-03)	5.01E-03	7.56E-03	6.60E-03
Se	mg/L	<2.50E+00	<2.50E+00	<2.50E+01	<2.50E+01	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00		<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+01	<2.50E+0
Se 82	mg/L	<5.00E-02 (2.44E+00)	<5.00E-02 (2.56E+00)	<5.00E+01	<5.00E+01	<5.00E-02 (2.44E+00)	<5.00E-02 (2.56E+00)	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	2 <5.00E-02 1 <2.50E+01	<5.00E-02	<5.00E-02 <2.50E+01	<5.00E-02	<5.00E-02	2 S 00E : 01	<5.00E+01
Si Sr	mg/L mg/L	4.59E-01	4.89E-01	(2.47E-01)	<5.00E+01 (1.55E-01)	4.59E-01	(2.56E+00) 4.89E-01	(8.62E-02)	<2.50E+01 (1.63E-01)	<2.50E+01 (1.10E-01)	(1.48E-01)	<2.50E+01 (3.16E-02)	<2.50E+01 (2.70E-02)	<2.50E+01 (3.48E-02)	<2.50E+01 (3.62E-02)	<5.00E+01 (1.60E-01)	(1.32E-01
Ti	mg/L	(2.21E-01)	(2.38E-01)	(1.22E-01)	(9.55E-02)	(2.21E-01)	(2.38E-01)	(4.23E-02)	(7.85E-02)	(6.49E-02)	(7.01E-02)	(1.77E-02)	(1.48E-02)	(1.75E-02)	(2.01E-02)	(6.25E-02)	(5.24E-02
Tl	mg/L	<2.50E+00	<2.50E+00	<5.00E+00	<5.00E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<5.00E+00	<5.00E+00
V	mg/L	<6.25E-01	<6.25E-01	<2.50E+00	<2.50E+00	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<2.50E+00	<2.50E+00
Zn Zr	mg/L mg/L	(9.02E-01) <2.50E-01	(9.39E-01) <2.50E-01	(1.01E+00) <6.25E-01	(1.03E+00) <6.25E-01	(9.02E-01) <2.50E-01	(9.39E-01) <2.50E-01	(3.97E-01) <2.50E-01	(5.08E-01) <2.50E-01	(5.39E-01) <2.50E-01	(5.22E-01) (5.22E-01) (2.50E-01)	(2.20E-01) <2.50E-01	(2.06E-01) <2.50E-01	(4.11E-01) <2.50E-01	(4.38E-01) <2.50E-01	(8.05E-01) (8.25E-01)	(6.91E-01 <6.25E-0
* Cr 53 and Pb 206 concents				<0.2JE*01	\0.2J£-01	<2.50E=01	<2.J012-01	\2.J0E=01	\2.J012*01	\2.J0E=01	\\\\2.J0I3=01	\2.J0E-01	\2.J0E=01	\Z.J0E=01	\2.J0E-01	<0.23E-01	<0.23E*0.
Anions																	
NO ₂ as NO2-	mg/L	8.92E+00	1.01E+01	1.05E+01	1.38E+01	8.92E+00	1.01E+01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-01	<4.51E-0
NO ₃ as NO3-	mg/L	6.59E+01	7.44E+01	7.77E+01	1.01E+02	6.59E+01	7.44E+01	1.07E+00	7.45E-01	<4.33E-01	<4.33E-01	<4.33E-01	<4.33E-01	<4.33E-01	<4.33E-01	1.22E+00	1.10E+0
CO ₃ ² *	mg/L	3.93E+02	4.38E+02	4.11E+02	4.99E+02	3.93E+02	4.38E+02	8.74E+01	1.26E+02	<5.00E+01		<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	5.64E+01	<5.00E+0
SO ₄ ² ·	mg/L	3.10E+00	3.80E+00	3.75E+00	4.83E+00	3.10E+00	3.80E+00	5.17E-01	1.01E+00	<4.09E-01	<4.09E-01	4.31E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-01	<4.09E-0
PO ₄ as PO ₄ *	mg/L	2.51E+02	2.76E+02	2.52E+02	3.35E+02	2.51E+02	2.76E+02	1.33E+02	1.31E+02	6.33E+01		3.67E+01	4.03E+01	2.03E+01	2.27E+01	6.21E+01	6.97E+0
Cl'	mg/L	9.09E-01	9.76E-01	1.02E+00	1.58E+00	9.09E-01	9.76E-01	3.92E+00	<2.40E-01	<2.40E-01	0.49E+01 <2.40E-01	<2.40E-01	<2.40E-01	3.04E-01	<2.40E-01	3.30E-01	<2.40E-0
E,		9.09E-01 3.20E+01	9.76E-01 3.47E+01	3.61E+01	4.91E+01	9.09E-01 3.20E+01	9.76E-01 3.47E+01	3.92E+00 1.31E+00	<2.40E-01 1.55E+00	<2.40E-01	5.28E-01	<2.40E-01	<2.40E-01 <1.17E-01	<1.17E-01	<2.40E-01	3.76E-01	<2.40E-0 4.06E-0
P Oxalate*	mg/L mg/L	3.20E+01 1.60E+01	3.4/E+01 1.80E+01	3.61E+01 1.84E+01	4.91E+01 2.48E+01	3.20E+01 1.60E+01	3.4/E+01 1.80E+01	<3.45E-01	1.55E+00 8.97E+00	4.72E-01 <3.45E-01	5.28E-01 3.45E-01	<3.45E-01	<1.17E-01 <3.45E-01	<1.17E-01 <3.45E-01	<1.17E-01 <3.45E-01	3.76E-01 3.45E-01	4.06E-0 <3.45E-0
							er were backgrou		5.77L100	-J.75D-01		-U-TJL-01	.J.4JL401		-J7JL-01		-JJL-0

^{*} The carbonate, oxalate and phosphate results are for information only. QC was not within procedural limits. Oxalate number were background corrected.

	1	1	g	C		T	Tank C-20	3 (19961) DDI	Water Leach Re								
Paramatar	Unite	1 day		Contact	1 month (du=)	Stage 1	Stage 1 (dum)	Stage 2	Stage 2 (dur)		lenishment Tests	Stage 4	Stage 4 (du-)	Store 5	Stage 5 (dum)	Stage 6	Stage 6 (do-
Parameter	Units	1 day	1 day (dup)	1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
pH	std units mM as CaCO3	5.55E+00	5.78E+00	5.78E+00	7.56E+00	5.55E+00	5.78E+00	1.62E+00	2.01E+00	1.23E+00	0 1.54E+00	1.23E+00	1.23E+00	1.08E+00	1.00E+00	0 1.62E+00	1.62E+0
Alkalinity		5.55E+00 4.21E+00	5.78E+00 4.79E+00	5.78E+00 5.12E+00	5.31E+00	5.55E+00 4.21E+00	5.78E+00 4.79E+00		2.01E+00 1.85E+00	1.23E+00 1.24E+00		7.00E-01	7.43E-01				1.62E+0
TIC TOC	mM C mM C	4.21E+00 5.46E+00	4.79E+00 5.57E+00	5.12E+00 5.37E+00	5.31E+00 6.48E+00	4.21E+00 5.46E+00	4.79E+00 5.57E+00	1.93E+00 <4.02E-01	1.85E+00 <4.02E-01	1.24E+00 <4.02E-0		<4.02E-01	<4.02E-01	6.35E-01 <4.02E-01	5.63E-0 <4.02E-0	1	
TC	mM C	9.68E+00	1.04E+01	1.05E+01	1.18E+01	9.68E+00	1.04E+01	1.93E+00	1.85E+00	1.24E+00	0 1.15E+00	7.00E-01	7.43E-01	6.35E-01	5.63E-01	1	
Radionuclides														1		1	
900-	mM	3.89E-05	4.11E-05	2.16E-05	1.57E-05	3.89E-05	4.11E-05			1.08E-05	5 1.52E-05			1		2.16E-05	1.57E-0
31																	
⁹⁹ Tc	mM	(3.51E-07)	(6.11E-07)	<5.05E-06	<5.05E-06	(3.51E-07)	(6.11E-07)	<1.01E-06	<1.01E-06	<1.01E-06		<1.01E-06	<1.01E-06	<1.01E-06	<1.01E-06	6 <5.05E-06	<5.05E-0
²³⁸ U	mM	3.13E+00	2.20E+00	9.88E-01	4.85E-01	3.13E+00	2.20E+00	3.43E-01	6.22E-01	4.03E-01	1 5.32E-01	9.43E-02	9.09E-02	1.26E-01	2.09E-0	1 7.85E-01	6.92E-0
²³⁹ Pu*	mM	4.06E-03	4.42E-03	1.70E-03	1.16E-03	4.06E-03	4.42E-03	6.80E-04	1.24E-03	6.24E-04	4 9.92E-04	1.44E-04	1.44E-04	1.77E-04	1.66E-04	4 8.81E-04	6.71E-0
²³⁷ Np*	mM	1.16E-04	1.21E-04	(1.59E-06)	(8.44E-07)	1.16E-04	1.21E-04	2.03E-05	3.99E-05	1.95E-05	5 3.99E-05	4.39E-06	3.80E-06	4.56E-06	9.37E-0	6 1.30E-06	1.05E-0
241		<1.04E-05								1							
* Pu and Np Results may be	mM		<1.04E-05	<2.07E-04	<2.07E-04	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	5 <1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	<1.04E-05	5 <2.07E-04	<2.07E-0
Metals	e biased night due to	Concentration)II.											1	<u> </u>	-	
	mM	(7.76E-06)	(9.86E-06)	(4.95E-06)	(4.86E-06)	(7.76E-06)	(9.86E-06)	<4.67E-05	<4.67E-05	<4.67E-05	5 <4.67E-05	<4.67E-05	<4.67E-05	<4.67E-05	<4.67E-05	5 (1.50E-06)	(1.87E-06
Ag 107			(,	,	(,		(* * * * * * * * * * * * * * * * * * *										
Al	mM	(3.12E-02)	(3.13E-02)	5.93E-02	8.34E-02	(3.12E-02)	(3.13E-02)	(1.33E-02)	(1.22E-02)	(1.24E-02	(7.67E-03)	(7.92E-03)	(9.30E-03)	(8.88E-03)	(9.06E-03	(3.42E-02)	(3.45E-02
As	mM	<3.34E-02	<3.34E-02	<1.67E-02	<1.67E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	2 <3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	2 <1.67E-02	<1.67E-0
As 75	mM	(2.07E-04)	(2.28E-04)	<1.33E-03	<1.33E-03	(2.07E-04)	(2.28E-04)	(2.63E-05)	(1.07E-04)	(2.28E-05	(8.33E-05)	(1.84E-05)	(7.41E-05)	(3.29E-05)	(7.85E-05	<1.33E-03	<1.33E-0
В	mM	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	1 <2.31E-01	<2.31E-01	<2.31E-01	<2.31E-01	<2.31E-0	1 <2.31E-01	<2.31E-0
Ba	mM	<1.82E-03	<1.82E-03	1.97E-03	3.05E-03	<1.82E-03	<1.82E-03	(2.07E-04)	(5.69E-04)	(4.87E-04) (1.50E-03)	(7.08E-04)	(1.74E-03)	(1.45E-03)	(9.88E-04) 4.29E-03	4.28E-0
Be	mM	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	2 <2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	<2.77E-02	2 <2.77E-02	<2.77E-0
Bi	mM	<1.20E-02	<1.20E-02	<5.98E-03	<5.98E-03	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	2 <1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	2 <5.98E-03	<5.98E-0
Ca	mM	1.01E-01	1.04E-01	7.07E-02	8.10E-02	1.01E-01	1.04E-01	(3.35E-02)	(4.54E-02)	(3.67E-02	(4.02E-02)	(1.63E-02)	(2.04E-02)	(2.28E-02)	(2.99E-02		(2.59E-02
Cd	mM	<2.22E-03	<2.22E-03	<1.11E-03	<1.11E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	3 <2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	3 <1.11E-03	<1.11E-0
Cd 114	mM	<8.77E-04	<8.77E-04	(1.92E-05)	(1.96E-05)	<8.77E-04	<8.77E-04	<8.77E-04	<8.77E-04	<8.77E-04		<8.77E-04	<8.77E-04	<8.77E-04	<8.77E-04		(5.00E-06
Co	mM	(2.29E-03)	(2.22E-03)	(8.65E-04)	(9.63E-04)	(2.29E-03)	(2.22E-03)	(6.49E-04)	(9.20E-04)	(9.06E-04		(5.01E-04)	(4.05E-04)		(4.74E-04		(1.10E-03
Cr	mM	3.71E-01	4.13E-01	2.72E-01	3.00E-01	3.71E-01	4.13E-01	5.33E-02	1.05E-01	5.13E-02	2 6.55E-02	9.76E-03	9.06E-03	1.32E-02	1.34E-02	2 4.32E-02	3.45E-0
Cr 53 *	mM	2.71E-01	2.94E-01	2.13E-01	2.40E-01	2.71E-01	2.94E-01	4.59E-02	8.09E-02	4.36E-02	2 5.44E-02	8.89E-03	8.13E-03	1.19E-02	1.20E-02	2 3.93E-02	3.16E-0
Cu	mM	<3.93E-01	<3.93E-01	<7.87E-01	<7.87E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-0		<3.93E-01	<3.93E-01	<3.93E-01	<3.93E-0		<7.87E-0
Cu 65	mM	1.51E-03	1.69E-03	(1.04E-03)	(1.11E-03)	1.51E-03	1.69E-03	3.60E-04	8.03E-04	3.22E-04	4 3.97E-04	(4.48E-05)	(4.00E-05)	(9.22E-05)	(7.31E-05	<3.52E-04	<3.01E-0
Fe	mM	3.50E-01	3.92E-01	2.11E-01	1.93E-01	3.50E-01	3.92E-01	5.93E-02	1.15E-01	5.93E-02	2 7.20E-02	(1.12E-02)	(1.11E-02)	(1.65E-02)	(1.99E-02	4.22E-02	3.34E-0
K	mM	<1.60E+01	<1.60E+01	<1.60E+00	<1.60E+00	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+0	1 <1.60E+01	<1.60E+01	<1.60E+01	<1.60E+01	<1.60E+0	1 <1.60E+00	<1.60E+0
Li	mM	<3.60E-01	<3.60E-01	<7.20E-01	<7.20E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-0	1 <3.60E-01	<3.60E-01	<3.60E-01	<3.60E-01	<3.60E-0	1 <7.20E-01	<7.20E-0
Mg Mn	mM mM	(4.13E-02) 5.23E-02	(4.56E-02) 5.74E-02	(2.82E-02) 3.33E-02	(2.62E-02) 3.19E-02	(4.13E-02) 5.23E-02	(4.56E-02) 5.74E-02	(9.21E-03) 8.56E-03	(1.47E-02) 1.69E-02	(9.40E-03 8.51E-03	(1.20E-02) 3 1.07E-02	(3.15E-03) (1.43E-03)	(3.37E-03) (1.30E-03)	(3.92E-03) (2.10E-03)	(4.50E-03 (2.20E-03) (1.36E-02) 5.65E-03	(1.16E-02 4.28E-0
Mo	mM mM	<1.30E-02	<1.30E-02	<2.61E-02	<2.61E-02	<1.30E-02	5.74E-02 <1.30E-02	<1.30E-03	<1.30E-02	<1.30E-03		<1.30E-02	<1.30E-03	(2.10E-03) 2 <1.30E-02	(2.20E-03 2 <1.30E-03		4.28E-0. 2.61E-0.
Mo 95	mM	(6.04E-05)	(7.52E-05)	6.72E-05	9.23E-05	(6.04E-05)	(7.52E-05)	(1.90E-05)	(1.80E-05)	(2.41E-05	(5.90E-06)	<2.50E-04	(1.00E-05)	<1.50E-02 <2.50E-04	(2.20E-06	(1.97E-05)	(1.35E-05
Mo 97	mM	<2.63E-04	<2.63E-03)	(7.44E-05)	(9.46E-05)	<2.63E-04	<2.63E-04	<2.63E-03	<2.63E-03)	<2.63E-04		<2.63E-04	<2.63E-04	<2.50E-04 <2.63E-04	<2.63E-06		(8.11E-06
Mo 98	mM	<2.55E-04	<2.55E-04	5.49E-05	6.92E-05	<2.55E-04	<2.55E-04	<2.55E-04	<2.55E-04	<2.55E-04		<2.55E-04	<2.55E-04		<2.55E-04		(7.35E-06
Na Na	mM	1.76E+01	1.94E+01	1.70E+01	2.05E+01	1.76E+01	1.94E+01	4.09E+00	4.90E+00	2.67E+00	0 2.93E+00	1.30E+00	1.40E+00	9.55E-01	1.02E+00		2.47E+0
Ni	mM	4.06E-02	4.61E-02	(2.58E-02)	(2.43E-02)	4.06E-02	4.61E-02	(7.00E-03)	1.26E-02	(6.09E-03	(7.52E-03)	(8.91E-04	(9.21E-04)	(1.61E-03)	(1.59E-03	(4.35E-03)	(3.90E-03
P	mM	4.10E+00	4.53E+00	3.26E+00	3.77E+00	4.10E+00	4.53E+00	(1.45E+00)	(1.69E+00)	(9.26E-01) (1.03E+00)	(4.10E-01)	(4.49E-01)	(2.58E-01)	(2.97E-01		8.99E-0
Pb	mM	3.77E-02	4.16E-02	2.03E-02	1.56E-02	3.77E-02	4.16E-02	6.62E-03	1.29E-02	6.66E-03	3 9.82E-03	1.51E-03	1.29E-03	2.01E-03	2.71E-03		8.45E-0
Pb 206 *	mM	3.04E-02	3.28E-02	1.74E-02	1.43E-02	3.04E-02	3.28E-02	5.76E-03	1.05E-02	5.76E-03	3 7.84E-03	1.40E-03	1.23E-03	1.98E-03	2.10E-03	3 1.05E-02	7.92E-0
Ru 101	mM	(4.19E-05)	(4.00E-05)	(3.21E-05)	(3,60E-05)	(4.19E-05)	(4.00E-05)	<4.95E-04	<4.95E-04	<4.95E-04	4 <4.95E-04	<4.95E-04	<4.95E-04	<4.95E-04	<4.95E-04	4 (2.06E-05)	(1.55E-05
Ru 102	mM	(2.27E-05)	(1.59E-05)	(1.58E-05)	(1.64E-05)	(2.27E-05)	(1.59E-05)	<4.90E-04	<4.90E-04	<4.90E-04	4 <4.90E-04	<4.90E-04	<4.90E-04	<4.90E-04	<4.90E-04	4 (9.51E-06)	(9.41E-06
S	mM	(4.36E-02)	(3.32E-02)	<3.12E+00	(5.03E-02)	(4.36E-02)	(3.32E-02)	<3.12E-01	<3.12E-01	<3.12E-01	1 <3.12E-01	<3.12E-01	<3.12E-01	<3.12E-01	<3.12E-0	1 <3.12E+00	<3.12E+0
Sb 121	mM	2.05E-04	2.22E-04	1.04E-04	8.36E-05	2.05E-04	2.22E-04	7.96E-05	9.64E-05	5.74E-05	5 6.27E-05	(3.61E-05)	(4.18E-05)	(3.42E-05)	4.14E-05	5 6.25E-05	5.45E-0
Se	mM	<3.17E-02	<3.17E-02	<3.17E-01	<3.17E-01	<3.17E-02	<3.17E-02	<3.17E-02	<3.17E-02	<3.17E-02	2 <3.17E-02	<3.17E-02	<3.17E-02	<3.17E-02	<3.17E-02		<3.17E-0
Se 82	mM	<6.10E-04	<6.10E-04			<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	4 <6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	<6.10E-04	4	
Si	mM	(8.67E-02)	(9.10E-02)	<1.78E+00	<1.78E+00	(8.67E-02)	(9.10E-02)	<8.90E-01	<8.90E-01	<8.90E-0	1 <8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-0	1 <1.78E+00	<1.78E+0
Sr	mM	5.23E-03	5.58E-03	(2.82E-03)	(1.77E-03)	5.23E-03	5.58E-03	(9.84E-04)	(1.86E-03)	(1.26E-03	(1.69E-03)	(3.60E-04)	(3.08E-04)	(3.97E-04)	(4.13E-04		(1.51E-03
Ti	mM	(4.63E-03)	(4.97E-03)	(2.54E-03)	(1.99E-03)	(4.63E-03)	(4.97E-03)	(8.84E-04)	(1.64E-03)	(1.35E-03) (1.46E-03)	(3.69E-04)	(3.09E-04)	(3.66E-04)	(4.21E-04) (1.31E-03)	(1.09E-03
Tl	mM	<1.22E-02	<1.22E-02	<2.45E-02	<2.45E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	2 <1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	2 <2.45E-02	<2.45E-0
V	mM	<1.23E-02	<1.23E-02	<4.91E-02	<4.91E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	2 <1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02		<4.91E-0
Zn	mM	(1.38E-02)	(1.44E-02)	(1.54E-02)	(1.58E-02)	(1.38E-02)	(1.44E-02)	(6.06E-03)	(7.76E-03)	(8.25E-03	(7.98E-03)	(3.37E-03)	(3.16E-03)	(6.29E-03)	(6.71E-03		(1.06E-02
Zr	mM	<2.74E-03	<2.74E-03	<6.85E-03	<6.85E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	3 <2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	3 <6.85E-03	<6.85E-0
* Cr 53 and Pb 206 concen-	tration are above hig	hest check sta	ndard.														
Anions																	
NO ₂ as NO2-	mM	1.94E-01	2.19E-01	2.28E-01	2.99E-01	1.94E-01	2.19E-01	<9.80E-03	<9.80E-03	<9.80E-03	3 <9.80E-03	<9.80E-03	<9.80E-03	<9.80E-03	<9.80E-03	3 <9.80E-03	<9.80E-0
NO ₃ as NO3-	mM	1.06E+00	1.20E+00	1.25E+00	1.63E+00	1.06E+00	1.20E+00	1.72E-02	1.20E-02	<6.98E-03	3 <6.98E-03	<6.98E-03	<6.98E-03	<6.98E-03	<6.98E-03	3 1.97E-02	1.77E-0
															1		
CO ₃ ² *	mM	6.55E+00	7.30E+00	6.85E+00	8.31E+00	6.55E+00	7.30E+00	1.46E+00	2.10E+00	<8.33E-0	1 1.02E+00	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-0		<8.33E-0
SO ₄ ²	mM	3.23E-02	3.95E-02	3.90E-02	5.03E-02	3.23E-02	3.95E-02	5.38E-03	1.05E-02	<4.26E-03	3 <4.26E-03	4.48E-03	<4.26E-03	<4.26E-03	<4.26E-03	3 <4.26E-03	<4.26E-0
PO ₄ 3- as PO ₄ 3- *	mM	2.65E+00	2.90E+00	2.65E+00	3.52E+00	2.65E+00	2.90E+00	1.40E+00	1.38E+00	6,66E-01	1 6.83E-01	3.86E-01	4.25E-01	2.14E-01	2.39E-01	1 6.54E-01	7.33E-0
Cl.	mM	2.57E-02	2.76E-02	2.87E-02	4.45E-02	2.57E-02	2.76E-02	1.11E-01	<6.77E-03	<6.77E-03	3 <6.77E-03	<6.77E-03	<6.77E-03	8.57E-03	<6.77E-03	9.30E-03	<6.77E-0
C1		1											+	1			
r	mM	1.69E+00	1.83E+00	1.90E+00	2.58E+00	1.69E+00	1.83E+00	6.89E-02	8.16E-02	2.48E-02	2 2.78E-02	7.81E-03	<6.16E-03	<6.16E-03	<6.16E-03	3 1.98E-02	2.14E-0
Oxalate *	mM	1.81E-01	2.05E-01	2.09E-01	2.82E-01	1.81E-01	2.05E-01	<3.92E-03 nd corrected.	1.02E-01	<3.92E-03	3 <3.92E-03	<3.92E-03	<3.92E-03	<3.92E-03	<3.92E-03	3 <3.92E-03	<3.92E-0

^{*}The carbonate, oxalate and phosphate results are for information only. QC was not within procedural limits. Oxalate number were background corrected.

							Tank C-2	02 (19250) Ca(0	OH) ₂ Leach Resu	llts							
Parameter	Units	1 day		Contact 1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Periodic Reple	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
рH	std units	11.48	11.45	11.50	11.46	11.48	11.45	11.56	11.51	11.60	11.53	11.66	11.70	11.74	11.77	11.63	11.65
Alkalinity	mg/L as CaCO3	6.48E+02	6.83E+02	5.91E+02	6.10E+02	6.48E+02	6.83E+02	8.11E+02	7.41E+02	8.96E+02	8.34E+02	9.84E+02	1.01E+03	1.15E+03	1.16E+03	9.15E+02	8.76E+02
TIC	mg C/L	2.43E+01	2.98E+01	2.05E+01	2.03E+01	2.43E+01	2.98E+01	1.14E+01	1.25E+01	1.19E+01	1.21E+01	9.76E+00	8.81E+00	1.06E+01	9.32E+00	8.61E+00	8.44E+00
TOC	mg C/L	2.94E+01	3.79E+01	3.52E+01	3.76E+01	2.94E+01	3.79E+01	1.22E+01	1.05E+01	8.13E+00	8.34E+00	6.16E+00	6.31E+00	5.51E+00	5.27E+00	1.02E+01	1.22E+01
TC	mg C/L	5.37E+01	6.77E+01	5.57E+01	5.78E+01	5.37E+01	6.77E+01	2.37E+01	2.30E+01	2.00E+01	2.04E+01	1.59E+01	1.51E+01	1.61E+01	1.46E+01	1.88E+01	2.06E+01
Radionuclides																	
90Sr	6:4	9.79E+01	5.06E+01	4.993E+01	5.588E+01	9.79E+01	5.06E+01			6.85E+02	7.20E+02					6.43E+02	7.37E+02
	μCi/L		0.0000.00					5 00F 05	5 00F 05			5 00F 05	5 00T 05	5 00F 05	5 00F 05		
⁹⁹ Tc	mg/L	(3.15E-05)	(4.50E-05)	(4.48E-05)	5.40E-05	(3.15E-05)	(4.50E-05)	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	(1.30E-05)	(1.40E-05)
²³⁸ U	mg/L	1.09E+00	1.74E+00	5.83E-01	6.95E-01	1.09E+00	1.74E+00	1.69E-01	1.66E-01	1.27E-01	1.22E-01	4.52E-02	1.18E-01	8.87E-02	1.01E-01	6.51E-02	1.31E-02
²³⁹ Pu*	μCi/L	(2.12E-02)	(2.20E-02)	(6.01E-03)	(4.65E-03)	(2.12E-02)	(2.20E-02)	(6.94E-03)	(5.39E-03)	(4.34E-03)	(7.69E-03)	(5.70E-03)	(4.65E-03)	(3.35E-03)	(3.29E-03)	(2.85E-03)	(2.48E-03)
²³⁷ Np*	μCi/L	<7.10E-06	<7.10E-06	<7.10E-06	<7.10E-06	<7.10E-06	<7.10E-06	<7.10E-06	<7.10E-06	<7.10E-06							
²⁴¹ Am	μCi/L	<1.70E-01	<1.70E-01	<1.70E-01	<1.70E-01	<1.70E-01	<1.70E-01	<1.70E-01	<1.70E-01	<1.70E-01							
*Pu and Np results may be	biased due to High U	Jranium Conc	entration.														ı .
Metals																	
Ag	mg/L	1.13E-03	1.30E-03	2.14E-03	2.60E-03	1.13E-03	1.30E-03	(5.35E-05)	2.55E-04	3.05E-04	3.56E-04	(3.65E-05)	(2.50E-05)	<1.00E-04	<1.00E-04	9.26E-04	1.14E-03
Al As	mg/L mg/L	1.44E+01 <5.00E+00	1.59E+01 <5.00E+00	2.24E+01 <5.00E+00	2.26E+01 <5.00E+00	1.44E+01 <5.00E+00	1.59E+01 <5.00E+00	8.60E+00 <5.00E+00	1.01E+01 <5.00E+00	2.04E+00 <5.00E+00	2.47E+00 <5.00E+00	1.00E+00 <5.00E+00	1.18E+00 <5.00E+00	(3.54E-01) <5.00E+00	(3.70E-01) <5.00E+00	1.73E+00 <5.00E+00	1.61E+00 <5.00E+00
As 75	mg/L mg/L	<5.00E+00 <5.00E-03	<5.00E+00 <5.00E-03	(3.46E-04)	<5.00E+00	<5.00E+00 <5.00E-03	<5.00E+00 <5.00E-03	<5.00E+00 <5.00E-03	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00 <5.00E-03	<5.00E+00 <5.00E-03	<5.00E+00	<5.00E+00 <5.00E-03	<5.00E+00
В	mg/L	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01							
Ba	mg/L	(1.99E-02)	(1.82E-02)	(1.07E-01)	(9.04E-02)	(1.99E-02)	(1.82E-02)	(2.84E-02)	(2.53E-02)	(3.51E-02)	(3.40E-02)	(6.13E-02)	(5.11E-02)	(1.30E-01)	(1.13E-01)	(5.18E-02)	(4.32E-02)
Be	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00							
Bi	mg/L	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01							
Ca	mg/L	(1.12E+01)	(5.61E+00)	(6.35E+00)	(5.99E+00)	(1.12E+01)	(5.61E+00)	2.44E+02	1.86E+02	3.00E+02	2.76E+02	3.38E+02	3.89E+02	3.83E+02	4.14E+02	3.00E+02	3.04E+02
Cd Cd 111	mg/L	<2.50E-01 (2.30E-05)	<2.50E-01 (2.20E-05)	<2.50E-01 (2.90E-05)	<2.50E-01 (2.40E-05)	<2.50E-01 (2.30E-05)	<2.50E-01 (2.20E-05)	<2.50E-01 <1.00E-04	<2.50E-01 <1.00E-04	<2.50E-01 <1.00E-04	<2.50E-01 (1.50E-05)	<2.50E-01 <1.00E-04	<2.50E-01 <1.00E-04	<2.50E-01 <1.00E-04	<2.50E-01 <1.00E-04	<2.50E-01 <1.00E-04	<2.50E-01 <1.00E-04
Co	mg/L mg/L	<6.25E-03)	<6.25E-03)	<6.25E-01	<6.25E-01	<6.25E-03)	<6.25E-03)	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01
Cr ICP-MS	mg/L	1.35E+00	1.42E+00	7.07E+00	6.22E+00	1.35E+00	1.42E+00	7.88E-01	8.65E-01	1.44E+00	1.47E+00	9.39E-01	1.01E+00	3.45E-01	4.15E-01	2.56E+00	2.83E+00
Cr ICP-OES	mg/L	1.54E+00	1.63E+00	7.76E+00	9.13E+00	1.54E+00	1.63E+00	(7.66E-01)	(8.46E-01)	1.49E+00	1.48E+00	(9.23E-01)	(1.01E+00)	(3.14E-01)	(3.89E-01)	2.95E+00	3.10E+00
Cu	mg/L	(4.77E-02)	(5.75E-02)	(4.08E-02)	(3.76E-02)	(4.77E-02)	(5.75E-02)	(5.70E-02)	(5.56E-02)	(5.16E-02)	(4.52E-02)	(3.63E-02)	(3.75E-02)	(3.64E-02)	(2.69E-02)	(3.28E-02)	(3.47E-02)
Cu 63	mg/L	6.05E-03	7.88E-03	4.58E-03	4.95E-03	6.05E-03	7.88E-03	(1.94E-03)	(1.79E-03)	(1.08E-03)	(9.00E-04)	(6.20E-04)	(7.71E-04)	(1.26E-03)	(1.77E-03)	(1.02E-03)	(9.96E-04)
Fe	mg/L	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01							
K Li	mg/L	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00
Mg	mg/L mg/L	<1.25E+00 <1.25E+00	<1.25E+00 <1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00 <1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00 <1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00 <1.25E+00	<1.25E+00
Mn	mg/L	<1.25E-01	<1.25E-01	<1.25E-01	<1.25E-01	<1.25E-01	<1.25E-01	<1.25E-01	<1.25E-01	<1.25E-01							
Mo	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00							
Mo 95	mg/L	1.21E-02	1.39E-02	1.97E-02	1.95E-02	1.21E-02	1.39E-02	1.76E-03	1.78E-03	1.65E-03	1.74E-03	8.06E-04	8.99E-04	(3.21E-04)	(3.60E-04)	1.99E-03	2.33E-03
Mo 97	mg/L	1.10E-02	1.31E-02	1.80E-02	1.80E-02	1.10E-02	1.31E-02	(1.44E-03)	(1.52E-03)	(1.41E-03)	(1.56E-03)	(7.01E-04)	(7.33E-04)	(3.07E-04)	(2.95E-04)	(1.92E-03)	(2.20E-03)
Mo 98	mg/L	7.12E-03	8.47E-03	1.18E-02	1.18E-02	7.12E-03	8.47E-03	(9.62E-04)	1.01E-03	(9.39E-04)	1.06E-03	(4.80E-04)	(5.40E-04)	(2.10E-04)	(2.43E-04)	1.30E-03	1.46E-03
Na Ni	mg/L	2.58E+02 <5.00E-01	2.87E+02 <5.00E-01	2.29E+02 <5.00E-01	2.38E+02 <5.00E-01	2.58E+02 <5.00E-01	2.87E+02 <5.00E-01	4.07E+01 <5.00E-01	5.80E+01 <5.00E-01	1.81E+01 <5.00E-01	2.02E+01 <5.00E-01	(4.34E+00) <5.00E-01	5.61E+00 <5.00E-01	(3.87E+00) <5.00E-01	(2.38E+00) <5.00E-01	6.83E+00 <5.00E-01	9.22E+00 <5.00E-01
P	mg/L mg/L	1.69E+00	1.63E+00	1.39E+00	1.55E+00	1.69E+00	1.63E+00	(1.02E+00)	(8.77E-01)	(9.04E-01)	(7.53E-01)	(5.98E-01)	(7.20E-01)	(4.23E-01)	(6.36E-01)	(7.78E-01)	(5.78E-01)
Pb ICP-MS	mg/L	(3.66E-03)	(2.60E-03)	(2.90E-05)	(1.35E-04)	(3.66E-03)	(2.60E-03)	1.87E-02	1.30E-02	2.34E-02	2.08E-02	3.36E-02	3.79E-02	3.69E-02	3.86E-02	2.78E-02	2.72E-02
Pb ICP-OES	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00							
Ru 101	mg/L	1.74E-03	3.38E-03	2.43E-03	2.67E-03	1.74E-03	3.38E-03	(2.10E-04)	(2.16E-04)	(1.89E-04)	(1.92E-04)	(1.22E-04)	(1.34E-04)	(6.70E-05)	(8.30E-05)	(2.04E-04)	(2.40E-04)
Ru 102	mg/L	7.55E-04	1.46E-03	1.07E-03	1.21E-03	7.55E-04	1.46E-03	3.56E-04	3.08E-04	3.50E-04	3.32E-04	3.12E-04	3.51E-04	3.20E-04	3.52E-04	3.17E-04	3.22E-04
S	mg/L	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02							
Sb 121 Se	mg/L	(5.12E-04) <5.00E+01	(9.08E-04) <5.00E+01	(5.85E-04) <5.00E+01	(7.37E-04) <5.00E+01	(5.12E-04) <5.00E+01	(9.08E-04) <5.00E+01	(9.80E-05) <5.00E+01	(9.40E-05) <5.00E+01	(7.80E-05) <5.00E+01	(1.47E-04) <5.00E+01	(1.13E-04) <5.00E+01	(1.05E-04) <5.00E+01	(9.60E-05) <5.00E+01	(7.70E-05) <5.00E+01	(7.70E-05) <5.00E+01	(7.60E-05) <5.00E+01
Se 82	mg/L mg/L	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02	<5.00E+01	<5.00E+01 <5.00E-02	<5.00E+01 <5.00E-02
Si Si	mg/L	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01							
Sr	mg/L	(9.76E-02)	(4.52E-02)	(6.53E-02)	(5.64E-02)	(9.76E-02)	(4.52E-02)	1.90E+00	1.73E+00	2.01E+00	1.97E+00	1.60E+00	1.96E+00	1.23E+00	1.30E+00	2.06E+00	2.34E+00
Ti	mg/L	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01							
Tl	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00							
V	mg/L	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01							
Zn Zr	mg/L	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01
Zľ	mg/L	<2.50E=01	<2.30E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.30E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01
Anions	†								l	1	1	 	1	 			(
NO ₂ as NO2-	mg/L	3.32E+00	3.67E+00	3.88E+00	3.78E+00	3.32E+00	3.67E+00	2.10E-01	2.72E-01	1.73E-01	2.28E-01	<9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	2.68E-01	3.36E-01
NO ₃ as NO3-	mg/L	1.21E+01	1.21E+01	1.79E+01	1.69E+01	1.21E+01	1.21E+01	8.50E+00	1.01E+01	4.58E+00	6.48E+00	5.63E-01	7.82E-01	6.40E-01	8.51E-01	1.61E+00	1.89E+00
CO ₃ ² ·	mg/L	1.69E+02	2.14E+02	3.02E+02	2.97E+02	1.69E+02	2.14E+02	1.99E+02	2.57E+02	2.52E+02	2.38E+02	2.67E+02	3.08E+02	2.93E+02	2.95E+02	1.97E+02	2.13E+02
SO ₄ ² ·	mg/L	2.39E+00	2.45E+00	2.48E+00	2.38E+00	2.39E+00	2.45E+00	8.22E-01	4.48E-01	5.31E-01	3.74E-01	6.29E-01	4.96E-01	7.33E-01	7.34E-01	7.63E-01	5.46E-01
PO ₄ 3- as PO ₄ 3-	mg/L	6.98E-01	6.28E-01	<1.99E-01	<1.99E-01	6.98E-01	6.28E-01	5.42E-01	4.49E-01	4.27E-01	3.87E-01	2.20E-01	2.41E-01	2.16E-01	2.18E-01	2.03E-01	<1.99E-01
CI.	mg/L	3.15E-01	3.30E-01	1.22E+00	1.28E+00	3.15E-01	3.30E-01	1.94E-01	1.93E-01	1.73E-01	1.77E-01	2.09E-01	1.89E-01	1.59E-01	2.98E-01	8.29E-01	2.47E-01
F	mg/L	1.82E+01	2.47E+01	2.08E+01	1.97E+01	1.82E+01	2.47E+01	1.51E+00	1.39E+00	6.12E-01	5.43E-01	6.52E-01	6.42E-01	2.42E-01	2.36E-01	4.25E-01	3.62E-01
Oxalate*	mg/L	1.06E+01	3.02E+01	1.08E+01	1.16E+01	1.06E+01	3.02E+01	1.14E+00	1.17E+00	1.05E+00	1.10E+00	1.06E+00	1.10E+00	9.56E-01	1.07E+00	8.53E-01	8.52E-01
* Oxalate results are for inf																	

^{*} Oxalate results are for information only

							Tank C	202 (19250) Ca(OU) Longh Page	ilte							
D		1.1.		Contact	L	G 1				Periodic Repl	enishment Tests	Ic 4	In 4 (1 -)	lo s	Is 5 (1 ->	In c	Is (1 -)
Parameter pH	Units	1 day	1 day (dup)	1 month	1 month (dup)	Stage I	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
Alkalinity	std units mM as CaCO3	6.48E+00	6.83E+00	5.90E+00	6.09E+00	6.48E+00	6.83E+00	8.10E+00	7.40E+00	8.95E+00	8.33E+00	9.83E+00	1.01E+01	1.15E+01	1.16E+01	9.14E+00	8.75E+0
TIC	mM C	2.03E+00	2.49E+00	1.71E+00	1.69E+00	2.03E+00	2.49E+00	9.53E-01	1.04E+00	9.89E-01	1.01E+00	8.13E-01	7.34E-01	8.82E-01	7.77E-01).112100	0.75210
TOC	mM C	2.45E+00	3.16E+00	2.93E+00	3.13E+00	2.45E+00	3.16E+00	1.02E+00	8.74E-01	6.78E-01	6.95E-01	5.14E-01	5.26E-01	4.59E-01	4.39E-01	ı	
TC	mM C	4.48E+00	5.64E+00	4.64E+00	4.82E+00	4.48E+00	5.64E+00	1.97E+00	1.92E+00	1.67E+00	1.70E+00	1.33E+00	1.26E+00	1.34E+00	1.22E+00)	
Radionuclides																	1
90Sr	mM	7.77E-06	4.01E-06	3.96E-06	4.43E-06	7.77E-06	4.01E-06			5.44E-05	5.71E-05					5.11E-05	
⁹⁹ Tc	mM	(3.18E-07)	(4.55E-07)	(4.52E-07)	5.45E-07	(3.18E-07)	(4.55E-07)	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	(1.31E-07)) (1.41E-07
²³⁸ U	mM	4.58E-03	7.32E-03	2.45E-03	2.92E-03	4.58E-03	7.32E-03	7.09E-04	6.97E-04	5.35E-04	5.12E-04	1.90E-04	4.96E-04	3.73E-04	4.26E-04	2.74E-04	4 5.50E-0:
²³⁹ Pu*	mM	(1.43E-05)	(1.49E-05)	(4.06E-06)	(3.14E-06)	(1.43E-05)	(1.49E-05)	(4.69E-06)	(3.64E-06)	(2.93E-06)	(5.19E-06)	(3.85E-06)	(3.14E-06)	(2.26E-06)	(2.22E-06	(1.92E-06)	(1.67E-06
²³⁷ Np*	mM	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	<4.22E-08	3 <4.22E-08	8 <4.22E-0
²⁴¹ Am	mM	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	<2.07E-07	7 <2.07E-0
*Pu and Np results may be	biased due to High U	ranium Conc	entration.														
Metals																	
Ag	mM	1.05E-05	1.21E-05	1.99E-05	2.41E-05	1.05E-05	1.21E-05	(4.96E-07)	2.36E-06	2.82E-06	3.30E-06	(3.38E-07)	(2.32E-07)	<9.27E-07	<9.27E-07	7 8.59E-06	6 1.06E-0:
Al	mM	5.35E-01	5.88E-01	8.30E-01	8.38E-01	5.35E-01	5.88E-01	3.19E-01	3.73E-01	7.56E-02	9.17E-02	3.72E-02	4.39E-02	(1.31E-02)	(1.37E-02	6.42E-02	2 5.96E-0
As	mM	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	2 <6.67E-0
As 75	mM	<6.67E-05	<6.67E-05	(4.61E-06)	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-05	<6.67E-0.5	<6.67E-05	5 <6.67E-0
В	mM	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00		
Ba	mM	(1.45E-04)	(1.32E-04)	(7.77E-04)	(6.59E-04)	(1.45E-04)	(1.32E-04)	(2.07E-04)	(1.84E-04)	(2.55E-04)	(2.48E-04)	(4.46E-04)	(3.72E-04)	(9.50E-04)	(8.22E-04	(3.77E-04)	
Be Bi	mM mM	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-0	1 <1.39E-01 <1.20E-01	1 <1.39E-0 1 <1.20E-0
Ca	mM mM	(2.79E-01)	<1.20E-01 (1.40E-01)	(1.58E-01)	<1.20E-01 (1.50E-01)	(2.79E-01)	<1.20E-01 (1.40E-01)	<1.20E-01 6.08E+00	<1.20E-01 4.63E+00	7.49E+00	<1.20E-01 6.90E+00	<1.20E-01 8.43E+00	9.72E+00	9.55E+00	<1.20E-0	7.48E+00	7.58E+0
Cd	mM	<2.79E-01) <2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	7.49E+00 <2.22E-03	<2.22E-03	<2.22E-03	9.72E+00 <2.22E-03	<2.22E-03	<2.22E-03	7.48E+00 3 <2.22E-03	3 <2.22E-0
Cd 111	mM	(2.05E-07)	(1.96E-07)	(2.58E-07)	(2.14E-07)	(2.05E-07)	(1.96E-07)	<8.90E-07	<8.90E-07	<8.90E-07	(1.33E-07)	<8.90E-07	<8.90E-07	<8.90E-07	<8.90E-0	<8.90E-07	7 <8.90E-0
Co	mM	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	<1.06E-02	2 <1.06E-02	
Cr ICP-MS	mM	2.59E-02	2.74E-02	1.36E-01	1.20E-01	2.59E-02	2.74E-02	1.52E-02	1.66E-02	2.78E-02	2.83E-02	1.81E-02	1.94E-02	6.63E-03	7.97E-03	4.92E-02	2 5.45E-0
Cr ICP-OES	mM	2.97E-02	3.13E-02	1.49E-01	1.76E-01	2.97E-02	3.13E-02	(1.47E-02)	(1.63E-02)	2.87E-02	2.85E-02	(1.77E-02)	(1.95E-02)	(6.04E-03)	(7.48E-03	5.67E-02	2 5.95E-0
Cu	mM	(7.50E-04)	(9.05E-04)	(6.41E-04)	(5.91E-04)	(7.50E-04)	(9.05E-04)	(8.98E-04)	(8.75E-04)	(8.12E-04)	(7.11E-04)	(5.71E-04)	(5.90E-04)	(5.73E-04)	(4.24E-04	(5.17E-04)	
Cu 63	mM	9.52E-05	1.24E-04	7.21E-05	7.80E-05	9.52E-05	1.24E-04	(3.05E-05)	(2.82E-05)	(1.70E-05)	(1.42E-05)	(9.76E-06)	(1.21E-05)	(1.99E-05)	(2.79E-05	(1.60E-05)) (1.57E-05
Fe K	mM mM	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	<8.95E-03 <3.20E+00	3 <8.95E-03 3.20E+00	3 <8.95E-0 0 <3.20E+0
Li	mM	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-01	<1.80E-0	<1.80E-01	1 <1.80E-0
Mg	mM	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	
Mn	mM	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	<2.28E-03	3 <2.28E-03	3 <2.28E-0
Mo	mM	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	2 <1.30E-0
Mo 95	mM	1.27E-04	1.46E-04	2.07E-04	2.05E-04	1.27E-04	1.46E-04	1.85E-05	1.88E-05	1.73E-05	1.83E-05	8.48E-06	9.46E-06	(3.38E-06)	(3.79E-06	2.10E-05	
Mo 97	mM	1.13E-04	1.35E-04	1.85E-04	1.85E-04	1.13E-04	1.35E-04	(1.48E-05)	(1.57E-05)	(1.45E-05)	(1.60E-05)	(7.23E-06)	(7.56E-06)	(3.16E-06)	(3.04E-06	(1.98E-05)	
Mo 98 Na	mM mM	7.27E-05 1.12E+01	8.65E-05 1.25E+01	1.21E-04 9.95E+00	1.20E-04 1.03E+01	7.27E-05 1.12E+01	8.65E-05 1.25E+01	(9.82E-06) 1.77E+00	1.03E-05 2.52E+00	(9.58E-06) 7.89E-01	1.08E-05 8.77E-01	(4.90E-06) (1.89E-01)	(5.51E-06) 2.44E-01	(2.14E-06) (1.68E-01)	(2.48E-06 (1.03E-01	1.33E-05 2.97E-01	
Na Ni	mM mM	<8.52E-03	<8.52E-03	9.95E+00 <8.52E-03	<8.52E-03	<8.52E-03	<8.52E-03	1.7/E+00 <8.52E-03	2.52E+00 <8.52E-03	7.89E-01 <8.52E-03	8.7/E-01 <8.52E-03	<8.52E-03	2.44E-01 <8.52E-03	(1.68E-01) <8.52E-03	(1.03E-01 <8.52E-03	2.9/E-01 3 <8.52E-03	4.01E-0 3 <8.52E-0
P	mM	5.47E-02	5.26E-02	4.48E-02	4.99E-02	5.47E-02	5.26E-02	(3.30E-02)	(2.83E-02)	(2.92E-02)	(2.43E-02)	(1.93E-02)	(2.32E-02)	(1.36E-02)	(2.05E-02	(2.51E-02)) (1.87E-02
Pb ICP-MS	mM	(1.77E-05)	(1.26E-05)	(1.40E-07)	(6.49E-07)	(1.77E-05)	(1.26E-05)	9.03E-05	6.29E-05	1.13E-04	1.01E-04	1.62E-04	1.83E-04	1.78E-04	1.86E-04	1.34E-04	4 1.31E-0-
Pb ICP-OES	mM	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	<6.03E-03	3 <6.03E-0
Ru 101	mM	1.72E-05	3.35E-05	2.41E-05	2.64E-05	1.72E-05	3.35E-05	(2.08E-06)	(2.14E-06)	(1.87E-06)	(1.90E-06)	(1.21E-06)	(1.33E-06)	(6.63E-07)	(8.22E-07	(2.02E-06)	(2.37E-06
Ru 102	mM	7.40E-06	1.43E-05	1.05E-05	1.19E-05	7.40E-06	1.43E-05	3.49E-06	3.02E-06	3.43E-06	3.25E-06	3.06E-06	3.44E-06	3.14E-06	3.45E-06	3.11E-06	6 3.16E-0
S	mM	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+0
Sb 121	mM mM	(4.23E-06) <6.33E-01	(7.50E-06) <6.33E-01	(4.83E-06) <6.33E-01	(6.09E-06)	(4.23E-06)	(7.50E-06)	(8.10E-07)	(7.77E-07)	(6.45E-07)	(1.21E-06)	(9.34E-07)	(8.68E-07)	(7.93E-07)	(6.36E-07	(6.36E-07)) (6.28E-07
Se Se 82	mM mM	<6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01 <6.10E-04	<6.33E-01	<6.33E-01 <6.10E-04	
Si Si	mM	<8.90E-04	<8.90E-01	<8.90E-04	<8.90E-04	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-01	<8.90E-0	<8.90E-01	
Sr	mM	(1.11E-03)	(5.16E-04)	(7.45E-04)	(6.44E-04)	(1.11E-03)	(5.16E-04)	2.16E-02	1.98E-02	2.29E-02	2.25E-02	1.82E-02	2.24E-02	1.40E-02	1.48E-02	2.35E-02	2 2.67E-0
Ti	mM	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	3 <5.22E-0
Tl	mM	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	2 <1.22E-0
V	mM	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	
Zn	mM	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	<9.56E-03	3 <9.56E-0
Zr	mM	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	<2.74E-03	3 <2.74E-0
Anions	+					 	-	1		1	1	1	1		1	1	1
NO ₂ as NO2-	mM	7.22E-02	7.97E-02	8.43E-02	8.23E-02	7.22E-02	7.97E-02	4.56E-03	5.92E-03	3.75E-03	4.96E-03	<2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	5.82E-03	3 7.30E-0
-	1							+			1		1		1	+	+
NO ₃ as NO3-	mM	1.95E-01	1.96E-01	2.89E-01	2.72E-01	1.95E-01	1.96E-01	1.37E-01	1.63E-01	7.39E-02	1.05E-01	9.09E-03	1.26E-02	1.03E-02	1.37E-02	2 2.60E-02	2 3.05E-0
CO ₃ ²	mM	2.81E+00	3.57E+00	5.02E+00	4.94E+00	2.81E+00	3.57E+00	3.32E+00	4.29E+00	4.20E+00	3.96E+00	4.45E+00	5.13E+00	4.89E+00	4.92E+00	3.27E+00	1
SO ₄ ²	mM	2.48E-02	2.55E-02	2.58E-02	2.48E-02	2.48E-02	2.55E-02	8.56E-03	4.67E-03	5.53E-03	3.89E-03	6.54E-03	5.17E-03	7.63E-03	7.64E-03	7.94E-03	5.69E-0
PO ₄ 3- as PO ₄ 3-	mM	7.35E-03	6.61E-03	<2.10E-03	<2.10E-03	7.35E-03	6.61E-03	5.70E-03	4.73E-03	4.50E-03	4.07E-03	2.31E-03	2.53E-03	2.28E-03	2.29E-03	2.13E-03	3 <2.10E-0
CI.	mM	8.89E-03	9.32E-03	3.45E-02	3.60E-02	8.89E-03	9.32E-03	5.47E-03	5.44E-03	4.89E-03	5.00E-03	5.90E-03	5.33E-03	4.49E-03	8.42E-03	3 2.34E-02	2 6.97E-0
E.	mM	9.56E-01	1.30E+00	1.09E+00	1.04E+00	9.56E-01	1.30E+00	7.97E-02	7.34E-02	3.22E-02	2.86E-02	3.43E-02	3.38E-02	1.28E-02	1.24E-0	2.34E-02 2.24E-02	2 1.90E-0
			1.5015+00	1.07ET00	1.0+1:+00	1 7.JUC-UI	1.3012+00	1.71C=U2	1.34E-02	. J.ZZE-UZ	4 2.00E=U2	J.+JE-U2	J.JOE=U2	1.40C=U2	1.2+E=U	∠.∠+E=U∠	1.70E-U
Oxalate*	mM	1.20E-01	3.43E-01	1.22E-01	1.32E-01	1.20E-01	3.43E-01	1.30E-02	1.33E-02	1.20E-02	1.25E-02	1.20E-02	1.25E-02	1.09E-02	1.21E-02	9.69E-03	9.68E-0

Oxalate results are for information only

Tank C-203 (19887) Ca(OH), Leach Results

							Tank C-2	203 (19887) Ca(OH)2 Leach Resu								
Parameter	Units	1 day	Single 1 day (dup)	Contact 1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Periodic Replo Stage 3	enishment Tests Stage 3 (dup)	Stage 4	Stage 4 (dup)	le 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
pH	std units	11.64	1 day (dup) 11.69	11.62	11.59	11.64	11.69	3tage 2 11.85	11.67	11.67	11.73	11.67	11.73	11.76	11.88	11.74	31age 6 (dup) 11.8
Alkalinity	mg/L as CaCO3	8.34E+02	7.72E+02	7.72E+02	8.03E+02	8.34E+02	7.72E+02	4.71E+02	4.79E+02	4.17E+02	4.63E+02	4.48E+02	4.25E+02	5.10E+02	6.33E+02	3.94E+02	4.63E+0
TIC	mg C/L	5.53E+01	4.36E+01	5.20E+01	6.07E+01	5.53E+01	4.36E+01	1.31E+01	1.49E+01	1.15E+01	1.29E+01	8.26E+00	9.79E+00	7.70E+00	3.34E+00	1.54E+01	9.36E+0
TOC	mg C/L	4.72E+01	4.61E+01	4.62E+01	4.70E+01	4.72E+01	4.61E+01	5.18E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+0
TC	mg C/L	1.03E+02	8.98E+01	9.82E+01	1.08E+02	1.03E+02	8.98E+01	1.83E+01	1.49E+01	1.15E+01	1.29E+01	8.26E+00	9.79E+00	7.70E+00	3.34E+00	1.54E+01	9.36E+0
Radionuclides																	
90Sr	μCi/L	<8.89E-01	<8.89E-01	4.52E-01	7.56E-01	<8.89E-01	<8.89E-01			4.58E-01	5.54E+00					9.29E+00	1.51E+0
⁹⁹ Tc	mg/L	(5.00E-04)	<5.00E-04	<5.00E-04	<5.00E-04	(5.00E-04)	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-0
²³⁸ U	mg/L	1.87E+00	5.25E+00	3.10E+00	3.12E+00	1.87E+00	5.25E+00	4.65E-01	1.24E+00	3.91E-01	9.44E-02	1.59E-01	1.31E-01	4.97E-02	5.50E-02	3.54E-02	2.23E-0
²³⁹ Pu*	μCi/L	(2.65E-02)	<1.36E-02	(1.74E-02)	(1.18E-02)	(2.65E-02)	<1.36E-02	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-0
²³⁷ Np*	μCi/L	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-0
²⁴¹ Am	μCi/L	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+0
* Pu and Np Results may be				<1.70L102	<1.70E102	<1.70L102	<1.70L102	<1.70L102	<1.70L102	<1.70E102	<1.70E102	<1.70E102	<1.70L102	<1.70E102	<1.70L102	<1.70L102	<1.70L10
Metals	biased night due to t	Concentration	и.														
Ag 107	mg/L	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-03	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-0
Al	mg/L	(2.20E+00)	(2.17E+00)	3.50E+00	3.44E+00	(2.20E+00)	(2.17E+00)	(1.06E+00)	(1.32E+00)	(6.15E-01)	(1.61E-01)	(1.51E-01)	(1.63E-01)	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+0
As	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+0
As 75	mg/L	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-0
В	mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+0
Ba	mg/L	(1.15E-01)	(5.38E-02)	(6.98E-02)	(1.14E-01)	(1.15E-01)	(5.38E-02)	(1.27E-02)	(3.90E-01)	(7.45E-02)	(3.29E-02)	(4.42E-02)	(1.12E-01)	(8.63E-02)	(2.88E-02)	(8.01E-02)	(1.22E-01
Be	mg/L	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-0
Bi	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+0
Ca	mg/L	(5.83E-01)	(6.25E-01) <2.50E-01	(1.27E+00)	(1.14E+00)	(5.83E-01)	(6.25E-01)	(4.04E+00)	(1.75E+00)	(1.83E+00)	7.35E+01 <2.50E-01	2.03E+01	4.12E+01	1.11E+02	1.98E+02	6.40E+01	1.21E+0
Cd Cd 114	mg/L mg/L	<2.50E-01 <1.00E-05	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <1.00E-05	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-0
Co Co	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+0
Cr	mg/L	2.05E+00	1.72E+00	3.01E+00	3.40E+00	2.05E+00	1.72E+00	(1.28E-01)	(1.08E-01)	(4.83E-01)	(2.94E-01)	(1.38E-01)	(2.28E-01)	(2.12E-02)	(6.62E-02)	1.97E+00	1.48E+0
Cr 53*	mg/L	1.97E+00	1.76E+00	3.01E+00	3.44E+00	1.97E+00	1.76E+00	1.46E-01	1.32E-01	5.55E-01	3.30E-01	1.72E-01	2.68E-01	7.46E-02	1.01E-01	1.97E+00	1.50E+0
Cu	mg/L	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+0
Cu 65	mg/L	(1.75E-02)	(1.72E-02)	4.11E-02	(1.28E-02)	(1.75E-02)	(1.72E-02)	(4.47E-03)	<2.50E-02	(2.43E-02)	3.51E-02	4.28E-02	(1.61E-02)	(2.49E-02)	(2.45E-03)	(1.46E-02)	(2.16E-02
Fe	mg/L	(1.43E-01)	(8.45E-02)	(1.28E-01)	(7.39E-02)	(1.43E-01)	(8.45E-02)	(1.28E-01)	(1.13E-01)	(9.92E-02)	(6.69E-02)	(1.28E-01)	(9.24E-02)	(1.61E-01)	(5.09E-02)	(1.30E-01)	(8.87E-02
K	mg/L	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+0
Li	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+0
Mg Mn	mg/L	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+0 <2.50E-0
Mo	mg/L mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+0
Mo 95	mg/L	(3.11E-03)	(2.72E-03)	(4.16E-03)	(4.90E-03)	(3.11E-03)	(2.72E-03)	(7.50E-04)	(8.10E-04)	(7.70E-04)	(4.10E-04)	(8.00E-05)	(2.40E-04)	(6.00E-05)	(1.90E-04)	(9.00E-05)	(2.20E-04
Mo 97	mg/L	(2.56E-03)	(2.67E-03)	(3.64E-03)	(3.93E-03)	(2.56E-03)	(2.67E-03)	(1.80E-04)	(6.00E-05)	<1.00E-02	(1.50E-04)	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-0
Mo 98	mg/L	(2.58E-03)	(2.18E-03)	(2.82E-03)	(3.05E-03)	(2.58E-03)	(2.18E-03)	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-0
Na	mg/L	3.97E+02	3.70E+02	3.65E+02	3.88E+02	3.97E+02	3.70E+02	1.87E+02	1.79E+02	1.52E+02	1.00E+02	1.38E+02	1.19E+02	6.47E+01	3.25E+01	7.22E+01	4.56E+0
Ni	mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+0
P	mg/L	1.80E+01	1.87E+01	2.36E+01	2.78E+01	1.80E+01	1.87E+01	(1.83E+00)	(9.74E-01)	(8.56E-01)	(5.01E-01)	(3.32E-01)	(3.65E-01)	(4.02E-01)	(1.28E-01)	(7.11E-01)	(1.81E-01
Pb Pb 206	mg/L	(2.05E-01) (3.60E-04)	(6.52E-02) (1.40E-03)	(1.37E-01) 1.59E-02	(5.28E-02) 1.75E-02	(2.05E-01) (3.60E-04)	(6.52E-02) (1.40E-03)	(6.70E-02) (1.15E-03)	(1.76E-01) (8.40E-04)	(3.15E-01) (6.00E-04)	(1.00E-01) (2.11E-03)	(1.36E-01) (6.90E-04)	(3.72E-02) (1.13E-03)	(2.10E-01) (2.49E-03)	(1.01E-01) 5.62E-03	(1.07E-02) (1.18E-03)	(1.66E-01 (2.52E-03
Ru 101	mg/L mg/L	(1.09E-03)	(9.40E-03)	(1.35E-02)	(1.99E-03)	(1.09E-03)	(9.40E-04)	<5.00E-03	(9.00E-05)	(7.00E-04)	(2.11E-03) (5.00E-03	<5.00E-04)	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-0
Ru 101	mg/L	(5.00E-04)	(5.00E-04)	(7.80E-04)	(8.10E-04)	(5.00E-04)	(5.00E-04)	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-0
S	mg/L	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+0
Sb 121	mg/L	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-0
Se	mg/L	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+0
Si	mg/L	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+0
Sr	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+0
Ti Tl	mg/L	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+00 <1.00E+01	<1.25E+0 <1.00E+0
V	mg/L mg/L	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<5.00E+01	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<5.00E+01	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<5.00E+01	<5.00E+0
Zn	mg/L	(4.50E-01)	(5.59E-01)	(5.27E-01)	(5.59E-01)	(4.50E-01)	(5.59E-01)	(4.71E-01)	(4.62E-01)	(5.63E-01)	(4.91E-01)	(4.69E-01)	(7.17E-01)	(6.48E-01)	(4.94E-01)	(5.44E-01)	(6.17E-01
Zr	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+0
* Cr 53 concentrations are a		standard.															
Anions																	
NO2 as NO2-	mg/L	<4.51E+00	<4.51E+00	4.59E+00	5.26E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+0
NO ₃ ° as NO3-	mg/L	4.63E+01	3.72E+01	4.23E+01	4.92E+01	4.63E+01	3.72E+01	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+0
CO ₃ ² ·*		<5.00E+02					<5.00E+02				<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02			
	mg/L		<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02		<5.00E+02	<5.00E+02	<5.00E+02					<5.00E+02	<5.00E+02	<5.00E+0
SO ₄ ²	mg/L	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+0
PO ₄ 3. as PO ₄ 3.	mg/L	2.86E+01	3.11E+01	4.76E+01	6.21E+01	2.86E+01	3.11E+01	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+0
CI"	mg/L	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+0
F*	mg/L	1.51E+01	1.33E+01	1.96E+01	2.29E+01	1.51E+01	1.33E+01	<1.17E+00	1.31E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+0
Oxalate*	mg/L	1.80E+01	1.54E+01	1.75E+01	1.97E+01	1.80E+01	1.54E+01	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+0
			12:01		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											2.102.00	U. 7J

* The fluoride, carbonate, and oxalate results are for information only. The QC not within procedural limits...

Tank C=203 (19887) Ca(OH), Leach Results

							Tank C-2	:03 (19887) Ca(C	OH)2 Leach Resu								
Parameter	Units	1 day	Single 1 day (dup)	Contact	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)		enishment Tests Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
pH	std units	1 day	1 day (dup)	1 month	r monur (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage + (dup)	Stage 3	Stage 3 (dup)	Stage 0	Stage 0 (dup)
Alkalinity	mM as CaCO3	8.33E+00	7.71E+00	7.71E+00	8.02E+00	8.33E+00	7.71E+00	4.70E+00	4.78E+00	4.17E+00		4.47E+00	4.24E+00	5.09E+00	6.32E+00	3.93E+00	4.63E+00
TIC	mM C	4.61E+00	3.64E+00	4.33E+00	5.06E+00	4.61E+00	3.64E+00	1.09E+00	1.24E+00	9.54E-01	1.07E+00	6.88E-01	8.16E-01	6.42E-01	2.78E-01		
TOC	mM C mM C	3.94E+00 8.54E+00	3.84E+00 7.48E+00	3.85E+00 8.19E+00	3.91E+00 8.98E+00	3.94E+00 8.54E+00	3.84E+00 7.48E+00	4.31E-01 1.52E+00	<4.02E-01 1.24E+00	<4.02E-01 9.54E-01		<4.02E-01 6.88E-01	<4.02E-01 8.16E-01	<4.02E-01 6.42E-01	<4.02E-01 2.78E-01		
10	inivi C	0.54L100	7.40L100	0.171.100	0.70E100	0.542100	7.40£100	1.52E 100	1.24L 100	7.54L-01	1.07E100	0.00E-01	0.10E-01	0.42L-01	2.70L-01		
Radionuclides																	
90Sr	mM	<7.05E-08	<7.05E-08	3.59E-08	6.00E-08	<7.05E-08	<7.05E-08			3.64E-08	4.40E-07					7.37E-07	1.19E-06
⁹⁹ Tc	mM	(5.05E-06)	<5.05E-06	<5.05E-06	<5.05E-06	(5.05E-06)	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06
²³⁸ U	mM	7.87E-03	2.21E-02	1.30E-02	1.31E-02	7.87E-03	2.21E-02	1.95E-03	5.19E-03	1.64E-03	3.97E-04	6.67E-04	5.49E-04	2.09E-04	2.31E-04	1.49E-04	9.37E-05
²³⁹ Pu*	mM	(1.79E-05)	<9.21E-06	(1.17E-05)	(7.95E-06)	(1.79E-05)	<9.21E-06	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04
²³⁷ Np*	mM	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06									
²⁴¹ Am	mM	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04									
* Pu and Np Results may be	biased high due to	U concentration	n.														
Metals Ag 107	mM	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-06	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05
Al	mM	(8.16E-02)	(8.06E-02)	1.30E-01	1.28E-01	(8.16E-02)	(8.06E-02)	(3.93E-02)	(4.90E-02)	(2.28E-02)	(5.96E-03)	(5.61E-03)	(6.05E-03)	<9.27E-02	<9.27E-02	<9.27E-02	<9.27E-02
As	mM	<3.34E-02	(3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02								
As 75	mM	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03									
В	mM	<4.63E-01	<4.63E-01	<4.63E-01	<4.63E-01	<4.63E-01	<4.63E-01	<4.63E-01									
Ba	mM M	(8.36E-04)	(3.92E-04)	(5.08E-04)	(8.30E-04)	(8.36E-04)	(3.92E-04)	(9.25E-05)	(2.84E-03)	(5.43E-04)	(2.39E-04)	(3.22E-04)	(8.12E-04)	(6.28E-04)	(2.10E-04)	(5.83E-04)	(8.92E-04)
Be Bi	mM mM	<5.55E-02 <1.20E-02	2 <5.55E-02 2 <1.20E-02	<5.55E-02 <1.20E-02	<5.55E-02 <1.20E-02	<5.55E-02 <1.20E-02	<5.55E-02 <1.20E-02	<5.55E-02 <1.20E-02	<5.55E-02 <1.20E-02								
Ca	mM	(1.45E-02)	(1.56E-02)	(3.16E-02)	(2.84E-02)	(1.45E-02)	(1.56E-02)	(1.01E-01)	(4.36E-02)	(4.57E-02)	1.83E+00	5.06E-01	1.03E+00	2.77E+00	4.95E+00	1.60E+00	3.03E+00
Cd	mM	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03									
Cd 114	mM	<8.77E-08	<2.19E-05	<2.19E-05	<2.19E-05	<8.77E-08	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05	<2.19E-05
Co Cr	mM mM	<2.12E-02 3.95E-02	<2.12E-02 3.30E-02	<2.12E-02 5.79E-02	<2.12E-02 6.55E-02	<2.12E-02 3.95E-02	<2.12E-02 3.30E-02	<2.12E-02 (2.47E-03)	<2.12E-02 (2.08E-03)	<2.12E-02 (9.29E-03)	2 <2.12E-02 (5.66E-03)	<2.12E-02 (2.65E-03)	<2.12E-02 (4.39E-03)	<2.12E-02 (4.08E-04)	<2.12E-02 (1.27E-03)	<2.12E-02 3.80E-02	<2.12E-02 2.85E-02
Cr 53 *	mM	3.71E-02	3.32E-02	5.69E-02	6.49E-02	3.71E-02	3.32E-02	2.76E-03	2.50E-03	1.05E-02	6.22E-03	3.25E-03	5.06E-03	1.41E-03	1.90E-03	3.72E-02	2.83E-02
Cu	mM	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00									
Cu 65	mM	(2.70E-04)	(2.65E-04)	6.32E-04	(1.97E-04)	(2.70E-04)	(2.65E-04)	(6.88E-05)	<3.85E-04	(3.73E-04)	5.40E-04	6.58E-04	(2.47E-04)	(3.83E-04)	(3.77E-05)	(2.25E-04)	(3.32E-04)
Fe K	mM mM	(2.56E-03) <3.20E+00	(1.51E-03) <3.20E+00	(2.29E-03) <3.20E+00	(1.32E-03) <3.20E+00	(2.56E-03) <3.20E+00	(1.51E-03) <3.20E+00	(2.29E-03) <3.20E+00	(2.02E-03) <3.20E+00	(1.78E-03) <3.20E+00	(1.20E-03) <3.20E+00	(2.28E-03) <3.20E+00	(1.65E-03) <3.20E+00	(2.88E-03) <3.20E+00	(9.12E-04) <3.20E+00	(2.32E-03) <3.20E+00	(1.59E-03) <3.20E+00
Li	mM	<3.20E+00 <1.44E+00	<1.44E+00	<3.20E+00 <1.44E+00	<3.20E+00 <1.44E+00	<3.20E+00 <1.44E+00	<3.20E+00 <1.44E+00	<5.20E+00 <1.44E+00	<3.20E+00 <1.44E+00	<3.20E+00	3.20E+00 <1.44E+00	<3.20E+00 <1.44E+00	<3.20E+00	<3.20E+00 <1.44E+00	<3.20E+00 <1.44E+00	<3.20E+00 <1.44E+00	<3.20E+00
Mg	mM	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01									
Mn	mM	<4.55E-03	<4.55E-03	<4.55E-03	<4.55E-03	<4.55E-03	<4.55E-03	<4.55E-03									
Mo	mM	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02									
Mo 95 Mo 97	mM mM	(3.11E-05) (2.69E-05)	(2.72E-05) (2.81E-05)	(4.16E-05) (3.83E-05)	(4.90E-05) (4.14E-05)	(3.11E-05) (2.69E-05)	(2.72E-05) (2.81E-05)	(7.50E-06) (1.89E-06)	(8.10E-06) (6.32E-07)	(7.70E-06) <1.05E-04	(4.10E-06) (1.58E-06)	(8.00E-07) <1.05E-04	(2.40E-06) <1.05E-04	(6.00E-07) <1.05E-04	(1.90E-06) <1.05E-04	(9.00E-07) <1.05E-04	(2.20E-06) <1.05E-04
Mo 98	mM	(2.63E-05)	(2.22E-05)	(2.88E-05)	(3.11E-05)	(2.63E-05)	(2.22E-05)	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05
Na	mM	1.73E+01	1.61E+01	1.59E+01	1.69E+01	1.73E+01	1.61E+01	8.14E+00	7.78E+00	6.59E+00	4.37E+00	5.99E+00	5.16E+00	2.81E+00	1.42E+00	3.14E+00	1.99E+00
Ni	mM	<8.52E-02	<8.52E-02	<8.52E-02	<8.52E-02	<8.52E-02	<8.52E-02	<8.52E-02									
P Pb	mM mM	5.80E-01 (9.89E-04)	6.05E-01 (3.15E-04)	7.61E-01 (6.61E-04)	8.97E-01 (2.55E-04)	5.80E-01 (9.89E-04)	6.05E-01 (3.15E-04)	(5.89E-02) (3.23E-04)	(3.15E-02) (8.52E-04)	(2.77E-02) (1.52E-03)	(1.62E-02) (4.84E-04)	(1.07E-02) (6.57E-04)	(1.18E-02) (1.80E-04)	(1.30E-02) (1.01E-03)	(4.12E-03) (4.89E-04)	(2.30E-02) (5.16E-05)	(5.83E-03) (8.00E-04)
Pb 206	mM	(1.75E-06)	(6.80E-06)	7.72E-05	8.51E-05	(1.75E-06)	(6.80E-06)	(5.58E-06)	(4.08E-06)	(2.91E-06)	(1.02E-05)	(3.35E-06)	(5.49E-06)	(1.21E-05)	2.73E-05	(5.73E-06)	(1.22E-05)
Ru 101	mM	(1.08E-05)	(9.31E-06)	(1.34E-05)	(1.97E-05)	(1.08E-05)	(9.31E-06)	<4.95E-05	(8.91E-07)	(6.93E-07)	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05
Ru 102	mM mM	(4.90E-06) <6.24E+00	(4.90E-06) <6.24E+00	(7.65E-06) <6.24E+00	(7.94E-06) <6.24E+00	(4.90E-06) <6.24E+00	(4.90E-06) <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00
S Sb 121	mM mM	<6.24E+00 <4.13E-05	<6.24E+00 <4.13E-05	<6.24E+00 <4.13E-05	<6.24E+00 <4.13E-05	<6.24E+00 <4.13E-05	<6.24E+00 <4.13E-05	<6.24E+00 <4.13E-05									
Se	mM	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01									
Si	mM	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00									
Sr Ti	mM mM	<2.85E-02	<2.85E-02 <2.61E-02	2 <2.85E-02 2 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02							
Tl	mM mM	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02									
V	mM	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02									
Zn	mM	(6.88E-03)	(8.55E-03)	(8.06E-03)	(8.55E-03)	(6.88E-03)	(8.55E-03)	(7.21E-03)	(7.06E-03)	(8.61E-03)	(7.51E-03)	(7.17E-03)	(1.10E-02)	(9.91E-03)	(7.55E-03)	(8.32E-03)	(9.44E-03)
Zr	mM	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02									
* Cr 53 concentrations are a Anions	bove highest check	standard.												H			
NO ₂ as NO2-	mM	<9.80E-02	<9.80E-02	9.98E-02	1.14E-01	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02
NO ₂ as NO ₂ -	mM	7.47E-01	5.99E-01	6.82E-01	7.94E-01	7.47E-01	5.99E-01	<6.98E-02	<6.98E-02	<6.98E-02	<0.98E-02	<6.98E-02	< 6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	< 6.98E-02
NO ₃ as NO ₃ - CO ₃ ²⁻ *	mM mM	<8.33E+00	<0.98E-02 <8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00								
SO ₄ ² ·	mM	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02									
PO ₄ as PO ₄ .	mM	3.02E-01	3.28E-01	5.01E-01	6.54E-01	3.02E-01	3.28E-01	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02
Cl	mM	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02									
F *	mM	7.94E-01	7.01E-01	1.03E+00	1.20E+00	7.94E-01	7.01E-01	<6.16E-02	6.91E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02
Oxalate*	mM	2.04E-01	1.75E-01	1.99E-01	2.24E-01	2.04E-01	1.75E-01	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02

^{*} The fluoride, carbonate, and oxalate results are for information only. The QC not within procedural limits...

Tank C-203 (19961) Ca(OH), Leach Results

•	•					•	Tank C-2	03 (19961) Ca(0	OH)2 Leach Resu								
Parameter	Units	1 day		Contact 1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Periodic Repl Stage 3	enishment Tests Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
pH	std units	11.86	11.89	11.89	11.95	11.86	11.89	11.99	11.96	11.83	11.83	11.88	12.03	12.10	12.20	11.92	11.89
Alkalinity	mg/L as CaCO3	7.80E+02	8.96E+02	8.11E+02	7.72E+02	7.80E+02	8.96E+02	5.17E+02	4.55E+02	3.94E+02	3.86E+02	4.40E+02	5.40E+02	6.33E+02	7.87E+02	5.94E+02	4.48E+02
TIC	mg C/L	3.80E+01	4.77E+01	4.83E+01	4.14E+01	3.80E+01 5.68E+01	4.77E+01	1.33E+01 1.26E+01	1.34E+01 5.25E+00	1.26E+01	1.04E+01	1.02E+01	9.53E+00	6.42E+00	1.05E+01	1.29E+01	1.12E+01 <4.82E+00
TOC TC	mg C/L mg C/L	5.68E+01 9.48E+01	6.94E+01 1.17E+02	5.49E+01 1.03E+02	3.31E+01 7.45E+01	9.48E+01	6.94E+01 1.17E+02	2.59E+01	3.23E+00 1.87E+01	<4.82E+00 1.26E+01	<4.82E+00 1.04E+01	<4.82E+00 1.02E+01	<4.82E+00 9.53E+00	<4.82E+00 6.42E+00	<4.82E+00 1.05E+01	<4.82E+00 1.29E+01	1.12E+01
	ing Cr2	7.1025101	1.172.102	1.0525102	7.132.101	y.102101	1.172.02	2.572.101	1.072101	1.202101	1.012101	1.022.101	7.552100	0.122.100	1.032101	1.2525101	1.122.01
Radionuclides																	
⁹⁰ Sr	μCi/L	<8.89E-01	<8.89E-01	2.52E+01	7.49E+00	<8.89E-01	<8.89E-01			6.23E-01	<8.89E-01					2.10E+01	1.05E+01
⁹⁹ Tc	mg/L	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	(3.80E-04)	(1.10E-04)	<5.00E-04
²³⁸ U	mg/L	5.00E+00	4.65E+00	3.03E+02	5.90E+01	5.00E+00	4.65E+00	2.76E+00	1.85E+00	6.94E-01	8.13E-01	1.10E-01	1.27E-01	5.26E-02	6.15E-02	2.13E-02	2.74E-02
²³⁹ Pu*	μCi/L	(2.12E-02)	(8.68E-03)	2.54E+00	4.57E-01	(2.12E-02)	(8.68E-03)	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01	<3.10E-01
²³⁷ Np*	μCi/L	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04
²⁴¹ Am	μCi/L	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02
* Pu and Np Results may be	biased high due to	U concentration	on.														
Metals Ag 107	mg/L	(2.50E-04)	<1.00E-03	(3.50E-04)	<1.00E-03	(2.50E-04)	<1.00E-03	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-03	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02
Al Al	mg/L	(1.58E+00)	(1.78E+00)	3.03E+00	2.81E+00	(1.58E+00)	(1.78E+00)	(1.57E+00)	(1.70E+00)	(7.96E-01)	(1.04E+00)	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
As	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
As 75	mg/L	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01	<1.00E-01
B Ba	mg/L mg/L	<5.00E+00 (1.11E-01)	<5.00E+00 (4.10E-02)	<5.00E+00 2.67E-01	<5.00E+00 (1.05E-01)	<5.00E+00 (1.11E-01)	<5.00E+00 (4.10E-02)	<5.00E+00 (7.64E-02)	<5.00E+00 (4.22E-02)	<5.00E+00 (5.18E-02)	<5.00E+00 (1.11E-01)	<5.00E+00 (6.26E-02)	<5.00E+00 (4.14E-02)	<5.00E+00 (4.43E-02)	<5.00E+00 (3.37E-02)	<5.00E+00 (6.28E-02)	<5.00E+00 (1.58E-01)
Be	mg/L	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-02)	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01
Bi	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
Ca	mg/L	(6.45E-01)	(6.09E-01)	4.75E+01	1.41E+01	(6.45E-01)	(6.09E-01)	(6.58E-01)	(5.22E-01)	(1.78E+00)	(9.27E-01)	5.46E+01	1.18E+02	1.93E+02	2.45E+02	1.62E+02	6.68E+01
Cd Cd 114	mg/L mg/L	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 (1.95E-03)	<2.50E-01 (4.40E-04)	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <1.00E-05	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.00E-05
Co	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
Cr	mg/L	2.58E+00	2.82E+00	1.24E+01	4.97E+00	2.58E+00	2.82E+00	(1.72E-01)	(2.04E-01)	7.41E-01	7.24E-01	(9.97E-02)	(4.41E-02)	(4.06E-02)	(1.03E-01)	2.17E+00	4.09E+00
Cr 53	mg/L	2.72E+00	2.85E+00	1.06E+01	4.91E+00	2.72E+00	2.85E+00	2.21E-01	2.47E-01	7.89E-01	7.72E-01	1.43E-01	9.47E-02	8.67E-02	1.40E-01	2.22E+00	4.09E+00
Cu Cu 65	mg/L mg/L	<1.00E+02 (6.96E-03)	<1.00E+02 (1.26E-02)	<1.00E+02 9.76E-02	<1.00E+02 4.56E-02	<1.00E+02 (6.96E-03)	<1.00E+02 (1.26E-02)	<1.00E+02 4.58E-02	<1.00E+02 2.76E-02	<1.00E+02 (2.48E-02)	<1.00E+02 (2.49E-02)	<1.00E+02 0.00E+00	<1.00E+02 (9.19E-03)	<1.00E+02 3.66E-02	<1.00E+02 2.51E-02	<1.00E+02 5.04E-02	<1.00E+02 (2.18E-02)
Fe	mg/L	(1.45E-01)	(5.52E-02)	8.88E+00	1.63E+00	(1.45E-01)	(5.52E-02)	(1.99E-01)	(1.03E-01)	(9.13E-02)	(5.76E-02)	(2.11E-01)	(1.54E-01)	(1.52E-01)	(1.02E-01)	(5.23E-02)	(1.32E-01)
K	mg/L	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02
Li	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01
Mg Mn	mg/L mg/L	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	(6.87E-01) 1.34E+00	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01	<5.00E+00 <2.50E-01
Mo	mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00
Mo 95	mg/L	(4.48E-03)	5.54E-03	6.92E-03	5.32E-03	(4.48E-03)	5.54E-03	(1.00E-03)	(1.07E-03)	(7.60E-04)	(9.00E-04)	(2.30E-04)	(1.50E-04)	(1.00E-04)	(1.10E-04)	(3.30E-04)	(3.00E-04)
Mo 97 Mo 98	mg/L	(4.17E-03) (3.64E-03)	(4.54E-03) (3.78E-03)	(5.52E-03) 5.12E-03	(4.61E-03) (3.96E-03)	(4.17E-03) (3.64E-03)	(4.54E-03) (3.78E-03)	<1.00E-02 <5.00E-03	<1.00E-02 <5.00E-03	<1.00E-02 <5.00E-03	2 <1.00E-02 3 <5.00E-03	<1.00E-02 <5.00E-03	<1.00E-02 <5.00E-03	<1.00E-02 <5.00E-03	<1.00E-02 <5.00E-03	<1.00E-02 <5.00E-03	<1.00E-02 <5.00E-03
Na	mg/L mg/L	3.61E+02	4.29E+02	4.28E+02	3.55E+02	3.61E+02	4.29E+02	1.91E+02	1.79E+02	1.38E+02	1.39E+02	9.40E+01	7.55E+01	2.50E+01	2.83E+01	3.56E+01	7.47E+01
Ni	mg/L	<5.00E+00	<5.00E+00	(1.07E+00)	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00						
P	mg/L	1.35E+01	3.03E+01	6.22E+01	3.22E+01	1.35E+01	3.03E+01	(3.02E+00)	(1.13E+00)	(8.71E-01)	(1.01E+00)	(4.59E-01)	(6.30E-01)	(6.19E-01)	(4.51E-02)	(1.53E-02)	(1.81E-01)
Pb Pb 206	mg/L mg/L	(2.25E-01) 2.66E-02	(1.46E-01) (1.77E-03)	4.01E+00 3.57E+00	(7.66E-01) 7.14E-01	(2.25E-01) 2.66E-02	(1.46E-01) (1.77E-03)	(1.44E-01) (2.05E-03)	(4.48E-03) (3.35E-04)	(1.96E-02) (4.40E-04)	(1.07E-01) (6.80E-04)	<1.00E+00 2.87E-02	(4.37E-02) (3.35E-03)	(8.73E-02) 6.92E-03	(1.09E-01) 1.05E-02	(5.71E-02) 7.40E-03	(1.31E-01) (2.00E-03)
Ru 101	mg/L	(1.08E-03)	(1.77E-03) (1.50E-03)	(4.64E-03)	(2.09E-03)	(1.08E-03)	(1.50E-03)	<5.00E-03	<5.00E-03	<5.00E-03	(6.80E-04) <5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03
Ru 102	mg/L	(6.50E-04)	(7.80E-04)	(2.23E-03)	(1.00E-03)	(6.50E-04)	(7.80E-04)	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	<2.50E-03	(3.50E-04)	(5.10E-04)	(6.60E-04)	(4.90E-04)	(1.90E-04)
S	mg/L	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02
Sb 121 Se	mg/L mg/L	<5.00E+01	<5.00E+01	8.25E-03 <5.00E+01	(1.56E-03) <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E-03 <5.00E+01	<5.00E+03
Si	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+02	<1.00E+01	<1.00E+01	<1.00E+02	2 <1.00E+02	<1.00E+01	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+01	<1.00E+02
Sr	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
Ti	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
11 V	mg/L mg/L	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00	<1.00E+01 <5.00E+00
Zn	mg/L	(5.06E-01)	(5.90E-01)	(8.48E-01)	(4.77E-01)	(5.06E-01)	(5.90E-01)	(5.47E-01)	(5.37E-01)	(5.50E+00	(5.88E-01)	(1.03E+00)	(5.98E-01)	(6.25E-01)	(6.69E-01)	(4.60E-01)	(5.12E-01)
Zr	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
* Cr 53 concentrations are a	bove highest check	standard.												1			
Anions		4 FOR		5 00F	5.00E	6 FOR	-	g.ogn	4.515	4.545		4.515	4.617	1515	4.515	4.515	4.615
NO ₂ as NO2-	mg/L	6.70E+00		7.99E+00	5.89E+00	6.70E+00	-	7.07E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00
NO ₃ ° as NO3-	mg/L	5.45E+01		6.43E+01	4.83E+01	5.45E+01		5.77E+01	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00
CO ₃ ² ·*	mg/L	<5.00E+02		5.47E+02	<5.00E+02	<5.00E+02		9.09E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02
SO ₄ ² ·	mg/L	<4.09E+00		<4.09E+00	<4.09E+00	<4.09E+00		<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00
PO ₄ 3. as PO ₄ *	mg/L	1.30E+01		1.47E+02	8.29E+01	1.30E+01		5.25E+01	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00	<5.05E+00
Cl [*]	mg/L	<2.36E+00		<2.36E+00	<2.36E+00	<2.36E+00		<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00	<2.36E+00
F .	mg/L	1.34E+01		2.15E+01	1.38E+01	1.34E+01		1.61E+01	2.24E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00	<1.17E+00
Oxalate*	mg/L	1.53E+01		1.85E+01	1.44E+01	1.53E+01		1.62E+01	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00	<3.45E+00

Tank C-203 (19961) Ca(OH), Leach Results

							Tank C-	203 (19961) Ca(OH)2 Leach Resu								
D	Units	1.1.	Single 1 day (dup)	Contact	li	G 1	le 171	S 2	Is 2 (1 -)		enishment Tests	le 4	G 4 (1 -)	le e	S 5 (1 ->	In	le
Parameter pH	Units std units	1 day	I day (dup)	1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
Alkalinity	mM as CaCO3	7.79E+00	8.95E+00	8.10E+00	7.71E+00	7.79E+00	8.95E+00	5.17E+00	4.55E+00	3.93E+00	3.86E+00	4.40E+00	5.40E+00	6.32E+00	7.87E+00	5.94E+00	4.47E+00
TIC	mM C	3.17E+00	3.97E+00	4.03E+00	3.45E+00	3.17E+00	3.97E+00	1.11E+00	1.12E+00	1.05E+00	8.64E-01	8.48E-01	7.94E-01	5.35E-01	8.78E-01		
TOC	mM C	4.73E+00	5.78E+00	4.58E+00	2.76E+00	4.73E+00	5.78E+00	1.05E+00	4.37E-01	<4.02E-01	<4.02E-01	<4.02E-01	<4.02E-01	<4.02E-01	<4.02E-01		
TC	mM C	7.90E+00	9.75E+00	8.60E+00	6.21E+00	7.90E+00	9.75E+00	2.16E+00	1.56E+00	1.05E+00	8.64E-01	8.48E-01	7.94E-01	5.35E-01	8.78E-01		
Radionuclides																	
⁹⁰ Sr	mM	<7.05E-08	<7.05E-08	2.00E-06	5.94E-07	<7.05E-08	<7.05E-08			4.94E-08	<7.05E-08					1.67E-06	8.32E-07
99Tc	mM	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	(3.84E-06)	(1.11E-06)	<5.05E-06
²³⁸ U	mM	2.10E-02	1.95E-02	1.27E+00	2.48E-01	2.10E-02	1.95E-02	1.16E-02	7.76E-03	2.92E-03	3.42E-03	4.62E-04	5.34E-04	2.21E-04	2.58E-04	8.95E-05	1.15E-04
²³⁹ Pu*	mM	(1.43E-05)	(5.86E-06)	1.71E-03	3.08E-04	(1.43E-05)	(5.86E-06)	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04	<2.09E-04
²³⁷ Np*	mM	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06
²⁴¹ Am	mM	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04
* Pu and Np Results may be				\2.07L-04	(2.07L-04	\2.07E-04	\2.07E-04	\2.07L-04	(2.07L-04	\Z.07E-04	\2.07E-04	\2.07L-04	\2.07L-04	\2.07E-04	\2.07L-04	(2.07L-04	\2.07L-04
Metals	Ŭ																
Ag 107	mM	(2.34E-06)	<9.35E-06	(3.27E-06)	<9.35E-06	(2.34E-06)	<9.35E-06	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-06	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05
Al	mM	(5.87E-02)	(6.59E-02)	1.12E-01	1.04E-01	(5.87E-02)	(6.59E-02)	(5.81E-02)	(6.29E-02)	(2.95E-02)	(3.85E-02)	<9.27E-02	<9.27E-02	<9.27E-02	<9.27E-02	<9.27E-02	<9.27E-02
As	mM	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02
As 75	mM mM	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01	<1.33E-03 <4.63E-01
Ba	mM mM	(8.09E-04)	<4.63E-01 (2.99E-04)	<4.63E-01 1.94E-03	<4.63E-01 (7.67E-04)	(8.09E-04)	<4.63E-01 (2.99E-04)	<4.63E-01 (5.57E-04)	<4.63E-01 (3.07E-04)	<4.63E-01 (3.78E-04)	<4.63E-01 (8.11E-04)	<4.63E-01 (4.56E-04)	(3.02E-04)	<4.63E-01 (3.22E-04)	<4.63E-01 (2.45E-04)	<4.63E-01 (4.57E-04)	<4.63E-01 (1.15E-03)
Be	mM	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02
Bi	mM	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02
Ca	mM	(1.61E-02)	(1.52E-02)	1.18E+00	3.52E-01	(1.61E-02)	(1.52E-02)	(1.64E-02)	(1.30E-02)	(4.44E-02)	(2.31E-02)	1.36E+00	2.93E+00	4.81E+00	6.12E+00	4.04E+00	1.67E+00
Cd Cd 114	mM mM	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 (1.71E-05)	<2.22E-03 (3.86E-06)	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <8.77E-08	<2.22E-03 <2.19E-05	<2.22E-03 <2.19E-05	<2.22E-03 <1.75E-07
Co Co	mM	<2.19E-03	<2.19E-03	<2.12E-02	<2.12E-02	<2.19E-03	<2.19E-03	<2.19E-03	<2.19E-03	<2.12E-02	<2.19E-03	<2.19E-03	<2.19E-03	<2.12E-02	<2.19E-03	<2.19E-03	<2.12E-02
Cr	mM	4.96E-02	5.43E-02	2.39E-01	9.55E-02	4.96E-02	5.43E-02	(3.30E-03)	(3.93E-03)	1.43E-02	1.39E-02	(1.92E-03)	(8.48E-04)	(7.81E-04)	(1.98E-03)	4.18E-02	7.87E-02
Cr 53	mM	5.14E-02	5.37E-02	2.00E-01	9.27E-02	5.14E-02	5.37E-02	4.17E-03	4.66E-03	1.49E-02	1.46E-02	2.69E-03	1.79E-03	1.64E-03	2.65E-03	4.18E-02	7.72E-02
Cu	mM mM	<1.57E+00	<1.57E+00 (1.94E-04)	<1.57E+00	<1.57E+00	<1.57E+00 (1.07E-04)	<1.57E+00 (1.94E-04)	<1.57E+00 7.04E-04	<1.57E+00	<1.57E+00 (3.82E-04)	<1.57E+00	<1.57E+00 0.00E+00	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00 7.76E-04	<1.57E+00 (3.36E-04)
Cu 65 Fe	mM mM	(1.07E-04) (2.60E-03)	(9.88E-04)	1.50E-03 1.59E-01	7.01E-04 2.92E-02	(2.60E-03)	(9.88E-04)	(3.56E-03)	4.25E-04 (1.84E-03)	(3.82E-04) (1.63E-03)	(3.83E-04) (1.03E-03)	(3.79E-03)	(1.41E-04) (2.75E-03)	5.63E-04 (2.72E-03)	3.87E-04 (1.83E-03)	(9.37E-04)	(2.36E-04)
K	mM	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00
Li	mM	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00
Mg	mM	<2.06E-01	<2.06E-01	(2.83E-02)	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01	<2.06E-01
Mn Mo	mM mM	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	2.44E-02 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02	<4.55E-03 <5.21E-02
Mo 95	mM	(4.48E-05)	5.54E-05	6.92E-05	5.32E-05	(4.48E-05)	5.54E-05	(1.00E-05)	(1.07E-05)	(7.60E-06)	(9.00E-06)	(2.30E-06)	(1.50E-06)	(1.00E-06)	(1.10E-06)	(3.30E-06)	(3.00E-06)
Mo 97	mM	(4.39E-05)	(4.78E-05)	(5.81E-05)	(4.85E-05)	(4.39E-05)	(4.78E-05)	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04
Mo 98	mM	(3.71E-05)	(3.86E-05)	5.22E-05	(4.04E-05)	(3.71E-05)	(3.86E-05)	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05
Na Nr	mM	1.57E+01	1.87E+01	1.86E+01	1.55E+01	1.57E+01	1.87E+01	8.29E+00	7.78E+00	6.02E+00	6.04E+00	4.09E+00	3.28E+00 <8.52E-02	1.09E+00	1.23E+00	1.55E+00	3.25E+00
Ni p	mM mM	<8.52E-02 4.37E-01	<8.52E-02 9.77E-01	(1.83E-02) 2.01E+00	<8.52E-02 1.04E+00	<8.52E-02 4.37E-01	<8.52E-02 9.77E-01	<8.52E-02 (9.76E-02)	<8.52E-02 (3.66E-02)	<8.52E-02 (2.81E-02)	<8.52E-02 (3.27E-02)	<8.52E-02 (1.48E-02)	(2.03E-02)	<8.52E-02 (2.00E-02)	<8.52E-02 (1.46E-03)	<8.52E-02 (4.93E-04)	<8.52E-02 (5.83E-03)
Pb	mM	(1.08E-03)	(7.06E-04)	1.93E-02	(3.70E-03)	(1.08E-03)	(7.06E-04)	(6.94E-04)	(2.16E-05)	(9.44E-05)	(5.18E-04)	<4.83E-03	(2.11E-04)	(4.21E-04)	(5.27E-04)	(2.76E-04)	(6.33E-04)
Pb 206	mM	1.29E-04	(8.59E-06)	1.73E-02	3.47E-03	1.29E-04	(8.59E-06)	(9.95E-06)	(1.63E-06)	(2.14E-06)	(3.30E-06)	1.40E-04	(1.63E-05)	3.36E-05	5.10E-05	3.59E-05	(9.71E-06)
Ru 101	mM	(1.07E-05)	(1.49E-05)	(4.59E-05)	(2.07E-05)	(1.07E-05)	(1.49E-05)	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05
Ru 102	mM mM	(6.37E-06) <6.24E+00	(7.65E-06) <6.24E+00	(2.19E-05) <6.24E+00	(9.80E-06) <6.24E+00	(6.37E-06) <6.24E+00	(7.65E-06) <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	<2.45E-05 <6.24E+00	(3.43E-06) <6.24E+00	(5.00E-06) <6.24E+00	(6.47E-06) <6.24E+00	(4.80E-06) <6.24E+00	(1.86E-06) <6.24E+00
Sb 121	mM	<4.13E-05	<0.24E+00 <4.13E-05	6.82E-05	(1.29E-05)	<0.24E+00 <4.13E-05	<0.24E+00 <4.13E-05	<4.13E-05	<0.24E+00 <4.13E-05	<0.24E+00 <4.13E-05	<0.24E+00 <4.13E-05	<4.13E-05	<4.13E-05	<0.24E+00 <4.13E-05	<0.24E+00 <4.13E-05	<0.24E+00 <4.13E-05	<4.13E-05
Se	mM	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01
Si	mM	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00	<3.56E+00
Sr Ti	mM mM	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02	<2.85E-02 <2.61E-02
Tl	mM mM	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02	<2.61E-02 <4.89E-02
V	mM	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02
Zn	mM	(7.73E-03)	(9.02E-03)	(1.30E-02)	(7.29E-03)	(7.73E-03)	(9.02E-03)	(8.37E-03)	(8.22E-03)	(8.41E-03)	(8.99E-03)	(1.57E-02)	(9.14E-03)	(9.56E-03)	(1.02E-02)	(7.03E-03)	(7.83E-03)
Zr	mM	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02	<1.37E-02
* Cr 53 concentrations are al Anions	bove highest check	standard.				-										1	
	- 14	1.46E.01		1.74E 01	1.205.01	1.405.01	-0.00E 00	1.545.01	-0 BOE 02	-0 00E 02	-0 00E 02	-0.00E-03	-0.00E.03	-0 00E 02	-0.00E-02	-0.00E.03	-0 BOE 02
NO ₂ as NO2-	mM	1.46E-01		1.74E-01	1.28E-01	1.46E-01	<0.00E+00	1.54E-01	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02
NO ₃ as NO3-	mM	8.80E-01		1.04E+00	7.78E-01	8.80E-01	<0.00E+00	9.31E-01	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02
CO ₃ ² ·*	mM	<8.33E+00		9.11E+00	<8.33E+00	<8.33E+00	<0.00E+00	1.51E+01	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00
SO ₄ ²	mM	<4.26E-02		<4.26E-02	<4.26E-02	<4.26E-02	<0.00E+00	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02
PO ₄ 3- as PO ₄ 3- *	mM	1.37E-01		1.55E+00	8.73E-01	1.37E-01	<0.00E+00	5.53E-01	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02	<5.32E-02
Cl ⁻	mM	<6.66E-02		<6.66E-02	<6.66E-02	<6.66E-02	<0.00E+00	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02
F	mM	7.06E-01		1.13E+00	7.28E-01	7.06E-01	<0.00E+00	8.45E-01	1.18E-01	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02	<6.16E-02
Oxalate *	mM	1.74E-01		2.10E-01	1.63E-01	1.74E-01	<0.00E+00	1.84E-01	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02

Tank C-202 (19250) CaCO- Leach Results

•						•	Tank C-	202 (19250) Ca	CO ₃ Leach Resul								
Parameter	Units	1 day		Contact 1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)		enishment Tests Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
nH	std units	1 day 8.98	8.91	8.80	8.56	8.98	8.91	8.06	8.35	Stage 3 8.34	8.58	7.92	7.81	7.55	7.61	8.30	8.50
Alkalinity	mg/L as CaCO3	2.66E+02	2.66E+02	2.78E+02	2.82E+02	2.66E+02	2.66E+02	1.04E+02	1.00E+02	1.00E+02	1.00E+02	8.11E+01	7.33E+01	7.33E+01	7.72E+01	1.16E+02	1.20E+02
TIC	mg C/L	5.72E+01	5.33E+01	3.48E+01	4.16E+01	5.72E+01	5.33E+01	2.48E+01	2.51E+01	2.69E+01	2.69E+01	1.60E+01	1.74E+01	1.27E+01	1.22E+01	2.46E+01	3.43E+01
TOC	mg C/L	1.03E+02	8.82E+01	9.51E+01	8.79E+01	1.03E+02	8.82E+01	1.14E+01	1.41E+01	2.77E+01	2.83E+01	8.65E+00	8.06E+00	4.26E+00	4.51E+00	2.85E+01	5.96E+01
TC	mg C/L	1.60E+02	1.42E+02	1.30E+02	1.30E+02	1.60E+02	1.42E+02	3.62E+01	3.92E+01	5.46E+01	5.52E+01	2.47E+01	2.55E+01	1.70E+01	1.68E+01	5.31E+01	9.39E+01
Radionuclides																	
90Sr	μCi/L	1.84E+02	1.39E+02	1.026E+02	1.010E+02	1.84E+02	1.39E+02			1.04E+02	1.32E+02					1.26E+02	2.58E+02
99Tc	mg/L	(3.90E-05)	(3.70E-05)	(4.00E-05)	(4.10E-05)	(3.90E-05)	(3.70E-05)	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05	<5.00E-05
238 _U	mg/L	5.79E+01	5.24E+01	5.13E+01	4.56E+01	5.79E+01	5.24E+01	9.88E+00	1.03E+01	1.85E+01	2.90E+01	8.79E+00	1.02E+01	7.90E+00	6.88E+00	2.07E+01	6.11E+01
	·																
²³⁹ Pu*	μCi/L	1.98E+00	1.27E+00	5.92E-01	4.76E-01 2.68E-04	1.98E+00	1.27E+00 2.82E-04	1.99E-01	2.48E-01 8.38E-05	9.42E-01	1.57E+00	3.07E-01	3.85E-01	4.61E-02 9.59E-05	4.49E-02 9.44E-05	1.54E+00 1.48E-04	5.09E+00 3.80E-04
257 Np*	μCi/L	3.81E-04	2.82E-04	2.66E-04		3.81E-04		8.24E-05		1.14E-04	1.76E-04	7.31E-05	7.46E-05				
*Pu and Np results may be b	μCi/L	<1.09E-01	<6.12E-02	(2.72E-02)	(2.38E-02)	<1.09E-01	<6.12E-02	<1.70E-01	<6.80E-03	<4.76E-02	<9.18E-02	<6.80E-03	<1.70E-02	<1.70E-01	<1.70E-01	<8.84E-02	<3.47E-01
Metals	l sed due to riigii e	Tamum Conce	intration.														
Ag	mg/L	2.22E-04	1.87E-04	2.57E-04	2.34E-04	2.22E-04	1.87E-04	(1.55E-05)	(1.60E-05)	(6.85E-05	1.51E-04	(1.30E-05)	(2.45E-05)	<1.00E-04	<1.00E-04	(9.25E-05)	4.10E-04
Al	mg/L	1.26E+00	1.20E+00	1.25E+00	1.08E+00	1.26E+00	1.20E+00	8.82E-01	9.68E-01	1.98E+00	2.27E+00	1.07E+00	1.26E+00	(2.78E-01)	(3.44E-01)	2.54E+00	4.27E+00
As	mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00
As 75	mg/L	(1.20E-03)	(1.26E-03)	(2.04E-03)	(1.55E-03)	(1.20E-03)	(1.26E-03)	<5.00E-03	<5.00E-03	(5.18E-04)	(5.50E-04)	(2.84E-04)	<5.00E-03	<5.00E-03	(3.07E-04)	(4.30E-04)	(7.51E-04)
B Ba	mg/L mg/L	<5.00E+01 (2.95E-02)	<5.00E+01 (2.78E-02)	<5.00E+01 3.05E-01	<5.00E+01 2.37E-01	<5.00E+01 (2.95E-02)	<5.00E+01 (2.78E-02)	<5.00E+01 (2.13E-02)	<5.00E+01 (4.35E-02)	<5.00E+01 (2.58E-02)	<5.00E+01 (3.18E-02)	<5.00E+01 (2.30E-02)	<5.00E+01 (2.26E-02)	<5.00E+01 (2.03E-02)	<5.00E+01 (2.09E-02)	<5.00E+01 (3.22E-02)	<5.00E+01 (5.52E-02)
Be	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	(3.18E-02) (3.18E-02) (1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
Bi	mg/L	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01	<2.50E+01
Ca	mg/L	(2.93E+00)	(2.91E+00)	(1.72E+00)	(2.94E+00)	(2.93E+00)	(2.91E+00)	(2.03E+00)	(2.21E+00)	(2.42E+00)	(2.24E+00)	(1.85E+00)	(1.79E+00)	(6.05E+00)	(4.59E+00)	(3.41E+00)	(4.83E+00)
Cd ICP-MS	mg/L	1.86E-03	1.03E-03	3.51E-04	3.45E-04	1.86E-03	1.03E-03	1.77E-04	2.34E-04	9.48E-04	1.75E-03	2.58E-04	4.23E-04	(2.00E-05)	(3.50E-05)	1.47E-03	5.16E-03
Cd ICP-OES Co	mg/L	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01	<2.50E-01 <6.25E-01
Cr ICP-MS	mg/L mg/L	1.34E+00	1.23E+00	1.34E+00	1.29E+00	1.34E+00	1.23E+00	1.75E-01	2.08E-01	5.29E-01	9.97E-01	1.66E-01	2.46E-01	(2.08E-02)	(2.36E-02)	7.07E-01	2.00E+00
Cr ICP-OES	mg/L	1.87E+00	1.58E+00	1.64E+00	1.53E+00	1.87E+00	1.58E+00	(1.43E-01)	(1.79E-01)	(6.06E-01	(1.06E+00)	(1.38E-01)	(2.31E-01)	(4.22E-03)	(1.10E-02)	(8.30E-01)	2.87E+00
Cu ICP-MS	mg/L	3.04E-02	2.28E-02	2.46E-02	1.83E-02	3.04E-02	2.28E-02	(4.53E-03)	5.58E-03	1.43E-02	2.44E-02	(4.63E-03)	6.53E-03	(4.89E-04)	(5.34E-04)	1.94E-02	4.06E-02
Cu ICP-OES	mg/L	(8.67E-02)	(6.94E-02)	(6.00E-02)	(4.39E-02)	(8.67E-02)	(6.94E-02)	(2.86E-02)	(2.57E-02)	(4.98E-02)	(4.91E-02)	(2.51E-02)	(3.62E-02)	(1.97E-02)	(2.37E-02)	(4.70E-02)	(1.03E-01)
Fe	mg/L	8.20E+00 <1.25E+02	5.33E+00 <1.25E+02	1.31E+00	1.12E+00 <1.25E+02	8.20E+00 <1.25E+02	5.33E+00 <1.25E+02	7.49E-01 <1.25E+02	1.04E+00 <1.25E+02	4.46E+00 <1.25E+02	8.20E+00 2 <1.25E+02	1.14E+00	1.84E+00 <1.25E+02	(1.12E-01)	(1.22E-01)	6.29E+00 <1.25E+02	2.22E+01 <1.25E+02
Li	mg/L mg/L	<1.25E+02	<1.25E+02	<1.25E+02 <1.25E+00	<1.25E+02	<1.25E+02 <1.25E+00	<1.25E+02	<1.25E+02	<1.25E+02 <1.25E+00	<1.25E+02	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02 <1.25E+00	<1.25E+02	<1.25E+02
Mg	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
Mn	mg/L	1.69E+00	1.09E+00	2.86E-01	2.41E-01	1.69E+00	1.09E+00	1.65E-01	2.21E-01	9.70E-01	1.79E+00	2.55E-01	4.16E-01	<1.25E-01	<1.25E-01	1.43E+00	5.02E+00
Mo	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
Mo 95 Mo 97	mg/L	1.20E-02 1.08E-02	1.16E-02 1.06E-02	1.77E-02 1.56E-02	1.68E-02 1.48E-02	1.20E-02 1.08E-02	1.16E-02 1.06E-02	2.36E-03 (1.68E-03)	2.38E-03 (1.68E-03)	3.00E-03 (2.17E-03)	3.21E-03 (2.38E-03)	9.19E-04 (5.99E-04)	9.07E-04 (5.93E-04)	6.49E-04 (4.26E-04)	6.68E-04 (4.34E-04)	3.05E-03 (2.31E-03)	3.53E-03 2.99E-03
Mo 98	mg/L mg/L	7.14E-03	6.93E-03	1.01E-02	9.55E-03	7.14E-03	6.93E-03	1.02E-03	1.04E-03	1.35E-03	(2.38E-03) 1.56E-03	(3.81E-04)	(3.82E-04)	(4.26E-04) (2.89E-04)	(2.51E-04)	1.48E-03	2.99E-03 2.00E-03
Na Na	mg/L	2.15E+02	2.06E+02	2.31E+02	2.12E+02	2.15E+02	2.06E+02	3.85E+01	4.31E+01	3.53E+01	3.55E+01	1.87E+01	2.02E+01	9.48E+00	9.90E+00	2.62E+01	3.19E+01
Ni	mg/L	6.11E-01	(4.35E-01)	(1.52E-01)	(1.41E-01)	6.11E-01	(4.35E-01)	(1.09E-01)	(8.68E-02)	(4.10E-01)	7.23E-01	(1.14E-01)	(1.84E-01)	(1.14E-02)	(3.03E-03)	5.46E-01	2.06E+00
P	mg/L	1.46E+01	1.37E+01	1.62E+01	1.47E+01	1.46E+01	1.37E+01	5.15E+00	5.88E+00	5.22E+00	6.01E+00	1.89E+00	2.05E+00	(4.42E-01)	(5.07E-01)	2.09E+00	4.54E+00
Pb ICP-MS	mg/L	4.67E-01	3.61E-01	1.28E-01	1.17E-01	4.67E-01	3.61E-01	6.17E-02	8.40E-02	2.81E-01	5.84E-01	8.75E-02	1.24E-01	5.95E-03	9.21E-03	3.88E-01	1.60E+00
Pb ICP-OES Ru 101	mg/L mg/L	(8.22E-01) 4.93E-03	(4.85E-01) 4.43E-03	(2.72E-01) 4.16E-03	(1.61E-01) 3.81E-03	(8.22E-01) 4.93E-03	(4.85E-01) 4.43E-03	(1.54E-01) 3.23E-04	(1.90E-01) 3.81E-04	(4.26E-01) 1.07E-03	(5.49E-01) 1.76E-03	(2.08E-01) 2.80E-04	(2.62E-01) 3.95E-04	(1.88E-01) (3.00E-05)	(2.21E-01) (4.10E-05)	(4.16E-01) 1.52E-03	1.40E+00 4.90E-03
Ru 101	mg/L	2.26E-03	2.02E-03	1.93E-03	1.79E-03	2.26E-03	2.02E-03	1.51E-04	1.69E-04	4.82E-04	8.29E-04	1.19E-04	1.76E-04	(1.40E-05)	(1.80E-05)	7.05E-04	2.22E-03
S	mg/L	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02	<1.00E+02
Sb 121	mg/L	3.28E-02	2.65E-02	3.58E-02	3.58E-02	3.28E-02	2.65E-02	1.78E-02	1.88E-02	2.27E-02	2.55E-02	(9.02E-03)	(9.97E-03)	(2.88E-03)	(2.69E-03)	1.45E-02	2.34E-02
Se	mg/L	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01
Se 82 Si	mg/L mg/L	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	2 <5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01	<5.00E-02 <2.50E+01
Sr	mg/L	(1.68E-01)	(1.31E-01)	(7.86E-02)	(7.18E-02)	(1.68E-01)	(1.31E-01)	(4.51E-02)	(5.30E-02)	(8.96E-02	(1.34E-01)	(3.76E-02)	(4.76E-02)	(6.73E-02)	(5.27E-02)	(1.14E-01)	(2.77E-01)
Ti	mg/L	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01	<2.50E-01
Tl	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
V	mg/L	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01	<6.25E-01
Zn Zr	mg/L mg/L	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01	<6.25E-01 <2.50E-01
	mg/L	<2.30E=01	\2.J0E=01	<2.30E=01	<2.30E=01	<2.30E-01	<2.50E-01	<2.30E-01	<2.30E-01	<2.30E=01	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<2.30E-01	<2.30E=01	<2.30E-01	<2.30E-01	<2.30E-01	<2.50E-01
Anions																	
NO2 as NO2-	mg/L	3.59E+00	3.81E+00	4.02E+00	3.40E+00	3.59E+00	3.81E+00	<9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	<9.40E-02	2.47E-01	2.49E-01
NO ₃ as NO3-	mg/L	9.80E+00	1.01E+01	1.46E+01	1.40E+01	9.80E+00	1.01E+01	7.84E-01	6.82E-01	2.95E+00	2.67E+00	1.07E+00	1.08E+00	9.91E-01	9.40E-01	7.92E+00	8.25E+00
CO ₃ ²	mg/L	1.82E+02	1.91E+02	2.07E+02	1.40E+01	1.82E+02	1.91E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01
SO ₄ ²																	
	mg/L	1.55E+00	1.43E+00	1.93E+00	1.83E+00	1.55E+00	1.43E+00	2.80E-01	2.56E-01	1.41E-01	2.90E-01	1.65E-01	1.33E-01	1.86E-01	3.35E-01	2.73E-01	2.46E-01
PO ₄ ³ as PO ₄ ³	mg/L	3.39E+01	3.45E+01	4.33E+01	3.92E+01	3.39E+01	3.45E+01	1.58E+01	1.54E+01	1.27E+01	1.36E+01	4.97E+00	5.92E+00	9.41E-01	8.40E-01	4.71E+00	8.95E+00
Cl ⁻	mg/L	2.14E-01	2.09E-01	7.67E-01	8.38E-01	2.14E-01	2.09E-01	6.43E-02	1.26E-01	5.67E-02	5.34E-02	4.56E-02	4.43E-02	4.03E-02	5.21E-02	2.10E+00	1.11E+00
F	mg/L	2.77E+01	2.45E+01	3.62E+01	3.24E+01	2.77E+01	2.45E+01	4.28E+00	5.96E+00	3.75E+00	4.76E+00	6.86E-01	8.97E-01	1.42E-01	1.35E-01	1.98E+00	2.39E+00
Oxalate*	mg/L	2.12E+02	2.00E+02	2.18E+02	2.08E+02	2.12E+02	2.00E+02	1.50E+01	2.03E+01	8.27E+00	1.00E+01	5.38E-01	8.90E-01	<3.45E-01	<3.45E-01	1.85E+00	5.34E+00

^{*} Oxalate results are for information only

Tank C-202 (19250) CaCO3 Leach Results

							Tank C-	202 (19250) CaO	CO3 Leach Resul								
Parameter	I Indian	1 day	Single 1 day (dup)	Contact	1 month (dup)	Store 1	Stage 1 (dup)	St 2	St 2 (d)		enishment Tests Stage 3 (dup)	St 1	Stage 4 (dup)	Is 5	Stage 5 (dup)	Istano 6	Stage 6 (dup)
nH	Units std units	1 day	r day (dup)	1 IIIOIIII	i monui (dup)	Stage 1	Stage I (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 5 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
Alkalinity	mM as CaCO3	2.66E+00	2.66E+00	2.78E+00	2.82E+00	2.66E+00	2.66E+00	1.04E+00	1.00E+00	1.00E+00	1.00E+00	8.10E-01	7.33E-01	7.33E-01	7.71E-01	1.16E+00	1.20E+00
TIC	mM C	4.77E+00	4.44E+00	2.90E+00	3.47E+00	4.77E+00	4.44E+00	2.07E+00	2.09E+00	2.24E+00	2.24E+00	1.33E+00	1.45E+00	1.06E+00	1.02E+00		
TOC	mM C	8.58E+00	7.35E+00	7.93E+00	7.32E+00	8.58E+00	7.35E+00	9.51E-01	1.17E+00	2.31E+00	2.36E+00	7.21E-01	6.72E-01	3.55E-01	3.76E-01		
TC	mM C	1.34E+01	1.18E+01	1.08E+01	1.08E+01	1.34E+01	1.18E+01	3.02E+00	3.26E+00	4.55E+00	4.60E+00	2.06E+00	2.13E+00	1.42E+00	1.40E+00		
Radionuclides																	
90Cr.	mM	1.46E-05	1.10E-05	8.14E-06	8.02E-06	1.46E-05	1.10E-05			8.28E-0	1.05E-05					9.99E-06	2.04E-05
99Tc	mM	(3.94E-07)	(3.74E-07)	(4.04E-07)	(4.14E-07)	(3.94E-07)	(3.74E-07)	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07	<5.05E-07
²³⁸ U	mM	2.43E-01	2.20E-01	2.16E-01	1.92E-01	2.43E-01	2.20E-01	4.15E-02	4.33E-02	7.79E-02	1.22E-01	3.69E-02	4.30E-02	3.32E-02	2.89E-02	8.70E-02	2.57E-01
²³⁹ Pu*	mM	1.33E-03	8.56E-04	4.00E-04	3.21E-04	1.33E-03	8.56E-04	4.13E-02 1.35E-04	4.55E-02 1.67E-04	6.36E-04	1.06E-03	2.07E-04	2.60E-04	3.52E-02	3.03E-05	1.04E-03	3.44E-03
237 Np*	mM	2.26E-06	1.68E-06	1.58E-06	1.59E-06	2.26E-06	1.68E-06	4.89E-07	4.98E-07	6.75E-0	1.00E-03	4.35E-07	4.43E-07	5.70E-07	5.61E-07	8.82E-07	2.26E-06
241		<1.33E-07	<7.47E-08														
*Pu and Np results may be b	mM			(3.32E-08)	(2.90E-08)	<1.33E-07	<7.47E-08	<2.07E-07	<8.30E-09	<5.81E-08	<1.12E-07	<8.30E-09	<2.07E-08	<2.07E-07	<2.07E-07	<1.08E-07	<4.23E-07
Metals	l and the to ringin c	Tumum Conc	muuon.														
Ag	mM	2.06E-06	1.73E-06	2.38E-06	2.16E-06	2.06E-06	1.73E-06	(1.44E-07)	(1.48E-07)	(6.35E-07	1.40E-06	(1.21E-07)	(2.27E-07)	<9.27E-07	<9.27E-07	(8.58E-07)	3.80E-06
Al	mM	4.69E-02	4.44E-02	4.62E-02	3.99E-02	4.69E-02	4.44E-02	3.27E-02	3.59E-02	7.33E-02	8.41E-02	3.97E-02	4.69E-02	(1.03E-02)	(1.27E-02)	9.40E-02	1.58E-01
As	mM	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02	<6.67E-02
As 75	mM	(1.60E-05)	(1.68E-05)	(2.72E-05)	(2.07E-05)	(1.60E-05)	(1.68E-05)	<6.67E-05	<6.67E-05	(6.91E-06	(7.33E-06)	(3.79E-06)	<6.67E-05	<6.67E-05	(4.09E-06)	(5.73E-06)	(1.00E-05)
В	mM	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00	<4.63E+00
Ba Be	mM mM	(2.15E-04) <1.39E-01	(2.02E-04) <1.39E-01	2.22E-03 <1.39E-01	1.72E-03 <1.39E-01	(2.15E-04) <1.39E-01	(2.02E-04) <1.39E-01	(1.55E-04) <1.39E-01	(3.17E-04) <1.39E-01	(1.88E-04 <1.39E-0	(2.32E-04) <1.39E-01	(1.68E-04) <1.39E-01	(1.64E-04) <1.39E-01	(1.48E-04) <1.39E-01	(1.52E-04) <1.39E-01	(2.35E-04) <1.39E-01	(4.02E-04) <1.39E-01
Bi	mM	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01	<1.39E-01	<1.39E-01 <1.20E-01	<1.39E-0	<1.39E-01	<1.39E-01 <1.20E-01	<1.39E-01	<1.39E-01 <1.20E-01	<1.39E-01	<1.39E-01 <1.20E-01	<1.39E-01 <1.20E-01
Ca	mM	(7.30E-02)	(7.25E-02)	(4.30E-02)	(7.33E-02)	(7.30E-02)	(7.25E-02)	(5.08E-02)	(5.51E-02)	(6.03E-02	(5.59E-02)	(4.63E-02)	(4.45E-02)	(1.51E-01)	(1.14E-01)	(8.51E-02)	(1.21E-01)
Cd ICP-MS	mM	1.65E-05	9.18E-06	3.12E-06	3.07E-06	1.65E-05	9.18E-06	1.57E-06	2.08E-06	8.43E-06	1.56E-05	2.29E-06	3.76E-06	(1.78E-07)	(3.11E-07)	1.31E-05	4.59E-05
Cd ICP-OES	mM	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03
Co Cr ICP-MS	mM mM	<1.06E-02 2.57E-02	<1.06E-02 2.36E-02	<1.06E-02 2.57E-02	<1.06E-02 2.47E-02	<1.06E-02 2.57E-02	<1.06E-02 2.36E-02	<1.06E-02 3.36E-03	<1.06E-02 4.00E-03	<1.06E-02 1.02E-02	2 <1.06E-02 2 1.92E-02	<1.06E-02 3.19E-03	<1.06E-02 4.72E-03	<1.06E-02 (4.01E-04)	<1.06E-02 (4.54E-04)	<1.06E-02 1.36E-02	<1.06E-02 3.85E-02
Cr ICP-OES	mM	3.60E-02	3.03E-02	3.16E-02	2.47E-02 2.94E-02	3.60E-02	3.03E-02	(2.75E-03)	(3.43E-03)	(1.17E-02	(2.05E-02)	(2.66E-03)	(4.44E-03)	(8.11E-05)	(2.11E-04)	(1.60E-02)	5.63E-02 5.51E-02
Cu ICP-MS	mM	4.79E-04	3.59E-04	3.87E-04	2.87E-04	4.79E-04	3.59E-04	(7.13E-05)	8.78E-05	2.24E-04	3.85E-04	(7.29E-05)	1.03E-04	(7.69E-06)	(8.39E-06)	3.05E-04	6.39E-04
Cu ICP-OES	mM	(1.36E-03)	(1.09E-03)	(9.45E-04)	(6.90E-04)	(1.36E-03)	(1.09E-03)	(4.49E-04)	(4.04E-04)	(7.83E-04	(7.72E-04)	(3.95E-04)	(5.70E-04)	(3.11E-04)	(3.73E-04)	(7.40E-04)	(1.62E-03)
Fe	mM	1.47E-01	9.54E-02	2.34E-02	2.00E-02	1.47E-01	9.54E-02	1.34E-02	1.86E-02	7.98E-02	1.47E-01	2.04E-02	3.30E-02	(2.00E-03)	(2.18E-03)	1.13E-01	3.98E-01
K Li	mM mM	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-0	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01	<3.20E+00 <1.80E-01
Mg	mM	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<1.80E-01 <5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02	<5.14E-02
Mn	mM	3.07E-02	1.99E-02	5.21E-03	4.39E-03	3.07E-02	1.99E-02	3.00E-03	4.02E-03	1.77E-02	3.25E-02	4.64E-03	7.57E-03	<2.28E-03	<2.28E-03	2.60E-02	9.15E-02
Mo	mM	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02	<1.30E-02
Mo 95	mM	1.26E-04	1.22E-04	1.87E-04	1.77E-04	1.26E-04	1.22E-04	2.48E-05	2.50E-05	3.15E-05	3.38E-05	9.67E-06	9.55E-06	6.83E-06	7.03E-06	3.21E-05	3.72E-05
Mo 97 Mo 98	mM mM	1.11E-04 7.28E-05	1.09E-04 7.07E-05	1.61E-04 1.03E-04	1.52E-04 9.75E-05	1.11E-04 7.28E-05	1.09E-04 7.07E-05	(1.73E-05) 1.04E-05	(1.73E-05) 1.06E-05	(2.23E-05 1.38E-05	(2.45E-05) 1.59E-05	(6.18E-06) (3.89E-06)	(6.11E-06) (3.90E-06)	(4.39E-06) (2.95E-06)	(4.47E-06) (2.56E-06)	(2.38E-05) 1.51E-05	3.08E-05 2.04E-05
Na Na	mM	9.36E+00	8.94E+00	1.00E+01	9.73E+00	9.36E+00	8.94E+00	1.67E+00	1.87E+00	1.54E+00	1.54E+00	8.15E-01	8.79E-00	4.13E-01	4.30E-00)	1.31E-03 1.14E+00	1.39E+00
Ni	mM	1.04E-02	(7.41E-03)	(2.59E-03)	(2.40E-03)	1.04E-02	(7.41E-03)	(1.85E-03)	(1.48E-03)	(6.99E-03	1.23E-02	(1.95E-03)	(3.13E-03)	(1.95E-04)	(5.15E-05)	9.30E-03	3.51E-02
P	mM	4.71E-01	4.42E-01	5.25E-01	4.74E-01	4.71E-01	4.42E-01	1.66E-01	1.90E-01	1.69E-01	1.94E-01	6.12E-02	6.61E-02	(1.43E-02)	(1.64E-02)	6.73E-02	1.46E-01
Pb	mM	2.26E-03	1.74E-03	6.19E-04	5.66E-04	2.26E-03	1.74E-03	2.98E-04	4.06E-04	1.36E-03	2.82E-03	4.22E-04	6.00E-04	2.87E-05	4.45E-05	1.87E-03	7.71E-03
Pb Ru 101	mM mM	(3.97E-03) 4.88E-05	(2.34E-03) 4.39E-05	(1.31E-03) 4.12E-05	(7.78E-04) 3.77E-05	(3.97E-03) 4.88E-05	(2.34E-03) 4.39E-05	(7.45E-04) 3.20E-06	(9.16E-04) 3.77E-06	(2.06E-03 1.06E-05	(2.65E-03) 1.75E-05	(1.00E-03) 2.77E-06	(1.26E-03) 3.91E-06	(9.06E-04) (2.97E-07)	(1.07E-03) (4.06E-07)	(2.01E-03) 1.51E-05	6.74E-03 4.85E-05
Ru 101	mM	2.22E-05	1.98E-05	4.12E-05 1.89E-05	1.75E-05	2.22E-05	4.39E-03	3.20E-06 1.48E-06	1.66E-06	4.73E-06	8.13E-06	2.77E-06 1.17E-06	1.73E-06	(1.37E-07)	(1.76E-07)	6.91E-06	2.17E-05
S S	mM	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00	<3.12E+00
Sb 121	mM	2.71E-04	2.19E-04	2.96E-04	2.96E-04	2.71E-04	2.19E-04	1.47E-04	1.55E-04	1.87E-04	2.10E-04	(7.45E-05)	(8.24E-05)	(2.38E-05)	(2.22E-05)	1.20E-04	1.93E-04
Se	mM	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-0	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01	<6.33E-01
Se 82 Si	mM mM	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-0	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01	<6.10E-04 <8.90E-01
Sr	mM	(1.92E-03)	(1.49E-03)	(8.97E-04)	(8.19E-04)	(1.92E-03)	(1.49E-03)	(5.15E-04)	(6.05E-04)	(1.02E-03	(1.53E-03)	(4.29E-04)	(5.44E-04)	(7.68E-04)	(6.01E-04)	(1.30E-03)	(3.16E-03)
Ti	mM	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03	<5.22E-03
Tl	mM	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02	<1.22E-02
V	mM	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02	<1.23E-02
Zn Zr	mM mM	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03	<9.56E-03 <2.74E-03
Z.A	1111/1	.2.74L203	<2.74L*03	\L.17L703	\2.74E=03	\2.74E=03	\Z.74E=03	NZ.17EP03	\2.74E*03	\2.74E*0.	\Z./ 4 L*03	\Z.74E=03	\2.74E*03	\2.74D*03	\2.7 4 £*03	\2.74E*03	NZ.74E=03
Anions																	
NO ₂ as NO2-	mM	7.81E-02	8.27E-02	8.74E-02	7.39E-02	7.81E-02	8.27E-02	<2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	<2.04E-03	5.37E-03	5.41E-03
NO ₃ as NO3-	mM	1.58E-01	1.62E-01	2.36E-01	2.25E-01	1.58E-01	1.62E-01	1.26E-02	1.10E-02	4.76E-02	4.30E-02	1.72E-02	1.74E-02	1.60E-02	1.52E-02	1.28E-01	1.33E-01
CO ₃ ² ·	mM	3.03E+00	3.18E+00	3.45E+00	3.28E+00	3.03E+00	3.18E+00	<8.33E-01	<8.33E-01	<8.33E-0	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-01	<8.33E-01
SO ₄ ² ·	mM	1.62E-02	1.49E-02	2.01E-02	1.90E-02	1.62E-02	1.49E-02	2.92E-03	2.66E-03	1.47E-03	3.02E-03	1.72E-03	1.38E-03	1.94E-03	3.49E-03	2.84E-03	2.56E-03
PO ₄ 3. as PO ₄ 3.	mM	3.57E-01	3.64E-01	4.56E-01	4.13E-01	3.57E-01	3.64E-01	1.66E-01	1.62E-01	1.34E-0	3.02E-03 1.44E-01	5.23E-02	6.23E-02	9.91E-03	8.85E-03	4.96E-02	9.42E-02
ro4 as ro4																	
CI	mM	6.05E-03	5.91E-03	2.16E-02	2.36E-02	6.05E-03	5.91E-03	1.81E-03	3.55E-03	1.60E-03	1.51E-03	1.29E-03	1.25E-03	1.14E-03	1.47E-03	5.92E-02	3.12E-02
F Oxalate*	mM mM	1.46E+00 2.41E+00	1.29E+00 2.27E+00	1.91E+00 2.47E+00	1.71E+00 2.37E+00	1.46E+00 2.41E+00	1.29E+00 2.27E+00	2.25E-01 1.70E-01	3.14E-01 2.31E-01	1.97E-01 9.39E-02	2.51E-01 2 1.14E-01	3.61E-02 6.12E-03	4.72E-02 1.01E-02	7.45E-03 <3.92E-03	7.11E-03 <3.92E-03	1.04E-01 2.10E-02	1.26E-01 6.07E-02
Oxarate*	mM	2.41E+00	2.27E+00	2.4/E+00	2.5/E+00	2.41E±00	2.2/E+00	1./UE-01	2.51E-01	9.59E-0.	1.14E-01	0.12E-03	1.01E-02	<5.92E-03	<5.92E-03	2.10E-02	0.07E-02

^{*} Oxalate results are for information only

Tank C 202 (10897) CaCO, Leach Possilie

	Tank C-203 (1987) CaCO ₃ Leach Results																
Donomorton	Heim	1 don		Contact	Lancarth (due)	Ctoro 1	Ctore 1 (due)	St 2	Store 2 (don)		enishment Tests	Ctore 4	Ctoro 4 (day)	Ic	Ctoon E (don)	Ct 6	Ctore 6 (don)
Parameter nH	Units std units	1 day 9.93	1 day (dup) 10.34	1 month 10.40	1 month (dup) 10.49	Stage 1 9,93	Stage 1 (dup) 10.34		Stage 2 (dup) 9.82	Stage 3 9.49	Stage 3 (dup) 9.68	Stage 4 9.57	Stage 4 (dup) 9.49		Stage 5 (dup) 8.92		Stage 6 (dup) 9.28
Alkalinity	mg/L as CaCO3	6.25E+02	6.02E+02	7.57E+02	7.03E+02	6.25E+02	6.02E+02	10.19 2.55E+02	2.01E+02	1.62E+02	1.62E+02	1.24E+02	1.24E+02	9.49 1.24E+02	1.24E+02	9.71 2.01E+02	1.62E+02
TIC	mg C/L	7.54E+01	6.48E+01	7.80E+01	7.75E+01	7.54E+01	6.48E+01	2.36E+01	2.18E+01	1.84E+01	1.83E+01	1.45E+01	1.31E+01	1.29E+01	1.22E+01	1.72E+01	1.77E+01
TOC	mg C/L	4.16E+01	4.46E+01	3.61E+01	3.74E+01	4.16E+01	4.46E+01	6.61E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00
TC	mg C/L	1.17E+02	1.09E+02	1.14E+02	1.15E+02	1.17E+02	1.09E+02	3.02E+01	2.18E+01	1.84E+01	1.83E+01	1.45E+01	1.31E+01	1.29E+01	1.22E+01	1.72E+01	1.77E+01
Radionuclides																	
90Sr	μCi/L	7.55E+00	1.24E+01	2.20E+01	1.80E+01	7.55E+00	1.24E+01			3.33E+00	7.18E+00					1.39E+01	1.21E+01
99Tc	μC/L mg/L	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E+01	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	(1.60E-04)	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04
238U		1.26E+02	1.73E+02	4.49E+02	1.50E+02	1.26E+02	1.73E+02	1.39E+02	2.99E+01	2.66E+01	4.37E+01	3.32E+01	2.19E+01	2.67E+01	1.30E+01	2.37E+02	1.75E+02
239Pu*	mg/L μCi/L	6.42E-01	1.37E+02	2.80E+00	6.96E-01	6.42E-01	1.73E+02	1.21E+00	(1.46E-01)	(1.48E-01)	4.27E-01	(1.55E-01)	(7.44E-02)	(1.07E-01)	(3.78E-02)	1.31E+00	8.08E-01
²³⁷ Np*	μCi/L	(1.17E-04)	(1.99E-04)	(4.83E-04)	(1.21E-04)	(1.17E-04)	(1.99E-04)	(2.20E-04)	<7.10E-04	<7.10E-04	(1.21E-04)	<7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04	(2.63E-04)	(2.34E-04)
²⁴¹ Am	μCi/L	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02
* Pu and Np Results may be				<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02
Metals	biased night due to t	Concentration	MI.											 			
Ag 107	mg/L	<1.00E-03	<1.00E-03	(3.70E-04)	(1.90E-04)	<1.00E-03	<1.00E-03	<1.00E-03	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-03	<1.00E-02
Al	mg/L	(1.09E+00)	(1.12E+00)	(1.41E+00)	(1.56E+00)	(1.09E+00)	(1.12E+00)	(4.71E-01)	(3.91E-01)	(2.48E-01)	(1.96E-01)	(2.09E-01)	(2.50E-01)	<2.50E+00	<2.50E+00	(1.09E+00)	(7.59E-01)
As	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
As 75 B	mg/L mg/L	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00
Ba	mg/L	(6.91E-02)	(9.14E-02)	(1.08E-01)	(6.12E-02)	(6.91E-02)	(9.14E-02)	(1.31E-01)	(1.63E-01)	(7.06E-02)	(1.25E-01)	(1.33E-02)	(5.36E-02)	(4.50E-02)	(2.39E-02)	(4.73E-01)	(7.79E-02)
Be	mg/L	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01
Bi	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
Ca Cd	mg/L	(1.34E+00) <2.50E-01	(1.54E+00) <2.50E-01	(3.65E+00) <2.50E-01	(8.84E-01) <2.50E-01	(1.34E+00) <2.50E-01	(1.54E+00) <2.50E-01	(2.89E+00) <2.50E-01	(5.09E-01) <2.50E-01	(5.21E-01) <2.50E-01	(1.38E+00) <2.50E-01	(5.42E-01) <2.50E-01	(5.43E-01) <2.50E-01	(3.76E-01) <2.50E-01	(1.20E+00) <2.50E-01	(3.62E+00) <2.50E-01	(2.90E+00) <2.50E-01
Cd 114	mg/L mg/L	(5.80E-01)	(8.30E-01)	(2.02E-03)	<2.50E-01 (4.30E-04)	<2.50E-01 (5.80E-04)	(8.30E-04)	<2.50E-01 (1.31E-03)	<2.50E-01 <2.50E-03	<2.50E-01 (1.90E-04)	(3.40E-04)	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <1.00E-05	(8.80E-04)	<2.50E-01 (4.90E-04)
Co	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
Cr	mg/L	4.39E+00	6.82E+00	1.37E+01	5.61E+00	4.39E+00	6.82E+00	8.30E+00	8.00E-01	9.01E-01	1.80E+00	8.04E-01	(2.47E-01)	(4.88E-01)	(8.44E-02)	5.19E+00	2.67E+00
Cr 53 *	mg/L	4.32E+00	6.55E+00	1.18E+01	5.69E+00	4.32E+00	6.55E+00	8.12E+00	8.47E-01	9.94E-01	1.79E+00	8.66E-01	2.75E-01	5.58E-01	1.28E-01	5.28E+00	2.60E+00
Cu Cu 65	mg/L mg/L	<1.00E+02 4.53E-02	<1.00E+02 5.17E-02	<1.00E+02 7.69E-02	<1.00E+02 2.85E-02	<1.00E+02 4.53E-02	<1.00E+02 5.17E-02	<1.00E+02 6.55E-02	<1.00E+02 2.96E-02	<1.00E+02 (1.38E-02)	<1.00E+02 4.38E-02	<1.00E+02 2.68E-02	<1.00E+02 2.61E-02	<1.00E+02 (1.61E-02)	<1.00E+02 (2.35E-02)	<1.00E+02 6.61E-02	<1.00E+02 5.64E-02
Fe	mg/L	1.88E+00	4.52E+00	8.50E+00	2.38E+00	1.88E+00	4.52E+00	5.36E+00	(6.79E-01)	(6.63E-01)	1.50E+00	(6.56E-01)	(3.56E-01)	(4.22E-01)	(2.06E-01)	3.49E+00	2.15E+00
K	mg/L	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02
Li	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01
Mg Mn	mg/L mg/L	<5.00E+00 3.29E-01	<5.00E+00 7.41E-01	(7.58E-01) 1.47E+00	<5.00E+00 4.03E-01	<5.00E+00 3.29E-01	<5.00E+00 7.41E-01	(5.41E-01) 1.01E+00	<5.00E+00 (9.77E-02)	<5.00E+00 (9.53E-02)	<5.00E+00 (2.30E-01)	<5.00E+00 (8.78E-02)	<5.00E+00 (2.60E-02)	<5.00E+00 (5.59E-02)	<5.00E+00 <2.50E-01	<5.00E+00 5.98E-01	<5.00E+00 3.38E-01
Mo	mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	(2.30E+01) <5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00
Mo 95	mg/L	(4.64E-03)	(4.07E-03)	5.07E-03	(4.98E-03)	(4.64E-03)	(4.07E-03)	(8.30E-04)	(7.40E-04)	(4.80E-04)	(5.60E-04)	(1.70E-04)	(1.50E-04)	(2.10E-04)	(1.90E-04)	(8.90E-04)	(6.50E-04)
Mo 97	mg/L	(3.65E-03)	(3.49E-03)	(4.67E-03)	(4.37E-03)	(3.65E-03)	(3.49E-03)	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02
Mo 98	mg/L	(3.42E-03)	(3.09E-03)	<5.00E-03	<5.00E-03	(3.42E-03)	(3.09E-03)	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03	<5.00E-03
Na Ni	mg/L mg/L	3.50E+02 <5.00E+00	3.27E+02 (7.15E-01)	3.80E+02 (1.03E+00)	3.32E+02 <5.00E+00	3.50E+02 <5.00E+00	3.27E+02 (7.15E-01)	1.06E+02 (7.14E-01)	7.26E+01 <5.00E+00	5.00E+01 <5.00E+00	5.94E+01 <5.00E+00	3.82E+01 <5.00E+00	3.53E+01 <5.00E+00	3.03E+01 <5.00E+00	2.56E+01 <5.00E+00	5.00E+01 (6.15E-01)	4.74E+01 <5.00E+00
P	mg/L	8.10E+01	8.08E+01	8.38E+01	5.97E+01	8.10E+01	8.08E+01	4.60E+01	2.81E+01	1.69E+01	2.28E+01	1.17E+01	9.63E+00	7.71E+00	(5.18E+00)	1.74E+01	1.66E+01
Pb	mg/L	1.13E+00	1.84E+00	3.98E+00	(9.58E-01)	1.13E+00	1.84E+00	2.63E+00	(4.81E-01)	(4.46E-01)	(9.43E-01)	(4.40E-01)	(1.29E-01)	(2.81E-01)	(1.53E-01)	2.10E+00	1.25E+00
Pb 206 *	mg/L	8.35E-01	1.88E+00	3.50E+00	9.63E-01	8.35E-01	1.88E+00	2.50E+00	3.02E-01	2.99E-01	7.58E-01	2.85E-01	1.25E-01	1.87E-01	5.77E-02	1.86E+00	1.14E+00
Ru 101 Ru 102	mg/L mg/L	(2.28E-03) (1.01E-03)	(2.54E-03) (1.26E-03)	(4.49E-03) (2.17E-03)	(2.86E-03) (1.21E-03)	(2.28E-03) (1.01E-03)	(2.54E-03) (1.26E-03)	(1.67E-03) (7.60E-04)	<5.00E-03 (2.20E-04)	<5.00E-03 (2.80E-04)	<5.00E-03 (3.80E-04)	<5.00E-03 (2.60E-04)	<5.00E-03 <2.50E-03	<5.00E-03 <2.50E-03	<5.00E-03 <2.50E-03	(1.53E-03) (8.60E-04)	(1.15E-03) (6.75E-04)
S S	mg/L	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02
Sb 121	mg/L	9.22E-03	1.31E-02	1.91E-02	9.20E-03	9.22E-03	1.31E-02	1.28E-02	5.84E-03	5.42E-03	6.76E-03	(5.13E-03)	(3.52E-03)	(3.91E-03)	(2.39E-03)	7.76E-03	6.04E-03
Se	mg/L	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01
Si Sr	mg/L	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00
Ti	mg/L mg/L	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00	<2.50E+00 <1.25E+00
Tl	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01
V	mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00
Zn	mg/L	(5.09E-01)	(5.28E-01)	(9.20E-01)	(4.99E-01)	(5.09E-01)	(5.28E-01)	(6.35E-01)	(5.27E-01)	(6.21E-01)	(6.92E-01)	(5.21E-01)	(6.20E-01)	(5.25E-01)	(5.29E-01)	(5.99E-01)	(5.11E-01)
Zr * Cr 53 and Pb206 concentr	mg/L ations are above hig	<1.25E+00 hest check sta	<1.25E+00 ndard.	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
Anions	account and above mg	ness circer sta	mulu.														
NO ₂ as NO2-	mg/L	5.62E+00	<4.51E+00	5.55E+00	6.16E+00	5.62E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00
NO ₃ as NO3-	mg/L	5.32E+01	4.35E+01	5.16E+01	5.94E+01	5.32E+01	4.35E+01	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	5.47E+01	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00
CO ₃ ² *	mg/L	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02
SO ₄ ²	mg/L	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00
PO ₄ as PO ₄ **	mg/L	2.19E+02	2.12E+02	1.95E+02	1.91E+02	2.19E+02	2.12E+02	1.36E+02	9.17E+01	5.50E+00	6.31E+01	3.86E+01	3.28E+01	2.45E+00	1.66E+01	3.52E+01	4.38E+01
Cl'	_																
Ci E'	mg/L	<2.36E+00 3.60E+01	<2.36E+00 3.19E+01	<2.36E+00 3.89E+01	<2.36E+00 3.76E+01	<2.36E+00 3.60E+01	<2.36E+00 3.19E+01	<2.36E+00 3.58E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00
F Oxalate*	mg/L mg/L	3.60E+01 1.66E+01	3.19E+01 1.63E+01	3.89E+01 1.94E+01	3.76E+01 2.12E+01	3.60E+01 1.66E+01	3.19E+01 1.63E+01	3.58E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00
	mg/L	1.00L :01	1.05E701	1.742 (01	2.12LT01	ts. Oxalate numb	1.052.701	<3.45ET00	<+5L±00	<3.45ET00	VJ.FJET00	\J.#JLT00	\J. T JLT00	<tjl 100<="" td=""><td>\J.TJLT00</td><td>VJTJL F00</td><td>\J.TJLT00</td></tjl>	\J. T JLT00	VJTJL F00	\J. T JLT00

							Tank C-	203 (19887) Ca	CO ₃ Leach Resul								
		L		Contact							enishment Tests		1-				
Parameter	Units	1 day	1 day (dup)	1 month	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
pH Alkalinity	std units mM as CaCO3	6.25E+00	6.02E+00	7.56E+00	7.02E+00	6.25E+00	6.02E±00	2.55E+00	2.01E+00	1.62E+00	1.62E+00	1.23E+00	1.23E+00	1.23E+00	1.23E+00	2.01E+00	1.62E+0
TIC	mM C	6.28E+00	5.40E+00	6.50E+00	6.45E+00	6.28E+00	5.40E+00	1.96E+00	1.82E+00	1.53E+00		1.23E+00		1.07E+00	1.01E+00	2.012+00	1.02E+0
TOC	mM C	3.47E+00	3.71E+00	3.01E+00	3.11E+00	3.47E+00	3.71E+00	5.51E-01	<4.02E-01	<4.02E-0	<4.02E-01	<4.02E-01	<4.02E-01	<4.02E-01	<4.02E-01	ĺ	
TC	mM C	9.75E+00	9.11E+00	9.50E+00	9.57E+00	9.75E+00	9.11E+00	2.52E+00	1.82E+00	1.53E+00		1.21E+00		1.07E+00	1.01E+00)	
Radionuclides																	
⁹⁰ Sr	mM	5.99E-07	9.87E-07	1.75E-06	1.43E-06	5.99E-07	9.87E-07			2.65E-07	5.70E-07					1.11E-06	9.57E-0
⁹⁹ Tc	mM	<5.05E-06	<5.05E-06	(1.62E-06)	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-0							
²³⁸ U	mM	5.31E-01	7.29E-01	1.89E+00	6.29E-01	5.31E-01	7.29E-01	5.84E-01	1.26E-01	1.12E-01	1.84E-01	1.39E-01	9.21E-02	1.12E-01	5.44E-02	9.97E-01	7.35E-0
²³⁹ Pu*	mM	4.33E-04	9.28E-04	1.89E-03	4.70E-04	4.33E-04	9.28E-04	8.16E-04	(9.87E-05)	(1.00E-04	2.88E-04	(1.05E-04)	(5.02E-05)	(7.24E-05)	(2.55E-05)	8.83E-04	5.45E-0
²³⁷ Np*	mM	(6.96E-07)	(1.18E-06)	(2.87E-06)	(7.17E-07)	(6.96E-07)	(1.18E-06)	(1.31E-06)	<4.22E-06	<4.22E-06	(7.17E-07)	<4.22E-06	<4.22E-06	<4.22E-06	<4.22E-06	(1.56E-06)	(1.39E-06
²⁴¹ Am	mM	<2.07E-04	<2.07E-04	4 <2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-04	<2.07E-0							
* Pu and Np Results may be		U concentration	on.														
Metals																	
Ag 107	mM	<9.35E-06	<9.35E-06	(3.46E-06)	(1.78E-06)	<9.35E-06	<9.35E-06	<9.35E-06	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-05	<9.35E-06	<9.35E-0
Al	mM	(4.04E-02)	(4.15E-02)	(5.22E-02)	(5.79E-02)	(4.04E-02)	(4.15E-02)	(1.75E-02)	(1.45E-02)	(9.18E-03	(7.26E-03)	(7.76E-03)	(9.26E-03)	<9.27E-02	<9.27E-02	(4.06E-02)	(2.81E-02
As	mM	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-02	<3.34E-0							
As 75	mM	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-03	<1.33E-0							
B	mM	<4.63E-01 (5.03E-04)	<4.63E-01 (6.66E-04)	<4.63E-01 (7.85E-04)	<4.63E-01 (4.45E-04)	<4.63E-01 (5.03E-04)	<4.63E-01 (6.66E-04)	<4.63E-01 (9.52E-04)	<4.63E-01 (1.19E-03)	<4.63E-01 (5.14E-04	<4.63E-01 (9.13E-04)	<4.63E-01 (9.67E-05)	<4.63E-01 (3.90E-04)	<4.63E-01 (3.28E-04)	<4.63E-01 (1.74E-04)	<4.63E-01 (3.45E-03)	<4.63E-0 (5.68E-04
Ba Be	mM mM	<5.55E-02	(6.66E-04) <5.55E-02	<5.55E-02	(4.45E-04) <5.55E-02	(5.03E-04) <5.55E-02	(6.66E-04) <5.55E-02	<5.55E-02	<5.55E-02	<5.55E-02	(9.13E-04) 2 <5.55E-02	<5.55E-02	(5.90E-04) (5.55E-02	(5.28E-04) <5.55E-02	<5.55E-02	(5.45E-03) 2 <5.55E-02	(5.68E-02 <5.55E-0
Bi	mM	<1.20E-02	<3.33E-02 <1.20E-02	<1.20E-02	<1.20E-02	<3.33E-02 <1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	<1.20E-02	2 <3.33E-02 2 <1.20E-02	<1.20E-02	<3.33E-02 <1.20E-02	<3.33E-02 <1.20E-02	<1.20E-02	<3.33E-02 <1.20E-02	<3.33E-0
Ca	mM	(3.35E-02)	(3.85E-02)	(9.11E-02)	(2.21E-02)	(3.35E-02)	(3.85E-02)	(7.22E-02)	(1.27E-02)	(1.30E-02	(3.44E-02)	(1.35E-02)	(1.35E-02)	(9.38E-03)	(2.98E-02)	(9.03E-02)	(7.23E-02
Cd	mM	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-03	<2.22E-0							
Cd 114	mM	(5.09E-06)	(7.28E-06)	(1.77E-05)	(3.77E-06)	(5.09E-06)	(7.28E-06)	(1.15E-05)	<2.19E-05	(1.67E-06	(2.98E-06)	<2.19E-05	<2.19E-05	<2.19E-05	<8.77E-08	(7.72E-06)	(4.30E-06
Co	mM	<2.12E-02	<2.12E-02	2 <2.12E-02	<2.12E-02	<2.12E-02	<2.12E-02	<2.12E-02	<2.12E-02	<2.12E-0							
Cr Cr 53 *	mM mM	8.45E-02 8.14E-02	1.31E-01 1.24E-01	2.63E-01 2.23E-01	1.08E-01 1.07E-01	8.45E-02 8.14E-02	1.31E-01 1.24E-01	1.60E-01 1.53E-01	1.54E-02 1.60E-02	1.73E-02 1.87E-02	2 3.46E-02 2 3.39E-02	1.55E-02 1.63E-02	(4.75E-03) 5.19E-03	(9.38E-03) 1.05E-02	(1.62E-03) 2.42E-03	9.99E-02 9.96E-02	5.13E-0 4.91E-0
Cu	mM	<1.57E+00	<1.57E+00	3.59E=02 0 <1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+00	<1.57E+0							
Cu 65	mM	6.97E-04	7.96E-04	1.18E-03	4.39E-04	6.97E-04	7.96E-04	1.01E-03	4.55E-04	(2.13E-04	6.73E-04	4.12E-04	4.01E-04	(2.47E-04)	(3.62E-04	1.02E-03	8.68E-0
Fe	mM	3.36E-02	8.09E-02	1.52E-01	4.26E-02	3.36E-02	8.09E-02	9.60E-02	(1.21E-02)	(1.19E-02	2.69E-02	(1.17E-02)	(6.37E-03)	(7.56E-03)	(3.69E-03)	6.26E-02	3.85E-0
K	mM	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+00	<3.20E+0							
Li	mM	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+00	<1.44E+0							
Mg Mn	mM mM	<2.06E-01 5.99E-03	<2.06E-01 1.35E-02	(3.12E-02) 2.67E-02	<2.06E-01 7.34E-03	<2.06E-01 5.99E-03	<2.06E-01 1.35E-02	(2.23E-02) 1.83E-02	<2.06E-01 (1.78E-03)	<2.06E-01 (1.73E-03	<2.06E-01 (4.19E-03)	<2.06E-01 (1.60E-03)	<2.06E-01 (4.73E-04)	<2.06E-01 (1.02E-03)	<2.06E-01 <4.55E-03	<2.06E-01 1.09E-02	<2.06E-0 6.15E-0
Mo	mM	<5.21E-02	<5.21E-03	(4.19E-03) (5.21E-02	<5.21E-02	(4.73E-04)	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-0							
Mo 95	mM	(4.64E-05)	(4.07E-05)	5.07E-05	(4.98E-05)	(4.64E-05)	(4.07E-05)	(8.30E-06)	(7.40E-06)	(4.80E-06	(5.60E-06)	(1.70E-06)	(1.50E-06)	(2.10E-06)	(1.90E-06	(8.90E-06)	(6.50E-06
Mo 97	mM	(3.84E-05)	(3.67E-05)	(4.92E-05)	(4.60E-05)	(3.84E-05)	(3.67E-05)	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-04	<1.05E-0
Mo 98	mM	(3.48E-05)	(3.15E-05)	<5.10E-05	<5.10E-05	(3.48E-05)	(3.15E-05)	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-05	<5.10E-0
Na	mM	1.52E+01	1.42E+01	1.65E+01	1.45E+01	1.52E+01	1.42E+01	4.63E+00	3.16E+00	2.18E+00	2.58E+00	1.66E+00	1.54E+00	1.32E+00	1.12E+00	2.17E+00	2.06E+0
Ni P	mM	<8.52E-02 2.61E+00	(1.22E-02)	(1.75E-02) 2.71E+00	<8.52E-02 1.93E+00	<8.52E-02	(1.22E-02)	(1.22E-02) 1.48E+00	<8.52E-02 9.07E-01	<8.52E-02 5.47E-01	2 <8.52E-02 7.36E-01	<8.52E-02 3.79E-01	<8.52E-02 3.11E-01	<8.52E-02 2.49E-01	<8.52E-02 (1.67E-01)	(1.05E-02)	<8.52E-0 5.37E-0
Pb	mM mM	5.46E-03	2.61E+00 8.90E-03	1.92E-02	(4.62E-03)	2.61E+00 5.46E-03	2.61E+00 8.90E-03	1.48E+00	(2.32E-03)	(2.15E-03	(4.55E-03)	(2.12E-03)	(6.24E-04)	(1.36E-03)	(7.37E-04	5.62E-01 1.01E-02	5.57E-0 6.03E-0
Pb 206 *	mM	4.05E-03	9.15E-03	1.70E-02	4.68E-03	4.05E-03	9.15E-03	1.21E-02	1.47E-03	1.45E-03	3.68E-03	1.38E-03	6.07E-04	9.10E-04	2.80E-04	9.01E-03	5.52E-0
Ru 101	mM	(2.26E-05)	(2.51E-05)	(4.45E-05)	(2.83E-05)	(2.26E-05)	(2.51E-05)	(1.65E-05)	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	<4.95E-05	(1.51E-05)	(1.14E-05
Ru 102	mM	(9.90E-06)	(1.24E-05)	(2.13E-05)	(1.19E-05)	(9.90E-06)	(1.24E-05)	(7.45E-06)	(2.16E-06)	(2.75E-06	(3.73E-06)	(2.55E-06)	<2.45E-05	<2.45E-05	<2.45E-05	(8.43E-06)	(6.62E-06
S	mM	<6.24E+00	<6.24E+00	<6.24E+00	<6.24E+00	<6.24E+00	<6.24E+00	<6.24E+00	<6.24E+00	<6.24E+0							
Sb 121 Se	mM mM	7.62E-05 <6.33E-01	1.08E-04 <6.33E-01	1.58E-04 <6.33E-01	7.60E-05 <6.33E-01	7.62E-05 <6.33E-01	1.08E-04 <6.33E-01	1.06E-04 <6.33E-01	4.83E-05 <6.33E-01	4.48E-05 <6.33E-01	5.58E-05 4 <6.33E-01	(4.24E-05) <6.33E-01	(2.91E-05) <6.33E-01	(3.23E-05) <6.33E-01	(1.98E-05) <6.33E-01	6.41E-05 <6.33E-01	4.99E-0 <6.33E-0
Si Si	mM	<0.55E+00	<0.55E+00	<0.55E+00	<0.55E+00	<0.55E+00	<0.55E+00	<0.55E-01 <3.56E+00	<0.55E+00	<0.55E+00	<0.53E-01 <3.56E+00	<0.55E+00	<0.55E-01 <3.56E+00	<0.53E-01 <3.56E+00	<0.55E-01	<0.53E-01 <3.56E+00	<0.53E-0 <3.56E+0
Sr	mM	<2.85E-02	<2.85E-02	2 <2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-0							
Ti	mM	<2.61E-02	<2.61E-02	<2.61E-02	<2.61E-02	<2.61E-02	<2.61E-02	<2.61E-02	<2.61E-02	<2.61E-0							
Tl	mM	<4.89E-02	<4.89E-02	<4.89E-02	<4.89E-02	<4.89E-02	<4.89E-02	<4.89E-02	<4.89E-02	<4.89E-0							
V	mM	<9.82E-02	<9.82E-02	9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02	<9.82E-02		<9.82E-0							
Zn Zr	mM mM	(7.79E-03) <1.37E-02	(8.08E-03) <1.37E-02	(1.41E-02) <1.37E-02	(7.63E-03) <1.37E-02	(7.79E-03) <1.37E-02	(8.08E-03) <1.37E-02	(9.71E-03) <1.37E-02	(8.06E-03) <1.37E-02	(9.49E-03 <1.37E-03	(1.06E-02) 2 <1.37E-02	(7.96E-03) <1.37E-02	(9.48E-03) (1.37E-02	(8.03E-03) <1.37E-02	(8.09E-03) <1.37E-02	(9.16E-03) 2 <1.37E-02	(7.81E-03 <1.37E-0
* Cr 53 and Pb206 concentra				<1.57E-02	<1.5/E-02	<1.5/E-02	<1.5/E-02	<1.5/E-02	<1.5/E-02	<1.57E-0.	<1.5/E-02	<1.5/E-02	<1.5/E-02	<1.5/E-02	<1.5/E-02	<1.5/E-02	<1.5/E-0
Anions	ons are above mg	nest enter sla	mairu.			1			 							†	
NO ₂ as NO2-	mM	1.22E-01	<9.80E-02	1.21E-01	1.34E-01	1.22E-01	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-02	<9.80E-0
NO ₃ as NO3-	mM	8.58E-01	7.02E-01	8.33E-01	9.57E-01	8.58E-01	7.02E-01	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	8.81E-01	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-02	<6.98E-0
J	mM	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+00	<8.33E+0							
CO ₃ ² *			-4 2 CE 02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-0
CO ₃ ²⁻ * SO ₄ ²⁻	mM	<4.26E-02	<4.26E-02	<4.20L*02	VII.202. 02												
CO ₃ ² *	mM mM	<4.26E-02 2.30E+00	<4.26E-02 2.23E+00	2.05E+00	2.01E+00	2.30E+00	2.23E+00	1.43E+00	9.65E-01	5.79E-0	6.64E-01	4.07E-01	3.45E-01	2.58E-01	1.75E-01	3.70E-01	4.61E-0
CO ₃ ²⁻ * SO ₄ ²⁻							2.23E+00 <6.66E-02	1.43E+00 <6.66E-02	9.65E-01 <6.66E-02	5.79E-0	6.64E-01 <6.66E-02	4.07E-01 <6.66E-02	3.45E-01 <6.66E-02	2.58E-01 <6.66E-02	1.75E-01 <6.66E-02	3.70E-01 <6.66E-02	4.61E-0 <6.66E-0
CO ₃ ² ·* SO ₄ ² · PO ₄ ³ · as PO ₄ ³ ·*	mM	2.30E+00	2.23E+00	2.05E+00	2.01E+00	2.30E+00											

Tank C 202 (10061) CaCO. Leach Pagulte

	Tank C-203 (19961) CaCO ₃ Leach Results																
Parameter	Units	1.2.		Contact 1 month	Lancards (1 -)	Ctore 1	Ctore 1 (1 -)	Store 2	Store 2 (1 -)		enishment Tests	Ctore 4	Et 4 (1 -)	C+ 5	Ctoon E (1)	C+ 6	Ctore 6 (1 -)
Parameter		1 day 10.52	1 day (dup) 10.33	1 month 10.51	1 month (dup) 10.69		Stage 1 (dup) 10.33	Stage 2 9.94	Stage 2 (dup) 10.02	Stage 3 9.58	Stage 3 (dup)	Stage 4	Stage 4 (dup) 9.09	Stage 5 8.96	Stage 5 (dup) 8.31	Stage 6	Stage 6 (dup)
Alkalinity	std units mg/L as CaCO3	5.64E+02	5.56E+02	6.95E+02	7.10E+02	10.52 5.64E+02	5.56E+02	1.85E+02	2.01E+02	1.31E+02	9.72 1.62E+02	8.15 1.00E+02	1.24E+02	1.24E+02	1.00E+02	8.80 1.54E+02	8.04 1.24E+02
TIC	mg C/L	5.12E+01	5.37E+01	5.76E+01	5.16E+01	5.12E+01	5.37E+01	2.05E+01	1.92E+01	1.96E+01	1.64E+01	1.30E+01	1.37E+01	1.38E+01	1.20E+01	1.79E+01	1.34E+01
TOC	mg C/L	4.68E+01	4.79E+01	4.08E+01	4.16E+01	4.68E+01	4.79E+01	6.16E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00	<4.82E+00
TC	mg C/L	9.80E+01	1.02E+02	9.84E+01	9.32E+01	9.80E+01	1.02E+02	2.66E+01	1.92E+01	1.96E+01	1.64E+01	1.30E+01	1.37E+01	1.38E+01	1.20E+01	1.79E+01	1.34E+01
Radionuclides																	
90Sr	μCi/L	8.46E+00	1.65E+01	2.90E+01	3.14E+01	8.46E+00	1.65E+01			2.97E+00	5.76E+00					1.23E+01	2.10E+00
99Tc	μC/L mg/L	<5.00E-04	(7.00E-05)	(1.60E-04)	(9.00E-05)	<5.00E-04	(7.00E-05)	<5.00E-04	<5.00E-04	<5.00E-04	5.76E+00 <5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04	<5.00E-04
238U	_	2.29E+02	1.93E+02	4.35E+02	5.05E+02	2.29E+02	1.93E+02	7.71E+01	3.73E+01	2.59E+01	6.05E+01	1.18E+01	1.35E+01	2.08E+01	9.55E+00	1.70E+02	1.92E+01
239Pu*	mg/L μCi/L	2.56E+02	2.23E+02	4.55E+02 3.80E+00	4.62E+00	2.56E+02	2.23E+00	6.24E-01	(2.75E-01)	(1.85E-01)	(3.09E-01)	(5.58E-02)	(6.20E-02)	(8.87E-02)	(3.16E-02)	8.26E-01	(1.71E-01)
237 Np*	μCi/L	(2.34E-04)	(1.92E-04)	(5.25E-04)	(5.75E-04)	(2.34E-04)	(1.92E-04)	(7.81E-05)	<7.10E-04	<7.10E-04	(5.09E-01) <7.10E-04	<7.10E-04	<7.10E-04	(8.87E-02) <7.10E-04	<7.10E-04	<7.10E-04	<7.10E-04
²⁴¹ Am	μCi/L	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02
* Pu and Np Results may be				<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02	<1.70E+02
Metals	biased night due to t	Concentration	MI.														
Ag 107	mg/L	(4.40E-04)	(3.90E-04)	(7.80E-04)	(6.20E-04)	(4.40E-04)	(3.90E-04)	(1.30E-04)	(3.00E-05)	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02
Al	mg/L	(8.43E-01)	(7.38E-01)	(1.11E+00)	(1.03E+00)	(8.43E-01)	(7.38E-01)	(2.45E-01)	(2.24E-01)	(2.79E-01)	(3.10E-01)	<2.50E+00	(2.59E-01)	<2.50E+00	<2.50E+00	(7.29E-01)	(9.90E-01)
As	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
As 75 B	mg/L mg/L	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00	<1.00E-01 <5.00E+00
Ba	mg/L	(1.58E-01)	(1.63E-01)	(1.01E-01)	(3.29E-02)	(1.58E-01)	(1.63E-01)	(1.76E-01)	(2.96E-02)	(2.00E+00	(8.73E-02)	(3.80E-02)	(5.48E-02)	(1.30E-01)	(3.42E-02)	(4.65E-02)	(1.57E-01)
Be	mg/L	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01	<5.00E-01
Bi	mg/L	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00	<2.50E+00
Ca Cd	mg/L	(1.97E+00) <2.50E-01	(2.54E+00) <2.50E-01	(4.30E+00) <2.50E-01	(4.63E+00) <2.50E-01	(1.97E+00) <2.50E-01	(2.54E+00) <2.50E-01	(1.19E+00) <2.50E-01	(2.33E-01) <2.50E-01	(2.36E-01) <2.50E-01	(5.24E-01) <2.50E-01	(7.83E-01) <2.50E-01	(6.10E-01) <2.50E-01	(2.59E-01) <2.50E-01	(1.83E-01) <2.50E-01	(2.81E+00) <2.50E-01	(5.15E-01) <2.50E-01
Cd 114	mg/L mg/L	(2.10E-03)	(1.67E-03)	<2.50E-01 2.74E-03	<2.50E-01 3.53E-03	(2.10E-03)	<2.50E-01 (1.67E-03)	(7.70E-04)	<2.50E-01 <2.50E-03	<2.50E-03	<2.50E-01 <2.50E-03	<2.50E-01 <5.00E-05	<2.50E-01 <2.50E-03	<2.50E-01 <4.00E-05	<2.50E-01 <5.00E-05	<2.50E-01 <2.50E-03	<2.50E-01
Co	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00	<1.25E+00
Cr	mg/L	9.98E+00	1.03E+01	1.43E+01	1.64E+01	9.98E+00	1.03E+01	1.75E+00	(5.61E-01)	(4.01E-01)	(5.42E-01)	(5.48E-02)	(4.78E-02)	(1.12E-01)	<6.25E-01	1.48E+00	(1.66E-01)
Cr 53 *	mg/L	9.08E+00	8.78E+00	1.18E+01	1.31E+01	9.08E+00	8.78E+00	1.69E+00	6.43E-01	4.19E-01	5.17E-01	1.07E-01	8.76E-02	1.47E-01	(3.51E-02)	1.40E+00	2.01E-01
Cu Cu 65	mg/L mg/L	<1.00E+02 6.97E-02	<1.00E+02 7.48E-02	<1.00E+02 1.27E-01	<1.00E+02 1.09E-01	<1.00E+02 6.97E-02	<1.00E+02 7.48E-02	<1.00E+02 7.32E-02	<1.00E+02 (2.29E-02)	<1.00E+02 4.54E-02	2 <1.00E+02 2 8.00E-02	<1.00E+02 (1.86E-02)	<1.00E+02 2.59E-02	<1.00E+02 3.32E-02	<1.00E+02 3.58E-02	<1.00E+02 8.14E-02	<1.00E+02 (1.96E-02)
Fe Cu 63	mg/L	8.69E+00	8.91E+00	1.27E-01 1.35E+01	1.65E+01	8.69E+00	8.91E+00	2.24E+00	(8.39E-01)	(5.41E-01	(7.32E-01)	(2.55E-01)	(2.97E-01)	(2.61E-01)	(1.16E-01)	1.73E+00	(2.07E-01)
K	mg/L	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02	<1.25E+02
Li	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01
Mg Me	mg/L	(5.66E-01) 1.36E+00	(5.90E-01) 1.39E+00	(8.12E-01) 1.98E+00	(9.48E-01) 2.39E+00	(5.66E-01) 1.36E+00	(5.90E-01) 1.39E+00	<5.00E+00 3.09E-01	<5.00E+00 (9.69E-02)	<5.00E+00 (5.89E-02)	<5.00E+00 (8.15E-02)	<5.00E+00 (2.29E-02)	(2.78E+00) (1.44E-02)	<5.00E+00 (2.44E-02)	<5.00E+00 <2.50E-01	<5.00E+00 (2.31E-01)	<5.00E+00 <2.50E-01
Mn Mo	mg/L mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	(9.09E-02) <5.00E+00	<5.00E+00	(6.13E-02) (5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00
Mo 95	mg/L	(4.95E-03)	5.24E-03	6.33E-03	6.16E-03	(4.95E-03)	5.24E-03	(6.50E-04)	(5.20E-04)	(4.50E-04)	(4.20E-04)	(9.00E-05)	(1.80E-04)	(1.50E-04)	(1.20E-04)	(6.20E-04)	(4.10E-04)
Mo 97	mg/L	(4.79E-03)	(4.69E-03)	(5.70E-03)	(5.93E-03)	(4.79E-03)	(4.69E-03)	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02	<1.00E-02
Mo 98	mg/L	<5.00E-03	<5.00E-03	5.09E-03	5.04E-03	<5.00E-03 2.96E+02	<5.00E-03 2.97E+02	<5.00E-03 7.28E+01	<5.00E-03	<5.00E-03 4.27E+01	<5.00E-03 4.71E+01	<5.00E-03 2.37E+01	<5.00E-03 2.68E+01	<5.00E-03 2.52E+01	<5.00E-03	<5.00E-03 3.89E+01	<5.00E-03 2.69E+01
Na Ni	mg/L mg/L	2.96E+02 (1.19E+00)	2.97E+02 (1.15E+00)	3.62E+02 (1.66E+00)	3.61E+02 (1.88E+00)	(1.19E+00)	(1.15E+00)	<5.00E+00	6.47E+01 <5.00E+00	<5.00E+00	4./1E+01 <5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	1.96E+01 <5.00E+00	<5.00E+00	<5.00E+00
P	mg/L	7.97E+01	8.17E+01	9.29E+01	9.64E+01	7.97E+01	8.17E+01	3.03E+01	2.53E+01	1.47E+01	1.46E+01	(4.02E+00)	(5.47E+00)	(5.11E+00)	(2.32E+00)	1.23E+01	(4.68E+00)
Pb	mg/L	3.41E+00	3.51E+00	5.58E+00	6.68E+00	3.41E+00	3.51E+00	1.16E+00	(6.43E-01)	(2.35E-01)	(6.49E-01)	(1.34E-01)	(1.63E-01)	(8.55E-02)	(1.69E-01)	1.26E+00	(3.51E-01)
Pb 206 *	mg/L	3.32E+00	3.03E+00	4.48E+00	5.07E+00	3.32E+00	3.03E+00	9.53E-01	4.04E-01	2.65E-01	4.71E-01	7.38E-02	8.06E-02	1.24E-01	2.64E-02	1.20E+00	1.23E-01
Ru 101 Ru 102	mg/L mg/L	(3.16E-03) (1.53E-03)	(2.64E-03) (1.14E-03)	5.05E-03 2.64E-03	5.63E-03 2.98E-03	(3.16E-03) (1.53E-03)	(2.64E-03) (1.14E-03)	<5.00E-03 (5.90E-04)	<5.00E-03 <2.50E-03	<5.00E-03 <2.50E-03	3 <5.00E-03 3 <2.50E-03	<5.00E-03 <2.50E-03	<5.00E-03 <2.50E-03	<5.00E-03 <2.50E-03	<5.00E-03 <2.50E-03	(1.24E-03) <2.50E-03	<5.00E-03 <2.50E-03
S S	mg/L	<2.00E+02	<2.00E+02	<2.04E+03	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02	<2.00E+02
Sb 121	mg/L	1.71E-02	1.40E-02	1.67E-02	1.90E-02	1.71E-02	1.40E-02	7.87E-03	6.95E-03	(5.11E-03)	(5.33E-03)	(1.61E-03)	(3.19E-03)	(3.20E-03)	(1.93E-03)	(4.48E-03)	(2.95E-03)
Se	mg/L	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01	<5.00E+01
Si Sr	mg/L mg/L	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	2 <1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00	<1.00E+02 <2.50E+00
Ti	mg/L	<1.25E+00	<1.25E+00	<1.25E+00	<2.30E+00 <1.25E+00	<2.30E+00 <1.25E+00	<1.25E+00	<1.25E+00	<2.30E+00 <1.25E+00	<2.30E+00		<2.30E+00 <1.25E+00	<2.30E+00	<2.30E+00 <1.25E+00	<1.25E+00	<1.25E+00	<2.30E+00
Tl	mg/L	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01	<1.00E+01
V	mg/L	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00	<5.00E+00
Zn Zr	mg/L	(7.82E-01) <1.25E+00	(8.88E-01) <1.25E+00	(1.13E+00) <1.25E+00	(1.22E+00) <1.25E+00	(7.82E-01) <1.25E+00	(8.88E-01) <1.25E+00	(5.10E-01) <1.25E+00	(4.74E-01) <1.25E+00	(4.72E-01) <1.25E+00	(6.21E-01) <1.25E+00	(4.34E-01) <1.25E+00	(4.78E-01) <1.25E+00	(4.17E-01) <1.25E+00	(3.67E-01) <1.25E+00	(5.89E-01) <1.25E+00	(5.30E-01) <1.25E+00
* Cr 53 and Pb206 concentr	mg/L ations are above hig			<1.43E±00	<1.23E+00	\1.23E+00	<1.23E+00	\1.23E±00	\1.23E+00	\1.23E+00	1.23E+00	\1.23E+00	\1.23E+00	\1.23E+00	\1.23E+00	<1.23E+00	\1.23E+UU
Anions	and above high	succe sta															
NO ₂ as NO2-	mg/L	6.74E+00	6.78E+00	7.20E+00	6.72E+00	6.74E+00	6.78E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00	<4.51E+00
NO ₃ as NO3-	mg/L	5.45E+01	5.57E+01	5.80E+01	5.70E+01	5.45E+01	5.57E+01	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00	<4.33E+00
CO ₃ ² *	mg/L	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02	<5.00E+02
SO ₄ ²	mg/L	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00	<4.09E+00
PO ₄ 3. as PO ₄ 3. *	mg/L	2.34E+02	2.19E+02	2.10E+02	2.15E+02	2.34E+02	2.19E+02	9.80E+01	8.90E+01	4.95E+00	4.49E+01	1.17E+01	1.81E+01	1.68E+01	8.69E+00	2.34E+01	1.83E+01
Cl	_	<2.34E+02 <2.36E+00	<2.36E+00	<2.36E+00			<2.36E+02			<2.36E+00	4.49E+01 <2.36E+00	<2.36E+00					<2.36E+00
CI E'	mg/L	<2.36E+00 2.92E+01	<2.36E+00 2.69E+01	<2.36E+00 3.17E+01	<2.36E+00 3.07E+01	<2.36E+00 2.92E+01	<2.36E+00 2.69E+01	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00	<2.36E+00 <1.17E+00
F Oxalate*	mg/L mg/L	2.92E+01 1.42E+01	2.69E+01 1.43E+01	3.17E+01 1.54E+01	3.0/E+01 1.51E+01	2.92E+01 1.42E+01	2.69E+01 1.43E+01	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00	<1.17E+00 <3.45E+00
	mg/L	1.721.701	1.450701	1.542 (01	1.51LT01	ts. Oxalate numb	1.452,701	\J.#JLT00	\J. T JLT00	<+JET00	CJ.TJLT00	\J.#JLT00	<+JET00	\J.45LT00	\J. T JLT00	\J.45LT00	<

Tank C-203 (19961) CaCO- Leach Results

Teach Marc Profess	•							Tank C-	203 (19961) CaO	CO ₃ Leach Resul								
	Damanatan	T Indian	1 4 [1	Store 1	Store 1 (dom)	St	St 2 (d)			St 4	Ct 1 (J)	Isaas I	Store E (dom)	St 6	Ctoro 6 (dom)
Males Male	pH		1 day	i day (dup)	1 montn	1 month (dup)	Stage 1	Stage 1 (dup)	Stage 2	Stage 2 (dup)	Stage 3	Stage 3 (dup)	Stage 4	Stage 4 (dup)	Stage 5	Stage 5 (dup)	Stage 6	Stage 6 (dup)
TOTAL MART 1 1986 1986 1986 1986 1986 1986 1986 19	Alkalinity		5.63E+00	5.55E+00	6.94E+00	7.10E+00	5.63E+00	5.55E+00	1.85E+00	2.01E+00	1.31E+00	1.62E+00	1.00E+00	1.23E+00	1.23E+00	1.00E+00	1.54E+00	1.23E+00
The control of 1700 before 170																		
Part	TOC																	
March April Direct 1986 198	TC	mM C	8.17E+00	8.46E+00	8.20E+00	7.77E+00	8.17E+00	8.46E+00	2.22E+00	1.60E+00	1.64E+00	1.37E+00	1.08E+00	1.14E+00	1.15E+00	9.99E-01		
March April Direct 1986 198	Radionuclides																	
Te	00	mM	6.71E-07	1.31E-06	2.30E-06	2.49E-06	6.71E-07	1.31E-06			2.36E-07	4.57E-07					9.77E-07	1.66E-07
March Marc	⁹⁹ Tc								<5.05E-06	<5.05E-06		1	<5.05E-06	<5.05E-06	<5.05E-06	<5.05E-06		<5.05E-06
Page																		8.08E-02
Part Mart Californ Califo	²³⁹ Pu*																	(1.15E-04
March March Compose																		<4.22E-06
From the Process Proce																		<2.07E-04
Au 117			U concentration															
All	Metals																	
A mM 31860																		
A 75 mM (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1350) (1450) ((3.67E-02
B mM 4 46EE0 44EE0 44EE0 44EE0 46EE0 MM 11500 11500 71																		
Ba																		<1.53E-03
B ml (1,300.0)			(1.15E-03)		(7.35E-04)	(2.39E-04)			(1.28E-03)	(2.15E-04)	(1.46E-03)	(6.35E-04)	(2.77E-04)	(3.99E-04)	(9.49E-04)	(2.49E-04)	(3.39E-04)	(1.14E-03
CC mmM (479E02) (335-02) (107E07) (116E07) (116E07) (116E07) (116E07) (116E07) (116E07) (272E07) (272E																		<5.55E-02
GG mM 42 2EGG 422EGG 42EGG																		<1.20E-02
C114 mM (J.BEG) (J.MEG)																		<2.22E-03
C mm M 19910 1 19850 1 19850 1 19850 1 19850 1 19850 1 19850 1 19850 1 19850 1 19850 1 19850 2 19850 1 19850 2 19850 1 19850 2 19850 1 19850 1 19850 2 19850 1																		<8.77E-08
C 33** mM																		<2.12E-02
Ct mM c15Fe00 c15Fe00 c15Fe00 c15Fe00 c15Fe00 c15Fe00 c15Fe00 c15Fe00 c15Fe00 c15Fe00 mM mM c15Fe00																		(3.20E-03
Cues																		
Fe mM																		(3.01E-04
High mm (2,34E-00) (2,44E-00) (2,	Fe	mM	1.56E-01		2.42E-01							(1.31E-02)			(4.67E-03)			(3.70E-03
Mg mM (235EQ) (245EQ) (345EQ) (35EQ) (235EQ) (235EQ) (235EQ) (235EQ) (235EQ) (245EQ) (25EQ) (205EQ) (2																		<3.20E+00
Mn																		
Mo																		<4.55E-03
Mo 97	Mo	mM	<5.21E-02	<5.21E-02	<5.21E-02		<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02		<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02	<5.21E-02
Mo 98 mM																		(4.10E-06
Na mM 1.29E-01 1.59E-01 1.59E-01 1.59E-01 1.29E-01 1.29E-01 1.29E-01 1.37E-00 2.83E-00 1.69E-00 1.03E-00 1.17E-00 1.09E-00 8.53E-01 8.53E-02 8.5																		
Ni mM (2.08-02) (1.98-02) (3.19-02)																		1.17E+00
Ph mM 1.64E-02 1.69E-02 2.46E-02 1.69E-02 1.69E-02 1.69E-02 1.69E-02 1.69E-02 1.69E-02 1.69E-02 1.69E-02 1.69E-02 1.69E-03 1.59E-03 1.59E-03 1.59E-03 1.59E-03 1.64E-04 6.01E-03 1.69E-04 1.69E-04 1.69E-03 1.69E-03 1.99E-03 1.99E-03 1.99E-03 1.64E-04 6.01E-03 1.69E-04 1.69E-04 1.69E-05 1.69E-05 1.69E-05 1.69E-05 1.99E-05 1.69E-05 1.69E					(2.82E-02)													<8.52E-02
Ph 206 * mM 1.61E-02 1.47E-02 2.17E-02 2.46E-02 1.16E-02 1.47E-02 4.63E-03 1.96E-03 1.29E-03 2.29E-03 3.58E-04 3.91E-04 6.01E-04 1.28E-04 5.81E-03 5.98E																		(1.51E-01
Ru 101 mM (3.13E-05) (2.61E-05) 5.00E-05 5.57E-05 (3.13E-05) (2.61E-05) (3.13E-05) (2.61E-05) 4.95E-05 4.95E-05 4.95E-05 4.95E-05 4.95E-05 4.95E-05 4.95E-05 5.245E-05																		
Ru 102 mm																		<4.95E-05
\$\frac{\text{S}}{\text{12}}\$ \text{mM} \qq \qq \qq \qq \qq \qq \qq \qq \qq \qq \qq \qq \q	Ru 102			(1.12E-05)														<2.45E-05
Se mM																		<6.24E+00
\$\ \text{Si} \text{mM} \qqq \qq \qq \qq \qq \qq \qq \qq \qq \qq \qq \qq \qq \q																		(2.44E-05 <6.33E-01
Sr mM < 2.85E-02	Si																	<3.56E+00
TI mM	Sr	mM	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02	<2.85E-02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		<2.61E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
Zr mM <1.37E-02 <1.37E-02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(8.11E-03</td>																		(8.11E-03
Autions Index (a) Index (b) Index (c) Index (c) <th< td=""><td>Zr</td><td>mM</td><td><1.37E-02</td><td><1.37E-02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><1.37E-02</td></th<>	Zr	mM	<1.37E-02	<1.37E-02														<1.37E-02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ations are above hig	hest check star	ndard.														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															 			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		<9.80E-02
SO_4^2 mM $\begin{pmatrix} 4.26E-02 \\ 4.26E-02 \end{pmatrix}$ $\begin{pmatrix} 4.$																		<6.98E-02
PQ_4^{3} as PQ_4^{3+} mM 2.46E+00 2.31E+00 2.21E+00 2.26E+00 2.46E+00 2.31E+00 1.03E+00 9.37E+01 5.21E+01 4.73E+01 1.23E+01 1.91E+01 1.77E+01 9.15E+02 2.46E+01 1.92E PQ_4^{3} as PQ_4^{3+} mM 4.666E+02 4.666E+02 4.66E+02		mM																<8.33E+00
CI mM < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.66E-02 < 6.6	_ ·	mM	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02	<4.26E-02
F mM 1.54E+00 1.42E+00 1.67E+00 1.62E+00 1.62E+00 1.54E+00 1.54E+00 1.42E+00 4.616E-02 <6.16E-02	PO ₄ 3- as PO ₄ 3- *	mM										1						1.92E-01
	Cl ⁻	mM	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02	<6.66E-02
Oxalate * mM 1.62E-01 1.63E-01 1.75E-01 1.72E-01 1.62E-01 1.62E-01 1.63E-01 3.92E-02 3.92E-0	F																	<6.16E-02
	Oxalate *	mM	1.62E-01	1.63E-01	1.75E-01	1.72E-01	1.62E-01	1.63E-01	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02	<3.92E-02

Uranium Mineral Solublity Experimental Data

		E	Experiment #1	19961 Comp	osite (1.0M Na	aNO3, 0.01M	NaOH)		
Parameters	Units	Stage 1	Stage 1 Dup	Stage 2	Stage 2 DUP	Stage 3	Stage 3 Dup	Stage 4	Stage 4 DUP
Tarameters	Onts	1 Day	1 Day	1 Day	1 Day	1 week	1 week	1 month	1 month
U238	mg/L	1.15E+00	6.01E-01	5.07E-01	4.82E-01	4.21E-01	4.09E-01	1.47E+00	9.92E-01
Na	mg/L	2.39E+04	2.38E+04	2.45E+04	2.44E+04	2.34E+04	2.33E+04	2.53E+04	2.43E+04
TC	mg/L	9.27E+01	7.88E+01	3.45E+01	3.32E+01	2.47E+01	1.82E+01	2.92E+01	3.01E+01
TOC	mg/L	5.40E+01	4.20E+01	9.19E+00	8.51E+00	9.85E+00	6.66E+00	7.76E+00	9.28E+00
TIC	mg/L	3.87E+01	3.68E+01	2.53E+01	2.47E+01	1.48E+01	1.16E+01	2.14E+01	2.08E+01

Ех	xperiment #1 1	9961 Yellow	(1.0M NaNO3	3, 0.01M Na	OH)
Parameters	Units	Stage 1	Stage 2	Stage 3	Stage 4
		1 Day	1 Day	1 week	1 month
U238	mg/L	9.08E-01	5.06E-01	4.15E-01	1.33E+00
Na	mg/L	2.35E+04	2.47E+04	2.33E+04	2.91E+04
TC	mg/L	5.82E+01	2.90E+01	1.79E+01	3.60E+01
TOC	mg/L	2.27E+01	8.92E+00	6.81E+00	8.46E+00
TIC	mg/L	3.55E+01	2.00E+01	1.11E+01	2.75E+01

			Experiment	#2 19961 Co	omposite (1.0N	M NaOH)			
Parameters	Units	Stage 1	Stage 1 Dup	Stage 2	Stage 2 DUP	Stage 3	Stage 3 Dup	Stage 4	Stage 4 DUP
		1 Day	1 Day	1 Day	1 Day	1 week	1 week	1 month	1 month
U238	mg/L	3.92E+01	3.82E+01	2.10E+01	2.21E+01	1.22E+01	1.22E+01	6.87E+00	8.56E+00
Na	mg/L	2.41E+04	2.40E+04	2.53E+04	2.51E+04	2.58E+04	2.54E+04	2.43E+04	2.48E+04
TC	mg/L	7.07E+01	6.68E+01	2.43E+02	2.45E+02	2.69E+02	2.80E+02	1.66E+02	2.97E+02
TOC	mg/L	8.06E+01	7.64E+01	2.81E+02	2.88E+02	3.13E+02	3.31E+02	2.13E+02	3.53E+02
TIC	mg/L	ND	ND	ND	ND	ND	ND	ND	ND
ND = Not D	etected								

Experiment #2 19961 Yellow (1.0M NaOH)						
Parameters	Parameters Units Stage 1 Stage 2 Stage 3					
		1 Day	1 Day	1 week	1 month	
U238	mg/L	6.44E+01	4.06E+01	1.59E+01	7.67E+00	
Na	mg/L	2.42E+04	2.62E+04	2.53E+04	2.63E+04	
TC	mg/L	7.51E+01	2.51E+02	2.51E+02	4.68E+02	
TOC	mg/L	9.22E+01	2.97E+02	2.89E+02	5.42E+02	
TIC	mg/L	ND	ND	ND	ND	
ND = Not Detected						

Experi	Experiment #3 19961 Composite Stage 1,2,3 (1.0M NaNO3, 0.01M NaOH) Stage 4 (0.01M NaOH, 0.001M Na2CO3)								
			Stage 1		Stage 2		Stage 3		Stage 4
Parameters	Units	Stage 1	Dup	Stage 2	DUP	Stage 3	Dup	Stage 4	DUP
		1 Day	1 Day	1 Day	1 Day	1 week	1 week	1 month	1 month
U238	mg/L	5.60E-01	5.48E-01	4.33E-01	4.13E-01	3.43E-01	3.86E-01	2.47E+02	2.61E+02
Na	mg/L	2.36E+04	2.39E+04	2.49E+04	2.47E+04	2.43E+04	2.44E+04	5.38E+02	6.09E+02
TC	mg/L	2.19E+02	1.36E+02	8.04E+01	5.94E+01	3.61E+01	3.26E+01	2.34E+01	2.59E+01
TOC	mg/L	8.56E+01	6.54E+01	1.50E+01	1.32E+01	8.56E+00	1.27E+01	9.10E+00	1.07E+01
TIC	mg/L	1.33E+02	7.09E+01	6.55E+01	4.63E+01	2.75E+01	1.99E+01	1.43E+01	1.52E+01

Experiment #2 19887 Yellow Stage 1,2,3 (1.0M NaNO3, 0.01M NaOH)									
Stage 4 (0.01M NaOH, 0.001M Na2CO3) Parameters Units Stage 1 Stage 2 Stage 3 Stage 4									
	1 Day 1 Day 1 week 1 month								
U238	mg/L	2.06E+00	5.16E-01	3.87E-01	1.51E+02				
Na	mg/L	2.41E+04	2.52E+04	2.49E+04	5.80E+02				
TC	mg/L 1.31E+02 4.52E+01 3.43E+01 2.54E+0								
TOC	mg/L								
TIC	mg/L	8.39E+01	3.67E+01	2.41E+01	1.38E+01				

Appendix J Chemical Equilibrium Modeling Calculations

Appendix J

Chemical Equilibrium Modeling Calculations

Sample 19887 water leach, 1 day (Stage 1).

moles moles grams cm3 remaining reacted reacted reacted Reactants ______ 02(g) -- fixed fugacity buffer --

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01828	419.6	0.8469	-1.8102
CO3	0.001906	114.2	0.5179	-3.0057
F-	0.001868	35.42	0.8434	-2.8027
HPO4	0.001854	177.6	0.5098	-3.0246
UO2(CO3)3	0.001405	631.3	0.0670	-4.0265
NO3-	0.0009130	56.52	0.8398	-3.1153
OH-	0.0005481	9.306	0.8434	-3.3351
HCO3-	0.0005435	33.11	0.8469	-3.3369
Cr04	0.0002980	34.51	0.5098	-3.8184
UO2(OH)3-	0.0001840	58.99	0.8469	-3.8073
Fe(OH)4-	0.0001807	22.34	0.8469	-3.8153
02(aq)	0.0001622	5.183	1.0000	-3.7898
NaHPO4-	0.0001437	17.07	0.8469	-3.9147
PO4	9.409e-005	8.921	0.2188	-4.6864
CaPO4-	7.534e-005	10.16	0.8469	-4.1952
NaCO3-	5.898e-005	4.887	0.8469	-4.3015
A102-	4.799e-005	2.825	0.8469	-4.3911
MgPO4-	3.172e-005	3.777	0.8469	-4.5709
SO4	3.098e-005	2.971	0.5098	-4.8014
Cl-	2.974e-005	1.052	0.8398	-4.6025
MnO4-	2.231e-005	2.650	0.8434	-4.7254
Ni(OH)2(aq)	1.475e-005	1.365	1.0000	-4.8311
Fe(OH)3(aq)	1.333e-005	1.422	1.0000	-4.8753
Pb(OH)2(aq)	1.204e-005	2.900	1.0000	-4.9193
MnO4	1.139e-005	1.352	0.5098	-5.2362

(UO2)2CO3(OH)3-		6.829	0.8469	-5.0508
NaHCO3(aq)	1.016e-005	0.8523	1.0000	-4.9930
Ni(OH)3-	8.055e-006	0.8823	0.8469	-5.1661
Pb(OH)3-	6.575e-006	1.695	0.8469	-5.2543
UO2(CO3)2	4.232e-006	1.648	0.5098	-5.6660
Pb(CO3)2	3.404e-006	1.112	0.5098	-5.7606
UO2(OH)2(aq)	2.754e-006	0.8359	1.0000	-5.5601
Sr++	2.706e-006	0.2367	0.5256	-5.8470
PbCO3(aq)	2.662e-006	0.7100	1.0000	-5.5748
NaF(aq)	2.452e-006	0.1028	1.0000	-5.6104
CaCO3(aq)	2.252e-006	0.2250	1.0000	-5.6475
Ca++	1.988e-006	0.07954	0.5405	-5.9688
NaSO4-	1.908e-006	0.2268	0.8469	-5.7916
Ni++	1.277e-006	0.07484	0.5405	-6.1609
NaOH(aq)	1.135e-006	0.04533	1.0000	-5.9450
SrCO3(aq)	1.029e-006	0.1517	1.0000	-5.9874
(UO2)3(OH)7-	8.811e-007	0.8173	0.8469	-6.1272
PbOH+	7.726e-007	0.1729	0.8469	-6.1842
Mg++	5.920e-007	0.01436	0.5677	-6.4735
CaHPO4(aq)	5.580e-007	0.07579	1.0000	-6.2534
H2PO4-	3.918e-007	0.03793	0.8469	-6.4792
MgCO3(aq)	3.159e-007	0.02659	1.0000	-6.5004
MgHPO4(aq)	2.582e-007	0.03100	1.0000	-6.5881
UO2(OH)4	2.178e-007	0.07350	0.5098	-6.9546
UO2PO4-	1.667e-007	0.06075	0.8469	-6.8502
SrHPO4(aq)	1.543e-007	0.02829	1.0000	-6.8115
NaAlO2(aq)	1.136e-007	0.009298	1.0000	-6.9445
NaCl(aq)	6.461e-008	0.003770	1.0000	-7.1897
PbP207	3.221e-008	0.01226	0.5098	-7.7846
CO2(aq)	2.227e-008	0.0009785	1.0000	-7.6522
Ca2UO2(CO3)3	1.722e-008	0.009116	1.0000	-7.7639
MgF+	1.407e-008	0.0006083	0.8469	-7.9238
HCrO4-	1.225e-008	0.001431	0.8469	-7.9840
(only species	> 1e-8 molal list	ted)		

Mineral	saturation	states

	log Q/K		log Q/K
Todorokite Pyromorphite Trevorite Fluorapatite Hematite Pyromorphite-OH Pb40(PO4)2	54.1189s/sat 46.9860s/sat 20.4537s/sat 19.6210s/sat 15.2536s/sat 14.1409s/sat 14.0861s/sat 12.5672s/sat 10.2049s/sat 9.1899s/sat 8.7278s/sat 8.7278s/sat 8.0789s/sat 8.0408s/sat 7.7980s/sat 7.6721s/sat 6.7969s/sat 6.5902s/sat	PbC03.Pb0 Diaspore Boehmite Gibbsite Ca-Autunite Schoepite U03:2H20 Ice U02(OH)2(beta) Pb3S06 Crocoite Schoepite-dehy(. U03:.9H2O(alpha) Dolomite Dolomite-ord Schoepite-dehy(. Schoepite-dehy(1 Litharge Calcite	0.6737s/sat 0.6719s/sat 0.2680s/sat 0.0762s/sat -0.0668 -0.0788 -0.1387 -0.1912 -0.2069 -0.2498 -0.2622 -0.2622 -0.3097 -0.3097 -0.3425 -0.3486 -0.4679 -0.4945

Manganite	4.7843s/sat	Aragonite	-0.6389
Na2U2O7(c)	4.6171s/sat	Massicot	-0.6501
Minium	4.1791s/sat	Lanarkite	-1.3105
CaUO4	4.1637s/sat	Monohydrocalcite	-1.3282
Plattnerite	4.0619s/sat	Magnesite	-1.4441
PbHPO4	3.5538s/sat	Brucite	-1.4515
Ni3(PO4)2	3.4296s/sat	Schoepite-dehy(.	-1.4518
Magnetite	3.3594s/sat	Fluorite	-1.5372
Bunsenite	2.6872s/sat	Dawsonite	-1.6613
Becquerelite	2.4784s/sat	Mn(OH)3	-1.7215
Ni(OH)2	2.4106s/sat	MnHPO4	-1.7493
Na2U2O7(am)	2.1088s/sat	Dolomite-dis	-1.8541
Strontianite	1.7898s/sat	Schoepite-dehy(.	-1.9698
Whitlockite	1.5893s/sat	NiCO3	-2.3496
Fe(OH)3(ppd)	1.4691s/sat	SrHPO4	-2.6299
Cerussite	1.3831s/sat	Corundum	-2.6476
SrUO4(alpha)	1.0626s/sat	Sellaite	-2.6946
Pb4Cl2(OH)6	0.8792s/sat	SrF2	-2.9123
Pb4S07	0.8267s/sat	UO3(gamma)	-2.9528
(only minerals	with log Q/K >	-3 listed)	

fugacity log fug. Gases ------0.892 0.1284 02(q)0.02598 -1.585 H2O(g) CO2(g) 6.556e-007 -6.183 HF(g)2.659e-015 -14.5756.380e-022 -21.195NO2(g) 2.704e-022 -21.568HCl(g)N2(g)2.350e-023 -22.629 1.194e-027 -26.923 NO(g)3.799e-036 -35.420 Cl2(g) -41.107 H2(g) 7.822e-042 1.602e-051 -50.795 CO(g) 1.451e-057 -56.838 UO2F2(g) -61.543 2.863e-062 Pb(g) -61.955 SO2(q) 1.108e-062 6.405e-067 -66.193UO3(g) -70.092 8.085e-071 NH3(g)-71.067 Na(g) 8.577e-072 4.160e-074 -73.381UOF4(g)-73.734 UO2Cl2(g) 1.847e-074 2.884e-085 F2(g) -84.540UF5(q) 9.809e-089 -88.008 UF6(g) 5.308e-095 -94.275 1.785e-096 -95.748 UF4(g)UO2(g) 1.114e-119 -118.953 -125.508Mg(g)3.104e-126 1.784e-135 -134.749 UC14(g)UF3(g) 1.488e-145 -144.827 UC15(g) 6.940e-146 -145.159-147.708 CH4(g)1.958e-148 1.473e-148 -147.832Ca(g) H2S(q) 1.310e-149 -148.883UCl6(g) 5.015e-151 -150.3001.077e-151 -150.968 U2F10(g)

2.361e-162

UC13(g)

-161.627

Al(g) UF2(g) C(g) UO(g) UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	7.689e-204 1.691e-206 5.545e-231		190.737 191.979 203.114 205.772 230.256 241.204 242.908 247.576 259.105 264.017			
Original basis				moles	rbed mg/kg	Kd L/kg
Al+++ Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++ UO2++	4.81e-005 8.02e-005 2.98e-005 0.000298 0.00187 0.000194 -0.00944 55.5 0.00677 0.00220 3.29e-005 3.37e-005 0.00185 2.41e-005 0.00208 2.55e-005 3.29e-005 3.29e-005	4.81e-005 8.02e-005 2.98e-005 0.000298 0.00187 0.000194 -0.00944 55.5 0.00677 0.00220 3.29e-005 3.37e-005 0.000913 0.0185 2.41e-005 0.00208 2.55e-005 3.29e-005	1.30 3.21 1.05 34.5 35.5 10.8 -9.50 9.98e+005 412. 211. 0.798 1.85 15.5 425. 1.41 66.3 5.27 3.16 0.342			
Elemental comp			In fluid s mg/	/kg	Sorbe	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	4.810e-00 8.020e-00 0.00676 2.980e-00 0.000298 0.00187 111. 0.000194 2.550e-00 3.290e-00 3.370e-00 2.410e-00 0.000913 55.5 0.00220 0.0185 3.910e-00	8.020e- 0.000 2.980e- 0.0002 0.0003 0.0003 5.2.550e- 5.3.290e- 5.3.370e- 5.2.410e- 0.0003 5.5.0000000000000000000000000000	-005 5765 -005 2980 1870 11.0 1.115 1940 -005 -005 -005 -005 -005 -005 -22200 1850	1.296 3.209 81.12 1.055 15.47 35.47 7e+005 10.82 5.275 0.7983 1.848 1.412 12.77 2e+005 68.03 424.6 0.3420		

Sulfur	3.290e-005	3.290e-005	1.053
Uranium	0.001620	0.001620	385.0

Sample 19887 water leach, 1 month.

Xi = 0.0000Step # Solvent mass = 0.999999 | Solvent mass = 0.999984 kg | Solution mass = 1.001189 kg | Solution density = 1.013 g/cm3 | Chlorinity = 0.000017 molal | Dissolved solids = 1203 mg/kg sol'n | Rock mass = 0.000000 kg | Carbonate alkalinity = 517.62 mg/kg as CaCO3

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01368	314.2	0.8601	-1.9293
CO3	0.002889	173.1	0.5505	-2.7985
HPO4	0.002073	198.7	0.5435	-2.9482
F-	0.001489	28.25	0.8573	-2.8941
HCO3-	0.001086	66.17	0.8601	-3.0297
NO3-	0.0006710	41.56	0.8543	-3.2417
UO2(CO3)3	0.0006362	286.0	0.0867	-4.2585
OH-	0.0004283	7.276	0.8573	-3.4351
02(aq)	0.0002229	7.125	1.0000	-3.6518
NaHPO4-	0.0001282	15.24	0.8601	-3.9575
Cr04	0.0001220	14.13	0.5435	-4.1784
AlO2-	8.324e-005	4.904	0.8601	-4.1451
PO4	7.710e-005	7.313	0.2529	-4.7100
NaCO3-	7.112e-005	5.896	0.8601	-4.2134
Fe(OH)4-	5.529e-005	6.840	0.8601	-4.3228
CaPO4-	3.528e-005	4.758	0.8601	-4.5180
SO4	2.059e-005	1.975	0.5435	-4.9512
Cl-	1.717e-005	0.6080	0.8543	-4.8336
NaHCO3(aq)	1.567e-005	1.315	1.0000	-4.8049
MgPO4-	1.518e-005	1.809	0.8601	-4.8841
UO2(OH)3-	1.272e-005	4.079	0.8601	-4.9609
MnO4-	7.443e-006	0.8842	0.8573	-5.1951
Fe(OH)3(aq)	5.214e-006	0.5566	1.0000	-5.2828
Ni(OH)2(aq)	5.143e-006	0.4762	1.0000	-5.2888
Pb(CO3)2	2.835e-006	0.9264	0.5435	-5.8123
MnO4	2.657e-006	0.3156	0.5435	-5.8405
Pb(OH)2(aq)	2.598e-006	0.6258	1.0000	-5.5854
Ni(OH)3-	2.196e-006	0.2406	0.8601	-5.7238
CaCO3(aq)	1.822e-006	0.1821	1.0000	-5.7394
NaF(aq)	1.510e-006	0.06332	1.0000	-5.8210
PbCO3(aq)	1.466e-006	0.3914	1.0000	-5.8338

UO2(CO3)2	1.444e-006	0.5625	0.5435	-6.1053
Pb(OH)3-	1.109e-006	0.2861	0.8601	-6.0204
NaSO4-	1.011e-006	0.1203	0.8601	-6.0605
Ca++	9.459e-007	0.03787	0.5704	-6.2680
Sr++	8.623e-007	0.07546	0.5573	-6.3182
NaOH(aq)	6.853e-007	0.02738	1.0000	-6.1641
Ni++	6.687e-007	0.03920	0.5704	-6.4186
H2PO4-	5.790e-007	0.05609	0.8601	-6.3028
SrCO3(aq)	5.604e-007	0.08263	1.0000	-6.2515
CaHPO4(aq)	3.341e-007	0.04540	1.0000	-6.4762
Mg++	2.903e-007	0.007047	0.5943	-6.7632
MgCO3(aq)	2.613e-007	0.02201	1.0000	-6.5828
UO2(OH)2(aq)	2.434e-007	0.07391	1.0000	-6.6137
PbOH+	2.066e-007	0.04627	0.8601	-6.7503
(UO2)2CO3(OH)3-	1.639e-007	0.1066	0.8601	-6.8508
MgHPO4(aq)	1.580e-007	0.01898	1.0000	-6.8013
NaAlO2(aq)	1.522e-007	0.01246	1.0000	-6.8177
SrHPO4(aq)	6.217e-008	0.01140	1.0000	-7.2064
CO2(aq)	5.688e-008	0.002500	1.0000	-7.2450
NaCl(aq)	2.885e-008	0.001684	1.0000	-7.5399
UO2PO4-	2.178e-008	0.007939	0.8601	-7.7275
PbP207	1.468e-008	0.005590	0.5435	-8.0980
UO2(OH)4	1.139e-008	0.003846	0.5435	-8.2082
(only enected >	1e-8 molal ligte	4)		

(only species > 1e-8 molal listed)

Millerar Sacuracion	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Fluorapatite Hematite	50.1947s/sat 43.5351s/sat 18.3482s/sat 17.8212s/sat 13.5954s/sat 13.3258s/sat	Gibbsite Ice PbCO3.PbO Na2U2O7(am) Dolomite Dolomite-ord	0.4222s/sat -0.1387 -0.2513 -0.4368 -0.4841
Pyromorphite-OH	11.5847s/sat	Calcite	-0.5864
Pb4O(PO4)2	10.4555s/sat	SrUO4(alpha)	-0.6623
Bixbyite	9.1893s/sat	Aragonite	-0.7308
Pyrolusite	8.7167s/sat	Crocoite	-1.0759
MnO2(gamma)	7.1989s/sat	Dawsonite	-1.1272
Hausmannite	7.1700s/sat	Schoepite	-1.1324
Ferrite-Ca	6.7647s/sat	UO3:2H2O	-1.1324
Ferrite-Mg	6.7361s/sat	Litharge	-1.1340
Parsonsite	6.3652s/sat	UO2(OH)2(beta)	-1.2448
Pb3(PO4)2	6.3524s/sat	Schoepite-dehy(.	-1.3158
Goethite	6.1827s/sat	UO3:.9H2O(alpha)	-1.3158
Hydrocerussite	5.4872s/sat	Massicot	-1.3162
Hydroxylapatite	5.1301s/sat	Schoepite-dehy(1	-1.3961
Manganite	4.2765s/sat	Schoepite-dehy(1	-1.4022
Plattnerite	3.4648s/sat	Monohydrocalcite	-1.4201
PbHPO4	3.1641s/sat	Magnesite	-1.5265
CaUO4	2.6109s/sat	Pb4SO7	-1.7875
Ni3(PO4)2	2.6092s/sat	Brucite	-1.9412
Minium	2.2497s/sat	Corundum	-1.9557
Bunsenite	2.2295s/sat	MnHPO4	-2.0152
Magnetite	2.1022s/sat	Fluorite	-2.0193
Na2U2O7(c)	2.0715s/sat	Dolomite-dis	-2.0285
Ni(OH)2	1.9529s/sat	Pb4Cl2(OH)6	-2.0474

Strontianite	1.5257s/sat	Ca-Autunite	-2.1205
Cerussite	1.1241s/sat	Pb3S06	-2.1549
Fe(OH)3(ppd)	1.0616s/sat	Mn(OH)3	-2.2293
Diaspore	1.0179s/sat	NiCO3	-2.4001
Whitlockite	0.6446s/sat	Schoepite-dehy(.	-2.5054
Boehmite	0.6140s/sat	Lanarkite	-2.5924
(only minerals w	ith log O/K >	-3 listed)	

Gases	fugacity	log fug.
02(g)	0.1764	-0.754
H2O(g)	0.02598	-1.585
CO2(g)	1.674e-006	-5.776
HF(g)	2.712e-015	-14.567
NO2(g)	5.546e-022	-21.256
HCl(g)	1.999e-022	-21.699
N2(g)	9.404e-024	-23.027
NO(g)	8.851e-028	-27.053
Cl2(g)	2.435e-036	-35.614
H2(g)	6.673e-042	-41.176
CO(g)	3.490e-051	-50.457
UO2F2(g)	1.334e-058	-57.875
S02(g)	1.061e-062	-61.974
Pb(g)	5.269e-063	-62.278
UO3(g)	5.661e-068	-67.247
NH3(g)	4.030e-071	-70.395
Na(g)	4.783e-072	-71.320
UOF4(g)	3.977e-075	-74.400
UO2Cl2(g)	8.927e-076	-75.049
F2(g)	3.516e-085	-84.454
UF5(g)	8.834e-090	-89.054
UF6(g)	5.278e-096	-95.278
UF4(g)	1.456e-097	-96.837
UO2(g)	8.397e-121	-120.076
Mg(g)	8.577e-127	-126.067
UCl4(g)	4.023e-137	-136.395
UF3(g)	1.099e-146	-145.959
UC15(g)	1.253e-147	-146.902
CH4(g)	2.648e-148	-147.577
Ca(g)	3.982e-149	-148.400
H2S(g)	7.789e-150	-149.109
UC16(g)	7.248e-153	-152.140
U2F10(g)	8.736e-154	-153.059
UC13(g)	6.648e-164	-163.177
Al(g)	1.956e-190	-189.709
C(g)	1.949e-192	-191.710
UF2(g)	1.225e-192	-191.912
UO(g)	4.946e-205	-204.306
UCl2(g)	5.948e-208	-207.226
UF(g)	3.359e-232	-231.474
S2(g)	3.038e-242	-241.517
C2H4(g)	3.108e-243	-242.508
UCl(g)	1.165e-249	-248.934
U2C18(g)	3.988e-263	-262.399
U2Cl10(g)	3.132e-268	-267.504
U(g)	6.832e-290	-289.165

		In flu:	id	Sor	bed	Kd
Original basis	total moles	moles	mg/kg 	moles	mg/kg	L/kg
Al+++		8.34e-005				
Ca++		3.84e-005				
Cl-		1.72e-005				
Cr04	0.000122	0.000122	14.1			
F-		0.00149				
Fe++	6.05e-005	6.05e-005	3.37			
H+		-0.00672				
H2O	55.5	55.5 9 0.00598	.99e+005			
HCO3-	0.00598	0.00598	365.			
HPO4	0.00233	0.00233	223.			
Mg++	1.59e-005	1.59e-005				
Mn++	1.01e-005	1.01e-005	0.554			
NH3(aq)	0.000671	0.000671	11.4			
Na+	0.0139	0.0139				
Ni++	8.01e-006	8.01e-006	0.470			
02(aq)	0.00159	0.00159	50.9			
Pb++	8.23e-006	8.23e-006	1.70			
SO4	2.16e-005	2.16e-005	2.07			
Sr++	1.49e-006	1.49e-006	0.130			
UO2++	0.000651	0.000651	176.			
Elemental compo	sition	Tn	fluid		Sorbed	}
Elemental compo	total moles	s moles	fluid mg/k	g	Sorbed moles	l mg/kg
	total moles	s moles	mg/k 	248		
	total moles	s moles	mg/k 	248		
Aluminum Calcium Carbon	total moles 8.340e-009 3.840e-009	moles 5 8.340e-00 5 3.840e-00 6 0.00598	mg/k 05 2 05 1 83 7	.248 .537 1.77		
Aluminum Calcium Carbon	total moles 8.340e-009 3.840e-009	moles 5 8.340e-00 5 3.840e-00 6 0.00598	mg/k 05 2 05 1 83 7	.248 .537 1.77		
Aluminum Calcium Carbon Chlorine	8.340e-009 3.840e-009 0.005983	moles 	mg/k 05 2 05 1 83 7 05 0.	.248 .537 1.77		
Aluminum Calcium Carbon Chlorine Chromium	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220	moles 	mg/k 05 2 05 1 83 7 05 0. 20 6	.248 .537 1.77 6091 .336		
Aluminum Calcium Carbon Chlorine	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220	moles 	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2	.248 .537 1.77 6091 .336 8.27		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220	moles 	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e	.248 .537 1.77 6091 .336 8.27		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490	moles 	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3	.248 .537 1.77 6091 .336 8.27 +005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490 111.00 6.050e-009 8.230e-009	moles	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3	.248 .537 1.77 6091 .336 8.27 +005 .375		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490 111.00 6.050e-009 8.230e-009	moles	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3	.248 .537 1.77 6091 .336 8.27 +005 .375		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490 111.00 6.050e-009 8.230e-000	moles 8.340e-00 3.840e-00 0.00598 1.720e-00 0.000122 0.00149 111 6.050e-00 8.230e-00 1.590e-00 1.010e-00	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3 06 1 05 0.	.248 .537 1.77 6091 .336 8.27 +005 .375 .703		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490 111.0 6.050e-009 8.230e-009 1.590e-009 8.010e-009	moles 8.340e-00 3.840e-00 0.00598 1.720e-00 0.000122 0.00149 111 6.050e-00 8.230e-00 1.590e-00 1.010e-00	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3 06 1 05 0. 05 0.	.248 .537 1.77 6091 .336 8.27 +005 .375 .703 3860 5542		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490 111.0 6.050e-009 8.230e-009 1.590e-009 8.010e-009	moles mo	mg/k	.248 .537 1.77 6091 .336 8.27 +005 .375 .703 3860 5542 4695 .387		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490 111.0 6.050e-009 8.230e-009 1.590e-009 8.010e-009 8.010e-009	moles mo	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3 06 1 05 0. 05 0. 06 0. 10 9 54 8.876e	.248 .537 1.77 6091 .336 8.27 +005 .375 .703 3860 5542 4695 .387		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	**************************************	moles mo	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3 06 1 05 0. 05 0. 05 0. 06 0. 10 9 54 8.876e	.248 .537 1.77 6091 .336 8.27 +005 .375 .703 3860 5542 4695 .387 +005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	**************************************	moles mo	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3 06 1 05 0. 05 0. 05 0. 05 0. 05 7 90 3	.248 .537 1.77 6091 .336 8.27 +005 .375 .703 3860 5542 4695 .387 +005 2.08		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	8.340e-009 3.840e-009 0.005983 1.720e-009 0.0001220 0.001490 111.00 6.050e-009 8.230e-009 1.590e-009 1.010e-009 8.010e-009 0.0006710 55.54 0.002330 0.01390	moles mo	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3 06 1 05 0. 05 0. 05 0. 05 0. 05 0. 06 7 07 08 8.876e 30 7 90 3	.248 .537 1.77 6091 .336 8.27 +005 .375 .703 3860 5542 4695 .387 +005 2.08 19.2		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	8.340e-009 3.840e-009 0.005983 1.720e-009 0.001490 111.0 6.050e-009 8.230e-009 1.590e-009 1.010e-009 8.010e-009 0.0006710 55.54 0.002330 0.01390 1.490e-009	moles mo	mg/k 05 2 05 1 83 7 05 0. 20 6 90 2 .0 1.118e 05 3 06 1 05 0. 05 0. 05 0. 05 0. 30 7 90 3 06 0. 05 0.	.248 .537 1.77 6091 .336 8.27 +005 .375 .703 3860 5542 4695 .387 +005 2.08 19.2		

Sample 19887 water leach, Stage 2.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 10.700
 log fO2 = -0.777

 Eh = 0.5846 volts
 pe = 9.8821

 Ionic strength
 0.010776

 Activity of water
 0.999999

 Solvent mass
 = 1.000620 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 = 0.000016 molal

 Dissolved solids
 = 658 mg/kg sol'n

 Rock mass
 = 0.0000000 kg

 Carbonate alkalinity=
 193.13 mg/kg as CaCO3

Reactants	moles	moles	grams	cm3
	remaining	reacted	reacted	reacted
02(g)	fixed fuga	acity buffer		

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.004790	110.1	0.8989	-2.3659
HPO4	0.001432	137.4	0.6510	-3.0303
CO3	0.001036	62.10	0.6552	-3.1684
OH-	0.0005648	9.599	0.8975	-3.2951
UO2(OH)3-	0.0003520	112.9	0.8989	-3.4997
HCO3-	0.0003211	19.58	0.8989	-3.5396
UO2(CO3)3	0.0002630	118.3	0.1791	-4.3270
02(aq)	0.0002111	6.752	1.0000	-3.6754
Cr04	0.0001140	13.21	0.6510	-4.1295
F-	0.0001050	1.993	0.8975	-4.0259
Fe(OH)4-	7.850e-005	9.718	0.8989	-4.1514
PO4	5.859e-005	5.561	0.3802	-4.6521
CaPO4-	4.702e-005	6.345	0.8989	-4.3740
NaHPO4-	3.716e-005	4.417	0.8989	-4.4762
NO3-	2.580e-005	1.599	0.8960	-4.6361
(UO2)2CO3(OH)3-	2.128e-005	13.84	0.8989	-4.7184
A102-	1.739e-005	1.025	0.8989	-4.8060
Cl-	1.609e-005	0.5701	0.8960	-4.8412
MgPO4-	1.369e-005	1.632	0.8989	-4.9099
NaCO3-	1.062e-005	0.8812	0.8989	-5.0200
MnO4-	1.058e-005	1.258	0.8975	-5.0224
Ni(OH)2(aq)	6.349e-006	0.5882	1.0000	-5.1973
(UO2)3(OH)7-	5.778e-006	5.365	0.8989	-5.2845
SO4	5.731e-006	0.5502	0.6510	-5.4282
Fe(OH)3(aq)	5.605e-006	0.5986	1.0000	-5.2514
Pb(OH)2(aq)	5.315e-006	1.281	1.0000	-5.2745
UO2(OH)2(aq)	5.099e-006	1.549	1.0000	-5.2925
MnO4	4.619e-006	0.5490	0.6510	-5.5219
Ni(OH)3-	3.581e-006	0.3926	0.8989	-5.4923
Pb(OH)3-	2.998e-006	0.7735	0.8989	-5.5695

UO2(CO3)2	2.413e-006	0.9405	0.6510	-5.8039
NaHCO3(aq)	1.772e-006	0.1488	1.0000	-5.7515
Sr++	1.128e-006	0.09874	0.6592	-6.1288
Ca++	9.861e-007	0.03949	0.6671	-6.1819
CaCO3(aq)	9.479e-007	0.09481	1.0000	-6.0233
PbCO3(aq)	6.718e-007	0.1794	1.0000	-6.1727
Pb(CO3)2	4.626e-007	0.1513	0.6510	-6.5212
UO2(OH)4	3.797e-007	0.1283	0.6510	-6.6070
Ni++	3.704e-007	0.02173	0.6671	-6.6071
SrCO3(aq)	3.699e-007	0.05457	1.0000	-6.4319
NaOH(aq)	3.462e-007	0.01384	1.0000	-6.4607
CaHPO4(aq)	3.371e-007	0.04584	1.0000	-6.4722
H2PO4-	3.322e-007	0.03219	0.8989	-6.5249
PbOH+	2.930e-007	0.06565	0.8989	-6.5794
UO2PO4-	2.617e-007	0.09547	0.8989	-6.6284
Mg++	2.088e-007	0.005070	0.6818	-6.8467
NaSO4-	1.181e-007	0.01405	0.8989	-6.9741
MgHPO4(aq)	1.079e-007	0.01297	1.0000	-6.9671
MgCO3(aq)	9.199e-008	0.007751	1.0000	-7.0363
SrHPO4(aq)	7.960e-008	0.01460	1.0000	-7.0991
NaF(aq)	4.079e-008	0.001711	1.0000	-7.3895
CO2(aq)	1.274e-008	0.0005602	1.0000	-7.8949
NaAlO2(aq)	1.215e-008	0.0009957	1.0000	-7.9153
NaCl(aq)	1.037e-008	0.0006059	1.0000	-7.9841
(only anoging	> 10 0 molal ligto	۵١		

(only species > 1e-8 molal listed)

MINETAL SACULACION	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Hematite Fluorapatite Pyromorphite-OH Pb40(PO4)2 Bixbyite Pyrolusite Parsonsite Hausmannite MnO2(gamma) Ferrite-Ca Ferrite-Mg Pb3(PO4)2 Goethite Hydroxylapatite		Diaspore Schoepite U03:2H2O Ca-Autunite U02(OH)2(beta) Schoepite-dehy(. U03:.9H2O(alpha) Schoepite-dehy(1 Ice Boehmite PbC03.PbO Gibbsite Litharge Calcite Crocoite Massicot Aragonite	log Q/K 0.2170s/sat 0.1888s/sat 0.1888s/sat 0.1636s/sat 0.0764s/sat 0.0054s/sat 0.0054s/sat -0.0749 -0.0810 -0.1387 -0.1869 -0.2793 -0.3787 -0.8231 -0.8703 -0.9961 -1.0053 -1.0147
Hydrocerussite Manganite CaUO4	5.1201s/sat 4.3328s/sat 4.2982s/sat	Pb4Cl2(OH)6 Schoepite-dehy(. Dolomite	-1.0988 -1.1842 -1.2214
Na2U2O7(c) Becquerelite Plattnerite Minium PbHPO4 Bunsenite	4.1206s/sat 3.9507s/sat 3.7639s/sat 3.1707s/sat 3.1129s/sat 2.3210s/sat	Dolomite-ord Pb4SO7 Schoepite-dehy(. Monohydrocalcite Brucite Pb3SO6	-1.2214 -1.3008 -1.7022 -1.7040 -1.7447 -1.9792
Magnetite	2.2023s/sat	Magnesite	-1.9800

Ni3(PO4)2	2.1594s/sat	Mn(OH)3	-2.1730
Ni(OH)2	2.0444s/sat	MnHPO4	-2.3152
Na2U2O7(am)	1.6123s/sat	UO3(gamma)	-2.6852
Strontianite	1.3453s/sat	Lanarkite	-2.7276
SrUO4(alpha)	1.1283s/sat	Dolomite-dis	-2.7658
Fe(OH)3(ppd)	1.0930s/sat	Dawsonite	-2.8747
Whitlockite	1.0185s/sat	SrHPO4	-2.9175
Cerussite	0.7852s/sat	NiCO3	-2.9586
(only minerals	with log $Q/K >$	-3 listed)	

U(g) 1.553e-288 -287.809

		In flu	id	Sor	bed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	1.74e-005	1.74e-005	0.469			
Ca++	4.93e-005	4.93e-005	1.97			
C1-	1.61e-005	1.61e-005	0.570			
Cr04	0.000114	0.000114	13.2			
	0.000105					
Fe++		8.41e-005				
H+		-0.00416				
H2O			.99e+005			
HCO3-	0.00219	0.00219	133.			
HPO4	0.00159	0.00159	153.			
Mg++		1.41e-005				
Mn++		1.52e-005				
NH3(aq)		2.58e-005				
Na+		0.00484				
Ni++		1.03e-005				
02(aq)	0.000302	0.000302	9.65			
Pb++	9.75e-006	9.75e-006	2.02			
SO4	5.85e-006	5.85e-006	0.562			
Sr++	1.58e-006	1.58e-006	0.138			
UO2++		0.000683				
Flomontal gomno	ngition	Tn	fluid		Sorbod	1
Elemental compo	osition	In moles	fluid ma/k	-a	Sorbed	
	osition total moles	s moles	mg/k		moles	l mg/kg
Aluminum	total moles 1.740e-005	moles 5 1.740e-0	mg/k	4692	moles	
Aluminum Calcium	total moles 1.740e-005 4.930e-005	moles 5 1.740e-0 5 4.930e-0	mg/k 05 0. 05 1	4692 975	moles	
Aluminum Calcium Carbon	1.740e-005 4.930e-005 0.00218	moles 5 1.740e-0 4.930e-0 7 0.0021	mg/k 05 0. 05 1 87 2	4692 975 26.25	moles	
Aluminum Calcium Carbon Chlorine	1.740e-005 4.930e-005 0.002187 1.610e-005	moles 1.740e-0 4.930e-0 0.0021 1.610e-0	mg/k 05 0. 05 1 87 2 05 0.	4692 975 26.25 5704	moles	
Aluminum Calcium Carbon Chlorine Chromium	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011	mg/k 05 0. 05 1 87 2 05 0. 40 5	4692 975 26.25 5704	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010	mg/k 05 0. 05 1 87 2 05 0. 40 5 50 1	4692 975 26.25 5704 5.924	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111	mg/k 05 0. 05 1 87 2 05 0. 40 5 50 1.1186	4692 975 26.25 5704 5.924 994	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0	mg/k 05	4692 975 26.25 5704 5.924 994 e+005	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0 8.410e-005 9.750e-006	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0	mg/k 05	4692 975 26.25 5704 5.924 994 e+005 1.694 2.019	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0 8.410e-005 9.750e-006 1.410e-005	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0	mg/k 05 0. 05 1 87 2 05 0. 40 5 50 1 .0 1.1186 05 4 06 2 05 0.	4692 975 26.25 5704 5.924 994 e+005 1.694 2.019	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	total moles 1.740e-009 4.930e-009 0.00218 1.610e-009 0.0001140 0.0001050 111.0 8.410e-009 9.750e-000 1.410e-009	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0	mg/k	4692 975 26.25 5704 5.924 994 e+005 1.694 2.019 3425 8345	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	1.740e-009 4.930e-009 0.00218 1.610e-009 0.0001140 0.0001050 111.0 8.410e-009 9.750e-000 1.410e-009 1.520e-009	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0 1.030e-0	mg/k	4692 975 26.25 5704 5.924 994 e+005 1.694 2.019 3425 8345 6041	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0 8.410e-005 9.750e-006 1.410e-005 1.520e-005 1.030e-005 2.580e-005	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0 1.030e-0 2.580e-0	mg/k	4692 975 26.25 5704 5.924 994 e+005 1.694 2.019 3425 8345 6041 3611	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0 8.410e-005 9.750e-006 1.410e-005 1.520e-005 2.580e-005	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0 1.030e-0 2.580e-0	mg/k	4692 975 975 975 924 994 9	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0 8.410e-005 9.750e-006 1.410e-005 1.520e-005 2.580e-005 55.52 0.001590	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0 1.030e-0 2.580e-0 2.580e-0	mg/k	4692 975 975 975 924 995 994 994 995 994 995 994 995 994 995 9	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0 8.410e-005 9.750e-006 1.410e-005 1.520e-005 2.580e-005 55.52 0.001590 0.004840	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0 1.030e-0 2.580e-0 5.0 0.0015	mg/k	4692 975 975 975 924 994 994 994 019 3425 8345 6041 3611 	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	1.740e-009 4.930e-009 0.002187 1.610e-009 0.0001140 0.0001050 111.0 8.410e-009 9.750e-009 1.410e-009 1.520e-009 2.580e-009 55.52 0.001590 0.004840 1.580e-009	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0 1.030e-0 2.580e-0 2.580e-0 0.0015 0.0048 1.580e-0	mg/k	4692 975 26.25 5704 5.924 994 e+005 4.694 2.019 3425 8345 6041 3611 e+005 49.22 21384	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	1.740e-005 4.930e-005 0.002187 1.610e-005 0.0001140 0.0001050 111.0 8.410e-005 9.750e-006 1.410e-005 1.520e-005 2.580e-005 55.52 0.001590 0.004840	moles 1.740e-0 4.930e-0 0.0021 1.610e-0 0.00011 0.00010 111 8.410e-0 9.750e-0 1.410e-0 1.520e-0 1.520e-0 1.030e-0 2.580e-0 5.0 0.0015 0.0048 1.580e-0 5.850e-0	mg/k	4692 975 975 975 924 994 994 994 019 3425 8345 6041 3611 	moles	

Sample 19887 water leach, Stage 3.

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.003261	74.94	0.9123	-2.5264
HPO4	0.0007272	69.76	0.6912	-3.2987
HCO3-	0.0004965	30.28	0.9123	-3.3440
CO3	0.0003941	23.63	0.6945	-3.5628
UO2(CO3)3	0.0003677	165.4	0.2278	-4.0769
02(aq)	0.0002130	6.811	1.0000	-3.6717
UO2(OH)3-	0.0001597	51.23	0.9123	-3.8367
OH-	0.0001430	2.430	0.9112	-3.8851
(UO2)2CO3(OH)3-	0.0001055	68.65	0.9123	-4.0166
CrO4	0.0001020	11.82	0.6912	-4.1518
Fe(OH)4-	6.162e-005	7.630	0.9123	-4.2501
CaPO4-	4.682e-005	6.319	0.9123	-4.3694
F-	3.999e-005	0.7593	0.9112	-4.4384
Fe(OH)3(aq)	1.737e-005	1.856	1.0000	-4.7601
NaHPO4-	1.364e-005	1.621	0.9123	-4.9052
MgPO4-	1.278e-005	1.524	0.9123	-4.9333
MnO4-	1.273e-005	1.514	0.9112	-4.9354
UO2(CO3)2	1.002e-005	3.906	0.6912	-5.1595
UO2(OH)2(aq)	9.131e-006	2.775	1.0000	-5.0395
(UO2)3(OH)7-	8.403e-006	7.803	0.9123	-5.1154
PO4	7.091e-006	0.6730	0.4353	-5.5105
NO3-	6.980e-006	0.4325	0.9101	-5.1971
Ca++	6.816e-006	0.2730	0.7039	-5.3189
Cl-	6.767e-006	0.2398	0.9101	-5.2105
Ni(OH)2(aq)	4.744e-006	0.4396	1.0000	-5.3239
Pb(OH)2(aq)	4.449e-006	1.073	1.0000	-5.3517
SO4	4.193e-006	0.4026	0.6912	-5.5378
A102-	4.027e-006	0.2374	0.9123	-5.4348
Ni++	3.970e-006	0.2329	0.7039	-5.5537
PbCO3(aq)	3.433e-006	0.9169	1.0000	-5.4643
NaCO3-	2.918e-006	0.2420	0.9123	-5.5748
CaCO3(aq)	2.789e-006	0.2790	1.0000	-5.5546

NaHCO3(aq)	1.922e-006	0.1614	1.0000	-5.7163
Sr++	1.473e-006	0.1290	0.6977	-5.9881
MnO4	1.363e-006	0.1620	0.6912	-6.0258
Mg++	1.360e-006	0.03304	0.7156	-6.0118
CaHPO4(aq)	1.325e-006	0.1802	1.0000	-5.8776
UO2PO4-	9.684e-007	0.3533	0.9123	-6.0538
PbOH+	9.402e-007	0.2107	0.9123	-6.0666
Pb(CO3)2	8.981e-007	0.2937	0.6912	-6.2070
H2PO4-	6.863e-007	0.06653	0.9123	-6.2033
Ni(OH)3-	6.776e-007	0.07430	0.9123	-6.2089
Pb(OH)3-	6.355e-007	0.1640	0.9123	-6.2367
MgHPO4(aq)	3.977e-007	0.04781	1.0000	-6.4005
Ca2UO2(CO3)3	3.058e-007	0.1620	1.0000	-6.5146
MgCO3(aq)	2.537e-007	0.02138	1.0000	-6.5956
SrCO3(aq)	2.063e-007	0.03043	1.0000	-6.6856
CO2(aq)	7.776e-008	0.003420	1.0000	-7.1093
NaSO4-	6.246e-008	0.007432	0.9123	-7.2442
NaOH(aq)	6.148e-008	0.002458	1.0000	-7.2112
SrHPO4(aq)	5.931e-008	0.01088	1.0000	-7.2268
UO2(OH)4	4.231e-008	0.01429	0.6912	-7.5340
PbP207	3.126e-008	0.01191	0.6912	-7.6654
CaHCO3+	2.653e-008	0.002680	0.9123	-7.6162
HCrO4-	1.872e-008	0.002190	0.9123	-7.7674
NaF(aq)	1.090e-008	0.0004575	1.0000	-7.9625
(only species	> 1e-8 molal liste	ed)		

Mineral saturation states log Q/K

mineral saturation	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Trevorite Pyromorphite-OH Fluorapatite Hematite Pb40(PO4)2 Bixbyite Parsonsite Pyrolusite Hausmannite Pb3(PO4)2 MnO2(gamma) Ferrite-Ca Ferrite-Mg Hydroxylapatite Goethite Hydrocerussite Becquerelite Manganite CaUO4	56.0112s/sat 48.6270s/sat 20.7111s/sat 19.3585s/sat 14.4015s/sat 14.3948s/sat 14.3712s/sat 12.4892s/sat 10.6484s/sat 9.5057s/sat 9.4412s/sat 9.3636s/sat 8.1524s/sat 7.9234s/sat 7.6329s/sat 7.0238s/sat 6.7054s/sat 6.4598s/sat 5.1518s/sat 5.0061s/sat 4.2342s/sat	Schoepite U03:2H2O PbC03.PbO SrU04(alpha) U02(OH)2(beta) Schoepite-dehy(. U03:.9H2O(alpha) Diaspore Schoepite-dehy(1 Crocoite Ice Boehmite Dolomite Dolomite Dolomite Gibbsite Pb4S07 Aragonite MnHPO4 Litharge Schoepite-dehy(.	10g Q/K 0.4418s/sat 0.4418s/sat 0.3519s/sat 0.3420s/sat 0.3294s/sat 0.2584s/sat 0.2584s/sat 0.1782s/sat 0.1781s/sat 0.1720s/sat 0.0843s/sat -0.1387 -0.2257 -0.3121 -0.4016 -0.4175 -0.5393 -0.5460 -0.7313 -0.9003 -0.9312
PbHPO4	3.9473s/sat	Pb4Cl2(OH)6	-0.9664
Plattnerite Magnetite	3.6886s/sat 3.6753s/sat	Massicot Pb3SO6	-1.0825 -1.1405
Ni3(PO4)2	3.6030s/sat	Monohydrocalcite	-1.2353
Na2U2O7(c)	3.1257s/sat	Schoepite-dehy(.	-1.4492
Minium	2.9409s/sat	Mn(OH)3	-1.4998

Bunsenite	2.1944s/sat	Magnesite	-1.5393
Ca-Autunite	2.1759s/sat	Lanarkite	-1.8116
Ni(OH)2	1.9178s/sat	Dolomite-dis	-1.8565
Whitlockite	1.8907s/sat	Brucite	-2.0898
Fe(OH)3(ppd)	1.5843s/sat	NiCO3	-2.2994
Cerussite	1.4936s/sat	UO3(gamma)	-2.4322
Strontianite	1.0916s/sat	Saleeite	-2.8215
Na2U2O7(am)	0.6174s/sat	Dawsonite	-2.8783
(only minerals	with log $Q/K >$	-3 listed)	

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) HF(g) HC1(g) NO2(g) N2(g) N0(g) C12(g) H2(g) CO(g) U02F2(g) SO2(g) Pb(g) U03(g) N4(g) V02C12(g) U0F4(g) F2(g) UF5(g) UF5(g) UF4(g) UF6(g) UC14(g) UC15(g) UC14(g) UC15(g) UC14(g) UC15(g) UC15(g) UC16(g) UC16(g) UC2F10(g)	0.1685 0.02598 2.289e-006 2.182e-016 2.366e-022 1.752e-023 1.028e-026 2.861e-029 3.332e-036 6.827e-042 4.881e-051 3.241e-059 2.235e-062 9.232e-063 2.124e-066 1.379e-072 4.340e-073 4.689e-074 6.259e-078 2.226e-087 1.132e-093 2.345e-100 5.381e-101 3.223e-119 6.232e-127 3.027e-135 1.103e-145 3.966e-148 2.225e-148 4.562e-149 1.756e-149 7.463e-151 1.434e-161	-0.773 -1.585 -5.640 -15.661 -21.626 -22.756 -25.988 -28.544 -35.477 -41.166 -50.312 -58.489 -61.651 -62.035 -65.673 -71.860 -72.363 -71.860 -72.363 -73.329 -77.203 -86.652 -92.946 -99.630 -100.269 -118.492 -126.205 -134.519 -144.958 -147.402 -147.653 -148.341 -148.755 -150.127 -160.843
UC16(g) U2F10(g) UC13(g) A1(g) C(g)	7.463e-151 1.434e-161 4.276e-162 2.927e-191 2.789e-192	-150.127 -160.843 -161.369 -190.534 -191.555
UF2(g) UO(g) UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g)	3.116e-193 1.942e-203 3.270e-206 1.074e-231 1.475e-241 6.660e-243 5.477e-248 2.258e-259 2.427e-264	-192.506 -202.712 -205.485 -230.969 -240.831 -242.177 -247.261 -258.646 -263.615

U(g) 2.745e-288 -287.561

Original basis	total moles	In flu			bed mg/kg	Kd L/kg
Al+++	4 020 006	4.03e-006	0.109			
Ca++	5 9/0-005	5 940-005	2 24			
Cl-	5.04e-005	5.84e-005 6.77e-006 0.000102 4.00e-005	0 240			
Cr04	0.776-000	0.776-000	0.2 1 0			
F-	4 000-005	4 000-005	0 760			
Fe++	7.90e-005	7.90e-005	4 41			
H+	-0.00303		-3.05			
Н2О			.99e+005			
HCO3-	0.00213	0.00213	130.			
		0.000811	77.8			
Mg++						
Mn++	1.41e-005	1.48e-005 1.41e-005	0.300			
NH3(aq)	6.98e-006	6.98e-006	0.119			
Na+	0.00328	0.00328	75 4			
Ni++		9.40e-006				
	0.000264					
Pb++		1.04e-005				
SO4						
Sr++	1.200 000	4.26e-006 1.74e-006	0.152			
UO2++	0.000784		0.152 212.			
002	0.000701	0.000701	2-2.			
Elemental compo			fluid		Sorbed	
Elemental compo			fluid mg/k	g 	Sorbec	d mg/kg
Elemental compo	total moles	s moles	mg/k			
	total moles	s moles	mg/k			
Aluminum Calcium Carbon	total moles 4.030e-006 5.840e-005 0.002133	moles 5 4.030e-0 5 5.840e-0 0.0021	mg/k 06 0. 05 2 33 2	 1087		
Aluminum Calcium Carbon Chlorine	total moles 4.030e-006 5.840e-005 0.002133 6.770e-006	moles 	mg/k 06 0. 05 2 33 2 06 0.	1087 .339		
Aluminum Calcium Carbon Chlorine	total moles 4.030e-006 5.840e-005 0.002133	moles 	mg/k 06 0. 05 2 33 2 06 0.	1087 .339 5.61		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010	mg/k 06 0. 05 2 33 2 06 0. 20 5	1087 .339 5.61 2399		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	4.030e-006 5.840e-006 0.002133 6.770e-006 0.0001020 4.000e-005	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111	mg/k 06 0. 05 2 33 2 06 0. 20 5 05 00 1.118e	1087 .339 5.61 2399 .301 7595		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0	mg/k 06 0. 05 2 33 2 06 0. 20 5 05 00 1.118e	1087 .339 5.61 2399 .301 7595		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0	mg/k 06 0. 05 2 33 2 06 0. 20 5 05 00 1.118e	1087 .339 5.61 2399 .301 7595 +005 .410		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0	mg/k 06 0. 05 2 33 2 06 0. 20 5 05 00 1.118e	1087 .339 5.61 2399 .301 7595 +005 .410		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0	mg/k 06 0. 05 2 33 2 06 0. 20 5 05 00 1.118e	1087 .339 5.61 2399 .301 7595 +005 .410		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	total moles 4.030e-006 5.840e-009 0.002133 6.770e-006 0.0001020 4.000e-009 111.0 7.900e-009 1.040e-009 1.480e-009 9.400e-006	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0 1.040e-0 1.480e-0 1.410e-0 9.400e-0	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0 1.040e-0 1.480e-0 1.410e-0 9.400e-0	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	total moles 4.030e-006 5.840e-009 0.002133 6.770e-006 0.0001020 4.000e-009 111.0 7.900e-009 1.040e-009 1.480e-009 9.400e-006	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0 1.480e-0 1.410e-0 9.400e-0 6.980e-0	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595 7742 5514		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0 7.900e-005 1.480e-005 1.410e-005 9.400e-006	moles 4.030e-0 5.840e-0 0.0021 6.770e-0 0.00010 4.000e-0 111 7.900e-0 1.480e-0 1.410e-0 9.400e-0 6.980e-0 2.55.	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595 7742 5514		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	total moles 4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0 7.900e-005 1.480e-005 1.410e-005 9.400e-006 6.980e-006	moles	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595 7742 5514 9771 +005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	total moles 4.030e-006 5.840e-005 0.002133 6.770e-006 0.0001020 4.000e-005 111.0 7.900e-005 1.480e-005 9.400e-006 6.980e-006 55.52 0.0008110	moles	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595 7742 5514 9771 +005 5.11		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles 4.030e-006 5.840e-006 0.002133 6.770e-006 0.0001020 4.000e-009 111.0 7.900e-009 1.040e-009 1.480e-009 9.400e-006 55.52 0.0008110 0.003280	moles	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595 7742 5514 9771 +005 5.11 5.37		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	101al moles 4.030e-006 5.840e-006 0.002133 6.770e-006 0.0001020 4.000e-009 111.0 7.900e-009 1.440e-009 1.410e-009 9.400e-006 55.52 0.0008110 0.003280 1.740e-006	moles	mg/k 06	1087 .339 5.61 2399 .301 7595 +005 .410 .154 3595 7742 5514 9771 +005 5.11 5.37		

Sample 19887 water leach, Stage 4.

Ionic strength = 0.004/5/
Activity of water = 1.000000
Solvent mass = 0.999985 kg
Solution mass = 1.000248 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000007 molal
Dissolved solids = 263 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity= 124.03 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)	fixed fuga	city buffer			-

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001512	34.75	0.9287	-2.8526
CO3	0.0008751	52.50	0.7450	-3.1858
OH-	0.0004440	7.549	0.9279	-3.3851
HPO4	0.0004411	42.33	0.7427	-3.4846
HCO3-	0.0003674	22.41	0.9287	-3.4670
02(aq)	0.0002255	7.213	1.0000	-3.6469
Cr04	0.0001310	15.19	0.7427	-4.0119
UO2(OH)3-	8.793e-005	28.22	0.9287	-4.0880
UO2(CO3)3	6.606e-005	29.72	0.3039	-4.6973
CaPO4-	2.153e-005	2.906	0.9287	-4.6992
MnO4-	1.375e-005	1.635	0.9279	-4.8942
PO4	1.243e-005	1.180	0.5119	-5.1964
Fe(OH)4-	1.100e-005	1.362	0.9287	-4.9907
F-	8.569e-006	0.1628	0.9279	-5.0996
Pb(OH)2(aq)	7.886e-006	1.902	1.0000	-5.1031
A102-	7.228e-006	0.4262	0.9287	-5.1731
Cl-	7.119e-006	0.2523	0.9272	-5.1804
NO3-	6.980e-006	0.4327	0.9272	-5.1890
MgPO4-	4.377e-006	0.5219	0.9287	-5.3910
MnO4	4.349e-006	0.5172	0.7427	-5.4907
SO4	4.228e-006	0.4060	0.7427	-5.5030
NaHPO4-	4.120e-006	0.4900	0.9287	-5.4172
Pb(OH)3-	3.500e-006	0.9034	0.9287	-5.4881
NaCO3-	3.222e-006	0.2674	0.9287	-5.5240
(UO2)2CO3(OH)3-	2.454e-006	1.597	0.9287	-5.6423
UO2(OH)2(aq)	1.619e-006	0.4921	1.0000	-5.7908
CaCO3(aq)	1.509e-006	0.1510	1.0000	-5.8214
PbCO3(aq)	1.450e-006	0.3873	1.0000	-5.8387
Ca++	1.450e-006	0.05808	0.7516	-5.9628
Ni(OH)2(aq)	1.130e-006	0.1047	1.0000	-5.9469
Fe(OH)3(aq)	9.984e-007	0.1067	1.0000	-6.0007

UO2(CO3)2 Pb(CO3)2 NaHCO3(aq)	9.383e-007 8.408e-007 6.831e-007	0.3659 0.2751 0.05737	0.7427 0.7427 1.0000	-6.1568 -6.2045 -6.1655
PbOH+	5.177e-007	0.1161	0.9287	-6.3180
Ni(OH)3-	5.014e-007	0.05500	0.9287	-6.3319
Sr++	3.308e-007	0.02898	0.7473	-6.6070
Mg++	2.166e-007	0.005263	0.7599	-6.7836
CaHPO4(aq)	1.962e-007	0.02668	1.0000	-6.7074
(UO2)3(OH)7-	1.455e-007	0.1351	0.9287	-6.8694
H2PO4-	1.390e-007	0.01348	0.9287	-6.8892
SrCO3(aq)	1.182e-007	0.01744	1.0000	-6.9274
MgCO3(aq)	1.022e-007	0.008616	1.0000	-6.9905
NaOH(aq)	9.174e-008	0.003668	1.0000	-7.0374
Ni++	8.857e-008	0.005197	0.7516	-7.1767
UO2(OH)4	6.980e-008	0.02359	0.7427	-7.2853
MgHPO4(aq)	4.383e-008	0.005271	1.0000	-7.3582
UO2PO4-	3.477e-008	0.01269	0.9287	-7.4910
NaSO4-	3.137e-008	0.003733	0.9287	-7.5357
CO2(aq)	1.852e-008	0.0008150	1.0000	-7.7323
(only species	> 1e-8 molal liste	ed)		

Mineral saturation	states log Q/K		log Q/K
Mineral saturation Birnessite Todorokite Pyromorphite Trevorite Pyromorphite-OH Hematite Fluorapatite Pb40(PO4)2 Bixbyite Pyrolusite Hausmannite MnO2(gamma) Parsonsite Pb3(PO4)2 Hydrocerussite Ferrite-Ca Goethite Ferrite-Mg Hydroxylapatite Manganite Plattnerite CaUO4 Minium PbHPO4 Na2U2O7(c)	log Q/K	Magnetite Diaspore Ice Schoepite U03:2H2O U02(OH)2(beta) Boehmite Schoepite-dehy(. U03:.9H2O(alpha) Pb4SO7 Crocoite Na2U2O7(am) Schoepite-dehy(. Schoepite-dehy(1 Ni3(PO4)2 Litharge Gibbsite Calcite Aragonite Massicot Pb4C12(OH)6 Dolomite-ord Dolomite Ca-Autunite Pb3SO6	-0.0526 -0.0601 -0.1387 -0.3095 -0.3095 -0.4219 -0.4640 -0.4929 -0.5102 -0.5271 -0.5377 -0.5732 -0.5732 -0.6380 -0.6517 -0.6558 -0.6684 -0.8128 -0.8339 -0.9119 -0.9738 -0.9738 -1.3424 -1.3599
Bunsenite Ni(OH)2	1.5714s/sat 1.2948s/sat	Monohydrocalcite Schoepite-dehy(.	-1.5021 -1.6825
Cerussite Becquerelite Strontianite Whitlockite Fe(OH)3(ppd) PbCO3.PbO	1.1192s/sat 1.0000s/sat 0.8498s/sat 0.5874s/sat 0.3437s/sat 0.2261s/sat	Brucite Magnesite Mn(OH)3 Schoepite-dehy(. Lanarkite MnHPO4	-1.8616 -1.9342 -1.9833 -2.2005 -2.2797 -2.4068

SrUO4(alpha) -0.0282 Dolomite-dis -2.5182 (only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.			
02(g)	0.1784	-0.749			
H2O(g)	0.02598	-1.585			
CO2(g)	5.453e-007	-6.263			
HF(g)	1.506e-017	-16.822			
HCl(g)	8.018e-023	-22.096			
NO2(g)	5.565e-024	-23.255			
N2(g)	9.256e-028	-27.034			
NO(g)	8.831e-030	-29.054			
Cl2(g)	3.938e-037	-36.405			
H2(g)	6.635e-042	-41.178			
CO(g)	1.130e-051	-50.947			
UO2F2(g)	2.736e-062	-61.563			
Pb(g)	1.590e-062	-61.798			
S02(g)	2.353e-063	-62.628			
UO3(g)	3.765e-067	-66.424			
Na(g)	6.384e-073	-72.195			
NH3(g)	3.964e-073	-72.402			
UO2C12(g)	9.548e-076	-75.020			
UOF4(g)	2.516e-083	-82.599			
F2(g)	1.091e-089	-88.962			
UF5(g)	3.096e-100	-99.509			
UF4(g)	9.161e-106	-105.038			
UF6(g)	1.030e-108	-107.987			
UO2(g)	5.553e-120	-119.255			
Mg(g)	1.024e-126	-125.990			
UC14(g)	6.880e-138	-137.162			
Ca(g)	1.007e-148	-147.997			
UC15(g)	8.616e-149	-148.065			
CH4(g)	8.430e-149	-148.074			
H2S(g)	1.697e-150	-149.770			
UF3(g)	1.242e-152	-151.906			
UC16(g)	2.005e-154	-153.698			
UC13(g)	2.827e-164	-163.549			
U2F10(g)	1.073e-174	-173.970			
Al(g)	1.620e-191	-190.790			
C(g)	6.275e-193	-192.202			
UF2(g)	2.485e-196	-195.605			
UO(g)	3.252e-204	-203.488			
UC12(g)	6.290e-208	-207.201			
UF(g)	1.223e-233	-232.912			
S2(g)	1.459e-243	-242.836			
C2H4(g)	3.186e-244	-243.497			
UCl(g)	3.166e-249	-248.514			
U2Cl8(g)	1.167e-264	-263.933			
U2Cl10(g)	1.482e-270	-269.829			
U(g)	4.467e-289	-288.350			
	1.10/6 200	200.550			
	Tı	n fluid	Sork	ned	Kd
Original basis total			moles		L/kg
					,

Al+++ 7.23e-006 7.23e-006 0.195 Ca++ 2.47e-005 2.47e-005 0.990

Cl-	7.12e-006	7.12e-006	0.252
Cr04	0.000131	0.000131	15.2
F-	8.57e-006	8.57e-006	0.163
Fe++	1.20e-005	1.20e-005	0.670
H+	-0.00200	-0.00200	-2.02
H2O	55.5	55.5	1.00e+006
HCO3-	0.00145	0.00145	88.7
HPO4	0.000484	0.000484	46.4
Mg++	4.74e-006	4.74e-006	0.115
Mn++	1.81e-005	1.81e-005	0.994
NH3(aq)	6.98e-006	6.98e-006	0.119
Na+	0.00152	0.00152	34.9
Ni++	1.72e-006	1.72e-006	0.101
02(aq)	0.000264	0.000264	8.44
Pb++	1.42e-005	1.42e-005	2.94
SO4	4.26e-006	4.26e-006	0.409
Sr++	4.59e-007	4.59e-007	0.0402
UO2++	0.000162	0.000162	43.7

Elemental comp	osition	In fl	uid	Sork	ped
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	7.230e-006	7.230e-006	0.1950		
Calcium	2.470e-005	2.470e-005	0.9897		
Carbon	0.001454	0.001454	17.46		
Chlorine	7.120e-006	7.120e-006	0.2524		
Chromium	0.0001310	0.0001310	6.810		
Fluorine	8.570e-006	8.570e-006	0.1628		
Hydrogen	111.0	111.0	1.119e+005		
Iron	1.200e-005	1.200e-005	0.6700		
Lead	1.420e-005	1.420e-005	2.942		
Magnesium	4.740e-006	4.740e-006	0.1152		
Manganese	1.810e-005	1.810e-005	0.9941		
Nickel	1.720e-006	1.720e-006	0.1009		
Nitrogen	6.980e-006	6.980e-006	0.09774		
Oxygen	55.52	55.52	8.880e+005		
Phosphorus	0.0004840	0.0004840	14.99		
Sodium	0.001520	0.001520	34.94		
Strontium	4.590e-007	4.590e-007	0.04021		
Sulfur	4.260e-006	4.260e-006	0.1366		
Uranium	0.0001620	0.0001620	38.55		

Sample 19887 water leach, Stage 5.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 9.940
 log f02 = -0.715

 Eh = 0.6305 volts
 pe = 10.6576

 Ionic strength
 0.002967

 Activity of water
 1.000000

 Solvent mass
 0.999995 kg

 Solution mass
 1.000189 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000007 molal

 Dissolved solids
 194 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 84.92 mg/kg as CaCO3

 Xi = 0.0000Step #

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001096	25.20	0.9422	-2.9859
HCO3-	0.0006490	39.59	0.9422	-3.2136
CO3	0.0003166	19.00	0.7889	-3.6024
HPO4	0.0002592	24.87	0.7873	-3.6902
02(aq)	0.0002435	7.789	1.0000	-3.6136
UO2(CO3)3	9.589e-005	43.15	0.3839	-4.4340
OH-	9.354e-005	1.591	0.9417	-4.0551
UO2(OH)3-	2.762e-005	8.865	0.9422	-4.5847
Cr04	2.019e-005	2.342	0.7873	-4.7986
CaPO4-	1.234e-005	1.666	0.9422	-4.9346
Fe(OH)4-	1.027e-005	1.272	0.9422	-5.0141
(UO2)2CO3(OH)3-	9.628e-006	6.267	0.9422	-5.0423
NO3-	6.980e-006	0.4327	0.9412	-5.1825
Cl-	6.769e-006	0.2399	0.9412	-5.1958
A102-	6.467e-006	0.3813	0.9422	-5.2152
F-	6.159e-006	0.1170	0.9417	-5.2366
Ca++	5.997e-006	0.2403	0.7934	-5.3226
Fe(OH)3(aq)	4.425e-006	0.4728	1.0000	-5.3541
UO2(CO3)2	4.236e-006	1.652	0.7873	-5.4769
SO4	4.233e-006	0.4065	0.7873	-5.4773
MgPO4-	2.912e-006	0.3473	0.9422	-5.5616
CaCO3(aq)	2.524e-006	0.2526	1.0000	-5.5979
UO2(OH)2(aq)	2.413e-006	0.7334	1.0000	-5.6175
MnO4-	2.181e-006	0.2593	0.9417	-5.6874
NaHPO4-	1.861e-006	0.2213	0.9422	-5.7562
PO4	1.452e-006	0.1378	0.5837	-6.0720
Ni++	1.087e-006	0.06381	0.7934	-6.0641
Mg++	1.044e-006	0.02537	0.7992	-6.0786
NaHCO3(aq)	9.006e-007	0.07564	1.0000	-6.0455
NaCO3-	8.951e-007	0.07428	0.9422	-6.0740
PbCO3(aq)	8.684e-007	0.2320	1.0000	-6.0613

Ni(OH)2(aq)	6.695e-007	0.06205	1.0000	-6.1743
Pb(OH)2(aq)	5.636e-007	0.1359	1.0000	-6.2490
CaHPO4(aq)	5.336e-007	0.07258	1.0000	-6.2728
H2PO4-	3.991e-007	0.03870	0.9422	-6.4248
Sr++	3.736e-007	0.03273	0.7904	-6.5297
MgCO3(aq)	1.985e-007	0.01674	1.0000	-6.7022
Pb(CO3)2	1.820e-007	0.05955	0.7873	-6.8437
PbOH+	1.706e-007	0.03824	0.9422	-6.7939
CO2(aq)	1.553e-007	0.006832	1.0000	-6.8089
UO2PO4-	1.488e-007	0.05430	0.9422	-6.8533
MnO4	1.385e-007	0.01647	0.7873	-6.9623
MgHPO4(aq)	1.384e-007	0.01664	1.0000	-6.8588
Ca2UO2(CO3)3	1.321e-007	0.07004	1.0000	-6.8790
(UO2)3(OH)7-	1.015e-007	0.09427	0.9422	-7.0195
Ni(OH)3-	6.260e-008	0.006867	0.9422	-7.2293
SrCO3(aq)	5.409e-008	0.007984	1.0000	-7.2668
Pb(OH)3-	5.270e-008	0.01361	0.9422	-7.3040
CaHCO3+	3.438e-008	0.003475	0.9422	-7.4895
NaSO4-	2.414e-008	0.002873	0.9422	-7.6432
NaOH(aq)	1.443e-008	0.0005770	1.0000	-7.8407
(only species >	· 1e-8 molal liste	ed)		

_	Mineral Saturation	log Q/K		log Q/K
	Birnessite Todorokite Trevorite Pyromorphite Hematite Fluorapatite Pyromorphite-OH Bixbyite Pyrolusite Pyrolusite Ph40(PO4)2 Hausmannite MnO2(gamma) Parsonsite Ferrite-Ca Goethite Ferrite-Mg Pb3(PO4)2 Hydroxylapatite Hydrocerussite Manganite CaUO4 PbHPO4 Plattnerite Magnetite Bunsenite		Strontianite Minium Boehmite Gibbsite Schoepite U03:2H2O Ice U02(OH)2(beta) Schoepite-dehy(. U03:.9H2O(alpha) Schoepite-dehy(1 Calcite Dolomite-ord Aragonite SrUO4(alpha) Crocoite PbCO3.PbO Monohydrocalcite MnHPO4 Schoepite-dehy(. Magnesite Litharge Na2U2O7(am)	log Q/K 0.5104s/sat 0.2780s/sat 0.1639s/sat -0.0279 -0.1362 -0.1362 -0.1387 -0.2486 -0.3196 -0.3196 -0.3999 -0.4060 -0.4449 -0.4620 -0.4620 -0.5893 -1.1176 -1.1198 -1.1424 -1.2786 -1.1424 -1.2786 -1.4374 -1.5092 -1.6459 -1.7977
		·		
	Becquerelite	1.3400s/sat	Massicot Dolomite-dis	-1.9798
	Ni(OH)2 Fe(OH)3(ppd)	1.0674s/sat 0.9903s/sat	Schoepite-dehy(.	-2.0064 -2.0272
	Ni3(PO4)2	0.9488s/sat	Mn(OH)3	-2.1399
	Cerussite Whitlockite	0.8966s/sat 0.7567s/sat	Brucite Dawsonite	-2.4966 -2.8179
	Na2U2O7(c)	0.7106s/sat	NiCO3	-2.8495

Ca-Autunite 0.5732s/sat Corundum Diaspore 0.5678s/sat (only minerals with log Q/K > -3 listed) 0.5732s/sat Corundum -2.8559

02(g)					
	0.1926	-0.715			
H2O(g)	0.02598	-1.585			
CO2(g)	4.570e-006	-5.340			
HF(g)	5.138e-017	-16.289			
HCl(g)	3.620e-022	-21.441			
NO2(g)	2.592e-023	-22.586			
N2(g)	1.722e-026	-25.764			
NO(g)	3.958e-029	-28.403			
Cl2(g)	8.341e-036	-35.079			
H2(g)	6.385e-042	-41.195			
CO(g)	9.115e-051	-50.040			
UO2F2(g)	4.747e-061	-60.324			
SO2(g)	5.257e-062	-61.279			
Pb(g)	1.094e-063	-62.961			
UO3(g)	5.612e-067	-66.251			
NH3(g)	1.614e-072	-71.792			
Na(g)	9.850e-074	-73.007			
UO2Cl2(g)	2.901e-074	-73.537			
UOF4(g)	5.082e-081	-80.294			
F2(g)	1.319e-088	-87.880			
UF5(g)	2.092e-097	-96.679			
UF4(g)	1.780e-103	-102.750			
UF6(g)	2.421e-105	-104.616			
UO2(g)	7.965e-120	-119.099			
Mg(g)	2.284e-127	-126.641			
UCl4(g)	4.100e-135	-134.387			
UC15(g)	2.363e-145	-144.626			
CH4(g)	6.060e-148	-147.218			
H2S(g)	3.379e-149	-148.471			
Ca(g)	1.934e-149	-148.714			
UCl6(g)	2.531e-150	-149.597			
UF3(g)	6.940e-151	-150.159			
UC13(g)	3.661e-162	-161.436			
U2F10(g)	4.901e-169	-168.310			
Al(g)	6.494e-191	-190.188			
C(g)	4.871e-192	-191.312			
		-194.399			
UF2(g)	3.992e-195 4.489e-204				
UO(g)		-203.348			
UCl2(g)	1.770e-206	-205.752			
UF(g)	5.652e-233	-232.248			
S2(g)	6.247e-241	-240.204			
C2H4(g)	1.777e-242	-241.750			
UCl(g)	1.873e-248	-247.727			
U2C18(g)	4.143e-259	-258.383			
U2Cl10(g)	1.115e-263	-262.953			
U(g)	5.934e-289	-288.227			
		fluid	Sork	oed	Kd
Original basis	total moles moles	mg/kg	moles	mg/kg	L/kg

Ca++	2.17e-005	2.17e-005	0.870
Cl-	6.77e-006	6.77e-006	0.240
Cr04	2.02e-005	2.02e-005	2.34
F-	6.16e-006	6.16e-006	0.117
Fe++	1.47e-005	1.47e-005	0.821
H+	-0.000937	-0.000937	-0.945
H2O	55.5	55.5	1.00e+006
HCO3-	0.00128	0.00128	78.0
HPO4	0.000279	0.000279	26.8
Mg++	4.30e-006	4.30e-006	0.104
Mn++	2.32e-006	2.32e-006	0.127
NH3(aq)	6.98e-006	6.98e-006	0.119
Na+	0.00110	0.00110	25.3
Ni++	1.82e-006	1.82e-006	0.107
02(aq)	0.000264	0.000264	8.45
Pb++	1.84e-006	1.84e-006	0.381
SO4	4.26e-006	4.26e-006	0.409
Sr++	4.35e-007	4.35e-007	0.0381
UO2++	0.000150	0.000150	40.5

Elemental composition		In fluid		Sorbed		
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	6.470e-006	6.470e-006	0.1745			
Calcium	2.170e-005	2.170e-005	0.8695			
Carbon	0.001278	0.001278	15.34			
Chlorine	6.770e-006	6.770e-006	0.2400			
Chromium	2.020e-005	2.020e-005	1.050			
Fluorine	6.160e-006	6.160e-006	0.1170			
Hydrogen	111.0	111.0	1.119e+005			
Iron	1.470e-005	1.470e-005	0.8208			
Lead	1.840e-006	1.840e-006	0.3812			
Magnesium	4.300e-006	4.300e-006	0.1045			
Manganese	2.320e-006	2.320e-006	0.1274			
Nickel	1.820e-006	1.820e-006	0.1068			
Nitrogen	6.980e-006	6.980e-006	0.09775			
Oxygen	55.51	55.51	8.880e+005			
Phosphorus	0.0002790	0.0002790	8.640			
Sodium	0.001100	0.001100	25.28			
Strontium	4.350e-007	4.350e-007	0.03811			
Sulfur	4.260e-006	4.260e-006	0.1366			
Uranium	0.0001500	0.0001500	35.70			

Sample 19887 water leach, Stage 6.

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.003796	87.19	0.9117	-2.4608
UO2(OH)3-	0.0006388	204.9	0.9117	-3.2348
CO3	0.0004945	29.65	0.6926	-3.4653
HPO4	0.0003782	36.26	0.6893	-3.5839
UO2(CO3)3	0.0003669	165.0	0.2252	-4.0828
HCO3-	0.0003116	19.00	0.9117	-3.5465
OH-	0.0002855	4.851	0.9106	-3.5851
(UO2)2CO3(OH)3-	0.0002659	173.0	0.9117	-3.6154
02(aq)	0.0002153	6.882	1.0000	-3.6670
(UO2)3(OH)7-	0.0001350	125.3	0.9117	-3.9097
Cr04	9.520e-005	11.03	0.6893	-4.1830
Fe(OH)4-	6.897e-005	8.536	0.9117	-4.2015
CaPO4-	5.730e-005	7.731	0.9117	-4.2820
F-	2.629e-005	0.4991	0.9106	-4.6209
A102-	2.259e-005	1.331	0.9117	-4.6863
MgPO4-	2.205e-005	2.628	0.9117	-4.6968
$\mathtt{UO2}(\mathtt{OH})\mathtt{2}(\mathtt{aq})$	1.830e-005	5.559	1.0000	-4.7376
NO3-	1.750e-005	1.084	0.9094	-4.7982
MnO4-	1.030e-005	1.224	0.9106	-5.0278
Fe(OH)3(aq)	9.738e-006	1.040	1.0000	-5.0115
Pb(OH)2(aq)	9.560e-006	2.304	1.0000	-5.0196
NaHPO4-	8.230e-006	0.9783	0.9117	-5.1247
Ca++	8.078e-006	0.3235	0.7021	-5.2463
UO2(CO3)2	7.922e-006	3.087	0.6893	-5.2628
PO4	7.384e-006	0.7006	0.4325	-5.4957
Cl-	6.767e-006	0.2397	0.9094	-5.2108
Ni(OH)2(aq)	5.956e-006	0.5516	1.0000	-5.2251
NaCO3-	4.250e-006	0.3524	0.9117	-5.4118
SO4	4.183e-006	0.4015	0.6893	-5.5401
CaCO3(aq)	4.126e-006	0.4125	1.0000	-5.3845
Sr++	2.941e-006	0.2574	0.6958	-5.6890
Pb(OH)3-	2.726e-006	0.7034	0.9117	-5.6046

PbCO3(aq)	2.319e-006	0.6191	1.0000	-5.6347
Mg++	2.271e-006	0.05516	0.7140	-5.7900
MnO4	2.199e-006	0.2613	0.6893	-5.8193
Ni(OH)3-	1.699e-006	0.1862	0.9117	-5.8101
NaHCO3(aq)	1.402e-006	0.1177	1.0000	-5.8533
Ni++	1.255e-006	0.07360	0.7021	-6.0549
PbOH+	1.013e-006	0.2270	0.9117	-6.0345
CaHPO4(aq)	8.125e-007	0.1104	1.0000	-6.0902
Pb(CO3)2	7.613e-007	0.2489	0.6893	-6.2800
MgCO3(aq)	5.291e-007	0.04457	1.0000	-6.2765
SrCO3(aq)	5.139e-007	0.07580	1.0000	-6.2891
UO2PO4-	5.047e-007	0.1841	0.9117	-6.3371
Ca2UO2(CO3)3	4.215e-007	0.2233	1.0000	-6.3752
MgHPO4(aq)	3.436e-007	0.04129	1.0000	-6.4640
UO2(OH)4	3.385e-007	0.1143	0.6893	-6.6321
H2PO4-	1.785e-007	0.01730	0.9117	-6.7885
NaOH(aq)	1.427e-007	0.005702	1.0000	-6.8456
NaSO4-	7.232e-008	0.008602	0.9117	-7.1809
SrHPO4(aq)	6.124e-008	0.01123	1.0000	-7.2130
CO2(aq)	2.444e-008	0.001075	1.0000	-7.6118
CaOH+	2.259e-008	0.001288	0.9117	-7.6863
CaHCO3+	1.968e-008	0.001988	0.9117	-7.7461
NaAlO2(aq)	1.287e-008	0.001054	1.0000	-7.8904
(only species	> 10-8 molal ligtor	٦)		

(only species > 1e-8 molal listed)

Mineral Sacaracion	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Trevorite Fluorapatite Hematite Pyromorphite-OH Pb40(PO4)2 Bixbyite Pyrolusite Parsonsite Hausmannite Ferrite-Ca Ferrite-Mg Hydroxylapatite Becquerelite Mn02(gamma) Pb3(PO4)2 Goethite Hydrocerussite CaUO4 Manganite Na2U2O7(c) Plattnerite Minium	log Q/K	Schoepite U03:2H20 U02(OH)2(beta) Diaspore Schoepite-dehy(. U03:.9H20(alpha) PbC03.Pb0 Schoepite-dehy(. Schoepite-dehy(1 Boehmite Pb4S07 Dolomite Dolomite-ord Gibbsite Ice Crocoite Calcite Pb4C12(OH)6 Aragonite Litharge Schoepite-dehy(. Pb3S06 Massicot Monohydrocalcite Schoepite-dehy(.	0.7437s/sat 0.7437s/sat 0.6313s/sat 0.6267s/sat 0.5603s/sat 0.5603s/sat 0.5136s/sat 0.4800s/sat 0.4739s/sat 0.2228s/sat 0.1871s/sat 0.1771s/sat 0.1771s/sat 0.1771s/sat 0.1771s/sat 0.0310s/sat -0.2315 -0.2384 -0.2315 -0.2384 -0.3759 -0.5682 -0.6293 -0.7463 -0.7504 -1.0652 -1.1473
Minium PbHPO4 Magnetite Bunsenite Whitlockite	3.939/s/sat 3.3942s/sat 2.9199s/sat 2.2932s/sat 2.1382s/sat	Magnesite Brucite Dolomite-dis Lanarkite	-1.1473 -1.2202 -1.2680 -1.3673 -1.7496

Ni3(PO4)2	2.1289s/sat	Mn(OH)3	-1.8968
Ni(OH)2	2.0166s/sat	MnHPO4	-2.0147
Na2U2O7(am)	1.9524s/sat	UO3(gamma)	-2.1303
Ca-Autunite	1.6819s/sat	MgUO4	-2.3953
SrUO4(alpha)	1.5430s/sat	Dawsonite	-2.5668
Strontianite	1.4881s/sat	NiCO3	-2.7032
Fe(OH)3(ppd)	1.3329s/sat	UO3(beta)	-2.7325
Cerussite	1.3232s/sat	Corundum	-2.7381
(only minerals	with log Q/K >	-3 listed)	

Gases	fugacity	log fug.
Gases	fugacity 0.1703 0.02598 7.195e-007 7.187e-017 1.185e-022 2.194e-023 1.578e-026 3.563e-029 8.402e-037 6.790e-042 1.526e-051 7.043e-060 1.973e-062	-0.769 -1.585 -6.143 -16.143 -21.926 -22.659 -25.802 -28.448 -36.076 -41.168 -50.816 -59.152 -61.705
SO2(g) UO3(g) NH3(g) NA(g) UO2C12(g) UOF4(g) F2(g) UF5(g) UF4(g) UF6(g) UF6(g)	5.554e-063 4.256e-066 1.695e-072 1.004e-072 2.357e-074 1.475e-079 2.427e-088 8.758e-096 5.495e-102 1.375e-103 6.424e-119	-62.255 -65.371 -71.771 -71.998 -73.628 -78.831 -87.615 -95.058 -101.260 -102.862 -118.192
Mg(g) UC14(g) UC15(g) Ca(g) CH4(g) UF3(g) H2S(g) UC16(g) UC13(g) U2F10(g) A1(g)	4.112e-126 3.795e-136 6.943e-147 2.135e-148 1.220e-148 1.579e-149 4.295e-150 2.360e-152 1.068e-162 8.587e-166 8.155e-191	-125.386 -135.421 -146.158 -147.671 -147.914 -148.802 -149.367 -151.627 -161.972 -165.066 -190.089
C(g) UF2(g) UO(g) UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g)	8.673e-193 6.699e-194 3.851e-203 1.626e-206 6.992e-232 8.920e-243 6.373e-244 5.424e-248 3.550e-261 9.620e-267	-192.062 -193.174 -202.414 -205.789 -231.155 -242.050 -243.196 -247.266 -260.450 -266.017

U(g) 5.413e-288 -287.267

		In flu	uid	Sor	bed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	2.26e-005	2.26e-005	0.609			
Ca++	7.12e-005					
Cl-	6.77e-006	6.77e-006	0.240			
Cr04		9.52e-005				
F-	2.63e-005	2.63e-005	0.499			
Fe++	7.87e-005	7.87e-005	4.39			
H+	-0.00638	-0.00638	-6.43			
H2O	55.5	55.5	9.99e+005			
HCO3-	55.5 0.00220	0.00220	134.			
HPO4	0.000475					
Mg++	2.52e-005	2.52e-005	0.612			
Mn++	1.25e-005	1.25e-005	0.686			
NH3(aq)	1.75e-005	1.75e-005	0.298			
Na+			87.5			
Ni++	8.91e-006	8.91e-006	0.522			
02(aq)	0.000285	0.000285	9.11			
Pb++	1.64e-005	1.64e-005	3.40			
SO4	4.26e-006	4.26e-006	0.409			
Sr++	3.52e-006	3.52e-006	0.308			
UO2++	0.00197	0.00197	532.			
Elemental compo	sition	Iı	n fluid		Sorbed	<u>!</u>
Elemental compo	total moles	s moles	mg/k		moles	l mg/kg
Aluminum	total moles 2.260e-009	moles 5 2.260e-0	mg/k 005 0.	 6093	moles	
Aluminum Calcium	2.260e-009 7.120e-009	moles 5 2.260e-0 7.120e-0	mg/k 005 0.	 6093	moles	
Aluminum	2.260e-009 7.120e-009	moles 5 2.260e-0 7.120e-0	mg/k 005 0.	6093 2.851	moles	
Aluminum Calcium	2.260e-009 7.120e-009 0.002204	moles 5 2.260e-0 7.120e-0 4 0.0022	mg/k 005 0. 005 2	6093 2.851 26.45	moles	
Aluminum Calcium Carbon Chlorine Chromium	2.260e-009 7.120e-009 0.002204	moles 2.260e-0 7.120e-0 0.0023 6.770e-0	mg/k 005 0. 005 2 204 2	6093 2.851 26.45	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009	moles 2.260e-0 7.120e-0 4 0.0022 6.770e-0 9.520e-0 2.630e-0	mg/k 005 0. 005 2 204 2 006 0. 005 4	6093 2.851 26.45 2398	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009	moles 2.260e-0 7.120e-0 0.0023 6.770e-0 9.520e-0 2.630e-0	mg/k 005 0. 005 2 204 2 006 0. 005 4 005 0.	6093 2.851 26.45 2398 1.946 4992	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009	moles 2.260e-0 7.120e-0 0.0023 6.770e-0 9.520e-0 2.630e-0	mg/k 005 0. 005 2 204 2 006 0. 005 4 005 0.	6093 2.851 26.45 2398 1.946 4992	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009 111.0 7.870e-009	moles 2.260e-0 7.120e-0 0.0022 6.770e-0 9.520e-0 2.630e-0 112 7.870e-0 1.640e-0	mg/k 005 0. 005 2 204 2 006 0. 005 4 005 0. 1.0 1.118e 005 4 005 3	6093 2.851 26.45 2398 4.946 4992 2+005 4.391 3.395	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009 111.0 7.870e-009 1.640e-009	moles 2.260e-0 7.120e-0 0.0022 6.770e-0 9.520e-0 2.630e-0 11: 7.870e-0 1.640e-0 2.520e-0	mg/k 005 0. 005 2 204 2 006 0. 005 4 005 0. 1.0 1.118e 005 4 005 3	6093 2.851 26.45 2398 4.946 4992 2+005 4.391 3.395	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	total moles	moles 2.260e-0 7.120e-0 0.0022 6.770e-0 9.520e-0 11.7870e-0 1.640e-0 1.250e-0 1.250e-0	mg/k	6093 2.851 26.45 2398 4.946 4992 2+005 4.391 3.395	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009 111.0 7.870e-009 1.640e-009 2.520e-009 8.910e-009	moles 2.260e-0 7.120e-0 0.0023 6.770e-0 9.520e-0 2.630e-0 113 7.870e-0 1.640e-0 2.520e-0 8.910e-0	mg/k	6093 2.851 26.45 2398 3.946 4992 2+005 3.391 3.395 6120 6862 5225	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009 111.0 7.870e-009 1.640e-009 2.520e-009 8.910e-009	moles 2.260e-0 7.120e-0 0.0022 6.770e-0 9.520e-0 2.630e-0 112 7.870e-0 1.640e-0 2.520e-0 1.250e-0 8.910e-0 1.750e-0	mg/k	6093 2.851 26.45 2398 3.946 4992 2+005 3.391 3.395 6120 6862 5225 2449	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009 111.0 7.870e-009 1.640e-009 2.520e-009 8.910e-009 55.52	moles 2.260e-0 7.120e-0 0.0022 6.770e-0 9.520e-0 2.630e-0 112 7.870e-0 1.640e-0 1.250e-0 8.910e-0 1.750e-0 2.55	mg/k	6093 2.851 26.45 2398 2.946 4992 2+005 3.391 3.395 6120 6862 5225 2449	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	101al moles 2.260e-009 7.120e-009 0.002204 6.770e-009 9.520e-009 2.630e-009 111.0 7.870e-009 1.250e-009 8.910e-009 1.750e-009 55.52 0.0004750	moles	mg/k	6093 2.851 26.45 2398 2.946 4992 2.05 3.395 6120 6862 5225 2449 2.05	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles	moles	mg/k	6093 2.851 26.45 2398 2.946 4992 2+005 2.391 3.395 6120 6862 5225 2449 2+005	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	total moles	moles	mg/k	6093 2.851 26.45 2398 2.946 4992 2+005 2.391 3.395 6120 6862 5225 2449 2+05 2449 2+05 2449 2+05 2449 2+05 2449 2+05 2449 2405 2449 2405 2449 2405 2449 2405 2405 2449 2405 2449 2405 2449 2405 2449 2405 2449 2405 2449 2405	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium Sulfur	total moles	moles	mg/k	6093 2.851 26.45 2398 2.946 4992 2+005 3.395 6120 6862 5225 2449 2+005 37.52 3082 1365	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	total moles	moles	mg/k	6093 2.851 26.45 2398 2.946 4992 2+005 2.391 3.395 6120 6862 5225 2449 2+05 2449 2+05 2449 2+05 2449 2+05 2449 2+05 2449 2405 2449 2405 2449 2405 2449 2405 2405 2449 2405 2449 2405 2449 2405 2449 2405 2449 2405 2449 2405	moles	

Sample 19887 Ca(OH)₂ leach, 1 day (Stage 1).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.640
 log fO2 = -0.707

 Eh = 0.5300 volts
 pe = 8.9597

 Ionic strength
 0.029020

 Activity of water
 1.000000

 Solvent mass
 0.999903 kg

 Solution mass
 1.001015 kg

 Solution density
 0.000010 molal

 Chlorinity
 0.000010 molal

 Dissolved solids
 1111 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 834.93 mg/kg as CaCO3

moles moles grams cm3

Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01704	391.3	0.8512	-1.8386
CO3	0.007966	477.5	0.5283	-2.3759
OH-	0.005207	88.45	0.8479	-2.3551
F-	0.0007931	15.05	0.8479	-3.1723
NO3-	0.0007471	46.27	0.8445	-3.2000
02(aq)	0.0002483	7.938	1.0000	-3.6049
HCO3-	0.0002415	14.72	0.8512	-3.6871
NaCO3-	0.0002344	19.43	0.8512	-3.7001
HPO4	0.0001867	17.90	0.5206	-4.0124
PO4	8.813e-005	8.360	0.2294	-4.6942
AlO2-	8.143e-005	4.797	0.8512	-4.1592
Cr04	3.950e-005	4.577	0.5206	-4.6869
NaHPO4-	1.377e-005	1.636	0.8512	-4.9310
CaPO4-	1.251e-005	1.688	0.8512	-4.9727
NaOH(aq)	1.015e-005	0.4057	1.0000	-4.9934
Cl-	9.981e-006	0.3534	0.8445	-5.0742
SO4	9.447e-006	0.9065	0.5206	-5.3082
UO2(OH)3-	4.796e-006	1.538	0.8512	-5.3891
NaHCO3(aq)	4.250e-006	0.3566	1.0000	-5.3716
UO2(CO3)3	3.011e-006	1.354	0.0728	-6.6588
Fe(OH)4-	2.541e-006	0.3144	0.8512	-5.6651
CaCO3(aq)	1.632e-006	0.1632	1.0000	-5.7872
NaF(aq)	9.806e-007	0.04113	1.0000	-6.0085
MgPO4-	9.405e-007	0.1121	0.8512	-6.0966
Ni(OH)3-	8.383e-007	0.09187	0.8512	-6.1466
Pb(OH)3-	8.197e-007	0.2114	0.8512	-6.1563
MnO4	8.119e-007	0.09645	0.5206	-6.3740
SrCO3(aq)	6.177e-007	0.09108	1.0000	-6.2093
NaSO4-	5.536e-007	0.06584	0.8512	-6.3268
Sr++	3.736e-007	0.03270	0.5357	-6.6986
Ca++	3.321e-007	0.01329	0.5500	-6.7384

MnO4- NaAlO2(aq) Ni(OH)2(aq) Pb(OH)2(aq) UO2(OH)4	1.882e-007 1.815e-007 1.616e-007 1.580e-007 5.335e-008	0.02236 0.01486 0.01496 0.03807 0.01801	0.8479 1.0000 1.0000 1.0000 0.5206	-6.7970 -6.7411 -6.7916 -6.8013 -7.5564
MgCO3(aq)	4.089e-008	0.003444	1.0000	-7.3884
NaCl(aq)	2.043e-008	0.001192	1.0000	-7.6898
Fe(OH)3(aq)	1.972e-008	0.002105	1.0000	-7.7051
Mg++	1.770e-008	0.0004298	0.5762	-7.9914
CaOH+	1.323e-008	0.0007544	0.8512	-7.9484
(only species >	→ 1e-8 molal liste	ed)		

	log Q/K		log Q/K
Birnessite Todorokite Trevorite Fluorapatite Hematite Pyrolusite Mn02(gamma) Hydroxylapatite Goethite Bixbyite Ferrite-Ca Ferrite-Mg CaU04 Plattnerite Strontianite Manganite Na2U207(c) Pyromorphite Bunsenite Ni(OH)2	28.4119s/sat 24.4692s/sat 12.0009s/sat 11.0123s/sat 8.4813s/sat 5.9997s/sat 4.4819s/sat 3.9052s/sat 3.7604s/sat 3.7319s/sat 3.6098s/sat 2.8234s/sat 2.7923s/sat 2.2723s/sat 1.5679s/sat 1.5478s/sat 1.3966s/sat 0.7481s/sat 0.7267s/sat 0.4501s/sat	Whitlockite Aragonite Pb40(PO4)2 Brucite Hausmannite Na2U2O7(am) PbHPO4 Dolomite-ord Dolomite Fe(OH)3(ppd) Minium Monohydrocalcite Hydrocerussite Cerussite Magnesite Litharge Massicot UO3:2H2O Schoepite UO2(OH)2(beta)	-0.7352 -0.7786 -0.8567 -1.0094 -1.0279 -1.1117 -1.2761 -1.3375 -1.3375 -1.3607 -1.3746 -1.4679 -1.6353 -1.8292 -2.3321 -2.3499 -2.5321 -2.6406 -2.6406 -2.7530
Diaspore	-0.0762	Dawsonite	-2.7880
Ice SrUO4(alpha) Boehmite Calcite Gibbsite	-0.1387 -0.3909 -0.4801 -0.6342 -0.6719	UO3:.9H2O(alpha) Schoepite-dehy(. Dolomite-dis Schoepite-dehy(. Schoepite-dehy(1	-2.8240 -2.8240 -2.8819 -2.9043 -2.9104
(only minerals	with log Q/K >	-3 listed)	

Gases	fugacity	log fug.
02(g)	0.1965	-0.707
H2O(g)	0.02598	-1.585
CO2(g)	3.065e-008	-7.514
$\mathtt{HF}(g)$	1.189e-016	-15.925
NO2(g)	4.942e-023	-22.306
HCl(g)	9.556e-024	-23.020
N2(g)	6.017e-026	-25.221
NO(g)	7.473e-029	-28.127
Cl2(g)	5.870e-039	-38.231
H2(g)	6.322e-042	-41.199
CO(g)	6.053e-053	-52.218
UO2F2(g)	7.954e-063	-62.099

```
Pb(g)
                  3.036e-064
                               -63.518
 SO2(g)
                  3.058e-065
                               -64.515
 UO3(g)
                  1.757e-069
                               -68.755
 Na(g)
                  6.897e-071
                               -70.161
 NH3(q)
                  2.973e-072
                               -71.527
 UO2Cl2(g)
                 6.328e-080
                              -79.199
 UOF4(q)
                  4.556e-082
                              -81.341
 F2(g)
                  7.132e-088
                               -87.147
                  4.319e-098
                               -97.365
 UF5(g)
 UF4(g)
                  1.581e-104
                              -103.801
                            -104.935
 UF6(g)
                 1.162e-105
                 2.469e-122 -121.608
 UO2(g)
                 6.945e-126 -125.158
 Mg(g)
 UC14(g)
                 6.171e-144
                             -143.210
                  1.846e-147
                              -146.734
 Ca(g)
                  3.906e-150
 CH4(g)
                              -149.408
 UF3(g)
                  2.650e-152
                              -151.577
                  1.908e-152 -151.719
 H2S(g)
                  9.435e-156 -155.025
 UC15(g)
                  2.680e-162 -161.572
 UCl6(g)
 UC13(g)
                  2.077e-169 -168.683
 U2F10(g)
                  2.088e-170 -169.680
 Al(q)
                  1.452e-191
                              -190.838
                  3.203e-194 -193.494
 C(q)
                 6.557e-197 -196.183
 UF2(g)
                 1.378e-206 -205.861
 UO(g)
 UC12(q)
                 3.784e-212 -211.422
                  3.993e-235 -234.399
 UF(g)
                 7.533e-247 -246.123
 C2H4(g)
                 2.032e-247 -246.692
1.510e-252 -251.821
9.383e-277 -276.028
 S2(g)
 UCl(g)
 U2Cl8(g)
                 1.777e-284 -283.750
 U2Cl10(g)
                  1.803e-291
                              -290.744
 U(g)
                            In fluid
                                              Sorbed
                                                              Kd
Original basis total moles moles mg/kg moles mg/kg
                                                              L/kq
_____
        8.16e-005 8.16e-005 2.20
1.45e-005 1.45e-005 0.581
1.00e-005 1.00e-005 0.354
 Al+++
 Ca++
 Cl-
          3.95e-005 3.95e-005
 Cr04--
                                   4.58
                                    15.1
 F-
              0.000794 0.000794
           2.56e-006 2.56e-006
 Fe++
                                   0.143
                                 -14.7
             -0.0146 -0.0146
 H+
 H20
                  55.5
                            55.5 9.99e+005
              0.00846 0.00846 515.
 HCO3-
              0.000302
 HPO4--
                       0.000302
                                    29.0
 Mg++
Mn++
             1.00e-006 1.00e-006
                                 0.0243
            1.00e-006 1.00e-006
                                 0.0549
             0.000747
                       0.000747
 NH3(aq)
                                   12.7
                                    397.
 Na+
               0.0173 0.0173
            1.00e-006 1.00e-006 0.0586
 Ni++
 02(aq)
             0.00174 0.00174
                                   55.7
 Pb++
            9.89e-007 9.89e-007
                                   0.205
 SO4--
             1.00e-005 1.00e-005
                                   0.960
 Sr++ 1.00e-006 1.00e-006 0.0875
```

UO2++ 7.87e-006 7.87e-006 2.12

Elemental comp	position	In fl	uid	Sorbed	
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	8.160e-005	8.160e-005	2.199		
Calcium	1.450e-005	1.450e-005	0.5805		
Carbon	0.008456	0.008456	101.5		
Chlorine	1.000e-005	1.000e-005	0.3542		
Chromium	3.950e-005	3.950e-005	2.052		
Fluorine	0.0007940	0.0007940	15.07		
Hydrogen	111.0	111.0	1.118e+005		
Iron	2.560e-006	2.560e-006	0.1428		
Lead	9.890e-007	9.890e-007	0.2047		
Magnesium	1.000e-006	1.000e-006	0.02428		
Manganese	1.000e-006	1.000e-006	0.05488		
Nickel	1.000e-006	1.000e-006	0.05863		
Nitrogen	0.0007470	0.0007470	10.45		
Oxygen	55.54	55.54	8.877e+005		
Phosphorus	0.0003020	0.0003020	9.345		
Sodium	0.01730	0.01730	397.3		
Strontium	1.000e-006	1.000e-006	0.08753		
Sulfur	1.000e-005	1.000e-005	0.3203		
Uranium	7.870e-006	7.870e-006	1.871		

Sample 19887 Ca(OH)₂ leach, 1 month.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.620 log f02 = -0.707
Eh = 0.5312 volts pe = 8.9798
Ionic strength = 0.027659 Ionic strength = 0.027659
Activity of water = 1.000000
Solvent mass = 0.999905 kg
Solution mass = 1.000970 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000010 molal
Dissolved solids = 1064 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity = 772.82 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)		acity buffer			-

Na+ 0.01566 359.7 0.8538 -1.8738 CO3 0.007376 442.1 0.5347 -2.4041 OH- 0.004956 84.20 0.8506 -2.3751 F- 0.001029 19.53 0.8506 -3.0579 NO3- 0.0006821 42.25 0.8474 -3.2381 HP04 0.0003115 29.87 0.5272 -3.7845 O2(aq) 0.0002484 7.940 1.0000 -3.6048 HCO3- 0.0002363 14.40 0.8538 -3.6953 NaCO3- 0.0002019 16.74 0.8538 -3.7634 PO4 0.0001382 13.11 0.2361 -4.4863 A102- 0.0001297 7.644 0.8538 -3.9556 CrO4 5.791e-005 6.709 0.5272 -4.5153 CaP04- 2.889e-005 3.898 0.8538 -4.6079 NaHP04- 2.140e-005 2.543 0.8538 -4.7383 C1- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.3553 1.0000 -5.0486 U02(OH)3- 8.237e-006 2.642 0.8538 -5.1529 U02(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 1.177e-006 0.04937 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgP04- 9.635e-007 0.1148 0.8538 -6.1488 Mm04 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
OH-	Na+	0.01566	359.7	0.8538	-1.8738
F- 0.001029 19.53 0.8506 -3.0579 NO3- 0.0006821 42.25 0.8474 -3.2381 HP04 0.0003115 29.87 0.5272 -3.7845 O2(aq) 0.0002484 7.940 1.0000 -3.6048 HCO3- 0.0002363 14.40 0.8538 -3.6953 NaCO3- 0.0002019 16.74 0.8538 -3.7634 PO4 0.0001382 13.11 0.2361 -4.4863 AlO2- 0.0001297 7.644 0.8538 -3.9556 Cr04 5.791e-005 6.709 0.5272 -4.5153 CaP04- 2.889e-005 3.898 0.8538 -4.6079 NaHP04- 2.140e-005 2.543 0.8538 -4.7383 Cl- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 1.177e-006 0.2915 1.0000 -5.6585 NaF(aq) 1.177e-006 0.2937 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgP04- 9.635e-007 0.1148 0.8538 -6.1488 Mn04 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	CO3	0.007376	442.1	0.5347	-2.4041
NO3- 0.0006821 42.25 0.8474 -3.2381 HPO4 0.0003115 29.87 0.5272 -3.7845 O2(aq) 0.0002484 7.940 1.0000 -3.6048 HCO3- 0.0002363 14.40 0.8538 -3.6953 NaCO3- 0.0002019 16.74 0.8538 -3.7634 PO4 0.0001382 13.11 0.2361 -4.4863 AlO2- 0.0001297 7.644 0.8538 -3.9556 CrO4 5.791e-005 6.709 0.5272 -4.5153 CaPO4- 2.889e-005 3.898 0.8538 -4.6079 NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 Cl- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 1.177e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 1.177e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	OH-		84.20	0.8506	-2.3751
HPO4 O2(aq) O2(aq) O3002484 T3940 HCO3- O3002363 NACO3- O30002019 D3111 D3261 PO4 O3001382 PO4 O3001297 P3644 D37644 D3764 P37644 D38538 D37634 P37634			19.53	0.8506	-3.0579
O2(aq) 0.0002484 7.940 1.0000 -3.6048 HCO3- 0.0002363 14.40 0.8538 -3.6953 NaCO3- 0.0002019 16.74 0.8538 -3.7634 PO4 0.0001382 13.11 0.2361 -4.4863 AlO2- 0.0001297 7.644 0.8538 -3.9556 CrO4 5.791e-005 6.709 0.5272 -4.5153 CaPO4- 2.889e-005 3.898 0.8538 -4.6079 NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 C1- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- <td>NO3-</td> <td>0.0006821</td> <td>42.25</td> <td>0.8474</td> <td>-3.2381</td>	NO3-	0.0006821	42.25	0.8474	-3.2381
HCO3- 0.0002363 14.40 0.8538 -3.6953 NaCO3- 0.0002019 16.74 0.8538 -3.7634 PO4 0.0001382 13.11 0.2361 -4.4863 AlO2- 0.0001297 7.644 0.8538 -3.9556 CrO4 5.791e-005 6.709 0.5272 -4.5153 CaPO4- 2.889e-005 3.898 0.8538 -4.6079 NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 Cl- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(a				0.5272	
NaCO3- 0.0002019 16.74 0.8538 -3.7634 PO4 0.0001382 13.11 0.2361 -4.4863 AlO2- 0.0001297 7.644 0.8538 -3.9556 CrO4 5.791e-005 6.709 0.5272 -4.5153 CaPO4- 2.889e-005 3.898 0.8538 -4.6079 NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 Cl- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 N	02(aq)		7.940	1.0000	-3.6048
P04 Alo2- 0.0001382 13.11 0.2361 -4.4863 Alo2- 0.0001297 7.644 0.8538 -3.9556 Cr04 5.791e-005 6.709 0.5272 -4.5153 CaP04- 2.889e-005 3.898 0.8538 -4.6079 NaHP04- 2.140e-005 2.543 0.8538 -4.7383 Cl- 9.982e-006 0.3535 0.8474 -5.0727 S04 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 U02(OH)3- 8.237e-006 2.642 0.8538 -5.1529 U02(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) MpO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MmO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	HCO3-	0.0002363	14.40	0.8538	-3.6953
AlO2- 0.0001297 7.644 0.8538 -3.9556 CrO4 5.791e-005 6.709 0.5272 -4.5153 CaPO4- 2.889e-005 3.898 0.8538 -4.6079 NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 Cl- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	NaCO3-	0.0002019	16.74	0.8538	-3.7634
CrO4 5.791e-005 6.709 0.5272 -4.5153 CaPO4- 2.889e-005 3.898 0.8538 -4.6079 NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 C1- 9.982e-006 0.3535 0.8474 -5.0727 S04 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	PO4	0.0001382	13.11	0.2361	-4.4863
CaPO4- 2.889e-005 3.898 0.8538 -4.6079 NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 C1- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.0914 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	A102-	0.0001297	7.644	0.8538	-3.9556
NaHPO4- 2.140e-005 2.543 0.8538 -4.7383 C1- 9.982e-006 0.3535 0.8474 -5.0727 SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 U02(OH)3- 8.237e-006 2.642 0.8538 -5.1529 U02(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.6585 NaF(aq) 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	Cr04	5.791e-005	6.709	0.5272	-4.5153
C1- 9.982e-006 0.3535 0.8474 -5.0727 S04 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 U02(OH)3- 8.237e-006 2.642 0.8538 -5.1529 U02(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	CaPO4-	2.889e-005		0.8538	
SO4 9.483e-006 0.9100 0.5272 -5.3011 NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	NaHPO4-	2.140e-005	2.543	0.8538	-4.7383
NaOH(aq) 8.942e-006 0.3573 1.0000 -5.0486 UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	Cl-	9.982e-006	0.3535	0.8474	-5.0727
UO2(OH)3- 8.237e-006 2.642 0.8538 -5.1529 UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189		9.483e-006	0.9100	0.5272	-5.3011
UO2(CO3)3 4.660e-006 2.095 0.0767 -6.4471 NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189		8.942e-006	0.3573	1.0000	-5.0486
NaHCO3(aq) 3.846e-006 0.3228 1.0000 -5.4149 Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	UO2(OH)3-	8.237e-006	2.642	0.8538	-5.1529
Fe(OH)4- 2.272e-006 0.2811 0.8538 -5.7123 CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	UO2(CO3)3	4.660e-006	2.095	0.0767	-6.4471
CaCO3(aq) 2.195e-006 0.2195 1.0000 -5.6585 NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189		3.846e-006	0.3228	1.0000	-5.4149
NaF(aq) 1.177e-006 0.04937 1.0000 -5.9292 MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	Fe(OH)4-		0.2811	0.8538	-5.7123
MgPO4- 9.635e-007 0.1148 0.8538 -6.0848 Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	CaCO3(aq)	2.195e-006	0.2195	1.0000	-5.6585
Ni(OH)3- 8.316e-007 0.09114 0.8538 -6.1488 MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	NaF(aq)	1.177e-006	0.04937		-5.9292
MnO4 8.032e-007 0.09543 0.5272 -6.3732 SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	MgPO4-	9.635e-007	0.1148	0.8538	-6.0848
SrCO3(aq) 6.041e-007 0.08909 1.0000 -6.2189	Ni(OH)3-	8.316e-007	0.09114	0.8538	-6.1488
	MnO4	8.032e-007	0.09543	0.5272	-6.3732
	SrCO3(aq)	6.041e-007	0.08909	1.0000	-6.2189
Pb(OH)3- 5.433e-007 0.1402 0.8538 -6.3336	Pb(OH)3-	5.433e-007	0.1402	0.8538	-6.3336
NaSO4- 5.174e-007 0.06153 0.8538 -6.3548	NaSO4-	5.174e-007	0.06153	0.8538	-6.3548
Ca++ 4.715e-007 0.01888 0.5559 -6.5816	Ca++	4.715e-007	0.01888	0.5559	-6.5816
Sr++ 3.854e-007 0.03373 0.5420 -6.6801	Sr++	3.854e-007	0.03373	0.5420	-6.6801

NaAlO2(aq)	2.675e-007	0.02191	1.0000	-6.5726
MnO4-	1.969e-007	0.02339	0.8506	-6.7761
Ni(OH)2(aq)	1.684e-007	0.01559	1.0000	-6.7738
Pb(OH)2(aq)	1.100e-007	0.02651	1.0000	-6.9586
UO2(OH)4	8.666e-008	0.02927	0.5272	-7.3402
MgCO3(aq)	2.440e-008	0.002055	1.0000	-7.6127
CaHPO4(aq)	2.365e-008	0.003215	1.0000	-7.6261
NaCl(aq)	1.890e-008	0.001104	1.0000	-7.7235
Fe(OH)3(aq)	1.852e-008	0.001977	1.0000	-7.7323
CaOH+	1.808e-008	0.001031	0.8538	-7.8116
UO2(OH)2(aq)	1.362e-008	0.004138	1.0000	-7.8657
Mg++	1.117e-008	0.0002712	0.5814	-8.1875
/	1 0 - 0 - 1 - 1	۱ ام		

(only species > 1e-8 molal listed)

Mineral saturation states

	mineral Sacuracion	log Q/K		log Q/K
_	Birnessite Todorokite Fluorapatite Trevorite Hematite Pyrolusite Hydroxylapatite MnO2(gamma) Bixbyite Goethite Ferrite-Ca CaUO4 Ferrite-Mg Plattnerite Na2U2O7(c)		Aragonite Na2U2O7(am) Hausmannite Pb4O(PO4)2 PbHPO4 Brucite Monohydrocalcite Fe(OH)3(ppd) Dolomite-ord Dolomite Minium Cerussite Hydrocerussite UO3:2H2O Schoepite	log Q/K0.6499 -0.7097 -0.9056 -0.9498 -1.1654 -1.2455 -1.3392 -1.3879 -1.4331 -1.4331 -1.8462 -1.9745 -2.0834 -2.3844
	Manganite Strontianite Pyromorphite Bunsenite Ni(OH)2 Whitlockite Diaspore Ice SrUO4(alpha) Boehmite Gibbsite Calcite	1.5885s/sat 1.5583s/sat 0.7872s/sat 0.7445s/sat 0.4679s/sat 0.1512s/sat 0.1474s/sat -0.1387 -0.1562 -0.2565 -0.4483 -0.5055	UO2(OH)2(beta) Litharge Magnesite UO3:.9H2O(alpha) Schoepite-dehy(. Dawsonite Schoepite-dehy(. Schoepite-dehy(1 Fluorite Massicot Dolomite-dis	-2.4968 -2.5072 -2.5564 -2.5678 -2.5678 -2.6077 -2.6481 -2.6542 -2.6603 -2.6894 -2.9775
	(only minerals w	ith log O/K > -	3 listed)	

(only minerals with log Q/K > -3 listed)

O2(g) 0.1965 -0.707 H2O(g) 0.02598 -1.585 CO2(g) 3.150e-008 -7.502 HF(g) 1.620e-016 -15.790 NO2(g) 4.740e-023 -22.324 HC1(g) 1.004e-023 -22.998	Gases	fugacity	log fug.
N2(g) 5.533e-026 -25.257 NO(g) 7.167e-029 -28.145 C12(g) 6.483e-039 -38.188	H2O(g) CO2(g) HF(g) NO2(g) HC1(g) N2(g) NO(g)	0.02598 3.150e-008 1.620e-016 4.740e-023 1.004e-023 5.533e-026 7.167e-029	-1.585 -7.502 -15.790 -22.324 -22.998 -25.257 -28.145

```
H2(g)
                  6.321e-042
                                -41.199
CO(g)
                  6.219e-053
                                -52.206
UO2F2(g)
                  2.665e-062
                                -61.574
Pb(g)
                  2.114e-064
                                -63.675
                                -64.467
SO2(q)
                  3.408e-065
UO3(q)
                  3.169e-069
                                -68.499
Na(q)
                  6.074e-071
                                -70.217
NH3(g)
                  2.850e-072
                                -71.545
UO2Cl2(g)
                                -78.899
                  1.260e-079
UOF4(g)
                  2.836e-081
                               -80.547
                  1.325e-087
                               -86.878
F2(g)
                 3.662e-097
                               -96.436
UF5(g)
                  9.834e-104
                              -103.007
UF4(g)
                  1.343e-104
                               -103.872
UF6(g)
                  4.453e-122
                               -121.351
UO2(g)
Mg(g)
                  4.032e-126
                               -125.394
UCl4(g)
                  1.357e-143
                               -142.867
                  2.416e-147
                              -146.617
Ca(g)
                  4.012e-150 -149.397
CH4(g)
                  1.210e-151
                             -150.917
UF3(g)
                  2.126e-152
                              -151.672
H2S(g)
                  2.181e-155
                               -154.661
UC15(g)
UCl6(q)
                  6.510e-162
                               -161.186
                 1.502e-168
                               -167.823
U2F10(g)
                              -168.362
                  4.346e-169
UC13(g)
Al(g)
                 2.430e-191
                              -190.614
C(g)
                  3.290e-194
                              -193.483
                             -195.658
                  2.196e-196
UF2(g)
                  2.485e-206
                              -205.605
UO(g)
                  7.536e-212
                               -211.123
UCl2(g)
                  9.813e-235 -234.008
UF(g)
                             -246.100
C2H4(g)
                  7.950e-247
                 2.523e-247
                              -246.598
S2(g)
                 2.862e-252
                              -251.543
UCl(q)
U2C18(g)
                  4.538e-276
                               -275.343
U2Cl10(g)
                 9.490e-284
                               -283.023
U(q)
                  3.251e-291
                              -290.488
                                                Sorbed
                            In fluid
                                                                Kd
Original basis total moles moles mg/kg moles mg/kg
      0.000130 0.000130 3.50
Al+++
             3.16e-005 3.16e-005
                                    1.27
Ca++
             1.00e-005 1.00e-005
Cl-
                                   0.354
Cr04--
                                   6.71
            5.79e-005 5.79e-005
F-
              0.00103 0.00103
                                    19.5
            2.29e-006 2.29e-006
Fe++
                                   0.128
             -0.0140
H+
                       -0.0140
                                    -14.1
H20
                            55.5 9.99e+005
                  55.5
              0.00783
HCO3-
                        0.00783
                                 478.
              0.000501
HPO4--
                        0.000501
                                     48.0
                                 0.0243
Mq++
             1.00e-006 1.00e-006
Mn++
            1.00e-006 1.00e-006 0.0549
NH3(aq)
             0.000682 0.000682
                                    11.6
Na+
               0.0159
                          0.0159
                                    365.
         1.00e-006 1.00e-006
0.00161 0.00161
Ni++
                                   0.0586
02(aq)
             0.00161
                       0.00161
                                     51.6
```

Pb++	6.61e-007	6.61e-007	0.137
SO4	1.00e-005	1.00e-005	0.960
Sr++	1.00e-006	1.00e-006	0.0875
UO2++	1.30e-005	1.30e-005	3.51

Elemental comp	position	In fl	uid	Sorl	oed
_	total moles	moles	mg/kg	moles	mg/kg
Aluminum	0.0001300	0.0001300	3.504		
Calcium	3.160e-005	3.160e-005	1.265		
Carbon	0.007834	0.007834	94.00		
Chlorine	1.000e-005	1.000e-005	0.3542		
Chromium	5.790e-005	5.790e-005	3.008		
Fluorine	0.001030	0.001030	19.55		
Hydrogen	111.0	111.0	1.118e+005		
Iron	2.290e-006	2.290e-006	0.1278		
Lead	6.610e-007	6.610e-007	0.1368		
Magnesium	1.000e-006	1.000e-006	0.02428		
Manganese	1.000e-006	1.000e-006	0.05488		
Nickel	1.000e-006	1.000e-006	0.05863		
Nitrogen	0.0006820	0.0006820	9.543		
Oxygen	55.54	55.54	8.877e+005		
Phosphorus	0.0005010	0.0005010	15.50		
Sodium	0.01590	0.01590	365.2		
Strontium	1.000e-006	1.000e-006	0.08754		
Sulfur	1.000e-005	1.000e-005	0.3203		
Uranium	1.300e-005	1.300e-005	3.091		

Sample 19887 Ca(OH)₂ leach, Stage 2.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.850 log f02 = -0.706
Eh = 0.5176 volts pe = 8.7498
Ionic strength = 0.017382 Activity of water = 0.017382

Activity of water = 1.000000

Solvent mass = 0.999851 kg

Solution mass = 1.000491 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000010 molal

Dissolved solids = 640 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity = 471.30 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
					-
02(g)	fixed fuga	acity buffer			

OH- 0.008180 139.0 0.8753 -2.1451 Na+ 0.008061 185.2 0.8775 -2.1504 CO3 0.004517 270.9 0.5957 -2.5701 O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 9.235e-005 5.631 0.8775 -4.0913 CaCO3(aq) 7.110e-005 7.112 1.0000 -4.1481 NaCO3- 7.091e-005 5.881 0.8775 -4.2061 NO3- 6.981e-005 4.326 0.8731 -4.2151 A102- 3.926e-005 2.314 0.8775 -4.4628 Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 C1- 9.991e-006 0.3540 0.8731 -5.0593 S04 9.687e-006 0.3540 0.8731 -5.0593 S04 9.687e-006 0.3311 1.0000 -5.2429 CaPO4- 8.131e-006	Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
CO3 0.004517 270.9 0.5957 -2.5701 O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 9.235e-005 5.631 0.8775 -4.0913 CaCO3(aq) 7.110e-005 7.1112 1.0000 -4.1481 NaCO3- 7.091e-005 5.881 0.8775 -4.2061 NO3- 6.981e-005 4.326 0.8731 -4.2151 A102- 3.926e-005 2.314 0.8775 -4.4628 Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 C1- 9.991e-006 0.3540 0.8731 -5.0593 S04 9.687e-006 0.9300 0.5900 -5.2429 CaPO4- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2	OH-	0.008180	139.0	0.8753	-2.1451
O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 9.235e-005 5.631 0.8775 -4.0913 CaCO3(aq) 7.110e-005 7.112 1.0000 -4.1481 NaCO3- 7.091e-005 5.881 0.8775 -4.2061 NO3- 6.981e-005 4.326 0.8731 -4.2151 AlO2- 3.926e-005 2.314 0.8775 -4.4628 Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 Cl- 9.991e-006 0.3540 0.8731 -5.0593 SO4 9.687e-006 0.9300 0.5900 -5.2429 CaP04- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 Cr04 2.470e-006 0.2864 0.5900 -5.8364 Fe (OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3-	Na+	0.008061	185.2	0.8775	-2.1504
HCO3- 9.235e-005 5.631 0.8775 -4.0913 CaCO3(aq) 7.110e-005 7.112 1.0000 -4.1481 NaCO3- 7.091e-005 5.881 0.8775 -4.2061 NO3- 6.981e-005 4.326 0.8731 -4.2151 AlO2- 3.926e-005 2.314 0.8775 -4.4628 Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 Cl- 9.991e-006 0.3540 0.8731 -5.0593 SO4- 9.687e-006 0.9300 0.5900 -5.2429 CaPO4- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe (OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9951 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni (OH)3- 8.909e-007 0.09580 0.5900 -6.2297 Ni (OH)3- 8.909e-007 0.09768 0.8775 -5.9051 SrCO3(aq) 8.174e-007 0.0662 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.08e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.08e-007 0.04295 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.09559 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5983	CO3	0.004517	270.9	0.5957	-2.5701
CacO3(aq) 7.110e-005 7.112 1.0000 -4.1481 NaCO3- 7.091e-005 5.881 0.8775 -4.2061 NO3- 6.981e-005 4.326 0.8731 -4.2151 AlO2- 3.926e-005 2.314 0.8775 -4.4628 Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 Cl- 9.991e-006 0.3540 0.8731 -5.0593 SO4 9.687e-006 0.9300 0.5900 -5.2429 CaPO4- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 Cr04 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4	02(aq)	0.0002484	7.945	1.0000	-3.6048
NaCO3- NO3- NO3- NO3- NO3- NO3- NO3- NO3- N	HCO3-	9.235e-005	5.631	0.8775	-4.0913
NO3- 6.981e-005 4.326 0.8731 -4.2151 AlO2- 3.926e-005 2.314 0.8775 -4.4628 Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 Cl- 9.991e-006 0.3540 0.8731 -5.0581 Cl- 9.987e-006 0.9300 0.5900 -5.2429 CaP04- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2294 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.364e-007 0.07913 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.07647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5983	CaCO3(aq)	7.110e-005	7.112	1.0000	-4.1481
A102- 3.926e-005 2.314 0.8775 -4.4628 Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 Cl- 9.991e-006 0.3540 0.8731 -5.0593 SO4 9.687e-006 0.9300 0.5900 -5.2429 CaPO4- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2864 0.5900 -5.8364 Fe(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2926 Sr++ 4.521e-007 0.09599 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5983	NaCO3-	7.091e-005	5.881	0.8775	-4.2061
Ca++ 2.033e-005 0.8144 0.6119 -4.9051 F- 9.995e-006 0.1898 0.8753 -5.0581 Cl- 9.991e-006 0.3540 0.8731 -5.0593 SO4 9.687e-006 0.9300 0.5900 -5.2429 CaP04- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 Cr04 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 <td< td=""><td>NO3-</td><td>6.981e-005</td><td>4.326</td><td>0.8731</td><td>-4.2151</td></td<>	NO3-	6.981e-005	4.326	0.8731	-4.2151
F- 9.995e-006 0.1898 0.8753 -5.0581 Cl- 9.991e-006 0.3540 0.8731 -5.0593 SO4 9.687e-006 0.9300 0.5900 -5.2429 CaPO4- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2294 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.07647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	A102-	3.926e-005	2.314	0.8775	-4.4628
Cl- 9.991e-006 0.3540 0.8731 -5.0593 S04 9.687e-006 0.9300 0.5900 -5.2429 CaP04- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09580 0.8775 -6.1069 MmO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.098e-007 0.04295 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	Ca++	2.033e-005	0.8144	0.6119	-4.9051
SO4 9.687e-006 0.9300 0.5900 -5.2429 CaPO4- 8.131e-006 1.097 0.8775 -5.1466 NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657	F-	9.995e-006	0.1898	0.8753	-5.0581
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	9.991e-006	0.3540	0.8731	-5.0593
NaOH(aq) 8.032e-006 0.3211 1.0000 -5.0952 CrO4 2.470e-006 0.2864 0.5900 -5.8364 Fe(OH)4- 2.279e-006 0.2821 0.8775 -5.6990 UO2(OH)3- 1.873e-006 0.6008 0.8775 -5.7843 CaOH+ 1.418e-006 0.08089 0.8775 -5.9051 HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	SO4	9.687e-006	0.9300	0.5900	-5.2429
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CaPO4-	8.131e-006	1.097	0.8775	-5.1466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NaOH(aq)	8.032e-006	0.3211	1.0000	-5.0952
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr04	2.470e-006	0.2864	0.5900	-5.8364
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(OH)4-	2.279e-006	0.2821	0.8775	-5.6990
HPO4 9.987e-007 0.09580 0.5900 -6.2297 Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	UO2(OH)3-	1.873e-006	0.6008	0.8775	-5.7843
Ni(OH)3- 8.909e-007 0.09768 0.8775 -6.1069 MnO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	CaOH+	1.418e-006	0.08089	0.8775	-5.9051
MnO4 8.645e-007 0.1027 0.5900 -6.2924 NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	HPO4	9.987e-007	0.09580	0.5900	-6.2297
NaHCO3(aq) 8.174e-007 0.06862 1.0000 -6.0876 PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	Ni(OH)3-	8.909e-007		0.8775	-6.1069
PO4 6.530e-007 0.06198 0.3045 -6.7015 SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	MnO4	8.645e-007	0.1027	0.5900	-6.2924
SrCO3(aq) 5.364e-007 0.07913 1.0000 -6.2705 MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	NaHCO3(aq)	8.174e-007	0.06862	1.0000	-6.0876
MgCO3(aq) 5.098e-007 0.04295 1.0000 -6.2926 Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	PO4	6.530e-007	0.06198	0.3045	-6.7015
Sr++ 4.521e-007 0.03959 0.6013 -6.5657 Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	SrCO3(aq)	5.364e-007	0.07913	1.0000	-6.2705
Mg++ 3.148e-007 0.007647 0.6316 -6.7014 NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	MgCO3(aq)	5.098e-007	0.04295	1.0000	-6.2926
NaSO4- 3.044e-007 0.03622 0.8775 -6.5733 Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	Sr++	4.521e-007	0.03959	0.6013	-6.5657
Pb(OH)3- 2.873e-007 0.07415 0.8775 -6.5983	Mg++	3.148e-007	0.007647	0.6316	-6.7014
		3.044e-007	0.03622	0.8775	-6.5733
MaPO4- 1.749e-007 0.02085 0.8775 -6.8139	Pb(OH)3-	2.873e-007	0.07415	0.8775	-6.5983
1.7170 007 0.02000 0.0770 0.0137	MgPO4-	1.749e-007	0.02085	0.8775	-6.8139

MnO4- Ni(OH)2(aq)	1.357e-007 1.092e-007	0.01613 0.01011	0.8753 1.0000	-6.9253 -6.9619
UO2(CO3)3	4.488e-008	0.02018	0.1206	-8.2666
NaAlO2(aq)	4.401e-008	0.003605	1.0000	-7.3564
NaHPO4-	3.951e-008	0.004698	0.8775	-7.4600
Pb(OH)2(aq)	3.521e-008	0.008488	1.0000	-7.4533
UO2(OH)4	3.073e-008	0.01038	0.5900	-7.7416
CaHCO3+	1.279e-008	0.001293	0.8775	-7.9497
SrOH+	1.125e-008	0.001176	0.8775	-8.0057
Fe(OH)3(aq)	1.125e-008	0.001201	1.0000	-7.9490
NaCl(aq)	1.031e-008	0.0006022	1.0000	-7.9867
(only species >	• 1e-8 molal liste	ed)		

	log Q/K		log Q/K
Birnessite Todorokite Fluorapatite Trevorite Hematite Hydroxylapatite Pyrolusite Ferrite-Ca CaUO4 MnO2(gamma) Ferrite-Mg Goethite Bixbyite Plattnerite	log Q/K	Aragonite Whitlockite Brucite Bunsenite Ni(OH)2 Monohydrocalcite Na2U2O7(c) Ice Dolomite-dis SrUO4(alpha) Diaspore Boehmite Gibbsite	log Q/K 0.8605s/sat 0.7502s/sat 0.7006s/sat 0.5564s/sat 0.2798s/sat 0.1712s/sat -0.0174 -0.1387 -0.1471 -0.4432 -0.5898 -0.9937 -1.1855 -1.2363
	•	Artinite	
Strontianite	1.5067s/sat	Magnesite Artinite	-1.2363
Dolomite-ord	1.3973s/sat	Fe(OH)3(ppd)	-1.6046
Dolomite	1.3973s/sat 1.2093s/sat	Hausmannite	-2.0434 -2.5257
Manganite Calcite	1.2093s/sat 1.0049s/sat	Na2U2O7(am)	-2.323/
(only minerals	•	-3 listed)	

Gases	fugacity	log fug.
Gases	fugacity	log fug
Na(g) Na(g) NH3(g) UO2Cl2(g)	4.360e-070 5.456e-071 1.769e-073 6.395e-081	-70.263 -72.752 -80.194

```
4.682e-091 -90.330
4.590e-092 -91.338
3.559e-109 -108.449
1.624e-113 -112.789
 F2(g)
 UF5(g)
 UF4(g)
                 7.683e-119 -118.114
 UF6(q)
                 6.126e-123 -122.213
 UO2(q)
                 3.561e-124 -123.448
 Mg(g)
                 3.307e-145
                            -144.481
 Ca(g)
                 2.539e-145
                            -144.595
 UCl4(g)
 CH4(g)
                 9.490e-151 -150.023
                 8.426e-153 -152.074
 H2S(g)
                 2.478e-157 -156.606
 UC15(g)
                 3.394e-159 -158.469
 UF3(g)
                 4.491e-164 -163.348
 UCl6(g)
                 1.339e-170 -169.873
 UC13(g)
                 4.449e-192 -191.352
1.418e-192 -191.848
 Al(g)
 U2F10(g)
                 7.784e-195 -194.109
 C(g)
                 1.047e-201 -200.980
 UF2(g)
                 3.418e-207 -206.466
 UO(g)
                 3.823e-213 -212.418
 UC12(g)
                 7.945e-238 -237.100
 UF(g)
 C2H4(g)
                 4.448e-248
                             -247.352
 S2(g)
                 3.963e-248 -247.402
                2.391e-253 -252.621
 UCl(g)
 U2Cl8(g)
                 1.589e-279 -278.799
 U2Cl10(g)
                 1.225e-287 -286.912
                 4.473e-292 -291.349
 U(g)
______
 Al+++
            3.93e-005 3.93e-005 1.06
             0.000101 0.000101
                                  4.05
 Ca++
 Cl-
            1.00e-005 1.00e-005
                                 0.354
 CrO4--
            2.47e-006 2.47e-006
                                 0.286
             1.00e-005 1.00e-005
 F-
                                 0.190
            2.29e-006 2.29e-006 0.128
-0.0131 -0.0131 -13.2
 Fe++
 H+
               55.5
                       55.5 1.00e+006
 H20
              0.00475 0.00475 290.
 HCO3-
           1.00e-005 1.00e-005
                                 0.959
 HPO4--
            1.00e-006 1.00e-006 0.0243
 Mq++
 Mn++
            1.00e-006 1.00e-006 0.0549
 Mn++ 1.00e-000 1.000 000 1.19
NH3(aq) 6.98e-005 6.98e-005 1.19
Na+ 0.00814 0.00814 187.
            1.00e-006 1.00e-006 0.0587
 Ni++
             0.000390 0.000390 12.5
 02(aq)
             3.23e-007 3.23e-007 0.0669
 Pb++
             1.00e-005 1.00e-005
 SO4--
                                 0.960
             1.00e-006 1.00e-006 0.0876
 Sr++
             1.95e-006 1.95e-006
                                 0.526
 UO2++
Elemental composition
                          In fluid
                                                Sorbed
     total moles moles mg/kg moles mg/kg
 Aluminum 3.930e-005 3.930e-005 1.060
```

UOF4(g)

Calcium	0.0001010	0.0001010	4.046
Carbon	0.004753	0.004753	57.06
Chlorine	1.000e-005	1.000e-005	0.3544
Chromium	2.470e-006	2.470e-006	0.1284
Fluorine	1.000e-005	1.000e-005	0.1899
Hydrogen	111.0	111.0	1.118e+005
Iron	2.290e-006	2.290e-006	0.1278
Lead	3.230e-007	3.230e-007	0.06689
Magnesium	1.000e-006	1.000e-006	0.02429
Manganese	1.000e-006	1.000e-006	0.05491
Nickel	1.000e-006	1.000e-006	0.05866
Nitrogen	6.980e-005	6.980e-005	0.9772
Oxygen	55.52	55.52	8.879e+005
Phosphorus	1.000e-005	1.000e-005	0.3096
Sodium	0.008140	0.008140	187.0
Strontium	1.000e-006	1.000e-006	0.08758
Sulfur	1.000e-005	1.000e-005	0.3205
Uranium	1.950e-006	1.950e-006	0.4639

Sample 19887 Ca(OH)₂ leach, Stage 3.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.670 log f02 = -0.706
Eh = 0.5282 volts pe = 8.9298
Ionic strength = 0.014196 Activity of water = 0.014196

Activity of water = 1.000000

Solvent mass = 0.999902 kg

Solution mass = 1.000425 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000010 molal

Dissolved solids = 522 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity = 417.22 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.006532	150.1	0.8870	-2.2371
OH-	0.005344	90.85	0.8851	-2.3251
CO3	0.004018	241.0	0.6214	-2.6026
02(aq)	0.0002485	7.949	1.0000	-3.6046
HCO3-	0.0001283	7.825	0.8870	-3.9438
NO3-	6.980e-005	4.326	0.8832	-4.2101
NaCO3-	5.331e-005	4.422	0.8870	-4.3253
CaCO3(aq)	3.012e-005	3.013	1.0000	-4.5211
AlO2-	2.278e-005	1.343	0.8870	-4.6945
F-	9.996e-006	0.1898	0.8851	-5.0532
Cl-	9.992e-006	0.3541	0.8832	-5.0543
SO4	9.737e-006	0.9349	0.6164	-5.2217
Cr04	9.291e-006	1.077	0.6164	-5.2421
Ca++	8.937e-006	0.3580	0.6357	-5.2456
CaPO4-	6.200e-006	0.8369	0.8870	-5.2597
NaOH(aq)	4.346e-006	0.1738	1.0000	-5.3619
HPO4	2.442e-006	0.2343	0.6164	-5.8223
Fe(OH)4-	1.767e-006	0.2188	0.8870	-5.8049
UO2(OH)3-	1.535e-006	0.4926	0.8870	-5.8660
Pb(OH)3-	1.275e-006	0.3291	0.8870	-5.9466
PO4	9.986e-007	0.09479	0.3361	-6.4741
NaHCO3(aq)	9.402e-007	0.07894	1.0000	-6.0268
Ni(OH)3-	8.421e-007	0.09234	0.8870	-6.1267
MnO4	8.030e-007	0.09545	0.6164	-6.3054
SrCO3(aq)	5.298e-007	0.07817	1.0000	-6.2759
Sr++	4.620e-007	0.04046	0.6263	-6.5386
MgCO3(aq)	4.419e-007	0.03724	1.0000	-6.3547
CaOH+	4.232e-007	0.02415	0.8870	-6.4256
Mg++	2.845e-007	0.006910	0.6531	-6.7310
MgPO4-	2.729e-007	0.03253	0.8870	-6.6161
NaSO4-	2.590e-007	0.03082	0.8870	-6.6388

Pb(OH)2(aq)	2.390e-007	0.05762	1.0000	-6.6216
MnO4-	1.971e-007	0.02343	0.8851	-6.7583
Ni(OH)2(aq)	1.579e-007	0.01463	1.0000	-6.8017
UO2(CO3)3	8.638e-008	0.03886	0.1438	-7.9058
NaHPO4-	8.179e-008	0.009725	0.8870	-7.1394
NaAlO2(aq)	2.114e-008	0.001732	1.0000	-7.6749
UO2(OH)4	1.610e-008	0.005440	0.6164	-8.0033
Fe(OH)3(aq)	1.334e-008	0.001425	1.0000	-7.8749
(only species	> 1e-8 molal listed	d)		

Mineral Sacuration	log Q/K		log Q/K
Hydroxylapatite Pyrolusite Ferrite-Ca MnO2(gamma) CaUO4 Ferrite-Mg Bixbyite Goethite Plattnerite Manganite	28.4789s/sat 24.5278s/sat 11.6511s/sat 11.2560s/sat 8.1416s/sat 6.0598s/sat 6.0081s/sat 4.8229s/sat 4.4903s/sat 3.8383s/sat 3.8042s/sat 3.7486s/sat 3.5906s/sat 2.4522s/sat 1.5561s/sat	Whitlockite Ice Monohydrocalcite Na2U2O7(c) Dolomite-dis Diaspore SrUO4(alpha) Minium Hausmannite Boehmite Gibbsite Magnesite Fe(OH)3(ppd) Hydrocerussite	0.3110s/sat 0.1836s/sat -0.1387 -0.2018 -0.3542 -0.5821 -0.6415 -0.6778 -0.8351 -1.0030 -1.0454 -1.2372 -1.2984 -1.5305 -1.6695
Strontianite Dolomite-ord	1.5013s/sat 0.9623s/sat	Cerussite Artinite	-1.9361 -2.0517
Dolomite-ord Dolomite	0.9623s/sat 0.9623s/sat	Artinite Litharge	-2.0517 -2.1702
Bunsenite	0.7166s/sat	Massicot	-2.3524
Calcite	0.6319s/sat	Na2U2O7(am)	-2.8625
Aragonite	0.4875s/sat	PbHPO4	-2.9662
Ni(OH)2	0.4400s/sat	2.1	

Gases	fugacity	log fug.
Gases	fugacity	log fug
UO3(g) Na(g) NH3(g) UO2Cl2(g)	5.468e-070 2.952e-071 2.707e-073 1.881e-080	-69.262 -70.530 -72.568 -79.726

```
3.223e-090 -89.492
1.075e-091 -90.968
3.750e-108 -107.426
1.117e-112 -111.952
 F2(g)
 UF5(g)
 UF4(g)
                 1.239e-117 -116.907
 UF6(q)
                 7.681e-123 -122.115
 UO2(q)
 Mg(g)
                 1.452e-124 -123.838
                 1.750e-144
                           -143.757
 UCl4(g)
                 6.591e-146
                           -145.181
 Ca(g)
 CH4(g)
                 2.015e-150
                            -149.696
                2.025e-152 -151.693
 H2S(g)
                2.616e-156 -155.582
 UC15(g)
                1.526e-158 -157.817
 UF3(g)
                7.263e-163 -162.139
 UCl6(g)
                6.028e-170 -169.220
 UC13(g)
                 1.574e-190 -189.803
3.948e-192 -191.404
 U2F10(g)
 Al(g)
                 1.654e-194 -193.782
 C(g)
                3.074e-201 -200.512
 UF2(g)
                 4.285e-207 -206.368
 UO(g)
                 1.124e-212 -211.949
 UCl2(g)
                 1.524e-237 -236.817
 UF(g)
                 2.291e-247
 S2(q)
                            -246.640
                2.007e-247 -246.697
 C2H4(g)
                4.589e-253 -252.338
 UCl(g)
 U2Cl8(g)
                7.551e-278 -277.122
 U2Cl10(g)
                1.366e-285 -284.865
                 5.606e-292 -291.251
 U(g)
______
 Al+++ 2.28e-005 2.28e-005 0.615
            4.57e-005 4.57e-005
 Ca++
                                 1.83
            1.00e-005 1.00e-005
 Cl-
                                0.354
 Cr04--
            9.29e-006 9.29e-006
                                 1.08
                                0.190
            1.00e-005 1.00e-005
 F-
 Fe++
           1.78e-006 1.78e-006 0.0994
            -0.00964 -0.00964
 H+
                                -9.71
              55.5
                      55.5 1.00e+006
 H20
             0.00423 0.00423 258.
 HCO3-
          1.00e-005 1.00e-005
                                0.959
 HPO4--
            1.00e-006 1.00e-006 0.0243
 Mq++
 Mn++
            1.00e-006 1.00e-006 0.0549
 NH3(aq) 6.98e-005 6.98e-005 1.19
Na+ 0.00659 0.00659 151.
 Ni++
           1.00e-006 1.00e-006 0.0587
 02(aq)
             0.000390 0.000390
                               12.5
            1.52e-006 1.52e-006
 Pb++
                                0.315
            1.00e-005 1.00e-005
                                0.960
 SO4--
            1.00e-006 1.00e-006 0.0876
 Sr++
            1.64e-006 1.64e-006
 UO2++
                                0.443
Elemental composition
                         In fluid
                                               Sorbed
     total moles moles mg/kg moles mg/kg
 Aluminum 2.280e-005 2.280e-005 0.6149
```

UOF4(g)

Calcium	4.570e-005	4.570e-005	1.831
Carbon	0.004231	0.004231	50.80
Chlorine	1.000e-005	1.000e-005	0.3544
Chromium	9.290e-006	9.290e-006	0.4828
Fluorine	1.000e-005	1.000e-005	0.1899
Hydrogen	111.0	111.0	1.118e+005
Iron	1.780e-006	1.780e-006	0.09937
Lead	1.520e-006	1.520e-006	0.3148
Magnesium	1.000e-006	1.000e-006	0.02429
Manganese	1.000e-006	1.000e-006	0.05491
Nickel	1.000e-006	1.000e-006	0.05867
Nitrogen	6.980e-005	6.980e-005	0.9773
Oxygen	55.52	55.52	8.879e+005
Phosphorus	1.000e-005	1.000e-005	0.3096
Sodium	0.006590	0.006590	151.4
Strontium	1.000e-006	1.000e-006	0.08758
Sulfur	1.000e-005	1.000e-005	0.3205
Uranium	1.640e-006	1.640e-006	0.3902

Sample 19887 Ca(OH)₂ leach, Stage 4.

Xi = 0.0000Step # Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.670 log f02 = -0.707
Eh = 0.5282 volts pe = 8.9298
Ionic strength = 0.014019 Activity of water = 1.000000 Solvent mass = 0.999903 kg
Solution mass = 1.000447 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000010 molal
Dissolved solids = 544 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity= 448.24 mg/kg as CaCO3

Reactants	moles	moles	grams	cm3
	remaining	reacted	reacted	reacted
02(g)	fixed fuga	acity buffer	 	

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.005937	136.4	0.8875	-2.2782
OH-	0.005341	90.78	0.8857	-2.3251
CO3	0.003990	239.3	0.6230	-2.6046
CaCO3(aq)	0.0003785	37.86	1.0000	-3.4220
02(aq)	0.0002484	7.945	1.0000	-3.6048
HCO3-	0.0001277	7.785	0.8875	-3.9458
Ca++	0.0001125	4.507	0.6371	-4.1445
NO3-	6.978e-005	4.324	0.8838	-4.2099
NaCO3-	4.824e-005	4.002	0.8875	-4.3684
Cl-	9.993e-006	0.3541	0.8838	-5.0539
F-	9.993e-006	0.1897	0.8857	-5.0530
SO4	9.709e-006	0.9322	0.6180	-5.2218
CaPO4-	9.523e-006	1.285	0.8875	-5.0730
Al02-	5.606e-006	0.3305	0.8875	-5.3032
CaOH+	5.337e-006	0.3045	0.8875	-5.3245
NaOH(aq)	3.953e-006	0.1580	1.0000	-5.4030
CrO4	2.650e-006	0.3072	0.6180	-5.7857
Fe(OH)4-	2.263e-006	0.2802	0.8875	-5.6971
NaHCO3(aq)	8.514e-007	0.07148	1.0000	-6.0699
Ni(OH)3-	8.420e-007	0.09233	0.8875	-6.1265
MnO4	8.027e-007	0.09542	0.6180	-6.3044
UO2(OH)3-	6.213e-007	0.1994	0.8875	-6.2585
MgCO3(aq)	5.807e-007	0.04894	1.0000	-6.2360
Pb(OH)3-	5.511e-007	0.1422	0.8875	-6.3106
SrCO3(aq)	5.293e-007	0.07809	1.0000	-6.2763
Sr++	4.625e-007	0.04050	0.6278	-6.5371
Mg++	3.747e-007	0.009103	0.6545	-6.6104
HPO4	2.967e-007	0.02846	0.6180	-6.7367
NaSO4-	2.354e-007	0.02801	0.8875	-6.6800
MnO4-	1.974e-007	0.02347	0.8857	-6.7574
Ni(OH)2(aq)	1.579e-007	0.01463	1.0000	-6.8015

PO4	1.209e-007	0.01148	0.3381	-7.3885
Pb(OH)2(aq)	1.034e-007	0.02492	1.0000	-6.9856
CaHCO3+	1.019e-007	0.01030	0.8875	-7.0436
CaSO4(aq)	5.556e-008	0.007560	1.0000	-7.2552
MgPO4-	4.384e-008	0.005227	0.8875	-7.4099
UO2(CO3)3	3.416e-008	0.01537	0.1453	-8.3042
CaNO3+	2.497e-008	0.002547	0.8875	-7.6544
Fe(OH)3(aq)	1.710e-008	0.001826	1.0000	-7.7671
(only species >	> 1e-8 molal listed	d)		

		log Q/K		log Q/K
_	Birnessite	28.4879s/sat	Monohydrocalcite	0.8973s/sat
	Todorokite	24.5357s/sat	Bunsenite	0.7168s/sat
	Fluorapatite	14.0182s/sat	Dolomite-dis	0.6357s/sat
	Trevorite	11.8669s/sat	Ni(OH)2	0.4402s/sat
	Hydroxylapatite	8.8219s/sat	Brucite	0.4316s/sat
	Hematite	8.3572s/sat	Ice	-0.1387
	Ferrite-Ca	6.1396s/sat	Hausmannite	-0.9995
	Pyrolusite	6.0092s/sat	SrUO4(alpha)	-1.0688
	CaUO4	4.5468s/sat	Magnesite	-1.1797
	MnO2(gamma)	4.4914s/sat	Na2U2O7(c)	-1.2216
	Ferrite-Mg	4.1403s/sat	Diaspore	-1.2502
	Bixbyite	3.7508s/sat	Fe(OH)3(ppd)	-1.4227
	Goethite	3.6984s/sat	Boehmite	-1.6541
	Dolomite	2.1801s/sat	Artinite	-1.8125
	Dolomite-ord	2.1801s/sat	Gibbsite	-1.8459
	Plattnerite	2.0881s/sat	Minium	-1.9273
	Calcite	1.7310s/sat	Cerussite	-2.3021
	Whitlockite	1.6579s/sat	Litharge	-2.5342
	Aragonite	1.5866s/sat	Massicot	-2.7164
	Manganite	1.5573s/sat	Hydrocerussite	-2.7654
	Strontianite	1.5009s/sat		
	/]	1 + 1 - 1 · · · · · · · ·	2 14-4-31	

Gases	fugacity	log fug.
Gases	fugacity 0.1966 0.02598 1.577e-008 1.460e-018 9.344e-024 4.508e-024 5.004e-028 6.816e-030 5.614e-039 6.321e-042 3.114e-053 1.986e-064 3.249e-065 1.513e-067 2.215e-070 2.685e-071	log fug0.707 -1.585 -7.802 -17.836 -23.029 -23.346 -27.301 -29.166 -38.251 -41.199 -52.507 -63.702 -64.488 -66.820 -69.655 -70.571
NH3(g) UO2Cl2(g) UOF4(g)	2.710e-073 7.628e-081 1.307e-090	-72.567 -80.118 -89.884

UO2(g)	4.534e 5.030e 3.112e	-118 -	112.343 117.298 122.507			
Mg(g)	1.917e		123.717			
Ca(g)	8.319e	-145 -	144.080			
UCl4(g)	7.113e		144.148			
CH4(g)	2.009e		149.697			
H2S(g)	2.027e		151.693			
UC15(g)	1.064e		155.973			
UF3(g) UC16(g)	6.189e 2.955e		158.208 162.529			
UC18(g)	2.955e 2.448e		169.611			
U2F10(g)	2.593e		190.586			
Al(g)	9.726e		192.012			
C(g)	1.647e		193.783			
UF2(g)	1.247e	-201 -	200.904			
UO(g)	1.736e		206.760			
UCl2(g)	4.561e		212.341			
UF(g)	6.180e		237.209			
S2(g)	2.293e		246.640			
C2H4(g) UCl(g)	1.992e 1.861e		246.701 252.730			
U2Cl8(g)	1.247e		277.904			
U2Cl10(g)	2.258e		285.646			
U(g)	2.272e		291.644			
Onininal basis	+-+-lloc		luid	Sork		Kd
Original basis		moles	mg/kg	moles 	mg/kg 	L/kg
	5.61e-006	5.61e-006	0.151			
Al+++						
Al+++ Ca++	0.000506	0.000506	20.3			
	1.00e-005	0.000506 1.00e-005				
Ca++ Cl- CrO4	1.00e-005 2.65e-006	1.00e-005 2.65e-006	0.354 0.307			
Ca++ Cl- CrO4 F-	1.00e-005 2.65e-006 1.00e-005	1.00e-005 2.65e-006 1.00e-005	0.354 0.307 0.190			
Ca++ Cl- CrO4 F- Fe++	1.00e-005 2.65e-006 1.00e-005 2.28e-006	1.00e-005 2.65e-006 1.00e-005 2.28e-006	0.354 0.307 0.190 0.127			
Ca++ Cl- CrO4 F- Fe++ H+	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989	0.354 0.307 0.190 0.127 -9.96			
Ca++ Cl- CrO4 F- Fe++ H+ H2O	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5	0.354 0.307 0.190 0.127 -9.96 1.00e+006			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3-	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277.			
Ca++ C1- CrO4 F- Fe++ H+ H2O HCO3- HPO4	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3-	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 1.00e-006 6.98e-005	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138.			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq)	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136 0.960			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005 1.00e-005	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 1.00e-006 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-006	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136 0.960 0.0876			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005 1.00e-005	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136 0.960 0.0876			
Ca++ C1- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005 1.00e-006 6.67e-007	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 1.00e-006 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-006 6.67e-007	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136 0.960 0.0876 0.180 In fluid		Sorbed	
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++ UO2++	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005 1.00e-006 6.67e-007	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 1.00e-006 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-006 6.67e-007	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136 0.960 0.0876 0.180 In fluid	g n	Sorbed moles	mg/kg
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++ UO2++ Elemental compo	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-006 6.67e-007	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-006 6.67e-007	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136 0.960 0.0876 0.180 In fluid s mg/kg			
Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++ UO2++	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-005 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-005 1.00e-006 6.67e-007	1.00e-005 2.65e-006 1.00e-005 2.28e-006 -0.00989 55.5 0.00455 1.00e-006 1.00e-006 6.98e-005 0.00599 1.00e-006 0.000390 6.57e-007 1.00e-006 6.67e-007	0.354 0.307 0.190 0.127 -9.96 1.00e+006 277. 0.959 0.0243 0.0549 1.19 138. 0.0587 12.5 0.136 0.960 0.0876 0.180 In fluid s mg/kg	g n 1513 0.27		

Carbon	0.004546	0.004546	54.58
Chlorine	1.000e-005	1.000e-005	0.3544
Chromium	2.650e-006	2.650e-006	0.1377
Fluorine	1.000e-005	1.000e-005	0.1899
Hydrogen	111.0	111.0	1.118e+005
Iron	2.280e-006	2.280e-006	0.1273
Lead	6.570e-007	6.570e-007	0.1361
Magnesium	1.000e-006	1.000e-006	0.02429
Manganese	1.000e-006	1.000e-006	0.05491
Nickel	1.000e-006	1.000e-006	0.05866
Nitrogen	6.980e-005	6.980e-005	0.9772
Oxygen	55.52	55.52	8.879e+005
Phosphorus	1.000e-005	1.000e-005	0.3096
Sodium	0.005990	0.005990	137.6
Strontium	1.000e-006	1.000e-006	0.08758
Sulfur	1.000e-005	1.000e-005	0.3205
Uranium	6.670e-007	6.670e-007	0.1587

Sample 19887 Ca(OH)₂ leach, Stage 5.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.760
 log fO2 = -0.707

 Eh = 0.5229 volts
 pe = 8.8397

 Ionic strength
 = 0.014375

 Activity of water
 = 1.000000

 Solvent mass
 = 0.999880 kg

 Solution mass
 = 1.000574 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000010 molal

 Dissolved solids
 = 694 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 633.44 mg/kg as CaCO3

 Step # Xi = 0.0000

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer	 		

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
OH-	0.006579	111.8	0.8845	-2.2351
CO3	0.004157	249.3	0.6198	-2.5889
Na+	0.002784	63.96	0.8864	-2.6077
CaCO3(aq)	0.002115	211.5	1.0000	-2.6747
Ca++	0.0006093	24.40	0.6342	-3.4129
02(aq)	0.0002483	7.939	1.0000	-3.6051
HCO3-	0.0001077	6.568	0.8864	-4.0201
NO3-	6.967e-005	4.317	0.8826	-4.2112
CaOH+	3.544e-005	2.021	0.8864	-4.5029
NaCO3-	2.345e-005	1.945	0.8864	-4.6822
Cl-	9.997e-006	0.3542	0.8826	-5.0544
F-	9.980e-006	0.1895	0.8845	-5.0541
CaPO4-	9.915e-006	1.338	0.8864	-5.0561
SO4	9.597e-006	0.9213	0.6148	-5.2291
Fe(OH)4-	2.863e-006	0.3544	0.8864	-5.5956
NaOH(aq)	2.278e-006	0.09104	1.0000	-5.6425
AlO2-	9.997e-007	0.05892	0.8864	-6.0525
Pb(OH)3-	8.745e-007	0.2257	0.8864	-6.1106
Ni(OH)3-	8.679e-007	0.09515	0.8864	-6.1139
MnO4	8.341e-007	0.09913	0.6148	-6.2901
MgCO3(aq)	6.097e-007	0.05137	1.0000	-6.2149
SrCO3(aq)	5.361e-007	0.07909	1.0000	-6.2707
CaHCO3+	4.635e-007	0.04682	0.8864	-6.3863
Sr++	4.541e-007	0.03976	0.6248	-6.5471
CrO4	4.080e-007	0.04730	0.6148	-6.6006
Mg++	3.811e-007	0.009256	0.6518	-6.6049
NaHCO3(aq)	3.360e-007	0.02821	1.0000	-6.4737
CaSO4(aq)	2.945e-007	0.04006	1.0000	-6.5309
UO2(OH)3-	1.801e-007	0.05777	0.8864	-6.7969
MnO4-	1.661e-007	0.01974	0.8845	-6.8330
CaNO3+	1.344e-007	0.01371	0.8864	-6.9241

Pb(OH)2(aq)	1.332e-007	0.03210	1.0000	-6.8756
Ni(OH)2(aq)	1.322e-007	0.01224	1.0000	-6.8789
NaSO4-	1.085e-007	0.01291	0.8864	-7.0168
HPO4	4.677e-008	0.004486	0.6148	-7.5413
PO4	2.360e-008	0.002240	0.3341	-8.1031
Ca2UO2(CO3)3	2.035e-008	0.01078	1.0000	-7.6913
CaF+	1.849e-008	0.001092	0.8864	-7.7854
Fe(OH)3(aq)	1.756e-008	0.001875	1.0000	-7.7556
(only species :	> 1e-8 molal listed	i)		

	log Q/K		log Q/K
Birnessite	27.1641s/sat	Manganite	1.3918s/sat
Todorokite	23.3774s/sat	Bunsenite	0.6394s/sat
Fluorapatite	15.5312s/sat	Brucite	0.6171s/sat
Trevorite	11.8125s/sat	Ni(OH)2	0.3628s/sat
Hydroxylapatite	10.4259s/sat	Ice	-0.1387
Hematite	8.3802s/sat	Magnesite	-1.1586
Ferrite-Ca	7.0742s/sat	Fe(OH)3(ppd)	-1.4112
Pyrolusite	5.8437s/sat	Hausmannite	-1.4957
CaUO4	4.8299s/sat	SrUO4(alpha)	-1.5273
Ferrite-Mg	4.3489s/sat	Minium	-1.5975
MnO2(gamma)	4.3259s/sat	Artinite	-1.6058
Goethite	3.7099s/sat	Diaspore	-2.0895
Bixbyite	3.4200s/sat	Cerussite	-2.3564
Dolomite-ord	2.9485s/sat	Litharge	-2.4242
Dolomite	2.9485s/sat	Portlandite	-2.4481
Calcite	2.4783s/sat	Boehmite	-2.4934
Whitlockite	2.4234s/sat	Huntite	-2.5689
Aragonite	2.3339s/sat	Massicot	-2.6064
Plattnerite	2.1979s/sat	Gibbsite	-2.6852
Monohydrocalcite	1.6446s/sat	Hydrocerussite	-2.7642
Strontianite	1.5065s/sat	Na2U2O7(c)	-2.9574
Dolomite-dis	1.4041s/sat	-3 listed)	

Gases	fugacity	log fug.
Gases	0.1964 0.02598 1.080e-008 1.184e-018 7.588e-024 3.654e-024 3.292e-028 5.526e-030 3.701e-039 6.323e-042 2.133e-053 2.559e-064 2.112e-065 2.339e-068 5.210e-071	-0.707 -1.585 -7.967 -17.927 -23.120 -23.437 -27.483 -29.258 -38.432 -41.199 -52.671 -63.592 -64.675 -67.631 -70.283
Na(g) NH3(g) UO2Cl2(g)	1.547e-071 2.199e-073 1.183e-081	-70.810 -72.658 -80.927

```
1.329e-091 -90.877
7.071e-092 -91.151
1.254e-109 -108.902
4.610e-114 -113.336
 F2(g)
 UF5(g)
 UF4(g)
                  3.361e-119 -118.474
 UF6(q)
                  7.323e-124 -123.135
 UO2(q)
                  2.940e-124 -123.532
 Mg(g)
 Ca(g)
                  6.789e-144
                             -143.168
                  7.277e-146
                             -145.138
 UCl4(g)
 CH4(g)
                  1.377e-150
                             -149.861
                 1.318e-152 -151.880
 H2S(g)
                 8.835e-158 -157.054
 UC15(g)
                 7.763e-160 -159.110
 UF3(g)
                 1.993e-164 -163.701
 UCl6(g)
                 3.085e-171 -170.511
1.761e-193 -192.754
1.409e-193 -192.851
 UC13(g)
 U2F10(g)
 Al(g)
                  1.129e-194 -193.947
 C(g)
                 1.929e-202 -201.715
 UF2(g)
                  4.087e-208 -207.389
 UO(g)
                  7.079e-214 -213.150
 UC12(g)
                 1.180e-238 -237.928
 UF(g)
 S2(q)
                  9.694e-248
                              -247.013
 C2H4(g)
                 9.362e-248 -247.029
                 3.558e-254 -253.449
 UCl(g)
 U2Cl8(g)
                 1.305e-280 -279.884
 U2Cl10(g)
                 1.558e-288 -287.807
 U(g)
                  5.350e-293 -292.272
______
 Al+++ 1.00e-006 1.00e-006 0.0270
             0.00277 0.00277 111.
 Ca++
 Cl-
             1.00e-005 1.00e-005
                                  0.354
 Cr04--
            4.08e-007 4.08e-007 0.0473
             1.00e-005 1.00e-005
 F-
                                 0.190
            2.88e-006 2.88e-006 0.161
-0.0130 -0.0130 -13.1
 Fe++
 H+
               55.5
                        55.5 9.99e+005
 H20
              0.00640 0.00640 391.
 HCO3-
           1.00e-005 1.00e-005
                                  0.959
 HPO4--
             1.00e-006 1.00e-006 0.0243
 Mq++
 Mn++
             1.00e-006 1.00e-006 0.0549
 Mn++ 1.00e-006 1.00e 000
NH3(aq) 6.98e-005 6.98e-005 1.19
Na+ 0.00281 0.00281 64.6
            1.00e-006 1.00e-006 0.0587
 Ni++
 02(aq)
              0.000390 0.000390 12.5
             1.01e-006 1.01e-006
                                  0.209
 Pb++
             1.00e-005 1.00e-005 0.960
1.00e-006 1.00e-006 0.0876
 SO4--
 Sr++
 UO2++
             2.09e-007 2.09e-007 0.0564
Elemental composition
                           In fluid
                                                 Sorbed
     total moles moles mg/kg moles mg/kg
 Aluminum 1.000e-006 1.000e-006 0.02697
```

UOF4(g)

Calcium	0.002770	0.002770	111.0
Carbon	0.006404	0.006404	76.88
Chlorine	1.000e-005	1.000e-005	0.3543
Chromium	4.080e-007	4.080e-007	0.02120
Fluorine	1.000e-005	1.000e-005	0.1899
Hydrogen	111.0	111.0	1.118e+005
Iron	2.880e-006	2.880e-006	0.1607
Lead	1.010e-006	1.010e-006	0.2092
Magnesium	1.000e-006	1.000e-006	0.02429
Manganese	1.000e-006	1.000e-006	0.05491
Nickel	1.000e-006	1.000e-006	0.05866
Nitrogen	6.980e-005	6.980e-005	0.9771
Oxygen	55.53	55.53	8.879e+005
Phosphorus	1.000e-005	1.000e-005	0.3096
Sodium	0.002810	0.002810	64.56
Strontium	1.000e-006	1.000e-006	0.08757
Sulfur	1.000e-005	1.000e-005	0.3205
Uranium	2.090e-007	2.090e-007	0.04972

Sample 19887 Ca(OH)₂ leach, Stage 6.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.740 log f02 = -0.707
Eh = 0.5241 volts pe = 8.8598
Ionic strength = 0.011306 Ionic strength = 0.011306
Activity of water = 1.000000
Solvent mass = 0.999887 kg
Solution mass = 1.000395 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000010 molal
Dissolved solids = 507 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity = 394.20 mg/kg as CaCO3

Reactants	moles	moles	grams	cm3
	remaining	reacted	reacted	reacted
02(g)	fixed fuga	acity buffer		

OH- 0.006207 105.5 0.8954 -2.2551 Na+ 0.003119 71.67 0.8969 -2.5532 CO3 0.002772 166.3 0.6494 -2.7447 CaCO3(aq) 0.001121 112.2 1.0000 -2.9503 Ca++ 0.0004432 17.75 0.6617 -3.5328 O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 7.787e-005 4.749 0.8969 -4.1559 NO3- 6.971e-005 4.320 0.8938 -4.2055 CrO4 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.7835 Cl- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0489 F- 9.837e-006 0.2853 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006	Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
CO3 0.002772 166.3 0.6494 -2.7447 CaCO3(aq) 0.001121 112.2 1.0000 -2.9503 Ca++ 0.0004432 17.75 0.6617 -3.5328 O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 7.787e-005 4.749 0.8969 -4.1559 NO3- 6.971e-005 4.320 0.8938 -4.2055 Cr04 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 C1- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 SO4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.9858 1.0000 -5.6080 Fe(OH)4- 2.305e	OH-	0.006207	105.5	0.8954	-2.2551
CaCO3(aq) 0.001121 112.2 1.0000 -2.9503 Ca++ 0.0004432 17.75 0.6617 -3.5328 O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 7.787e-005 4.749 0.8969 -4.1559 NO3- 6.971e-005 4.320 0.8938 -4.2055 Cr04 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 C1- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0489 GaPO4- 9.889e-006 1.335 0.8969 -5.0521 S04 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.9858 1.0000 -5.6845 AlO2- 9.997e-007	Na+	0.003119	71.67	0.8969	-2.5532
Ca++ 0.0004432 17.75 0.6617 -3.5328 O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 7.787e-005 4.749 0.8969 -4.1559 NO3- 6.971e-005 4.320 0.8938 -4.2055 Cr04 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 C1- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 SO4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.0474 Ni(OH)3- <	CO3	0.002772	166.3	0.6494	-2.7447
O2(aq) 0.0002484 7.945 1.0000 -3.6048 HCO3- 7.787e-005 4.749 0.8969 -4.1559 NO3- 6.971e-005 4.320 0.8938 -4.2055 Cr04 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 Cl- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 SO4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.9858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.61le-007 0.09443 0.8969 -6.1122 Mm04- <	CaCO3(aq)	0.001121	112.2	1.0000	-2.9503
HCO3- 7.787e-005 4.749 0.8969 -4.1559 NO3- 6.971e-005 4.320 0.8938 -4.2055 CrO4 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 Cl- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 SO4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.61le-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq)	Ca++	0.0004432	17.75	0.6617	-3.5328
NO3- 6.971e-005 4.320 0.8938 -4.2055 CrO4 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 Cl- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 SO4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.0108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02269 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.0213 0.8969 -6.6792 Ni(OH)2(aq) 1.389e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.04554 0.8969 -6.8952	02(aq)	0.0002484	7.945	1.0000	-3.6048
Cr04 3.800e-005 4.406 0.6451 -4.6105 CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 Cl- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 S04 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.61le-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(HCO3-	7.787e-005	4.749	0.8969	-4.1559
CaOH+ 2.538e-005 1.448 0.8969 -4.6428 NaCO3- 1.836e-005 1.523 0.8969 -4.7835 C1- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 So4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MmO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04640 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 C	NO3-	6.971e-005	4.320	0.8938	-4.2055
NaCO3-	Cr04	3.800e-005	4.406	0.6451	-4.6105
C1- 9.996e-006 0.3542 0.8938 -5.0489 F- 9.984e-006 0.1896 0.8954 -5.0487 CaP04- 9.889e-006 1.335 0.8969 -5.0521 S04 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.9858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.0545 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.04460 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.26281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	CaOH+	2.538e-005	1.448	0.8969	-4.6428
F- 9.984e-006 0.1896 0.8954 -5.0487 CaPO4- 9.889e-006 1.335 0.8969 -5.0521 SO4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	NaCO3-	1.836e-005	1.523	0.8969	-4.7835
CaPO4- 9.889e-006 1.335 0.8969 -5.0521 SO4 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.61le-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.04554 0.8969 -6.8952	Cl-	9.996e-006	0.3542	0.8938	-5.0489
S04 9.637e-006 0.9253 0.6451 -5.2064 NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 V02(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 <	F-	9.984e-006	0.1896	0.8954	-5.0487
NaOH(aq) 2.466e-006 0.09858 1.0000 -5.6080 Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 Alo2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.61le-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	CaPO4-	9.889e-006	1.335	0.8969	-5.0521
Fe(OH)4- 2.305e-006 0.2854 0.8969 -5.6845 AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	SO4	9.637e-006	0.9253	0.6451	-5.2064
AlO2- 9.997e-007 0.05893 0.8969 -6.0474 Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	NaOH(aq)	2.466e-006	0.09858	1.0000	-5.6080
Ni(OH)3- 8.611e-007 0.09443 0.8969 -6.1122 MnO4 8.224e-007 0.09776 0.6451 -6.2753 Sr++ 5.307e-007 0.04648 0.6536 -6.4598 MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	Fe(OH)4-	2.305e-006	0.2854	0.8969	-5.6845
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Al02-	9.997e-007	0.05893	0.8969	-6.0474
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni(OH)3-	8.611e-007		0.8969	
MgCO3(aq) 5.293e-007 0.04460 1.0000 -6.2763 SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	MnO4	8.224e-007	0.09776	0.6451	-6.2753
SrCO3(aq) 4.579e-007 0.06757 1.0000 -6.3392 Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	Sr++	5.307e-007	0.04648	0.6536	-6.4598
Mg++ 4.560e-007 0.01108 0.6769 -6.5106 NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	MgCO3(aq)	5.293e-007	0.04460	1.0000	-6.2763
NaHCO3(aq) 2.786e-007 0.02339 1.0000 -6.5550 CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	SrCO3(aq)	4.579e-007	0.06757	1.0000	-6.3392
CaHCO3+ 2.543e-007 0.02569 0.8969 -6.6419 CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	Mg++	4.560e-007	0.01108	0.6769	-6.5106
CaSO4(aq) 2.354e-007 0.03204 1.0000 -6.6281 MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	NaHCO3(aq)				
MnO4- 1.777e-007 0.02113 0.8954 -6.7982 UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	CaHCO3+				-6.6419
UO2(OH)3- 1.419e-007 0.04554 0.8969 -6.8952 Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	CaSO4(aq)		0.03204	1.0000	-6.6281
Ni(OH)2(aq) 1.389e-007 0.01287 1.0000 -6.8572	MnO4-	1.777e-007	0.02113	0.8954	-6.7982
	· · · · · · · · · · · · · · · · · · ·				
NaSO4- 1.281e-007 0.01524 0.8969 -6.9396	-				
	NaSO4-	1.281e-007	0.01524	0.8969	-6.9396

CaNO3+	1.021e-007	0.01042	0.8969	-7.0383
HPO4	6.207e-008	0.005954	0.6451	-7.3975
Pb(OH)3-	4.436e-008	0.01145	0.8969	-7.4003
PO4	2.816e-008	0.002673	0.3725	-7.9793
Fe(OH)3(aq)	1.498e-008	0.001600	1.0000	-7.8245
CaF+	1.404e-008	0.0008293	0.8969	-7.8997
MgPO4-	1.401e-008	0.001670	0.8969	-7.9008
SrOH+	1.090e-008	0.001140	0.8969	-8.0098
(only species :	> 1e-8 molal liste	d)		

	log Q/K		log Q/K
Birnessite Todorokite Fluorapatite Trevorite Hydroxylapatite Hematite Ferrite-Ca Pyrolusite CaU04 Mn02(gamma) Ferrite-Mg Goethite Bixbyite Dolomite-ord Dolomite Whitlockite Calcite Aragonite	27.6011s/sat 23.7598s/sat 15.3090s/sat 11.6964s/sat 10.1782s/sat 8.2424s/sat 6.7765s/sat 5.8983s/sat 4.5918s/sat 4.3805s/sat 4.2653s/sat 3.6410s/sat 3.5292s/sat 2.6114s/sat 2.6114s/sat 2.3116s/sat 2.2027s/sat 2.0583s/sat	Manganite Strontianite Monohydrocalcite Dolomite-dis Plattnerite Brucite Bunsenite Ni(OH)2 Ice Magnesite Hausmannite Fe(OH)3(ppd) SrUO4(alpha) Artinite Diaspore Boehmite Portlandite Gibbsite	1.4464s/sat 1.4380s/sat 1.3690s/sat 1.0670s/sat 0.9284s/sat 0.6714s/sat 0.6611s/sat 0.3845s/sat -0.1387 -1.2200 -1.3320 -1.4801 -1.5582 -1.6130 -2.0644 -2.4683 -2.6080 -2.6601
(only minerals	with log $Q/K >$	-3 listed)	

fugacity log fug. Gases 0.1966 -0.707 0.02598 -1.585 8.274e-009 -8.082 1.255e-018 -17.901 8.046e-024 -23.094 02(g) H2O(g) CO2(g) HF(g)HCl(g)3.876e-024 -23.412 3.700e-028 -27.432 5.861e-030 -29.232 4.163e-039 -38.381 6.321e-042 -41.199 1.634e-053 -52.787 NO2(g)N2(g)NO(g)Cl2(g) H2(g) CO(g) -64.613 S02(g) 2.439e-065 1.375e-065 -64.862 Pb(g) 2.197e-068 -67.658 UO2F2(g) 4.351e-071 -70.361 UO3(g) Na(g) 1.675e-071 -70.776 1.111e-081 1.403e-001 NH3(g) -72.633 UO2Cl2(g) -80.954 UOF4(q)-90.853 F2(g) 7.954e-092 -91.099 1.404e-109 -108.852 UF5(g) 4.867e-114 -113.313 UF4(g)

```
6.114e-124 -123.214
3.330e-124 -123.478
 UO2(g)
 Mg(g)
 Ca(q)
                    4.697e-144 -143.328
 UC14(q)
                    7.682e-146 -145.115
                   1.054e-150 -149.977
 CH4(q)
 H2S(q)
                   1.521e-152 -151.818
                    9.891e-158 -157.005
 UC15(g)
                    7.728e-160 -159.112
 UF3(g)
                    2.366e-164
 UCl6(g)
                                 -163.626
                   3.070e-171 -170.513
 UCl3(g)
                   2.208e-193 -192.656
 U2F10(g)
                   1.492e-193 -192.826
 Al(g)
                   8.643e-195 -194.063
 C(g)
                   1.811e-202 -201.742
 UF2(g)
                   3.411e-208 -207.467
6.644e-214 -213.178
 UO(g)
 UC12(g)
                   1.044e-238 -237.981
 UF(g)
                   1.292e-247 -246.889
 S2(g)
                    5.485e-248 -247.261
 C2H4(g)
                   3.149e-254 -253.502
 UCl(g)
                   1.454e-280 -279.837
 U2Cl8(g)
 U2Cl10(g)
                    1.953e-288
                                 -287.709
                    4.464e-293
 U(q)
                                -292.350
                                                 Sorbed
                             In fluid
                                                                    Кd
Original basis total moles moles mg/kg moles mg/kg L/kg
______
 Al+++ 1.00e-006 1.00e-006 0.0270
            0.00160 0.00160 64.1

1.00e-005 1.00e-005 0.354

3.80e-005 3.80e-005 4.41
 Ca++
 Cl-
 C1-
Cr04--
 F-
              1.00e-005 1.00e-005
                                     0.190
             2.32e-006 2.32e-006 0.130
-0.0102 -0.0102 -10.3
 Fe++
 H+
                                      -10.3
 H20
                  55.5
                            55.5 1.00e+006
                0.00399 0.00399 243.
 HCO3-
              1.00e-005 1.00e-005
 HPO4--
                                      0.959
              1.00e-006 1.00e-006 0.0243
 Mq++
 Mn++ 1.00e-006 1.00e-006 0.0549
NH3(aq) 6.98e-005 6.98e-005 1.19
               6.98e-005 6.98e-005 1.19
0.00314 0.00314 72.2
 Na+
            1.00e-006 1.00e-006 0.0587
0.000390 0.000390 12.5
 Ni++
               0.000390 0.000390 12.5
5.16e-008 5.16e-008 0.0107
 02(aq)
 Pb++
 SO4--
              1.00e-005 1.00e-005 0.960
 Sr++
              1.00e-006 1.00e-006 0.0876
               1.49e-007 1.49e-007 0.0402
 UO2++
                                 In fluid
Elemental composition
                                                       Sorbed
    total moles moles mg/kg moles mg/kg
 Aluminum 1.000e-006 1.000e-006 0.02697 Calcium 0.001600 0.001600 64.10 Carbon 0.003991 0.003991 47.91
 Chlorine 1.000e-005 1.000e-005 0.3544
Chromium 3.800e-005 3.800e-005 1.975
```

3.991e-119 -118.399

UF6(g)

Fluorine	1.000e-005	1.000e-005	0.1899
Hydrogen	111.0	111.0	1.118e+005
Iron	2.320e-006	2.320e-006	0.1295
Lead	5.160e-008	5.160e-008	0.01069
Magnesium	1.000e-006	1.000e-006	0.02430
Manganese	1.000e-006	1.000e-006	0.05492
Nickel	1.000e-006	1.000e-006	0.05867
Nitrogen	6.980e-005	6.980e-005	0.9773
Oxygen	55.52	55.52	8.880e+005
Phosphorus	1.000e-005	1.000e-005	0.3096
Sodium	0.003140	0.003140	72.16
Strontium	1.000e-006	1.000e-006	0.08759
Sulfur	1.000e-005	1.000e-005	0.3205
Uranium	1.490e-007	1.490e-007	0.03545

Sample 19887 CaCO₃ leach, 1 day (Stage 1).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 9.930
 log fO2 = -0.732

 Eh = 0.6308 volts
 pe = 10.6634

 Ionic strength
 0.025626

 Activity of water
 1.000000

 Solvent mass
 0.999995 kg

 Solution mass
 1.001378 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000010 molal

 Dissolved solids
 1382 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 625.86 mg/kg as CaCO3

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01491	342.4	0.8579	-1.8930
HCO3-	0.004459	271.7	0.8579	-2.4173
CO3	0.002803	168.0	0.5449	-2.8161
HPO4	0.002112	202.4	0.5377	-2.9449
F-	0.001888	35.82	0.8549	-2.7921
NO3-	0.0008580	53.13	0.8518	-3.1362
UO2(CO3)3	0.0005296	238.0	0.0830	-4.3570
02(aq)	0.0002342	7.485	1.0000	-3.6303
NaHPO4-	0.0001408	16.73	0.8579	-3.9179
OH-	0.0001007	1.710	0.8549	-4.0651
CrO4	8.448e-005	9.786	0.5377	-4.3427
NaCO3-	7.444e-005	6.170	0.8579	-4.1948
NaHCO3(aq)	6.978e-005	5.854	1.0000	-4.1563
A102-	4.031e-005	2.374	0.8579	-4.4612
CaPO4-	2.446e-005	3.298	0.8579	-4.6782
Fe(OH)4-	2.398e-005	2.966	0.8579	-4.6868
PO4	1.866e-005	1.770	0.2468	-5.3367
Cl-	9.982e-006	0.3534	0.8518	-5.0704
Fe(OH)3(aq)	9.621e-006	1.027	1.0000	-5.0168
SO4	9.495e-006	0.9109	0.5377	-5.2920
MnO4-	5.523e-006	0.6559	0.8549	-5.3259
CaCO3(aq)	5.122e-006	0.5119	1.0000	-5.2906
Pb(CO3)2	3.377e-006	1.104	0.5377	-5.7409
Ca++	2.794e-006	0.1118	0.5652	-5.8015
H2PO4-	2.495e-006	0.2417	0.8579	-5.6695
NaF(aq)	2.076e-006	0.08705	1.0000	-5.6827
PbCO3(aq)	1.800e-006	0.4803	1.0000	-5.7448
UO2(CO3)2	1.211e-006	0.4718	0.5377	-6.1862
CO2(aq)	9.939e-007	0.04368	1.0000	-6.0026
CaHPO4(aq)	9.854e-007	0.1339	1.0000	-6.0064
MgPO4-	8.332e-007	0.09924	0.8579	-6.1458

Ni++	6.830e-007	0.04003	0.5652	-6.4134
Sr++	5.899e-007	0.05162	0.5518	-6.4874
NaSO4-	5.030e-007	0.05980	0.8579	-6.3650
MnO4	4.601e-007	0.05464	0.5377	-6.6067
SrCO3(aq)	3.645e-007	0.05374	1.0000	-6.4383
Ni(OH)2(aq)	2.860e-007	0.02648	1.0000	-6.5436
Pb(OH)2(aq)	1.825e-007	0.04395	1.0000	-6.7388
-				
NaOH(aq)	1.746e-007	0.006976	1.0000	-6.7578
UO2(OH)3-	1.479e-007	0.04742	0.8579	-6.8966
NaAlO2(aq)	7.989e-008	0.006539	1.0000	-7.0975
CaHCO3+	7.842e-008	0.007917	0.8579	-7.1722
Mg++	6.780e-008	0.001645	0.5897	-7.3982
PbOH+	6.206e-008	0.01390	0.8579	-7.2737
MgCO3(aq)	5.815e-008	0.004896	1.0000	-7.2354
SrHPO4(aq)	4.244e-008	0.007781	1.0000	-7.3723
MgHPO4(aq)	3.690e-008	0.004432	1.0000	-7.4330
Ni(OH)3-	2.871e-008	0.003145	0.8579	-7.6086
HCrO4-	1.942e-008	0.002269	0.8579	-7.7783
PbP207	1.926e-008	0.007332	0.5377	-7.9847
Pb(OH)3-	1.831e-008	0.004722	0.8579	-7.8038
NaCl(aq)	1.818e-008	0.001061	1.0000	-7.7405
Ca2UO2(CO3)3	1.738e-008	0.009204	1.0000	-7.7599
CaF+	1.428e-008	0.0008423	0.8579	-7.9119
UO2(OH)2(aq)	1.204e-008	0.003655	1.0000	-7.9194
HA102(aq)	1.146e-008	0.0006866	1.0000	-7.9408
(only appaired	> 10 0 molal light	0 L		

(only species > 1e-8 molal listed)

mineral saturation	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Fluorapatite Hematite Bixbyite Pyromorphite-OH Pyrolusite Hausmannite Pb40(PO4)2 MnO2(gamma) Ferrite-Ca Goethite Pb3(PO4)2 Ferrite-Mg Parsonsite Hydroxylapatite Manganite Hydrocerussite PbHPO4 Magnetite Plattnerite Ni3(PO4)2 Strontianite	log Q/K	Ni(OH)2 CaUO4 Calcite Ice Dawsonite MnHPO4 Aragonite Dolomite-ord Dolomite Monohydrocalcite Crocoite Minium PbCO3.PbO Corundum Fluorite Plumbogummite Na2U2O7(c) Mn(OH)3 Magnesite Dolomite-dis Litharge NiCO3 UO3:2H2O Schoepite Massicot	log Q/K
Diaspore Fe(OH)3(ppd)	1.3318s/sat 1.3276s/sat	UO2(OH)2(beta) Rhodochrosite	-2.5505 -2.5763

```
      Cerussite
      1.2131s/sat
      U03:.9H2O(alpha)
      -2.6215

      Bunsenite
      0.9747s/sat
      Schoepite-dehy(.
      -2.6215

      Boehmite
      0.9279s/sat
      Schoepite-dehy(.
      -2.7018

      Whitlockite
      0.7906s/sat
      Schoepite-dehy(1
      -2.7079

      Gibbsite
      0.7361s/sat
      Ca-Autunite
      -2.9989

      (only minerals with log Q/K > -3 listed)
```

Gases	fugacity	log fug.
 02(g) H2O(g)	0.1853 0.02598	-0.732 -1.585
CO2(g)	2.926e-005	-4.534
HF(g)	1.463e-014	-13.835
NO2(g)	2.979e-021	-20.526
HCl(g)	4.944e-022	-21.306
N2(g)	2.458e-022	-21.609
NO(g)	4.639e-027	-26.334
Cl2(g)	1.526e-035	-34.816
H2(g)	6.510e-042	-41.186
CO(g)	5.949e-050	-49.226
UO2F2(g)	1.921e-058	-57.717
S02(g)	8.598e-062	-61.066
Pb(g)	3.610e-064	-63.442
U03(g)	2.800e-069	-68.553
NH3(g)	1.985e-070	-69.702
Na(g)	1.204e-072	-71.919
UOF4(g)	1.667e-073	-72.778
UO2Cl2(g)	2.700e-076	-75.569
F2(g)	1.049e-083	-82.979
UF5(g)	1.974e-087	-86.705
UF6(g)	6.442e-093	-92.191
UF4(g)	5.955e-096	-95.225
UO2(g)	4.052e-122	-121.392
Mg(g)	1.066e-128	-127.972
UCl4(g)	7.256e-137	-136.139
UF3(g)	8.231e-146	-145.085
UC15(g)	5.657e-147	-146.247
CH4(g)	4.191e-147	-146.378
H2S(g)	5.857e-149	-148.232
U2F10(g)	4.361e-149	-148.360
Ca(g)	6.249e-150	-149.204
UC16(g)	8.193e-152	-151.087
UC13(g)	4.790e-164	-163.320
Al(g)	3.882e-190	-189.411
C(g)	3.241e-191	-190.489
UF2(g)	1.679e-192	-191.775
UO(g)	2.328e-206	-205.633
UCl2(g)	1.712e-208	-207.767
UF(g)	8.427e-233 1.806e-240	-232.074 -239.743
S2(g)	8.179e-241	
C2H4(g)	1.340e-250	-240.087 -249.873
UCl(g) U2Cl8(g)	1.340e-250 1.297e-262	-249.873 -261.887
U2Cl10(g)	6.386e-267	-261.887
U(g)	3.137e-291	-290.503
O(3)	J. I J / C Z J I	270.303

In fluid Sorbed Kd

Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	4.04e-005	4.04e-005	1.09			
Ca++		3.35e-005	1.34			
Cl-	1.00e-005	1.00e-005	0.354			
Cr04	8.45e-005	8.45e-005	9.79			
F-		0.00189	35.9			
Fe++	3.36e-005	3.36e-005	1.87			
H+	-0.00575	-0.00575	-5.79			
H2O	55.5	55.5	9.99e+005			
HCO3-	0.00901	0.00901	549.			
HPO4	0.00230	0.00230	220.			
Mg++	1.00e-006	1.00e-006	0.0243			
Mn++	5.99e-006	5.99e-006	0.329			
NH3(aq)	0.000858	0.000858	14.6			
Na+	0.0152	0.0152	349.			
Ni++	1.00e-006	1.00e-006	0.0586			
02(aq)	0.00197	0.00197	62.8			
Pb++	5.46e-006	5.46e-006	1.13			
SO4	1.00e-005	1.00e-005	0.959			
Sr++	1.00e-006	1.00e-006	0.0875			
UO2++	0.000531	0.000531	143.			
Elemental compo	sition	I	n fluid		Sorbe	d
Elemental compo	total moles	moles		kg	Sorbe	d mg/kg
Elemental compo	total moles	moles	mg/			
	total moles 4.040e-005	moles 4.040e-	mg/ 005	1.089		
	total moles 4.040e-005 3.350e-005	moles 4.040e- 3.350e-	mg/ 005 005	1.089 1.341		
Aluminum Calcium	total moles 4.040e-005	moles 4.040e- 3.350e- 0.009	mg/ 005 005 012	1.089		
Aluminum Calcium Carbon	total moles 4.040e-005 3.350e-005 0.009012	moles 4.040e- 3.350e- 0.009 1.000e-	mg/ 005 005 012 005 0	1.089 1.341 108.1		
Aluminum Calcium Carbon Chlorine	4.040e-005 3.350e-005 0.009012 1.000e-005	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e-	mg/ 005 005 012 005 0	1.089 1.341 108.1 .3540		
Aluminum Calcium Carbon Chlorine Chromium	4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001	mg/ 005 005 012 005 0	1.089 1.341 108.1 .3540 4.388 35.86		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001	mg/ 005 005 0012 005 0 005 0 1.0 1.117	1.089 1.341 108.1 .3540 4.388 35.86		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e-	mg/ 005 005 0012 005 0 005 890 1.0 1.117	1.089 1.341 108.1 .3540 4.388 35.86 e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e-	mg/ 005 005 012 005 005 005 890 1.0 1.117	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e- 1.000e-	mg/ 005 005 012 005 005 890 1.0 1.117 005 006	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006 1.000e-006	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e- 1.000e- 5.990e-	mg/ 005 005 012 005 005 005 890 1.0 1.117 005 006 006 006	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130 02427		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006 1.000e-006 5.990e-006	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 1.000e- 5.990e- 1.000e-	mg/ 005 005 012 005 005 890 1.0 1.117 005 006 006 006 0.	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130 02427 .3286		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006 1.000e-006 1.000e-006 0.0008580 55.55	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e- 1.000e- 5.990e- 1.000e- 0.0008	mg/ 005 005 012 005 005 890 1.0 1.117 005 006 006 006 0.580	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130 02427 .3286 05861		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006 1.000e-006 1.000e-006 0.0008580	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e- 1.000e- 5.990e- 1.000e- 0.0008	mg/ 005 005 012 005 005 890 1.0 1.117 005 006 006 006 0.580	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130 02427 .3286 05861 12.00		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006 1.000e-006 1.000e-006 0.0008580 55.55	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e- 1.000e- 5.990e- 1.000e- 0.0008 55	mg/ 005 005 012 005 005 890 1.0 1.117 005 006 006 006 0.06 0.06 0.06 0.06 0.05 8.875 3300	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130 02427 .3286 05861 12.00 e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006 1.000e-006 1.000e-006 0.0008580 55.55	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e- 1.000e- 5.990e- 1.000e- 0.0008 55	mg/ 005 005 012 005 005 890 1.0 1.117 005 006 006 006 0.06 0.06 0.06 0.580 0.580 0.55 8.875	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130 02427 .3286 05861 12.00 e+005 71.14		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles 4.040e-005 3.350e-005 0.009012 1.000e-005 8.450e-005 0.001890 111.0 3.360e-005 5.460e-006 1.000e-006 5.990e-006 0.0008580 55.55 0.002300 0.01520	moles 4.040e- 3.350e- 0.009 1.000e- 8.450e- 0.001 11 3.360e- 5.460e- 1.000e- 5.990e- 1.000e- 0.0008 5.0002 0.01 1.000e- 1.000e- 1.000e- 1.000e- 1.000e-	mg/	1.089 1.341 108.1 .3540 4.388 35.86 e+005 1.874 1.130 02427 .3286 05861 12.00 e+005 71.14 349.0		

Sample 19887 CaCO₃ leach, 1 month.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01630	374.0	0.8418	-1.8627
CO3	0.002258	135.3	0.5057	-2.9424
F-	0.002048	38.83	0.8381	-2.7654
UO2(CO3)3	0.001859	834.9	0.0606	-3.9485
HPO4	0.001768	169.4	0.4973	-3.0558
HCO3-	0.001151	70.13	0.8418	-3.0136
NO3-	0.0008330	51.56	0.8342	-3.1581
OH-	0.0003031	5.146	0.8381	-3.5951
CrO4	0.0002630	30.45	0.4973	-3.8834
02(aq)	0.0001801	5.752	1.0000	-3.7445
Fe(OH)4-	0.0001341	16.58	0.8418	-3.9473
NaHPO4-	0.0001192	14.16	0.8418	-3.9984
CaPO4-	8.019e-005	10.81	0.8418	-4.1707
NaCO3-	6.084e-005	5.040	0.8418	-4.2906
A102-	5.209e-005	3.067	0.8418	-4.3581
PO4	5.090e-005	4.825	0.2069	-4.9776
MgPO4-	2.901e-005	3.454	0.8418	-4.6122
UO2(OH)3-	2.374e-005	7.607	0.8418	-4.6994
MnO4-	2.089e-005	2.480	0.8381	-4.7568
NaHCO3(aq)	1.896e-005	1.590	1.0000	-4.7221
Fe(OH)3(aq)	1.789e-005	1.909	1.0000	-4.7473
Ni(OH)2(aq)	1.095e-005	1.013	1.0000	-4.9607
C1-	9.981e-006	0.3532	0.8342	-5.0795
SO4	9.489e-006	0.9099	0.4973	-5.3262
Pb(CO3)2	6.929e-006	2.263	0.4973	-5.4627
MnO4	5.812e-006	0.6900	0.4973	-5.5390
Pb(OH)2(aq)	5.393e-006	1.299	1.0000	-5.2682
CaCO3(aq)	5.391e-006	0.5386	1.0000	-5.2683
PbCO3(aq)	4.568e-006	1.218	1.0000	-5.3403
UO2(CO3)2	4.487e-006	1.747	0.4973	-5.6514
Ca++	4.198e-006	0.1680	0.5295	-5.6531

Ni(OH)3- Ni++ NaF(aq) Pb(OH)3- (UO2)2CO3(OH)3- CaHPO4(aq) Mg++ Sr++ H2PO4- MgCO3(aq) UO2(OH)2(aq) PbOH+ NaOH(aq) NaSO4- MgHPO4(aq) SrCO3(aq)	3.304e-006 3.204e-006 2.368e-006 1.628e-006 1.211e-006 1.071e-006 6.722e-007 6.674e-007 6.501e-007 6.424e-007 6.335e-007 5.528e-007 5.081e-007 4.272e-007 2.893e-007	0.3619 0.1877 0.09923 0.4196 0.7871 0.1459 0.02599 0.05879 0.06461 0.05471 0.1950 0.1418 0.02207 0.06039 0.05129 0.04263	0.8418 0.5295 1.0000 0.8418 0.8418 1.0000 0.5579 0.5139 0.8418 1.0000 1.0000 0.8418 1.0000 0.8418 1.0000	-5.5557 -5.705 -5.6257 -5.8632 -5.9916 -5.9689 -6.2236 -6.4616 -6.2504 -6.1870 -6.1922 -6.2731 -6.2575 -6.3688 -6.3694 -6.5387
UO2(OH)2(aq)	6.424e-007	0.1950	1.0000	-6.1922
-				
NaOH(aq)	5.528e-007	0.02207	1.0000	-6.2575
NaSO4-	5.081e-007	0.06039	0.8418	-6.3688
MgHPO4(aq)	4.272e-007	0.05129	1.0000	-6.3694
SrCO3(aq)	2.893e-007	0.04263		-6.5387
NaAlO2(aq)	1.086e-007	0.008889	1.0000	-6.9640
Ca2UO2(CO3)3	8.822e-008	0.04669	1.0000	-7.0544
CO2(aq)	8.534e-008	0.003749	1.0000	-7.0689
UO2PO4-	6.625e-008	0.02414	0.8418	-7.2536
PbP207	4.240e-008	0.01613	0.4973	-7.6759
SrHPO4(aq)	3.488e-008	0.006393	1.0000	-7.4574
CaHCO3+	2.850e-008	0.002876	0.8418	-7.6199
MgF+	2.743e-008	0.001185	0.8418	-7.6366
CaF+	2.177e-008	0.001284	0.8418	-7.7368
HCrO4-	1.931e-008	0.002255	0.8418	-7.7890
NaCl(aq)	1.909e-008	0.001114	1.0000	-7.7192
UO2(OH)4	1.573e-008	0.005307	0.4973	-8.1067
(only species >	1e-8 molal listed	d)		

Iineral saturation	log Q/K		log Q/K
Birnessite	55.6297s/sat	Dolomite-ord	0.3827s/sat
Todorokite	48.3022s/sat	Gibbsite	0.3692s/sat
Pyromorphite	19.9587s/sat	Na2U2O7(am)	0.2195s/sat
Trevorite	19.7472s/sat	Calcite	-0.1153
Fluorapatite	15.9958s/sat	Ice	-0.1387
Hematite	14.3967s/sat	Crocoite	-0.1437
Pyromorphite-OH	13.8081s/sat	Aragonite	-0.2597
Pb40(PO4)2	12.1493s/sat	Ca-Autunite	-0.5578
Bixbyite	10.5712s/sat	Pb4S07	-0.5734
Pyrolusite	9.3844s/sat	SrUO4(alpha)	-0.7042
Hausmannite	9.2660s/sat	Schoepite	-0.7109
Ferrite-Ca	8.1306s/sat	UO3:2H2O	-0.7109
Ferrite-Mg	8.0267s/sat	Litharge	-0.8168
MnO2(gamma)	7.8666s/sat	UO2(OH)2(beta)	-0.8233
Parsonsite	7.8460s/sat	Schoepite-dehy(.	-0.8943
Pb3(PO4)2	7.7289s/sat	UO3:.9H2O(alpha)	-0.8943
Hydroxylapatite	7.2418s/sat	Monohydrocalcite	-0.9490
Hydrocerussite	6.7913s/sat	Pb4Cl2(OH)6	-0.9502
Goethite	6.7182s/sat	Schoepite-dehy(.	-0.9746
Manganite	4.9675s/sat	Schoepite-dehy(1	-0.9807
Ni3(PO4)2	4.0183s/sat	Massicot	-0.9990
Plattnerite	3.7357s/sat	MnHPO4	-1.0887
Magnetite	3.7318s/sat	Dawsonite	-1.0974
PbHPO4	3.6938s/sat	Magnesite	-1.1307

```
CaUO4
                  3.3273s/sat
                               Fluorite
                                                -1.1470
                               Dolomite-dis
                                                -1.1617
Minium
                  3.1552s/sat
                               Pb3S06
                                                -1.2581
Na2U2O7(c)
                  2.7278s/sat
Bunsenite
                  2.5576s/sat
                               Becquerelite
                                                -1.5186
Ni(OH)2
                               Mn(OH)3
                                                -1.5383
                  2.2810s/sat
Whitlockite
                  1.9541s/sat Brucite
                                                -1.7216
Cerussite
                  1.6176s/sat NiCO3
                                                -1.8959
                                                -2.0129
Fe(OH)3(ppd)
                  1.5971s/sat Lanarkite
                  1.2385s/sat Corundum
Strontianite
                                                -2.0616
                  0.9649s/sat
Diaspore
                               Schoepite-dehy(.
                                                -2.0839
                  0.5610s/sat
Boehmite
                               Sellaite
                                                -2.3702
PbCO3.PbO
                  0.5594s/sat
                               Schoepite-dehy(. -2.6019
Dolomite
                  0.3827s/sat
```

Gases	fugacity	log fug.
Gases	fugacity 0.1425 0.02598 2.512e-006 5.272e-015 1.025e-021 1.640e-022 4.923e-023 1.820e-027 1.473e-036 7.424e-042 5.825e-051	log fug0.846 -1.585 -5.600 -14.278 -20.989 -21.785 -22.308 -26.740 -35.832 -41.129 -50.235
U02F2(g) Pb(g) S02(g) U03(g) U13(g) NH3(g) Na(g) U0F4(g) U02C12(g) F2(g)	1.331e-057 1.217e-062 1.041e-062 1.494e-067 1.082e-070 4.069e-072 1.499e-073 1.586e-075 1.194e-084	-50.235 -56.876 -61.915 -61.983 -66.826 -69.966 -71.391 -72.824 -74.800 -83.923
F2(g) UF5(g) UF6(g) UF4(g) UO2(g) Mg(g) UC14(g) UF3(g) UC15(g)	1.194e-084 6.828e-088 7.519e-094 6.106e-096 2.466e-120 1.582e-126 5.354e-137 2.502e-145 1.297e-147 6.087e-148	-83.923 -87.166 -93.124 -95.214 -119.608 -125.801 -136.271 -144.602 -146.887 -147.216
Ca(g) H2S(g) U2F10(g) UC16(g) UC13(g) Al(g) UF2(g) C(g) UO(g) UC12(g) UF(g)	8.737e-149 1.052e-149 5.219e-150 5.836e-153 1.137e-163 2.032e-190 1.513e-191 3.619e-192 1.616e-204 1.308e-207 2.251e-231	-148.059 -148.978 -149.282 -152.234 -162.944 -189.692 -190.820 -191.441 -203.792 -206.883 -230.648

S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	1.3276 3.2956 7.0636 3.3576	e-242 -24	57.474			
Original basis	total moles	In flu			rbed mg/kg	Kd L/kg
C1- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++	9.11e-005 1.00e-005 0.000263 0.00205 0.000152 -0.0101 55.5 0.00910 0.00205 3.12e-005 2.67e-005 0.00165 1.75e-005 0.00192 1.92e-005 1.00e-005	1.00e-005 0.000263 0.00205 0.000152 -0.0101 55.5 0.00910 0.00205 3.12e-005 2.67e-005 0.000833 0.0165 1.75e-005 0.00192 1.92e-005 1.00e-006	3.64 0.354 30.5 38.9 8.47 -10.1 9.98e+005 554. 196. 0.757 1.46 14.2 379. 1.03 61.2 3.97 0.959			
Elemental compo	total moles	s moles		kg	Sorbe	d mg/kg
	5.220e-009	9.110e-0 0.0093 1.000e-0 0.00020 0.0020 1.11 0.00019 1.920e-0 3.120e-0 2.670e-0 0.00083 55 0.0020 0.016 1.000e-0 1.000e-0	005	8.474 3.971 .7570 1.464 1.025 11.65		

Sample 19887 CaCO₃ leach, Stage 2.

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.004585	105.3	0.8938	-2.3874
HPO4	0.001296	124.3	0.6361	-3.0838
CO3	0.0008805	52.80	0.6406	-3.2487
HCO3-	0.0008687	52.97	0.8938	-3.1099
UO2(CO3)3	0.0005321	239.3	0.1632	-4.0614
02(aq)	0.0002037	6.514	1.0000	-3.6910
F-	0.0001879	3.568	0.8922	-3.7755
OH-	0.0001756	2.984	0.8922	-3.8051
Cr04	0.0001600	18.54	0.6361	-3.9924
Fe(OH)4-	7.806e-005	9.664	0.8938	-4.1563
NO3-	6.980e-005	4.325	0.8905	-4.2065
CaPO4-	6.186e-005	8.349	0.8938	-4.2573
UO2(OH)3-	3.352e-005	10.76	0.8938	-4.5234
NaHPO4-	3.145e-005	3.739	0.8938	-4.5511
MgPO4-	2.022e-005	2.410	0.8938	-4.7430
Fe(OH)3(aq)	1.794e-005	1.915	1.0000	-4.7463
A102-	1.749e-005	1.031	0.8938	-4.8061
PO4	1.687e-005	1.601	0.3608	-5.2156
MnO4-	1.607e-005	1.910	0.8922	-4.8435
Cl-	9.994e-006	0.3541	0.8905	-5.0506
SO4	9.805e-006	0.9412	0.6361	-5.2050
NaCO3-	8.455e-006	0.7013	0.8938	-5.1216
Ni(OH)2(aq)	6.770e-006	0.6271	1.0000	-5.1694
UO2(CO3)2	5.476e-006	2.134	0.6361	-5.4580
(UO2)2CO3(OH)3-	5.405e-006	3.517	0.8938	-5.3160
Ca++	4.819e-006	0.1930	0.6535	-5.5018
NaHCO3(aq)	4.538e-006	0.3810	1.0000	-5.3431
PbCO3(aq)	4.485e-006	1.198	1.0000	-5.3483
Ni++	4.222e-006	0.2476	0.6535	-5.5592
Pb(OH)2(aq)	4.076e-006	0.9825	1.0000	-5.3898
CaCO3(aq)	3.773e-006	0.3774	1.0000	-5.4233

Pb(CO3)2	2.627e-006	0.8592	0.6361	-5.7769
MnO4	2.225e-006	0.2645	0.6361	-5.8490
UO2(OH)2(aq)	1.562e-006	0.4747	1.0000	-5.8062
CaHPO4(aq)	1.427e-006	0.1940	1.0000	-5.8455
Ni(OH)3-	1.187e-006	0.1301	0.8938	-5.9744
Mg++	1.143e-006	0.02775	0.6694	-6.1164
H2PO4-	9.558e-007	0.09264	0.8938	-6.0684
Sr++	7.520e-007	0.06585	0.6450	-6.3142
PbOH+	7.312e-007	0.1638	0.8938	-6.1847
Pb(OH)3-	7.144e-007	0.1844	0.8938	-6.1948
MgHPO4(aq)	5.127e-007	0.06162	1.0000	-6.2902
MgCO3(aq)	4.110e-007	0.03463	1.0000	-6.3862
UO2PO4-	2.308e-007	0.08418	0.8938	-6.6856
SrCO3(aq)	2.007e-007	0.02960	1.0000	-6.6976
NaSO4-	1.889e-007	0.02248	0.8938	-6.7724
Ca2UO2(CO3)3	1.365e-007	0.07235	1.0000	-6.8647
CO2(aq)	1.109e-007	0.004876	1.0000	-6.9552
NaOH(aq)	1.018e-007	0.004070	1.0000	-6.9922
NaF(aq)	6.910e-008	0.002899	1.0000	-7.1605
PbP207	5.794e-008	0.02207	0.6361	-7.4335
(UO2)3(OH)7-	5.166e-008	0.04797	0.8938	-7.3356
SrHPO4(aq)	4.592e-008	0.008426	1.0000	-7.3380
CaHCO3+	3.047e-008	0.003078	0.8938	-7.5649
HCrO4-	2.295e-008	0.002683	0.8938	-7.6880
NaAlO2(aq)	1.157e-008	0.0009476	1.0000	-7.9367
UO2(OH)4	1.137e-008	0.003841	0.6361	-8.1407
(only species	> 1e-8 molal liste	ed)		

	log Q/K		log Q/K
Birnessite	56.2420s/sat	PbC03.PbO	0.4298s/sat
Todorokite	48.8313s/sat	Boehmite	0.3230s/sat
Pyromorphite	20.7655s/sat	Gibbsite	0.1312s/sat
Trevorite	19.5406s/sat	Crocoite	0.0457s/sat
Fluorapatite	15.0283s/sat	Dolomite	0.0286s/sat
Hematite	14.3988s/sat	Dolomite-ord	0.0286s/sat
Pyromorphite-OH	14.3760s/sat	Ice	-0.1387
Pb40(PO4)2	12.4468s/sat	Calcite	-0.2703
Bixbyite	10.7109s/sat	Schoepite	-0.3249
Pyrolusite	9.4677s/sat	UO3:2H2O	-0.3249
Hausmannite	9.4622s/sat	Aragonite	-0.4147
Parsonsite	8.7728s/sat	UO2(OH)2(beta)	-0.4373
Pb3(PO4)2	8.1481s/sat	Na2U2O7(am)	-0.4780
MnO2(gamma)	7.9499s/sat	Schoepite-dehy(.	-0.5083
Ferrite-Ca	7.8639s/sat	UO3:.9H2O(alpha)	-0.5083
Ferrite-Mg	7.7159s/sat	Pb4S07	-0.5188
Hydroxylapatite	7.0745s/sat	Schoepite-dehy(.	-0.5886
Goethite	6.7192s/sat	SrUO4(alpha)	-0.5908
Hydrocerussite	6.6538s/sat	Schoepite-dehy(1	-0.5947
Manganite	5.0373s/sat	MnHPO4	-0.6402
Ni3(PO4)2	4.1761s/sat	Litharge	-0.9384
PbHPO4	3.9641s/sat	Pb4Cl2(OH)6	-0.9589
Magnetite	3.7216s/sat	Pb3S06	-1.0819
Plattnerite	3.6408s/sat	Monohydrocalcite	-1.1040
CaUO4	3.4446s/sat	Massicot	-1.1206
Minium	2.8170s/sat	Magnesite	-1.3299

```
Bunsenite
                  2.3489s/sat
                                               -1.4685
                               Mn(OH)3
                 2.3489s/sat Mn(OH)3 -1.4685
2.0723s/sat Dolomite-dis -1.5158
2.0303s/sat Schoepite-dehy(. -1.6979
Ni(OH)2
Na2U2O7(c)
Whitlockite
                 1.9321s/sat Lanarkite
                                                -1.7150
Cerussite
                 1.6096s/sat Dawsonite
                                                -1.9564
                1.5981s/sat NiCO3
                                                -1.9909
Fe(OH)3(ppd)
Strontianite
                 1.0796s/sat Brucite
                                                -2.0344
Ca-Autunite
                 0.7295s/sat Schoepite-dehy(. -2.2159
                 0.7269s/sat Corundum
                                                -2.5376
Diaspore
Becquerelite 0.5287s/sat
```

Gases	fugacity	log fug.
 02(g) H20(g)	0.1612 0.02598	-0.793 -1.585
CO2(g)	3.264e-006	-5.486
HF(g)	8.353e-016	-15.078
HCl(g)	2.844e-022	-21.546
NO2(g)	1.442e-022	-21.841
N2(g)	7.614e-025	-24.118
NO(g)	2.407e-028	-27.618
Cl2(g)	4.708e-036	-35.327
H2(g)	6.981e-042	-41.156
CO(g)	7.116e-051	-50.148
UO2F2(g)	8.125e-059	-58.090
SO2(g)	3.401e-062	-61.468
Pb(g)	8.648e-063	-62.063
UO3(g)	3.634e-067	-66.440
NH3(g)	1.227e-071	-70.911
Na(g)	7.267e-073	-72.139
UO2Cl2(g)	1.159e-074	-73.936
UOF4(g)	2.298e-076	-75.639
F2(g)	3.189e-086	-85.496
UF5(g)	1.609e-091	-90.794
UF6(g)	2.894e-098	-97.538 -98.055
UF4(g)	8.803e-099	
UO2(g) Mg(g)	5.639e-120 7.239e-127	-119.249 -126.140
Mg(g) UCl4(g)	1.105e-135	-126.140
UC15(g)	4.787e-146	-145.320
UF3(g)	2.207e-147	-146.656
CH4(g)	6.182e-148	-147.209
Ca(g)	4.425e-149	-148.354
H2S(g)	2.857e-149	-148.544
UC16(q)	3.851e-151	-150.414
U2F10(g)	2.896e-157	-156.538
UC13(g)	1.314e-162	-161.881
Al(g)	1.071e-190	-189.970
C(g)	4.158e-192	-191.381
UF2(g)	8.166e-193	-192.088
UO(g)	3.475e-204	-203.459
UCl2(g)	8.453e-207	-206.073
UF(g)	7.436e-232	-231.129
S2(g)	3.737e-241	-240.428
C2H4(g)	1.548e-242	-241.810
UCl(g)	1.191e-248	-247.924

U2C18(g)	3.012e-260	-259.521
U2Cl10(g)	4.574e-265	-264.340
U(a)	5.021e-289	-288.299

		In fl	uid	Son	bed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	1.75e-005	1.75e-005	0.472			
Ca++	7.22e-005	7.22e-005	2.89			
Cl-	1.00e-005	1.00e-005	0.354			
CrO4	0.000160	0.000160	18.5			
F-	0.000188	0.000188	3.57			
Fe++	9.60e-005	9.60e-005	5.36			
H+	-0.00341	-0.00341	-3.43			
H2O	55.5	55.5	9.99e+005			
HCO3-	0.00339	0.00339	207.			
HPO4	0.00143	55.5 0.00339 0.00143	137.			
Mg++	2.23e-005	2.23e-005	0.542			
Mn++	1.83e-005	1.83e-005				
NH3(aq)	6.98e-005	6.98e-005	1.19			
Na+	0.00463	0.00463	106.			
Ni++	1.22e-005		0.716			
02(aq)	0.000390	0.000390	12.5			
Pb++	1.27e-005	1.27e-005	2.63			
SO4	1.00e-005	1.00e-005	0.960			
Sr++	1.00e-006	1.00e-006	0.0876			
UO2++	0.000584	0.000584	158.			
Elemental comp	ogition	T-	n fluid		Sorbe	7
Diemental comp	total moles	moles		g		mg/kg
Aluminum	1.750e-005	1.750e-	005 0.	 4719		
Calcium	7.220e-005		005 2	.892		
Carbon	0.003390	0.003	390 4	0.68		
Chlorine	1.000e-005	1.000e-	005 0.	3543		
Chromium	0.0001600	0.0001	600 8	.314		
Fluorine	0.0001880	0.0001	880 3	.569		
Hydrogen	111.0) 11	1.0 1.118e	+005		
Iron	9.600e-005	- 0 600				
Lead		9.600e-	005 5	.358		
	1.270e-005	1.270e-	005 2	.630		
Magnesium	1.270e-005		005 2 005 0.	.630 5416		
Magnesium Manganese	1.270e-005 2.230e-005	1.270e- 2.230e-	005 2 005 0.	.630 5416		
	1.270e-005	1.270e- 2.230e- 1.830e-	005 2 005 0.1 005 1 005 0.1	.630 5416 .005 7155		
Manganese	1.270e-005 2.230e-005 1.830e-005 1.220e-005 6.980e-005	1.270e- 2.230e- 1.830e- 1.220e- 6.980e-	005 2 005 0.1 005 1 005 0.3	.630 5416 .005 7155 9770		
Manganese Nickel Nitrogen Oxygen	1.270e-005 2.230e-005 1.830e-005 1.220e-005 6.980e-005	1.270e- 2.230e- 5.1.830e- 5.1.220e- 6.980e- 5.5	005 2 005 0.1 005 1 005 0.3 005 0.3	.630 5416 .005 7155 9770 +005		
Manganese Nickel Nitrogen Oxygen Phosphorus	1.270e-005 2.230e-005 1.830e-005 1.220e-005 6.980e-005 55.53	1.270e- 2.230e- 1.830e- 1.220e- 6.980e- 55 0.001	005 2 005 0.1 005 1 005 0.2 005 0.3 53 8.878e	.630 5416 .005 7155 9770 +005 4.26		
Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	1.270e-005 2.230e-005 1.830e-005 1.220e-005 6.980e-005 55.53 0.001430	1.270e- 2.230e- 1.830e- 1.220e- 6.980e- 55 0.001 0.004	005 2 005 0.1 005 0.2 005 0.3 005 0.3 53 8.878e 430 4	.630 5416 .005 7155 9770 +005 4.26		
Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	1.270e-005 2.230e-005 1.830e-005 1.220e-005 6.980e-005 55.53 0.001430 0.004630	1.270e- 2.230e- 1.830e- 1.220e- 6.980e- 55 0.001 0.004 1.000e-	005 2 005 0.1 005 1 005 0.2 005 0.3 005 0.3 430 4 630 1	.630 5416 .005 7155 9770 +005 4.26 06.4		
Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	1.270e-005 2.230e-005 1.830e-005 1.220e-005 6.980e-005 55.53 0.001430	1.270e- 2.230e- 1.830e- 1.220e- 6.980e- 5.0 0.001 0.004 1.000e- 1.000e-	005 2 005 0.1 005 1 005 0.2 005 0.3 005 0.3 630 1 006 0.06 005 0.3	.630 5416 .005 7155 9770 +005 4.26		

Sample 19887 CaCO₃ leach, Stage 3.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 9.490 log f02 = -0.713
Eh = 0.6571 volts pe = 11.1082
Ionic strength = 0.005018

Reactants	moles	moles	grams	cm3
	remaining	reacted	reacted	reacted
02(g)	fixed fuga	acity buffer		

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.002165	49.76	0.9270	-2.6975
HCO3-	0.002086	127.2	0.9270	-2.7136
HPO4	0.0005550	53.25	0.7373	-3.3881
CO3	0.0003789	22.73	0.7397	-3.5524
02(aq)	0.0002449	7.834	1.0000	-3.6110
UO2(CO3)3	0.0001071	48.19	0.2951	-4.5002
NO3-	6.980e-005	4.326	0.9254	-4.1898
OH-	3.374e-005	0.5737	0.9262	-4.5051
CrO4	1.729e-005	2.004	0.7373	-4.8947
F-	9.997e-006	0.1899	0.9262	-5.0334
Cl-	9.997e-006	0.3543	0.9254	-5.0338
SO4	9.887e-006	0.9495	0.7373	-5.1373
A102-	9.169e-006	0.5406	0.9270	-5.0706
NaHPO4-	7.368e-006	0.8763	0.9270	-5.1656
Fe(OH)3(aq)	6.474e-006	0.6916	1.0000	-5.1888
CaPO4-	5.958e-006	0.8043	0.9270	-5.2579
MgPO4-	5.642e-006	0.6728	0.9270	-5.2815
NaHCO3(aq)	5.533e-006	0.4647	1.0000	-5.2570
Fe(OH)4-	5.421e-006	0.6713	0.9270	-5.2988
Ca++	4.256e-006	0.1705	0.7466	-5.4980
UO2(CO3)2	3.462e-006	1.350	0.7373	-5.5930
Mg++	2.960e-006	0.07193	0.7552	-5.6506
H2PO4-	2.292e-006	0.2222	0.9270	-5.6727
NaCO3-	1.983e-006	0.1646	0.9270	-5.7355
CaCO3(aq)	1.891e-006	0.1892	1.0000	-5.7233
MnO4-	1.683e-006	0.2001	0.9262	-5.8073
PbCO3(aq)	1.539e-006	0.4112	1.0000	-5.8127
CO2(aq)	1.384e-006	0.06088	1.0000	-5.8589
PO4	1.197e-006	0.1137	0.5035	-6.2199
Ni++	9.290e-007	0.05450	0.7466	-6.1589
Sr++	8.411e-007	0.07367	0.7420	-6.2047

UO2(OH)3- MgHPO4(aq) CaHPO4(aq) MgCO3(aq)	7.622e-007 7.436e-007 7.144e-007 5.969e-007	0.2446 0.08941 0.09717 0.05031	0.9270 1.0000 1.0000 1.0000	-6.1509 -6.1287 -6.1461 -6.2241
Pb(CO3)2	3.866e-007	0.1264	0.7373	-6.5451
UO2(OH)2(aq)	1.846e-007	0.05612	1.0000	-6.7337
(UO2)2CO3(OH)3-	1.812e-007	0.1180	0.9270	-6.7747
SrCO3(aq)	1.283e-007	0.01893	1.0000	-6.8919
Pb(OH)2(aq)	1.121e-007	0.02703	1.0000	-6.9505
NaSO4-	1.043e-007	0.01241	0.9270	-7.0148
PbOH+	9.718e-008	0.02178	0.9270	-7.0454
CaHCO3+	7.379e-008	0.007458	0.9270	-7.1649
Ni(OH)2(aq)	6.774e-008	0.006278	1.0000	-7.1691
UO2PO4-	6.540e-008	0.02386	0.9270	-7.2174
MgHCO3+	5.063e-008	0.004318	0.9270	-7.3285
Ca2UO2(CO3)3	5.059e-008	0.02682	1.0000	-7.2959
MnO4	3.976e-008	0.004728	0.7373	-7.5328
SrHPO4(aq)	2.932e-008	0.005382	1.0000	-7.5328
HCrO4-	1.389e-008	0.001625	0.9270	-7.8903
(only species >	1e-8 molal listed	d)		

log Q/K

Mineral saturation states

log Q/K

_	Birnessite	53.5716s/sat	Ni(OH)2	0.0726s/sat
	Todorokite	46.4848s/sat	Whitlockite	-0.0652
	Pyromorphite	16.9660s/sat	Dolomite	-0.1093
	Trevorite	16.6558s/sat	Dolomite-ord	-0.1093
	Hematite	13.5137s/sat	Ice	-0.1387
	Fluorapatite	10.7765s/sat	Ca-Autunite	-0.3303
	Bixbyite	10.0233s/sat	Calcite	-0.5703
	Pyromorphite-OH	9.8597s/sat	Aragonite	-0.7147
	Pyrolusite	9.1439s/sat	Crocoite	-1.0172
	Hausmannite	8.4108s/sat	Magnesite	-1.1678
	Pb40(PO4)2	8.3954s/sat	Schoepite	-1.2524
	MnO2(gamma)	7.6261s/sat	UO3:2H2O	-1.2524
	Parsonsite	6.9153s/sat	UO2(OH)2(beta)	-1.3648
	Goethite	6.2767s/sat	Monohydrocalcite	-1.4040
	Ferrite-Mg	5.8966s/sat	Dawsonite	-1.4348
	Pb3(PO4)2	5.6574s/sat	UO3:.9H2O(alpha)	-1.4358
	Ferrite-Ca	5.5827s/sat	Schoepite-dehy(.	-1.4358
	Manganite	4.6935s/sat	Plumbogummite	-1.4820
	Hydrocerussite	4.1642s/sat	Schoepite-dehy(.	-1.5161
	PbHPO4	3.4991s/sat	Schoepite-dehy(1	-1.5222
	Hydroxylapatite	3.3805s/sat	PbCO3.PbO	-1.5953
	Magnetite	2.3740s/sat	Dolomite-dis	-1.6537
	Plattnerite	2.1201s/sat	Corundum	-1.6667
	Diaspore	1.1624s/sat	Mn(OH)3	-1.8123
	Fe(OH)3(ppd)	1.1556s/sat	Minium	-1.8250
	Cerussite	1.1452s/sat	Na2U2O7(c)	-1.8448
	CaUO4	1.1209s/sat	Rhodochrosite	-2.4981
	Strontianite	0.8853s/sat	Litharge	-2.4991
	Boehmite	0.7585s/sat	Schoepite-dehy(.	-2.6254
	Gibbsite	0.5667s/sat	Massicot	-2.6813
	Ni3(PO4)2	0.3685s/sat	SrUO4(alpha)	-2.8088
	Bunsenite	0.3492s/sat	NiCO3	-2.8944
	MnHPO4	0.0917s/sat	Brucite	-2.9686

(only minerals with log Q/K > -3 listed)

Gases

fugacity log fug.

02(g)	0.1938	-0.713			
H2O(g)	0.02598				
CO2(g)	4.074e-005	-4.390			
HF(g)	2.312e-016	-15.636			
HCl(g)	1.482e-021	-20.829			
NO2(g)	7.172e-022	-21.144			
N2(g)	1.303e-023	-22.885			
NO(g)	1.092e-027	-26.962			
Cl2(g)	1.401e-034	-33.853			
H2(g)	6.367e-042	-41.196			
CO(g)	8.100e-050	-49.092			
SO2(g)	9.108e-061	-60.041			
	7.356e-061				
UO2F2(g)		-60.133			
Pb(g)	2.169e-064	-63.664			
UO3(g)	4.295e-068	-67.367			
NH3(g)	4.421e-071	-70.354			
Na(g)	6.781e-074	-73.169			
U02Cl2(g)	3.718e-074	-73.430			
UOF4(g)	1.594e-079				
F2(g)	2.679e-087	-86.572			
UF5(g)	2.949e-095	-94.530			
UF4(g)	5.568e-102	-101.254			
UF6(g)	1.538e-102	-101.813			
UO2(g)	6.078e-121	-120.216			
Mg(g)	7.683e-128	-127.114			
UCl4(g)	8.778e-134	-133.057			
UC15(g)		-142.683			
CH4(g)	5.339e-147	-146.273			
UCl6(g)	9.101e-148	-147.041			
H2S(g)	5.805e-148	-147.236			
UF3(g)	4.817e-150	-149.317			
Ca(g)	1.621e-150	-149.790			
UC13(g)	1.912e-161	-160.718			
U2F10(g)	9.736e-165	-164.012			
Al(g)	2.542e-190	-189.595			
C(g)	4.316e-191	-190.365			
UF2(g)	6.150e-195	-194.211			
UO(g)	3.415e-205	-204.467			
UC12(g)	2.255e-206	-205.647			
UF(g)	1.932e-233	-232.714			
S2(g)	1.854e-238	-237.732			
C2H4(g)	1.387e-240	-239.858			
UCl(g)	5.825e-249	-248.235			
U2Cl8(g)	1.899e-256	-255.722			
U2Cl10(g)	8.582e-260	-259.066			
U(g)	4.502e-290	-289.347			
○ (∃/	1.5020 250	202.51			
	Т	n fluid	Sorl	bed	Кd
	total moles mole		moles	mg/kg	L/k
Original basis		3/3		ريد , ر	_,
Original basis					
Original basisAl+++	9.18e-006 9.18e-	006 0.248			
	9.18e-006 9.18e- 1.30e-005 1.30e-				

Cr04	1.73e-005	1.73e-005	2.01
F-	1.00e-005	1.00e-005	0.190
Fe++	1.19e-005	1.19e-005	0.664
H+	-0.000902	-0.000902	-0.909
H2O	55.5	55.5	1.00e+006
HCO3-	0.00281	0.00281	171.
HPO4	0.000579	0.000579	55.6
Mg++	1.00e-005	1.00e-005	0.243
Mn++	1.73e-006	1.73e-006	0.0950
NH3(aq)	6.98e-005	6.98e-005	1.19
Na+	0.00218	0.00218	50.1
Ni++	1.00e-006	1.00e-006	0.0587
02(aq)	0.000390	0.000390	12.5
Pb++	2.15e-006	2.15e-006	0.445
SO4	1.00e-005	1.00e-005	0.960
Sr++	1.00e-006	1.00e-006	0.0876
UO2++	0.000112	0.000112	30.2

Elemental composition		In fluid		Sorbed	
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	9.180e-006	9.180e-006	0.2476		
Calcium	1.300e-005	1.300e-005	0.5208		
Carbon	0.002807	0.002807	33.71		
Chlorine	1.000e-005	1.000e-005	0.3544		
Chromium	1.730e-005	1.730e-005	0.8992		
Fluorine	1.000e-005	1.000e-005	0.1899		
Hydrogen	111.0	111.0	1.119e+005		
Iron	1.190e-005	1.190e-005	0.6644		
Lead	2.150e-006	2.150e-006	0.4453		
Magnesium	1.000e-005	1.000e-005	0.2430		
Manganese	1.730e-006	1.730e-006	0.09501		
Nickel	1.000e-006	1.000e-006	0.05867		
Nitrogen	6.980e-005	6.980e-005	0.9773		
Oxygen	55.52	55.52	8.880e+005		
Phosphorus	0.0005790	0.0005790	17.93		
Sodium	0.002180	0.002180	50.10		
Strontium	1.000e-006	1.000e-006	0.08759		
Sulfur	1.000e-005	1.000e-005	0.3206		
Uranium	0.0001120	0.0001120	26.65		

Sample 19887 CaCO₃ leach, Stage 4.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001652	37.96	0.9304	-2.8134
HCO3-	0.001400	85.40	0.9304	-2.8852
NO3-	0.0008810	54.61	0.9290	-3.0870
HPO4	0.0003879	37.22	0.7484	-3.5372
CO3	0.0003025	18.14	0.7505	-3.6440
02(aq)	0.0002451	7.840	1.0000	-3.6107
UO2(CO3)3	0.0001269	57.09	0.3132	-4.4007
OH-	4.042e-005	0.6872	0.9297	-4.4251
CrO4	1.549e-005	1.796	0.7484	-4.9359
F-	9.998e-006	0.1899	0.9297	-5.0318
Cl-	9.998e-006	0.3543	0.9290	-5.0321
SO4	9.909e-006	0.9516	0.7484	-5.1299
A102-	7.753e-006	0.4571	0.9304	-5.1419
CaPO4-	5.935e-006	0.8012	0.9304	-5.2579
Fe(OH)4-	5.857e-006	0.7253	0.9304	-5.2636
Fe(OH)3(aq)	5.839e-006	0.6238	1.0000	-5.2336
MgPO4-	5.468e-006	0.6520	0.9304	-5.2935
UO2(CO3)2	5.295e-006	2.065	0.7484	-5.4020
Ca++	4.920e-006	0.1971	0.7569	-5.4290
NaHPO4-	3.988e-006	0.4744	0.9304	-5.4305
Mg++	3.334e-006	0.08100	0.7648	-5.5935
UO2(OH)3-	3.123e-006	1.002	0.9304	-5.5368
NaHCO3(aq)	2.855e-006	0.2397	1.0000	-5.5444
CaCO3(aq)	1.795e-006	0.1796	1.0000	-5.7458
MnO4-	1.553e-006	0.1846	0.9297	-5.8405
PbCO3(aq)	1.478e-006	0.3948	1.0000	-5.8303
(UO2)2CO3(OH)3-	1.423e-006	0.9263	0.9304	-5.8781
H2PO4-	1.348e-006	0.1307	0.9304	-5.9018
NaCO3-	1.226e-006	0.1017	0.9304	-5.9429
PO4	9.875e-007	0.09375	0.5206	-6.2890
Ni++	8.979e-007	0.05268	0.7569	-6.1677

Sr++	8.652e-007	0.07578	0.7527	-6.1863
CO2(aq)	7.754e-007	0.03412	1.0000	-6.1105
UO2(OH)2(aq)	6.315e-007	0.1919	1.0000	-6.1996
MgHPO4(aq)	6.016e-007	0.07234	1.0000	-6.2207
CaHPO4(aq)	5.941e-007	0.08081	1.0000	-6.2261
MgCO3(aq)	5.513e-007	0.04647	1.0000	-6.2586
Pb(CO3)2	2.962e-007	0.09690	0.7484	-6.6543
Pb(OH)2(aq)	1.921e-007	0.04631	1.0000	-6.7166
PbOH+	1.380e-007	0.03093	0.9304	-6.8915
UO2PO4-	1.315e-007	0.04799	0.9304	-6.9124
SrCO3(aq)	1.084e-007	0.01600	1.0000	-6.9650
Ni(OH)2(aq)	9.595e-008	0.008892	1.0000	-7.0180
Ca2UO2(CO3)3	8.740e-008	0.04633	1.0000	-7.0585
NaSO4-	8.093e-008	0.009632	0.9304	-7.1232
CaHCO3+	5.806e-008	0.005868	0.9304	-7.2674
MnO4	4.363e-008	0.005187	0.7484	-7.4861
MgHCO3+	3.876e-008	0.003306	0.9304	-7.4430
SrHPO4(aq)	2.170e-008	0.003984	1.0000	-7.6634
CaNO3+	1.642e-008	0.001676	0.9304	-7.8160
HCrO4-	1.047e-008	0.001224	0.9304	-8.0115
(only species	> 1e-8 molal listed	d (F		

(only species > 1e-8 molal listed)

Mineral saturation states log O/K

mineral saturation	log Q/K		log Q/K
Birnessite	52.6636s/sat	Whitlockite	0.0036s/sat
Todorokite	45.6902s/sat	Ice	-0.1387
Pyromorphite	17.1301s/sat	Dolomite	-0.1663
Trevorite	16.7174s/sat	Dolomite-ord	-0.1663
Hematite	13.4241s/sat	MnHPO4	-0.3310
Fluorapatite	10.9159s/sat	Calcite	-0.5928
Pyromorphite-OH	10.1021s/sat	Schoepite	-0.7183
Bixbyite	9.7962s/sat	UO3:2H2O	-0.7183
Pyrolusite	9.0304s/sat	Aragonite	-0.7372
Pb40(PO4)2	8.7130s/sat	UO2(OH)2(beta)	-0.8307
Hausmannite	8.0701s/sat	Na2U2O7(c)	-0.8485
MnO2(gamma)	7.5126s/sat	Schoepite-dehy(.	-0.9017
Parsonsite	7.2991s/sat	UO3:.9H2O(alpha)	-0.9017
Goethite	6.2319s/sat	Schoepite-dehy(.	-0.9820
Ferrite-Mg	6.0241s/sat	Crocoite	-0.9845
Pb3(PO4)2	5.7410s/sat	Schoepite-dehy(1	-0.9881
Ferrite-Ca	5.7220s/sat	Minium	-1.1231
Manganite	4.5800s/sat	Magnesite	-1.2023
Hydrocerussite	4.3629s/sat	PbCO3.PbO	-1.3790
Hydroxylapatite	3.5982s/sat	Monohydrocalcite	-1.4265
PbHPO4	3.4240s/sat	Dolomite-dis	-1.7107
Plattnerite	2.3542s/sat	Dawsonite	-1.8735
Magnetite	2.2394s/sat	Mn(OH)3	-1.9258
CaUO4	1.8840s/sat	Corundum	-1.9693
Cerussite	1.1276s/sat	Schoepite-dehy(.	-2.0913
Fe(OH)3(ppd)	1.1108s/sat	SrUO4(alpha)	-2.0963
Diaspore	1.0111s/sat	Litharge	-2.2652
Strontianite	0.8122s/sat	Plumbogummite	-2.3201
Boehmite	0.6072s/sat	Massicot	-2.4474
Bunsenite	0.5004s/sat	Schoepite-dehy(.	-2.6093
Gibbsite	0.4154s/sat	Brucite	-2.7515
Ca-Autunite	0.3487s/sat	Rhodochrosite	-2.8632

Gases	fugacity	log fug.			
02(g)	0.1939	-0.712			
H2O(g)	0.02598	-1.585			
CO2(g)	2.283e-005	-4.642			
HF(g)	1.930e-016	-15.714			
NO2(g)	7.557e-021	-20.122			
N2(g)	1.444e-021	-20.840			
HCl(g)	1.237e-021	-20.908			
NO(g)	1.150e-026	-25.939			
Cl2(g)	9.774e-035	-34.010			
H2(g)	6.364e-042	-41.196			
CO(g)	4.537e-050	-49.343			
UO2F2(g)	1.754e-060	-59.756			
SO2(g)	6.407e-061	-60.193			
Pb(g)	3.715e-064	-63.430			
UO3(g)	1.469e-067	-66.833			
NH3(g)	4.652e-070	-69.332			
UO2C12(g)	8.868e-074	-73.052			
Na(g)	6.242e-074	-73.205			
UOF4(g)	2.650e-079	-78.577			
F2(g)	1.868e-087	-86.729			
UF5(g)	4.092e-095	-94.388			
UF4(g)	9.251e-102	-101.034			
UF6(g)	1.782e-102	-101.749			
UO2(g)	2.078e-120	-119.682			
Mg(g)	1.266e-127	-126.898			
UC14(g)	1.459e-133	-132.836			
UCl5(g)	2.879e-143	-142.541			
CH4(g)	2.986e-147	-146.525			
UC16(g)	1.055e-147	-146.977			
H2S(g)	4.078e-148	-147.390			
UF3(g)	9.584e-150	-149.018			
Ca(g)	2.745e-150	-149.561			
UCl3(g)	3.806e-161	-160.420			
U2F10(g)	1.874e-164	-163.727			
Al(g)	1.793e-190	-189.746			
C(g)	2.417e-191	-190.617			
UF2(g)	1.465e-194	-193.834			
UO(g)	1.167e-204	-203.933			
UCl2(g)	5.374e-206	-205.270			
UF(g)	5.511e-233	-232.259			
S2(g)	9.158e-239	-238.038			
C2H4(g)	4.345e-241	-240.362			
UCl(g)	1.662e-248	-247.779			
U2Cl8(g)	5.246e-256	-255.280			
U2Cl10(g)	1.654e-259				
U(g)	1.538e-289				
	Ir	n fluid	Sorb	ed	Kd
Original basis	total moles moles	s mg/kg	moles	mg/kg	L/kg
Al+++	7.76e-006 7.76e-0	0.209			

Ca++	1.35e-005	1.35e-005	0.541
C1-	1.00e-005	1.00e-005	0.354
Cr04	1.55e-005	1.55e-005	1.80
F-	1.00e-005	1.00e-005	0.190
Fe++	1.17e-005	1.17e-005	0.653
H+	-0.00171	-0.00171	-1.73
H2O	55.5	55.5	1.00e+006
HCO3-	0.00210	0.00210	128.
HPO4	0.000407	0.000407	39.1
Mg++	1.00e-005	1.00e-005	0.243
Mn++	1.60e-006	1.60e-006	0.0879
NH3(aq)	0.000881	0.000881	15.0
Na+	0.00166	0.00166	38.2
Ni++	1.00e-006	1.00e-006	0.0587
02(aq)	0.00201	0.00201	64.4
Pb++	2.12e-006	2.12e-006	0.439
SO4	1.00e-005	1.00e-005	0.960
Sr++	1.00e-006	1.00e-006	0.0876
UO2++	0.000139	0.000139	37.5

Elemental comp	osition	In fl	uid	Sork	ped
			mg/kg		
Aluminum		7.760e-006			
Calcium	1.350e-005	1.350e-005	0.5409		
Carbon	0.002105	0.002105	25.27		
Chlorine	1.000e-005	1.000e-005	0.3544		
Chromium	1.550e-005	1.550e-005	0.8057		
Fluorine	1.000e-005	1.000e-005	0.1899		
Hydrogen	111.0	111.0	1.119e+005		
Iron	1.170e-005	1.170e-005	0.6532		
Lead	2.120e-006	2.120e-006	0.4391		
Magnesium	1.000e-005	1.000e-005	0.2430		
Manganese	1.600e-006	1.600e-006	0.08787		
Nickel	1.000e-006	1.000e-006	0.05867		
Nitrogen	0.0008810	0.0008810	12.34		
Oxygen	55.52	55.52	8.880e+005		
Phosphorus	0.0004070	0.0004070	12.60		
Sodium	0.001660	0.001660	38.15		
Strontium	1.000e-006	1.000e-006	0.08759		
Sulfur	1.000e-005	1.000e-005	0.3206		
Uranium	0.0001390	0.0001390	33.08		

Sample 19887 CaCO₃ leach, Stage 5.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 9.490 log fO2 = -0.709
Eh = 0.6572 volts pe = 11.1091
Ionic strength = 0.003437

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
					-
02(g)	fixed fuga	city buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.001558	95.03	0.9382	-2.8352
Na+	0.001314	30.21	0.9382	-2.9090
CO3	0.0002730	16.38	0.7759	-3.6740
02(aq)	0.0002469	7.897	1.0000	-3.6076
HPO4	0.0002463	23.63	0.7741	-3.7198
UO2(CO3)3	0.0001023	46.03	0.3587	-4.4353
NO3-	6.980e-005	4.327	0.9371	-4.1844
OH-	3.333e-005	0.5667	0.9377	-4.5051
Cl-	9.998e-006	0.3544	0.9371	-5.0283
F-	9.998e-006	0.1899	0.9377	-5.0280
SO4	9.921e-006	0.9528	0.7741	-5.1146
CrO4	9.372e-006	1.087	0.7741	-5.1394
UO2(CO3)2	5.065e-006	1.975	0.7741	-5.4067
Mg++	4.523e-006	0.1099	0.7875	-5.4483
Ca++	4.356e-006	0.1745	0.7810	-5.4683
MgPO4-	4.138e-006	0.4934	0.9382	-5.4109
Fe(OH)3(aq)	4.135e-006	0.4418	1.0000	-5.3835
Fe(OH)4-	3.422e-006	0.4237	0.9382	-5.4935
CaPO4-	2.937e-006	0.3965	0.9382	-5.5598
NaHCO3(aq)	2.570e-006	0.2158	1.0000	-5.5901
NaHPO4-	2.084e-006	0.2479	0.9382	-5.7088
UO2(OH)3-	2.024e-006	0.6498	0.9382	-5.7214
CaCO3(aq)	1.531e-006	0.1532	1.0000	-5.8151
H2PO4-	1.055e-006	0.1023	0.9382	-6.0044
CO2(aq)	1.046e-006	0.04602	1.0000	-5.9805
A102-	9.989e-007	0.05890	0.9382	-6.0282
PbCO3(aq)	9.954e-007	0.2659	1.0000	-6.0020
MnO4-	9.946e-007	0.1183	0.9377	-6.0303
(UO2)2CO3(OH)3-	9.782e-007	0.6367	0.9382	-6.0373
Ni++	9.261e-007	0.05434	0.7810	-6.1407
NaCO3-	9.102e-007	0.07553	0.9382	-6.0686

Sr++	8.776e-007	0.07687	0.7776	-6.1660
MgCO3(aq)	7.187e-007	0.06059	1.0000	-6.1434
MgHPO4(aq)	5.519e-007	0.06637	1.0000	-6.2581
PO4	4.998e-007	0.04746	0.5618	-6.5516
UO2(OH)2(aq)	4.964e-007	0.1509	1.0000	-6.3042
CaHPO4(aq)	3.564e-007	0.04848	1.0000	-6.4480
Pb(CO3)2	1.800e-007	0.05888	0.7741	-6.8560
SrCO3(aq)	1.060e-007	0.01565	1.0000	-6.9746
Pb(OH)2(aq)	9.589e-008	0.02312	1.0000	-7.0182
PbOH+	8.214e-008	0.01841	0.9382	-7.1131
UO2PO4-	8.093e-008	0.02953	0.9382	-7.1196
Ni(OH)2(aq)	7.065e-008	0.006548	1.0000	-7.1509
Ca2UO2(CO3)3	6.735e-008	0.03570	1.0000	-7.1717
NaSO4-	6.669e-008	0.007938	0.9382	-7.2036
MgHCO3+	6.024e-008	0.005138	0.9382	-7.2478
CaHCO3+	5.901e-008	0.005965	0.9382	-7.2567
MnO4	2.262e-008	0.002690	0.7741	-7.7567
SrHPO4(aq)	1.494e-008	0.002742	1.0000	-7.8257
(only appaids	> 10-9 molal ligtod	1 /		

Mineral saturation states log Q/K

Mineral saturation	states log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Hematite Fluorapatite Bixbyite Pyrolusite Pyromorphite-OH Hausmannite Pb40(PO4)2 MnO2(gamma) Parsonsite Goethite Ferrite-Mg Ferrite-Ca Pb3(PO4)2 Manganite Hydrocerussite PbHPO4 Hydroxylapatite Plattnerite Magnetite CaUO4 Fe(OH)3(ppd) Cerussite Strontianite Bunsenite Diaspore Ni(OH)2 Ca-Autunite	10g Q/K	Ice Boehmite Ni3(PO4)2 Gibbsite MnHPO4 Whitlockite Calcite Aragonite U03:2H2O Schoepite U02(OH)2(beta) U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Magnesite Schoepite-dehy(1 Crocoite Na2U2O7(c) Monohydrocalcite Dolomite-dis PbCO3.PbO Minium Mn(OH)3 Schoepite-dehy(. SrUO4(alpha) Litharge Schoepite-dehy(. Dawsonite Massicot Brucite Rhodochrosite	-0.1387 -0.1991 -0.2403 -0.3909 -0.4673 -0.6394 -0.6621 -0.8065 -0.8229 -0.8229 -0.9353 -1.0063 -1.0866 -1.0871 -1.0927 -1.3297 -1.4089 -1.4958 -1.6649 -1.8523 -2.0266 -2.0387 -2.1959 -2.3406 -2.5668 -2.7139 -2.7254 -2.7490 -2.7663 -2.8469
Dolomite-ord Dolomite (only minerals w	-0.1205 -0.1205 ith log Q/K > -	NiCO3 3 listed)	-2.9977

Gases	fugacity	log fug.		
02(g)	0.1953	-0.709		
H2O(g)	0.02598	-1.585		
CO2(g)	3.079e-005	-4.512		
HF(g)	2.341e-016	-15.631		
HCl(g)	1.500e-021	-20.824		
NO2(g)	7.248e-022	-21.140		
N2(g)	1.310e-023	-22.883		
NO(g)	1.099e-027	-26.959		
Cl2(g)	1.443e-034	-33.841		
H2(g)	6.341e-042	-41.198		
CO(g)	6.098e-050	-49.215		
UO2F2(g)	2.027e-060	-59.693		
S02(g)	9.557e-061	-60.020		
Pb(g)	1.848e-064	-63.733		
UO3(g)	1.155e-067	-66.938		
NH3(g)	4.406e-071	-70.356		
UO2Cl2(g)	1.025e-073	-72.989		
Na(g)	4.158e-074	-73.381		
UOF4(g)	4.502e-079	-78.347		
F2(g)	2.757e-087	-86.560		
UF5(g)	8.416e-095	-94.075		
UF4(g)	1.566e-101	-100.805		
UF6(g)	4.452e-102	-101.351		
UO2(g)	1.627e-120	-119.789		
Mg(g)	1.219e-127	-126.914		
UCl4(g)	2.472e-133	-132.607		
UC15(g)	5.927e-143	-142.227		
CH4(g)	3.971e-147	-146.401		
UCl6(g)	2.640e-147	-146.578		
H2S(g)	6.018e-148	-147.221		
UF3(g)	1.336e-149	-148.874		
Ca(g)	1.729e-150	-149.762		
UC13(g)	5.308e-161	-160.275		
U2F10(g)	7.928e-164	-163.101		
C(g)	3.237e-191	-190.490		
Al(g)	2.786e-191	-190.555		
UF2(g)	1.681e-194	-193.774		
UO(g)	9.109e-205	-204.041		
UCl2(g)	6.169e-206	-205.210		
UF(g)	5.206e-233	-232.283		
S2(g)	2.009e-238	-237.697		
C2H4(g)	7.740e-241	-240.111		
UCl(g)	1.570e-248	-247.804		
U2Cl8(g)	1.506e-255	-254.822		
U2Cl10(g)	7.011e-259	-258.154		
U(g)	1.196e-289	-288.922		
				_
		n fluid	Sorbed	Kd
Original basis	total moles moles	s mg/kg	moles mg/kg	L/kg
71	1 000 006 1 00-			
Al+++	1.00e-006 1.00e-0			
Ca++ Cl-	9.38e-006 9.38e-0			
C1- Cr04	1.00e-005 1.00e-0 9.38e-006 9.38e-0			
CIU4	J.30E-000 J.38E-0	006 1.09		

F-	1.00e-005	1.00e-005	0.190
Fe++	7.56e-006	7.56e-006	0.422
H+	-0.000741	-0.000741	-0.746
H2O	55.5	55.5	1.00e+006
HCO3-	0.00216	0.00216	132.
HPO4	0.000258	0.000258	24.8
Mg++	1.00e-005	1.00e-005	0.243
Mn++	1.02e-006	1.02e-006	0.0560
NH3(aq)	6.98e-005	6.98e-005	1.19
Na+	0.00132	0.00132	30.3
Ni++	1.00e-006	1.00e-006	0.0587
02(aq)	0.000390	0.000390	12.5
Pb++	1.36e-006	1.36e-006	0.282
SO4	1.00e-005	1.00e-005	0.960
Sr++	1.00e-006	1.00e-006	0.0876
UO2++	0.000112	0.000112	30.2

Elemental comp	osition	In fl	uid	Sork	ped
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	1.000e-006	1.000e-006	0.02698		
Calcium	9.380e-006	9.380e-006	0.3758		
Carbon	0.002157	0.002157	25.91		
Chlorine	1.000e-005	1.000e-005	0.3544		
Chromium	9.380e-006	9.380e-006	0.4876		
Fluorine	1.000e-005	1.000e-005	0.1899		
Hydrogen	111.0	111.0	1.119e+005		
Iron	7.560e-006	7.560e-006	0.4221		
Lead	1.360e-006	1.360e-006	0.2817		
Magnesium	1.000e-005	1.000e-005	0.2430		
Manganese	1.020e-006	1.020e-006	0.05602		
Nickel	1.000e-006	1.000e-006	0.05868		
Nitrogen	6.980e-005	6.980e-005	0.9774		
Oxygen	55.52	55.52	8.880e+005		
Phosphorus	0.0002580	0.0002580	7.989		
Sodium	0.001320	0.001320	30.34		
Strontium	1.000e-006	1.000e-006	0.08760		
Sulfur	1.000e-005	1.000e-005	0.3206		
Uranium	0.0001120	0.0001120	26.65		

Sample 19887 CaCO₃ leach, Stage 6.

Xi = 0.0000Step # Temperature = 25.0 C Pressure = 1.013 bars
pH = 9.710 log fO2 = -0.734
Eh = 0.6438 volts pe = 10.8828
Ionic strength = 0.008339 Activity of water = 0.008339

Activity of water = 1.000000

Solvent mass = 0.999983 kg

Solution mass = 1.000591 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000010 molal

Dissolved solids = 607 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity = 201.12 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
					-
02(g)	fixed fuga	city buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.002163	49.69	0.9092	-2.7064
HCO3-	0.0008398	51.21	0.9092	-3.1172
UO2(CO3)3	0.0006336	285.0	0.2154	-3.8649
HPO4	0.0003208	30.77	0.6817	-3.6602
CO3	0.0002681	16.08	0.6851	-3.7360
02(aq)	0.0002330	7.452	1.0000	-3.6326
(UO2)2CO3(OH)3-	0.0001303	84.77	0.9092	-3.9265
CrO4	9.986e-005	11.58	0.6817	-4.1671
NO3-	6.979e-005	4.325	0.9068	-4.1987
OH-	5.712e-005	0.9709	0.9080	-4.2851
UO2(OH)3-	5.449e-005	17.48	0.9092	-4.3050
A102-	4.057e-005	2.391	0.9092	-4.4332
Fe(OH)4-	3.669e-005	4.543	0.9092	-4.4768
CaPO4-	3.387e-005	4.571	0.9092	-4.5115
Ca++	2.874e-005	1.151	0.6951	-4.6995
Fe(OH)3(aq)	2.590e-005	2.766	1.0000	-4.5868
UO2(CO3)2	2.467e-005	9.617	0.6817	-4.7742
Cl-	9.997e-006	0.3542	0.9068	-5.0426
F-	9.997e-006	0.1898	0.9080	-5.0421
SO4	9.876e-006	0.9482	0.6817	-5.1718
Ni++	8.758e-006	0.5137	0.6951	-5.2155
Ca2UO2(CO3)3	8.636e-006	4.576	1.0000	-5.0637
UO2(OH)2(aq)	7.802e-006	2.371	1.0000	-5.1078
CaCO3(aq)	7.792e-006	0.7794	1.0000	-5.1084
PbCO3(aq)	6.048e-006	1.615	1.0000	-5.2184
MgPO4-	5.622e-006	0.6701	0.9092	-5.2915
NaHPO4-	3.933e-006	0.4676	0.9092	-5.4466
Mg++	3.482e-006	0.08458	0.7075	-5.6085
CaHPO4(aq)	2.400e-006	0.3264	1.0000	-5.6197
NaHCO3(aq)	2.141e-006	0.1797	1.0000	-5.6694
(UO2)3(OH)7-	2.094e-006	1.944	0.9092	-5.7204

Pb(OH)2(aq) Ni(OH)2(aq) NaCO3- PO4 Pb(CO3)2 MnO4- PbOH+ UO2PO4- Sr++ H2PO4- MgHPO4(aq) MgCO3(aq) CO2(aq) CaHCO3+ Pb(OH)3- NaSO4- Ni(OH)3- SrCO3(aq) HCrO4- MnO4 MgHCO3+ HAlO2(aq) CaSO4(aq) NaOH(aq)	1.851e-006 1.638e-006 1.298e-006 1.267e-006 1.077e-006 1.045e-007 9.072e-007 8.997e-007 7.525e-007 4.378e-007 4.310e-007 3.293e-007 1.868e-007 1.056e-007 9.619e-008 9.346e-008 8.344e-008 4.401e-008 2.246e-008 2.029e-008 1.737e-008 1.617e-008	0.4462 0.1517 0.1077 0.1203 0.3521 0.1242 0.2209 0.3309 0.07879 0.07294 0.05263 0.03632 0.01448 0.01887 0.02725 0.01144 0.01025 0.01231 0.005329 0.005231 0.005231 0.001216 0.002363 0.0006465	1.0000 1.0000 0.9092 0.4218 0.6817 0.9080 0.9092 0.6885 0.9092 1.0000 1.0000 1.0000 0.9092 0.9092 0.9092 0.9092 1.0000 0.9092 1.0000 0.9092 1.0000 1.0000 0.9092	-5.7326 -5.7857 -5.9279 -6.2720 -6.1344 -6.0227 -6.0475 -6.0836 -6.2080 -6.1648 -6.3587 -6.3655 -6.4825 -6.7700 -7.0176 -7.0582 -7.0707 -7.0786 -7.3827 -7.5229 -7.6899 -7.6928 -7.7912
MgHCO3+	2.246e-008	0.001915	0.9092	-7.6899
CaSO4(aq)	1.737e-008	0.002363	1.0000	-7.7602
CaOH+ PbP207	1.592e-008 1.574e-008	0.0000403	0.9092 0.6817	-7.7912 -7.8395 -7.9693
SrHPO4(aq) NaAlO2(aq)	1.555e-008 1.310e-008	0.002854 0.001073	1.0000	-7.8082 -7.8829
Pb++ Fe(OH)2+ (only species >	1.264e-008 1.187e-008 1e-8 molal liste	0.002618 0.001066 ed)	0.6851 0.9092	-8.0624 -7.9668

	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Trevorite Hematite Fluorapatite	50.2394s/sat 43.5717s/sat 20.6899s/sat 19.2433s/sat 14.7179s/sat 14.6037s/sat	Strontianite Crocoite Schoepite U03:2H20 Dolomite Dolomite-ord	0.6986s/sat 0.4882s/sat 0.3735s/sat 0.3735s/sat 0.3642s/sat 0.3642s/sat
Pyromorphite-OH Pb4O(PO4)2 Parsonsite Bixbyite Pyrolusite Ferrite-Ca Pb3(PO4)2 Ferrite-Mg	13.8124s/sat 11.8425s/sat 9.5525s/sat 9.1957s/sat 8.7246s/sat 8.0253s/sat 7.8866s/sat 7.5829s/sat	UO2(OH)2(beta) PbCO3.PbO Schoepite-dehy(. UO3:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(1 Calcite Aragonite	0.2611s/sat 0.2169s/sat 0.1901s/sat 0.1901s/sat 0.1098s/sat 0.1037s/sat 0.0446s/sat -0.0998
Hydroxylapatite MnO2(gamma) Hausmannite Goethite Hydrocerussite Becquerelite Manganite Magnetite	7.4364s/sat 7.2068s/sat 7.1747s/sat 6.8787s/sat 6.5707s/sat 4.5613s/sat 4.2797s/sat 4.1856s/sat	Ice Plumbogummite Na2U2O7(am) SrUO4(alpha) Monohydrocalcite Corundum Pb4SO7 Schoepite-dehy(.	-0.1387 -0.4362 -0.6792 -0.7462 -0.7891 -0.8318 -0.8970 -0.9995

PbHPO4	4.0048s/sat	MnHPO4	-1.0289
CaUO4	3.9853s/sat	Pb3S06	-1.1173
Plattnerite	3.3272s/sat	Dolomite-dis	-1.1802
Ni3(PO4)2	3.0943s/sat	Litharge	-1.2812
Ca-Autunite	2.7356s/sat	Magnesite	-1.3092
Whitlockite	2.2259s/sat	Pb4Cl2(OH)6	-1.3543
Na2U2O7(c)	1.8291s/sat	Lanarkite	-1.4075
Minium	1.8177s/sat	Dawsonite	-1.4298
Fe(OH)3(ppd)	1.7576s/sat	Massicot	-1.4634
Cerussite	1.7395s/sat	Schoepite-dehy(.	-1.5175
Bunsenite	1.7326s/sat	NiCO3	-2.1345
Diaspore	1.5798s/sat	Mn(OH)3	-2.2261
Ni(OH)2	1.4560s/sat	Saleeite	-2.4778
Boehmite	1.1759s/sat	Brucite	-2.4865
Gibbsite	0.9841s/sat	UO3(gamma)	-2.5005
(only minerals	with log $Q/K >$	-3 listed)	

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) HF(g) HC1(g) NO2(g) N2(g) N2(g) N0(g) C12(g) H2(g) CO(g) U02F2(g) SO2(g) Pb(g) U03(g) NH3(g) U02C12(g) Na(g) U0F4(g) F2(g) UF5(g) UF6(g) U02(g) Mg(g) UC14(g) UC15(g) UC16(g)	0.1844 0.02598 9.693e-006 1.366e-016 8.747e-022 4.287e-022 5.144e-024 6.692e-028 4.765e-035 6.527e-042 1.976e-050 1.084e-059 3.131e-061 3.672e-063 1.815e-066 2.883e-071 5.477e-073 1.116e-073 8.199e-079 9.118e-088 9.072e-095 2.936e-101 2.760e-102 2.633e-119 2.390e-127 4.621e-133 6.366e-143 1.629e-147	-0.734 -1.585 -5.014 -15.865 -21.058 -21.368 -23.289 -27.174 -34.322 -41.185 -49.704 -58.965 -60.504 -62.435 -65.741 -70.540 -72.261 -72.952 -78.086 -87.040 -94.042 -100.532 -101.559 -118.580 -126.622 -132.335 -142.196 -146.788
UF3(g) Ca(g) UC13(g) U2F10(g) A1(g) C(g) UF2(g) UO(g)	4.354e-149 2.877e-149 1.726e-160 9.212e-164 6.899e-190 1.079e-191 9.528e-194 1.517e-203	-148.361 -148.541 -159.763 -163.036 -189.161 -190.967 -193.021 -202.819

UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	3.4916 5.1316 2.4196 9.1196 1.5466 5.2626 8.0876 2.0496	e-232 -233 e-239 -236 e-242 -245 e-247 -246 e-255 -256 e-259 -258 e-288 -287	7.688	Con	bed	77-3
Original basis	s total moles	In flu: moles			mg/kg	Kd L/kg
Al+++ Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++ UO2++	9.03e-005 1.00e-005 9.99e-005 1.00e-005 6.26e-005 -0.00348 55.5 0.00323 0.000370 1.00e-005 1.09e-006 6.98e-005 0.00217 1.05e-005 0.000390 1.01e-005	1.00e-005 6.26e-005 -0.00348 55.5 9 0.00323 0.000370 1.00e-005 1.09e-006 6.98e-005 0.00217 1.05e-005 0.000390 1.01e-005 1.00e-005	3.49 -3.51 .99e+005 197. 35.5 0.243 0.0598 1.19 49.9 0.616 12.5 2.09			
Elemental comp	position total moles		fluid mg/k	a a	Sorbed	d mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium Sulfur Uranium		1.000e-00 9.990e-00 1.000e-00 1.000e-00 1.010e-00 1.000e-00 1.000e-00 1.050e-00 6.980e-00 2.55.5 0.000370 0.0021 1.000e-00 1.000e-00 1.000e-00 1.000e-00	335 3 35 0. 05 0. 05 5 05 0. 0. 1.118e 05 3 05 2 05 0. 06 0.0 05 0. 05 0. 05 2 8.878e 00 1 70 4 06 0.0	.494 .091 2429 5985 6159 9771		

Sample 19961 water leach, 1 day (Stage 1).

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 10.880 log f02 = -1.087
Eh = 0.5694 volts pe = 9.6247
Ionic strength = 0.031579
Activity of water = 0.999999 Solvent mass = 0.999999

Solvent mass = 0.999867 kg

Solution mass = 1.002054 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000026 molal

Dissolved solids = 2182 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 557.22 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
					-
02(g)	fixed fuga	city buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01738	398.8	0.8465	-1.8322
HPO4	0.002168	207.6	0.5089	-2.9574
F-	0.001688	32.00	0.8430	-2.8468
CO3	0.001617	96.82	0.5170	-3.0778
UO2(CO3)3	0.001312	589.3	0.0665	-4.0593
UO2(OH)3-	0.001284	411.3	0.8465	-2.9638
NO3-	0.001060	65.59	0.8394	-3.0507
OH-	0.0009100	15.44	0.8430	-3.1151
CrO4	0.0003710	42.94	0.5089	-3.7239
Fe(OH)4-	0.0003352	41.43	0.8465	-3.5471
HCO3-	0.0002775	16.90	0.8465	-3.6290
PO4	0.0001830	17.34	0.2179	-4.3992
NaHPO4-	0.0001595	18.94	0.8465	-3.8696
(UO2)3(OH)7-	0.0001085	100.6	0.8465	-4.0368
02(aq)	0.0001035	3.305	1.0000	-3.9850
CaPO4-	9.792e-005	13.20	0.8465	-4.0815
(UO2)2CO3(OH)3-	9.471e-005	61.53	0.8465	-4.0960
NaCO3-	4.750e-005	3.934	0.8465	-4.3956
MgPO4-	4.053e-005	4.823	0.8465	-4.4646
A102-	3.113e-005	1.832	0.8465	-4.5791
SO4	3.051e-005	2.925	0.5089	-4.8089
MnO4-	2.684e-005	3.185	0.8430	-4.6454
Cl-	2.565e-005	0.9074	0.8394	-4.6669
MnO4	2.547e-005	3.022	0.5089	-4.8874
Ni(OH)2(aq)	2.095e-005	1.938	1.0000	-4.6789
Ni(OH)3-	1.899e-005	2.079	0.8465	-4.7939
Pb(OH)2(aq)	1.805e-005	4.344	1.0000	-4.7436
Pb(OH)3-	1.636e-005	4.215	0.8465	-4.8586
Fe(OH)3(aq)	1.489e-005	1.588	1.0000	-4.8271
UO2(OH)2(aq)	1.157e-005	3.511	1.0000	-4.9366
NaHCO3(aq)	4.930e-006	0.4133	1.0000	-5.3071

UO2(CO3)2	4.641e-006	1.806	0.5089	-5.6268
Sr++	3.744e-006	0.3274	0.5248	-5.7067
UO2(OH)4	2.525e-006	0.8517	0.5089	-5.8911
NaF(aq)	2.106e-006	0.08823	1.0000	-5.6766
NaOH(aq)	1.791e-006	0.07146	1.0000	-5.7470
NaSO4-	1.784e-006	0.2119	0.8465	-5.8211
Ca++	1.335e-006	0.05340	0.5397	-6.1423
Pb(CO3)2	1.331e-006	0.4347	0.5089	-6.1690
CaCO3(aq)	1.279e-006	0.1278	1.0000	-5.8930
	1.227e-006	0.3271	1.0000	-5.9112
PbCO3(aq)				
SrCO3(aq)	1.205e-006	0.1774	1.0000	-5.9192
PbOH+	6.981e-007	0.1562	0.8465	-6.2285
Ni++	6.595e-007	0.03862	0.5397	-6.4487
UO2PO4-	4.929e-007	0.1795	0.8465	-6.3796
CaHPO4(aq)	4.368e-007	0.05931	1.0000	-6.3597
Mg++	3.908e-007	0.009478	0.5670	-6.6544
H2PO4-	2.757e-007	0.02668	0.8465	-6.6320
SrHPO4(aq)	2.489e-007	0.04559	1.0000	-6.6040
MgHPO4(aq)	1.987e-007	0.02385	1.0000	-6.7018
MgCO3(aq)	1.765e-007	0.01484	1.0000	-6.7534
NaAlO2(aq)	7.004e-008	0.005729	1.0000	-7.1546
NaCl(aq)	5.295e-008	0.003088	1.0000	-7.2761
PbP207	2.393e-008	0.009099	0.5089	-7.9145
SrNO3+	1.303e-008	0.001946	0.8465	-7.9573
, -	4 6 3 3 3 1			

	MINERAL SALURACION	log Q/K		log Q/K
_	Birnessite Todorokite Pyromorphite Trevorite Fluorapatite Hematite Pyromorphite-OH Pb40(PO4)2 Bixbyite Pyrolusite Hausmannite Ferrite-Ca Parsonsite Ferrite-Mg MnO2(gamma) Pb3(PO4)2 Hydroxylapatite Goethite Becquerelite Na2U2O7(c) Hydrocerussite CaUO4	10g Q/K	Schoepite U03:2H2O PbC03.PbO U02(OH)2(beta) Schoepite-dehy(. U03:.9H2O(alpha) Schoepite-dehy(1 Diaspore Pb3SO6 Ice Boehmite Litharge Gibbsite Crocoite Massicot Calcite Dolomite-ord Schoepite-dehy(. Aragonite Brucite	log Q/K 0.5447s/sat 0.5447s/sat 0.5131s/sat 0.4323s/sat 0.3613s/sat 0.3613s/sat 0.2810s/sat 0.2749s/sat 0.2639s/sat -0.1271 -0.1387 -0.1400 -0.2922 -0.3318 -0.4196 -0.4744 -0.7400 -0.8083 -0.8083 -0.8283 -0.8844 -1.1924
	Manganite	4.8394s/sat	Schoepite-dehy(.	-1.3463
	Minium .	4.6087s/sat	Lanarkite	-1.4064
	Plattnerite	4.1400s/sat	Monohydrocalcite	-1.5737
	Na2U2O7(am) Magnetite	3.7516s/sat 3.5526s/sat	Mn(OH)3 Magnesite	-1.6664 -1.6971
	PbHPO4	3.3568s/sat	Fluorite	-1.7988

Ni3(PO4)2	3.1407s/sat	MnHPO4	-2.0182
Bunsenite	2.8394s/sat	UO3(gamma)	-2.3293
Ni(OH)2	2.5628s/sat	Dolomite-dis	-2.3527
SrUO4(alpha)	2.2663s/sat	Dawsonite	-2.3835
Strontianite	1.8580s/sat	SrHPO4	-2.4224
Whitlockite	1.6432s/sat	MgUO4	-2.5188
Fe(OH)3(ppd)	1.5173s/sat	NiCO3	-2.7095
Pb4SO7	1.0822s/sat	SrF2	-2.8602
Cerussite	1.0467s/sat	UO3(beta)	-2.9315
Pb4Cl2(OH)6	1.0134s/sat	Sellaite	-2.9637
Ca-Autunite	0.7009s/sat		

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.08190	-1.087
H2O(g)	0.02598	-1.585
CO2(g)	2.016e-007	-6.695
HF(g)	1.448e-015	-14.839
NO2(g)	4.992e-022	-21.302
HCl(g)	1.405e-022	-21.852
N2(g)	3.534e-023	-22.452
NO(g)	1.169e-027	-26.932
Cl2(g)	8.189e-037	-36.087
H2(g)	9.793e-042	-41.009
CO(g)	6.167e-052	-51.210
UO2F2(g)	1.807e-057	-56.743
Pb(g)	5.372e-062	-61.270
S02(g)	4.952e-063	-62.305
UO3(g)	2.691e-066	-65.570
NH3(g)	1.389e-070	-69.857
Na(g)	1.514e-071	-70.820
UO2C12(g)	2.095e-074	-73.679
UOF4(g)	1.535e-074	-73.814
F2(g)	6.828e-086	-85.166
UF5(g)	2.205e-089	-88.657
UF6(g)	5.806e-096	-95.236
$\mathtt{UF4}(\mathtt{g})$	8.248e-097	-96.084
UO2(g)	5.859e-119	-118.232
Mg(g)	7.058e-126	-125.151
UC14(g)	6.837e-136	-135.165
UF3(g)	1.413e-145	-144.850
UC15(g)	1.235e-146	-145.908
Ca(g)	3.407e-148	-147.468
CH4(g)	1.479e-148	-147.830
H2S(g)	1.148e-149	-148.940
UC16(g)	4.143e-152	-151.383
U2F10(g)	5.444e-153	-152.264
UC13(g)	1.948e-162	-161.710
Al(g)	6.125e-191	-190.213
UF2(g)	3.574e-191	-190.447
C(g)	5.054e-193	-192.296
UO(g)	5.064e-203	-202.296
UCl2(g)	3.006e-206	-205.522
UF(g)	2.224e-230	-229.653
S2(g)	3.067e-242	-241.513
C2H4(g)	4.501e-244	-243.347

UC1(g) U2C18(g) U2C110(g) U(g)	1.016e 1.152e 3.043e 1.027e	e-247 -246. e-260 -259. e-266 -265. e-287 -286.	993 939 517 989			
		In fluid			rbed	Kd
Original basis	total moles	moles m	.g/kg 	moles 	mg/kg 	L/kg
Al+++	3.12e-005	3.12e-005	0.840			
Ca++	0.000101		4.04			
Cl-	2.57e-005		0.909			
Cr04	0.000371	0.000371	42.9			
F-	0.00169	0.00169	32.0			
Fe++	0.000350		19.5			
H+	-0.0145		-14.5			
H2O	55.5					
HCO3-	0.00599		365.			
HPO4		0.00265				
	4.13e-005	4.13e-005	1.00			
Mn++	5.23e-005	5.23e-005	2.87			
NH3(aq)	0.00106 0.0176	0.00106	18.0			
Na+	0.0176	0.0176	404.			
	4.06e-005		2.38			
02(aq)	0.00237		75.7			
	3.77e-005		7.80			
SO4		3.23e-005				
Sr++	5.23e-006		0.457			
UO2++	0.00313	0.00313	843.			
Elemental comp	osition	In f	luid		Sorbe	d
		s moles	mg/kg		moles	mg/kg
Aluminum	3.120e-005	3.120e-005	0.8	 401		
Calcium	0.0001010	0.0001010	4.	040		
Carbon	0.005993	0.005993	71	.84		
Chlorine	2.570e-005	2.570e-005	0.9	093		
Chromium	0.0003710					
Fluorine	0.001690	0.001690	32	.04		
Hydrogen	111.0	111.0	1.117e+			
Iron	0.0003500			.51		
Lead	3.770e-005	3.770e-005		795		
Magnesium	4.130e-005			002		
Manganese	5.230e-005			867		
Nickel	4.060e-005			378		
Nitrogen	0.001060			.82		
Oxygen	55.55					
Phosphorus	0.002650			.91		
Sodium	0.01760			3.8		
Strontium	5.230e-006					
Sulfur Uranium	3.230e-005 0.003130			034 3.5		

Sample 19961 water leach, 1 month.

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01674	384.2	0.8497	-1.8470
CO3	0.002862	171.5	0.5246	-2.8235
HPO4	0.002254	216.0	0.5168	-2.9337
F-	0.001898	36.00	0.8463	-2.7942
NO3-	0.001250	77.39	0.8429	-2.9773
UO2(CO3)3	0.0009160	411.6	0.0707	-4.1884
OH-	0.0006720	11.41	0.8463	-3.2451
HCO3-	0.0006700	40.82	0.8497	-3.2447
Cr04	0.0002720	31.50	0.5168	-3.8521
Fe(OH)4-	0.0001990	24.62	0.8497	-3.7718
NaHPO4-	0.0001622	19.26	0.8497	-3.8608
02(aq)	0.0001588	5.075	1.0000	-3.7990
PO4	0.0001384	13.12	0.2257	-4.5055
NaCO3-	8.215e-005	6.808	0.8497	-4.1561
CaPO4-	6.709e-005	9.047	0.8497	-4.2441
UO2(OH)3-	6.681e-005	21.42	0.8497	-4.2459
Al02-	5.917e-005	3.485	0.8497	-4.2986
SO4	3.689e-005	3.538	0.5168	-4.7198
Cl-	2.864e-005	1.014	0.8429	-4.6172
MgPO4-	2.740e-005	3.263	0.8497	-4.6330
MnO4-	2.050e-005	2.434	0.8463	-4.7608
Ni(OH)2(aq)	1.494e-005	1.383	1.0000	-4.8256
MnO4	1.280e-005	1.521	0.5168	-5.1793
Fe(OH)3(aq)	1.197e-005	1.278	1.0000	-4.9218
NaHCO3(aq)	1.154e-005	0.9684	1.0000	-4.9376
Ni(OH)3-	1.000e-005	1.096	0.8497	-5.0706
Pb(OH)2(aq)	8.554e-006	2.060	1.0000	-5.0678
Pb(OH)3-	5.727e-006	1.477	0.8497	-5.3128
Pb(CO3)2	3.648e-006	1.192	0.5168	-5.7246
NaF(aq)	2.297e-006	0.09630	1.0000	-5.6388
NaSO4-	2.108e-006	0.2506	0.8497	-5.7468
CaCO3(aq)	2.019e-006	0.2017	1.0000	-5.6950

PbCO3(aq)	1.901e-006	0.5071	1.0000	-5.7211
UO2(CO3)2	1.890e-006	0.7360	0.5168	-6.0102
Sr++	1.692e-006	0.1480	0.5322	-6.0455
NaOH(aq)	1.283e-006	0.05123	1.0000	-5.8918
Ca++	1.158e-006	0.04634	0.5467	-6.1986
(UO2)2CO3(OH)3-	1.135e-006	0.7377	0.8497	-6.0159
SrCO3(aq)	9.915e-007	0.1462	1.0000	-6.0037
Ni++	8.451e-007	0.04952	0.5467	-6.3354
UO2(OH)2(aq)	8.152e-007	0.2475	1.0000	-6.0887
PbOH+	4.447e-007	0.09954	0.8497	-6.4227
CaHPO4(aq)	4.052e-007	0.05505	1.0000	-6.3923
H2PO4-	3.912e-007	0.03788	0.8497	-6.4783
Mg++	3.351e-007	0.008133	0.5732	-6.7165
MgCO3(aq)	2.747e-007	0.02313	1.0000	-6.5611
MgHPO4(aq)	1.819e-007	0.02184	1.0000	-6.7402
NaAlO2(aq)	1.291e-007	0.01057	1.0000	-6.8890
SrHPO4(aq)	1.204e-007	0.02208	1.0000	-6.9192
UO2(OH)4	9.626e-008	0.03249	0.5168	-7.3032
NaCl(aq)	5.738e-008	0.003348	1.0000	-7.2412
UO2PO4-	4.928e-008	0.01796	0.8497	-7.3781
(UO2)3(OH)7-	2.803e-008	0.02600	0.8497	-7.6232
PbP207	2.265e-008	0.008622	0.5168	-7.9315
CO2(aq)	2.239e-008	0.0009838	1.0000	-7.6500
(only species >	le-8 molal liste	ed)		

mineral saturation	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Fluorapatite Hematite Pyromorphite-OH Pb40(PO4)2 Bixbyite Pyrolusite Hausmannite Ferrite-Ca Ferrite-Mg Mn02(gamma) Parsonsite Pb3(PO4)2 Goethite Hydroxylapatite Hydrocerussite Manganite Plattnerite Minium	53.1799s/sat 46.1655s/sat 19.5334s/sat 19.5334s/sat 19.338s/sat 14.6558s/sat 14.0478s/sat 13.0760s/sat 11.7947s/sat 9.9724s/sat 9.0714s/sat 8.3814s/sat 7.9361s/sat 7.8848s/sat 7.5536s/sat 7.1942s/sat 7.1740s/sat 6.5437s/sat 6.2806s/sat 6.2300s/sat 4.6681s/sat 3.9088s/sat 3.7289s/sat	Boehmite Pb4SO7 Gibbsite Pb4C12(OH)6 Ice Dolomite-ord Dolomite Calcite Schoepite U03:2H2O Crocoite Litharge Aragonite U02(OH)2(beta) Becquerelite Pb3SO6 Schoepite-dehy(. U03:.9H2O(alpha) Massicot Schoepite-dehy(. Schoepite-dehy(1 Ca-Autunite	0.2705s/sat 0.1343s/sat 0.0787s/sat 0.0758s/sat 0.0758s/sat -0.1387 -0.4180 -0.4180 -0.5420 -0.6074 -0.6074 -0.6120 -0.6164 -0.6864 -0.7198 -0.7198 -0.7508 -0.7908 -0.7908 -0.7908 -0.7908 -0.8711 -0.8772 -1.3523
Na2U2O7(c) CaUO4	3.6660s/sat 3.5853s/sat	Monohydrocalcite Magnesite	-1.3757 -1.5048
PbHPO4	3.3161s/sat	Brucite	-1.5145
Ni3(PO4)2	3.2678s/sat	Dawsonite	-1.6035
Magnetite	3.2220s/sat	Lanarkite	-1.7059
Bunsenite	2.6927s/sat 2.4161s/sat	Fluorite	-1.7500 -1.8377
Ni(OH)2	2.41018/Sat	Mn(OH)3	-1.03//

Strontianite	1.7735s/sat	MnHPO4	-1.9524
Fe(OH)3(ppd)	1.4226s/sat	Dolomite-dis	-1.9624
Whitlockite	1.2617s/sat	Schoepite-dehy(.	-1.9804
Cerussite	1.2368s/sat	NiCO3	-2.3419
Na2U2O7(am)	1.1577s/sat	Schoepite-dehy(.	-2.4984
Diaspore	0.6744s/sat	Corundum	-2.6428
SrUO4(alpha)	0.5154s/sat	SrHPO4	-2.7376
PbCO3.PbO	0.3790s/sat	Sellaite	-2.9206
(only minerals	with log O/K >	-3 listed)	

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) HF(g) NO2(g) HC1(g) N2(g) NO(g) C12(g) H2(g) CO(g) U02F2(g) Pb(g) SO2(g) U03(g) NA(g) NA(g) V0F4(g) U02C12(g) F2(g) UF5(g) UF5(g) UF4(g) UC14(g) UC15(g) CH4(g) CC12(g)	0.1257 0.02598 6.590e-007 2.204e-015 7.164e-022 2.125e-022 3.091e-023 1.354e-027 2.321e-036 7.905e-042 1.627e-051 2.951e-058 2.055e-062 8.931e-063 1.896e-067 9.420e-071 9.744e-072 5.811e-075 3.376e-075 1.960e-085 1.142e-089 5.093e-096 2.520e-097 3.332e-120 2.714e-126 2.035e-136 2.549e-146 6.188e-147 2.053e-148	-0.901 -1.585 -6.181 -14.657 -21.145 -21.673 -22.510 -26.868 -35.634 -41.102 -50.789 -57.530 -61.687 -62.049 -66.722 -70.026 -71.011 -74.236 -74.472 -84.708 -88.942 -95.293 -96.599 -119.477 -125.566 -135.691 -145.594 -146.208 -147.688
Mg(g)	2.714e-126	-125.566
UC14(g)	2.035e-136	-135.691
UF3(g)	2.549e-146	-145.594
UC15(g)	6.188e-147	-146.208
U2Cl8(g)	1.021e-261	-260.991
U2Cl10(g)	7.642e-267	-266.117

U(g) 3.805e-289 -288.420

Original basis		In flu	uid	Son	cbed	Kd
		moles			mg/kg	L/kg
Al+++	5.93e-005	5.93e-005	1.60			
Ca++	7.07e-005					
C1-	2.87e-005	2.87e-005	1.02			
CrO4	0.000272	0.000272	31.5			
F-	0.00190	0.00190	36.0			
Fe++	0.000211	0.000211	11.8			
H+	-0.00914	-0.00914	-9.20			
н20	55.5	55.5	9.99e+005			
HCO3-	0.000211 -0.00914 55.5 0.00639	0.00639	389.			
HPO4	0.00265	0.00265	254.			
Mg++	2.82e-005	2.82e-005	0.684			
Mn++		3.33e-005				
NH3(aq)		0.00125				
Na+	0.0170	0.0170	390.			
Ni++	2.58e-005	2.58e-005	1.51			
02(aq)	0.00275	0.00275	87.9			
Pb++	2.58e-005 0.00275 2.03e-005	0.00275 2.03e-005	4.20			
SO4	3.90e-005	3.90e-005	3.74			
Sr++		2.82e-006	0.247			
UO2++	0.000988	0.000988	266.			
	11					
Elemental compo	sition	Ιı	n fluid		Sorbed	
Elemental compo	total moles	s moles	mg/	kg	Sorbed moles	
	total moles	s moles	mg/: 	kg 		
Aluminum	total moles 5.930e-009	moles 5 5.930e-0	mg/: 005	kg 1.598		
Aluminum Calcium	total moles 5.930e-009 7.070e-009	moles 5.930e-0 7.070e-0	mg/: 005 005	kg 1.598 2.829		
Aluminum Calcium Carbon	total moles 5.930e-009 7.070e-009 0.006393	moles 5.930e-0 7.070e-0 0.0063	mg/i 005 005 391	kg 1.598 2.829		
Aluminum Calcium	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.0002	mg/: 005 005 391 005 720	kg 1.598 2.829 76.65		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.0002720 0.001900	moles 5.930e-0 5.7.070e-0 0.0063 5.2.870e-0 0.00023	mg/ 005 005 391 005 720	kg 1.598 2.829 76.65 1.016		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.0002720 0.001900	moles 5.930e-0 5.7.070e-0 0.0063 5.2.870e-0 0.00023	mg/ 005 005 391 005 720	kg 1.598 2.829 76.65 1.016 14.12 36.04		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.0002720 0.001900 111.0	moles 5.930e-0 5.7.070e-0 0.0063 2.870e-0 0.00023 0.0019	mg/: 005 005 391 005 720 900 1.0 1.117	kg 1.598 2.829 76.65 1.016 14.12 36.04 e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.0002720 0.001900 111.00 0.0002110 2.030e-009	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.00023 0.0019 0.00023 0.00023 0.00023 0.00023	mg// 005 005 391 005 720 900 1.0 1.117 110	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.00023 0.0019 113 0.00023 2.030e-0 2.820e-0	mg// 005 005 391 005 720 900 1.0 1.117 110 005	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.00023 0.0019 113 0.00023 2.030e-0 2.820e-0	mg// 005 005 391 005 720 900 1.0 1.117 110 005	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	total moles 5.930e-009 7.070e-009 0.00639 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009 3.330e-009	moles 5.930e-0 7.070e-0 0.006 2.870e-0 0.0002 0.0019 0.0002 2.030e-0 2.820e-0 3.330e-0	mg//	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	total moles 5.930e-009 7.070e-009 0.00639 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009 3.330e-009	moles 5.930e-0 7.070e-0 0.006: 2.870e-0 0.0002: 0.0019 0.0002: 2.030e-0 2.820e-0 3.330e-0 2.580e-0	mg/ 005 005 391 005 720 900 1.0 1.117 110 005 005 005 005	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.0012720 0.001900 111.0 0.0002110 2.030e-009 2.820e-009 3.330e-009 0.001250 55.59	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.0002 0.0019 0.0002 2.820e-0 3.330e-0 2.580e-0 0.0013	mg//	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009 3.330e-009 0.001250 55.59 0.002650	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.00023 0.0013 0.00023 2.030e-0 2.820e-0 3.330e-0 2.580e-0 0.0013	mg//	kg 1.598 2.829 76.65 1.016 14.12 36.04 e+005 11.77 4.200 .6844 1.827 1.512 17.48 e+005 81.96		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009 3.330e-009 2.580e-009 0.001250 55.59 0.002650 0.01700	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.00023 0.0013 0.00023 2.030e-0 2.820e-0 3.330e-0 2.580e-0 0.0013 55 0.0026 0.0013	mg//	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009 3.330e-009 2.580e-009 0.001250 55.59 0.002650 0.01700 2.820e-006	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.00023 0.0019 113 0.00023 2.030e-0 2.820e-0 3.330e-0 2.580e-0 0.0012 5.00023 0.0013 5.00023	mg//	kg 1.598 2.829 76.65 1.016 14.12 36.04 e+005 11.77 4.200 .6844 1.827 1.512 17.48 e+005 81.96 390.2 .2467		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles 5.930e-009 7.070e-009 0.006393 2.870e-009 0.001900 111.0 0.0002110 2.030e-009 2.820e-009 3.330e-009 2.580e-009 0.001250 55.59 0.002650 0.01700	moles 5.930e-0 7.070e-0 0.0063 2.870e-0 0.00023 0.0013 113 0.00023 2.030e-0 2.820e-0 3.330e-0 0.0013 55 0.0020 0.013 55 0.0020 3.900e-0	mg//	kg 		

Sample 19961 water leach, Stage 2.

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.004049	93.04	0.9063	-2.4354
HPO4	0.001260	120.9	0.6728	-3.0718
CO3	0.001206	72.35	0.6765	-3.0883
OH-	0.0007911	13.45	0.9050	-3.1451
HCO3-	0.0002712	16.54	0.9063	-3.6095
UO2(OH)3-	0.0002336	74.96	0.9063	-3.6743
02(aq)	0.0002253	7.205	1.0000	-3.6473
Cl-	0.0001109	3.931	0.9037	-3.9989
UO2(CO3)3	9.512e-005	42.79	0.2044	-4.7112
PO4	6.984e-005	6.630	0.4096	-4.5436
F-	6.888e-005	1.308	0.9050	-4.2053
Fe(OH)4-	5.643e-005	6.986	0.9063	-4.2913
CrO4	5.330e-005	6.179	0.6728	-4.4454
CaPO4-	3.220e-005	4.347	0.9063	-4.5349
NaHPO4-	2.855e-005	3.395	0.9063	-4.5872
NO3-	1.720e-005	1.066	0.9037	-4.8084
A102-	1.329e-005	0.7836	0.9063	-4.9192
NaCO3-	1.080e-005	0.8960	0.9063	-5.0093
MgPO4-	8.997e-006	1.073	0.9063	-5.0886
MnO4-	5.377e-006	0.6392	0.9050	-5.3128
SO4	5.284e-006	0.5074	0.6728	-5.4491
(UO2)2CO3(OH)3-	4.031e-006	2.623	0.9063	-5.4373
Ni(OH)2(aq)	3.849e-006	0.3567	1.0000	-5.4146
Pb(OH)2(aq)	3.366e-006	0.8115	1.0000	-5.4729
MnO4	3.183e-006	0.3784	0.6728	-5.6693
Ni(OH)3-	3.042e-006	0.3335	0.9063	-5.5596
Fe(OH)3(aq)	2.876e-006	0.3072	1.0000	-5.5413
Pb(OH)3-	2.660e-006	0.6864	0.9063	-5.6179
UO2(OH)2(aq)	2.415e-006	0.7339	1.0000	-5.6171
NaHCO3(aq)	1.286e-006	0.1080	1.0000	-5.8908
(UO2)3(OH)7-	8.601e-007	0.7987	0.9063	-6.1082

UO2(CO3)2	8.015e-007	0.3125	0.6728	-6.2682
Sr++	6.664e-007	0.05836	0.6801	-6.3437
CaCO3(aq)	6.130e-007	0.06133	1.0000	-6.2125
Ca++	5.149e-007	0.02063	0.6870	-6.4513
NaOH(aq)	4.167e-007	0.01666	1.0000	-6.3802
UO2(OH)4	3.471e-007	0.1173	0.6728	-6.6316
SrCO3(aq)	2.712e-007	0.04002	1.0000	-6.5667
PbCO3(aq)	2.564e-007	0.06849	1.0000	-6.5910
H2PO4-	2.120e-007	0.02055	0.9063	-6.7164
Pb(CO3)2	2.055e-007	0.06720	0.6728	-6.8593
CaHPO4(aq)	1.648e-007	0.02241	1.0000	-6.7831
PbOH+	1.303e-007	0.02920	0.9063	-6.9278
Ni++	1.093e-007	0.006411	0.6870	-7.1244
Mg++	1.049e-007	0.002548	0.7000	-7.1341
NaSO4-	9.511e-008	0.01132	0.9063	-7.0645
UO2PO4-	7.913e-008	0.02887	0.9063	-7.1444
NaCl(aq)	6.148e-008	0.003591	1.0000	-7.2113
MgCO3(aq)	5.708e-008	0.004811	1.0000	-7.2435
MgHPO4(aq)	5.060e-008	0.006083	1.0000	-7.2958
SrHPO4(aq)	4.411e-008	0.008095	1.0000	-7.3554
NaF(aq)	2.300e-008	0.0009652	1.0000	-7.6383
(only species	> 1e-8 molal liste	·4.)		

	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Hematite Fluorapatite Pyromorphite-OH Pb40(PO4)2 Bixbyite Pyrolusite MnO2(gamma) Ferrite-Ca Ferrite-Mg Parsonsite Hausmannite Goethite Pb3(PO4)2 Hydroxylapatite Hydrocerussite CaUO4 Manganite Na2U2O7(c) Plattnerite Minium PbHPO4 Bunsenite Becquerelite	log Q/K	Fe(OH)3(ppd) Whitlockite Cerussite Diaspore U03:2H2O Schoepite Ice U02(OH)2(beta) U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Schoepite-dehy(1 Boehmite Pb4Cl2(OH)6 Gibbsite PbCO3.PbO Litharge Calcite Ca-Autunite Massicot Aragonite Schoepite-dehy(. Dolomite-ord Dolomite Brucite Crocoite Monohydrocalcite	log Q/K
Ni(OH)2 Magnetite	1.8271s/sat 1.3257s/sat	Schoepite-dehy(. Magnesite	-2.0268 -2.1872
Strontianite Na2U2O7(am)	1.2105s/sat 1.1242s/sat	Pb4SO7 Mn(OH)3	-2.4153 -2.6415

SrUO4(alpha) 0.8888s/sat Pb3SO6 -2.8953 Ni3(PO4)2 0.8246s/sat

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.			
02(q)	0.1783	-0.749			
H2O(g)	0.02598	-1.585			
CO2(g)	2.260e-007	-6.646			
HF(g)	6.794e-017	-16.168			
HCl(g)	7.008e-022	-21.154			
NO2(g)	7.693e-024	-23.114			
N2(g)	1.772e-027	-26.752			
NO(g)	1.221e-029	-28.913			
Cl2(g)	3.008e-035	-34.522			
H2(g)	6.638e-042	-41.178			
CO(g)	4.685e-052	-51.329			
UO2F2(g)	8.308e-061	-60.080			
Pb(g)	6.791e-063	-62.168			
SO2(g)	8.826e-064	-63.054			
UO3(g)	5.617e-067	-66.250			
Na(g)	2.900e-072	-71.538			
NH3(g)	5.488e-073	-72.261			
UO2Cl2(g)	1.088e-073	-72.963			
UOF4(g)	1.555e-080	-79.808			
F2(g)	2.219e-088	-87.654			
UF5(g)	8.630e-097	-96.064			
$\mathtt{UF4}(\mathtt{g})$	5.662e-103	-102.247			
UF6(g)	1.295e-104	-103.888			
UO2(g)	8.288e-120	-119.082			
Mg(g)	1.381e-126	-125.860			
UCl4(g)	5.994e-134	-133.222			
UC15(g)	6.561e-144	-143.183			
UCl6(g)	1.334e-148	-147.875			
Ca(g)	9.875e-149	-148.005			
CH4(g)	3.500e-149	-148.456			
UF3(g)	1.702e-150	-149.769			
H2S(g)	6.374e-151	-150.196			
UCl3(g)	2.819e-161	-160.550			
U2F10(g)	8.338e-168	-167.079			
Al(g)	1.674e-191	-190.776			
C(g)	2.603e-193	-192.585			
UF2(g)	7.550e-195	-194.122			
UO(g)	4.856e-204	-203.314			
UCl2(g)	7.175e-206	-205.144			
UF(g)	8.242e-233	-232.084			
S2(g)	2.057e-244	-243.687			
C2H4(g)	5.485e-245	-244.261			
UCl(g)	4.001e-248	-247.398			
U2C18(g)	8.855e-257	-256.053			
U2Cl10(g)	8.590e-261	-260.066			
U(g)	6.673e-289	-288.176			
		n fluid	Sork	ped	Kd
Original basis	total moles moles	s mg/kg	moles	mg/kg 	L/kg
Al+++	1.33e-005 1.33e-0	0.359			

3.35e-005	3.35e-005	1.34
0.000111	0.000111	3.93
5.33e-005	5.33e-005	6.18
6.89e-005	6.89e-005	1.31
5.93e-005	5.93e-005	3.31
-0.00344	-0.00344	-3.47
55.5	55.5	1.00e+006
0.00178	0.00178	109.
0.00140	0.00140	134.
9.21e-006	9.21e-006	0.224
8.56e-006	8.56e-006	0.470
1.72e-005	1.72e-005	0.293
0.00409	0.00409	94.0
7.00e-006	7.00e-006	0.411
0.000284	0.000284	9.10
6.62e-006	6.62e-006	1.37
5.38e-006	5.38e-006	0.517
9.84e-007	9.84e-007	0.0862
0.000343	0.000343	92.6
	0.000111 5.33e-005 6.89e-005 5.93e-005 -0.00344	0.000111 0.000111 5.33e-005 5.33e-005 6.89e-005 6.89e-005 5.93e-005 5.93e-005 -0.00344 -0.00344 55.5 55.5 0.00178 0.00178 0.00140 9.21e-006 8.56e-006 8.56e-006 1.72e-005 0.00409 7.00e-006 7.00e-006 0.000284 0.000284 6.62e-006 5.38e-006 9.84e-007 9.84e-007

Elemental comp	osition	In fl	uid	Sork	ped
			mg/kg		
Aluminum	1.330e-005				
Calcium	3.350e-005	3.350e-005	1.342		
Carbon	0.001782	0.001782	21.39		
Chlorine	0.0001110	0.0001110	3.933		
Chromium	5.330e-005	5.330e-005	2.770		
Fluorine	6.890e-005	6.890e-005	1.308		
Hydrogen	111.0	111.0	1.118e+005		
Iron	5.930e-005	5.930e-005	3.310		
Lead	6.620e-006	6.620e-006	1.371		
Magnesium	9.210e-006	9.210e-006	0.2237		
Manganese	8.560e-006	8.560e-006	0.4701		
Nickel	7.000e-006	7.000e-006	0.4106		
Nitrogen	1.720e-005	1.720e-005	0.2408		
Oxygen	55.52	55.52	8.879e+005		
Phosphorus	0.001400	0.001400	43.34		
Sodium	0.004090	0.004090	93.99		
Strontium	9.840e-007	9.840e-007	0.08618		
Sulfur	5.380e-006	5.380e-006	0.1724		
Uranium	0.0003430	0.0003430	81.61		

Sample 19961 water leach, Stage 3.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.002655	61.01	0.9224	-2.6110
CO3	0.0006844	41.06	0.7253	-3.3042
HPO4	0.0006000	57.56	0.7227	-3.3629
OH-	0.0003634	6.178	0.9215	-3.4751
HCO3-	0.0003465	21.14	0.9224	-3.4954
02(aq)	0.0002250	7.197	1.0000	-3.6478
UO2(OH)3-	0.0002070	66.45	0.9224	-3.7190
UO2(CO3)3	0.0001417	63.76	0.2723	-4.4135
Fe(OH)4-	5.338e-005	6.610	0.9224	-4.3077
CrO4	5.130e-005	5.948	0.7227	-4.4310
CaPO4-	3.261e-005	4.402	0.9224	-4.5217
F-	2.479e-005	0.4709	0.9215	-4.6411
(UO2)2CO3(OH)3-	1.916e-005	12.47	0.9224	-4.7527
PO4	1.422e-005	1.350	0.4812	-5.1647
A102-	1.239e-005	0.7307	0.9224	-4.9419
Cl-	9.996e-006	0.3543	0.9206	-5.0361
NaHPO4-	9.575e-006	1.139	0.9224	-5.0540
MgPO4-	8.739e-006	1.042	0.9224	-5.0936
NO3-	7.000e-006	0.4339	0.9206	-5.1908
MnO4-	6.740e-006	0.8014	0.9215	-5.2068
Fe(OH)3(aq)	5.920e-006	0.6324	1.0000	-5.2277
UO2(OH)2(aq)	4.658e-006	1.416	1.0000	-5.3318
NaCO3-	4.308e-006	0.3574	0.9224	-5.4008
Ni(OH)2(aq)	4.102e-006	0.3801	1.0000	-5.3871
Pb(OH)2(aq)	3.798e-006	0.9158	1.0000	-5.4204
(UO2)3(OH)7-	2.835e-006	2.634	0.9224	-5.5825
UO2(CO3)2	2.435e-006	0.9493	0.7227	-5.7546
Ca++	2.079e-006	0.08330	0.7330	-5.8170
MnO4	1.770e-006	0.2104	0.7227	-5.8932
CaCO3(aq)	1.607e-006	0.1607	1.0000	-5.7941
Ni(OH)3-	1.489e-006	0.1634	0.9224	-5.8621

Pb(OH)3-	1.379e-006	0.3560	0.9224	-5.8954
NaHCO3(aq)	1.116e-006	0.09373	1.0000	-5.9523
SO4	9.872e-007	0.09480	0.7227	-6.1467
Sr++	9.672e-007	0.08472	0.7279	-6.1524
PbCO3(aq)	8.047e-007	0.2149	1.0000	-6.0944
Ni++	4.990e-007	0.02927	0.7330	-6.4369
Mg++	4.087e-007	0.009930	0.7425	-6.5179
Pb(CO3)2	3.652e-007	0.1195	0.7227	-6.5785
CaHPO4(aq)	3.631e-007	0.04939	1.0000	-6.4399
PbOH+	3.088e-007	0.06922	0.9224	-6.5453
SrCO3(aq)	2.563e-007	0.03782	1.0000	-6.5912
H2PO4-	2.278e-007	0.02209	0.9224	-6.6775
UO2PO4-	1.640e-007	0.05982	0.9224	-6.8204
MgCO3(aq)	1.435e-007	0.01210	1.0000	-6.8431
UO2(OH)4	1.364e-007	0.04609	0.7227	-7.0063
NaOH(aq)	1.301e-007	0.005200	1.0000	-6.8858
MgHPO4(aq)	1.070e-007	0.01286	1.0000	-6.9708
SrHPO4(aq)	3.505e-008	0.006433	1.0000	-7.4553
CO2(aq)	2.135e-008	0.0009392	1.0000	-7.6707
Ca2UO2(CO3)3	1.421e-008	0.007533	1.0000	-7.8473
NaSO4-	1.251e-008	0.001489	0.9224	-7.9377
(only appaids	> 10 0 molal ligto	۸ ۵ ۱		

Milleral Sacuracion	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Hematite Fluorapatite Pyromorphite-OH Pb40(PO4)2 Bixbyite Pyrolusite Parsonsite Ferrite-Ca Hausmannite MnO2(gamma) Ferrite-Mg Goethite Pb3(PO4)2 Hydroxylapatite Hydrocerussite Manganite CaUO4 Becquerelite Plattnerite Na2U2O7(c) PbHPO4 Minium Magnetite	log Q/K	Na2U2O7(am) Diaspore UO3:2H2O Schoepite Ca-Autunite UO2(OH)2(beta) Schoepite-dehy(. UO3:.9H2O(alpha) Schoepite-dehy(1 Ice Boehmite Gibbsite PbCO3.PbO Calcite Aragonite Dolomite-ord Dolomite Litharge Crocoite Massicot Schoepite-dehy(. Monohydrocalcite Pb4C12(OH)6 Schoepite-dehy(. Brucite Magnesite	0.6835s/sat 0.2611s/sat 0.1495s/sat 0.1495s/sat 0.1447s/sat 0.0371s/sat -0.0339 -0.0339 -0.1142 -0.1203 -0.1387 -0.1428 -0.3346 -0.3469 -0.6411 -0.7855 -0.7991 -0.7991 -0.7991 -0.9690 -1.0835 -1.1512 -1.2235 -1.4748 -1.7124 -1.7415 -1.7759 -1.7868
		Brucite	

Fe(OH)3(ppd) 1.1167s/sat UO3(gamma) -2.7245 Whitlockite 1.0880s/sat Pb3S06 -2.7755 NiCO3 Cerussite 0.8635s/sat -2.9240 SrUO4(alpha)

0.7054s/sat

(only minerals with log Q/K > -3 listed)

(only minerals wi		· -3 listed)			
Gases	fugacity	log fug.			
02(g)	0.1780	-0.750			
H2O(g)	0.02598	-1.585			
CO2(g)	6.284e-007	-6.202			
HF(g)	5.324e-017	-16.274			
HCl(g)	1.375e-022	-21.862			
NO2(g)	6.821e-024	-23.166			
N2(g)	1.397e-027	-26.855			
NO(g)	1.084e-029	-28.965			
Cl2(g)	1.158e-036	-35.936			
H2(g)	6.642e-042				
CO(g)	1.304e-051	-50.885			
UO2F2(g)	9.840e-061				
Pb(g)	7.668e-063				
S02(g)	8.099e-064				
UO3(g)	1.083e-066				
Na(g)	9.056e-073				
NH3(g)	4.877e-073				
UO2C12(g)	8.085e-075				
UOF4(g)	1.131e-080				
F2(g)	1.362e-088				
UF5(g)	4.921e-097				
UF4(g)	4.121e-103				
UF6(g)	5.786e-105				
UO2(g)	1.600e-119				
Mg(g)	1.249e-126				
UCl4(g)	1.716e-136				
UC15(g)	3.685e-147				
CH4(g)	9.757e-149				
Ca(g)	9.313e-149				
UF3(g)	1.581e-150				
H2S(g)	5.861e-151				
UC16(g)	1.470e-152				
UC13(g)	4.113e-163				
U2F10(g)	2.711e-168				
Al(g)	3.400e-191				
C(g)	7.247e-193				
UF2(g)	8.954e-195				
UO(g)	9.378e-204				
UCl2(g)	5.337e-207				
UF(g)	1.248e-232				
C2H4(g)	4.258e-244				
S2(g)	1.737e-244				
UCl(g)	1.517e-248				
U2Cl8(g)	7.258e-262				
U2Cl10(g)	2.710e-267				
U(g)	1.289e-288				
S (3 /	1.2076 200	, 207.070			
		In fluid	Son	rbed	Kd
Original basis tota	al moles mo	oles mg/kg		mg/kg	L/kg

Al+++	1.24e-005	1.24e-005	0.334		
Ca++		3.67e-005	1.47		
C1-	1.00e-005	1.00e-005	0.354		
Cr04	5.13e-005	5.13e-005	5.95		
F-	2.48e-005	2.48e-005	0.471		
Fe++	5.93e-005	5.93e-005	3.31		
H+	-0.00255	-0.00255	-2.57		
H2O	55.5	55.5 1.00	0e+006		
HCO3-	0.00149	0.00149	90.8		
HPO4	0.000666	0.000666	63.9		
Mq++	9.40e-006	9.40e-006	0.228		
Mn++	8.51e-006	8.51e-006	0.467		
NH3(aq)	7.00e-006	7.00e-006	0.119		
Na+		0.00267	61.4		
Ni++	6.09e-006	6.09e-006	0.357		
02(aq)		0.000264	8.45		
Pb++	6.66e-006	6.66e-006	1.38		
SO4			0.0960		
Sr++		1.26e-006	0.110		
UO2++		0.000403	109.		
Elemental compo	osition	In fl	luid	Sorbed	
Elemental compo	osition total moles		luid mg/kg	Sorbed moles mg/kg	
	total moles	moles	mg/kg 		
	total moles 1.240e-005	moles 1.240e-005	mg/kg 0.3345		
Aluminum Calcium	total moles 1.240e-005 3.670e-005	moles 1.240e-005 3.670e-005	mg/kg 0.3345 1.470		
Aluminum Calcium Carbon	total moles 1.240e-005 3.670e-005 0.001489	moles 	mg/kg 0.3345 1.470 17.88		
Aluminum Calcium Carbon Chlorine	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005	moles 1.240e-005 3.670e-005 0.001489 1.000e-005	mg/kg 0.3345 1.470 17.88 0.3544		
Aluminum Calcium Carbon Chlorine Chromium	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005	mg/kg 0.3345 1.470 17.88 0.3544 2.666		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-006 6.660e-006	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006 6.090e-006	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006 6.090e-006	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674 0.3573		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006 6.090e-006 7.000e-006	moles	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674 0.3573 0.09801		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006 7.000e-006 55.52	moles	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674 0.3573 0.09801 8.879e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006 7.000e-006 55.52 0.0006660	moles	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674 0.3573 0.09801 8.879e+005 20.62		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-006 9.400e-006 8.510e-006 6.090e-006 7.000e-006 55.52 0.0006660 0.002670	moles	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674 0.3573 0.09801 8.879e+005 20.62 61.36		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-006 9.400e-006 8.510e-006 6.090e-006 7.000e-006 55.52 0.0006660 0.002670 1.260e-006	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006 7.000e-006 7.000e-006 55.52 0.0006660 0.002670 1.260e-006	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674 0.3573 0.09801 8.879e+005 20.62 61.36 0.1104		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-006 9.400e-006 8.510e-006 6.090e-006 7.000e-006 55.52 0.0006660 0.002670	moles 1.240e-005 3.670e-005 0.001489 1.000e-005 5.130e-005 2.480e-005 111.0 5.930e-005 6.660e-006 9.400e-006 8.510e-006 7.000e-006 7.000e-006 55.52 0.0006660 0.002670 1.260e-006	mg/kg 0.3345 1.470 17.88 0.3544 2.666 0.4710 1.119e+005 3.311 1.379 0.2284 0.4674 0.3573 0.09801 8.879e+005 20.62 61.36		

Sample 19961 water leach, Stage 4.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 10.480
 log fO2 = -0.712

 Eh = 0.5986 volts
 pe = 10.1185

 Ionic strength
 = 0.004043

 Activity of water
 = 1.000000

 Solvent mass
 = 0.999991 kg

 Solution mass
 = 1.000201 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000010 molal

 Dissolved solids
 = 210 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 124.03 mg/kg as CaCO3

 Step # Xi = 0.0000

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001293	29.73	0.9336	-2.9181
CO3	0.0008491	50.94	0.7608	-3.1897
HCO3-	0.0004885	29.80	0.9336	-3.3409
HPO4	0.0003594	34.49	0.7588	-3.5643
OH-	0.0003274	5.566	0.9330	-3.5151
02(aq)	0.0002455	7.854	1.0000	-3.6100
UO2(CO3)3	5.653e-005	25.44	0.3312	-4.7276
UO2(OH)3-	3.415e-005	10.96	0.9336	-4.4964
CaPO4-	1.320e-005	1.783	0.9336	-4.9091
Cl-	9.998e-006	0.3544	0.9323	-5.0305
Fe(OH)4-	9.973e-006	1.235	0.9336	-5.0310
Cr04	9.759e-006	1.132	0.7588	-5.1304
A102-	7.918e-006	0.4669	0.9336	-5.1312
F-	7.809e-006	0.1483	0.9330	-5.1375
PO4	7.308e-006	0.6939	0.5372	-5.4061
NO3-	7.000e-006	0.4339	0.9323	-5.1853
SO4	4.450e-006	0.4274	0.7588	-5.4715
NaHPO4-	2.934e-006	0.3490	0.9336	-5.5624
MgPO4-	2.786e-006	0.3322	0.9336	-5.5849
NaCO3-	2.732e-006	0.2267	0.9336	-5.5934
CaCO3(aq)	1.494e-006	0.1495	1.0000	-5.8257
Ca++	1.420e-006	0.05691	0.7667	-5.9630
Fe(OH)3(aq)	1.227e-006	0.1311	1.0000	-5.9110
MnO4-	1.166e-006	0.1387	0.9330	-5.9633
(UO2)2CO3(OH)3-	9.052e-007	0.5892	0.9336	-6.0731
UO2(CO3)2	8.643e-007	0.3370	0.7588	-6.1832
UO2(OH)2(aq)	8.526e-007	0.2592	1.0000	-6.0692
NaHCO3(aq)	7.854e-007	0.06596	1.0000	-6.1049
Pb(OH)2(aq)	7.808e-007	0.1883	1.0000	-6.1074
Ni(OH)2(aq)	6.073e-007	0.05629	1.0000	-6.2166
MnO4	2.635e-007	0.03133	0.7588	-6.6991

Sr++	2.595e-007	0.02274	0.7628	-6.7034
PbCO3(aq)	2.588e-007	0.06915	1.0000	-6.5870
Pb(OH)3-	2.555e-007	0.06596	0.9336	-6.6224
Mg++	2.205e-007	0.005358	0.7740	-6.7678
Ni(OH)3-	1.987e-007	0.02180	0.9336	-6.7316
CaHPO4(aq)	1.632e-007	0.02220	1.0000	-6.7873
H2PO4-	1.552e-007	0.01505	0.9336	-6.8389
Pb(CO3)2	1.456e-007	0.04763	0.7588	-6.9567
MgCO3(aq)	1.050e-007	0.008854	1.0000	-6.9787
SrCO3(aq)	9.379e-008	0.01384	1.0000	-7.0278
Ni++	8.492e-008	0.004983	0.7667	-7.1864
PbOH+	6.879e-008	0.01542	0.9336	-7.1923
NaOH(aq)	5.849e-008	0.002339	1.0000	-7.2329
MgHPO4(aq)	3.783e-008	0.004550	1.0000	-7.4221
CO2(aq)	3.340e-008	0.001470	1.0000	-7.4762
NaSO4-	2.886e-008	0.003435	0.9336	-7.5695
UO2PO4-	2.045e-008	0.007463	0.9336	-7.7191
UO2(OH)4	1.978e-008	0.006684	0.7588	-7.8237
(UO2)3(OH)7-	1.567e-008	0.01456	0.9336	-7.8347
(only species >	le-8 molal lister	d)		

log Q/K

(only species > 1e-8 molal listed)

Mineral saturation states log Q/K

Birnessite	44.3966s/sat	Diaspore	0.1118s/sat
Todorokite	38.4565s/sat	Ice	-0.1387
Trevorite	16.1640s/sat	Boehmite	-0.2921
Pyromorphite	13.7258s/sat	Gibbsite	-0.4839
Hematite	12.0693s/sat	Schoepite	-0.5879
Fluorapatite	10.7884s/sat	UO3:2H2O	-0.5879
Pyrolusite	7.9971s/sat	SrUO4(alpha)	-0.6630
Bixbyite	7.7293s/sat	Calcite	-0.6727
Pyromorphite-OH	7.6062s/sat	UO2(OH)2(beta)	-0.7003
Pb40(PO4)2	7.4552s/sat	UO3:.9H2O(alpha)	-0.7713
MnO2(gamma)	6.4793s/sat	Schoepite-dehy(.	-0.7713
Ferrite-Ca	5.6532s/sat	Aragonite	-0.8171
Goethite	5.5545s/sat	Schoepite-dehy(.	-0.8516
Ferrite-Mg	5.3150s/sat	Schoepite-dehy(1	-0.8577
Hausmannite	4.9695s/sat	Becquerelite	-0.9308
Parsonsite	4.9534s/sat	Dolomite-ord	-0.9662
Hydroxylapatite	4.4865s/sat	Dolomite	-0.9662
Pb3(PO4)2	3.8741s/sat	Ni3(PO4)2	-1.0863
Manganite	3.5465s/sat	Na2U2O7(am)	-1.4854
Hydrocerussite	3.4587s/sat	Monohydrocalcite	-1.5064
CaUO4	3.3003s/sat	PbCO3.PbO	-1.5265
Plattnerite	2.9637s/sat	Litharge	-1.6560
PbHPO4	2.1860s/sat	Ca-Autunite	-1.7989
Bunsenite	1.3017s/sat	Massicot	-1.8382
Ni(OH)2	1.0251s/sat	Magnesite	-1.9224
Na2U2O7(c)	1.0229s/sat	Schoepite-dehy(.	-1.9609
Strontianite	0.7494s/sat	Brucite	-2.1058
Minium	0.7046s/sat	Crocoite	-2.3900
Fe(OH)3(ppd)	0.4334s/sat	Schoepite-dehy(.	-2.4789
Cerussite	0.3709s/sat	Dolomite-dis	-2.5106
Magnetite	0.2071s/sat	Mn(OH)3	-2.9593
Whitlockite	0.1672s/sat		
(only minerals	with log $Q/K >$	-3 listed)	

Gases	fugacity	log fug.		
02(g)	0.1942	-0.712		
H2O(g)	0.02598	-1.585		
CO2(g)	9.832e-007	-6.007		
HF(g)	1.862e-017	-16.730		
HCl(g)	1.528e-022	-21.816		
NO2(g)	7.411e-024	-23.130		
N2(g)	1.385e-027	-26.859		
NO(g)	1.127e-029	-28.948		
Cl2(g)	1.491e-036	-35.826		
H2(g)	6.359e-042	-41.197		
CO(g)	1.953e-051	-50.709		
UO2F2(g)	2.202e-062	-61.657		
SO2(g)	4.413e-063	-62.355		
Pb(g)	1.509e-063	-62.821		
UO3(g)	1.983e-067	-66.703		
NH3(g)	4.549e-073	-72.342		
Na(g)	3.985e-073	-72.400		
UO2Cl2(g)	1.825e-075	-74.739		
UOF4(g)	3.093e-083	-82.510		
F2(g)	1.739e-089	-88.760		
UF5(g)	4.605e-100	-99.337		
UF4(g)	1.079e-105	-104.967		
UF6(g)	1.935e-108	-107.713		
UO2(g)	2.803e-120	-119.552		
Mg(g)	5.594e-127	-126.252		
UC14(g)	4.575e-137	-136.340		
UC15(g)	1.115e-147	-146.953		
CH4(g)	1.282e-148	-147.892		
Ca(g)	5.298e-149	-148.276		
H2S(g)	2.802e-150	-149.553		
UF3(g)	1.159e-152	-151.936		
UCl6(g)	5.049e-153	-152.297		
UC13(g)	9.661e-164	-163.015		
U2F10(g)	2.374e-174	-173.625		
Al(g)	2.258e-191	-190.646		
C(g)	1.039e-192	-191.983		
UF2(g)	1.836e-196	-195.736		
UO(g)	1.573e-204	-203.803		
UCl2(g)	1.104e-207	-206.957		
UF(g)	7.161e-234	-233.145		
S2(g)	4.330e-243	-242.363		
C2H4(g)	8.025e-244	-243.096		
UCl(g)	2.765e-249	-248.558		
U2Cl8(g)	5.159e-263	-262.287		
U2Cl10(g)	2.482e-268	-267.605		
U(g)	2.071e-289	-288.684		
				_
- 1 1		n fluid	Sorbed	Kd
Original basis	total moles moles	s mg/kg	moles mg/kg	L/kg
71	7 020 006 7 02-	006 0 014		
Al+++	7.92e-006 7.92e-0			
Ca++ Cl-	1.63e-005 1.63e-0			
C1- Cr04	1.00e-005 1.00e-0 9.76e-006 9.76e-0			
CIU4	9./0e-000 9./6e-0	006 1.13		

F-	7.81e-006	7.81e-006	0.148
Fe++	1.12e-005	1.12e-005	0.625
H+	-0.00156	-0.00156	-1.58
H2O	55.5	55.5	1.00e+006
HCO3-	0.00152	0.00152	92.5
HPO4	0.000386	0.000386	37.0
Mg++	3.15e-006	3.15e-006	0.0765
Mn++	1.43e-006	1.43e-006	0.0785
NH3(aq)	7.00e-006	7.00e-006	0.119
Na+	0.00130	0.00130	29.9
Ni++	8.91e-007	8.91e-007	0.0523
02(aq)	0.000264	0.000264	8.45
Pb++	1.51e-006	1.51e-006	0.313
SO4	4.48e-006	4.48e-006	0.430
Sr++	3.60e-007	3.60e-007	0.0315
UO2++	9.43e-005	9.43e-005	25.5

Elemental composition		In fl	uid	Sorbed	
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	7.920e-006	7.920e-006	0.2137		
Calcium	1.630e-005	1.630e-005	0.6531		
Carbon	0.001516	0.001516	18.20		
Chlorine	1.000e-005	1.000e-005	0.3545		
Chromium	9.760e-006	9.760e-006	0.5074		
Fluorine	7.810e-006	7.810e-006	0.1483		
Hydrogen	111.0	111.0	1.119e+005		
Iron	1.120e-005	1.120e-005	0.6254		
Lead	1.510e-006	1.510e-006	0.3128		
Magnesium	3.150e-006	3.150e-006	0.07655		
Manganese	1.430e-006	1.430e-006	0.07855		
Nickel	8.910e-007	8.910e-007	0.05228		
Nitrogen	7.000e-006	7.000e-006	0.09803		
Oxygen	55.52	55.52	8.880e+005		
Phosphorus	0.0003860	0.0003860	11.95		
Sodium	0.001300	0.001300	29.88		
Strontium	3.600e-007	3.600e-007	0.03154		
Sulfur	4.480e-006	4.480e-006	0.1436		
Uranium	9.430e-005	9.430e-005	22.44		

Sample 19961 water leach, Stage 5.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.0009517	21.87	0.9409	-3.0480
HCO3-	0.0009189	56.06	0.9409	-3.0632
CO3	0.0004012	24.07	0.7847	-3.5020
02(aq)	0.0002433	7.783	1.0000	-3.6139
HPO4	0.0001981	19.01	0.7830	-3.8094
UO2(CO3)3	0.0001055	47.48	0.3756	-4.4019
OH-	8.348e-005	1.420	0.9404	-4.1051
CrO4	1.320e-005	1.530	0.7830	-4.9858
Fe(OH)4-	1.113e-005	1.378	0.9409	-4.9800
UO2(OH)3-	1.053e-005	3.381	0.9409	-5.0039
CaPO4-	1.038e-005	1.401	0.9409	-5.0104
AlO2-	8.876e-006	0.5234	0.9409	-5.0783
Cl-	8.569e-006	0.3037	0.9399	-5.0940
Ca++	7.472e-006	0.2994	0.7894	-5.2293
NO3-	7.000e-006	0.4339	0.9399	-5.1818
Fe(OH)3(aq)	5.370e-006	0.5738	1.0000	-5.2700
CaCO3(aq)	3.943e-006	0.3946	1.0000	-5.4042
UO2(CO3)2	3.639e-006	1.419	0.7830	-5.5452
(UO2)2CO3(OH)3-	2.489e-006	1.620	0.9409	-5.6304
MgPO4-	2.285e-006	0.2725	0.9409	-5.6675
MnO4-	1.987e-006	0.2362	0.9404	-5.7286
NaHPO4-	1.228e-006	0.1460	0.9409	-5.9373
Mg++	1.214e-006	0.02949	0.7954	-6.0153
NaHCO3(aq)	1.104e-006	0.09272	1.0000	-5.9571
PbCO3(aq)	1.087e-006	0.2903	1.0000	-5.9639
Ni++	1.054e-006	0.06186	0.7894	-6.0798
UO2(OH)2(aq)	1.031e-006	0.3134	1.0000	-5.9867
F-	9.999e-007	0.01899	0.9404	-6.0267
PO4	9.954e-007	0.09452	0.5765	-6.2412
SO4	9.942e-007	0.09549	0.7830	-6.1088
NaCO3-	9.792e-007	0.08126	0.9409	-6.0356

Ni(OH)2(aq)	5.129e-007	0.04754	1.0000	-6.2900
CaHPO4(aq)	5.028e-007	0.06839	1.0000	-6.2986
-				
Pb(OH)2(aq)	4.445e-007	0.1072	1.0000	-6.3521
H2PO4-	3.408e-007	0.03305	0.9409	-6.4940
Sr++	3.319e-007	0.02908	0.7863	-6.5834
MgCO3(aq)	2.894e-007	0.02440	1.0000	-6.5384
Pb(CO3)2	2.886e-007	0.09442	0.7830	-6.6459
CO2(aq)	2.463e-007	0.01084	1.0000	-6.6085
Ca2UO2(CO3)3	2.187e-007	0.1159	1.0000	-6.6602
PbOH+	1.512e-007	0.03388	0.9409	-6.8470
MgHPO4(aq)	1.217e-007	0.01464	1.0000	-6.9147
MnO4	1.129e-007	0.01343	0.7830	-7.0534
CaHCO3+	6.035e-008	0.006100	0.9409	-7.2458
SrCO3(aq)	6.025e-008	0.008892	1.0000	-7.2201
UO2PO4-	5.429e-008	0.01981	0.9409	-7.2917
Ni(OH)3-	4.280e-008	0.004695	0.9409	-7.3950
Pb(OH)3-	3.710e-008	0.009577	0.9409	-7.4571
NaOH(aq)	1.115e-008	0.0004458	1.0000	-7.9528
(only species	> 10-9 molal ligto	۷.5		

Mineral saturation states log O/K

Mineral saturation	states log Q/K		log Q/K
Birnessite	51.0213s/sat	Minium	-0.0314
Todorokite	44.2535s/sat	Dolomite	-0.1045
Trevorite	17.3726s/sat	Dolomite-ord	-0.1045
Pyromorphite	15.8336s/sat	Ice	-0.1387
Hematite	13.3514s/sat	Ca-Autunite	-0.2103
Fluorapatite	11.0629s/sat	Calcite	-0.2512
Bixbyite	9.3865s/sat	Na2U2O7(c)	-0.2519
Pyromorphite-OH	9.1875s/sat	Aragonite	-0.3956
Pyrolusite	8.8247s/sat	Schoepite	-0.5054
Pb40(P04)2	8.3462s/sat	UO3:2H2O	-0.5054
Hausmannite	7.4562s/sat	UO2(OH)2(beta)	-0.6178
MnO2(gamma)	7.3069s/sat	Schoepite-dehy(.	-0.6888
Ferrite-Ca	6.4890s/sat	UO3:.9H2O(alpha)	-0.6888
Parsonsite	6.4164s/sat	Schoepite-dehy(.	-0.7691
Goethite	6.1955s/sat	Schoepite-dehy(1	-0.7752
Ferrite-Mg	6.1695s/sat	Becquerelite	-0.8821
Hydroxylapatite	5.0602s/sat	Monohydrocalcite	-1.0849
Pb3(PO4)2	5.0099s/sat	PbCO3.PbO	-1.1482
Hydrocerussite	4.4601s/sat	Crocoite	-1.3100
Manganite	4.3751s/sat	MnHPO4	-1.4473
CaUO4	2.9366s/sat	Magnesite	-1.4821
PbHPO4	2.8762s/sat	SrUO4(alpha)	-1.6405
Plattnerite	2.7170s/sat	Dolomite-dis	-1.6489
Magnetite	2.1311s/sat	Schoepite-dehy(.	-1.8784
Bunsenite	1.2283s/sat	Litharge	-1.9007
Fe(OH)3(ppd)	1.0744s/sat	Massicot	-2.0829
Cerussite	0.9940s/sat	Mn(OH)3	-2.1307
Ni(OH)2	0.9517s/sat	Schoepite-dehy(.	-2.3964
Diaspore	0.7547s/sat	Corundum	-2.4820
Whitlockite	0.6984s/sat	Brucite	-2.5333
Ni3(PO4)2	0.5633s/sat	Dawsonite	-2.5425
Strontianite	0.5571s/sat	Na2U2O7(am)	-2.7602
Boehmite	0.3508s/sat	NiCO3	-2.7648
Gibbsite	0.1590s/sat		

(only minerals with log Q/K > -3 listed)

02(g)	Gases	fugacity	log fug.		
H2O(g)	02(q)	0.1925	-0.716		
CO2(g) 7.251e-006 -5.140 HF(g) 9.347e-018 -17.029 HC1(g) 5.134e-022 -21.290 NO2(g) 2.913e-023 -22.536 N2(g) 2.913e-026 -25.662 N0(g) 4.450e-029 -28.352 C12(g) 1.677e-035 -34.775 H2(g) 6.388e-042 -41.195 CO(g) 1.447e-050 -49.840 SO2(g) 1.547e-062 -61.811 U02r2(g) 6.712e-063 -62.173 Pb(g) 6.712e-063 -62.173 Pb(g) 8.630e-044 -63.064 U03(g) 2.398e-067 -66.620 NN13(g) 1.816e-072 -71.741 Na(g) 7.612e-074 -73.119 U02c12(g) 2.494e-074 -73.603 U0F4(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF4(g) 8.331e-107 -106.079 UF4(g) 3.748e-110 -109.426 U02(g) 3.748e-110 -109.426 U02(g) 3.748e-110 -109.426 U02(g) 3.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.055 UF3(g) 1.866e-152 -161.350 UC13(g) 1.866e-153 -152.748 UC13(g) 9.952e-119 -100.000 C(g) 7.734e-192 -191.112 UF2(g) 1.520e-206 -205.817 UF(g) 1.520e-204 -203.717 UC12(g) 1.137e-248 -247.944 UC18(g) 1.240e-258 -257.907 UC118(g) 1.252e-205 0.9914	_				
HF(g) 9.347e-018 -17.029 HC1(g) 5.134e-022 -21.290 NO2(g) 2.913e-023 -22.536 N2(g) 2.178e-026 -25.662 NO(g) 4.450e-029 -28.352 C12(g) 1.677e-035 -34.775 H2(g) 6.388e-042 -41.195 CO(g) 1.447e-050 -49.840 SO2(g) 1.547e-062 -61.811 U02F2(g) 6.712e-063 -62.173 Pb(g) 8.630e-064 -63.064 U03(g) 2.398e-067 -66.620 NH3(g) 1.816e-072 -71.741 NA(g) 7.612e-074 -73.119 U02C12(g) 2.494e-074 -73.603 UDF4(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 U02(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.786e-153 -152.748 UC13(g) 1.786e-150 -149.002 UC16(g) 8.805e-150 -149.005 UC3(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U02(g) 1.786e-162 -161.350 U2F10(g) 1.522e-206 -205.817 UF(g) 4.486e-162 -161.350 U2F10(g) 1.522e-206 -205.817 UF(g) 4.487e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.266 C2H4(g) 1.210e-268 -257.907 UC18(g) 1.220e-268 -257.907 UC18(g) 1.237e-248 -247.944 UC12(g) 1.522e-206 -205.817 UF(g) 4.487e-242 -241.266 C2H4(g) 4.484e-242 -241.266 C2H4(g) 4.484e-242 -241.266 C2H4(g) 1.210e-268 -257.907 UC110(g) 1.217e-248 -247.944 UC12(g) 1.220e-258 -257.907 UC110(g) 1.237e-248 -247.944 UC110(g) 1.237e-248 -247.944 UC110(g) 1.230e-268 -257.907 UC110(g) 1.230e-268 -258.955 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 2.28e-005 2.28e-005 0.914					
HCl(g) 5.134e-022 -21.290 NO2(g) 2.913e-023 -22.536 N2(g) 2.178e-026 -25.662 NO(g) 4.450e-029 -28.352 Cl2(g) 1.677e-035 -34.775 H2(g) 6.388e-042 -41.195 CO(g) 1.447e-050 -49.840 SO2(g) 1.547e-062 -61.811 UO2F2(g) 6.712e-063 -62.173 Pb(g) 8.630e-064 -63.064 UO3(g) 2.398e-067 -66.620 NH3(g) 1.816e-072 -71.741 Na(g) 7.612e-074 -73.119 UO2C12(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF\$1(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF\$1(g) 3.748e-110 -100.749 UF\$1(g) 8.331e-107 -106.079 UF\$1(g) 3.748e-110 -109.426 UO2(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 147.016 Ca(g) 1.905e-149 -148.720 UC15(g) 8.805e-150 -149.055 UF\$1(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 UZF10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.84e-242 -241.348 UC1(g) 1.37e-248 -247.944 UC218(g) 1.29e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.88e-242 -241.348 UC1(g) 1.522e-206 -205.817 UF(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al++ 2.28e-005 2.28e-005 0.944		9.347e-018	-17.029		
N2(g) 2.913e-023 -22.536 N2(g) 2.178e-026 -25.662 N0(g) 4.450e-029 -28.352 C12(g) 1.677e-035 -34.775 H2(g) 6.388e-042 -41.195 CO(g) 1.447e-050 -49.840 SO2(g) 1.547e-062 -61.811 U02F2(g) 6.712e-063 -62.173 Pb(g) 8.630e-064 -63.064 U03(g) 2.398e-067 -66.620 NN3(g) 1.816e-072 -71.741 Na(g) 1.816e-072 -71.741 Na(g) 7.612e-074 -73.119 U02C12(g) 2.494e-074 -73.603 U074(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.311e-107 -106.079 UF6(g) 3.748e-110 -109.426 U02(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC15(g) 7.094e-135 -134.149 UC15(g) 7.094e-135 -134.149 UC15(g) 8.805e-150 -149.055 UF3(g) 9.954e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.368 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.2539e-289 -288.595 UG1)(g) 1.266e-242 -241.368 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 UC(g) 1.137e-248 -247.944 UC11(g) 1.2539e-289 -288.595		5.134e-022	-21.290		
No(g)		2.913e-023	-22.536		
C12(g) 1.677e-035 -34.775 H2(g) 6.388e-042 -41.195 C0(g) 1.447e-050 -49.840 S02(g) 1.547e-062 -61.811 U02F2(g) 6.712e-063 -62.173 Pb(g) 8.630e-064 -63.064 U03(g) 2.398e-067 -66.620 NH3(g) 1.816e-072 -71.741 Na(g) 7.612e-074 -73.119 U02C12(g) 2.494e-074 -73.119 U02C12(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 U02(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.66e-162 -161.350 UF7(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 UF7(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.348 UC1(g) 1.137e-248 -247.944 UC218(g) 1.240e-258 -257.907 UZC110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595	N2(g)	2.178e-026	-25.662		
H2(g) 6.388e-042 -41.195 CO(g) 1.447e-050 -49.840 SO2(g) 1.547e-062 -61.811 UO2F2(g) 6.712e-063 -62.173 Pb(g) 8.630e-064 -63.064 UO3(g) 2.398e-067 -66.620 NH3(g) 1.816e-072 -71.741 Na(g) 7.612e-074 -73.603 UOF4(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 UO2(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 UC16(g) 8.805e-150 -149.002 UC16(g) 8.805e-150 -149.002 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 UZF10(g) 3.550e-177 -776.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC12(g) 1.137e-248 -247.944 UC2(g) 6.710e-263 -262.173 U(g) 2.539e-288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg	NO(g)	4.450e-029	-28.352		
CO(g)	C12(g)	1.677e-035	-34.775		
SO2(g)	H2(g)	6.388e-042	-41.195		
UC12F2(g)	CO(g)	1.447e-050	-49.840		
Pb(g) 8.630e-064 -63.064 U03(g) 2.398e-067 -66.620 NH3(g) 1.816e-072 -71.741 Na(g) 7.612e-074 -73.119 U02Cl2(g) 2.494e-074 -73.603 UUF4(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 U02(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 1.786e-153 -152.748 UC13(g) 3.550e-177 -176.450 UL3(g) 3.550e-177 -176.450 UL3(g) 3.550e-177 -176.450 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.348 UC12(g) 1.137e-248 -247.944 UC2Cl4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 UC2Cl2(g) 1.240e-258 -257.907 UZC110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595	SO2(g)	1.547e-062	-61.811		
U03(g)	UO2F2(g)	6.712e-063	-62.173		
NH3(g)	Pb(g)	8.630e-064	-63.064		
Na(g) 7.612e-074 -73.119 U02C12(g) 2.494e-074 -73.603 U0F4(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 U02(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.005 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.9914	UO3(g)	2.398e-067	-66.620		
UO2C12(g)					
UOF4(g) 2.377e-084 -83.624 F2(g) 4.364e-090 -89.360 UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 UO2(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.005 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
F2(g)					
UF5(g) 1.781e-101 -100.749 UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 U02(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.005 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg	_				
UF4(g) 8.331e-107 -106.079 UF6(g) 3.748e-110 -109.426 U02(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.005 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 Al(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg					
UF6(g) 3.748e-110 -109.426 UO2(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.005 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 Al(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
UO2(g) 3.405e-120 -119.468 Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.005 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) <td></td> <td></td> <td></td> <td></td> <td></td>					
Mg(g) 2.100e-127 -126.678 UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid					
UC14(g) 7.094e-135 -134.149 UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg					
UC15(g) 5.799e-145 -144.237 CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg A1++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
CH4(g) 9.628e-148 -147.016 Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg					
Ca(g) 1.905e-149 -148.720 H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 Al(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg					
H2S(g) 9.954e-150 -149.002 UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
UC16(g) 8.805e-150 -149.055 UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 Al(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
UF3(g) 1.786e-153 -152.748 UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
UC13(g) 4.466e-162 -161.350 U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg A1+++ 8.88e-006 8.88e-006 0.240 Ca++ 8.88e-005 2.28e-005 0.914					
U2F10(g) 3.550e-177 -176.450 A1(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 U0(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg					
Al(g) 9.992e-191 -190.000 C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg					
C(g) 7.734e-192 -191.112 UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg		9.992e-191			
UF2(g) 5.649e-197 -196.248 UO(g) 1.920e-204 -203.717 UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg		7.734e-192	-191.112		
UC12(g) 1.522e-206 -205.817 UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914		5.649e-197	-196.248		
UF(g) 4.397e-234 -233.357 S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914	UO(g)	1.920e-204	-203.717		
S2(g) 5.416e-242 -241.266 C2H4(g) 4.484e-242 -241.348 UC1(g) 1.137e-248 -247.944 U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914	UCl2(g)	1.522e-206	-205.817		
C2H4(g) 4.484e-242 -241.348 UCl(g) 1.137e-248 -247.944 U2Cl8(g) 1.240e-258 -257.907 U2Cl10(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg	UF(g)		-233.357		
UCl(g) 1.137e-248 -247.944 U2Cl8(g) 1.240e-258 -257.907 U2Cl10(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg 					
U2C18(g) 1.240e-258 -257.907 U2C110(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
U2Cl10(g) 6.710e-263 -262.173 U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
U(g) 2.539e-289 -288.595 In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914					
Original basis total moles moles mg/kg moles mg/kg L/kg	U(g)	2.539e-289	-288.595		
Original basis total moles moles mg/kg moles mg/kg L/kg		Тъ	n fluid	Sorbed	кд
Al+++ 8.88e-006 8.88e-006 0.240 Ca++ 2.28e-005 2.28e-005 0.914	Original basis				
Ca++ 2.28e-005 2.28e-005 0.914					
	Al+++				
Cl- 8.57e-006 8.57e-006 0.304					
	Cl-	8.57e-006 8.57e-0	0.304		

Cr04	1.32e-005	1.32e-005	1.53
F-	1.00e-006	1.00e-006	0.0190
Fe++	1.65e-005	1.65e-005	0.921
H+	-0.000968	-0.000968	-0.976
H2O	55.5	55.5	1.00e+006
HCO3-	0.00166	0.00166	101.
HPO4	0.000214	0.000214	20.5
Mg++	3.92e-006	3.92e-006	0.0953
Mn++	2.10e-006	2.10e-006	0.115
NH3(aq)	7.00e-006	7.00e-006	0.119
Na+	0.000955	0.000955	22.0
Ni++	1.61e-006	1.61e-006	0.0945
02(aq)	0.000264	0.000264	8.45
Pb++	2.01e-006	2.01e-006	0.416
SO4	1.00e-006	1.00e-006	0.0960
Sr++	3.97e-007	3.97e-007	0.0348
UO2++	0.000126	0.000126	34.0

Elemental composition		In fl	.uid	Sorbed	
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	8.880e-006	8.880e-006	0.2395		
Calcium	2.280e-005	2.280e-005	0.9136		
Carbon	0.001655	0.001655	19.88		
Chlorine	8.570e-006	8.570e-006	0.3038		
Chromium	1.320e-005	1.320e-005	0.6862		
Fluorine	1.000e-006	1.000e-006	0.01899		
Hydrogen	111.0	111.0	1.119e+005		
Iron	1.650e-005	1.650e-005	0.9213		
Lead	2.010e-006	2.010e-006	0.4164		
Magnesium	3.920e-006	3.920e-006	0.09526		
Manganese	2.100e-006	2.100e-006	0.1153		
Nickel	1.610e-006	1.610e-006	0.09447		
Nitrogen	7.000e-006	7.000e-006	0.09803		
Oxygen	55.52	55.52	8.880e+005		
Phosphorus	0.0002140	0.0002140	6.627		
Sodium	0.0009550	0.0009550	21.95		
Strontium	3.970e-007	3.970e-007	0.03478		
Sulfur	1.000e-006	1.000e-006	0.03206		
Uranium	0.0001260	0.0001260	29.99		

Sample 19961 water leach, Stage 6.

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.002457	56.47	0.9154	-2.6479
HPO4	0.0005995	57.51	0.7006	-3.3767
HCO3-	0.0005033	30.69	0.9154	-3.3366
CO3	0.0004337	26.02	0.7037	-3.5154
UO2(CO3)3	0.0003824	172.0	0.2405	-4.0364
02(aq)	0.0002325	7.437	1.0000	-3.6335
UO2(OH)3-	0.0001660	53.27	0.9154	-3.8183
OH-	0.0001562	2.656	0.9143	-3.8451
(UO2)2CO3(OH)3-	9.681e-005	63.00	0.9154	-4.0525
Cr04	4.319e-005	5.008	0.7006	-4.5191
AlO2-	3.418e-005	2.015	0.9154	-4.5046
Fe(OH)4-	3.355e-005	4.153	0.9154	-4.5128
CaPO4-	2.566e-005	3.464	0.9154	-4.6291
F-	1.980e-005	0.3759	0.9143	-4.7423
NO3-	1.970e-005	1.221	0.9133	-4.7449
MgPO4-	1.164e-005	1.388	0.9154	-4.9725
UO2(CO3)2	9.731e-006	3.794	0.7006	-5.1664
Cl-	9.297e-006	0.3294	0.9133	-5.0711
UO2(OH)2(aq)	8.687e-006	2.640	1.0000	-5.0611
Fe(OH)3(aq)	8.654e-006	0.9244	1.0000	-5.0628
NaHPO4-	8.586e-006	1.021	0.9154	-5.1046
(UO2)3(OH)7-	7.908e-006	7.344	0.9154	-5.1403
PO4	6.302e-006	0.5982	0.4487	-5.5485
Pb(OH)2(aq)	5.095e-006	1.228	1.0000	-5.2928
MnO4-	5.073e-006	0.6030	0.9143	-5.3337
Ca++	4.042e-006	0.1619	0.7126	-5.5406
PbCO3(aq)	3.647e-006	0.9741	1.0000	-5.4380
NaCO3-	2.452e-006	0.2034	0.9154	-5.6489
Ni(OH)2(aq)	2.359e-006	0.2186	1.0000	-5.6273
CaCO3(aq)	1.867e-006	0.1868	1.0000	-5.7289
Ni++	1.622e-006	0.09516	0.7126	-5.9371
Sr++	1.534e-006	0.1343	0.7067	-5.9650

NaHCO3(aq)	1.478e-006	0.1241	1.0000	-5.8304
Mg++	1.341e-006	0.03258	0.7236	-6.0130
Pb(CO3)2	1.050e-006	0.3434	0.7006	-6.1334
SO4	9.881e-007	0.09487	0.7006	-6.1597
PbOH+	9.788e-007	0.2193	0.9154	-6.0477
Pb(OH)3-	7.954e-007	0.2053	0.9154	-6.1378
UO2PO4-	6.998e-007	0.2553	0.9154	-6.1934
CaHPO4(aq)	6.648e-007	0.09040	1.0000	-6.1773
MnO4	5.767e-007	0.06855	0.7006	-6.3936
H2PO4-	5.213e-007	0.05053	0.9154	-6.3213
Ni(OH)3-	3.682e-007	0.04038	0.9154	-6.4723
MgHPO4(aq)	3.314e-007	0.03984	1.0000	-6.4797
MgCO3(aq)	2.822e-007	0.02378	1.0000	-6.5495
SrCO3(aq)	2.426e-007	0.03580	1.0000	-6.6150
Ca2UO2(CO3)3	1.209e-007	0.06409	1.0000	-6.9174
CO2(aq)	7.213e-008	0.003173	1.0000	-7.1419
SrHPO4(aq)	5.228e-008	0.009594	1.0000	-7.2817
NaOH(aq)	5.097e-008	0.002037	1.0000	-7.2927
UO2(OH)4	4.774e-008	0.01613	0.7006	-7.4756
PbP207	2.051e-008	0.007815	0.7006	-7.8425
CaHCO3+	1.614e-008	0.001631	0.9154	-7.8305
NaAlO2(aq)	1.271e-008	0.001041	1.0000	-7.8958
NaSO4-	1.124e-008	0.001337	0.9154	-7.9876
/ only appains > 1.	0 malal lia+	۱ ۵ ۸		

Mineral saturation states log Q/K

Mineral Sacuracion	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Trevorite Pyromorphite-OH Hematite Fluorapatite Pb40(P04)2 Bixbyite Parsonsite Pyrolusite Pyrolusite Pb3(P04)2 Hausmannite Mn02(gamma) Ferrite-Ca Ferrite-Mg Hydrocerussite Goethite Hydroxylapatite Becquerelite Manganite CaU04 PbHP04		Gibbsite PbC03.Pb0 SrU04(alpha) Schoepite U03:2H20 Na2U207(am) U02(OH)2(beta) U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(1 Ice Crocoite Dolomite Dolomite-ord Pb4C12(OH)6 Calcite Aragonite Litharge Schoepite-dehy(. Pb4S07 Massicot MnHPO4	log Q/K
	•		
Minium Na2U2O7(c) Magnetite Ni3(PO4)2 Bunsenite	3.7665s/sat 3.1366s/sat 2.9194s/sat 2.7577s/sat 2.3767s/sat 1.8910s/sat	Mononydrocalcite Schoepite-dehy(. Magnesite Pb3SO6 Corundum Mn(OH)3	-1.4096 -1.4708 -1.4932 -1.6657 -1.8547

Ca-Autunite	1.6749s/sat	Dolomite-dis	-1.9846
Ni(OH)2	1.6144s/sat	Brucite	-2.0110
Cerussite	1.5199s/sat	Dawsonite	-2.1022
Fe(OH)3(ppd)	1.2816s/sat	Lanarkite	-2.3958
Strontianite	1.1622s/sat	UO3(gamma)	-2.4538
Whitlockite	1.1496s/sat	NiCO3	-2.6355
Diaspore	1.0684s/sat	Plumbogummite	-2.7237
Boehmite	0.6645s/sat		
/ 7 7	-1 + 1- 1 0 /77 -	2 7 3 + 3 \	

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) HF(g) HC1(g) NO2(g) N2(g) N2(g) N0(g) C12(g) H2(g) CO(g) U02F2(g) Pb(g) SO2(g) U03(g) NH3(g) Na(g) U02C12(g) U0F4(g) F2(g) UF5(g) UF6(g) U02(g) Mg(g) UC14(g) UC15(g)	0.1840 0.02598 2.123e-006 9.887e-017 2.975e-022 4.427e-023 5.508e-026 6.918e-029 5.505e-036 6.533e-042 4.333e-051 6.329e-060 1.012e-062 4.248e-063 2.021e-066 2.988e-072 3.519e-073 7.053e-074 2.508e-079 4.774e-088 2.010e-095 8.991e-102 4.425e-103 2.935e-119 7.151e-127 6.888e-135 3.225e-145	-0.735 -1.585 -5.673 -16.005 -21.527 -22.354 -25.259 -28.160 -35.259 -41.185 -50.363 -59.199 -61.995 -62.372 -65.695 -71.525 -72.454 -73.152 -78.601 -87.321 -94.697 -101.046 -102.354 -118.532 -126.146 -134.162 -144.491
CH4(g) Ca(g) UF3(g) H2S(g) UC16(g) UC13(g) U2F10(g) A1(g) C(g) UF2(g) UG12(g) UG12(g) UF(g) S2(g) C2H4(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	3.086e-148 3.150e-149 1.843e-149 2.926e-150 2.806e-150 7.571e-162 4.523e-165 2.128e-190 2.369e-192 5.572e-194 1.692e-203 4.505e-206 4.147e-232 4.473e-243 4.403e-243 5.871e-248 1.169e-258 2.076e-263	-141.491 -147.511 -148.502 -148.735 -149.534 -149.552 -161.121 -164.345 -189.672 -191.625 -193.254 -202.772 -205.346 -231.382 -242.349 -242.356 -247.231 -257.932 -262.683

U(g) 2.289e-288 -287.640

Original basis	total moles	In flui moles	d mg/kg		bed mg/kg	Kd L/kg
Al+++	 3 42e-005	3.42e-005	0.922			
	3 250-005	3 25e-005	1 30			
Cl-	9 30e-006	3.25e-005 9.30e-006 4.32e-005 1.98e-005	0 330			
Cr04	4.32e-005	4 32e-005	5 01			
F-	1.926 005	1 98e-005	0 376			
Fe++	4 22e-005	4.22e-005	2 36			
H+		-0.00308				
Н2О	55.5					
HCO3-	0.00221	0.00221	135.			
4	0 000554	0.00221	62.7			
Mg++						
Mn++	0.000654 1.36e-005 5.65e-006	5 650-006	0.330			
NH3(aq)	1.97e-005	1.36e-005 5.65e-006 1.97e-005	0.310			
Na+	0.00247	0.00247	0.333 56 Q			
Ni++		4.35e-006				
		0.000289				
02(aq) Pb++						
SO4	1.10e-005	1.16e-005	0.0060			
	1.006-006	1.00e-006	0.0960			
Sr++ UO2++	0.000785	1.83e-006	212.			
002++	0.000765	0.000765	Z1Z.			
Elemental compo			fluid		Sorbed	i.
Elemental compo			fluid mg/kg	3	Sorbed	d mg/kg
	total moles	s moles	mg/kg			
	total moles	s moles	mg/kg			
	total moles	s moles	mg/kg	9223 302 5.57		
	total moles	s moles	mg/kg	9223 302 5.57		
Aluminum Calcium Carbon Chlorine	3.420e-005 3.250e-005 0.002213 9.300e-006		mg/ks 5 5 0.9 5 1. 3 26 6 0.3	9223 .302 5.57 3295		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005	moles 3.420e-00 3.250e-00 0.00221 9.300e-00	mg/ks 5 0.9 5 1.3 6 0.3 5 2.	9223 .302 5.57 3295		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005	moles 3.420e-00 3.250e-00 0.00221 5.9.300e-00 4.320e-00 1.980e-00	mg/ks 5 0.9 5 1.3 6 0.3 5 2.	9223 302 5.57 3295 245		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 4.220e-005	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 111. 4.220e-00	mg/kg5 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.	9223 302 5.57 3295 245 3760		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 4.220e-005	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 111. 4.220e-00	mg/kg5 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.	9223 302 5.57 3295 245 3760 -005 356		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 4.220e-005	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 111. 4.220e-00	mg/kg5 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.	9223 302 5.57 3295 245 3760 -005 356		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 4.220e-005	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 111. 4.220e-00	mg/kg5 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.	9223 302 5.57 3295 245 3760 -005 356 402		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 111.0 4.220e-005 1.160e-005 5.650e-006	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.160e-00 1.360e-00 5.650e-00	mg/ks 5 0.9 5 1.3 6 0.3 5 2.5 7 0.3 0 1.118e4 5 2.5 7 0.3 6 0.3	9223 302 5.57 3295 245 3760 -005 356 402		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 4.220e-005	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.160e-00 1.360e-00 4.350e-00	mg/ks 5 0.9 5 1.3 6 0.3 5 2.5 7 0.3 0 1.118e4 5 2.5 7 0.3 6 0.3 6 0.3	9223 302 5.57 3295 245 3760 -005 356 402 3304		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 111.0 4.220e-005 1.160e-005 1.360e-005 4.350e-006	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.11. 4.220e-00 1.160e-00 5.650e-00 4.350e-00 1.970e-00	mg/ks 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.5 6 0.3 6 0.3 6 0.2 5 0.2	9223 302 5.57 8295 245 8760 -005 356 402 8304 8102 2552		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 111.0 4.220e-005 1.360e-005 5.650e-006 4.350e-006	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.11. 4.220e-00 1.160e-00 5.650e-00 4.350e-00 1.970e-00 5.55	mg/ks 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.5 5 0.3 6 0.3 6 0.2 2 8.879e+	9223 302 5.57 8295 245 8760 -005 356 402 8304 8102 2552		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	1.160e-005 1.360e-005 1.360e-005 1.360e-005 1.970e-005	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.160e-00 1.360e-00 5.650e-00 4.350e-00 1.970e-00 5.55	mg/kg 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.5 5 0.3 6 0.2 5 0.2 2 8.879e+ 0 20	9223 302 5.57 3295 245 3760 -005 356 402 3304 3102 2552 2758		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	100006540	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.160e-00 1.360e-00 5.650e-00 4.350e-00 1.970e-00 5.5.5 0.000654 0.00247	mg/kg 5 0.9 5 1.3 26 6 0.3 5 2.5 0.3 0 1.118e+ 5 2.5 5 0.3 6 0.2 5 0.2 8.879e+ 0 20 0 56	223 302 5.57 3295 245 3760 -005 356 402 3304 3102 2552 2758 -005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	100006540 0.002470	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.11. 4.220e-00 1.160e-00 1.360e-00 5.650e-00 4.350e-00 1.970e-00 5.5.5 0.000654 0.00247 1.830e-00	mg/kg 5 0.9 5 1.3 26 6 0.3 5 2.5 0 1.118e+ 5 2.5 5 0.3 6 0.2 5 0.2 8.879e+ 0 20 0 56 6 0.1	223 302 5.57 3295 245 3760 -005 356 402 3304 3102 2758 -005 0.25 5.76		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	3.420e-005 3.250e-005 0.002213 9.300e-006 4.320e-005 1.980e-005 1.160e-005 1.360e-006 4.350e-006 4.350e-006 0.002470 1.830e-006	moles 3.420e-00 3.250e-00 0.00221 9.300e-00 4.320e-00 1.980e-00 1.160e-00 1.360e-00 5.650e-00 4.350e-00 1.970e-00 5.5.5 0.000654 0.00247 1.830e-00	mg/kg 5 0.9 5 1.3 26 6 0.3 5 2.5 5 0.3 0 1.118e+ 5 2.5 5 0.3 6 0.2 2 8.879e+ 0 20 0 56 6 0.1 6 0.03	223 302 5.57 3295 245 3760 -005 356 402 3304 3102 2758 -005 0.25 5.76		

Sample 19961 Ca(OH)₂ leach, 1 day (Stage 1).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.860
 log fO2 = -0.707

 Eh = 0.5170 volts
 pe = 8.7397

 Ionic strength
 0.028605

 Activity of water = 1.000000
 0.999841 kg

 Solution mass = 1.000934 kg
 1.013 g/cm3

 Chlorinity = 0.000010 molal
 0.000010 molal

 Dissolved solids = Rock mass = 0.000000 kg
 1.092 mg/kg sol'n

 Carbonate alkalinity = 780.85 mg/kg as CaCO3

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01548	355.4	0.8520	-1.8799
OH-	0.008632	146.7	0.8487	-2.1351
CO3	0.007513	450.3	0.5302	-2.3998
NO3-	0.0008801	54.51	0.8454	-3.1284
F-	0.0007053	13.39	0.8487	-3.2228
02(aq)	0.0002484	7.939	1.0000	-3.6049
NaCO3-	0.0002015	16.71	0.8520	-3.7652
HCO3-	0.0001376	8.387	0.8520	-3.9310
HPO4	6.674e-005	6.399	0.5226	-4.4574
AlO2-	5.859e-005	3.452	0.8520	-4.3018
PO4	5.205e-005	4.938	0.2314	-4.9192
Cr04	4.961e-005	5.748	0.5226	-4.5863
UO2(OH)3-	1.852e-005	5.938	0.8520	-4.8020
NaOH(aq)	1.532e-005	0.6122	1.0000	-4.8147
CaPO4-	1.282e-005	1.730	0.8520	-4.9615
Cl-	9.983e-006	0.3535	0.8454	-5.0737
SO4	9.494e-006	0.9110	0.5226	-5.3044
NaHPO4-	4.490e-006	0.5336	0.8520	-5.4173
CaCO3(aq)	2.661e-006	0.2660	1.0000	-5.5750
Fe(OH)4-	2.588e-006	0.3203	0.8520	-5.6566
NaHCO3(aq)	2.204e-006	0.1850	1.0000	-5.6567
UO2(CO3)3	2.126e-006	0.9559	0.0740	-6.8033
Pb(OH)3-	9.651e-007	0.2489	0.8520	-6.0850
MgPO4-	9.080e-007	0.1082	0.8520	-6.1115
Ni(OH)3-	8.960e-007	0.09819	0.8520	-6.1173
MnO4	8.773e-007	0.1042	0.5226	-6.3387
NaF(aq)	7.937e-007	0.03329	1.0000	-6.1003
SrCO3(aq)	6.041e-007	0.08908	1.0000	-6.2189
Ca++	5.701e-007	0.02282	0.5518	-6.5023
NaSO4-	5.073e-007	0.06033	0.8520	-6.3643
Sr++	3.847e-007	0.03367	0.5376	-6.6844

UO2(OH)4 MnO4- NaAlO2(aq) Pb(OH)2(aq) Ni(OH)2(aq) MgCO3(aq) CaOH+ Mg++ NaCl(aq)	3.408e-007 1.229e-007 1.189e-007 1.122e-007 1.042e-007 6.279e-008 3.778e-008 2.864e-008 1.860e-008	0.1151 0.01460 0.009733 0.02703 0.009646 0.005288 0.002154 0.0006954 0.001086	0.5226 0.8487 1.0000 1.0000 1.0000 0.8520 0.5777 1.0000	-6.7493 -6.9816 -6.9249 -6.9500 -6.9823 -7.2021 -7.4923 -7.7813 -7.7306
NaCl(aq) UO2(OH)2(aq) Fe(OH)3(aq)		0.001086 0.005341 0.001294		

Mineral saturation states log Q/F

	log Q/K		log Q/K
Birnessite	25.1740s/sat	Whitlockite	-0.4769
Todorokite	21.6361s/sat	Aragonite	-0.5664
Fluorapatite	11.4673s/sat	Boehmite	-0.8427
Trevorite	11.3872s/sat	Dolomite-ord	-0.9390
Hematite	8.0583s/sat	Dolomite	-0.9390
Pyrolusite	5.5949s/sat	Gibbsite	-1.0345
Hydroxylapatite	4.6308s/sat	Monohydrocalcite	-1.2557
MnO2(gamma)	4.0771s/sat	Fe(OH)3(ppd)	-1.5722
Ferrite-Ca	3.8629s/sat	Minium	-1.8206
CaUO4	3.8355s/sat	Magnesite	-2.1458
Goethite	3.5489s/sat	Hausmannite	-2.2421
Ferrite-Mg	3.0505s/sat	UO3:2H2O	-2.2735
Bixbyite	2.9224s/sat	Schoepite	-2.2735
Na2U2O7(c)	2.4881s/sat	PbHPO4	-2.3097
Plattnerite	2.1236s/sat	UO2(OH)2(beta)	-2.3859
Strontianite	1.5583s/sat	Cerussite	-2.4417
Manganite	1.1431s/sat	UO3:.9H2O(alpha)	-2.4569
Bunsenite	0.5360s/sat	Schoepite-dehy(.	-2.4569
SrUO4(alpha)	0.4303s/sat	Dolomite-dis	-2.4834
Ni(OH)2	0.2594s/sat	Litharge	-2.4986
Na2U2O7(am)	-0.0202	Schoepite-dehy(.	-2.5372
Ice	-0.1387	Schoepite-dehy(1	-2.5433
Brucite	-0.3593	Massicot	-2.6808
Calcite	-0.4220	Pyromorphite	-2.8696
Diaspore	-0.4388	Fluorite	-2.9110
(only minerals	with log $Q/K >$	-3 listed)	

Gases	fugacity	log fug.
02(g)	0.1965	-0.707
H2O(g)	0.02598	-1.585
CO2(g)	1.054e-008	-7.977
HF(g)	6.376e-017	-16.195
NO2(g)	3.512e-023	-22.454
HCl(g)	5.765e-024	-23.239
N2(g)	3.038e-026	-25.517
NO(g)	5.310e-029	-28.275
Cl2(g)	2.137e-039	-38.670
H2(g)	6.322e-042	-41.199
CO(g)	2.080e-053	-52.682
UO2F2(g)	5.328e-063	-62.273

Pb(g)	2.156e-0	064	-63.666			
S02(g)	1.120e-0	065	-64.951			
UO3(g)	4.091e-0	069	-68.388			
Na(g)	1.041e-0		-69.983			
NH3(g)	2.112e-0		-71.675			
U02Cl2(g)	5.363e-0		-79.271			
UOF4(g)	8.782e-0		-82.056			
F2(g)	2.052e-0		-87.688			
UF5(g)	4.465e-0		-98.350			
UF4(g)	3.046e-1		-104.516			
UF6(g) UO2(g)	6.443e-1 5.748e-1		-106.191			
Mg(g)	3.103e-1		-121.240 -124.508			
UCl4(g)	1.904e-1		-143.720			
Ca(g)	8.757e-1		-146.058			
CH4(g)	1.342e-1		-149.872			
UF3(g)	9.522e-1		-152.021			
H2S(g)	6.989e-1		-152.156			
UC15(g)	1.756e-1		-155.755			
UCl6(g)	3.010e-1		-162.521			
UCl3(g)	1.062e-1		-168.974			
U2F10(g)	2.231e-1	L72 -	-171.651			
Al(g)	6.301e-1	L92 -	-191.201			
C(g)	1.101e-1		-193.958			
UF2(g)	4.392e-1		-196.357			
UO(g)	3.208e-2		-205.494			
UCl2(g)	3.207e-2		-211.494			
UF(g)	4.986e-2		-234.302			
C2H4(g)	8.896e-2		-247.051			
S2(g)	2.726e-2		-247.565			
UCl(g)	2.121e-2		-251.673			
U2Cl8(g)	8.929e-2		-277.049			
U2Cl10(g) U(g)	6.154e-2 4.198e-2		-285.211 -290.377			
0(9)	4.1900-2	291 -	-290.377			
		Tn f	fluid	Sork	ned	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
						_,5
Al+++	5.87e-005 5.	.87e-005	1.58			
Ca++	1.61e-005 1.	.61e-00	0.645			
Cl-	1.00e-005 1.	.00e-00	0.354			
Cr04	4.96e-005 4.	.96e-00	5.75			
F-		0.000706				
Fe++		.60e-006				
H+	-0.0176	-0.0176				
H2O	55.5		5 9.99e+005			
HCO3-	0.00786	0.00786				
HPO4		0.00013				
Mg++		.00e-006				
Mn++		.00e-006				
NH3(aq)		0.000880				
Na+ Ni++	0.0157 1.00e-006 1.	0.015 0.00-006.				
02(aq)	0.00201	0.0020				
02(aq) Pb++		.08e-006				
SO4		.00e-00!				
501	1.000 000 1.		0.700			

1.00e-006 1.00e-006 0.0875

Sr++

UO2++ 2.10e-005 2.10e-005 5.67

Elemental composition		In fl	uid	Sorbed		
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	5.870e-005	5.870e-005	1.582			
Calcium	1.610e-005	1.610e-005	0.6447			
Carbon	0.007863	0.007863	94.35			
Chlorine	1.000e-005	1.000e-005	0.3542			
Chromium	4.960e-005	4.960e-005	2.577			
Fluorine	0.0007060	0.0007060	13.40			
Hydrogen	111.0	111.0	1.118e+005			
Iron	2.600e-006	2.600e-006	0.1451			
Lead	1.080e-006	1.080e-006	0.2236			
Magnesium	1.000e-006	1.000e-006	0.02428			
Manganese	1.000e-006	1.000e-006	0.05489			
Nickel	1.000e-006	1.000e-006	0.05864			
Nitrogen	0.0008800	0.0008800	12.31			
Oxygen	55.54	55.54	8.877e+005			
Phosphorus	0.0001370	0.0001370	4.239			
Sodium	0.01570	0.01570	360.6			
Strontium	1.000e-006	1.000e-006	0.08754			
Sulfur	1.000e-005	1.000e-005	0.3204			
Uranium	2.100e-005	2.100e-005	4.994			

Sample 19961 Ca(OH)₂ leach, 1 month.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.890
 log fO2 = -0.834

 Eh = 0.5133 volts
 pe = 8.6779

 Ionic strength
 0.034076

 Activity of water = 1.000000
 0.999751 kg

 Solvent mass = 0.999751 kg
 1.001587 kg

 Solution density = 1.013 g/cm3
 0.000001 molal

 Chlorinity = 0.000001 molal
 1833 mg/kg sol'n

 Rock mass = 0.000000 kg
 0.000000 kg

 Carbonate alkalinity = 812.49 mg/kg as CaCO3

 Step # Xi = 0.0000

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01834	420.8	0.8422	-1.8112
OH-	0.009362	158.9	0.8386	-2.1051
CO3	0.007433	445.2	0.5068	-2.4240
UO2(OH)3-	0.001136	364.0	0.8422	-3.0192
F-	0.001129	21.41	0.8386	-3.0239
CaPO4-	0.001102	148.6	0.8422	-3.0322
NO3-	0.001040	64.38	0.8347	-3.0613
CrO4	0.0002391	27.68	0.4984	-3.9239
HPO4	0.0002265	21.70	0.4984	-3.9473
NaCO3-	0.0002258	18.71	0.8422	-3.7208
PO4	0.0002010	19.05	0.2078	-4.3791
02(aq)	0.0001853	5.917	1.0000	-3.7322
Fe(OH)4-	0.0001584	19.58	0.8422	-3.8749
HCO3-	0.0001228	7.482	0.8422	-3.9852
A102-	0.0001118	6.580	0.8422	-4.0263
UO2(CO3)3	0.0001073	48.21	0.0611	-5.1833
CaCO3(aq)	6.165e-005	6.159	1.0000	-4.2100
UO2(OH)4	2.322e-005	7.836	0.4984	-4.9365
MnO4	2.184e-005	2.593	0.4984	-4.9631
NaOH(aq)	1.923e-005	0.7678	1.0000	-4.7160
Pb(OH)3-	1.740e-005	4.485	0.8422	-4.8340
NaHPO4-	1.722e-005	2.045	0.8422	-4.8385
Ni(OH)3-	1.653e-005	1.810	0.8422	-4.8563
Ca++	1.453e-005	0.5813	0.5304	-5.1131
MgPO4-	2.752e-006	0.3277	0.8422	-5.6349
MnO4-	2.562e-006	0.3042	0.8386	-5.6679
NaHCO3(aq)	2.279e-006	0.1911	1.0000	-5.6423
Pb(OH)2(aq)	1.866e-006	0.4493	1.0000	-5.7290
Ni(OH)2(aq)	1.773e-006	0.1641	1.0000	-5.7513
NaF(aq)	1.470e-006	0.06161	1.0000	-5.8327
CaOH+	1.003e-006	0.05717	0.8422	-6.0731

Cl-	9.981e-007	0.03532	0.8347	-6.0793
UO2(OH)2(aq)	9.953e-007	0.3021	1.0000	-6.0020
SO4	9.428e-007	0.09041	0.4984	-6.3280
(UO2)3(OH)7-	7.104e-007	0.6588	0.8422	-6.2231
Fe(OH)3(aq)	6.840e-007	0.07297	1.0000	-6.1649
SrCO3(aq)	5.789e-007	0.08531	1.0000	-6.2374
CaHPO4(aq)	4.782e-007	0.06494	1.0000	-6.3204
Sr++	4.070e-007	0.03560	0.5149	-6.6787
(UO2)2CO3(OH)3-	3.102e-007	0.2016	0.8422	-6.5830
NaAlO2(aq)	2.626e-007	0.02148	1.0000	-6.5808
UO2(CO3)2	7.904e-008	0.03077	0.4984	-7.4046
Ca2UO2(CO3)3	6.176e-008	0.03268	1.0000	-7.2093
NaSO4-	5.693e-008	0.006765	0.8422	-7.3192
MgCO3(aq)	5.130e-008	0.004317	1.0000	-7.2899
CaF+	4.162e-008	0.002454	0.8422	-7.4553
CaNO3+	3.982e-008	0.004058	0.8422	-7.4745
Pb(CO3)2	2.726e-008	0.008904	0.4984	-7.8669
Mg++	2.559e-008	0.0006207	0.5587	-7.8448
CaHCO3+	1.054e-008	0.001064	0.8422	-8.0516
(only species >	le-8 molal liste	4 h		

(only species > 1e-8 molal listed)

Mineral Sacuration	log Q/K		log Q/K
Birnessite Todorokite Fluorapatite Trevorite Hydroxylapatite Hematite Ferrite-Ca CaUO4 Pyrolusite Ferrite-Mg Na2U2O7(c) Bixbyite MnO2(gamma) Goethite Whitlockite Na2U2O7(am) Pyromorphite Plattnerite Becquerelite Pb40(PO4)2 Manganite SrUO4(alpha) Hausmannite Minium Bunsenite Strontianite Ni(OH)2 Calcite Aragonite Hydrocerussite	log Q/K	Dolomite Fe(OH)3(ppd) Monohydrocalcite Pyromorphite-OH Ice Diaspore Brucite U03:2H2O Schoepite Magnetite Boehmite Parsonsite U02(OH)2(beta) PbHPO4 U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Gibbsite Schoepite-dehy(1 Fluorite Dolomite-dis Litharge Cerussite Pb3(PO4)2 Massicot Schoepite-dehy(. Magnesite Schoepite-dehy(. Magnesite Schoepite-dehy(. Magnesite Schoepite-dehy(. MgUO4 PbCO3.PbO	log Q/K 0.3381s/sat 0.1795s/sat 0.1093s/sat -0.1108 -0.1387 -0.1933 -0.3628 -0.5207 -0.5207 -0.5240 -0.5972 -0.6286 -0.6331 -0.6386 -0.7041 -0.7041 -0.7041 -0.7844 -0.7890 -0.7905 -1.1238 -1.2063 -1.2776 -1.3050 -1.3967 -1.4598 -1.8937 -2.2336 -2.4117 -2.7545 -2.8240
Dolomite-ord (only minerals w	0.3381s/sat ith log Q/K >	-3 listed)	

Gases	fugacity	log fug.			
02(g)	0.1466	-0.834			
H2O(g)	0.02598	-1.585			
CO2(g)	8.677e-009	-8.062			
HF(g)	9.409e-017	-16.026			
NO2(g)	4.115e-023	-22.386			
HCl(g)	5.311e-025	-24.275			
N2(g)	7.498e-026	-25.125			
NO(g)	7.205e-029	-28.142			
Cl2(g)	1.566e-041	-40.805			
H2(g)	7.320e-042	-41.135			
CO(g)	1.984e-053	-52.703			
UO2F2(g)	6.567e-061	-60.183			
Pb(g)	4.152e-063	-62.382			
S02(g)	1.070e-066	-65.971			
UO3(g)	2.315e-067	-66.635			
Na(g)	1.406e-070	-69.852			
NH3(g)	4.134e-072	-71.384			
UO2Cl2(g)	2.576e-080	-79.589			
UOF4(g)	2.357e-080	-79.628			
F2(g)	3.859e-088	-87.414			
UF5(g)	1.902e-096	-95.721			
UF4(g)	9.465e-103	-102.024			
UF6(g) UO2(g)	3.765e-104	-103.424 -119.424			
_	3.767e-120 3.564e-125	-119.424			
Mg(g)	2.852e-145	-144.545			
Ca(g) UCl4(g)	8.987e-147	-144.545			
UF3(g)	2.157e-150	-149.666			
CH4(g)	1.987e-150	-149.702			
H2S(g)	1.036e-153	-152.985			
UC15(g)	7.099e-160	-159.149			
U2F10(g)	4.052e-167	-166.392			
UCl6(g)	1.042e-167	-166.982			
UC13(g)	5.855e-171	-170.232			
Al(g)	1.382e-191	-190.860			
C(g)	1.215e-194	-193.915			
UF2(g)	7.257e-195	-194.139			
UO(g)	2.434e-204	-203.614			
UCl2(g)	2.065e-212	-211.685			
UF(g)	6.007e-233	-232.221			
C2H4(g)	1.454e-247	-246.837			
S2(g)	4.468e-250	-249.350			
UCl(g)	1.596e-251	-250.797			
U2Cl8(g)	1.990e-282	-281.701			
U(g)	3.688e-289	-288.433			
U2Cl10(g)	1.006e-292	-291.998			
				_	_
		n fluid		bed	Kd
Original basis	total moles mole	s mg/kg	moles	mg/kg	L/kg
ייין גע	0 000112 0 000	 112 2 02			
Al+++ Ca++	0.000112 0.000 0.00118 0.00				
Cl-	1.00e-006 1.00e-				
Cr04	0.000239 0.000				
F-	0.00113 0.000				
Ľ	0.00113 0.00				

Fe++	0.000159	0.000159	8.87
H+	-0.0244	-0.0244	-24.6
H2O	55.5	55.5	9.98e+005
HCO3-	0.00817	0.00817	498.
HPO4	0.00155	0.00155	149.
Mg++	2.83e-006	2.83e-006	0.0687
Mn++	2.44e-005	2.44e-005	1.34
NH3(aq)	0.00104	0.00104	17.7
Na+	0.0186	0.0186	427.
Ni++	1.83e-005	1.83e-005	1.07
02(aq)	0.00233	0.00233	74.4
Pb++	1.93e-005	1.93e-005	3.99
SO4	1.00e-006	1.00e-006	0.0959
Sr++	1.00e-006	1.00e-006	0.0875
UO2++	0.00127	0.00127	342.

Elemental co	mposition	In fl	uid	Sorl	oed
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	0.0001120	0.0001120	3.017		
Calcium	0.001180	0.001180	47.22		
Carbon	0.008167	0.008167	97.94		
Chlorine	1.000e-006	1.000e-006	0.03540		
Chromium	0.0002390	0.0002390	12.41		
Fluorine	0.001130	0.001130	21.43		
Hydrogen	111.0	111.0	1.117e+005		
Iron	0.0001590	0.0001590	8.866		
Lead	1.930e-005	1.930e-005	3.993		
Magnesium	2.830e-006	2.830e-006	0.06867		
Manganese	2.440e-005	2.440e-005	1.338		
Nickel	1.830e-005	1.830e-005	1.072		
Nitrogen	0.001040	0.001040	14.54		
Oxygen	55.55	55.55	8.873e+005		
Phosphorus	0.001550	0.001550	47.93		
Sodium	0.01860	0.01860	426.9		
Strontium	1.000e-006	1.000e-006	0.08748		
Sulfur	1.000e-006	1.000e-006	0.03202		
Uranium	0.001270	0.001270	301.8		

Sample 19961 Ca(OH)₂ leach, Stage 2.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.990
 log f02 = -0.707

 Eh = 0.5093 volts
 pe = 8.6097

 Ionic strength
 0.022665

 Activity of water
 1.000000

 Solvent mass
 0.999790 kg

 Solution mass
 1.000637 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000001 molal

 Dissolved solids
 847 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 517.44 mg/kg as CaCO3

 Xi = 0.0000Step #

moles moles grams cm3 remaining reacted reacted reacted Reactants ______ 02(g)-- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
OH-	0.01147	194.9	0.8616	-2.0051
Na+	0.008193	188.2	0.8643	-2.1499
CO3	0.005052	302.9	0.5611	-2.5474
NO3-	0.0009312	57.69	0.8588	-3.0971
F-	0.0008447	16.03	0.8616	-3.1380
HPO4	0.0002663	25.54	0.5545	-3.8308
PO4	0.0002599	24.67	0.2646	-4.1626
02(aq)	0.0002481	7.934	1.0000	-3.6053
NaCO3-	7.593e-005	6.297	0.8643	-4.1829
HCO3-	7.156e-005	4.363	0.8643	-4.2086
A102-	5.805e-005	3.421	0.8643	-4.2996
CaPO4-	1.585e-005	2.139	0.8643	-4.8633
UO2(OH)3-	1.118e-005	3.586	0.8643	-5.0150
NaOH(aq)	1.110e-005	0.4436	1.0000	-4.9547
NaHPO4-	1.006e-005	1.196	0.8643	-5.0607
Fe(OH)4-	3.548e-006	0.4392	0.8643	-5.5133
Cr04	3.301e-006	0.3825	0.5545	-5.7375
Cl-	9.992e-007	0.03539	0.8588	-6.0665
MgPO4-	9.858e-007	0.1175	0.8643	-6.0695
SO4	9.710e-007	0.09320	0.5545	-6.2689
Ni(OH)3-	9.198e-007	0.1008	0.8643	-6.0997
MnO4	9.023e-007	0.1072	0.5545	-6.3008
Pb(OH)3-	6.379e-007	0.1646	0.8643	-6.2586
NaHCO3(aq)	6.246e-007	0.05242	1.0000	-6.2044
SrCO3(aq)	5.301e-007	0.07819	1.0000	-6.2756
NaF(aq)	5.182e-007	0.02174	1.0000	-6.2855
Sr++	4.492e-007	0.03933	0.5676	-6.5935
CaCO3(aq)	4.159e-007	0.04159	1.0000	-6.3810
UO2(OH)4	2.654e-007	0.08964	0.5545	-6.8323
UO2(CO3)3	1.507e-007	0.06775	0.0939	-7.8493
Ca++	1.191e-007	0.004768	0.5801	-7.1607

MnO4-	9.792e-008	0.01164	0.8616	-7.0738
Ni(OH)2(aq)	8.042e-008	0.007449	1.0000	-7.0947
NaAlO2(aq)	6.416e-008	0.005255	1.0000	-7.1927
Pb(OH)2(aq)	5.577e-008	0.01344	1.0000	-7.2536
NaSO4-	2.915e-008	0.003467	0.8643	-7.5988
SrOH+	1.479e-008	0.001546	0.8643	-7.8935
Fe(OH)3(aq)	1.249e-008	0.001334	1.0000	-7.9033
CaOH+	1.103e-008	0.0006292	0.8643	-8.0207
(only species >	> 1e-8 molal liste	ed)		

nincial Sacuracion	log Q/K		log Q/K
Birnessite	23.3994s/sat	Whitlockite	-0.9387
Todorokite	20.0834s/sat	Boehmite	-0.9705
Trevorite	11.3013s/sat	Na2U2O7(am)	-0.9861
Fluorapatite	10.5302s/sat	Gibbsite	-1.1623
Hematite	8.0848s/sat	Calcite	-1.2280
Pyrolusite	5.3731s/sat	Aragonite	-1.3724
MnO2(gamma)	3.8553s/sat	Fe(OH)3(ppd)	-1.5589
Hydroxylapatite	3.7388s/sat	Monohydrocalcite	-2.0617
Goethite	3.5622s/sat	PbHPO4	-2.2467
Ferrite-Ca	3.4910s/sat	Dolomite	-2.6074
CaUO4	3.0942s/sat	Dolomite-ord	-2.6074
Ferrite-Mg	2.6223s/sat	UO3:2H2O	-2.6165
Bixbyite	2.4789s/sat	Schoepite	-2.6165
Plattnerite	1.8199s/sat	UO2(OH)2(beta)	-2.7289
Na2U2O7(c)	1.5222s/sat	Minium	-2.7316
Strontianite	1.5016s/sat	UO3:.9H2O(alpha)	-2.7999
Manganite	0.9213s/sat	Schoepite-dehy(.	-2.7999
SrUO4(alpha)	0.4383s/sat	Litharge	-2.8022
Bunsenite	0.4236s/sat	Schoepite-dehy(.	-2.8802
Ni(OH)2	0.1470s/sat	Schoepite-dehy(1	-2.8863
Ice	-0.1387	Hausmannite	-2.9073
Diaspore	-0.5666	Massicot	-2.9844
Brucite	-0.8139		
(only minerals v	with log O/K >	-3 listed)	

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
Gases	fugacity	log fug0.707 -1.585 -8.385 -16.241 -22.553 -24.362 -25.714 -28.373 -40.916 -41.199
CO(g) UO2F2(g) Pb(g) SO2(g) UO3(g) Na(g) NH3(g)	8.139e-054 1.965e-063 1.072e-064 6.683e-067 1.857e-069 7.541e-071 1.686e-072	-53.089 -62.707 -63.970 -66.175 -68.731 -70.123 -71.773

```
1.383e-082 -81.859
2.630e-083 -82.580
1.666e-088 -87.778
1.205e-099 -98.919
 UO2Cl2(g)
 UOF4(g)
 F2(g)
 UF5(g)
                     9.127e-106 -105.040
 UF4(q)
                     1.567e-107 -106.805
 UF6(q)
 UO2(g)
                     2.611e-122 -121.583
                     1.090e-125 -124.963
 Mg(g)
 Ca(g)
                     3.501e-147
                                  -146.456
 UCl4(g)
                     2.791e-149 -148.554
                     5.259e-151 -150.279
 CH4(g)
                     3.166e-153 -152.499
 UF3(g)
                     4.175e-154 -153.379
 H2S(g)
 UC15(g)
                     1.940e-162 -161.712
                     2.506e-170 -169.601
2.066e-173 -172.685
1.626e-173 -172.789
4.698e-192 -191.328
 UCl6(g)
 UC13(g)
 U2F10(g)
 Al(g)
                     4.309e-195 -194.366
 C(g)
                     1.621e-197 -196.790
 UF2(g)
                     1.458e-206 -205.836
 UO(g)
                     8.280e-215 -214.082
 UC12(g)
                     2.042e-235
 UF(q)
                                  -234.690
 C2H4(g)
                     1.365e-248 -247.865
                     9.719e-251 -250.012
 S2(g)
 UCl(g)
                    7.268e-254 -253.139
                 1.920e-287 -286.717
 U2Cl8(g)
                     1.908e-291 -290.719
 U(g)
                     7.514e-298 -297.124
 U2Cl10(g)
                                                      Sorbed
                                 In fluid
                                                                         Kd
Original basis total moles moles mg/kg moles mg/kg L/kg
_____
               5.81e-005 5.81e-005 1.57
1.64e-005 1.64e-005 0.657
 Ca++
               1.00e-006 1.00e-006 0.0354
 Cl-
           3.30e-006 3.30e-006 0.383

0.000845 0.000845 16.0

3.56e-006 3.56e-006 0.199

-0.0181 -0.0181 -18.2
 CrO4--
F-
 Fe++
 H+
 H+ -0.0181 -0.0181 -18.2

H2O 55.5 55.5 9.99e+005

HCO3- 0.00520 0.00520 317.

HPO4-- 0.000553 0.000553 53.0

Mg++ 1.00e-006 1.00e-006 0.0243

Mn++ 1.00e-006 1.00e-006 0.0549

NH3(aq) 0.000931 0.000931 15.8

Na+ 0.00829 0.00829 190.
 Na+
              1.00e-006 1.00e-006 0.0587
 Ni++
               0.00211 0.00211 67.5
6.94e-007 6.94e-007 0.144
 02(aq)
 Pb++
              1.00e-006 1.00e-006 0.0960
 SO4--
 Sr++
               1.00e-006 1.00e-006 0.0876
 UO2++
               1.16e-005 1.16e-005 3.13
Elemental composition
                                 In fluid
                                                            Sorbed
      total moles moles mg/kg moles mg/kg
______
```

Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	5.810e-005	5.810e-005	1.567
	1.640e-005	1.640e-005	0.6569
	0.005201	0.005201	62.43
	1.000e-006	1.000e-006	0.03543
	3.300e-006	3.300e-006	0.1715
	0.0008450	0.0008450	16.04
	111.0	111.0	1.118e+005
	3.560e-006	3.560e-006	0.1987
	6.940e-007	6.940e-007	0.1437
-			
Sulfur	1.000e-006	1.000e-006	0.03205
Uranium	1.160e-005	1.160e-005	

Sample 19961 Ca(OH)₂ leach, Stage 3.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.830
 log fO2 = -0.706

 Eh = 0.5188 volts
 pe = 8.7699

 Ionic strength
 0.014659

 Activity of water
 1.000000

 Solvent mass
 0.999859 kg

 Solution mass
 1.000393 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000001 molal

 Dissolved solids
 534 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 394.21 mg/kg as CaCO3

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer	 		

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
OH-	0.007738	131.5	0.8836	-2.1651
Na+	0.005969	137.1	0.8855	-2.2769
CO3	0.003815	228.8	0.6174	-2.6279
02(aq)	0.0002486	7.951	1.0000	-3.6045
HCO3-	8.388e-005	5.115	0.8855	-4.1291
NO3-	7.001e-005	4.338	0.8816	-4.2096
NaCO3-	4.595e-005	3.812	0.8855	-4.3905
CaCO3(aq)	3.267e-005	3.268	1.0000	-4.4859
A102-	2.948e-005	1.738	0.8855	-4.5833
CrO4	1.430e-005	1.658	0.6123	-5.0576
Ca++	1.033e-005	0.4139	0.6320	-5.1851
NaOH(aq)	5.731e-006	0.2291	1.0000	-5.2417
UO2(OH)3-	2.838e-006	0.9108	0.8855	-5.5997
Fe(OH)4-	1.622e-006	0.2008	0.8855	-5.8428
F-	9.996e-007	0.01898	0.8836	-6.0539
Cl-	9.994e-007	0.03541	0.8816	-6.0550
SO4	9.760e-007	0.09371	0.6123	-6.2236
Ni(OH)3-	8.855e-007	0.09709	0.8855	-6.1056
MnO4	8.556e-007	0.1017	0.6123	-6.2808
CaOH+	7.043e-007	0.04018	0.8855	-6.2051
CaPO4-	6.942e-007	0.09371	0.8855	-6.2113
MgCO3(aq)	5.714e-007	0.04815	1.0000	-6.2430
NaHCO3(aq)	5.598e-007	0.04700	1.0000	-6.2520
SrCO3(aq)	5.120e-007	0.07555	1.0000	-6.2907
Sr++	4.763e-007	0.04171	0.6224	-6.5281
Mg++	3.920e-007	0.009522	0.6498	-6.5940
HPO4	1.654e-007	0.01587	0.6123	-6.9944
MnO4-	1.446e-007	0.01719	0.8836	-6.8936
Ni(OH)2(aq)	1.146e-007	0.01062	1.0000	-6.9406
PO4	9.860e-008	0.009359	0.3311	-7.4862
Pb(OH)3-	8.347e-008	0.02154	0.8855	-7.1313

UO2(CO3)3	4.554e-008	0.02049	0.1400	-8.1956
UO2(OH)4	4.325e-008	0.01461	0.6123	-7.5770
MgPO4-	3.644e-008	0.004344	0.8855	-7.4912
NaAlO2(aq)	2.492e-008	0.002041	1.0000	-7.6035
NaSO4-	2.357e-008	0.002804	0.8855	-7.6805
SrOH+	1.161e-008	0.001214	0.8855	-7.9881
Pb(OH)2(aq)	1.081e-008	0.002605	1.0000	-7.9663
(only species >	> 1e-8 molal listed	l)		

	log Q/K		log Q/K
Birnessite	26.1154s/sat	Calcite	0.6671s/sat
Todorokite	22.4598s/sat	Bunsenite	0.5777s/sat
Trevorite	11.1163s/sat	Aragonite	0.5227s/sat
Hematite	7.7458s/sat	Ni(OH)2	0.3011s/sat
Fluorapatite	7.5215s/sat	Na2U2O7(c)	0.0986s/sat
Pyrolusite	5.7127s/sat	Ice	-0.1387
Ferrite-Ca	4.8076s/sat	Monohydrocalcite	-0.1666
CaUO4	4.3250s/sat	SrUO4(alpha)	-0.2410
MnO2(gamma)	4.1949s/sat	Dolomite-dis	-0.4353
Ferrite-Mg	3.8653s/sat	Diaspore	-0.6903
Hydroxylapatite	3.4860s/sat	Boehmite	-1.0942
Goethite	3.3927s/sat	Magnesite	-1.1867
Bixbyite	3.1577s/sat	Gibbsite	-1.2860
Strontianite	1.4865s/sat	Artinite	-1.4831
Manganite	1.2607s/sat	Whitlockite	-1.6592
Dolomite-ord	1.1091s/sat	Fe(OH)3(ppd)	-1.7284
Dolomite	1.1091s/sat	Hausmannite	-1.8893
Plattnerite	1.1076s/sat	Na2U2O7(am)	-2.4097
Brucite	0.7680s/sat		
(only minerals	with log Q/K >	-3 listed)	

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) HF(g) NO2(g) HC1(g) N2(g) NO(g) C12(g) H2(g) CO(g) Pb(g) SO2(g) UO2F2(g) UO3(g) Na(g) NH3(g) UO2C12(g)	0.1967 0.02598 7.152e-009 1.008e-019 3.121e-024 6.449e-025 2.394e-028 4.716e-030 2.675e-041 6.319e-042 1.412e-053 2.076e-065 1.548e-066 2.274e-069 6.984e-070 3.892e-071 1.874e-073 1.146e-082	-0.706 -1.585 -8.146 -18.997 -23.506 -24.190 -27.621 -29.326 -40.573 -41.199 -52.850 -64.683 -65.810 -68.643 -69.156 -70.410 -72.727 -81.941
F2(g) UOF4(g)	5.132e-094 9.368e-095	-93.290 -94.028
UF5(g) UF4(q)	7.528e-114 3.248e-117	-113.123 -116.488
(3)	3.2133 21,	

```
9.809e-123 -122.008
4.158e-124 -123.381
1.718e-124 -123.765
1.583e-145 -144.801
UO2(g)
Mg(g)
UF6(g)
Ca(g)
                    5.087e-149 -148.294
UCl4(q)
                    9.096e-151 -150.041
CH4(q)
H2S(q)
                    9.647e-154 -153.016
                    6.420e-162 -161.192
UF3(g)
                    5.251e-162 -161.280
UCl5(g)
                    1.007e-169 -168.997
UCl6(g)
UC13(g)
                    2.536e-173 -172.596
                    3.528e-192 -191.452
Al(g)
                   7.465e-195 -194.127
C(g)
                   6.344e-202 -201.198
U2F10(g)
                   1.873e-203 -202.728
UF2(g)
                    5.471e-207 -206.262
UO(g)
                    6.845e-215 -214.165
UCl2(g)
                    1.344e-238 -237.872
UF(g)
                    4.089e-248 -247.388
C2H4(g)
                    5.198e-250 -249.284
S2(g)
UCl(g)
                    4.047e-254
                                 -253.393
                    6.377e-287
                                 -286.195
U2C18(g)
                    7.157e-292
                                  -291.145
U(q)
U2Cl10(q)
                    5.503e-297
                                 -296.259
                                                  Sorbed
                              In fluid
                                                                      Кd
Original basis total moles moles mg/kg moles mg/kg L/kg
      2.95e-005 2.95e-005 0.796
4.44e-005 4.44e-005 1.78
1.00e-006 1.00e-006 0.0354
1.43e-005 1.43e-005 1.66
Al+++
Ca++
Cl-
Cr04--
F-
              1.00e-006 1.00e-006 0.0190
             1.63e-006 1.63e-006 0.0910
Fe++
               -0.0118 -0.0118 -11.9
H+
H20
                  55.5
                            55.5 1.00e+006
               0.00398 0.00398 243.
HCO3-
             1.00e-006 1.00e-006 0.0959
HPO4--
Mq++
              1.00e-006 1.00e-006 0.0243
Mn++ 1.00e-006 1.00e-006 0.0549
NH3(aq) 7.00e-005 7.00e-005 1.19
               7.00e-005 7.00e-005 1.19
0.00602 0.00602 138.
Na+
            1.00e-006 1.00e-006 0.0587
0.000390 0.000390 12.5
9.44e-008 9.44e-008 0.0196
Ni++
02(aq)
Pb++
SO4--
              1.00e-006 1.00e-006 0.0960
Sr++
              1.00e-006 1.00e-006 0.0876
               2.93e-006 2.93e-006
UO2++
                                       0.791
                                  In fluid
Elemental composition
                                                         Sorbed
    total moles moles mg/kg moles mg/kg
Aluminum 2.950e-005 2.950e-005 0.7956 Calcium 4.440e-005 4.440e-005 1.779
Carbon
                0.003979 0.003979
                                             47.77
Chlorine 1.000e-006 1.000e-006 0.03544 Chromium 1.430e-005 1.430e-005 0.7433
```

Fluorine	1.000e-006	1.000e-006	0.01899
Hydrogen	111.0	111.0	1.118e+005
Iron	1.630e-006	1.630e-006	0.09099
Lead	9.440e-008	9.440e-008	0.01955
Magnesium	1.000e-006	1.000e-006	0.02430
Manganese	1.000e-006	1.000e-006	0.05492
Nickel	1.000e-006	1.000e-006	0.05867
Nitrogen	7.000e-005	7.000e-005	0.9801
Oxygen	55.52	55.52	8.880e+005
Phosphorus	1.000e-006	1.000e-006	0.03096
Sodium	0.006020	0.006020	138.3
Strontium	1.000e-006	1.000e-006	0.08759
Sulfur	1.000e-006	1.000e-006	0.03205
Uranium	2.930e-006	2.930e-006	0.6972

Sample 19961 Ca(OH)₂ leach, Stage 4.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.880
 log f02 = -0.707

 Eh = 0.5158 volts
 pe = 8.7196

 Ionic strength
 0.013877

 Activity of water
 1.000000

 Solvent mass
 0.999843 kg

 Solution mass
 1.000425 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000001 molal

 Dissolved solids
 582 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 440.26 mg/kg as CaCO3

 Xi = 0.0000Step #

moles moles grams cm3 remaining reacted reacted reacted Reactants ______ 02(g)

-- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
OH-	0.008657	147.2	0.8862	-2.1151
Na+	0.004058	93.24	0.8880	-2.4433
CO3	0.003358	201.4	0.6243	-2.6786
CaCO3(aq)	0.0009855	98.57	1.0000	-3.0064
Ca++	0.0003468	13.89	0.6383	-3.6549
02(aq)	0.0002481	7.933	1.0000	-3.6054
NO3-	6.993e-005	4.334	0.8843	-4.2087
HCO3-	6.635e-005	4.046	0.8880	-4.2298
NaCO3-	2.781e-005	2.307	0.8880	-4.6074
CaOH+	2.671e-005	1.524	0.8880	-4.6249
NaOH(aq)	4.385e-006	0.1753	1.0000	-5.3581
Fe(OH)4-	3.773e-006	0.4671	0.8880	-5.4749
Cr04	1.920e-006	0.2226	0.6193	-5.9247
Cl-	9.996e-007	0.03542	0.8843	-6.0536
A102-	9.996e-007	0.05892	0.8880	-6.0518
F-	9.988e-007	0.01896	0.8862	-6.0530
CaPO4-	9.877e-007	0.1333	0.8880	-6.0570
SO4	9.669e-007	0.09283	0.6193	-6.2227
Ni(OH)3-	8.964e-007	0.09829	0.8880	-6.0991
MnO4	8.683e-007	0.1032	0.6193	-6.2694
MgCO3(aq)	5.659e-007	0.04768	1.0000	-6.2473
Sr++	5.014e-007	0.04390	0.6291	-6.5012
SrCO3(aq)	4.848e-007	0.07153	1.0000	-6.3144
UO2(OH)3-	4.467e-007	0.1433	0.8880	-6.4015
Mg++	4.323e-007	0.01050	0.6555	-6.5476
NaHCO3(aq)	3.027e-007	0.02542	1.0000	-6.5189
CaHCO3+	1.635e-007	0.01652	0.8880	-6.8380
MnO4-	1.318e-007	0.01567	0.8862	-6.9325
Ni(OH)2(aq)	1.037e-007	0.009611	1.0000	-6.9841
Pb(OH)3-	8.454e-008	0.02182	0.8880	-7.1245
CaNO3+	7.726e-008	0.007883	0.8880	-7.1636

Fe(OH)3(aq)	1.758e-008	0.001878	1.0000	-7.7549
CaSO4(aq)	1.712e-008	0.002329	1.0000	-7.7665
NaSO4-	1.606e-008	0.001910	0.8880	-7.8460
SrOH+	1.382e-008	0.001445	0.8880	-7.9112
(only species	> 1e-8 molal listed)			

	log Q/K		log Q/K
Birnessite Todorokite Trevorite Fluorapatite Hematite Ferrite-Ca Hydroxylapatite Pyrolusite CaUO4 Ferrite-Mg MnO2(gamma) Goethite Bixbyite Dolomite-ord Dolomite Calcite Aragonite Strontianite Monohydrocalcite	25.4113s/sat 21.8438s/sat 21.8438s/sat 11.7087s/sat 11.0457s/sat 8.3816s/sat 7.0736s/sat 7.0593s/sat 5.6245s/sat 5.1034s/sat 4.6475s/sat 4.1067s/sat 3.7106s/sat 2.9819s/sat 2.5845s/sat 2.5845s/sat 2.1466s/sat 2.0022s/sat 1.4628s/sat 1.3129s/sat	Manganite Plattnerite Dolomite-dis Brucite Bunsenite Ni(OH)2 Whitlockite Ice SrUO4(alpha) Magnesite Artinite Fe(OH)3(ppd) Na2U2O7(c) Hausmannite Diaspore Portlandite Boehmite Gibbsite Huntite	1.1728s/sat 1.0639s/sat 1.0401s/sat 0.9144s/sat 0.5342s/sat 0.2576s/sat 0.1797s/sat -0.1387 -0.9659 -1.1910 -1.3410 -1.4105 -1.8377 -2.1528 -2.2088 -2.4501 -2.6127 -2.8045 -2.9978
(only minerals w	vith log Q/K >	-3 listed)	

Gases	fugacity	log fug.
02(g)	0.1963	-0.707
H2O(g)	0.02598	-1.585
CO2(g)	5.056e-009	-8.296
HF(g)	9.003e-020	-19.046
NO2(g)	2.788e-024	-23.555
HCl(g)	5.767e-025	-24.239
N2(g)	1.920e-028	-27.717
NO(g)	4.218e-030	-29.375
Cl2(g)	2.137e-041	-40.670
H2(g)	6.326e-042	-41.199
CO(g)	9.990e-054	-53.000
Pb(g)	1.881e-065	-64.726
S02(g)	1.234e-066	-65.909
UO2F2(g)	2.551e-070	-69.593
UO3(g)	9.823e-071	-70.008
Na(g)	2.979e-071	-70.526
NH3(g)	1.681e-073	-72.775
UO2Cl2(g)	1.289e-083	-82.890
F2(g)	4.088e-094	-93.388
UOF4(g)	8.383e-096	-95.077
UF5(g)	6.019e-115	-114.220
UF4(g)	2.909e-118	-117.536
UO2(g)	1.381e-123	-122.860
Mg(g)	5.831e-124	-123.234
UF6(g)	1.226e-125	-124.911

Ca(g) UC14(g) CH4(g) H2S(g) UF3(g) UC15(g) UC16(g) UC13(g) A1(g) C(g) U2F10(g) UF2(g) UO(g) UC12(g) UF(g) C2H4(g) S2(g) UC1(g) U2C18(g) U(g) U2C110(g)	6.761e-144 4.579e-150 6.458e-151 7.712e-154 6.443e-163 4.224e-163 7.239e-171 2.554e-174 1.071e-193 5.289e-195 4.056e-204 7.712e-208 7.715e-216 1.693e-239 2.057e-248 3.315e-250 5.103e-255 5.166e-289 1.010e-292 3.560e-299	-149.339 -150.190 -153.113 -162.191 -162.374 -170.140 -173.593 -192.970 -194.277 -203.392 -203.677 -207.113 -215.113 -238.771 -247.687 -249.480 -254.292 -288.287 -291.996 -298.449		
Original basis	total moles mo	In fluid oles mg/kg	Sorbed moles mg/kg	Kd L/kg
Al+++ Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++ UO2++	0.00136 0. 1.00e-006 1.00 1.92e-006 1.92 1.00e-006 3.79e-006 3.79e-006 3.79 -0.0132 -0 55.5 0.00444 0. 1.00e-006 1.00 1.00e-006 1.00 7.00e-006 7.00 0.00409 0. 1.00e-006 1.00 0.000390 0.0 9.44e-008 9.44 1.00e-006 1.00 1.00e-006 1.00 1.00e-006 1.00 1.00e-006 1.00 1.00e-006 1.00 1.00e-006 1.00 1.00e-006 1.00 1.00e-006 1.00	0e-006		
Elemental compo	osition total moles	In fluid moles mg,	Sorb/kg moles	ed mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	0.001360 0.004438 1.000e-006 1 1.920e-006 1 1.000e-006 1	0.001360 0.004438 000e-006 920e-006 0.000e-006 111.0	.02697 54.48 53.29 .03544 .09979 .01899 Be+005	

Lead	9.440e-008	9.440e-008	0.01955
Magnesium	1.000e-006	1.000e-006	0.02429
Manganese	1.000e-006	1.000e-006	0.05491
Nickel	1.000e-006	1.000e-006	0.05867
Nitrogen	7.000e-005	7.000e-005	0.9801
Oxygen	55.52	55.52	8.880e+005
Phosphorus	1.000e-006	1.000e-006	0.03096
Sodium	0.004090	0.004090	93.99
Strontium	1.000e-006	1.000e-006	0.08758
Sulfur	1.000e-006	1.000e-006	0.03205
Uranium	4.620e-007	4.620e-007	0.1099

Sample 19961 Ca(OH)₂ leach, Stage 5.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 12.200
 log fO2 = -0.706

 Eh = 0.4969 volts
 pe = 8.3999

 Ionic strength = 0.020527
 0.020527

 Activity of water = 1.000000
 0.999662 kg

 Solution mass = 1.000747 kg
 0.00747 kg

 Solution density = 1.013 g/cm3
 0.000001 molal

 Chlorinity = 0.000001 molal
 1084 mg/kg sol'n

 Rock mass = 0.000000 kg
 787.85 mg/kg as CaCO3

 Step # Xi = 0.0000

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
OH-	0.01849	314.1	0.8668	-1.7951
CaCO3(aq)	0.004244	424.3	1.0000	-2.3722
CO3	0.003612	216.5	0.5741	-2.6833
Ca++	0.001628	65.17	0.5920	-3.0160
Na+	0.001219	28.00	0.8693	-2.9747
02(aq)	0.0002486	7.947	1.0000	-3.6045
CaOH+	0.0002482	14.15	0.8693	-3.6660
NO3-	6.969e-005	4.316	0.8643	-4.2202
HCO3-	3.209e-005	1.956	0.8693	-4.5545
NaCO3-	8.266e-006	0.6853	0.8693	-5.1435
NaOH(aq)	2.695e-006	0.1077	1.0000	-5.5695
Cr04	1.981e-006	0.2295	0.5678	-5.9490
Fe(OH)4-	1.827e-006	0.2260	0.8693	-5.7992
AlO2-	1.000e-006	0.05893	0.8693	-6.0607
Cl-	1.000e-006	0.03541	0.8643	-6.0634
CaPO4-	9.979e-007	0.1346	0.8693	-6.0617
F-	9.956e-007	0.01890	0.8668	-6.0640
Ni(OH)3-	9.489e-007	0.1040	0.8693	-6.0836
MnO4	9.365e-007	0.1113	0.5678	-6.2743
SO4	9.303e-007	0.08927	0.5678	-6.2772
MgCO3(aq)	5.479e-007	0.04614	1.0000	-6.2613
Sr++	5.164e-007	0.04520	0.5803	-6.5233
Pb(OH)3-	5.000e-007	0.1290	0.8693	-6.3619
SrCO3(aq)	4.557e-007	0.06720	1.0000	-6.3413
Mg++	4.519e-007	0.01097	0.6137	-6.5570
CaHCO3+	3.444e-007	0.03478	0.8693	-6.5238
CaNO3+	3.346e-007	0.03412	0.8693	-6.5362
UO2(OH)3-	2.443e-007	0.07834	0.8693	-6.6730
CaSO4(aq)	6.575e-008	0.008942	1.0000	-7.1821
MnO4-	6.382e-008	0.007583	0.8668	-7.2571
Ni(OH)2(aq)	5.145e-008	0.004765	1.0000	-7.2886

NaHCO3(aq)	4.217e-008	0.003539	1.0000	-7.3750
SrOH+	2.802e-008	0.002928	0.8693	-7.6133
Pb(OH)2(aq)	2.711e-008	0.006532	1.0000	-7.5669
(only species >	> 1e-8 molal listed)			

	log Q/K		log Q/K
Birnessite Todorokite	20.2476s/sat 17.3254s/sat	Dolomite-dis Brucite	1.6602s/sat 1.5450s/sat
Fluorapatite	17.32345/sat 12.2982s/sat	Plattnerite	1.5430s/sat 1.5070s/sat
Trevorite	10.1157s/sat	Strontianite	1.4359s/sat
Hydroxylapatite	8.6427s/sat	Whitlockite	0.8090s/sat
Hematite	7.0931s/sat	Manganite	0.5272s/sat
Ferrite-Ca	7.0639s/sat	Bunsenite	0.2297s/sat
CaUO4	5.7908s/sat	Ni(OH)2	-0.0469
Pyrolusite	4.9792s/sat	Ice	-0.1387
Ferrite-Mg	3.9896s/sat	Artinite	-0.7244
MnO2(gamma)	3.4614s/sat	SrUO4(alpha)	-0.9395
Dolomite	3.2046s/sat	Portlandite	-1.1712
Dolomite-ord	3.2046s/sat	Magnesite	-1.2050
Goethite	3.0663s/sat	Fe(OH)3(ppd)	-2.0548
Calcite	2.7808s/sat	Huntite	-2.4057
Aragonite	2.6364s/sat	Diaspore	-2.5377
Monohydrocalcite	1.9471s/sat	Boehmite	-2.9416
Bixbyite	1.6907s/sat		
(only minerals w	ith log O/K >	-3 listed)	

fugacity log fug. _____ 0.1967 -0.706 0.02598 -1.58502(g) H2O(g) -8.941 1.146e-009 CO2(g) 4.202e-020 -19.377 HF(g)1.299e-024 -23.886 NO2(g) 2.699e-025 -24.569 HCl(g) N2(q)4.148e-029 -28.382 -29.707 1.963e-030 NO(g)6.319e-042 -41.199 H2(g) 4.684e-042 -41.329 C12(g)2.261e-054 -53.646 CO(g) 5.207e-065 -64.283 2.490e-067 -66.604 2.517e-071 Pb(g) SO2(g) -70.599 UO3(g) 2.517e-071 Na(g) 1.830e-071 -70.738 -70.847 1.424e-071 UO2F2(g) NH3(g)7.799e-074 -73.108 7.230e-085 -84.141 UO2Cl2(g) 8.916e-095 -94.050 F2(g) -96.992 UOF4(g)1.019e-097 UF5(g)3.413e-117 -116.467 UF4(g)3.533e-120 -119.452 2.488e-123 -122.604 Mg(g)3.535e-124 -123.452 UO2(q) UF6(g) 3.247e-128 -127.488 Ca(g)1.283e-142 -141.892 1.457e-151 -150.837 CH4(g)

```
5.620e-152 -151.250
1.552e-154 -153.809
1.675e-164 -163.776
2.428e-165 -164.615
 UCl4(g)
 H2S(g)
 UF3(g)
 UC15(g)
 UC16(q)
                       1.948e-173 -172.710
 UC13(q)
                      6.696e-176 -175.174
 Al(q)
                       5.013e-194 -193.300
 C(g)
                       1.196e-195
                                      -194.922
                       1.172e-205
                                      -204.931
 UF2(g)
 UO(g)
                       1.972e-208 -207.705
 U2F10(g)
                      1.304e-208 -207.885
                      4.319e-217 -216.365
 UCl2(g)
                      2.019e-240 -239.695
 UF(g)
 C2H4(g)
                      1.049e-249 -248.979
                      1.345e-251 -250.871
6.102e-256 -255.215
7.784e-293 -292.109
 S2(g)
 UCl(g)
 U2Cl8(g)
                       2.579e-293 -292.589
 U(g)
                       1.176e-303 -300.000
 U2Cl10(g)
                                   In fluid
                                                           Sorbed
                                                                                Kd
Original basis total moles moles mg/kg moles mg/kg L/kg
______
                                                                  Al+++ 1.00e-006 1.00e-006 0.0270
 Ca++
                  0.00612 0.00612 245.
                1.00e-006 1.00e-006 0.0354
 Cl-
             1.98e-006 1.98e-006 0.229
 Cr04--
                1.00e-006 1.00e-006 0.0190
 F-
             1.00e-006 1.00e-006 0.102

1.83e-006 1.83e-006 0.102

-0.0267 -0.0267 -26.9

55.5 55.5 9.99e+005

0.00790 0.00790 481.
 Fe++
 H+
 H20
 HCO3-
              0.00790 0.00790 481.
1.00e-006 1.00e-006 0.0959
 HPO4--
 Mg++
Mn++
                1.00e-006 1.00e-006 0.0243
 In fluid
Elemental composition
                                                                    Sorbed
            total moles moles mg/kg moles mg/kg
______
 Aluminum 1.000e-006 1.000e-006 0.02696
 Calcium 0.006120 0.006120 245.1
Carbon 0.007895 0.007895 94.76
Chlorine 1.000e-006 1.000e-006 0.03543
Chromium 1.980e-006 1.980e-006 0.1029
Fluorine 1.000e-006 1.000e-006 0.01898
Hydrogen 111.0 111.0 1.118e+005
Iron 1.830e-006 1.830e-006 0.1021

      Iron
      1.830e-006
      1.830e-006
      0.1021

      Lead
      5.270e-007
      5.270e-007
      0.1091

      Magnesium
      1.000e-006
      1.000e-006
      0.02429
```

Manganese	1.000e-006	1.000e-006	0.05490
Nickel	1.000e-006	1.000e-006	0.05865
Nitrogen	7.000e-005	7.000e-005	0.9797
Oxygen	55.53	55.53	8.878e+005
Phosphorus	1.000e-006	1.000e-006	0.03095
Sodium	0.001230	0.001230	28.26
Strontium	1.000e-006	1.000e-006	0.08755
Sulfur	1.000e-006	1.000e-006	0.03204
Uranium	2.580e-007	2.580e-007	0.06137

Sample 19961 CaCO₃ leach, 1 day (Stage 1).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 10.520
 log fO2 = -0.843

 Eh = 0.5943 volts
 pe = 10.0458

 Ionic strength
 0.026790

 Activity of water
 1.000000

 Solvent mass
 0.999979 kg

 Solution mass
 1.001344 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000010 molal

 Dissolved solids
 1362 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 564.77 mg/kg as CaCO3

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01269	291.4	0.8555	-1.9642
CO3	0.002612	156.6	0.5390	-2.8514
HPO4	0.002356	225.8	0.5316	-2.9022
F-	0.001539	29.19	0.8524	-2.8822
HCO3-	0.001060	64.57	0.8555	-3.0426
UO2(CO3)3	0.0009396	422.3	0.0793	-4.1280
NO3-	0.0008790	54.43	0.8492	-3.1270
OH-	0.0003929	6.672	0.8524	-3.4751
CrO4	0.0001920	22.24	0.5316	-3.9911
02(aq)	0.0001816	5.804	1.0000	-3.7408
Fe(OH)4-	0.0001415	17.50	0.8555	-3.9172
NaHPO4-	0.0001322	15.71	0.8555	-3.9464
PO4	8.219e-005	7.795	0.2406	-4.7040
NaCO3-	5.842e-005	4.842	0.8555	-4.3012
CaPO4-	4.544e-005	6.128	0.8555	-4.4103
AlO2-	3.115e-005	1.835	0.8555	-4.5744
MgPO4-	2.228e-005	2.653	0.8555	-4.7199
UO2(OH)3-	1.888e-005	6.052	0.8555	-4.7918
MnO4-	1.839e-005	2.185	0.8524	-4.8047
Fe(OH)3(aq)	1.455e-005	1.553	1.0000	-4.8372
NaHCO3(aq)	1.404e-005	1.178	1.0000	-4.8527
Ni(OH)2(aq)	1.307e-005	1.210	1.0000	-4.8837
Cl-	9.985e-006	0.3535	0.8492	-5.0716
SO4	9.572e-006	0.9182	0.5316	-5.2934
MnO4	6.406e-006	0.7609	0.5316	-5.4678
Pb(CO3)2	5.491e-006	1.794	0.5316	-5.5348
Pb(OH)2(aq)	5.221e-006	1.258	1.0000	-5.2822
Ni(OH)3-	5.118e-006	0.5608	0.8555	-5.3587
PbCO3(aq)	3.138e-006	0.8373	1.0000	-5.5034
UO2(CO3)2	2.252e-006	0.8771	0.5316	-5.9219
Ni++	2.082e-006	0.1220	0.5598	-5.9335
Pb(OH)3-	2.044e-006	0.5272	0.8555	-5.7572

CaCO3(aq)	2.039e-006	0.2038	1.0000	-5.6906
NaF(aq)	1.432e-006	0.06005	1.0000	-5.8440
Ca++	1.218e-006	0.04875	0.5598	-6.1663
H2PO4-	7.096e-007	0.06872	0.8555	-6.2168
Sr++	6.067e-007	0.05309	0.5461	-6.4798
NaOH(aq)	5.767e-007	0.02304	1.0000	-6.2390
CaHPO4(aq)	4.693e-007	0.06377	1.0000	-6.3285
PbOH+	4.578e-007	0.1025	0.8555	-6.4071
NaSO4-	4.267e-007	0.05073	0.8555	-6.4376
Mq++	4.246e-007	0.01031	0.5849	-6.6050
(UO2)2CO3(OH)3-	4.190e-007	0.2724	0.8555	-6.4455
UO2(OH)2(aq)	3.939e-007	0.1196	1.0000	-6.4046
SrCO3(aq)	3.421e-007	0.05044	1.0000	-6.4658
MgCO3(aq)	3.331e-007	0.02805	1.0000	-6.4774
MgHPO4(aq)	2.528e-007	0.03037	1.0000	-6.5971
CO2(aq)	6.055e-008	0.002661	1.0000	-7.2179
NaAlO2(aq)	5.225e-008	0.004277	1.0000	-7.2819
SrHPO4(aq)	4.765e-008	0.008737	1.0000	-7.3219
PbP207	4.484e-008	0.01707	0.5316	-7.6228
UO2PO4-	4.319e-008	0.01574	0.8555	-7.4324
UO2(OH)4	1.568e-008	0.005293	0.5316	-8.0791
NaCl(aq)	1.539e-008	0.0008980	1.0000	-7.8128
HCrO4-	1.125e-008	0.001314	0.8555	-8.0167
(only appaids > 1	0 molol ligh	۱ ام		

(only species > 1e-8 molal listed)

mineral sacuration	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Hematite Fluorapatite Pyromorphite-OH Pb40(P04)2 Bixbyite Pyrolusite Hausmannite Ferrite-Mg Mn02(gamma) Ferrite-Ca Pb3(P04)2 Parsonsite Goethite Hydrocerussite Hydrocylapatite		Gibbsite Ice Na2U2O7(am) Dolomite Dolomite-ord Crocoite Calcite Aragonite SrUO4(alpha) Litharge Pb4SO7 Schoepite UO3:2H2O Massicot UO2(OH)2(beta) Schoepite-dehy(. UO3:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(.	log Q/K 0.0329s/sat -0.1387 -0.1685 -0.3300 -0.5054 -0.5376 -0.6820 -0.6948 -0.8308 -0.8369 -0.9233 -0.9233 -1.0130 -1.0357 -1.1067 -1.1067 -1.1870 -1.1931
Hydroxylapatite Manganite Ni3(PO4)2	5.6163s/sat 4.7959s/sat 4.0767s/sat	Schoepite-dehy(1 Pb4Cl2(OH)6 MnHPO4	-1.1931 -1.2306 -1.3475
Plattnerite PbHPO4 Magnetite Minium CaUO4 Bunsenite Ni(OH)2	3.7235s/sat 3.7235s/sat 3.5933s/sat 3.4614s/sat 3.1148s/sat 2.8416s/sat 2.6346s/sat 2.3580s/sat	Monohydrocalcite Magnesite Ca-Autunite Pb3SO6 Dawsonite Mn(OH)3 Brucite	-1.3713 -1.4211 -1.4288 -1.5076 -1.5643 -1.7099 -1.8630
Na2U2O7(c)	2.3398s/sat	Dolomite-dis	-1.8744

Fe(OH)3(ppd)	1.5072s/sat	Fluorite	-1.8938
Cerussite	1.4545s/sat	NiCO3	-1.9678
Strontianite	1.3114s/sat	Lanarkite	-2.2483
Whitlockite	0.9615s/sat	Schoepite-dehy(.	-2.2963
Diaspore	0.6286s/sat	Corundum	-2.7342
PbCO3.PbO	0.3823s/sat	Schoepite-dehy(.	-2.8143
Boehmite	0.2247s/sat	Sellaite	-2.9851
(only minerals	with log O/K >	-3 listed)	

Gases	fugacity	log fug.
02(g) H20(g)	0.1437 0.02598 1.782e-006	-0.843 -1.585 -5.749
CO2(g) HF(g)	3.056e-015	-14.515
NO2(g)	8.336e-022	-21.079
HCl(g)	1.267e-022 3.201e-023	-21.897 -22.495
N2(g) N0(g)	1.474e-027	-26.832
Cl2(g)	8.829e-037	-36.054
H2(g)	7.393e-042	-41.131
CO(g)	4.116e-051	-50.386
UO2F2(g) Pb(g)	2.742e-058 1.173e-062	-57.562 -61.931
S02(g)	6.430e-063	-62.192
UO3(g)	9.162e-068	-67.038
NH3(g)	8.670e-071	-70.062
Na(g)	4.236e-072	-71.373
UOF4(g) UO2C12(g)	1.038e-074 5.804e-076	-73.984 -75.236
F2(g)	4.031e-085	-84.395
UF5(g)	2.736e-089	-88.563
UF6(g)	1.750e-095	-94.757
UF4(g)	4.211e-097	-96.376
UO2(g) Mg(g)	1.506e-120 1.138e-126	-119.822 -125.944
UCl4(g)	1.164e-137	-136.934
UF3(g)	2.970e-146	-145.527
CH4(g)	4.247e-148	-147.372
UC15(g)	2.183e-148	-147.661
Са(g) H2S(g)	4.637e-149 6.416e-150	-148.334 -149.193
U2F10(g)	8.379e-153	-152.077
UC16(g)	7.605e-154	-153.119
UCl3(g)	3.195e-164	-163.496
Al(g)	9.306e-191	-190.031
UF2(g) C(g)	3.091e-192 2.547e-192	-191.510 -191.594
UO(g)	9.825e-205	-204.008
UCl2(g)	4.746e-208	-207.324
UF(g)	7.916e-232	-231.101
S2(g)	1.680e-242	-241.775
C2H4(g) UCl(g)	6.513e-243 1.545e-249	-242.186
U2C18(g)	1.545e-249 3.339e-264	-248.811 -263.476
U2Cl10(g)	9.510e-270	-269.022
U(g)	1.504e-289	-288.823

		In fl	uid	Son	rbed	Kd
Original basis	total moles		mg/kg		mg/kg	L/kg
Al+++	3.12e-005	3.12e-005	0.841			
Ca++	4.92e-005					
Cl-		1.00e-005				
Cr04		0.000192				
F-	0.00154	0.00154	29.2			
Fe++	0.000156	0.000156	8.70			
H+	-0.00771	-0.00771	-7.76			
H2O	55.5	55.5	9.99e+005			
HCO3-	0.000156 -0.00771 55.5 0.00659	0.00659	401.			
HPO4	0.00264	0.00264	253.			
Mg++	2.33e-005	2.33e-005	0.566			
Mn++	2.48e-005	2.48e-005	1.36			
NH3(aq)	0.000879	0.000879	14.9			
Na+	0.0129	0.0129	296.			
Ni++	0.0129 2.03e-005 0.00201 1.64e-005	2.03e-005 0.00201	1.19			
02(aq)	0.00201	0.00201	64.2			
Pb++	1.64e-005	1.64e-005	3.39			
SO4	1.00e-005	1.00e-005	0.959			
Sr++	1.00e-006	1.00e-006	0.0875			
UO2++	0.000962	0.000962	259.			
Elemental compo	osition	I	n fluid		Sorbed	l
Elemental compo	total moles	s moles	mg/}	ζg	moles	mg/kg
Aluminum	total moles 3.120e-00!	moles 5 3.120e-	mg/} 005 0.	 .8407	moles	mg/kg
	total moles 3.120e-00! 4.920e-00!	moles 5 3.120e- 5 4.920e-	mg/} 005 0.	.8407 L.969	moles	mg/kg
Aluminum Calcium Carbon	3.120e-009 4.920e-009 0.006589	moles 3.120e- 4.920e- 0.006	mg/l 005 0. 005 1 585 7	.8407 L.969 78.99	moles	mg/kg
Aluminum Calcium Carbon Chlorine	3.120e-009 4.920e-009 0.006589	moles 3.120e- 4.920e- 0.006 1.000e-	mg/} 005 0.	.8407 L.969 78.99	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium	3.120e-009 4.920e-009 0.006589	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001	mg/l 	.8407 L.969 78.99 .3541	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium	total moles 3.120e-009 4.920e-009 0.006589 1.000e-009	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001	mg/l	.8407 1.969 78.99 .3541 9.970	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium	total moles 3.120e-009 4.920e-009 0.006589 1.000e-009	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001	mg/l	.8407 1.969 78.99 .3541 9.970 29.22	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	total moles 3.120e-009 4.920e-009 0.006589 1.000e-009 0.0001920 0.001540 111.0	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.001 0.001	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	1.000e-009 0.00154(0.000156(1.640e-009	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.001 11 0.0001 1.640e-	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	1.000e-009 0.00154(0.000156(1.640e-009 2.330e-009	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.001 11 0.0001 1.640e- 5.2.330e-	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	1000-009 0.00658 1.000-009 0.001920 0.001540 111.0 0.0001560 1.640e-009 2.330e-009	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.0001 0.0001 1.640e- 2.330e- 2.480e-	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 L.361	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	1000-009 0.00658 1.000-009 0.001920 0.001540 111.0 0.0001560 1.640e-009 2.330e-009	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.0001 0.0001 1.640e- 2.330e- 2.480e-	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 L.361	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	1000008790	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.0001 1.640e- 2.330e- 2.480e- 2.030e- 0.0008	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 1.361 1.190 12.30	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	10000000000000000000000000000000000000	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.0001 1.640e- 2.330e- 2.480e- 2.030e- 0.0008 4.55	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 1.361 1.190 12.30 e+005	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	total moles 3.120e-009 4.920e-009 0.006589 1.000e-009 0.001540 111.0 0.0001560 1.640e-009 2.330e-009 2.480e-009 2.030e-009 0.0008790 55.54	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.0001 0.0001 1.640e- 2.330e- 2.480e- 2.030e- 0.0008 4.55	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 1.361 1.190 12.30 e+005	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles 3.120e-009 4.920e-009 0.006589 1.000e-009 0.001540 111.0 0.0001560 1.640e-009 2.330e-009 2.480e-009 2.030e-009 0.0008790 55.54 0.002640 0.01290	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.001 1.640e- 2.330e- 2.480e- 0.0008 4 55 0.002 0.001	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 1.361 1.190 12.30 e+005 31.66	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	1000e-009 1.000e-009 2.030e-009 2.030e-009 2.030e-009 0.00154 11.0 0.0001560 1.640e-009 2.030e-009 0.0008790 55.54 0.002640 0.01290 1.000e-006	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.001 1.00001 1.640e- 2.330e- 2.480e- 2.030e- 0.0008 4 55 0.002 0.01 1.000e-	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 1.361 1.190 12.30 e+005 31.66 296.2 08750	moles	mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	total moles 3.120e-009 4.920e-009 0.006589 1.000e-009 0.001540 111.0 0.0001560 1.640e-009 2.330e-009 2.480e-009 2.030e-009 0.0008790 55.54 0.002640 0.01290	moles 3.120e- 4.920e- 0.006 1.000e- 0.0001 0.001 1.00001 1.640e- 2.330e- 2.480e- 2.030e- 0.0008 4 55 0.002 0.01 1.000e- 5.1.000e- 5.1.000e- 5.1.000e- 5.1.000e- 5.1.000e-	mg/l	.8407 1.969 78.99 .3541 9.970 29.22 e+005 3.700 3.394 .5655 1.361 1.190 12.30 e+005 31.66	moles	mg/kg

Sample 19961 CaCO₃ leach, 1 month.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01561	358.2	0.8446	-1.8799
CO3	0.001980	118.6	0.5125	-2.9936
HPO4	0.001886	180.7	0.5043	-3.0218
UO2(CO3)3	0.001742	782.8	0.0641	-3.9521
F-	0.001668	31.64	0.8411	-2.8529
NO3-	0.0009350	57.87	0.8374	-3.1063
HCO3-	0.0007916	48.22	0.8446	-3.1748
OH-	0.0003891	6.606	0.8411	-3.4851
CrO4	0.0002750	31.84	0.5043	-3.8580
Fe(OH)4-	0.0002192	27.11	0.8446	-3.7324
02(aq)	0.0001470	4.694	1.0000	-3.8328
NaHPO4-	0.0001235	14.66	0.8446	-3.9817
CaPO4-	9.792e-005	13.20	0.8446	-4.0824
UO2(OH)3-	7.145e-005	22.90	0.8446	-4.2193
PO4	6.872e-005	6.515	0.2135	-4.8336
NaCO3-	5.178e-005	4.290	0.8446	-4.3591
A102-	4.112e-005	2.421	0.8446	-4.4593
MgPO4-	3.172e-005	3.777	0.8446	-4.5720
MnO4-	2.621e-005	3.112	0.8411	-4.6566
Fe(OH)3(aq)	2.278e-005	2.430	1.0000	-4.6424
Ni(OH)2(aq)	1.799e-005	1.665	1.0000	-4.7450
NaHCO3(aq)	1.257e-005	1.054	1.0000	-4.9006
Pb(OH)2(aq)	1.058e-005	2.548	1.0000	-4.9755
C1-	9.982e-006	0.3533	0.8374	-5.0779
MnO4	9.785e-006	1.162	0.5043	-5.3067
SO4	9.503e-006	0.9113	0.5043	-5.3195
Ni(OH)3-	6.972e-006	0.7636	0.8446	-5.2300
Pb(CO3)2	6.380e-006	2.084	0.5043	-5.4925
UO2(CO3)2	4.937e-006	1.922	0.5043	-5.6038
PbC03(aq)	4.799e-006	1.280	1.0000	-5.3189
(UO2)2CO3(OH)3-	4.577e-006	2.975	0.8446	-5.4127

CaCO3(aq)	4.214e-006	0.4210	1.0000	-5.3754
Pb(OH)3-	4.101e-006	1.057	0.8446	-5.4605
Ca++	3.650e-006	0.1460	0.5356	-5.7088
Ni++	3.136e-006	0.1837	0.5356	-5.7748
NaF(aq)	1.860e-006	0.07797	1.0000	-5.7305
UO2(OH)2(aq)	1.506e-006	0.4572	1.0000	-5.8221
CaHPO4(aq)	1.022e-006	0.1388	1.0000	-5.9906
PbOH+	9.615e-007	0.2152	0.8446	-6.0904
Mg++	8.353e-007	0.02027	0.5634	-6.3274
Sr++	6.897e-007	0.06033	0.5204	-6.4450
NaOH(aq)	6.843e-007	0.02732	1.0000	-6.1647
H2PO4-	5.584e-007	0.05406	0.8446	-6.3264
NaSO4-	4.942e-007	0.05874	0.8446	-6.3794
MgCO3(aq)	4.549e-007	0.03829	1.0000	-6.3421
MgHPO4(aq)	3.638e-007	0.04368	1.0000	-6.4392
SrCO3(aq)	2.671e-007	0.03937	1.0000	-6.5733
UO2PO4-	1.300e-007	0.04736	0.8446	-6.9595
(UO2)3(OH)7-	1.023e-007	0.09492	0.8446	-7.0633
NaAlO2(aq)	8.269e-008	0.006766	1.0000	-7.0826
Ca2UO2(CO3)3	6.767e-008	0.03582	1.0000	-7.1696
UO2(OH)4	6.036e-008	0.02037	0.5043	-7.5166
PbP207	5.782e-008	0.02200	0.5043	-7.5352
CO2(aq)	4.570e-008	0.002008	1.0000	-7.3401
SrHPO4(aq)	3.920e-008	0.007184	1.0000	-7.4068
Ni4(OH)4++++	2.364e-008	0.007145	0.0771	-8.7394
NaCl(aq)	1.842e-008	0.001074	1.0000	-7.7348
MgF+	1.760e-008	0.0007607	0.8446	-7.8279
CaHCO3+	1.723e-008	0.001739	0.8446	-7.8370
HCrO4-	1.584e-008	0.001850	0.8446	-7.8736
CaF+	1.560e-008	0.0009203	0.8446	-7.8801
CaOH+	1.058e-008	0.0006029	0.8446	-8.0488
(only species	> 1e-8 molal liste	ed)		

	log Q/K		log Q/K
Birnessite	56.1693s/sat	Pb4S07	0.3841s/sat
Todorokite	48.7855s/sat	Boehmite	0.3498s/sat
Pyromorphite	20.7559s/sat	Gibbsite	0.1580s/sat
Trevorite	20.1728s/sat	Dolomite-ord	0.1207s/sat

t Fluorapatite 16.0615s/sat Dolomite 0.1207s/sat 14.7137s/sat Pb4Cl2(OH)6 0.0039s/sat Pyromorphite-OH Hematite 14.6065s/sat Ca-Autunite -0.0254 Pb40(P04)2 12.9481s/sat Crocoite -0.0456 -0.0975 Bixbyite 10.7282s/sat SrUO4(alpha) Hausmannite -0.1387 9.5236s/sat Ice Pyrolusite 9.4409s/sat Calcite -0.2224 -0.3408 Ferrite-Ca 8.5046s/sat Schoepite -0.3408 Parsonsite 8.4295s/sat UO3:2H2O Ferrite-Mg 8.3527s/sat Aragonite -0.3668 Pb3(PO4)2 8.2351s/sat UO2(OH)2(beta) -0.4532MnO2(gamma) 7.9231s/sat Litharge -0.5241 Hydroxylapatite 7.5050s/sat Schoepite-dehy(. -0.5242 Hydrocerussite 7.1269s/sat UO3:.9H2O(alpha) -0.5242Goethite 6.8231s/sat Pb3S06 -0.5933 Manganite 5.0460s/sat Schoepite-dehy(. -0.6045 Ni3(PO4)2 4.2935s/sat Schoepite-dehy(1 -0.6106

Magnetite	4.0686s/sat	Massicot	-0.7063
Minium	3.9891s/sat	Monohydrocalcite	-1.0561
Plattnerite	3.9842s/sat	MnHPO4	-1.1741
CaUO4	3.8617s/sat	Magnesite	-1.2858
PbHPO4	3.8005s/sat	Fluorite	-1.3777
Na2U2O7(c)	3.6534s/sat	Dolomite-dis	-1.4237
Bunsenite	2.7733s/sat	Mn(OH)3	-1.4598
Ni(OH)2	2.4967s/sat	Dawsonite	-1.4872
Whitlockite	2.0748s/sat	Brucite	-1.6054
Fe(OH)3(ppd)	1.7020s/sat	Lanarkite	-1.6408
Cerussite	1.6390s/sat	Schoepite-dehy(.	-1.7138
Strontianite	1.2039s/sat	NiCO3	-1.9514
Na2U2O7(am)	1.1451s/sat	Schoepite-dehy(.	-2.2318
PbCO3.PbO	0.8736s/sat	Corundum	-2.4841
Becquerelite	0.8661s/sat	Sellaite	-2.6489
Diaspore	0.7537s/sat		

(only minerals with log Q/K > -3 listed)

UO(g) UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	1.685e-	-207 -20 -231 -23 -242 -24 -243 -24	7.773			
		In flu			rbed	Kd
Original basis	total moles	moles	mg/kg 	moles	mg/kg	L/kg
Al+++	4.12e-005 4	1.12e-005	1.11			
Ca++	0.000107					
C1-	1.00e-005 1	.00e-005	0.354			
Cr04	0.000275					
F-	0.00167					
Fe++	0.000242					
H+	-0.0101					
H2O	55.5		.98e+005			
HCO3-			493.			
HPO4	0.00810 0.00221 3.34e-005	0.00221	212.			
Mg++	3.34e-005 3	3.34e-005	0.810			
Mn++	3.60e-005 3	3.60e-005	1.97			
NH3(aq)	0.000935	0.000935				
Na+	0.0158	0.0158	363.			
Ni++	2.82e-005 2	2.82e-005	1.65			
02(aq)	0.00212	0.00212	67.7			
Pb++	2.69e-005 2	2.69e-005	5.56			
SO4	1.00e-005 1	.00e-005	0.959			
Sr++	1.00e-006 1	.00e-006	0.0875			
UO2++	0.00183	0.00183	493.			
	11	_	63 13		_ ,	-
Elemental comp			fluid		Sorbe	
	total moles				moles	mg/kg
Aluminum	4.120e-005					
Calcium	0.0001070	0.00010		.281		
Carbon	0.008100	0.0081		7.13		
Chlorine	1.000e-005	1.000e-0		3539		
Chromium	0.0002750	0.00027		4.27		
Fluorine	0.001670	0.0016		1.67		
Hydrogen	111.0	111				
Iron	0.0002420	0.00024		3.49		
Lead	2.690e-005	2.690e-0		.564		
Magnesium	3.340e-005	3.340e-0		8104		
Manganese	3.600e-005	3.600e-0		.974		
Nickel	2.820e-005	2.820e-0		.652		
Nitrogen	0.0009350	0.00093		3.07		
Oxygen	55.55	55.				
Phosphorus	0.002210	0.0022		8.33		
Sodium	0.01580	0.015		62.6		
Strontium	1.000e-006	1.000e-0		8747		
Sulfur	1.000e-005	1.000e-0		3201		
Uranium	0.001830	0.0018	30 4	34.8		

Sample 19961 CaCO₃ leach, Stage 2.

moles moles grams cm3
Reactants remaining reacted reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.003143	72.23	0.9103	-2.5434
HCO3-	0.001167	71.15	0.9103	-2.9739
HPO4	0.0009799	94.01	0.6852	-3.1730
CO3	0.0006300	37.79	0.6886	-3.3627
UO2(CO3)3	0.0003038	136.7	0.2199	-4.1752
02(aq)	0.0002330	7.454	1.0000	-3.6326
OH-	9.688e-005	1.647	0.9092	-4.0551
NO3-	6.980e-005	4.326	0.9080	-4.1981
CrO4	3.369e-005	3.906	0.6852	-4.6367
Fe(OH)4-	2.832e-005	3.506	0.9103	-4.5888
CaPO4-	2.256e-005	3.046	0.9103	-4.6874
NaHPO4-	1.755e-005	2.088	0.9103	-4.7964
Fe(OH)3(aq)	1.178e-005	1.259	1.0000	-4.9288
F-	9.997e-006	0.1898	0.9092	-5.0415
Cl-	9.996e-006	0.3542	0.9080	-5.0421
UO2(OH)3-	9.899e-006	3.177	0.9103	-5.0452
SO4	9.856e-006	0.9464	0.6852	-5.1705
A102-	9.053e-006	0.5337	0.9103	-5.0840
PO4	6.532e-006	0.6201	0.4267	-5.5548
MnO4-	5.253e-006	0.6244	0.9092	-5.3210
UO2(CO3)2	5.086e-006	1.983	0.6852	-5.4579
NaCO3-	4.458e-006	0.3698	0.9103	-5.3917
NaHCO3(aq)	4.333e-006	0.3639	1.0000	-5.3632
Ca++	3.659e-006	0.1466	0.6983	-5.5926
PbCO3(aq)	2.867e-006	0.7656	1.0000	-5.5426
CaCO3(aq)	2.354e-006	0.2355	1.0000	-5.6281
(UO2)2CO3(OH)3-	2.076e-006	1.351	0.9103	-5.7236
H2PO4-	1.359e-006	0.1317	0.9103	-5.9076
Pb(CO3)2	1.199e-006	0.3922	0.6852	-6.0853
Pb(OH)2(aq)	1.071e-006	0.2583	1.0000	-5.9702
CaHPO4(aq)	9.428e-007	0.1282	1.0000	-6.0256

UO2(OH)2(aq)	8.356e-007	0.2539	1.0000	-6.0780
MgPO4-	8.330e-007	0.09931	0.9103	-6.1202
Sr++	7.843e-007	0.06869	0.6919	-6.2655
Ni++	6.267e-007	0.03677	0.6983	-6.3589
MnO4	3.742e-007	0.04448	0.6852	-6.5911
Ni(OH)2(aq)	3.396e-007	0.03147	1.0000	-6.4691
PbOH+	3.355e-007	0.07520	0.9103	-6.5151
CO2(aq)	2.697e-007	0.01186	1.0000	-6.5692
UO2PO4-	1.755e-007	0.06401	0.9103	-6.7966
SrCO3(aq)	1.726e-007	0.02547	1.0000	-6.7629
NaSO4-	1.403e-007	0.01669	0.9103	-6.8939
Pb(OH)3-	1.037e-007	0.02676	0.9103	-7.0252
Mg++	9.865e-008	0.002397	0.7105	-7.1544
Ca2UO2(CO3)3	6.916e-008	0.03665	1.0000	-7.1602
SrHPO4(aq)	4.183e-008	0.007677	1.0000	-7.3785
NaOH(aq)	3.998e-008	0.001598	1.0000	-7.3982
MgHPO4(aq)	3.825e-008	0.004599	1.0000	-7.4174
CaHCO3+	3.319e-008	0.003354	0.9103	-7.5197
Ni(OH)3-	3.287e-008	0.003604	0.9103	-7.5241
PbP207	2.964e-008	0.01129	0.6852	-7.6924
MgCO3(aq)	2.897e-008	0.002441	1.0000	-7.5381
(only species >	> 1e-8 molal listed	1)		

mineral sacuracion	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Trevorite Hematite Pyromorphite-OH Fluorapatite Pb40(PO4)2 Bixbyite Pyrolusite Hausmannite Parsonsite Mn02(gamma) Pb3(PO4)2 Ferrite-Ca Goethite Ferrite-Mg Hydrocerussite Hydroxylapatite Manganite PbHPO4 Magnetite Plattnerite CaUO4 Fe(OH)3(ppd) Cerussite Minium Ni3(PO4)2 Bunsenite	54.0130s/sat 46.8737s/sat 19.3545s/sat 17.8760s/sat 14.0338s/sat 12.7065s/sat 12.2906s/sat 10.9469s/sat 10.1391s/sat 9.1963s/sat 8.5898s/sat 8.1618s/sat 7.6785s/sat 7.2285s/sat 6.9082s/sat 6.5367s/sat 5.8130s/sat 5.847s/sat 5.3527s/sat 4.7514s/sat 3.7945s/sat 3.7945s/sat 3.1595s/sat 3.0897s/sat 1.4156s/sat 1.4156s/sat 1.4153s/sat 1.0492s/sat	Boehmite Gibbsite Ice PbC03.PbO Calcite MnHPO4 Schoepite U03:2H2O Aragonite Crocoite U02(OH)2(beta) U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Schoepite-dehy(1 Monohydrocalcite SrUO4(alpha) Dolomite Dolomite-ord Litharge Becquerelite Massicot Mn(OH)3 Na2U2O7(am) Schoepite-dehy(. Dawsonite Pb3SO6 Pb4SO7 Lanarkite	0.2951s/sat 0.1033s/sat 0.1033s/sat -0.1387 -0.3449 -0.4751 -0.5300 -0.5967 -0.5967 -0.6195 -0.6789 -0.7091 -0.7801 -0.7801 -0.8604 -0.8665 -1.3088 -1.3139 -1.3282 -1.3282 -1.5188 -1.6930 -1.7010 -1.7544 -1.8336 -1.9697 -2.0044 -2.2884 -2.3057 -2.3412
Strontianite Whitlockite	1.0143s/sat 0.9812s/sat	Magnesite Schoepite-dehy(.	-2.4818 -2.4877

Ni(OH)2	0.7726s/sat	Corundum	-2.5935
Diaspore	0.6990s/sat	Pb4Cl2(OH)6	-2.7633
Na2U2O7(c)	0.6747s/sat	Dolomite-dis	-2.8726
Ca-Autunite	0.4166s/sat	NiCO3	-2.9045
(only minerals	with log O/K >	-3 listed)	

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) HF(g) HC1(g) NO2(g) N2(g) N2(g) N0(g) C12(g) H2(g) CO(g) U02F2(g) SO2(g) Pb(g) U03(g) N13(g) Na(g) U02C12(g) U0F4(g) F2(g) UF5(g) UF4(g) UF6(g) UG4(g) UC14(g) UC15(g) CC44(g) H2S(g) CC4(g) UC16(g) UC13(g) U2F10(g) A1(g) C(g)	0.1844 0.02598 7.938e-006 8.053e-017 5.157e-022 2.528e-022 1.788e-024 3.946e-028 1.656e-035 6.526e-042 1.618e-050 4.038e-061 1.089e-061 2.125e-063 1.944e-067 1.700e-071 2.759e-073 2.039e-074 1.061e-080 3.170e-088 6.924e-097 3.801e-103 1.242e-104 2.820e-120 1.961e-128 5.978e-135 4.855e-145 1.149e-147 7.475e-149 1.061e-149 7.326e-150 9.559e-151 3.788e-162 5.368e-168 9.076e-191 8.839e-192	-0.734 -1.585 -5.100 -16.094 -21.288 -21.597 -23.748 -27.404 -34.781 -41.185 -49.791 -60.394 -60.963 -62.673 -66.711 -70.770 -72.559 -73.691 -79.974 -87.499 -96.160 -102.420 -103.906 -119.550 -127.707 -134.223 -144.314 -146.940 -148.126 -148.974 -149.135 -150.020 -161.422 -167.270 -190.042 -191.054
U2F10(g) Al(g) C(g)	5.368e-168 9.076e-191 8.839e-192	-167.270 -190.042 -191.054
UF2(g) UO(g) UC12(g) UF(g) S2(g)	3.547e-195 1.624e-204 1.299e-206 3.240e-233 2.926e-240	-194.450 -203.789 -205.886 -232.489 -239.534
C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	6.114e-242 9.763e-249 8.807e-259 4.705e-263 2.194e-289	-241.214 -248.010 -258.055 -262.327 -288.659

Al+++	9.06e-006 9	0.06e-006	0.244		
Ca++		2.97e-005	1.19		
Cl-	1.00e-005 1	.00e-005	0.354		
Cr04	3.37e-005 3	3.37e-005	3.91		
F-	1.00e-005 1	.00e-005	0.190		
Fe++	4.01e-005 4	1.01e-005	2.24		
H+	-0.00196	-0.00196	-1.98		
H2O	55.5	55.5 1.0	0e+006		
HCO3-	0.00274	0.00274 0.00103	167.		
HPO4	0.00103	0.00103	98.8		
Mg++	1.00e-006 1	.00e-006	0.0243		
Mn++	5.63e-006 5	5.63e-006	0.309		
NH3(aq)	6.98e-005 6	5.98e-005	1.19		
Na+	0.00317	0.00317	72.8		
Ni++	1.00e-006 1	.00e-006	0.0587		
02(aq)	0.000390	0.000390	12.5		
Pb++	5.61e-006 5	5.61e-006	1.16		
SO4	1.00e-005 1	.00e-005	0.960		
Sr++	1.00e-006 1	.00e-006	0.0876		
UO2++	0.000324	0.000324	87.4		
					-
Elemental compo		In f	luid	Sorbe	ed
Elemental compo	osition total moles		luid mg/kg	Sorbe moles	ed mg/kg
	total moles	moles	mg/kg 		
Aluminum	total moles 9.060e-006	moles 9.060e-006	mg/kg 0.2443		
Aluminum Calcium	total moles 9.060e-006 2.970e-005	moles 9.060e-006 2.970e-005	mg/kg 0.2443 1.190		
Aluminum Calcium Carbon	total moles 9.060e-006 2.970e-005 0.002737	moles 9.060e-006 2.970e-005 0.002737	mg/kg 0.2443 1.190 32.86		
Aluminum Calcium Carbon Chlorine	total moles 9.060e-006 2.970e-005 0.002737	moles 9.060e-006 2.970e-005 0.002737	mg/kg 0.2443 1.190 32.86		
Aluminum Calcium Carbon Chlorine Chromium	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005	mg/kg 0.2443 1.190 32.86 0.3544 1.751		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	total moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 4.010e-005	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 4.010e-005	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 111.0 4.010e-005 5.610e-006	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 4.010e-005 5.610e-006	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 111.0 4.010e-005 5.610e-006	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 4.010e-005 5.610e-006 1.000e-006	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 111.0 4.010e-005 5.610e-006 1.000e-006 5.630e-006	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092 0.05866		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 111.0 4.010e-006 5.610e-006 1.000e-006 5.630e-006 6.980e-005	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092 0.05866 0.9772		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 111.0 4.010e-006 5.610e-006 1.000e-006 5.630e-006 6.980e-005 55.52	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092 0.05866 0.9772 8.879e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005 55.52 0.001030	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005 55.52 0.001030	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092 0.05866 0.9772 8.879e+005 31.89		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 6.980e-005 55.52 0.001030 0.003170	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005 55.52 0.001030 0.003170	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092 0.05866 0.9772 8.879e+005 31.89 72.84		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium Strontium	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005 55.52 0.001030 0.003170 1.000e-006	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005 55.52 0.001030 0.003170 1.000e-006	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092 0.05866 0.9772 8.879e+005 31.89 72.84 0.08758		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Sodium	9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 6.980e-005 55.52 0.001030 0.003170	moles 9.060e-006 2.970e-005 0.002737 1.000e-005 3.370e-005 1.000e-005 5.610e-006 1.000e-006 5.630e-006 1.000e-006 6.980e-005 55.52 0.001030 0.003170	mg/kg 0.2443 1.190 32.86 0.3544 1.751 0.1899 1.118e+005 2.238 1.162 0.02429 0.3092 0.05866 0.9772 8.879e+005 31.89 72.84 0.08758		

Sample 19961 CaCO₃ leach, Stage 3.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001849	42.49	0.9314	-2.7640
HCO3-	0.001554	94.80	0.9314	-2.8394
HPO4	0.0005080	48.75	0.7516	-3.4182
CO3	0.0003425	20.55	0.7537	-3.5882
02(aq)	0.0002463	7.878	1.0000	-3.6086
UO2(CO3)3	0.0001018	45.81	0.3186	-4.4889
NO3-	6.980e-005	4.327	0.9300	-4.1877
OH-	4.131e-005	0.7024	0.9307	-4.4151
A102-	1.039e-005	0.6126	0.9314	-5.0143
F-	9.998e-006	0.1899	0.9307	-5.0313
Cl-	9.997e-006	0.3543	0.9300	-5.0316
SO4	9.906e-006	0.9513	0.7516	-5.1282
Cr04	7.705e-006	0.8935	0.7516	-5.2373
NaHPO4-	5.872e-006	0.6983	0.9314	-5.2621
Fe(OH)4-	4.899e-006	0.6067	0.9314	-5.3408
Fe(OH)3(aq)	4.778e-006	0.5105	1.0000	-5.3208
UO2(CO3)2	3.785e-006	1.476	0.7516	-5.5460
NaHCO3(aq)	3.554e-006	0.2985	1.0000	-5.4492
CaPO4-	2.969e-006	0.4009	0.9314	-5.5583
UO2(OH)3-	1.856e-006	0.5957	0.9314	-5.7623
Ca++	1.824e-006	0.07307	0.7599	-5.8583
H2PO4-	1.730e-006	0.1678	0.9314	-5.7928
NaCO3-	1.560e-006	0.1294	0.9314	-5.8377
PO4	1.316e-006	0.1250	0.5256	-6.1600
MnO4-	1.038e-006	0.1234	0.9307	-6.0151
Ni++	8.944e-007	0.05248	0.7599	-6.1677
Sr++	8.490e-007	0.07437	0.7558	-6.1927
CO2(aq)	8.420e-007	0.03705	1.0000	-6.0747
PbCO3(aq)	7.903e-007	0.2111	1.0000	-6.1022
CaCO3(aq)	7.597e-007	0.07601	1.0000	-6.1194
MgPO4-	6.055e-007	0.07220	0.9314	-6.2488

(UO2)2CO3(OH)3- UO2(OH)2(aq)	5.340e-007 3.672e-007	0.3476 0.1116	0.9314 1.0000	-6.3034 -6.4351
CaHPO4(aq)	2.908e-007	0.03955	1.0000	-6.5365
Mg++	2.736e-007	0.006647	0.7676	-6.6778
Pb(CO3)2	1.793e-007	0.05867	0.7516	-6.8704
SrCO3(aq)	1.215e-007	0.01793	1.0000	-6.9156
Ni(OH)2(aq)	1.005e-007	0.009312	1.0000	-6.9979
UO2PO4-	9.817e-008	0.03582	0.9314	-7.0389
Pb(OH)2(aq)	9.458e-008	0.02281	1.0000	-7.0242
NaSO4-	9.094e-008	0.01082	0.9314	-7.0721
PbOH+	6.634e-008	0.01487	0.9314	-7.2091
MgHPO4(aq)	6.517e-008	0.007837	1.0000	-7.1860
MgCO3(aq)	5.163e-008	0.004352	1.0000	-7.2871
MnO4	2.970e-008	0.003532	0.7516	-7.6513
SrHPO4(aq)	2.813e-008	0.005163	1.0000	-7.5508
CaHCO3+	2.398e-008	0.002424	0.9314	-7.6510
NaOH(aq)	1.050e-008	0.0004199	1.0000	-7.9788
(only species >	1e-8 molal liste	ed)		

Mineral saturation states log Q/K

Mineral saturation	log Q/K		log Q/K
Birnessite	51.1722s/sat	Ni(OH)2	0.2438s/sat
Todorokite	44.3850s/sat	Ice	-0.1387
Trevorite	16.5632s/sat	Ca-Autunite	-0.3337
Pyromorphite	15.8793s/sat	MnHPO4	-0.4192
Hematite	13.2499s/sat	UO3:2H2O	-0.9538
Bixbyite	9.4229s/sat	Schoepite	-0.9538
Fluorapatite	9.1568s/sat	Calcite	-0.9664
Pyromorphite-OH	8.8608s/sat	Whitlockite	-1.0263
Pyrolusite	8.8442s/sat	UO2(OH)2(beta)	-1.0662
Pb40(PO4)2	7.6803s/sat	Aragonite	-1.1108
Hausmannite	7.5095s/sat	UO3:.9H2O(alpha)	-1.1372
MnO2(gamma)	7.3264s/sat	Schoepite-dehy(.	-1.1372
Parsonsite	6.6462s/sat	Na2U2O7(c)	-1.2007
Goethite	6.1447s/sat	Schoepite-dehy(.	-1.2175
Ferrite-Ca	5.1385s/sat	Schoepite-dehy(1	-1.2236
Pb3(PO4)2	5.0161s/sat	Dolomite-ord	-1.5683
Ferrite-Mg	4.7856s/sat	Dolomite	-1.5683
Manganite	4.3933s/sat	Crocoite	-1.6136
Hydrocerussite	3.5115s/sat	Dawsonite	-1.6607
PbHPO4	3.2153s/sat	Corundum	-1.7340
Plattnerite	2.0476s/sat	Monohydrocalcite	-1.8001
Magnetite	1.9776s/sat	PbC03.PbO	-1.9585
Hydroxylapatite	1.8486s/sat	Minium	-2.0450
CaUO4	1.2392s/sat	Plumbogummite	-2.0769
Diaspore	1.1287s/sat	Mn(OH)3	-2.1125
Fe(OH)3(ppd)	1.0236s/sat	Magnesite	-2.2308
Strontianite	0.8616s/sat	SrUO4(alpha)	-2.3182
Cerussite	0.8557s/sat	Schoepite-dehy(.	-2.3268
Boehmite	0.7248s/sat	Litharge	-2.5728
Gibbsite	0.5330s/sat	Massicot	-2.7550
Bunsenite	0.5204s/sat	Schoepite-dehy(.	-2.8448
Ni3(PO4)2	0.4619s/sat	NiCO3	-2.9389
(only minerals w	ith log Q/K >	-3 listed)	

fugacity log fug. Gases

```
\begin{array}{rrr}
0.1948 & -0.710 \\
0.02598 & -1.585
\end{array}

 02(g)
 H2O(g)
 CO2(g)
                  2.479e-005
                                 -4.606
                  1.889e-016
                                -15.724
 HF(q)
 HCl(q)
                  1.210e-021
                                -20.917
 NO2(q)
                   5.850e-022
                                -21.233
                  8.576e-024
                                -23.067
 N2(g)
                   8.884e-028
                                 -27.051
 NO(g)
 Cl2(g)
                   9.377e-035
                                 -34.028
                  6.349e-042
                                -41.197
 H2(g)
                  4.915e-050
                                -49.308
 CO(g)
                  9.760e-061
                                -60.011
 UO2F2(g)
                  6.128e-061
                                -60.213
 SO2(g)
                   1.825e-064 -63.739
8.540e-068 -67.069
3.571e-071 -70.447
7.148e-074 -73.146
                   1.825e-064
 Pb(g)
                   8.540e-068
 UO3(g)
 NH3(g)
 Na(g)
                   4.934e-074
                                -73.307
 UO2C12(g)
                   1.411e-079
                                -78.850
 UOF4(g)
                   1.793e-087
                                -86.747
 F2(g)
                   2.130e-095
                                -94.672
 UF5(g)
                   4.916e-102
                                -101.308
 UF4(q)
                                -102.042
 UF6(q)
                   9.084e-103
                  1.205e-120 -119.919
 UO2(g)
 Mg(g)
                   1.089e-128 -127.963
 UCl4(g)
                   7.751e-134 -133.111
                   1.498e-143 -142.825
 UC15(g)
                   3.212e-147 -146.493
 CH4(g)
                   5.378e-148 -147.269
3.873e-148 -147.412
 UCl6(g)
 H2S(g)
                   5.199e-150 -149.284
 UF3(g)
 Ca(g)
                   1.067e-150 -149.972
                   2.064e-161
 UC13(g)
                               -160.685
                   5.077e-165
                               -164.294
 U2F10(g)
                   2.343e-190
                                -189.630
 Al(q)
 C(q)
                   2.612e-191
                                -190.583
                  8.114e-195 -194.091
 UF2(g)
                  6.754e-205 -204.170
 UO(g)
 UC12(g)
                  2.976e-206 -205.526
                  3.116e-233 -232.506
 UF(g)
                  8.299e-239 -238.081
 S2(g)
                   5.052e-241 -240.297
 C2H4(g)
                              -248.027
 UCl(q)
                   9.397e-249
                   1.481e-256 -255.830
 U2Cl8(g)
                   4.478e-260
                                -259.349
 U2Cl10(g)
 U(g)
                   8.877e-290
                               -289.052
                             In fluid
                                                 Sorbed
                                                                  Kd
Original basis total moles moles mg/kg moles mg/kg
                                                                 L/kg
______
 Al+++ 1.04e-005 1.04e-005 0.281
Ca++ 5.89e-006 5.89e-006 0.236
 Cl-
              1.00e-005 1.00e-005
                                    0.354
            7.71e-006 7.71e-006
 Cr04--
                                     0.894
 F-
              1.00e-005 1.00e-005
                                     0.190
 Fe++
          9.68e-006 9.68e-006 0.540
```

H+	-0.000851	-0.000851	-0.857
H2O	55.5	55.5	1.00e+006
HCO3-	0.00222	0.00222	135.
HPO4	0.000521	0.000521	50.0
Mg++	1.00e-006	1.00e-006	0.0243
Mn++	1.07e-006	1.07e-006	0.0588
NH3(aq)	6.98e-005	6.98e-005	1.19
Na+	0.00186	0.00186	42.7
Ni++	1.00e-006	1.00e-006	0.0587
02(aq)	0.000390	0.000390	12.5
Pb++	1.14e-006	1.14e-006	0.236
SO4	1.00e-005	1.00e-005	0.960
Sr++	1.00e-006	1.00e-006	0.0876
UO2++	0.000109	0.000109	29.4
Elemental	composition]	In fluid

omposition	mposition In fluid		Sor	ped
total moles	moles	mg/kg	moles	mg/kg
1.040e-005	1.040e-005	0.2805		
5.890e-006	5.890e-006	0.2360		
0.002218	0.002218	26.64		
1.000e-005	1.000e-005	0.3544		
7.710e-006	7.710e-006	0.4008		
1.000e-005	1.000e-005	0.1899		
111.0	111.0	1.119e+005		
9.680e-006	9.680e-006	0.5404		
1.140e-006	1.140e-006	0.2361		
1.000e-006	1.000e-006	0.02430		
1.070e-006	1.070e-006	0.05877		
1.000e-006	1.000e-006	0.05867		
6.980e-005	6.980e-005	0.9774		
55.52	55.52	8.880e+005		
0.0005210	0.0005210	16.13		
0.001860	0.001860	42.75		
1.000e-006	1.000e-006	0.08760		
1.000e-005	1.000e-005	0.3206		
0.0001090	0.0001090	25.94		
	1.040e-005 5.890e-006 0.002218 1.000e-005 7.710e-006 1.000e-005 111.0 9.680e-006 1.140e-006 1.070e-006 1.070e-006 6.980e-005 55.52 0.0005210 0.001860 1.000e-006	1.040e-005	1.040e-005	total moles moles mg/kg moles 1.040e-005 1.040e-005 0.2805 0.2360 0.2360 0.2360 0.002218 26.64 1.000e-005 1.000e-005 0.3544 0.4008 0.4008 0.4008 0.4008 0.1899 0.11.0 0.119e+005 0.1899 0.11.0 0.119e+005 0.5404 0.5404 0.2361 0.2361 0.00e-006 0.2361 0.00e-006 0.02430 0.02430 0.070e-006 0.05867 0.9774 0.980e-005 0.9774 0.9774 0.9774 0.9774 0.005210 0.0005210 0.001860 0.001860 42.75 0.000e-006 0.08760 0.08760 1.000e-006 0.08760 0.03206 0.3206

Sample 19961 CaCO₃ leach, Stage 4.

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.001877	114.5	0.9522	-2.7477
Na+	0.001027	23.60	0.9522	-3.0098
02(aq)	0.0002488	7.959	1.0000	-3.6042
HPO4	0.0001085	10.41	0.8216	-4.0498
NO3-	6.979e-005	4.327	0.9515	-4.1777
CO2(aq)	2.799e-005	1.232	1.0000	-4.5530
Ca++	1.739e-005	0.6969	0.8260	-4.8427
UO2(CO3)2	1.684e-005	6.567	0.8216	-4.8590
UO2(CO3)3	1.590e-005	7.154	0.4555	-5.1402
CO3	1.440e-005	0.8637	0.8227	-4.9265
H2PO4-	1.064e-005	1.031	0.9522	-4.9944
(UO2)2CO3(OH)3-	6.559e-006	4.270	0.9522	-5.2044
Fe(OH)3(aq)	4.339e-006	0.4637	1.0000	-5.3626
NaHCO3(aq)	2.492e-006	0.2093	1.0000	-5.6034
UO2PO4-	1.924e-006	0.7023	0.9522	-5.7370
OH-	1.501e-006	0.02552	0.9519	-5.8451
$\mathtt{UO2}(\mathtt{OH})\mathtt{2}(\mathtt{aq})$	1.171e-006	0.3559	1.0000	-5.9315
Cr04	1.030e-006	0.1195	0.8216	-6.0723
Cl-	9.998e-007	0.03544	0.9515	-6.0216
F-	9.998e-007	0.01899	0.9519	-6.0215
Ni++	9.996e-007	0.05865	0.8260	-6.0832
SO4	9.925e-007	0.09533	0.8216	-6.0886
Sr++	9.842e-007	0.08622	0.8238	-6.0911
A102-	9.811e-007	0.05785	0.9522	-6.0296
Mg++	9.034e-007	0.02195	0.8301	-6.1250
NaHPO4-	7.614e-007	0.09056	0.9522	-6.1397
CaHPO4(aq)	7.038e-007	0.09574	1.0000	-6.1525
PbCO3(aq)	5.813e-007	0.1553	1.0000	-6.2356
CaCO3(aq)	3.613e-007	0.03616	1.0000	-6.4421
CaHCO3+	3.003e-007	0.03036	0.9522	-6.5437
CaPO4-	2.612e-007	0.03527	0.9522	-6.6043

Ca2UO2(CO3)3 UO2(OH)3- Mn++	2.369e-007 2.151e-007 1.994e-007	0.1256 0.06903 0.01095	1.0000 0.9522 0.8260	-6.6254 -6.6887 -6.7834
Fe(OH)4-	1.617e-007	0.02003	0.9522	-6.8126
MnO4-	7.700e-008	0.009156	0.9519	-7.1349
Fe(OH)2+	6.898e-008	0.006197	0.9522	-7.1826
UO2CO3(aq)	6.637e-008	0.02190	1.0000	-7.1780
MnCO3(aq)	6.458e-008	0.007422	1.0000	-7.1899
MnHPO4(aq)	5.582e-008	0.008422	1.0000	-7.2532
MgHPO4(aq)	5.434e-008	0.006535	1.0000	-7.2649
NaCO3-	3.975e-008	0.003299	0.9522	-7.4219
PbOH+	3.864e-008	0.008663	0.9522	-7.4342
UO2HPO4(aq)	2.972e-008	0.01088	1.0000	-7.5270
HCrO4-	1.965e-008	0.002298	0.9522	-7.7279
HA102(aq)	1.866e-008	0.001119	1.0000	-7.7292
MgPO4-	1.835e-008	0.002188	0.9522	-7.7577
MnPO4-	1.608e-008	0.002410	0.9522	-7.8150
Pb++	1.569e-008	0.003251	0.8227	-7.8891
MgHCO3+	1.528e-008	0.001304	0.9522	-7.8370
(only species	> 1e-8 molal listed	d)		

Mineral	saturation	states
		log Q/K

Mineral saturation	states log Q/K		log Q/K
Birnessite	 53.6228s/sat	 Ice	-0.1387
Todorokite	46.5287s/sat	Strontianite	-0.3751
Pyromorphite	14.7288s/sat	UO3:2H2O	-0.4502
Trevorite	13.7040s/sat	Schoepite	-0.4502
Hematite	13.1662s/sat	(UO2)3(PO4)2:4H2	-0.5156
Bixbyite	10.0344s/sat	UO2(OH)2(beta)	-0.5626
Pyrolusite	9.1511s/sat	UO3:.9H2O(alpha)	-0.6336
Hausmannite	8.4258s/sat	Schoepite-dehy(.	-0.6336
Parsonsite	8.2963s/sat	Hydroxylapatite	-0.6884
MnO2(gamma)	7.6333s/sat	Schoepite-dehy(.	-0.7139
Pyromorphite-OH	7.2703s/sat	Schoepite-dehy(1	-0.7200
Fluorapatite	7.0595s/sat	Corundum	-0.9046
Goethite	6.1029s/sat	Rhodochrosite	-1.1883
Pb40(PO4)2	5.5167s/sat	Crocoite	-1.2437
Manganite	4.6991s/sat	Calcite	-1.2891
Pb3(PO4)2	4.5075s/sat	Dawsonite	-1.4002
PbHPO4	3.7886s/sat	Aragonite	-1.4335
Ca-Autunite	3.2858s/sat	Mn(OH)3	-1.8067
Ferrite-Ca	3.2105s/sat	Schoepite-dehy(.	-1.8232
Ferrite-Mg	2.3947s/sat	Whitlockite	-2.1029
MnHPO4	2.1138s/sat	Monohydrocalcite	-2.1228
Plumbogummite	1.9687s/sat	Bunsenite	-2.2551
Magnetite	1.8510s/sat	Saleeite	-2.3011
Hydrocerussite	1.5897s/sat	Schoepite-dehy(.	-2.3412
Diaspore	1.5434s/sat	Strengite	-2.3695
Boehmite	1.1395s/sat	UO2CO3	-2.3879
Fe(OH)3(ppd)	0.9818s/sat	Rutherfordine	-2.4082
Gibbsite	0.9477s/sat	Ni(OH)2	-2.5317
Cerussite	0.7223s/sat	Dolomite-ord	-2.6766
Plattnerite	0.3947s/sat	Dolomite	-2.6766
CaUO4	-0.1016	UO2HPO4:4H2O	-2.9437
(only minerals w	ith log Q/K >	-3 listed)	

Gases	fugacity	log fug.			
02(g)	0.1968	-0.706			
H2O(g)	0.02598	-1.585			
CO2(g)	0.0008240	-3.084			
HF(g)	5.199e-016	-15.284			
NO2(g)	1.607e-020	-19.794			
N2(g)	6.340e-021	-20.198			
HCl(g)	3.333e-021	-20.477			
NO(g)	2.428e-026	-25.615			
Cl2(g)	7.149e-034	-33.146			
H2(g)	6.317e-042	-41.199			
CO(g)	1.626e-048	-47.789			
S02(g)	4.839e-059	-58.315			
UO2F2(g)	2.358e-059	-58.627			
Pb(g)	4.018e-066	-65.396			
UO3(g)	2.723e-067	-66.565			
NH3(g)	9.637e-070	-69.016			
UO2C12(g)	1.193e-072	-71.923			
Na(g) UOF4(g)	1.504e-075 2.584e-077	-74.823			
F2(g)	1.365e-086	-76.588 -85.865			
UF5(g)	1.070e-092	-91.970			
UF6(g)	1.260e-099	-98.900			
UF4(g)	8.955e-100	-99.048			
UO2(g)	3.824e-120	-119.418			
Mg(g)	5.342e-131	-130.272			
UC14(g)	1.415e-131	-130.849			
UC15(g)	7.550e-141	-140.122			
UCl6(g)	7.484e-145	-144.126			
CH4(g)	1.046e-145	-144.980			
H2S(g)	3.012e-146	-145.521			
UF3(g)	3.432e-148	-147.464			
Ca(g)	1.519e-152	-151.818			
UCl3(g)	1.365e-159	-158.865			
U2F10(g)	1.283e-159	-158.892			
C(g)	8.594e-190	-189.066			
Al(g)	6.041e-190	-189.219			
UF2(g)	1.941e-193	-192.712			
UO(g)	2.132e-204	-203.671			
UC12(g)	7.125e-205	-204.147			
UF(g)	2.701e-232	-231.568			
S2(g)	5.070e-235	-234.295			
C2H4(g) UCl(g)	5.415e-238 8.149e-248				
U2Cl8(g)	4.933e-252	-247.089 -251.307			
U2Cl10(g)	1.138e-254	-253.944			
U(g)	2.788e-289	-288.555			
0(9)	2.7000 209	200.333			
	Iı	n fluid	Sorl	bed	Kd
Original basis	total moles moles	s mg/kg	moles	mg/kg	L/kg
Al+++	1.00e-006 1.00e-				
Ca++	1.95e-005 1.95e-0				
C1-	1.00e-006 1.00e-				
Cr04	1.05e-006 1.05e-0				
F-	1.00e-006 1.00e-0	0.0190			

Fe++ H+ H20 HCO3- HPO4 Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 Sr++	4.57e-006 -0.000175 55.5 0.00201 0.000123 1.00e-006 4.16e-007 6.98e-005 0.00103 1.00e-006 0.000390 6.48e-007 1.00e-006	0.00201 0.000123 1.00e-006 4.16e-007 6.98e-005 0.00103 1.00e-006 0.000390 6.48e-007 1.00e-006	0.255 -0.177 1.00e+006 123. 11.8 0.0243 0.0228 1.19 23.7 0.0587 12.5 0.134 0.0960
S04 Sr++ UO2++	1.00e-006 1.00e-006 4.95e-005	1.00e-006 1.00e-006 4.95e-005	0.0960 0.0876 13.4

Elemental comp	position	In fl	In fluid		Sorbed	
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	1.000e-006	1.000e-006	0.02698			
Calcium	1.950e-005	1.950e-005	0.7814			
Carbon	0.002012	0.002012	24.17			
Chlorine	1.000e-006	1.000e-006	0.03545			
Chromium	1.050e-006	1.050e-006	0.05459			
Fluorine	1.000e-006	1.000e-006	0.01899			
Hydrogen	111.0	111.0	1.119e+005			
Iron	4.570e-006	4.570e-006	0.2552			
Lead	6.480e-007	6.480e-007	0.1342			
Magnesium	1.000e-006	1.000e-006	0.02430			
Manganese	4.160e-007	4.160e-007	0.02285			
Nickel	1.000e-006	1.000e-006	0.05868			
Nitrogen	6.980e-005	6.980e-005	0.9775			
Oxygen	55.52	55.52	8.881e+005			
Phosphorus	0.0001230	0.0001230	3.809			
Sodium	0.001030	0.001030	23.67			
Strontium	1.000e-006	1.000e-006	0.08760			
Sulfur	1.000e-006	1.000e-006	0.03206			
Uranium	4.950e-005	4.950e-005	11.78			

Sample 19961 CaCO₃ leach, Stage 5.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.002018	123.1	0.9440	-2.7200
Na+	0.001086	24.95	0.9440	-2.9893
02(aq)	0.0002483	7.944	1.0000	-3.6050
HPO4	0.0001717	16.48	0.7934	-3.8657
CO3	0.0001025	6.151	0.7949	-4.0888
UO2(CO3)3	7.228e-005	32.52	0.3959	-4.5434
NO3-	6.980e-005	4.327	0.9431	-4.1816
UO2(CO3)2	1.002e-005	3.906	0.7934	-5.0998
OH-	9.776e-006	0.1662	0.9435	-5.0351
Ca++	4.654e-006	0.1865	0.7992	-5.4296
CO2(aq)	4.620e-006	0.2033	1.0000	-5.3353
Fe(OH)3(aq)	3.750e-006	0.4007	1.0000	-5.4259
NaHCO3(aq)	2.784e-006	0.2338	1.0000	-5.5553
H2PO4-	2.540e-006	0.2462	0.9440	-5.6203
Cr04	2.154e-006	0.2498	0.7934	-5.7673
(UO2)2CO3(OH)3-	1.803e-006	1.174	0.9440	-5.7690
NaHPO4-	1.230e-006	0.1463	0.9440	-5.9350
F-	9.999e-007	0.01899	0.9435	-6.0253
Cl-	9.998e-007	0.03544	0.9431	-6.0255
A102-	9.969e-007	0.05878	0.9440	-6.0264
SO4	9.936e-007	0.09543	0.7934	-6.1033
Ni++	9.929e-007	0.05826	0.7992	-6.1004
Sr++	9.429e-007	0.08260	0.7963	-6.1244
Fe(OH)4-	9.102e-007	0.1127	0.9440	-6.0659
Mg++	7.324e-007	0.01780	0.8046	-6.2297
UO2(OH)3-	7.083e-007	0.2273	0.9440	-6.1749
CaPO4-	6.729e-007	0.09086	0.9440	-6.1971
CaCO3(aq)	6.437e-007	0.06441	1.0000	-6.1913
UO2(OH)2(aq)	5.920e-007	0.1800	1.0000	-6.2277
MnO4-	4.229e-007	0.05029	0.9435	-6.3990
PbCO3(aq)	3.562e-007	0.09516	1.0000	-6.4483

NaCO3- CaHPO4(aq) UO2PO4-	2.892e-007 2.784e-007 2.323e-007	0.02400 0.03788 0.08478	0.9440 1.0000 0.9440	-6.5638 -6.5553 -6.6589
MgPO4-	1.435e-007	0.01711	0.9440	-6.8681
PO4	9.972e-008	0.009469	0.5939	-7.2275
CaHCO3+	8.358e-008	0.008448	0.9440	-7.1029
MgHPO4(aq)	6.526e-008	0.007848	1.0000	-7.1853
Ca2UO2(CO3)3	6.276e-008	0.03327	1.0000	-7.2023
MgCO3(aq)	4.575e-008	0.003857	1.0000	-7.3396
SrCO3(aq)	4.488e-008	0.006623	1.0000	-7.3480
Pb(CO3)2	2.418e-008	0.007909	0.7934	-7.7171
PbOH+	2.241e-008	0.005024	0.9440	-7.6745
MgHCO3+	1.291e-008	0.001102	0.9440	-7.9140
SrHPO4(aq)	1.175e-008	0.002156	1.0000	-7.9301
(only species >	• 1e-8 molal listed	i)		

Mineral saturation states log Q/K

Mineral saturation	log Q/K		log Q/K
Birnessite Todorokite Trevorite Hematite Pyromorphite Bixbyite Pyrolusite Hausmannite Mn02(gamma) Fluorapatite Parsonsite Goethite Pyromorphite-OH Pb40(P04)2 Manganite Ferrite-Ca Ferrite-Mg Pb3(P04)2 PbHP04 Hydrocerussite Magnetite Plattnerite Fe(OH)3(ppd) Ca-Autunite Diaspore CaU04 MnHP04 Cerussite Strontianite	log Q/K	Hydroxylapatite Gibbsite Ice Bunsenite Schoepite U03:2H2O U02(OH)2(beta) Ni(OH)2 U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Schoepite-dehy(1 Calcite Aragonite Ni3(PO4)2 Dolomite-ord Dolomite Monohydrocalcite Whitlockite Mn(OH)3 Crocoite Rhodochrosite Schoepite-dehy(. Dawsonite Magnesite Na2U2O7(c) Corundum Schoepite-dehy(. Plumbogummite	log Q/K 0.1696s/sat 0.1409s/sat -0.1387 -0.6523 -0.7464 -0.7464 -0.8588 -0.9289 -0.9298 -0.9298 -1.0101 -1.0162 -1.0383 -1.1827 -1.4713 -1.6928 -1.6928 -1.6928 -1.8720 -1.8752 -1.8800 -1.9890 -2.0437 -2.1194 -2.1589 -2.2833 -2.4765 -2.5183 -2.6374 -2.7538
Boehmite (only minerals w	0.3327s/sat ith log Q/K > -	3 listed)	

Gases	fugacity	log fug.
O2(g)	0.1965	-0.707
H2O(g)	0.02598	-1.585
CO2(g)	0.0001360	-3.866
HF(g)	7.982e-017	-16.098

NO2(g) HC1(g) N2(g) NO(g) C12(g) H2(g) CO(g) SO2(g) U02F2(g) Pb(g) U03(g) NH3(g) U02C12(g) Na(g) U0F4(g) F2(g) UF5(g) UF4(g) UF6(g) UC14(g) UC15(g) CH4(g) UC15(g) CH4(g) UC16(g) UC13(g) UC13(g) UC13(g) UC12(g) Na(g) UC12(g) UF2(g) UF2(g) UG9 UC12(g) UF(g) UC12(g) UG1(g) UC1(g)	2.468e-021 5.117e-022 1.501e-022 3.732e-027 1.683e-035 6.323e-042 2.686e-049 1.123e-060 2.811e-061 1.493e-065 1.377e-067 1.485e-070 1.422e-074 1.018e-074 7.260e-081 3.215e-088 4.620e-097 2.518e-103 8.347e-105 1.935e-120 1.752e-129 3.976e-135 3.255e-145 1.734e-146 7.010e-148 4.951e-150 6.289e-151 1.641e-151 2.499e-162 2.390e-168 1.421e-190 9.438e-191 2.318e-195 1.080e-204 8.505e-207 2.102e-233 2.742e-238 1.484e-239 6.340e-249 3.896e-259 2.115e-263 1.414e-289	-20.608 -21.291 -21.824 -26.428 -34.774 -41.199 -48.571 -59.950 -60.551 -64.826 -66.861 -69.828 -73.847 -73.992 -80.139 -87.493 -96.335 -102.599 -104.078 -119.713 -128.757 -134.401 -144.487 -145.761 -147.154 -149.305 -150.201 -150.785 -161.602 -167.622 -189.847 -190.025 -194.635 -203.967 -206.070 -232.677 -237.562 -238.829 -248.198 -258.409 -262.675 -288.850			
U(g)					
Original basis		fluid mg/kg	Sorb moles	mg/kg	Kd L/kg
Al+++ Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 Mg++	1.00e-006	06 0.259 06 0.0354 06 0.250 06 0.0190 06 0.261 41 -0.444 .5 1.00e+006 37 144. 77 17.0			

Mn++	4.44e-007	4.44e-007	0.0244
NH3(aq)	6.98e-005	6.98e-005	1.19
Na+	0.00109	0.00109	25.1
Ni++	1.00e-006	1.00e-006	0.0587
02(aq)	0.000390	0.000390	12.5
Pb++	4.13e-007	4.13e-007	0.0856
SO4	1.00e-006	1.00e-006	0.0960
Sr++	1.00e-006	1.00e-006	0.0876
UO2++	8.75e-005	8.75e-005	23.6

Elemental composition		In fl	In fluid		Sorbed	
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	1.000e-006	1.000e-006	0.02698			
Calcium	6.460e-006	6.460e-006	0.2588			
Carbon	0.002369	0.002369	28.44			
Chlorine	1.000e-006	1.000e-006	0.03544			
Chromium	2.160e-006	2.160e-006	0.1123			
Fluorine	1.000e-006	1.000e-006	0.01899			
Hydrogen	111.0	111.0	1.119e+005			
Iron	4.670e-006	4.670e-006	0.2607			
Lead	4.130e-007	4.130e-007	0.08555			
Magnesium	1.000e-006	1.000e-006	0.02430			
Manganese	4.440e-007	4.440e-007	0.02439			
Nickel	1.000e-006	1.000e-006	0.05868			
Nitrogen	6.980e-005	6.980e-005	0.9774			
Oxygen	55.52	55.52	8.880e+005			
Phosphorus	0.0001770	0.0001770	5.481			
Sodium	0.001090	0.001090	25.05			
Strontium	1.000e-006	1.000e-006	0.08760			
Sulfur	1.000e-006	1.000e-006	0.03206			
Uranium	8.750e-005	8.750e-005	20.82			

Sample 19961 CaCO₃ leach, Stage 6.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 8.800
 log f02 = -0.726

 Eh = 0.6977 volts
 pe = 11.7949

 Ionic strength
 = 0.005260

 Activity of water
 = 1.000000

 Solvent mass
 = 0.999989 kg

 Solution mass
 = 1.000463 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000001 molal

 Dissolved solids
 = 474 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 154.07 mg/kg as CaCO3

moles moles grams cm3
Reactants remaining reacted reacted

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001684	38.70	0.9255	-2.8073
HCO3-	0.001603	97.79	0.9255	-2.8286
UO2(CO3)3	0.0003285	147.8	0.2874	-4.0250
02(aq)	0.0002375	7.598	1.0000	-3.6243
HPO4	0.0002275	21.82	0.7324	-3.7783
(UO2)2CO3(OH)3-	0.0001459	94.97	0.9255	-3.8695
NO3-	6.979e-005	4.325	0.9238	-4.1906
UO2(CO3)2	6.643e-005	25.90	0.7324	-4.3129
CO3	5.976e-005	3.584	0.7349	-4.3574
Ca++	3.731e-005	1.494	0.7420	-4.5578
Cr04	2.829e-005	3.280	0.7324	-4.6836
AlO2-	2.688e-005	1.585	0.9255	-4.6042
Fe(OH)3(aq)	2.630e-005	2.809	1.0000	-4.5800
Ca2UO2(CO3)3	1.147e-005	6.080	1.0000	-4.9404
OH-	6.901e-006	0.1173	0.9247	-5.1951
UO2(OH)2(aq)	5.976e-006	1.816	1.0000	-5.2236
PbCO3(aq)	5.273e-006	1.408	1.0000	-5.2779
CO2(aq)	5.201e-006	0.2288	1.0000	-5.2839
UO2(OH)3-	5.045e-006	1.619	0.9255	-5.3308
H2PO4-	4.579e-006	0.4439	0.9255	-5.3729
Fe(OH)4-	4.504e-006	0.5577	0.9255	-5.3800
CaPO4-	4.323e-006	0.5835	0.9255	-5.3979
UO2PO4-	4.228e-006	1.543	0.9255	-5.4075
MnO4-	3.780e-006	0.4493	0.9247	-5.4565
NaHCO3(aq)	3.298e-006	0.2769	1.0000	-5.4818
CaCO3(aq)	2.582e-006	0.2583	1.0000	-5.5881
CaHPO4(aq)	2.535e-006	0.3447	1.0000	-5.5961
NaHPO4-	2.334e-006	0.2775	0.9255	-5.6656
Cl-	9.998e-007	0.03543	0.9238	-6.0345
F-	9.997e-007	0.01898	0.9247	-6.0341
Ni++	9.967e-007	0.05847	0.7420	-6.1310

SO4	9.891e-007	0.09497	0.7324	-6.1400
Sr++	9.631e-007	0.08435	0.7373	-6.1487
Mg++	7.667e-007	0.01863	0.7510	-6.2397
CaHCO3+	4.943e-007	0.04994	0.9255	-6.3397
PbOH+	4.345e-007	0.09738	0.9255	-6.3956
NaCO3-	2.418e-007	0.02006	0.9255	-6.6503
Pb(CO3)2	2.089e-007	0.06832	0.7324	-6.8153
MnCO3(aq)	1.357e-007	0.01559	1.0000	-6.8673
Mn++	1.258e-007	0.006907	0.7420	-7.0299
MgPO4-	1.210e-007	0.01443	0.9255	-6.9508
(UO2)3(OH)7-	1.137e-007	0.1056	0.9255	-6.9778
HA102(aq)	1.112e-007	0.006669	1.0000	-6.9538
HCrO4-	1.108e-007	0.01295	0.9255	-6.9892
Pb(OH)2(aq)	1.022e-007	0.02463	1.0000	-6.9907
PO4	1.010e-007	0.009590	0.4960	-7.3001
Fe(OH)2+	9.629e-008	0.008649	0.9255	-7.0500
MnPO4-	7.827e-008	0.01173	0.9255	-7.1400
MgHPO4(aq)	7.798e-008	0.009375	1.0000	-7.1080
UO2CO3(aq)	6.295e-008	0.02077	1.0000	-7.2010
MnHPO4(aq)	5.912e-008	0.008919	1.0000	-7.2282
Pb++	4.298e-008	0.008901	0.7349	-7.5005
PbP207	3.102e-008	0.01182	0.7324	-7.6436
MgCO3(aq)	2.409e-008	0.002030	1.0000	-7.6182
SrCO3(aq)	2.287e-008	0.003374	1.0000	-7.6408
MnO4	1.847e-008	0.002196	0.7324	-7.8688
UO2HPO4(aq)	1.421e-008	0.005197	1.0000	-7.8475
SrHPO4(aq)	1.358e-008	0.002493	1.0000	-7.8670
MgHCO3+	1.002e-008	0.0008548	0.9255	-8.0326
(only species	> 1e-8 molal liste	ed)		

Mineral saturation states $\log Q/K$

mineral sacuration	log Q/K		log Q/K
Birnessite	61.9903s/sat	UO2(OH)2(beta) Strontianite Schoepite-dehy(. UO3:.9H2O(alpha)	0.1453s/sat
Todorokite	53.8528s/sat		0.1364s/sat
Pyromorphite	19.4233s/sat		0.0743s/sat
Trevorite	16.5213s/sat		0.0743s/sat
Hematite Pyromorphite-OH Bixbyite	14.7313s/sat	Schoepite-dehy(1	-0.0060
	12.6277s/sat	Schoepite-dehy(1	-0.0121
	12.1313s/sat	Ice	-0.1387
Hausmannite Fluorapatite Parsonsite	11.5761s/sat	Na2U2O7(c)	-0.4242
	11.2360s/sat	Calcite	-0.4351
	10.3244s/sat	(UO2)3(PO4)2:4H2	-0.4487
Pb40(PO4)2	10.2139s/sat	Dawsonite Aragonite Mn(OH)3 Rhodochrosite	-0.5031
Pyrolusite	10.1945s/sat		-0.5795
MnO2(gamma)	8.6767s/sat		-0.7583
Pb3(PO4)2	7.5162s/sat		-0.8657
Goethite	6.8855s/sat	Bunsenite	-1.0029
Ferrite-Ca	6.3604s/sat	PbC03.PbO	-1.1008
Manganite	5.7475s/sat	Schoepite-dehy(.	-1.1153
Hydrocerussite	5.1935s/sat	Monohydrocalcite Ni(OH)2 Dolomite-ord	-1.2688
Ferrite-Mg	5.1451s/sat		-1.2795
PbHPO4	4.4487s/sat		-1.3682
Ca-Autunite	4.2296s/sat	Dolomite	-1.3682
Magnetite	4.2036s/sat	Schoepite-dehy(.	-1.6333
Hydroxylapatite	4.1507s/sat	Ni3(PO4)2	-1.7082
Plumbogummite	3.9265s/sat	Saleeite	-1.7568
1 Tallbogallill CE	J. 72035/ Bac	Daiceice	1.7500

Diaspore	2.3188s/sat	Minium	-1.9524
CaUO4	2.1912s/sat	UO2CO3	-2.4109
Becquerelite	2.1883s/sat	Rutherfordine	-2.4312
MnHPO4	2.1388s/sat	Przhevalskite	-2.4348
Plattnerite	2.0732s/sat	Litharge	-2.5393
Boehmite	1.9149s/sat	Magnesite	-2.5619
Fe(OH)3(ppd)	1.7644s/sat	Strengite	-2.6155
Gibbsite	1.7231s/sat	UO3(gamma)	-2.6163
Cerussite	1.6800s/sat	SrUO4(alpha)	-2.6227
Corundum	0.6461s/sat	Massicot	-2.7215
Whitlockite	0.5949s/sat	Dolomite-dis	-2.9126
Crocoite	0.5336s/sat	Na2U2O7(am)	-2.9325
Schoepite	0.2577s/sat	Corkite	-2.9639
UO3:2H2O	0.2577s/sat		

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.1880	-0.726
H2O(g)	0.02598	-1.585
CO2(g)	0.0001531	-3.815
HF(g)	1.130e-016	-15.947
NO2(g)	3.533e-021	-20.452
HCl(g)	7.244e-022	-21.140
N2(g)	3.362e-022	-21.473
NO(g)	5.462e-027	-26.263
Cl2(g)	3.300e-035	-34.482
H2(g)	6.464e-042	-41.189
CO(g)	3.091e-049	-48.510
UO2F2(g)	5.691e-060	-59.245
SO2(g)	2.205e-060	-59.657
Pb(g)	2.007e-064	-63.697
U03(g)	1.390e-066	-65.857
NH3(g)	2.297e-070	-69.639
U02Cl2(g)	2.877e-073	-72.541
Na(g)	1.083e-074	-73.965
UOF4(g)	2.949e-079	-78.530
F2(g)	6.308e-088	-87.200
UF5(g)	2.688e-095	-94.571
UF4(g)	1.046e-101	-100.981
UF6(g)	6.801e-103	-102.167
UO2(g)	1.997e-119	-118.700
Mg(g)	8.375e-130	-129.077
UC14(g)	1.649e-133	-132.783
UC15(g)	1.890e-143	-142.723
CH4(g)	2.133e-146	-145.671
H2S(g)	1.471e-147	-146.832
UCl6(g)	4.026e-148	-147.395
UF3(g)	1.865e-149	-148.729
Ca(g)	5.978e-151	-150.223
UC13(g)	7.403e-161	-160.131
U2F10(g)	8.085e-165	-164.092
Al(g)	3.728e-189	-188.428
C(g) UF2(g)	1.672e-190 4.905e-194	-189.777 -193.309
_		-193.309
UO(g)	1.140e-203	
UCl2(g)	1.799e-205	-204.745

UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	3.176e-2 1.154e-2 2.148e-2 9.577e-2 6.701e-2 7.132e-2 1.525e-2	237 -236.9 239 -238.0 248 -247.0 256 -255.3 260 -259.3	938 568 019 174 147		
Original basis	total moles	In fluid	g/kg mo	Sorbed les mg/kg	Kd L/kg
Mg++ Mn++ NH3(aq) Na+ Ni++	3.09e-005 3.00209 55.5 0.00298 0.000246 1.00e-006 1.00e-	.02e-005 .00e-006 .84e-005 .00e-006 .09e-005 -0.00209 .55.5 1.00 .00298 .0.00246 .00e-006 .20e-006 .98e-005 0.00169 .00e-006 .00e-006 .000390 .10e-006 .00e-006	0.0190 1.72 -2.11 0e+006 182. 23.6 0.0243 0.231 1.19 38.8 0.0587 12.5 1.26 0.0960 0.0876		
Elemental compo	total moles	In fi	mg/kg	Sorbe moles	
Calcium Carbon	2.700e-005 7.020e-005	2.700e-005	0.7282 2.812 35.77		

Sample 19250 water leach, 1 day (Stage 1).

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
					-
02(g)	fixed fuga	city buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.008276	190.1	0.9050	-2.1255
HCO3-	0.004707	287.0	0.9050	-2.3706
F-	0.001425	27.06	0.9037	-2.8901
HPO4	0.0003509	33.66	0.6690	-3.6294
02(aq)	0.0002214	7.080	1.0000	-3.6548
NO3-	0.0001420	8.798	0.9023	-3.8924
K+	0.0001298	5.072	0.9023	-3.9313
UO2(CO3)3	0.0001103	49.62	0.1998	-4.6567
Fe(OH)3(aq)	9.550e-005	10.20	1.0000	-4.0200
CO2(aq)	6.224e-005	2.737	1.0000	-4.2059
A102-	5.162e-005	3.043	0.9050	-4.3305
NaHCO3(aq)	4.549e-005	3.819	1.0000	-4.3421
CO3	4.495e-005	2.696	0.6727	-4.5194
H2PO4-	2.750e-005	2.665	0.9050	-4.6040
Ca++	2.673e-005	1.070	0.6835	-4.7383
UO2(CO3)2	2.466e-005	9.612	0.6690	-4.7826
Cr04	2.009e-005	2.329	0.6690	-4.8715
SO4	1.653e-005	1.587	0.6690	-4.9563
NaHPO4-	1.616e-005	1.921	0.9050	-4.8350
Mn++	7.465e-006	0.4098	0.6835	-5.2922
Cl-	7.232e-006	0.2562	0.9023	-5.1854
Ni++	6.950e-006	0.4076	0.6835	-5.3233
MnCO3(aq)	5.109e-006	0.5869	1.0000	-5.2917
MnHPO4(aq)	4.554e-006	0.6868	1.0000	-5.3416
Fe(OH)4-	4.012e-006	0.4967	0.9050	-5.4400
Mg++	3.656e-006	0.08880	0.6968	-5.5939
MnO4-	2.673e-006	0.3177	0.9037	-5.6170
CaHPO4(aq)	2.357e-006	0.3204	1.0000	-5.6277
OH-	1.694e-006	0.02879	0.9037	-5.8151
PbCO3(aq)	1.626e-006	0.4341	1.0000	-5.7890
Fe(OH)2+	1.491e-006	0.1339	0.9050	-5.8700

MnPO4-	1.479e-006	0.2215	0.9050	-5.8734
CaCO3(aq)	1.173e-006	0.1173	1.0000	-5.9306
Ca2UO2(CO3)3	1.166e-006	0.6181	1.0000	-5.9331
UO2PO4-	1.045e-006	0.3812	0.9050	-6.0242
CaPO4-	9.859e-007	0.1331	0.9050	-6.0495
NaF(aq)	9.700e-007	0.04070	1.0000	-6.0132
CaHCO3+	9.575e-007	0.09673	0.9050	-6.0622
HA102(aq)	8.707e-007	0.05220	1.0000	-6.0601
NaCO3-	8.181e-007	0.06785	0.9050	-6.1306
AlF3(aq)	7.286e-007	0.06115	1.0000	-6.1375
(UO2)2CO3(OH)3-	7.254e-007	0.4720	0.9050	-6.1828
NaSO4-	6.047e-007	0.07195	0.9050	-6.2618
MgHPO4(aq)	4.861e-007	0.05843	1.0000	-6.3133
HCrO4-	3.064e-007	0.03582	0.9050	-6.5571
AlF4-	2.605e-007	0.02681	0.9050	-6.6276
UO2(OH)2(aq)	2.459e-007	0.07472	1.0000	-6.6092
MnF+	1.954e-007	0.01444	0.9050	-6.7523
MgPO4-	1.850e-007	0.02206	0.9050	-6.7761
KHPO4-	1.831e-007	0.02471	0.9050	-6.7807
MnHCO3+	1.828e-007	0.02119	0.9050	-6.7813
MgHCO3+	1.302e-007	0.01110	0.9050	-6.9288
CaF+	1.249e-007	0.007376	0.9050	-6.9467
MgF+	8.161e-008	0.003532	0.9050	-7.1316
MgCO3(aq)	7.338e-008	0.006183	1.0000	-7.1344
NaAlO2(aq)	6.319e-008	0.005176	1.0000	-7.1994
UO2(OH)3-	5.092e-008	0.01634	0.9050	-7.3364
AlF2+	4.965e-008	0.003224	0.9050	-7.3474
Pb(CO3)2	4.855e-008	0.01587	0.6690	-7.4884
PbOH+	4.772e-008	0.01069	0.9050	-7.3647
PO3F	4.725e-008	0.004626	0.6690	-7.5002
PO4	4.189e-008	0.003975	0.4043	-7.7712
UO2CO3(aq)	3.100e-008	0.01022	1.0000	-7.5087
PbP207	3.019e-008	0.01150	0.6690	-7.6948
CaSO4(aq)	2.609e-008	0.003550	1.0000	-7.5835
MnOH+	2.193e-008	0.001577	0.9050	-7.7022
Pb++	2.102e-008	0.004352	0.6727	-7.8496
UO2HPO4(aq)	1.431e-008	0.005235	1.0000	-7.8442
CaNO3+	1.296e-008	0.001322	0.9050	-7.9307
MnSO4(aq)	1.272e-008	0.001919	1.0000	-7.8956
HF(aq)	1.253e-008	0.0002505	1.0000	-7.9020
KSO4-	1.085e-008	0.001465	0.9050	-8.0080
	1e-8 molal liste		0.7030	0.0000
(CIII) DECCIED	10 0 110101 11500	/		

Mineral saturation states

	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Hematite Bixbyite Hausmannite Fluorapatite	65.8803s/sat 57.2603s/sat 17.2091s/sat 17.1140s/sat 15.8514s/sat 13.1114s/sat 13.0539s/sat 12.0642s/sat	Rhodochrosite Plattnerite Crocoite Ice Ni3(PO4)2 Mn(OH)3 Fluorite CaUO4	0.7099s/sat 0.4689s/sat -0.0034 -0.1387 -0.2273 -0.2682 -0.4815 -0.6149
Pyrolusite	10.6770s/sat	Strengite	-0.6665
-	9.1592s/sat	Calcite	-0.8665
MnO2(gamma)	·		
Pyromorphite-OH	8.8493s/sat	Whitlockite	-0.8888

Parsonsite	8.5385s/sat	Aragonite	-0.9220
Plumbogummite	7.7963s/sat	Schoepite	-1.1279
Goethite	7.4455s/sat	UO3:2H2O	-1.1279
Pb40(PO4)2	6.6356s/sat	Dolomite-ord	-1.2270
Manganite	6.2376s/sat	Dolomite	-1.2270
Ferrite-Ca	6.0600s/sat	UO2(OH)2(beta)	-1.2403
Magnetite	5.8914s/sat	UO3:.9H2O(alpha)	-1.3113
Ferrite-Mg	5.6710s/sat	Schoepite-dehy(.	-1.3113
Pb3(PO4)2	5.5269s/sat	Schoepite-dehy(.	-1.3916
PbHPO4	4.2485s/sat	Schoepite-dehy(1	-1.3977
MnHPO4	4.0254s/sat	Bunsenite	-1.4352
Diaspore	3.2125s/sat	Monohydrocalcite	-1.6113
Ca-Autunite	2.8156s/sat	Ni(OH)2	-1.7118
Boehmite	2.8086s/sat	(UO2)3(PO4)2:4H2	-1.8278
Gibbsite	2.6168s/sat	Sellaite	-1.9898
Hydrocerussite	2.5823s/sat	Magnesite	-2.0781
Corundum	2.4335s/sat	Saleeite	-2.3445
Fe(OH)3(ppd)	2.3244s/sat	Berlinite	-2.4079
Dawsonite	1.5302s/sat	Schoepite-dehy(.	-2.5009
Hydroxylapatite	1.2149s/sat	UO2CO3	-2.7186
Cerussite	1.1689s/sat	Rutherfordine	-2.7389
Corkite	0.9398s/sat	Dolomite-dis	-2.7714
(only minerals	with log O/K >	-3 listed)	

Gases	fugacity	log fug.
02(g)	0.1752	-0.756
H2O(g)	0.02598	-1.585
CO2(g)	0.001832	-2.737
HF(g)	6.566e-013	-12.183
NO2(g)	2.979e-020	-19.526
N2(g)	2.750e-020	-19.561
HCl(g)	2.134e-020	-19.671
NO(g)	4.770e-026	-25.321
Cl2(g)	2.763e-032	-31.559
H2(g)	6.696e-042	-41.174
CO(g)	3.831e-048	-47.417
UO2F2(g)	7.901e-054	-53.102
S02(g)	6.058e-058	-57.218
UOF4(g)	1.381e-065	-64.860
Pb(g)	5.356e-066	-65.271
UO3(g)	5.720e-068	-67.243
NH3(g)	2.190e-069	-68.660
UO2C12(g)	1.027e-071	-70.988
Na(g)	1.271e-074	-73.896
K(g)	3.810e-077	-76.419
UF5(g)	7.440e-078	-77.128
F2(g)	2.055e-080	-79.687
UF6(g)	1.075e-081	-80.969
UF4(g)	5.073e-088	-87.295
UO2(g)	8.513e-121	-120.070
UCl4(g)	5.288e-129	-128.277
U2F10(g)	6.197e-130	-129.208
Mg(g)	2.208e-130	-129.656
UC15(g)	1.754e-137	-136.756
UF3(g)	1.585e-139	-138.800
UC16(g)	1.081e-140	-139.966

H2S(g) CH4(g) Ca(g) UC13(g) UF2(g) A1(g) C(g) UC12(g) UC12(g) UO(g) UF(g) S2(g) C2H4(g) U2C18(g) UC1(g) UC1(g) UC1(g)	4.491e 2.937e 2.351e 8.204e 7.306e 3.077e 2.147e 6.890e 5.031e 8.288e 1.003e 3.798e 6.892e 1.267e 6.143e 6.973e	-145 -144152 -151158 -157188 -187189 -188204 -203205 -204230 -229232 -231237 -236247 -246248 -247290 -289.	.532 .629 .086 .136 .512 .668 .162 .298 .082 .999 .420 .162 .897 .212		
Original basis	total moles	In fluid moles n	1 ng/kg 	Sorbed moles mg/k	Kd :g L/kg :
Al+++ Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 K+ Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 UO2++ Elemental compo	0.00143 0.000101 -0.000921 55.5 0.00525 0.000406 0.000130 4.62e-006 2.17e-005 0.000142 0.00834 6.96e-006 0.000534 1.78e-006 1.72e-005 0.000139	3.47e-005 7.24e-006 2.04e-005 0.00143 0.000101 -0.000921 55.5 0.00525 0.00525 0.000406 0.000130 4.62e-006 2.17e-005 0.000142 0.00834 6.96e-006 0.000534 1.78e-006 1.72e-005 0.000139	320. 38.9 5.08 0.112 1.19 2.42 192. 0.408 17.1 0.369 1.65	Sc	orbed
_	total moles	moles	mg/kg	moles	
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	5.360e-005 3.470e-005 0.005254 7.240e-006 2.040e-005 0.001430 111.0 0.0001010	5.360e-005 3.470e-005 0.005254 7.240e-006 2.040e-005 0.001430 111.0 0.0001010 1.780e-006 4.620e-006 2.170e-005 6.960e-006	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	445 390 .07 565 060 .15 005 637 686 122	

Oxygen	55.53	55.53	8.878e+005
Phosphorus	0.0004060	0.0004060	12.57
Potassium	0.0001300	0.0001300	5.079
Sodium	0.008340	0.008340	191.6
Sulfur	1.720e-005	1.720e-005	0.5512
Uranium	0.0001390	0.0001390	33.06

Sample 19250 water leach, 1 month.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 8.780
 log f02 = -0.722

 Eh = 0.6990 volts
 pe = 11.8158

 Ionic strength
 0.011507

 Activity of water
 0.999998

 Solvent mass
 = 0.999997 kg

 Solution mass
 = 1.000715 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000043 molal

 Dissolved solids
 = 717 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 234.17 mg/kg as CaCO3

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01112	255.4	0.8962	-2.0017
HCO3-	0.003786	230.9	0.8962	-2.4694
F-	0.002088	39.64	0.8946	-2.7286
HPO4	0.0005046	48.40	0.6429	-3.4889
NO3-	0.0002480	15.37	0.8930	-3.6547
02(aq)	0.0002395	7.658	1.0000	-3.6207
UO2(CO3)3	0.0001652	74.28	0.1703	-4.5508
CO3	0.0001482	8.884	0.6473	-4.0182
K+	5.519e-005	2.156	0.8930	-4.3073
Al02-	4.960e-005	2.923	0.8962	-4.3521
NaHCO3(aq)	4.820e-005	4.046	1.0000	-4.3170
Cl-	4.244e-005	1.503	0.8930	-4.4214
NaHPO4-	2.999e-005	3.566	0.8962	-4.5706
Cr04	2.650e-005	3.072	0.6429	-4.7686
SO4	2.041e-005	1.959	0.6429	-4.8821
Fe(OH)3(aq)	1.799e-005	1.921	1.0000	-4.7450
Ca++	1.645e-005	0.6588	0.6597	-4.9645
CO2(aq)	1.245e-005	0.5477	1.0000	-4.9047
UO2(CO3)2	1.032e-005	4.024	0.6429	-5.1780
H2PO4-	9.641e-006	0.9344	0.8962	-5.0635
OH-	6.812e-006	0.1158	0.8946	-5.2151
MnO4-	4.165e-006	0.4950	0.8946	-5.4288
NaCO3-	3.485e-006	0.2890	0.8962	-5.5055
CaPO4-	3.254e-006	0.4391	0.8962	-5.5352
Fe(OH)4-	3.038e-006	0.3761	0.8962	-5.5650
CaCO3(aq)	2.210e-006	0.2211	1.0000	-5.6556
Ni++	2.051e-006	0.1203	0.6597	-5.8686
CaHPO4(aq)	1.935e-006	0.2630	1.0000	-5.7134
NaF(aq)	1.871e-006	0.07850	1.0000	-5.7279
Mg++	1.391e-006	0.03379	0.6750	-6.0273
NaSO4-	9.635e-007	0.1146	0.8962	-6.0637

PbCO3(aq) Ca2UO2(CO3)3 CaHCO3+ MgPO4- MnCO3(aq) PO4 MgHPO4(aq) (UO2)2CO3(OH)3- UO2PO4- HA1O2(aq) MnPO4- Mn++ UO2(OH)2(aq) MnHPO4(aq) UO2(OH)3- CaF+ KHPO4- HCrO4- MgCO3(aq)	5.358e-007 5.253e-007 4.575e-007 3.790e-007 3.591e-007 2.521e-007 2.477e-007 2.346e-007 2.323e-007 2.081e-007 1.714e-007 1.559e-007 1.298e-007 1.087e-007 1.075e-007 9.850e-008	0.1431 0.2783 0.04622 0.04517 0.04125 0.02392 0.02977 0.1526 0.08472 0.01247 0.02728 0.009409 0.04737 0.02103 0.04165 0.006416 0.01451 0.01152 0.007228	1.0000 1.0000 0.8962 0.8962 1.0000 0.3697 1.0000 0.8962 0.8962 1.0000 0.8962 0.6597 1.0000 1.0000 0.8962 0.8962 0.8962 0.8962 0.8962 0.8962	-6.2710 -6.2796 -6.3872 -6.4690 -6.4448 -7.0307 -6.6062 -6.6773 -6.6816 -6.6817 -6.7873 -6.9466 -6.8071 -6.8555 -6.9343 -7.0114 -7.0162 -7.0542 -7.0666
-				
-				
UO2(OH)3-				
CaF+	1.087e-007	0.006416	0.8962	-7.0114
KHPO4-		0.01451	0.8962	-7.0162
HCrO4-	9.850e-008	0.01152	0.8962	-7.0542
_	8.579e-008	0.007228	1.0000	-7.0666
NaAlO2(aq)	7.996e-008	0.006550	1.0000	-7.0971
Fe(OH)2+	7.123e-008	0.006396	0.8962	-7.1950
NaCl(aq)	6.309e-008	0.003684	1.0000	-7.2001
Pb(CO3)2	5.280e-008	0.01726	0.6429	-7.4692
MgF+	4.406e-008	0.001907	0.8962	-7.4035
MgHCO3+	3.861e-008	0.003292	0.8962	-7.4610
PO3F	2.475e-008	0.002423	0.6429	-7.7982
MnO4	2.138e-008	0.002540	0.6429	-7.8619
PbOH+	1.994e-008	0.004467	0.8962	-7.7479
CaSO4(aq)	1.839e-008	0.002502	1.0000	-7.7354
CaNO3+	1.344e-008	0.001371	0.8962	-7.9192
(only species >	1e-8 molal listed	d)		

Mineral saturation states log Q/K

Mineral Sacuration	log Q/K		log Q/K
Birnessite Todorokite Trevorite Pyromorphite Hematite Fluorapatite Bixbyite Hausmannite Pyrolusite MnO2(gamma) Pyromorphite-OH Goethite Parsonsite Manganite Ferrite-Ca Pb40(PO4)2 Ferrite-Mg Pb3(PO4)2 Plumbogummite	62.3474s/sat 54.1648s/sat 16.4139s/sat 15.1831s/sat 14.4015s/sat 13.3162s/sat 12.2197s/sat 11.7078s/sat 10.2396s/sat 10.2396s/sat 6.7544s/sat 6.7205s/sat 6.6551s/sat 5.7917s/sat 5.5839s/sat 4.9877s/sat 4.0581s/sat 4.0292s/sat	Plattnerite Cerussite CaU04 Whitlockite Ice Ni3(P04)2 Fluorite Rhodochrosite Calcite Aragonite Mn(OH)3 Bunsenite Crocoite Dolomite-ord Dolomite Ni(OH)2 U03:2H20 Schoepite Monohydrocalcite	0.7027s/sat 0.6869s/sat 0.1610s/sat -0.0863 -0.1387 -0.3821 -0.3848 -0.4432 -0.5026 -0.6470 -0.7141 -0.7805 -0.8837 -0.8837 -0.8840 -1.0571 -1.3258 -1.3258 -1.3363
Magnetite PbHPO4 Hydroxylapatite	3.7080s/sat 3.4058s/sat 2.9055s/sat	U02(OH)2(beta) U03:.9H2O(alpha) Schoepite-dehy(.	-1.4382 -1.5092 -1.5092
1 1 1			

```
2.5909s/sat
                             Schoepite-dehy(. -1.5895
Diaspore
MnHPO4
                2.5115s/sat
                             Schoepite-dehy(1 -1.5956
                2.1870s/sat
Boehmite
                             Magnesite
                                             -2.0103
Gibbsite
                1.9952s/sat
                             Na2U2O7(c)
                                             -2.0201
Hydrocerussite
               1.8350s/sat Sellaite
                                             -2.1003
                1.5994s/sat Dolomite-dis
                                            -2.4284
Fe(OH)3(ppd)
                                             -2.4509
Ca-Autunite
                1.2747s/sat Strengite
Corundum
                1.1902s/sat Schoepite-dehy(. -2.6988
Dawsonite
                0.9337s/sat
```

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
 O2(g) H2O(g) CO2(g)	0.1895 0.02598 0.0003666	-0.722 -1.585 -3.436
HF(g)	2.392e-013	-12.621
HCl(g)	3.112e-020	-19.507
NO2(g) N2(g)	1.268e-020 4.260e-021	-19.897 -20.371
NO(g)	1.953e-026	-25.709
Cl2(g)	6.116e-032	-31.214
H2(g)	6.438e-042	-41.191
CO(g)	7.372e-049	-48.132
UO2F2(g)	6.648e-055	-54.177
SO2(g) Pb(g)	4.360e-059 8.482e-066	-58.361 -65.072
UOF4(g)	1.542e-067	-66.812
UO3(g)	3.627e-068	-67.440
NH3(g)	8.127e-070	-69.090
UO2C12(g)	1.386e-071	-70.858
Na(g)	6.599e-074	-73.181
K(g)	6.257e-077 2.968e-080	-76.204 -79.528
UF5(g) F2(g)	2.968e-080 2.836e-081	-79.528 -80.547
UF6(g)	1.592e-084	-83.798
UF4(g)	5.447e-090	-89.264
UO2(g)	5.190e-121	-120.285
UCl4(g)	1.460e-128	-127.836
Mg(g)	1.241e-129	-128.906
U2F10(g)	9.860e-135	-134.006
UC15(g)	7.206e-137 6.608e-140	-136.142 -139.180
UC16(g) UF3(g)	4.580e-141	-140.339
CH4(g)	5.023e-146	-145.299
H2S(g)	2.873e-146	-145.542
Ca(g)	2.128e-151	-150.672
UCl3(g)	1.522e-157	-156.817
Al(g)	6.932e-189	-188.159
UF2(g) C(g)	5.683e-189 3.972e-190	-188.245 -189.401
UCl2(g)	8.594e-204	-203.066
UO(g)	2.949e-205	-204.530
UF(g)	1.735e-230	-229.761
S2(g)	4.441e-235	-234.353
C2H4(g)	1.201e-238	-237.920
U2Cl8(g)	5.253e-246	-245.280

U2Cl10(g)	1.036e-246	-245.984
UCl(g)	1.063e-247	-246.974
U(a)	3.930e-290	-289.406

		In fluid	f	Sor	bed	Kd
Original basis	total moles	moles r	mg/kg 	moles	mg/kg 	L/kg
Al+++	4.99e-005	4.99e-005	1.35			
Ca++	2.55e-005	2.55e-005	1.02			
Cl-	4.25e-005	4.25e-005	1.51			
Cr04	2.66e-005	2.66e-005	3.08			
F-	0.00209	0.00209	39.7			
Fe++	2.11e-005	2.11e-005	1.18			
H+	-0.00117	-0.00117	-1.18			
H2O	55.5	55.5 9.9	99e+005			
HCO3-	0.00452	0.00452	276.			
HPO4	0.000551	0.000551	52.8			
K+	5.53e-005	5.53e-005	2.16			
Mg++	2.19e-006	2.19e-006	0.0532			
Mn++	5.05e-006	5.05e-006	0.277			
NH3(aq)	0.000248	0.000248	4.22			
Na+	0.0112	0.0112	257.			
Ni++	2.06e-006	2.06e-006	0.121			
02(aq)	0.000746	0.000746	23.9			
Pb++	6.22e-007	6.22e-007	0.129			
SO4	2.14e-005	2.14e-005	2.05			
UO2++	0.000177	0.000177	47.8			
Flomontal compo	gition	Tn f	Fluid		Sorboo	1
Elemental compo			Eluid mg/kg	1	Sorbed moles	
	total moles	s moles	mg/kg 			d mg/kg
Aluminum	total moles 4.990e-00!	moles 5 4.990e-005	mg/kg 5 1.3	 45		
Aluminum Calcium	total moles 4.990e-009 2.550e-009	moles 5 4.990e-005 5 2.550e-005	mg/kg 5 1.3 5 1.0	 45 21		
Aluminum Calcium Carbon	total moles 4.990e-009 2.550e-009 0.004520	moles 5 4.990e-005 5 2.550e-005 0.004520	mg/kg 5 5 1.3 5 1.0	 45 21 26		
Aluminum Calcium Carbon Chlorine	4.990e-009 2.550e-009 0.004520 4.250e-009	moles 	mg/kg 5 1.3 5 1.0 0 54. 5 1.5	 45 21 26 06		
Aluminum Calcium Carbon Chlorine Chromium	4.990e-009 2.550e-009 0.004520 4.250e-009 2.660e-009	moles 4.990e-005 2.550e-005 0.004520 4.250e-005 2.660e-005	mg/kg 5 1.3 5 1.0 0 54. 6 1.5 6 1.3	45 21 26 06 82		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	4.990e-009 2.550e-009 0.004520 4.250e-009 2.660e-009	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090	mg/kg 5 1.3 5 1.0 5 54. 5 1.3 6 39.	45 21 26 06 82 68		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	4.990e-009 2.550e-009 0.004520 4.250e-009 2.660e-009 0.002090	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090	mg/kg 5 1.3 5 1.0 6 1.5 7 1.3 9 1.118e+0	45 21 26 06 82 68 05		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron	total moles 4.990e-00! 2.550e-00! 0.004520 4.250e-00! 2.660e-00! 0.002090 111.0	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005	mg/kg 5 1.3 5 1.0 0 54. 6 1.5 6 1.3 0 39. 0 1.118e+0 6 1.1	45 21 26 06 82 68 05 78		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead	total moles 4.990e-00! 2.550e-00! 0.004520 4.250e-00! 2.660e-00! 0.002090 111.0 2.110e-00! 6.220e-00!	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005	mg/kg 1.3 5 1.0 54. 5 1.5 6 1.3 9 . 1.118e+0 6 1.1 7 0.12	45 21 26 06 82 68 05 78		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium	total moles 4.990e-00! 2.550e-00! 0.004520 4.250e-00! 2.660e-00! 0.002090 111.0 2.110e-00! 6.220e-00! 2.190e-000	moles 4.990e-005 5.2.550e-005 0.004520 5.4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 7.6.220e-007	mg/kg 1.3 1.0 54. 1.5 1.3 39. 1.118e+0 1.1 0.12 0.053	45 21 26 06 82 68 05 78 88		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	4.990e-009 2.550e-009 0.004520 4.250e-009 2.660e-009 0.002090 111.0 2.110e-009 6.220e-009 2.190e-000	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 6.220e-006 5.050e-006	mg/kg 1.3 1.0 54. 1.5 1.3 39. 1.118e+0 1.1 0.12 0.053 0.27	45 21 26 06 82 68 05 78 88 19		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel	1.000 45.00 4.250e-00.00 0.002090 111.00 2.110e-00.00 2.190e-00.00 2.060e-00.00 2.0	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 6.220e-007 5.050e-006 5.050e-006	mg/kg 5 1.3 5 1.0 0 54. 5 1.5 5 1.3 0 39. 0 1.118e+0 5 1.1 7 0.12 6 0.053 6 0.27 6 0.12	45 21 26 06 82 68 05 78 88 19 72		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen	1.00002486	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 6.220e-007 5.050e-006 5.050e-006 0.0002480	mg/kg 5 1.3 5 1.0 5 54. 5 1.5 6 1.5 7 0.118e+0 7 0.12 6 0.053 6 0.27 6 0.12 0 3.4	45 21 26 06 82 68 05 78 88 19 72 08		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen	1.000 4520 4.250e-009 2.560e-009 2.110e-009 2.190e-009 2.060e-009 2.060e-009 2.060e-009 2.060e-009 2.55.55	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 7.6.220e-007 5.050e-006 5.050e-006 0.0002480 0.0002480	mg/kg 5 1.3 5 1.0 0 54. 6 1.5 6 1.3 0 39. 0 1.118e+0 6 1.1 7 0.12 6 0.053 6 0.27 6 0.12 0 3.4 8 8.878e+0	45 21 26 06 82 68 05 78 88 19 72 08 71		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus	100005510	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 6.220e-005 5.050e-006 6.2.060e-006 0.0002480 5.5.53	mg/kg 5 1.3 5 1.0 0 54. 6 1.5 6 1.3 0 39. 0 1.118e+0 6 1.1 7 0.12 6 0.053 6 0.27 6 0.12 0 3.4 8 8.878e+0 0 17.	45 21 26 06 82 68 05 78 88 19 72 08 71 05		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Potassium	100005510 1.990e-009 2.550e-009 0.004520 4.250e-009 0.002090 111.0 2.110e-009 6.220e-009 2.190e-000 2.060e-000 0.0002480 55.55 0.0005510 5.530e-009	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 6.220e-007 6.220e-007 6.220e-006 6.2060e-006	mg/kg 5 1.3 5 1.0 0 54. 6 1.5 6 1.3 0 39. 0 1.118e+0 6 1.1 7 0.12 6 0.053 6 0.27 6 0.12 0 3.4 8 8.878e+0 0 17. 5 2.1	 45 21 26 06 82 68 05 78 88 19 72 08 71 05 05		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Potassium Sodium	4.990e-009 2.550e-009 0.004520 4.250e-009 2.660e-009 0.002090 111.0 2.110e-009 6.220e-009 2.190e-000 2.060e-000 0.0002480 55.55 0.0005510 5.530e-009	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 0.002090 111.0 5.2.110e-005 6.220e-007 6.220e-006 6.2.060e-006	mg/kg 5 1.3 5 1.0 0 54. 6 1.5 6 1.3 0 39. 0 1.118e+0 6 0.12 6 0.053 6 0.27 6 0.12 0 3.4 8 8.878e+0 0 17. 6 2.1	45 21 26 06 82 68 05 78 88 19 72 08 71 05 05 61		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Potassium	100005510 1.990e-009 2.550e-009 0.004520 4.250e-009 0.002090 111.0 2.110e-009 6.220e-009 2.190e-000 2.060e-000 0.0002480 55.55 0.0005510 5.530e-009	moles 4.990e-005 5.2.550e-005 0.004520 4.250e-005 5.2.660e-005 0.002090 111.0 5.2.110e-005 6.220e-007 6.220e-006 6.2.060e-006	mg/kg 5 1.3 5 1.0 0 54. 6 1.5 6 1.3 0 39. 0 1.118e+0 6 0.12 7 0.12 6 0.053 6 0.27 6 0.12 0 3.4 8 8.878e+0 0 17. 6 2.1 0 0.68	45 21 26 06 82 68 05 78 88 19 72 08 71 05 61 .3		

Sample 19250 water leach, Stage 2.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 8.110
 log f02 = -0.730

 Eh = 0.7385 volts
 pe = 12.4838

 Ionic strength
 0.002545

 Activity of water
 1.000000

 Solvent mass
 0.999995 kg

 Solution mass
 1.000208 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000001 molal

 Dissolved solids
 213 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 81.12 mg/kg as CaCO3

 Xi = 0.0000Step #

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer	 		

HCO3-	Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
F-	HCO3-	0.001536	93.70	0.9460	-2.8377
HPO4 O2(aq) O2(aq) O.0002514 C4.13 O.8004 -3.6962 O2(aq) O.0002351 C5.22 C5.9916-005 C5.9916-005 C6.01(aq) C6.01(aq) C7.522 C7.8155 C8.102- S7.9916-005 C8.353 C9.460 C9.42466 Fe(OH)3(aq) C9.1016-005 C9.354 C9.460 C9.4600	Na+	0.001534	35.27	0.9460	-2.8382
O2(aq) 0.0002351 7.522 1.0000 -3.6287 K+ 0.0001618 6.325 0.9452 -3.8155 AlO2- 5.991e-005 3.533 0.9460 -4.2466 Fe(OH)3(aq) 5.011e-005 5.354 1.0000 -4.3001 H2PO4- 2.650e-005 2.570 0.9460 -4.6030 C02(aq) 2.495e-005 1.098 1.0000 -4.6030 Ca++ 2.262e-005 0.9064 0.8058 -4.7392 UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 Cr04 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877	F-	0.0003198	6.074	0.9456	-3.5194
K+ 0.0001618 6.325 0.9452 -3.8155 AlO2- 5.991e-005 3.533 0.9460 -4.2466 Fe(OH)3(aq) 5.011e-005 5.354 1.0000 -4.3001 H2PO4- 2.650e-005 2.570 0.9460 -4.6030 CO2(aq) 2.495e-005 1.098 1.0000 -4.6030 Ca++ 2.262e-005 0.9064 0.8058 -4.7392 UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 Cr04 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Mi++ 3.639e-006 0.2135 0.8058 -5.5328 <th< td=""><td>HPO4</td><td>0.0002514</td><td>24.13</td><td>0.8004</td><td>-3.6962</td></th<>	HPO4	0.0002514	24.13	0.8004	-3.6962
AlO2- 5.991e-005 3.533 0.9460 -4.2466 Fe(OH)3(aq) 5.011e-005 5.354 1.0000 -4.3001 H2PO4- 2.650e-005 2.570 0.9460 -4.6008 CO2(aq) 2.495e-005 1.098 1.0000 -4.6030 Ca++ 2.262e-005 0.9064 0.8058 -4.7392 UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 CrO4 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 0.2135 0.8058 -5.3877 UO2PO4- 5.003e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.2528 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2258 0.8004 -5.7255 CAHPO4(aq) 2.016e-006 0.2123 0.9460 -5.7901 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 C1- 1.400e-006 0.04961 0.9452 -5.8851 MnO4- 1.378e-006 0.02343 0.9456 -5.8859	02(aq)	0.0002351	7.522	1.0000	-3.6287
Fe(OH)3(aq) 5.011e-005 5.354 1.0000 -4.3001 H2PO4- 2.650e-005 2.570 0.9460 -4.6008 CO2(aq) 2.495e-005 1.098 1.0000 -4.6030 Ca++ 2.262e-005 0.9064 0.8058 -4.7392 UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.095e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 CrO4 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.2528 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 C1- 1.400e-006 0.04961 0.9456 -5.8859 MnHO4- 1.378e-006 0.02343 0.9456 -5.8859	K+	0.0001618	6.325	0.9452	-3.8155
H2PO4- 2.650e-005 2.570 0.9460 -4.6008 CO2(aq) 2.495e-005 1.098 1.0000 -4.6030 Ca++ 2.262e-005 0.9064 0.8058 -4.7392 UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 CrO4 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.518 NaHPO4- 2.569e-006 0.2526 1.0000 -5.518 NaHPO4- 2.569e-006 0.2526 1.0000 -5.518 NaHPO4- 2.351e-006 0.2526 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 C1- 1.400e-006 0.04961 0.9456 -5.8899 MnO4-	A102-	5.991e-005	3.533	0.9460	-4.2466
CO2(aq) 2.495e-005 1.098 1.0000 -4.6030 Ca++ 2.262e-005 0.9064 0.8058 -4.7392 UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 Cr04 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.518 NaHPO4- 2.569e-006 0.3055 0.9460 -5.7255 CaHPO4(aq) 2.016e-006 0.2258 0.8004 -5.7255	Fe(OH)3(aq)	5.011e-005	5.354	1.0000	-4.3001
Ca++ 2.262e-005 0.9064 0.8058 -4.7392 UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 CrO4 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255	H2PO4-	2.650e-005	2.570	0.9460	-4.6008
UO2(CO3)2 1.192e-005 4.647 0.8004 -5.0205 CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 Cr04 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mm++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955	CO2(aq)	2.495e-005	1.098	1.0000	-4.6030
CO3 1.095e-005 0.6570 0.8018 -5.0565 NO3- 1.030e-005 0.6385 0.9452 -5.0117 UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 Cr04 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901		2.262e-005	0.9064	0.8058	-4.7392
NO3-	UO2(CO3)2	1.192e-005	4.647	0.8004	-5.0205
UO2(CO3)3 9.022e-006 4.059 0.4102 -5.4317 CrO4 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 C1- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 <	CO3	1.095e-005	0.6570	0.8018	-5.0565
CrO4 7.976e-006 0.9250 0.8004 -5.1949 (UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899 <		1.030e-005	0.6385	0.9452	-5.0117
(UO2)2CO3(OH)3- 5.844e-006 3.804 0.9460 -5.2574 Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	UO2(CO3)3	9.022e-006	4.059		-5.4317
Mn++ 5.082e-006 0.2791 0.8058 -5.3877 UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	CrO4	7.976e-006	0.9250	0.8004	-5.1949
UO2PO4- 5.003e-006 1.826 0.9460 -5.3248 Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	(UO2)2CO3(OH)3-	5.844e-006	3.804	0.9460	-5.2574
Ni++ 3.639e-006 0.2135 0.8058 -5.5328 MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	Mn++	5.082e-006	0.2791	0.8058	-5.3877
MnHPO4(aq) 3.134e-006 0.4728 1.0000 -5.5040 NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	UO2PO4-	5.003e-006	1.826	0.9460	-5.3248
NaHCO3(aq) 3.008e-006 0.2526 1.0000 -5.5218 NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	Ni++	3.639e-006	0.2135	0.8058	-5.5328
NaHPO4- 2.569e-006 0.3055 0.9460 -5.6144 Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	MnHPO4(aq)	3.134e-006	0.4728		-5.5040
Mg++ 2.449e-006 0.05951 0.8110 -5.7020 SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	NaHCO3(aq)	3.008e-006	0.2526	1.0000	-5.5218
SO4 2.351e-006 0.2258 0.8004 -5.7255 CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	NaHPO4-	2.569e-006	0.3055	0.9460	-5.6144
CaHPO4(aq) 2.016e-006 0.2743 1.0000 -5.6955 Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	Mg++	2.449e-006	0.05951	0.8110	
Fe(OH)4- 1.714e-006 0.2123 0.9460 -5.7901 Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	SO4				
Cl- 1.400e-006 0.04961 0.9452 -5.8784 OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899	-				
OH- 1.378e-006 0.02343 0.9456 -5.8851 MnO4- 1.363e-006 0.1620 0.9456 -5.8899			0.2123		-5.7901
MnO4- 1.363e-006 0.1620 0.9456 -5.8899	Cl-		0.04961	0.9452	-5.8784
	-				
HAlO2(aq) 1.241e-006 0.07443 1.0000 -5.9062					
	HA102(aq)	1.241e-006	0.07443	1.0000	-5.9062

UO2(OH)2(aq) MnCO3(aq) Fe(OH)2+	1.222e-006 1.191e-006 8.790e-007	0.3714 0.1368 0.07897	1.0000 1.0000 0.9460	-5.9130 -5.9242 -6.0801
PbCO3(aq) MnPO4-	8.328e-007 8.286e-007	0.2225 0.1242	1.0000 0.9460	-6.0794 -6.1058
MnPO4- CaPO4-	6.868e-007	0.1242	0.9460	-6.1058
CaCO3(aq)	3.399e-007	0.03401	1.0000	-6.1673 -6.4686
MgHPO4(aq)	3.249e-007	0.03401	1.0000	-6.4882
CaHCO3+	3.118e-007	0.03151	0.9460	-6.5302
UO2(OH)3-	2.060e-007	0.06612	0.9460	-6.7102
KHPO4-	1.961e-007	0.02648	0.9460	-6.7317
Ca2UO2(CO3)3	1.950e-007	0.1034	1.0000	-6.7100
HCrO4-	1.635e-007	0.01913	0.9460	-6.8105
MgPO4-	1.007e-007	0.01201	0.9460	-7.0210
UO2HPO4(aq)	8.417e-008	0.03080	1.0000	-7.0748
PbOH+	6.856e-008	0.01537	0.9460	-7.1880
U02C03(aq)	6.173e-008	0.02037	1.0000	-7.2095
MnHCO3+	4.789e-008	0.005552	0.9460	-7.3438
NaF(aq)	4.414e-008	0.001853	1.0000	-7.3552
NaCO3-	4.404e-008	0.003654	0.9460	-7.3803
MnF+	3.523e-008	0.002604	0.9460	-7.4772
MgHCO3+	3.312e-008	0.002825	0.9460	-7.5040
PbP207	3.273e-008	0.01247	0.8004	-7.5818
Pb++	3.112e-008	0.006446	0.8018	-7.6029
CaF+	2.800e-008	0.001654	0.9460	-7.5770
AlF3(aq)	2.180e-008	0.001830	1.0000	-7.6616
PO4	2.040e-008	0.001937	0.6058	-7.9080
NaSO4-	1.907e-008	0.002270	0.9460	-7.7436
MgCO3(aq)	1.661e-008	0.001400	1.0000	-7.7796
NaAlO2(aq)	1.486e-008	0.001218	1.0000	-7.8281
MnOH+	1.433e-008	0.001031	0.9460	-7.8677
MgF+	1.429e-008	0.0006187	0.9460	-7.8690
(only species	> 1e-8 molal list	ed)		

Mineral saturation states

	log Q/K		log Q/K
Birnessite Todorokite	64.0745s/sat 55.6770s/sat	Rhodochrosite CaUO4	0.0774s/sat -0.0597
Pyromorphite	17.2436s/sat	Crocoite	-0.0801
Trevorite	16.2994s/sat	Ice	-0.1387
IIomatita	1E 2012a/ast	Combite	0 2400

Hematite 15.2912s/sat Corkite -0.3498Bixbyite 12.6535s/sat UO3:2H2O -0.4317Hausmannite 12.3604s/sat Schoepite -0.4317Fluorapatite 11.0197s/sat Mn(OH)3 -0.4972Pyrolusite 10.4545s/sat UO2(OH)2(beta) -0.5441 Pyromorphite-OH 9.6019s/sat Schoepite-dehy(. -0.6151 9.5944s/sat UO3:.9H2O(alpha) -0.6151 Parsonsite -0.6954 MnO2(gamma) 8.9367s/sat Schoepite-dehy(. Plumbogummite 8.5110s/sat Schoepite-dehy(1 -0.7015 Pb40(P04)2 7.2085s/sat Strengite -0.8734 -1.0538 Goethite 7.1654s/sat Saleeite Manganite 6.0086s/sat Ni3(PO4)2 -1.1295Pb3(PO4)2 5.9931s/sat Whitlockite -1.1653Ferrite-Ca 5.3589s/sat Calcite -1.3156Magnetite 5.0446s/sat -1.4600Aragonite -1.7411Ferrite-Mg 4.8627s/sat Fluorite

PbHPO4	4.4283s/sat	Bunsenite	-1.7847
	·		
Ca-Autunite	4.2135s/sat	Schoepite-dehy(.	-1.8047
MnHPO4	3.8630s/sat	Ni(OH)2	-2.0613
Diaspore	3.3664s/sat	Monohydrocalcite	-2.1493
Boehmite	2.9625s/sat	Berlinite	-2.1808
Gibbsite	2.7707s/sat	Schoepite-dehy(.	-2.3227
Corundum	2.7413s/sat	Przhevalskite	-2.3719
Hydrocerussite	2.1081s/sat	Dolomite-ord	-2.4101
Fe(OH)3(ppd)	2.0443s/sat	Dolomite	-2.4101
Cerussite	0.8785s/sat	UO2CO3	-2.4194
Hydroxylapatite	0.7297s/sat	Rutherfordine	-2.4397
Plattnerite	0.5886s/sat	UO2HPO4:4H2O	-2.4915
Dawsonite	0.5044s/sat	Magnesite	-2.7233
(UO2)3(PO4)2:4H2	0.4072s/sat	UO2HPO4	-2.8364
(only minerals wi	th log 0/K >	-3 listed)	

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.1860	-0.730
H2O(g)	0.02598	-1.585
CO2(g)	0.0007343	-3.134
HF(g)	1.811e-013	-12.742
HCl(g)	5.082e-021	-20.294
NO2(g)	2.619e-021	-20.582
N2(g)	1.886e-022	-21.725
NO(g)	4.070e-027	-26.390
Cl2(g)	1.616e-033	-32.792
H2(g)	6.497e-042	-41.187
CO(g)	1.490e-048	-47.827
UO2F2(g)	2.987e-054	-53.525
S02(g)	1.381e-058	-57.860
Pb(g)	6.644e-066	-65.178
UOF4(g)	3.973e-067	-66.401
UO3(g)	2.842e-067	-66.546
NH3(g)	1.734e-070	-69.761
U02Cl2(g)	2.895e-072	-71.538
Na(g)	2.065e-075	-74.685
K(g)	4.170e-077	-76.380
UF5(g)	5.816e-080	-79.235
F2(g)	1.611e-081	-80.793
UF6(g)	2.352e-084	-83.629
UF4(g)	1.416e-089	-88.849
UO2(g)	4.104e-120	-119.387
Mg(g)	1.210e-130	-129.917
UCl4(g)	8.208e-131	-130.086
U2F10(g)	3.787e-134	-133.422
UC15(g)	6.584e-140	-139.181
UF3(g)	1.580e-140	-139.801
UCl6(g)	9.813e-144	-143.008
CH4(g)	1.044e-145	-144.981
H2S(g)	9.352e-146	-145.029
Ca(g)	1.649e-152	-151.783
UC13(g)	5.266e-159	-158.279
Al(g)	4.192e-188	-187.378
UF2(g)	2.601e-188	-187.585
C(g)	8.104e-190	-189.091
UO(g)	2.354e-204	-203.628

UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	1.829e-1 1.054e-1 4.621e-1 5.094e-1 1.391e-1 1.660e-1 8.652e-1	229 -228.9 234 -233.3 238 -237.2 247 -246.8 250 -249.7 253 -252.0	977 935 993 957 880		
Original basis	total moles	In fluid moles mg	g/kg mo	Sorbed les mg/kg	Kd L/kg
Mn++ NH3(aq) Na+	55.5 0.00164 0.000293 0.000162 2.94e-006 2 1.17e-005 1 1.03e-005 1	.64e-005 .40e-006 .14e-006 0.000320 .27e-005 0.000412 55.5 0.00164 0.000293 0.000162 .94e-006 .17e-005 .03e-005 0.00154 .64e-006 0.000271 .81e-007 .38e-006	1.06 0.0496 0.944 6.08 2.94 0.415 0e+006 99.7 28.1 6.33 0.0714 0.643 0.175 35.4 0.214 8.66 0.203 0.229		
Elemental comp	osition total moles	moles	uid mg/kg	Sorb moles	ed mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese Nickel Nitrogen Oxygen Phosphorus Potassium Sodium Sulfur Uranium	6.120e-005 2.640e-005	6.120e-005	1.651 1.058 19.64 0.04962 0.4232 6.078 1.119e+005 2.943 0.2032 0.07144 0.6426 0.2136 0.1442 8.880e+005 9.073 6.333 35.40 0.07630 9.376		

Sample 19250 water leach, Stage 3.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 8.560
 log f02 = -0.795

 Eh = 0.7109 volts
 pe = 12.0177

 Ionic strength
 = 0.002047

 Activity of water
 = 1.000000

 Solvent mass
 = 0.999989 kg

 Solution mass
 = 1.000171 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000002 molal

 Dissolved solids
 = 181 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 54.01 mg/kg as CaCO3

 Xi = 0.0000Step #

Reactants	moles	moles	grams	cm3
	remaining	reacted	reacted	reacted
02(g)	fixed fuga	acity buffer		

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001127	25.90	0.9511	-2.9699
HCO3-	0.0009621	58.69	0.9511	-3.0385
HPO4	0.0002213	21.24	0.8180	-3.7422
F-	0.0002139	4.064	0.9508	-3.6916
02(aq)	0.0002027	6.486	1.0000	-3.6931
K+	0.0001388	5.428	0.9505	-3.8795
A102-	0.0001151	6.789	0.9511	-3.9606
Fe(OH)3(aq)	9.709e-005	10.37	1.0000	-4.0128
NO3-	5.249e-005	3.254	0.9505	-4.3020
Ca++	2.463e-005	0.9871	0.8225	-4.6933
CO3	1.902e-005	1.141	0.8191	-4.8073
MnO4-	1.639e-005	1.949	0.9508	-4.8073
(UO2)2CO3(OH)3-	1.585e-005	10.32	0.9511	-4.8218
CrO4	1.439e-005	1.669	0.8180	-4.9291
UO2(CO3)3	1.212e-005	5.452	0.4474	-5.2660
UO2(CO3)2	9.623e-006	3.753	0.8180	-5.1039
Fe(OH)4-	9.310e-006	1.153	0.9511	-5.0528
H2PO4-	8.413e-006	0.8158	0.9511	-5.0968
Ni++	7.969e-006	0.4676	0.8225	-5.1835
CO2(aq)	5.574e-006	0.2453	1.0000	-5.2538
OH-	3.862e-006	0.06567	0.9508	-5.4351
Mg++	3.696e-006	0.08982	0.8268	-5.5149
UO2PO4-	3.305e-006	1.206	0.9511	-5.5026
Mn++	3.237e-006	0.1778	0.8225	-5.5747
UO2(OH)2(aq)	2.542e-006	0.7728	1.0000	-5.5948
CaHPO4(aq)	2.016e-006	0.2742	1.0000	-5.6956
CaPO4-	1.925e-006	0.2599	0.9511	-5.7374
SO4	1.879e-006	0.1805	0.8180	-5.8132
MnHPO4(aq)	1.833e-006	0.2765	1.0000	-5.7369
NaHPO4-	1.697e-006	0.2018	0.9511	-5.7921
Cl-	1.590e-006	0.05635	0.9505	-5.8207

PbCO3(aq)	1.455e-006	0.3887	1.0000	-5.8371
NaHCO3(aq)	1.398e-006	0.1175	1.0000	-5.8543
MnCO3(aq)	1.374e-006	0.1579	1.0000	-5.8620
MnPO4-	1.358e-006	0.2036	0.9511	-5.8887
UO2(OH)3-	1.202e-006	0.3857	0.9511	-5.9420
HA102(aq)	8.508e-007	0.05103	1.0000	-6.0702
CaCO3(aq)	6.705e-007	0.06710	1.0000	-6.1736
Fe(OH)2+	6.011e-007	0.05400	0.9511	-6.2428
MgHPO4(aq)	4.497e-007	0.05408	1.0000	-6.3471
MgPO4-	3.907e-007	0.04659	0.9511	-6.4299
Ca2UO2(CO3)3	3.528e-007	0.1870	1.0000	-6.4525
CaHCO3+	2.171e-007	0.02194	0.9511	-6.6852
PbOH+	1.892e-007	0.04241	0.9511	-6.7449
KHPO4-	1.514e-007	0.02044	0.9511	-6.8417
HCrO4-	1.064e-007	0.01245	0.9511	-6.9947
NaCO3-	5.740e-008	0.004763	0.9511	-7.2628
PO4	4.925e-008	0.004677	0.6361	-7.5040
MgCO3(aq)	4.536e-008	0.003824	1.0000	-7.3433
MnO4	4.415e-008	0.005250	0.8180	-7.4424
MgHCO3+	3.192e-008	0.002723	0.9511	-7.5177
Pb++	2.998e-008	0.006211	0.8191	-7.6098
UO2CO3(aq)	2.870e-008	0.009471	1.0000	-7.5421
Pb(OH)2(aq)	2.630e-008	0.006343	1.0000	-7.5800
MnOH+	2.613e-008	0.001879	0.9511	-7.6047
PbP207	2.550e-008	0.009719	0.8180	-7.6806
NaF(aq)	2.192e-008	0.0009202	1.0000	-7.6592
NaAlO2(aq)	2.119e-008	0.001737	1.0000	-7.6738
CaF+	2.082e-008	0.001230	0.9511	-7.7033
UO2HPO4(aq)	1.983e-008	0.007258	1.0000	-7.7026
MnHCO3+	1.950e-008	0.002261	0.9511	-7.7316
Pb(CO3)2	1.831e-008	0.005992	0.8180	-7.8245
MnF+	1.533e-008	0.001133	0.9511	-7.8363
MgF+	1.471e-008	0.0006369	0.9511	-7.8541
NaSO4-	1.144e-008	0.001362	0.9511	-7.9631
(only species	> 1e-8 molal liste	ed)		

Mineral saturation states

		log Q/K		log Q/K
_	Birnessite Todorokite Pyromorphite Trevorite Hematite Hausmannite Bixbyite Fluorapatite Pyromorphite-OH Pyrolusite Parsonsite	log Q/K	Crocoite Rhodochrosite Dawsonite Schoepite U03:2H20 Ice Whitlockite U02(OH)2(beta) Schoepite-dehy(. U03:.9H2O(alpha) Schoepite-dehy(.	log Q/K 0.1788s/sat 0.1396s/sat 0.0079s/sat -0.1135 -0.1135 -0.1387 -0.2196 -0.2259 -0.2969 -0.2969
	MnO2(gamma) Pb40(PO4)2	9.6176s/sat 8.8890s/sat	Schoepite-dehy(1 Corkite	-0.3833 -0.5286
	Goethite Plumbogummite	7.4527s/sat 7.0202s/sat	(UO2)3(PO4)2:4H2 Bunsenite	-0.5301 -0.5354
	Ferrite-Ca Pb3(P04)2 Manganite	6.8793s/sat 6.7805s/sat 6.7055s/sat	Becquerelite Ni(OH)2 Calcite	-0.6544 -0.8120 -1.0206
	110115011100	0.,033b/bac	0410100	1.0200

Ferrite-Mg	6.5244s/sat	Aragonite	-1.1650
Magnetite	5.9225s/sat	Saleeite	-1.2222
PbHPO4	4.3755s/sat	Schoepite-dehy(.	-1.4865
Ca-Autunite	3.9039s/sat	Strengite	-1.5321
MnHPO4	3.6301s/sat	Dolomite-ord	-1.6788
Hydrocerussite	3.4858s/sat	Dolomite	-1.6788
Diaspore	3.2024s/sat	Monohydrocalcite	-1.8543
Boehmite	2.7985s/sat	Na2U2O7(c)	-1.9719
Hydroxylapatite	2.6212s/sat	Schoepite-dehy(.	-2.0045
Gibbsite	2.6067s/sat	Fluorite	-2.0396
Corundum	2.4133s/sat	PbCO3.PbO	-2.2492
Fe(OH)3(ppd)	2.3316s/sat	Magnesite	-2.2870
Plattnerite	1.4496s/sat	Przhevalskite	-2.7343
CaUO4	1.2045s/sat	UO2CO3	-2.7520
Cerussite	1.1208s/sat	Rutherfordine	-2.7723
Ni3(PO4)2	0.7265s/sat	UO3(gamma)	-2.9875
Mn(OH)3	0.1997s/sat		
(only minerals	with log 0/K >	-3 ligtod)	

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.1604	-0.795
H2O(g)	0.02598	-1.585
CO2(g)	0.0001641	-3.785
HF(g)	4.323e-014	-13.364
NO2(g)	4.943e-021	-20.306
HCl(g)	2.059e-021	-20.686
N2(g)	9.034e-022	-21.044
NO(g)	8.273e-027	-26.082
Cl2(g)	2.464e-034	-33.608
H2(g)	6.997e-042	-41.155
CO(g)	3.586e-049	-48.445
UO2F2(g)	3.540e-055	-54.451
S02(g)	1.529e-059	-58.815
Pb(g)	5.594e-065	-64.252
UO3(g)	5.913e-067	-66.228
UOF4(g)	2.682e-069	-68.572
NH3(g)	4.241e-070	-69.372
UO2C12(g)	9.893e-073	-72.005
Na(g)	4.460e-075	-74.351
K(g)	1.053e-076	-75.978
UF5(g)	9.725e-083	-82.012
F2(g)	8.521e-083	-82.070
UF6(g)	9.044e-088	-87.044
$\mathtt{UF4}(\mathtt{g})$	1.030e-091	-90.987
UO2(g)	9.197e-120	-119.036
Mg(g)	1.593e-129	-128.798
UCl4(g)	4.960e-132	-131.305
U2F10(g)	1.059e-139	-138.975
UC15(g)	1.554e-141	-140.809
UF3(g)	4.995e-142	-141.301
UC16(g)	9.042e-146	-145.044
CH4(g)	3.138e-146	-145.503
H2S(g)	1.294e-146	-145.888
Ca(g)	1.568e-151	-150.805
UC13(g)		-159.089
Al(g)	3.212e-188	-187.493

```
3.575e-189 -188.447
  UF2(g)
                           2.100e-190 -189.678
5.681e-204 -203.246
7.248e-205 -204.140
  C(g)
  UO(g)
  UCl2(g)
                            6.298e-230 -229.201
  UF(q)
  S2(q)
                            7.626e-236 -235.118
  C2H4(q)
                           3.968e-239 -238.401
                           1.412e-247 -246.850
  UCl(g)
                            6.063e-253 -252.217
  U2Cl8(g)
  U2Cl10(g)
                            4.818e-256 -255.317
                            8.229e-289 -288.085
  U(g)
                                        In fluid
                                                                                                Kd
Original basis total moles moles mg/kg moles mg/kg L/kg
          0.000116 0.000116 3.13
3.02e-005 3.02e-005 1.21
1.59e-006 1.59e-006 0.0564
  Al+++
  Ca++
                  1.59e-006 1.59e-006 0.0564
1.45e-005 1.45e-005 1.68
  Cl-
  CrO4--
  F-
                     0.000214 0.000214
                                                      4.06
                      0.000107 0.000107
                                                     5.97
  Fe++
                    -0.000936 -0.000936 -0.943
  H+
                     55.5 55.5 1.00e+006
0.00106 0.00106 64.9
  H20
  HCO3-
 HCO3- 0.00106 0.00106 64.9

HPO4-- 0.000243 0.000243 23.3

K+ 0.000139 0.000139 5.43

Mg++ 4.63e-006 4.63e-006 0.113

Mn++ 2.43e-005 2.43e-005 1.33

NH3(aq) 5.25e-005 5.25e-005 0.894

Na+ 0.00113 0.00113 26.0

Ni++ 7.98e-006 7.98e-006 0.468

O2(aq) 0.000355 0.000355 11.4

Pb++ 1.75e-006 1.75e-006 0.363
  Pb++
                    1.75e-006 1.75e-006
                                                     0.363
  SO4--
                    1.90e-006 1.90e-006
                                                     0.182
                    6.09e-005 6.09e-005
  UO2++
                                                       16.4
                                               In fluid
                                                                              Sorbed
 Elemental composition
     total moles moles mg/kg moles mg/kg
______
  Aluminum 0.0001160 0.0001160 3.129
  Calcium
                     3.020e-005 3.020e-005
                                                             1.210
 Carbon 0.001065 0.001065 12.78
Chlorine 1.590e-006 1.590e-006 0.05636
Chromium 1.450e-005 1.450e-005 0.7538
Fluorine 0.0002140 0.0002140 4.065
Hydrogen
                        111.0 1.119e+005
  Hydrogen
                     0.0001070 0.0001070 5.975
  Iron
 1.750e-006 1.750e-006 0.3625

Magnesium 4.630e-006 4.630e-006 0.1125

Manganese 2.430e-005 2.430e-005 1.335

Nickel 7.980e-006 7.980e-006 0.4683

Nitrogen 5.250e-005 5.250e-005 0.7352

Oxygen 55.51 55.51 9.000-005
  Phosphorus
Potassium
Sodium
                     0.0002430 0.0002430 7.525
                      0.0001390 0.0001390
                                                              5.434

        Sodium
        0.0001390
        0.0001390
        5.434

        Sulfur
        0.001130
        0.001130
        25.97

        Sulfur
        1.900e-006
        1.900e-006
        0.06092
```

Uranium 6.090e-005 6.090e-005 14.49

Sample 19250 water leach, Stage 4.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 7.590
 log f02 = -0.717

 Eh = 0.7694 volts
 pe = 13.0072

 Ionic strength
 0.000894

 Activity of water
 1.000000

 Solvent mass
 0.999997 kg

 Solution mass
 1.000090 kg

 Solution density
 1.013 g/cm3

 Chlorinity
 0.000001 molal

 Dissolved solids
 94 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 30.10 mg/kg as CaCO3

 Xi = 0.0000Step #

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer	 		

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.0005885	35.90	0.9668	-3.2450
Na+	0.0005094	11.71	0.9668	-3.3077
02(aq)	0.0002427	7.764	1.0000	-3.6150
K+	0.0001200	4.690	0.9665	-3.9358
HPO4	6.250e-005	5.998	0.8733	-4.2629
A102-	5.854e-005	3.452	0.9668	-4.2472
F-	3.256e-005	0.6186	0.9666	-4.5020
CO2(aq)	3.234e-005	1.423	1.0000	-4.4903
Fe(OH)3(aq)	2.737e-005	2.924	1.0000	-4.5628
H2PO4-	2.329e-005	2.258	0.9668	-4.6475
Ca++	2.217e-005	0.8885	0.8755	-4.7119
NO3-	2.120e-005	1.314	0.9665	-4.6885
UO2PO4-	6.283e-006	2.293	0.9668	-5.2165
Mn++	5.176e-006	0.2843	0.8755	-5.3437
(UO2)2CO3(OH)3-	4.571e-006	2.976	0.9668	-5.3547
Cr04	4.532e-006	0.5256	0.8733	-5.4026
HA102(aq)	4.104e-006	0.2461	1.0000	-5.3868
Ni++	2.860e-006	0.1678	0.8755	-5.6014
Mg++	2.572e-006	0.06251	0.8776	-5.6464
UO2(CO3)2	2.392e-006	0.9330	0.8733	-5.6800
UO2(OH)2(aq)	1.746e-006	0.5308	1.0000	-5.7580
Fe(OH)2+	1.556e-006	0.1398	0.9668	-5.8228
CO3	1.188e-006	0.07128	0.8739	-5.9838
MnHPO4(aq)	9.404e-007	0.1419	1.0000	-6.0267
Cl-	8.739e-007	0.03098	0.9665	-6.0734
CaHPO4(aq)	5.823e-007	0.07921	1.0000	-6.2349
SO4	5.578e-007	0.05357	0.8733	-6.3124
PbCO3(aq)	4.339e-007	0.1159	1.0000	-6.3626
OH-	4.071e-007	0.006922	0.9666	-6.4051
NaHCO3(aq)	3.995e-007	0.03356	1.0000	-6.3985
UO2HPO4(aq)	3.577e-007	0.1309	1.0000	-6.4465

HCrO4-	3.285e-007	0.03843	0.9668	-6.4982		
Fe(OH)4-	2.766e-007	0.03427	0.9668	-6.5728		
NaHPO4-	2.313e-007	0.02751	0.9668	-6.6506		
UO2(CO3)3	1.648e-007	0.07416	0.5815	-7.0185		
MnCO3(aq)	1.558e-007	0.01790	1.0000	-6.8075		
CaHCO3+	1.272e-007	0.01286	0.9668	-6.9102		
Pb++	1.258e-007	0.02606	0.8739	-6.9589		
UO2CO3(aq)	1.144e-007	0.03774	1.0000	-6.9418		
MgHPO4(aq)	1.002e-007	0.01205	1.0000	-6.9993		
PbOH+	8.927e-008	0.02001	0.9668	-7.0640		
UO2(OH)3-	8.699e-008	0.02793	0.9668	-7.0752		
Al(OH)2+	7.520e-008	0.004587	0.9668	-7.1384		
MnPO4-	7.349e-008	0.01102	0.9668	-7.1485		
CaPO4-	5.861e-008	0.007915	0.9668	-7.2467		
CaCO3(aq)	4.280e-008	0.004283	1.0000	-7.3686		
MnO4-	4.226e-008	0.005026	0.9666	-7.3888		
KHPO4-	3.944e-008	0.005327	0.9668	-7.4187		
Al13O4(OH)24(7+)	2.795e-008	0.02300	0.1960	-8.2612		
H+	2.655e-008	2.675e-005	0.9682	-7.5900		
MnHCO3+	2.030e-008	0.002354	0.9668	-7.7071		
MgHCO3+	1.442e-008	0.001230	0.9668	-7.8557		
(only species > 1e-8 molal listed)						

Mineral saturation states

Mineral Sacuracion	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Hematite Trevorite Bixbyite Plumbogummite Parsonsite Pyrolusite Hausmannite Pyromorphite-OH MnO2(gamma) Fluorapatite Goethite Pb40(PO4)2 Pb3(PO4)2 Manganite PbHPO4 Ca-Autunite Magnetite Diaspore Ferrite-Ca Corundum Boehmite Ferrite-Mg MnHPO4 Gibbsite (UO2)3(PO4)2:4H2 Fe(OH)3(ppd) Hydrocerussite	56.1476s/sat 48.7392s/sat 17.0089s/sat 14.7659s/sat 14.6654s/sat 10.6683s/sat 10.6197s/sat 9.9041s/sat 9.4654s/sat 9.3793s/sat 9.0422s/sat 7.9476s/sat 6.9134s/sat 6.9027s/sat 6.9134s/sat 5.7519s/sat 5.7519s/sat 5.7519s/sat 4.5057s/sat 4.5057s/sat 4.2531s/sat 3.8858s/sat 3.8208s/sat 3.8208s/sat 3.7800s/sat 3.4819s/sat 3.3530s/sat 3.3403s/sat 3.2901s/sat 1.8188s/sat 1.7816s/sat 1.7816s/sat	Cerussite Crocoite Plattnerite Dawsonite Ice Schoepite U03:2H20 U02(OH)2(beta) U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(1 Corkite Strengite Saleeite Rhodochrosite CaU04 Berlinite Mn(OH)3 Przhevalskite Schoepite-dehy(. U02HP04:4H2O U02CO3 Schoepite-dehy(. Rutherfordine U02HP04 Calcite Aragonite Bunsenite Hydroxylapatite	109 Q/K 0.5953s/sat 0.3563s/sat 0.1995s/sat 0.1470s/sat -0.1387 -0.2767 -0.3891 -0.4601 -0.4601 -0.5404 -0.5465 -0.6074 -0.6628 -0.7816 -0.8059 -0.9173 -1.1882 -1.4898 -1.5112 -1.6497 -1.8632 -2.1517 -2.1677 -2.1720 -2.2081 -2.2156 -2.3600 -2.8933 -2.9139
(only minerals w	ith log Q/K >	-3 listed)	

Gases	fugacity	log fug.		
02(g)	0.1920	-0.717		
H2O(g)	0.02598	-1.585		
CO2(g)	0.0009520	-3.021		
HF(g)	6.243e-014	-13.205		
NO2(g)	1.811e-020	-19.742		
HCl(g)	1.074e-020	-19.969		
N2(g)	8.464e-021	-20.072		
NO(g)	2.770e-026	-25.557		
Cl2(g)	7.335e-033	-32.135		
H2(g)	6.396e-042	-41.194		
CO(g)	1.902e-048	-47.721		
UO2F2(g)	5.070e-055	-54.295		
S02(g)	3.858e-058	-57.414		
Pb(g)	2.628e-066	-65.580		
UO3(g)	4.061e-067	-66.391		
UOF4(g)	8.011e-069	-68.096		
NH3(g)	1.134e-069	-68.945		
UO2Cl2(g)	1.849e-071	-70.733		
Na(g)	2.099e-076	-75.678		
K(g)	9.473e-078	-77.024		
UF5(g)	4.011e-082	-81.397		
F2(g)	1.944e-082	-81.711		
UF6(g)	5.634e-087	-86.249		
UF4(g)	2.811e-091	-90.551		
UO2(g)	5.773e-120	-119.239		
UCl4(g)	2.306e-129	-128.637		
Mg(g)	1.235e-131	-130.908		
UC15(g)	3.941e-138	-137.404		
U2F10(g)	1.801e-138	-137.745		
UCl6(g)	1.251e-141	-140.903		
UF3(g)	9.028e-142	-141.044		
H2S(g)	2.492e-145	-144.603		
CH4(g)	1.271e-145	-144.896		
Ca(g)	1.577e-153	-152.802		
UC13(g)	6.942e-158	-157.158		
Al(g)	1.354e-187	-186.868		
UF2(g)	4.278e-189	-188.369		
C(g)	1.018e-189	-188.992		
UCl2(g)	1.132e-203	-202.946		
UO(g)	3.259e-204	-203.487		
UF(g)	4.989e-230	-229.302		
S2(g)	3.387e-233	-232.470		
C2H4(g)	7.789e-238	-237.108		
UCl(g)	4.040e-247	-246.394		
U2Cl8(g)	1.310e-247	-246.883		
U2Cl10(g)	3.099e-249	-248.509		
U(g)	4.315e-289	-288.365		
- 1 1		n fluid	Sorbed	Kd
Original basis	total moles mole	s mg/kg	moles mg/kg	g L/kg
Al+++	6.31e-005 6.31e-	 005 1.70		
Ca++	2.30e-005 2.30e-			
Cl-	8.74e-007 8.74e-			
<u></u>	0.710 007 0.740	0.0510		

Cr04	4.86e-006	4.86e-006	0.564
F-	3.26e-005	3.26e-005	0.619
Fe++	2.92e-005	2.92e-005	1.63
H+	-0.000306	-0.000306	-0.309
H2O	55.5	55.5	1.00e+006
HCO3-	0.000633	0.000633	38.6
HPO4	9.45e-005	9.45e-005	9.07
K+	0.000120	0.000120	4.69
Mg++	2.70e-006	2.70e-006	0.0656
Mn++	6.42e-006	6.42e-006	0.353
NH3(aq)	2.12e-005	2.12e-005	0.361
Na+	0.000510	0.000510	11.7
Ni++	2.86e-006	2.86e-006	0.168
02(aq)	0.000292	0.000292	9.36
Pb++	6.68e-007	6.68e-007	0.138
SO4	5.62e-007	5.62e-007	0.0540
UO2++	2.03e-005	2.03e-005	5.48

Elemental composition		In fl	uid	Sorl	Sorbed	
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	6.310e-005	6.310e-005	1.702			
Calcium	2.300e-005	2.300e-005	0.9217			
Carbon	0.0006332	0.0006332	7.604			
Chlorine	8.740e-007	8.740e-007	0.03098			
Chromium	4.860e-006	4.860e-006	0.2527			
Fluorine	3.260e-005	3.260e-005	0.6193			
Hydrogen	111.0	111.0	1.119e+005			
Iron	2.920e-005	2.920e-005	1.631			
Lead	6.680e-007	6.680e-007	0.1384			
Magnesium	2.700e-006	2.700e-006	0.06562			
Manganese	6.420e-006	6.420e-006	0.3527			
Nickel	2.860e-006	2.860e-006	0.1678			
Nitrogen	2.120e-005	2.120e-005	0.2969			
Oxygen	55.51	55.51	8.881e+005			
Phosphorus	9.450e-005	9.450e-005	2.927			
Potassium	0.0001200	0.0001200	4.691			
Sodium	0.0005100	0.0005100	11.72			
Sulfur	5.620e-007	5.620e-007	0.01802			
Uranium	2.030e-005	2.030e-005	4.832			

Sample 19250 water leach, Stage 5.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.0004842	29.54	0.9708	-3.3279
Na+	0.0003707	8.521	0.9708	-3.4439
02(aq)	0.0002453	7.849	1.0000	-3.6103
K+	6.199e-005	2.424	0.9706	-4.2206
AlO2-	4.513e-005	2.662	0.9708	-4.3584
CO2(aq)	3.862e-005	1.700	1.0000	-4.4132
HPO4	2.893e-005	2.777	0.8882	-4.5901
NO3-	2.550e-005	1.581	0.9706	-4.6065
Ca++	2.236e-005	0.8960	0.8899	-4.7013
F-	2.126e-005	0.4039	0.9707	-4.6853
Fe(OH)3(aq)	1.717e-005	1.835	1.0000	-4.7651
H2PO4-	1.578e-005	1.530	0.9708	-4.8147
HAlO2(aq)	4.592e-006	0.2754	1.0000	-5.3380
UO2PO4-	4.517e-006	1.649	0.9708	-5.3580
(UO2)2CO3(OH)3-	4.234e-006	2.756	0.9708	-5.3861
Mn++	3.949e-006	0.2169	0.8899	-5.4542
Cr04	2.812e-006	0.3261	0.8882	-5.6025
UO2(OH)2(aq)	1.852e-006	0.5631	1.0000	-5.7323
UO2(CO3)2	1.704e-006	0.6645	0.8882	-5.8201
Mg++	1.580e-006	0.03839	0.8915	-5.8513
Ni++	1.550e-006	0.09095	0.8899	-5.8604
Fe(OH)2+	1.405e-006	0.1263	0.9708	-5.8651
Cl-	1.360e-006	0.04821	0.9706	-5.8795
Al13O4(OH)24(7+)	1.303e-006	1.072	0.2393	-6.5063
CO3	6.678e-007	0.04007	0.8886	-6.2267
UO2HPO4(aq)	3.732e-007	0.1366	1.0000	-6.4280
MnHPO4(aq)	3.433e-007	0.05181	1.0000	-6.4643
SO4	3.350e-007	0.03218	0.8882	-6.5265
HCrO4-	2.983e-007	0.03490	0.9708	-6.5381
CaHPO4(aq)	2.809e-007	0.03822	1.0000	-6.5514
OH-	2.804e-007	0.004769	0.9707	-6.5651

NaHCO3(aq)	2.412e-007	0.02026	1.0000	-6.6176		
PbCO3(aq)	2.386e-007	0.06374	1.0000	-6.6224		
U02C03(aq)	1.449e-007	0.04782	1.0000	-6.8389		
Al(OH)2+	1.211e-007	0.007388	0.9708	-6.9296		
Fe(OH)4-	1.196e-007	0.01482	0.9708	-6.9351		
Pb++	1.190e-007	0.02466	0.8886	-6.9757		
CaHCO3+	1.073e-007	0.01084	0.9708	-6.9824		
NaHPO4-	7.923e-008	0.009425	0.9708	-7.1140		
MnCO3(aq)	6.905e-008	0.007936	1.0000	-7.1608		
UO2(CO3)3	6.378e-008	0.02870	0.6221	-7.4015		
UO2(OH)3-	6.359e-008	0.02041	0.9708	-7.2095		
PbOH+	5.916e-008	0.01326	0.9708	-7.2408		
H+	3.822e-008	3.852e-005	0.9720	-7.4300		
MgHPO4(aq)	2.942e-008	0.003538	1.0000	-7.5314		
CaCO3(aq)	2.507e-008	0.002509	1.0000	-7.6008		
CaPO4-	1.948e-008	0.002631	0.9708	-7.7232		
MnPO4-	1.848e-008	0.002770	0.9708	-7.7461		
MnHCO3+	1.295e-008	0.001502	0.9708	-7.9004		
AlF2+	1.115e-008	0.0007241	0.9708	-7.9658		
MnO4-	1.095e-008	0.001303	0.9707	-7.9733		
(only species > 1e-8 molal listed)						

Mineral saturation states

Bacaracion	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Hematite Trevorite Plumbogummite Bixbyite Parsonsite Pyrolusite Hausmannite MnO2(gamma) Pyromorphite-OH Goethite Fluorapatite Pb40(PO4)2 Pb3(PO4)2 Manganite Ca-Autunite PbHPO4 Diaspore Corundum Magnetite Boehmite Gibbsite Ferrite-Ca MnHPO4 Ferrite-Mg (UO2)3(PO4)2:4H2 Fe(OH)3(ppd)	52.7183s/sat 45.7380s/sat 15.6570s/sat 14.3612s/sat 13.6818s/sat 10.4150s/sat 9.8098s/sat 9.2417s/sat 9.0373s/sat 8.0903s/sat 7.5195s/sat 7.3364s/sat 6.7004s/sat 5.3220s/sat 5.2096s/sat 4.7270s/sat 4.5868s/sat 4.1851s/sat 4.1617s/sat 3.9346s/sat 3.8777s/sat 3.6449s/sat 3.5307s/sat 3.5307s/sat 3.3389s/sat 3.1068s/sat 2.9027s/sat 1.8816s/sat 1.5793s/sat	Cerussite Hydrocerussite Crocoite Dawsonite Plattnerite Ice U03:2H20 Schoepite U02(OH)2(beta) U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Schoepite-dehy(1 Strengite Berlinite Rhodochrosite CaUO4 Saleeite Corkite Schoepite-dehy(. Przhevalskite U02HPO4:4H2O Mn(OH)3 U02CO3 Rutherfordine Schoepite-dehy(. U02HPO4 Calcite Aragonite	log Q/K 0.3355s/sat 0.2894s/sat 0.1394s/sat -0.0232 -0.1349 -0.1387 -0.2510 -0.2510 -0.3634 -0.4344 -0.5147 -0.5208 -0.8723 -1.1465 -1.1592 -1.2009 -1.2694 -1.4526 -1.6240 -1.8110 -1.8447 -1.9190 -2.0488 -2.0691 -2.1420 -2.1896 -2.4478 -2.5922
(only minerals w	ith log Q/K >	-3 listed)	

Gases fugacity log fug.

```
\begin{array}{rrr}
0.1941 & -0.712 \\
0.02598 & -1.585
\end{array}

 02(g)
 H2O(g)
                   0.001137
                                  -2.944
 CO2(g)
                   5.917e-014
                                 -13.228
HF(g)
                   3.154e-020
                                 -19.501
NO2(q)
N2(q)
                   2.511e-020
                                 -19.600
                                 -19.615
                   2.427e-020
HCl(g)
                                  -25.319
 NO(g)
                   4.798e-026
 Cl2(g)
                   3.763e-032
                                  -31.424
                  6.361e-042
                                 -41.196
 H2(g)
                   2.259e-048
                                 -47.646
 CO(g)
                   4.832e-055
                                 -54.316
 UO2F2(g)
                   4.896e-058
                                 -57.310
 SO2(g)
                               -65.920
-66.366
                   1.203e-066
 Pb(g)
 UO3(g)
                   4.308e-067
 UOF4(g)
                   6.858e-069
                                  -68.164
                   1.938e-069 -68.713
NH3(g)
                   1.001e-070 -70.000
 UO2C12(g)
                   1.059e-076
                                 -75.975
Na(g)
                   3.392e-078
                                 -77.470
 K(g)
                                  -81.489
 UF5(g)
                   3.245e-082
                   1.756e-082
                                  -81.755
 F2(q)
                                 -86.363
                   4.332e-087
 UF6(q)
                   2.393e-091
                                  -90.621
 UF4(g)
 UO2(g)
                   6.092e-120 -119.215
 UC14(g)
                   6.335e-128 -127.198
                   3.668e-132 -131.436
 Mg(g)
                   2.452e-136 -135.610
1.179e-138 -137.929
1.764e-139 -138.754
 UC15(g)
U2F10(g)
 UCl6(g)
                   8.088e-142 -141.092
 UF3(g)
 H2S(g)
                   3.112e-145 -144.507
                   1.485e-145 -144.828
 CH4(g)
                   7.693e-154
                                -153.114
 Ca(g)
                   8.421e-157
                                 -156.075
 UC13(g)
 Al(q)
                   1.502e-187
                                 -186.823
                   4.033e-189 -188.394
 UF2(g)
                   1.203e-189 -188.920
 C(g)
 UCl2(g)
                   6.060e-203 -202.218
 UO(g)
                   3.420e-204 -203.466
                   4.949e-230 -229.305
 UF(g)
                   5.337e-233 -232.273
 S2(g)
                               -236.969
 C2H4(g)
                   1.075e-237
                   9.889e-245 -244.005
 U2Cl8(g)
                   1.200e-245 -244.921
 U2Cl10(g)
 UCl(g)
                   9.552e-247
                                -246.020
 U(g)
                    4.504e-289
                                -288.346
                                                  Sorbed
                              In fluid
                                                                    Kd
Original basis total moles moles mg/kg moles mg/kg L/kg
             6.68e-005 6.68e-005 1.80
2.28e-005 2.28e-005 0.914
 Al+++
 Ca++
 Cl-
              1.36e-006 1.36e-006 0.0482
            3.11e-006 3.11e-006 0.361
2.13e-005 2.13e-005 0.405
 CrO4--
 F-
```

Fe++ H+ H2O	1.87e-005 -0.000274 55.5	1.87e-005 -0.000274 55.5	1.04 -0.276 1.00e+006
HCO3-	0.000532	0.000532	32.5
HPO4	5.04e-005	5.04e-005	4.84
K+	6.20e-005	6.20e-005	2.42
Mg++	1.62e-006	1.62e-006	0.0394
Mn++	4.41e-006	4.41e-006	0.242
NH3(aq)	2.55e-005	2.55e-005	0.434
Na+	0.000371	0.000371	8.53
Ni++	1.55e-006	1.55e-006	0.0910
02(aq)	0.000301	0.000301	9.63
Pb++	4.23e-007	4.23e-007	0.0876
SO4	3.37e-007	3.37e-007	0.0324
UO2++	1.72e-005	1.72e-005	4.64

Elemental com	Elemental composition		in fluid		Sorbed	
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	6.680e-005	6.680e-005	1.802			
Calcium	2.280e-005	2.280e-005	0.9137			
Carbon	0.0005321	0.0005321	6.391			
Chlorine	1.360e-006	1.360e-006	0.04821			
Chromium	3.110e-006	3.110e-006	0.1617			
Fluorine	2.130e-005	2.130e-005	0.4046			
Hydrogen	111.0	111.0	1.119e+005			
Iron	1.870e-005	1.870e-005	1.044			
Lead	4.230e-007	4.230e-007	0.08764			
Magnesium	1.620e-006	1.620e-006	0.03937			
Manganese	4.410e-006	4.410e-006	0.2423			
Nickel	1.550e-006	1.550e-006	0.09096			
Nitrogen	2.550e-005	2.550e-005	0.3571			
Oxygen	55.51	55.51	8.881e+005			
Phosphorus	5.040e-005	5.040e-005	1.561			
Potassium	6.200e-005	6.200e-005	2.424			
Sodium	0.0003710	0.0003710	8.529			
Sulfur	3.370e-007	3.370e-007	0.01081			
Uranium	1.720e-005	1.720e-005	4.094			

Sample 19250 water leach, Stage 6.

moles moles grams cm3 remaining reacted reacted reacted

______ 02(g) -- fixed fugacity buffer --

No minerals in system.

Reactants

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.001127	25.91	0.9487	-2.9708
HCO3-	0.0009282	56.62	0.9487	-3.0552
Fe(OH)3(aq)	0.0002430	25.97	1.0000	-3.6143
Al02-	0.0001739	10.26	0.9487	-3.7825
HPO4	0.0001578	15.14	0.8096	-3.8936
K+	0.0001479	5.781	0.9480	-3.8533
F-	0.0001469	2.790	0.9484	-3.8560
NO3-	0.0001360	8.429	0.9480	-3.8897
02(aq)	0.0001280	4.096	1.0000	-3.8926
(UO2)2CO3(OH)3-	6.686e-005	43.52	0.9487	-4.1977
MnO4-	4.284e-005	5.094	0.9484	-4.3911
Ca++	3.815e-005	1.529	0.8146	-4.5075
UO2(CO3)3	2.894e-005	13.02	0.4294	-4.9057
Fe(OH)4-	2.874e-005	3.560	0.9487	-4.5643
CrO4	2.863e-005	3.320	0.8096	-4.6349
CO3	2.275e-005	1.365	0.8109	-4.7340
Ni++	2.265e-005	1.329	0.8146	-4.7340
UO2(CO3)2	1.883e-005	7.341	0.8096	-4.8169
Cl-	1.740e-005	0.6166	0.9480	-4.7827
Mg++	1.156e-005	0.2810	0.8192	-5.0235
Mn++	8.129e-006	0.4465	0.8146	-5.1791
UO2(OH)2(aq)	5.316e-006	1.616	1.0000	-5.2744
H2PO4-	4.837e-006	0.4691	0.9487	-5.3382
OH-	4.764e-006	0.08099	0.9484	-5.3451
PbCO3(aq)	4.721e-006	1.261	1.0000	-5.3260
CO2(aq)	4.360e-006	0.1918	1.0000	-5.3605
MnCO3(aq)	4.045e-006	0.4648	1.0000	-5.3931
UO2PO4-	3.974e-006	1.450	0.9487	-5.4236
MnHPO4(aq)	3.216e-006	0.4852	1.0000	-5.4927
UO2(OH)3-	3.099e-006	0.9948	0.9487	-5.5316
MnPO4-	2.940e-006	0.4406	0.9487	-5.5545

CaPO4-	2.570e-006	0.3469	0.9487	-5.6130
CaHPO4(aq)	2.182e-006	0.2968	1.0000	-5.6612
Ca2UO2(CO3)3	1.903e-006	1.009	1.0000	-5.7206
SO4	1.714e-006	0.1646	0.8096	-5.8578
NaHCO3(aq)	1.343e-006	0.1128	1.0000	-5.8719
Fe(OH)2+	1.226e-006	0.1102	0.9487	-5.9343
CaCO3(aq)	1.218e-006	0.1218	1.0000	-5.9145
NaHPO4-	1.198e-006	0.1425	0.9487	-5.9444
MgPO4-	1.054e-006	0.1257	0.9487	-5.9999
HA102(aq)	1.042e-006	0.06250	1.0000	-5.9821
MgHPO4(aq)	9.838e-007	0.1183	1.0000	-6.0071
PbOH+	6.394e-007	0.1433	0.9487	-6.2171
CaHCO3+	3.212e-007	0.03246	0.9487	-6.5161
HCrO4-	1.708e-007	0.01997	0.9487	-6.7905
MgCO3(aq)	1.665e-007	0.01403	1.0000	-6.7786
MnO4	1.605e-007	0.01908	0.8096	-6.8863
KHPO4-	1.137e-007	0.01536	0.9487	-6.9669
Pb(OH)2(aq)	1.091e-007	0.02631	1.0000	-6.9622
MgHCO3+	9.547e-008	0.008144	0.9487	-7.0430
Pb++	8.300e-008	0.01719	0.8109	-7.1720
MnOH+	8.013e-008	0.005764	0.9487	-7.1191
Pb(CO3)2	7.107e-008	0.02325	0.8096	-7.2400
NaCO3-	6.799e-008	0.005642	0.9487	-7.1904
(UO2)3(OH)7-	5.529e-008	0.05136	0.9487	-7.2802
UO2CO3(aq)	4.694e-008	0.01549	1.0000	-7.3284
MnHCO3+	4.679e-008	0.005424	0.9487	-7.3527
PO4	4.375e-008	0.004154	0.6216	-7.5654
Ni(OH)2(aq)	3.766e-008	0.003490	1.0000	-7.4242
PbP207	3.516e-008	0.01340	0.8096	-7.5456
NaAlO2(aq)	3.187e-008	0.002612	1.0000	-7.4966
MgF+	3.132e-008	0.001356	0.9487	-7.5270
MnF+	2.617e-008	0.001934	0.9487	-7.6050
CaF+	2.193e-008	0.001295	0.9487	-7.6818
CaNO3+	2.116e-008	0.002160	0.9487	-7.6973
U02HP04(aq)	1.934e-008	0.007075	1.0000	-7.7136
NaF(aq)	1.498e-008	0.0006290	1.0000	-7.8244
PbHPO4(aq)	1.082e-008	0.003281	1.0000	-7.9656
NaSO4-	1.033e-008	0.001230	0.9487	-8.0086
(only appairs	> 10 0 molal ligto	-d \		

Mineral saturation states log Q/K

Bacaración	log Q/K		log Q/K
Birnessite Todorokite Pyromorphite Trevorite Hematite Hausmannite Bixbyite Pyromorphite-OH Fluorapatite Pyrolusite Parsonsite Pb40(PO4)2 MnO2(gamma)	73.5921s/sat 64.0379s/sat 21.5219s/sat 19.5498s/sat 16.6627s/sat 16.0945s/sat 15.0989s/sat 13.3246s/sat 12.8694s/sat 11.6112s/sat 10.7001s/sat 10.6976s/sat 10.0934s/sat	Rhodochrosite Whitlockite Schoepite U03:2H20 U02(OH)2(beta) Bunsenite Dawsonite U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(1 Ice Ni(OH)2	0.6085s/sat 0.2150s/sat 0.2069s/sat 0.2069s/sat 0.0945s/sat 0.0941s/sat 0.0784s/sat 0.0235s/sat 0.0235s/sat -0.0568 -0.0629 -0.1387 -0.1825
Ferrite-Ca	8.0421s/sat	(UO2)3(PO4)2:4H2	-0.2318

Ferrite-Mg	7.9928s/sat	Saleeite	-0.5728
Pb3(PO4)2	7.9712s/sat	Calcite	-0.7615
Goethite	7.8512s/sat	Dolomite-ord	-0.8550
Plumbogummite	7.2395s/sat	Dolomite	-0.8550
Manganite	7.2313s/sat	Aragonite	-0.9059
Magnetite	7.1679s/sat	PbCO3.PbO	-1.1203
Hydrocerussite	5.1260s/sat	Na2U2O7(c)	-1.1529
PbHPO4	4.6619s/sat	Schoepite-dehy(.	-1.1661
Ca-Autunite	4.2476s/sat	Strengite	-1.4651
MnHPO4	3.8743s/sat	Monohydrocalcite	-1.5952
Hydroxylapatite	3.4560s/sat	Schoepite-dehy(.	-1.6841
Diaspore	3.2905s/sat	Magnesite	-1.7223
Boehmite	2.8866s/sat	Minium	-2.0009
Fe(OH)3(ppd)	2.7301s/sat	Przhevalskite	-2.1385
Gibbsite	2.6948s/sat	Fluorite	-2.1825
Corundum	2.5895s/sat	Dolomite-dis	-2.3994
Plattnerite	1.9676s/sat	Lanarkite	-2.4325
Ni3(PO4)2	1.9522s/sat	Litharge	-2.5108
CaUO4	1.8907s/sat	UO2CO3	-2.5383
Becquerelite	1.6337s/sat	Rutherfordine	-2.5586
Cerussite	1.6319s/sat	NiCO3	-2.6510
Crocoite	0.9108s/sat	UO3(gamma)	-2.6671
Corkite	0.7287s/sat	Massicot	-2.6930
Mn(OH)3	0.7255s/sat		

Gases	fugacity	log fug.
02(g)	0.1013	-0.994
H2O(g)	0.02598	-1.585
CO2(g)	0.0001283	-3.892
HF(g)	2.407e-014	-13.619
HCl(g)	1.827e-020	-19.738
N2(g)	1.257e-020	-19.901
NO2(g)	1.164e-020	-19.934
NO(g)	2.452e-026	-25.610
Cl2(g)	1.541e-032	-31.812
H2(g)	8.805e-042	-41.055
CO(g)	3.529e-049	-48.452
UO2F2(g)	2.295e-055	-54.639
S02(g)	1.147e-059	-58.940
Pb(g)	2.920e-064	-63.535
UO3(g)	1.237e-066	-65.908
NH3(g)	2.233e-069	-68.651
UOF4(g)	5.389e-070	-69.269
UO2C12(g)	1.628e-070	-69.788
Na(g)	6.143e-075	-74.212
K(g)	1.543e-076	-75.812
F2(g)	2.099e-083	-82.678
UF5(g)	1.220e-083	-82.914
UF6(g)	5.633e-089	-88.249
UF4(g)	2.603e-092	-91.585
UO2(g)	2.420e-119	-118.616
UCl4(g)	8.085e-128	
Mg(g)	9.407e-129	-128.027
UC15(g)	2.003e-136	
UC16(g)	9.220e-140	-139.035

U2F10(g) UF3(g) CH4(g) H2S(g) Ca(g) UC13(g) A1(g) UF2(g) C(g) UC12(g) UO(g) UF(g) S2(g) C2H4(g) U2C18(g) U2C110(g) UC1(g)	2.544 6.152 1.934 4.581 1.680 5.552 3.669 2.601 1.889 1.881 1.302 1.076 9.634 1.611 8.008 4.652	e-142 -14 e-146 -14 e-146 -14 e-146 -15 e-151 -15 e-156 -15 e-188 -18 e-189 -18 e-190 -18 e-202 -20 e-203 -20 e-229 -22 e-235 -23 e-239 -23 e-244 -24 e-246 -246 e-288 -28	13.793 15.096 15.332 17.465			
Original basis	total moles	In flu moles			bed mg/kg	Kd L/kg
Al+++ Ca++ Cl- CrO4 F- Fe++ H+ H2O HCO3- HPO4 K+ Mg++ Mn++ NH3(aq) Na+ Ni++ O2(aq) Pb++ SO4 UO2++	0.000175 4.83e-005 1.74e-005 2.88e-005 0.000147 0.000273 -0.00200 55.5 0.00116 0.000181 0.000148 1.39e-005 6.15e-005 0.000136 0.00113 2.27e-005 0.000522 5.67e-006 1.74e-006	0.000175 4.83e-005 1.74e-005 2.88e-005 0.000147 0.000273 -0.00200 55.5 1 0.00116 0.000181 0.000148 1.39e-005 6.15e-005 0.000136 0.00113 2.27e-005 0.000522 5.67e-006	4.72 1.94 0.617 3.34 2.79 15.2 -2.01 .00e+006 71.0 17.4 5.79 0.338			
Elemental comp	osition total mole		n fluid mg/}	ζg	Sorbed moles	d mg/kg
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Iron Lead Magnesium Manganese	0.000175 4.830e-00 0.00116 1.740e-00 2.880e-00 0.000147 111. 0.000273 5.670e-00 1.390e-00	4.830e-0 0.0011 1.740e-0 5.2.880e-0 0.00014 0.00027 6.5.670e-0 1.390e-0	005 0.	4.721 1.935 13.98 .6167 1.497 2.792 e+005 15.24 1.175 .3378		

Nickel	2.270e-005	2.270e-005	1.332
Nitrogen	0.0001360	0.0001360	1.904
Oxygen	55.51	55.51	8.880e+005
Phosphorus	0.0001810	0.0001810	5.605
Potassium	0.0001480	0.0001480	5.785
Sodium	0.001130	0.001130	25.97
Sulfur	1.740e-006	1.740e-006	0.05578
Uranium	0.0001960	0.0001960	46.64

Sample 19250 Ca(OH)₂ leach, 1 day (Stage 1).

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars pH = 11.480 log fO2 = -0.704 Eh = 0.5395 volts pe = 9.1205 Ionic strength = 0.020137 Ionic strength = 0.020137
Activity of water = 1.000000
Solvent mass = 0.999917 kg
Solution mass = 1.000711 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000009 molal
Dissolved solids = 793 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity = 648.51 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
					-
02(g)	fixed fuga	city buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.01107	254.2	0.8703	-2.0163
CO3	0.005988	359.0	0.5767	-2.4618
OH-	0.003519	59.81	0.8678	-2.5151
AlO2-	0.0005342	31.48	0.8703	-3.3326
HCO3-	0.0002801	17.08	0.8703	-3.6130
02(aq)	0.0002500	7.994	1.0000	-3.6020
CaCO3(aq)	0.0002204	22.04	1.0000	-3.6568
NO3-	0.0001950	12.08	0.8653	-3.7728
F-	0.0001469	2.788	0.8678	-3.8946
NaCO3-	0.0001249	10.36	0.8703	-3.9638
Ca++	5.057e-005	2.025	0.5943	-4.5220
Cr04	2.590e-005	3.002	0.5704	-4.8305
SO4	2.376e-005	2.281	0.5704	-4.8680
Cl-	8.878e-006	0.3145	0.8653	-5.1145
CaPO4-	6.307e-006	0.8511	0.8703	-5.2605
NaOH(aq)	4.665e-006	0.1864	1.0000	-5.3311
NaHCO3(aq)	3.348e-006	0.2810	1.0000	-5.4753
UO2(OH)3-	2.599e-006	0.8336	0.8703	-5.6456
UO2(CO3)3	1.926e-006	0.8660	0.1053	-6.6931
CaOH+	1.473e-006	0.08404	0.8703	-5.8920
NaSO4-	9.909e-007	0.1179	0.8703	-6.0643
NaAlO2(aq)	8.086e-007	0.06623	1.0000	-6.0922
HPO4	7.712e-007	0.07396	0.5704	-6.3567
PO4	2.245e-007	0.02130	0.2821	-7.1985
NaF(aq)	1.234e-007	0.005179	1.0000	-6.9086
CaHCO3+	9.375e-008	0.009470	0.8703	-7.0884
CaSO4(aq)	5.261e-008	0.007157	1.0000	-7.2789
NaHPO4-	4.049e-008	0.004813	0.8703	-7.4530
CaNO3+	2.921e-008	0.002979	0.8703	-7.5949
Ca2UO2(CO3)3	2.904e-008	0.01539	1.0000	-7.5370
CaF+	2.115e-008	0.001249	0.8703	-7.7350

UO2(OH)4	1.866e-008	0.006303	0.5704	-7.9729
Pb(OH)3-	1.371e-008	0.003538	0.8703	-7.9232
NaCl(aq)	1.236e-008	0.0007220	1.0000	-7.9078
(only species >	> 1e-8 molal liste	d)		

Mineral saturation states

Milicial Sacaración	log Q/K		log Q/K
Fluorapatite Hydroxylapatite CaUO4 Calcite Aragonite Diaspore Whitlockite Plattnerite	13.8592s/sat 7.3144s/sat 4.5922s/sat 1.4962s/sat 1.3518s/sat 0.9104s/sat 0.9055s/sat 0.6669s/sat	Gibbsite Ice Dawsonite Na2U2O7(am) Corundum Fluorite UO3:2H2O Schoepite	0.3147s/sat -0.1387 -1.9051 -1.9803 -2.1707 -2.2743 -2.7371 -2.7371
Monohydrocalcite	0.6625s/sat	UO2(OH)2(beta)	-2.8495
Na2U2O7(c)	0.5280s/sat	UO3:.9H2O(alpha)	-2.9205 -2.9205
Boehmite (only minerals w	0.5065s/sat ith log Q/K > -	Schoepite-dehy(. -3 listed)	-2.9205

O2(g) 0.1978 -0.704 H2O(g) 0.02598 -1.585 CO2(g) 5.255e-008 -7.279 HF(g) 3.257e-017 -16.487 NO2(g) 1.907e-023 -22.720 HC1(g) 1.259e-023 -22.900 N2(g) 8.840e-027 -26.054 NO(g) 2.874e-029 -28.542 C12(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 UO2F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852 Na(g) 3.163e-071 -70.500
H2O(g) 0.02598 -1.585 CO2(g) 5.255e-008 -7.279 HF(g) 3.257e-017 -16.487 NO2(g) 1.907e-023 -22.720 HC1(g) 1.259e-023 -22.900 N2(g) 8.840e-027 -26.054 NO(g) 2.874e-029 -28.542 C12(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 UO2F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
HF(g) 3.257e-017 -16.487 NO2(g) 1.907e-023 -22.720 HC1(g) 1.259e-023 -22.900 N2(g) 8.840e-027 -26.054 NO(g) 2.874e-029 -28.542 Cl2(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 UO2F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
NO2(g) 1.907e-023 -22.720 HC1(g) 1.259e-023 -22.900 N2(g) 8.840e-027 -26.054 NO(g) 2.874e-029 -28.542 C12(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 UO2F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
HCl(g) 1.259e-023 -22.900 N2(g) 8.840e-027 -26.054 NO(g) 2.874e-029 -28.542 Cl2(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 UO2F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
N2(g) 8.840e-027 -26.054 NO(g) 2.874e-029 -28.542 C12(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 U02F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 U03(g) 1.407e-069 -68.852
NO(g) 2.874e-029 -28.542 Cl2(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 UO2F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
Cl2(g) 1.022e-038 -37.990 H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 U02F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 U03(g) 1.407e-069 -68.852
H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 U02F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 U03(g) 1.407e-069 -68.852
H2(g) 6.301e-042 -41.201 CO(g) 1.034e-052 -51.985 U02F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 U03(g) 1.407e-069 -68.852
UO2F2(g) 4.780e-064 -63.321 SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
SO2(g) 1.755e-064 -63.756 Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
Pb(g) 7.481e-066 -65.126 UO3(g) 1.407e-069 -68.852
UO3(g) 1.407e-069 -68.852
(3)
No./~\ 2.1620.071 70.500
Na(g) 3.163e-0/1 -/0.500
NH3(g) 1.134e-072 -71.946
UO2Cl2(g) 8.794e-080 -79.056
UOF4(g) 2.055e-084 -83.687
F2(g) 5.371e-089 -88.270
UF5(g) 5.328e-101 -100.273
UF4(g) $7.105e-107 -106.148$
UF6(g) 3.934e-109 -108.405
UO2(g) 1.970e-122 -121.705
UC14(g) 1.484e-143 -142.829
Ca(g) 1.449e-145 -144.839
CH4(g) 6.607e-150 -149.180
H2S(g) 1.084e-151 -150.965
UF3(g) 4.341e-154 -153.362
UCl5(g) 2.994e-155 -154.524
UCl6(g) 1.122e-161 -160.950
UCl3(g) 3.784e-169 -168.422
U2F10(g) 3.178e-176 -175.498
Al(g) 1.401e-190 -189.854

C(g) UF2(g) UO(g) UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	3.914e- 1.096e- 5.224e- 8.685e- 6.601e- 2.169e- 1.580e- 5.424e- 1.789e- 1.429e-	-206 -205.9 -212 -211.2 -236 -235.0 -246 -245.1 -246 -245.6 -252 -251.8 -276 -275.2 -283 -282.7 -291 -290.8	407 960 282 961 180 564 801 266 748	Sorbed	Kd
Original basis			IIIO	les mg/k	ig L/kg
Al+++	0.000535	0.000535	14.4		
Ca++	0.000279	0.000279	11.2		
C1-	8.89e-006 8	8.89e-006	0.315		
Cr04	2.59e-005 2	2.59e-005	3.00		
F-	0.000147	0.000147	2.79		
H+		-0.0122	-12.3		
H2O		55.5 9.99			
HCO3-			404.		
HPO4	7.35e-006	7.35e-006	0.705		
NH3(aq)	0.000195	0.000195	3.32		
Na+	0.0112	0.000195 0.0112 0.000640	257.		
	1 000 000 1	0.000640 1.80e-008 0.	20.5		
Pb++ S04	2.48e-005 2		2.38		
UO2++			1.24		
00211	4.506 000	1.300 000	1.21		
Elemental compo	osition	In fl	luid	Sc	rbed
-	total moles		mg/kg	moles	mg/kg
Aluminum	0.0005350	0.0005350	14.42		
Calcium		0.0002790			
Carbon	0.006622	0.006622	79.48		
		8.890e-006	0.3150		
	2.590e-005		1.346		
Fluorine	0.0001470	0.0001470	2.791		
Hydrogen	111.0	111.0	1.118e+005		
Lead Nitrogen	1.800e-008 0.0001950	1.800e-008 0.0001950	0.003727 2.729		
Oxygen	55.53	55.53	8.878e+005		
Phosphorus	7.350e-006	7.350e-006	0.2275		
Sodium	0.01120	0.01120	257.3		
Sulfur	2.480e-005	2.480e-005	0.7947		
Uranium	4.580e-006	4.580e-006	1.089		

Sample 19250 Ca(OH)₂ leach, 1 month.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.500 log fO2 = -0.704
Eh = 0.5383 volts pe = 9.1005
Ionic strength = 0.019551
Activity of water = 0.999999 Solvent mass = 0.999904 kg
Solution mass = 1.000685 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000035 molal
Dissolved solids = 781 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity= 591.46 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.009837	226.0	0.8718	-2.0667
CO3	0.005552	332.9	0.5805	-2.4918
OH-	0.003679	62.52	0.8694	-2.4951
F-	0.001089	20.68	0.8694	-3.0237
AlO2-	0.0008290	48.85	0.8718	-3.1411
NO3-	0.0002890	17.91	0.8669	-3.6011
02(aq)	0.0002500	7.995	1.0000	-3.6020
HCO3-	0.0002492	15.20	0.8718	-3.6630
Cr04	0.0001360	15.76	0.5744	-4.1072
CaCO3(aq)	0.0001248	12.48	1.0000	-3.9038
NaCO3-	0.0001036	8.595	0.8718	-4.0441
Cl-	3.446e-005	1.221	0.8669	-4.5247
Ca++	3.049e-005	1.221	0.5979	-4.7392
SO4	2.484e-005	2.385	0.5744	-4.8456
NaOH(aq)	4.350e-006	0.1738	1.0000	-5.3615
NaHCO3(aq)	2.657e-006	0.2230	1.0000	-5.5756
UO2(OH)3-	1.607e-006	0.5156	0.8718	-5.8535
CaPO4-	1.588e-006	0.2143	0.8718	-5.8587
NaAlO2(aq)	1.119e-006	0.09167	1.0000	-5.9511
CaOH+	9.342e-007	0.05329	0.8718	-6.0892
NaSO4-	9.274e-007	0.1103	0.8718	-6.0923
UO2(CO3)3	8.217e-007	0.3695	0.1082	-7.0509
NaF(aq)	8.166e-007	0.03426	1.0000	-6.0880
HPO4	3.041e-007	0.02917	0.5744	-6.7577
CaF+	9.516e-008	0.005617	0.8718	-7.0812
PO4	9.189e-008	0.008720	0.2866	-7.5795
CaHCO3+	5.060e-008	0.005111	0.8718	-7.3554
NaCl(aq)	4.281e-008	0.002500	1.0000	-7.3684
CaSO4(aq)	3.360e-008	0.004571	1.0000	-7.4737
CaNO3+	2.626e-008	0.002679	0.8718	-7.6403
NaHPO4-	1.429e-008	0.001699	0.8718	-7.9045

Mineral saturation states

	log Q/K		log Q/K
Fluorapatite Hydroxylapatite CaUO4 Calcite Aragonite Diaspore Boehmite Gibbsite Monohydrocalcite	12.5012s/sat 5.1055s/sat 4.1871s/sat 1.2492s/sat 1.1048s/sat 1.0819s/sat 0.6780s/sat 0.4862s/sat 0.4155s/sat	Ice Whitlockite Fluorite Plattnerite Corundum Dawsonite Na2U2O7(am) UO3:2H2O Schoepite	-0.1387 -0.5081 -0.7495 -1.4554 -1.8276 -1.8339 -2.4969 -2.9650 -2.9650
Na2U2O7(c)	0.0114s/sat		

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	4.473e-008	-7.349
HF(g)	2.311e-016	-15.636
HCl(g)	4.675e-023	-22.330
NO2(g)	2.704e-023	-22.568
N2(g)	1.778e-026	-25.750
NO(g)	4.075e-029	-28.390
Cl2(g)	1.410e-037	-36.851
H2(g)	6.301e-042	-41.201
CO(g)	8.803e-053	-52.055
UO2F2(g)	1.424e-062	-61.847
SO2(g)	1.685e-064	-63.773
Pb(g)	5.646e-068	-67.248
UO3(g)	8.323e-070	-69.080
Na(g)	2.950e-071	-70.530
NH3(g)	1.608e-072	-71.794
UO2C12(g)	7.175e-079	-78.144
UOF4(g)	3.081e-081	-80.511
F2(g)	2.703e-087	-86.568
UF5(g)	5.667e-097	-96.247
UF4(g)	1.065e-103	-102.973
UF6(g)	2.968e-104	-103.527
UO2(g)	1.166e-122	-121.933
UCl4(g)	1.669e-141	-140.778
Ca(g)	9.639e-146	-145.016
CH4(g)	5.624e-150	-149.250
H2S(g)	1.041e-151	-150.983
UF3(g)	9.173e-152	-151.038
UC15(g)	1.251e-152	-151.903
UC16(g)	1.741e-158	-157.759
UCl3(g)	1.146e-167	-166.941
U2F10(g)	3.594e-168	-167.444
Al(g)	2.079e-190	-189.682
C(g)	4.642e-194	-193.333
UF2(g)	1.166e-196	-195.933
UO(g)	6.483e-207	-206.188

UC12(g) UF(g) S2(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	4.262e- 3.646e- 6.086e- 1.572e- 3.471e- 6.866e- 3.122e- 8.456e-	235	38 16 04 60 63 06 73	Sorbed	Kd L/kg
		oresg	/kg mol	es mg/kg	
Al+++		0.000830	22.4		
Ca++		0.000158	6.33		
Cl-		.45e-005	1.22		
Cr04		0.000136	15.8		
F-		0.00109	20.7		
H+			-13.2		
H2O	55.5	55.5 9.99			
HCO3-			368.		
HPO4			0.192 4.92		
NH3(aq) Na+		0.000289 0.00995	229.		
02(aq)	0.00995 0.000828	0.000995	26.5		
02(aq) Pb++		.40e-010 2.90			
S04	2.58e-005 2		2.48		
UO2++			0.661		
00211	2.130 000 2	. 150 000	0.001		
Elemental compo	sition	In fl	uid	Sorbe	i
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	0.0008300	0.0008300	22.38		
Calcium			6.328		
Carbon	0.006034	0.0001580 0.006034	72.42		
Chlorine	3.450e-005	3.450e-005	1.222		
Chromium	0.0001360	0.0001360	7.067		
Fluorine	0.001090	0.001090	20.69		
Hydrogen	111.0	111.0	1.118e+005		
Lead	1.400e-010	1.400e-010	2.899e-005		
Nitrogen	0.0002890	0.0002890	4.045		
Oxygen	55.53	55.53	8.878e+005		
Phosphorus	2.000e-006	2.000e-006	0.06191		
Sodium		0.009950	228.6		
Sulfur	2.580e-005	2.580e-005 2.450e-006	0.8267		
Uranium	2.450e-006	2.450e-006	0.5828		

Sample 19250 Ca(OH)₂ leach, Stage 2.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.560 log f02 = -0.704
Eh = 0.5348 volts pe = 9.0405
Ionic strength = 0.013484

	moles	moles	grams	cm3
Reactants	remaining	reacted	reacted	reacted
O2(g)	fixed fuga	acity buffer		

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
CaCO3(aq)	0.004532	453.2	1.0000	-2.3437
OH-	0.004137	70.30	0.8875	-2.4351
CO3	0.003571	214.1	0.6278	-2.6494
Na+	0.001756	40.33	0.8893	-2.8065
Ca++	0.001484	59.41	0.6416	-3.0214
A102-	0.0003189	18.79	0.8893	-3.5472
02(aq)	0.0002500	7.994	1.0000	-3.6020
HCO3-	0.0001480	9.025	0.8893	-3.8806
NO3-	0.0001364	8.448	0.8857	-3.9180
F-	7.933e-005	1.506	0.8875	-4.1524
CaOH+	5.490e-005	3.131	0.8893	-4.3114
CrO4	1.520e-005	1.762	0.6230	-5.0236
NaCO3-	1.287e-005	1.067	0.8893	-4.9414
SO4	7.899e-006	0.7581	0.6230	-5.3080
CaPO4-	5.672e-006	0.7654	0.8893	-5.2972
Cl-	5.468e-006	0.1937	0.8857	-5.3149
CaHCO3+	1.569e-006	0.1585	0.8893	-5.8553
NaOH(aq)	9.094e-007	0.03634	1.0000	-6.0413
CaNO3+	6.479e-007	0.06608	0.8893	-6.2394
CaSO4(aq)	6.050e-007	0.08229	1.0000	-6.2183
Ca2UO2(CO3)3	4.414e-007	0.2338	1.0000	-6.3551
CaF+	3.622e-007	0.02138	0.8893	-6.4921
NaHCO3(aq)	2.931e-007	0.02460	1.0000	-6.5329
UO2(OH)3-	2.447e-007	0.07848	0.8893	-6.6624
NaAlO2(aq)	7.998e-008	0.006550	1.0000	-7.0970
Pb(OH)3-	7.222e-008	0.01863	0.8893	-7.1923
NaSO4-	5.709e-008	0.006790	0.8893	-7.2944
UO2(CO3)3	2.047e-008	0.009205	0.1501	-8.5125
Pb(OH)2(aq)	1.749e-008	0.004214	1.0000	-7.7573
HPO4	1.704e-008	0.001634	0.6230	-7.9740
NaF(aq)	1.106e-008	0.0004638	1.0000	-7.9564

Mineral saturation states

The second is a second of the	2119s/sat
Hydroxylapatite 10.2856s/sat Gibbsite 0. CaUO4 5.1560s/sat Ice -0. Calcite 2.8093s/sat Fluorite -1. Aragonite 2.6649s/sat CaAl2O4:10H2O -2. Whitlockite 2.3327s/sat Portlandite -2. Monohydrocalcite 1.9756s/sat Corundum -2.	0201s/sat 1387 2891 3439 4566 7600 8986
Diaspore 0.6158s/sat	

(Only millerars	with log Q/K > -	J IIBCEU)
Gases	fugacity	log fug.
02(q)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	2.361e-008	-7.627
HF(g)	1.496e-017	-16.825
NO2(g)	1.135e-023	-22.945
HCl(g)	6.601e-024	-23.180
N2(g)	3.134e-027	-26.504
NO(g)	1.711e-029	-28.767
Cl2(g)	2.811e-039	-38.551
H2(g)	6.301e-042	-41.201
CO(g)	4.645e-053	-52.333
S02(g)	4.408e-065	-64.356
Pb(g)	3.349e-065	-64.475
UO2F2(g)	8.075e-066	-65.093
U03(g)	1.126e-070	-69.949
Na(g)	6.167e-072	-71.210
NH3(g)	6.750e-073	-72.171
UO2Cl2(g)	1.935e-081	-80.713
UOF4(g)	7.330e-087	-86.135
F2(g)	1.134e-089	-88.945
UF5(g)	8.730e-104	-103.059
UF4(g)	2.534e-109	-108.596
UF6(g)	2.962e-112	-111.528
UO2(g)	1.577e-123	-122.802
Ca(g)	6.634e-144	-143.178
UC14(g)	8.973e-146	-145.047
CH4(g)	2.968e-150	-149.528
H2S(g)	2.723e-152	-151.565
UF3(g)	3.370e-156	-155.472
UC15(g)	9.494e-158	-157.023
UCl6(g) UCl3(g)	1.866e-164 4.365e-171	-163.729 -170.360
U2F10(g)	8.532e-182	-181.069
02F10(g) Al(g)	7.108e-191	-190.148
C(g)	2.450e-194	-193.611
UF2(g)	6.612e-200	-199.180
UO(g)	8.768e-208	-207.057
UC12(q)	1.149e-213	-212.940
UF(g)	3.193e-237	-236.496
01 (3)	J.1/JE 25/	230.170

C2H4(g) S2(g) UC1(g) U2C18(g) U2C110(g) U(g)	6.629e	-247 -246.3 -254 -253.1 -280 -279.7 -288 -287.7	880 779 702 745		
		In fluid		Sorbed	Kd
Original basis	total moles	moles mg	g/kg mol	es mg/kg	L/kg
Al+++	0.000319	0.000319	8.60		
Ca++	0.00608	0.00608	243.		
Cl-	5.47e-006	5.47e-006	0.194		
Cr04	1.52e-005	1.52e-005	1.76		
F-		7.97e-005	1.51		
H+	-0.0137	-0.0137	-13.8		
H2O	55.5	55.5 9.99	e+005		
HCO3-	0.00827	0.00827	504.		
HPO4	5.70e-006	5.70e-006	0.547		
NH3(aq)		0.000137	2.33		
Na+	0.00177	0.00177	40.7		
02(aq)	0.000524		16.8		
Pb++		9.03e-008 C	0.0187		
SO4	8.56e-006	8.56e-006	0.822		
UO2++	7.09e-007	7.09e-007	0.191		
Elemental compo	sition	In fl	uid	Sorbe	i
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	0.0003190	0.0003190	8.600		
Calcium	0.006080	0.006080	243.5		
Carbon	0.008267		99.21		
Chlorine	5.470e-006	5.470e-006	0.1938		
Chromium	1.520e-005	1.520e-005	0.7897		
Fluorine	7.970e-005	7.970e-005	1.513		
Hydrogen	111.0		1.118e+005		
Lead	9.030e-008		0.01870		
Nitrogen	0.0001370	0.0001370	1.917		
Oxygen	55.53	55.53	8.878e+005		
Phosphorus	5.700e-006	5.700e-006	0.1764		
Sodium	0.001770	0.001770	40.66		
Sulfur	8.560e-006	0.001770 8.560e-006	0.2743		
Uranium	7.090e-007		0.1686		

Sample 19250 Ca(OH)₂ leach, Stage 3.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.600
 log f02 = -0.704

 Eh = 0.5324 volts
 pe = 9.0005

 Ionic strength
 0.013586

 Activity of water
 1.000000

 Solvent mass
 = 0.999914 kg

 Solution mass
 = 1.000886 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000005 molal

 Dissolved solids
 = 971 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 896.87 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
CaCO3(aq)	0.005528	552.8	1.0000	-2.2574
OH-	0.004538	77.11	0.8872	-2.3951
CO3	0.003451	206.9	0.6269	-2.6649
Ca++	0.001878	75.19	0.6408	-2.9196
Na+	0.0007829	17.98	0.8889	-3.1574
02(aq)	0.0002500	7.993	1.0000	-3.6020
HCO3-	0.0001303	7.944	0.8889	-3.9361
CaOH+	7.613e-005	4.341	0.8889	-4.1696
AlO2-	7.560e-005	4.454	0.8889	-4.1726
NO3-	7.347e-005	4.551	0.8853	-4.1868
F-	3.202e-005	0.6077	0.8872	-4.5466
CrO4	2.780e-005	3.222	0.6220	-4.7621
NaCO3-	5.536e-006	0.4591	0.8889	-5.3079
SO4	5.028e-006	0.4826	0.6220	-5.5048
Cl-	4.889e-006	0.1732	0.8853	-5.3637
CaPO4-	4.483e-006	0.6049	0.8889	-5.3995
CaHCO3+	1.746e-006	0.1764	0.8889	-5.8090
CaSO4(aq)	4.861e-007	0.06611	1.0000	-6.3133
NaOH(aq)	4.444e-007	0.01776	1.0000	-6.3522
CaNO3+	4.413e-007	0.04500	0.8889	-6.4064
Ca2UO2(CO3)3	3.466e-007	0.1836	1.0000	-6.4602
CaF+	1.848e-007	0.01090	0.8889	-6.7845
UO2(OH)3-	1.764e-007	0.05659	0.8889	-6.8045
NaHCO3(aq)	1.150e-007	0.009649	1.0000	-6.9394
Pb(OH)3-	9.211e-008	0.02376	0.8889	-7.0868
Pb(OH)2(aq)	2.033e-008	0.004899	1.0000	-7.6918
NaSO4-	1.618e-008	0.001924	0.8889	-7.8422
UO2(CO3)3 (only species >	1.012e-008 1e-8 molal list	0.004550 ced)	0.1491	-8.8212

Mineral saturation states

	log Q/K		log Q/K
Fluorapatite Hydroxylapatite CaUO4 Calcite Aragonite Whitlockite Monohydrocalcite Plattnerite	15.9950s/sat 10.2222s/sat 5.1557s/sat 2.8956s/sat 2.7512s/sat 2.2298s/sat 2.0619s/sat 1.3833s/sat	Diaspore Ice Boehmite Gibbsite Fluorite Portlandite Cerussite	-0.0496 -0.1387 -0.4535 -0.6453 -1.9759 -2.2748 -2.9286
(only minerals w	•	-3 listed)	

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	1.895e-008	
HF(g)	5.505e-018	-17.259
NO2(g)	5.577e-024	-23.254
HCl(g)	5.380e-024	-23.269
N2(g)	7.559e-028	-27.122
NO(g)	8.404e-030	-29.076
Cl2(g)	1.867e-039	-38.729
Н2(д)	6.301e-042	-41.201
CO(g)	3.728e-053	-52.428
Pb(g)	3.894e-065	-64.410
S02(g)	2.330e-065	-64.633
UO2F2(g)	7.186e-067	-66.143
UO3(g)	7.401e-071	-70.131
Na(g)	3.014e-072	-71.521
NH3(g)	3.315e-073	-72.480
UO2Cl2(g)	8.450e-082	-81.073
UOF4(g)	8.830e-089	-88.054
F2(g)	1.535e-090	-89.814
UF5(g)	3.869e-106	-105.412
UF4(g)	3.052e-111	-110.515
UF6(g)	4.829e-115	-114.316
UO2(g)		-122.984
Ca(g)		-142.996
UC14(g)	2.603e-146	-145.584
CH4(g)		-149.623
H2S(g)	1.440e-152	-151.842
UF3(g)	1.103e-157	-156.957
UC15(g)		-157.649
UC16(g)	3.597e-165	-164.444
UC13(g)	1.554e-171	-170.809
U2F10(g)	1.676e-186	-185.776
Al(g)	1.536e-191	-190.814
C(g)		-193.706
UF2(g)	5.885e-201	-200.230
UO(g)	5.765e-208	-207.239
UCl2(g)		-213.299
UF(g)	7.724e-238 2.820e-247	-237.112 -246.550
C2H4(g) S2(g)		-246.550 -246.934
_	3.552e-254	-246.934 -253.450
UCl(g) U2Cl8(g)	1.670e-281	-253.450 -280.777
02010(9)	1.0/08-201	-200.///

U2Cl10(g) 1.006e-289 -288.997 U(g) 7.520e-293 -292.124

		In fl	uid	So	rbed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	7.56e-005	7.56e-005	2.04			
Ca++	0.00749 4.89e-006	0.00749	300.			
Cl-	4.89e-006	4.89e-006	0.173			
CrO4	2.78e-005	2.78e-005	3.22			
F-	3.22e-005	3.22e-005	0.611			
H+	-0.0140	-0.0140	-14.1			
H2O HCO3-	55.5	55.5	9.99e+005			
HCO3-	0.00912	0.00912	556.			
HPO4	4.50e-006	4.50e-006	0.432			
NH3(aq)	7.39e-005	7.39e-005	1.26			
	0.000789					
02(aq)						
Pb++						
SO4	5.53e-006	5.53e-006	0.531			
UO2++	5.35e-007	5.35e-007	0.144			
Elemental comp	osition	Т	n fluid		Sorbe	D
Bichicitai comp	total moles	s moles	ma/	ka		
Aluminum	7.560e-005	7.560e-	-005	2.038		
Calcium						
Carbon	0.00911	7 0.009	117	109.4		
Chlorine	4.890e-006	4.890e-	-006 0	.1732		
Carbon Chlorine Chromium Fluorine Hydrogen Lead	2.780e-005	5 2.780e-	-005	1.444		
Fluorine	3.220e-005	3.220e-	-005 0	.6112		
Hydrogen	111.0) 11	1.0 1.118	e+005		
Lead	1.130e-00	7 1.130e-	007 0.	02339		
Nitrogen	7.390e-005	7.390e-	-005	1.034		
Oxygen	55.54	4 55	5.54 8.878			
Phosphorus	4.500e-006	4.500e-	-006 0	.1393		
	0.0007890					
	5.530e-000					
Uranium	5.350e-00	7 5.350e-	-007 0	.1272		

Sample 19250 Ca(OH)₂ leach, Stage 4.

Step # Xi = 0.0000Activity of water = 1.000000 Solvent mass = 0.999903 kg
Solution mass = 1.000000
Solution mass = 1.000955 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000006 molal
Dissolved solids = 1051 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity= 985.04 mg/kg as CaCO3

molesmolesgramscm3remainingreactedreactedreacted moles moles Reactants ______ 02(g)-- fixed fugacity buffer --

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
CaCO3(aq)	0.006259	625.8	1.0000	-2.2035
OH-	0.005224	88.76	0.8849	-2.3351
CO3	0.003609	216.4	0.6208	-2.6497
Ca++	0.002071	82.92	0.6351	-2.8810
02(aq)	0.0002500	7.992	1.0000	-3.6020
Na+	0.0001875	4.306	0.8867	-3.7792
HCO3-	0.0001179	7.184	0.8867	-3.9809
CaOH+	9.578e-005	5.462	0.8867	-4.0710
AlO2-	3.720e-005	2.192	0.8867	-4.4816
F-	3.409e-005	0.6469	0.8849	-4.5205
CrO4	1.810e-005	2.097	0.6158	-4.9529
NO3-	9.032e-006	0.5594	0.8830	-5.0983
SO4	5.917e-006	0.5678	0.6158	-5.4385
Cl-	5.899e-006	0.2089	0.8830	-5.2833
CaPO4-	2.303e-006	0.3107	0.8867	-5.6899
CaHCO3+	1.726e-006	0.1743	0.8867	-5.8151
NaCO3-	1.373e-006	0.1139	0.8867	-5.9145
CaSO4(aq)	6.190e-007	0.08418	1.0000	-6.2083
CaF+	2.150e-007	0.01269	0.8867	-6.7198
Pb(OH)3-	1.354e-007	0.03494	0.8867	-6.9205
NaOH(aq)	1.219e-007	0.004870	1.0000	-6.9140
Ca2UO2(CO3)3	1.177e-007	0.06234	1.0000	-6.9292
UO2(OH)3-	6.850e-008	0.02197	0.8867	-7.2165
CaNO3+	5.929e-008	0.006046	0.8867	-7.2792
Pb(OH)2(aq)	2.597e-008	0.006259	1.0000	-7.5855
NaHCO3(aq)	2.478e-008	0.002079	1.0000	-7.6060
(only species >	1e-8 molal list	ced)		

Mineral saturation states

log Q/K log Q/K _____

Fluorapatite	15.2271s/sat	Ice	-0.1387
Hydroxylapatite	9.4883s/sat	Diaspore	-0.4186
CaUO4	4.8423s/sat	Boehmite	-0.8225
Calcite	2.9495s/sat	Gibbsite	-1.0143
Aragonite	2.8051s/sat	Fluorite	-1.8850
Monohydrocalcite	2.1158s/sat	Portlandite	-2.1162
Whitlockite	1.6877s/sat	Cerussite	-2.9270
Plattnerite	1.4896s/sat		

Gases	fugacity	log fug.
O2(g) H2O(g)	0.1978 0.02598	-0.704 -1.585
CO2(g)	1.488e-008	-7.827
HF(g)	5.092e-018	-17.293
HCl(g)	5.639e-024	-23.249
NO2(g)	5.955e-025	-24.225
N2(g)	8.620e-030	-29.064
NO(g)	8.974e-031	-30.047
Cl2(g)	2.051e-039	-38.688
H2(g)	6.301e-042	-41.201
CO(g)	2.929e-053	-52.533
Pb(g)	4.974e-065	-64.303
S02(g)	2.059e-065	-64.686
UO2F2(g)	2.074e-067	-66.683
U03(g)	2.496e-071	-70.603
Na(g)	8.266e-073	-72.083
NH3(g)	3.540e-074	-73.451
UO2Cl2(g)	3.131e-082	-81.504
UOF4(g)	2.180e-089	-88.662
F2(g)	1.313e-090	-89.882
UF5(g)	8.835e-107	-106.054
UF4(g)	7.535e-112	-111.123
UF6(g)	1.020e-115	-114.991
UO2(g) Ca(g)	3.496e-124 1.453e-143	-123.456 -142.838
UCl4(g)	1.060e-146	-145.975
CH4(g)	1.871e-150	-149.728
H2S(g)	1.272e-152	-151.895
UF3(g)	2.945e-158	-157.531
UC15(g)	9.579e-159	-158.019
UC16(g)	1.609e-165	-164.794
UC13(g)	6.034e-172	-171.219
U2F10(g)	8.737e-188	-187.059
Al(g)	6.567e-192	-191.183
C(g)	1.545e-194	-193.811
UF2(g)	1.698e-201	-200.770
UO(g)	1.944e-208	-207.711
UCl2(g)	1.860e-214	-213.731
UF(g)	2.410e-238	-237.618
C2H4(g)	1.741e-247	-246.759
S2(g)	9.091e-248	-247.041
UCl(g)	1.256e-254	-253.901
U2Cl8(g)	2.768e-282	-281.558
U2Cl10(g)	1.831e-290	-289.737
U(g)	2.536e-293	-292.596

		In fl	uid	Soi	rbed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	3.72e-005	3.72e-005	1.00			
Ca++	0.00843	0.00843	338.			
Ca++ Cl-	5.90e-006	5.90e-006	0.209			
Cr04	1.81e-005	1.81e-005	2.10			
F-	3.43e-005					
H+	-0.0153	-0.0153	-15.5			
H2O HCO3-	55.5	55.5	9.99e+005			
HCO3-	0.00999	0.00999	609.			
HPO4	2.31e-006	2.31e-006	0.222			
NH3(aq)	9.09e-006	9.09e-006	0.155			
Na+	0.000189 0.000268 1.62e-007 6.54e-006	0.000189	4.34			
02(aq)	0.000268	0.000268	8.57			
Pb++	1.62e-007	1.62e-007	0.0335			
SO4	6.54e-006	6.54e-006	0.628			
UO2++	1.90e-007	1.90e-007	0.0513			
Elemental compo						
ETEMETICAL COMBO	sition	I	n fluid		Sorbed	
Elemental Compo	sition total moles	I moles	n fluid mg/	kg	Sorbed moles	mg/kg
	total moles	s moles 	mg/1	kg 		
Aluminum	total moles 3.720e-00!	moles 5 3.720e-	mg/: 005	kg 1.003		
Aluminum Calcium	3.720e-005 0.008430	moles 5 3.720e- 0 0.008	mg/: 005 430	kg 1.003 337.5		
Aluminum Calcium Carbon	3.720e-009 0.008430 0.009988	moles 3.720e- 0.008 0.009	mg/. 005 430 988	kg 1.003 337.5 119.9		
Aluminum Calcium Carbon Chlorine	3.720e-009 0.008430 0.009988 5.900e-000	moles 3.720e- 0.008 0.009 5.900e-	mg/. 005 430 988 006 0	kg 1.003 337.5 119.9 .2090		
Aluminum Calcium Carbon Chlorine Chromium	3.720e-009 0.008430 0.009988 5.900e-000	moles 3.720e- 0.008 0.009 5.900e- 1.810e-	mg// 005 430 988 006 0	kg 1.003 337.5 119.9 .2090 .9402		
Aluminum Calcium Carbon Chlorine Chromium Fluorine	3.720e-009 0.008430 0.009988 5.900e-000 1.810e-009	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e-	mg// 005 430 988 006 0	kg 1.003 337.5 119.9 .2090 .9402 .6510		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen	3.720e-009 0.008430 0.009988 5.900e-000 1.810e-009 3.430e-009	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e- 0 11	mg/	kg 1.003 337.5 119.9 .2090 .9402 .6510 e+005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead	3.720e-009 0.008430 0.009988 5.900e-009 1.810e-009 3.430e-009 111.00 1.620e-007	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e- 11 7.1.620e- 9.090e-	mg/, 005 430 988 006 005 005 01.0 1.118 007 0.	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen	3.720e-009 0.008430 0.009988 5.900e-009 1.810e-009 3.430e-009 111.00 1.620e-007	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e- 11 7.1.620e- 9.090e-	mg/, 005 430 988 006 005 005 01.0 1.118 007 0.	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen Phosphorus	3.720e-009 0.008430 0.009988 5.900e-009 1.810e-009 3.430e-009 111.0 1.620e-009 9.090e-009 55.54 2.310e-009	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e- 11 7.1.620e- 9.090e- 4.55 2.310e-	mg//	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen Phosphorus Sodium	3.720e-009 0.008430 0.009988 5.900e-000 1.810e-009 3.430e-009 111.0 1.620e-007 9.090e-000 55.54 2.310e-000	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e- 11 7.1.620e- 9.090e- 4.55 2.310e- 0.0001	mg/ 	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen Phosphorus Sodium Sulfur	3.720e-009 0.008430 0.009988 5.900e-009 1.810e-009 3.430e-009 111.0 1.620e-007 9.090e-000 55.54 2.310e-000 0.0001890 6.540e-000	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e- 11 7.1.620e- 9.090e- 4.55 6.2.310e- 0.0001 6.540e-	mg/ 	kg 		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen Phosphorus Sodium	3.720e-009 0.008430 0.009988 5.900e-009 1.810e-009 3.430e-009 111.0 1.620e-007 9.090e-000 55.54 2.310e-000 0.0001890 6.540e-000	moles 3.720e- 0.008 0.009 5.900e- 1.810e- 3.430e- 11 7.1.620e- 9.090e- 4.55 6.2.310e- 0.0001 6.540e-	mg/ 	kg 		

Sample 19250 Ca(OH)₂ leach, Stage 5.

Xi = 0.0000Step #

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)	fixed fuga	acity buffer -			

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
CaCO3(aq)	0.007277	727.4	1.0000	-2.1381
OH-	0.006324	107.4	0.8788	-2.2551
CO3	0.004247	254.6	0.6047	-2.5904
Ca++	0.002151	86.12	0.6202	-2.8748
02(aq)	0.0002500	7.991	1.0000	-3.6020
Na+	0.0001665	3.822	0.8808	-3.8338
CaOH+	0.0001176	6.704	0.8808	-3.9848
HCO3-	0.0001131	6.893	0.8808	-4.0016
A102-	1.310e-005	0.7718	0.8808	-4.9378
F-	1.272e-005	0.2414	0.8788	-4.9516
NO3-	1.023e-005	0.6337	0.8766	-5.0472
SO4	6.913e-006	0.6632	0.5992	-5.3828
Cr04	6.631e-006	0.7682	0.5992	-5.4008
Cl-	4.489e-006	0.1590	0.8766	-5.4050
CaPO4-	2.274e-006	0.3067	0.8808	-5.6983
CaHCO3+	1.681e-006	0.1697	0.8808	-5.8297
NaCO3-	1.397e-006	0.1158	0.8808	-5.9098
CaSO4(aq)	7.138e-007	0.09706	1.0000	-6.1464
Ca2UO2(CO3)3	2.202e-007	0.1166	1.0000	-6.6571
Pb(OH)3-	1.532e-007	0.03952	0.8808	-6.8697
UO2(OH)3-	1.447e-007	0.04640	0.8808	-6.8946
NaOH(aq)	1.292e-007	0.005163	1.0000	-6.8886
CaF+	8.136e-008	0.004801	0.8808	-7.1447
CaNO3+	6.810e-008	0.006944	0.8808	-7.2219
Pb(OH)2(aq)	2.428e-008	0.005850	1.0000	-7.6147
NaHCO3(aq)	2.083e-008	0.001748	1.0000	-7.6813
(only species >	1e-8 molal list	ced)		

Mineral saturation states

log Q/K log Q/K _____

Fluorapatite	14.7832s/sat	Plattnerite	1.4604s/sat
Hydroxylapatite	9.5554s/sat	Ice	-0.1387
CaUO4	5.2504s/sat	Diaspore	-0.9548
Calcite	3.0149s/sat	Boehmite	-1.3587
Aragonite	2.8705s/sat	Gibbsite	-1.5505
Monohydrocalcite	2.1812s/sat	Portlandite	-1.9500
Whitlockite	1.6771s/sat	Fluorite	-2.7410
(only minerals wi	th log Q/K >	-3 listed)	

Gases	fugacity	log fug.
O2(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	1.180e-008	-7.928
HF(g)	1.570e-018	-17.804
HCl(g)	3.544e-024	-23.451
NO2(g)	5.572e-025	-24.254
N2(g)	7.546e-030	-29.122
NO(g)	8.397e-031	-30.076
Cl2(g)	8.102e-040	-39.091
H2(g)	6.301e-042	-41.201
CO(g)	2.323e-053	-52.634
Pb(g)	4.650e-065	-64.333
SO2(g)	1.620e-065	-64.791
UO2F2(g)	3.439e-068	-67.464
UO3(g)	4.357e-071	-70.361
Na(g)	8.764e-073	-72.057
NH3(g)	3.312e-074	-73.480
UO2Cl2(g)	2.159e-082	-81.666
UOF4(g)	3.434e-091	-90.464
F2(g)	1.247e-091	-90.904
UF5(g)	4.291e-109	-108.367
UF4(g)	1.187e-113	-112.925
UF6(g)	1.527e-118	-117.816
UO2(g)	6.102e-124	-123.215
Ca(g)	2.130e-143	-142.672
UC14(g)	2.886e-147	-146.540
CH4(g)	1.484e-150	-149.829
H2S(g) UC15(g) UF3(g) UC16(g) UC13(g)	1.000e-152 1.639e-159 1.505e-159 1.730e-166 2.614e-172	-152.000 -158.785 -158.822 -165.762 -171.583
U2F10(g)	2.061e-192	-191.686
Al(g)	1.911e-192	-191.719
C(g)	1.225e-194	-193.912
UF2(g)	2.816e-202	-201.550
UO(g)	3.394e-208	-207.469
UC12(g)	1.282e-214	-213.892
UF(g)	1.296e-238	-237.887
C2H4(g)	1.094e-247	-246.961
S2(g)	5.623e-248	-247.250
UCl(g)	1.377e-254	-253.861
U2Cl8(g)	2.052e-283	-282.688
U2Cl10(g)	5.363e-292	-291.271
U(g)	4.427e-293	-292.354

		In flu	id	Sor	bed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	1.31e-005	1.31e-005	0.353			
Ca++	0.00955	0.00955	382.			
Cl-	4.49e-006	4.49e-006	0.159			
Cr04	6.63e-006	6.63e-006	0.768			
F-	1.28e-005	1.28e-005	0.243			
H+	-0.0180	-0.0180	-18.2			
H+ H20 HC03- HP04 NH3(aq) Na+	55.5	55.5 9	.99e+005			
HCO3-	0.0116	0.0116	709.			
HPO4	2.28e-006	2.28e-006	0.219			
NH3(aq)	1.03e-005	1.03e-005	0.175			
Na+	0.000168	0.000168	3.86			
Na+ 02(aq) Pb++	0.000271	0.000271	8.65			
Pb++	1.78e-007	1.78e-007	0.0368			
SO4	7.63e-006	7.63e-006	0.732			
UO2++	3.73e-007	3.73e-007	0.101			
Flomontal compo	ogition	Tn	fluid		Sorboo	1
Elemental compo	sition	In moles	fluid	a	Sorbed	
Elemental compo	total moles	In s moles	mg/k	g		
Aluminum	total moles 1.310e-005	moles 5 1.310e-0	mg/kg	g 3531		
Aluminum Calcium	total moles 	moles 5 1.310e-0 0 0.0095	mg/kg 05 0. 50 3	g 3531 82.3		
Aluminum Calcium Carbon	1.310e-005 0.009550	moles 5 1.310e-0 0.0095 4 0.011	mg/kg 05 0. 50 3 64 1	g 3531 82.3 39.6		
Aluminum Calcium Carbon Chlorine	1.310e-005 0.009550 0.01164 4.490e-006	moles 5 1.310e-0 0 0.0095 4 0.011 5 4.490e-0	mg/kg	g 3531 82.3 39.6 1590		
Aluminum Calcium Carbon Chlorine	1.310e-005 0.009550 0.01164 4.490e-006	moles 1.310e-0 0.0095 4.490e-0	mg/kg	g 3531 82.3 39.6 1590		
Aluminum Calcium Carbon Chlorine	1.310e-005 0.009550 0.01164 4.490e-006	moles 1.310e-0 0.0095 4.490e-0	mg/kg	g 3531 82.3 39.6 1590		
Aluminum Calcium Carbon Chlorine	1.310e-005 0.009550 0.01164 4.490e-006	moles 1.310e-0 0.0095 4.490e-0	mg/kg	g 3531 82.3 39.6 1590		
Aluminum Calcium Carbon Chlorine	1.310e-005 0.009550 0.01164 4.490e-006	moles 1.310e-0 0.0095 4.490e-0	mg/kg	g 3531 82.3 39.6 1590		
Aluminum Calcium Carbon Chlorine	1.310e-005 0.009550 0.01164 4.490e-006	moles 1.310e-0 0.0095 4.490e-0	mg/kg	g 3531 82.3 39.6 1590		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen	1.310e-009 0.009550 0.01164 4.490e-006 6.630e-009 111.0 1.780e-009 55.54	moles 1.310e-0 0.0095 0.011 4.490e-0 6.630e-0 1.280e-0 1.7 1.780e-0 1.030e-0 4.55.	mg/kg 05 0. 50 3 64 1 06 0. 06 0. 05 00 1.118e 07 0.0 05 0. 54 8.877e	g 3531 82.3 39.6 1590 3444 2429 +005 3684 1441 +005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen	1.310e-009 0.009550 0.01164 4.490e-006 6.630e-009 111.0 1.780e-009 55.54	moles 1.310e-0 0.0095 0.011 4.490e-0 6.630e-0 1.280e-0 1.7 1.780e-0 1.030e-0 4.55.	mg/kg 05 0. 50 3 64 1 06 0. 06 0. 05 00 1.118e 07 0.0 05 0. 54 8.877e	g 3531 82.3 39.6 1590 3444 2429 +005 3684 1441 +005		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen Phosphorus Sodium	1.310e-005 0.009550 0.01164 4.490e-006 6.630e-006 1.280e-005 111.0 1.780e-005 55.54 2.280e-006 0.0001680	moles 1.310e-0 0.0095 1.4.490e-0 6.630e-0 1.280e-0 1.7.780e-0 1.030e-0 1.030e-0 2.280e-0 0.00016	mg/kg 05	g 3531 82.3 39.6 1590 3444 2429 +005 3684 1441 +005 7054 .858		
Aluminum Calcium Carbon Chlorine Chromium Fluorine Hydrogen Lead Nitrogen Oxygen Phosphorus Sodium	1.310e-009 0.009550 0.01164 4.490e-006 6.630e-009 1.280e-009 111.0 1.780e-009 55.54 2.280e-006 0.0001680 7.630e-006	moles 1.310e-0 0.0095 0.011 4.490e-0 6.630e-0 1.280e-0 1.17 1.780e-0 1.030e-0 1.030e-0 2.280e-0 0.00016 7.630e-0	mg/kg 05 0. 50 3 64 1 06 0. 05 0. 05 0. 0 1.118e 07 0.0 05 0. 54 8.877e 06 0.0 80 3 06 0.	g 3531 82.3 39.6 1590 3444 2429 +005 3684 1441 +005 7054 .858 2444		

Sample 19250 Ca(OH)₂ leach, Stage 6.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 11.630 log fO2 = -0.704
Eh = 0.5307 volts pe = 8.9705
Ionic strength = 0.013704 Activity of water = 0.999999 Solvent mass = 0.999909 kg

Solution mass = 1.000884 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000023 molal

Dissolved solids = 975 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 915.89 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)		acity buffer			-

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
CaCO3(aq)	0.005574	557.3	1.0000	-2.2539
OH-	0.004865	82.66	0.8868	-2.3651
CO3	0.003596	215.6	0.6258	-2.6478
Ca++	0.001823	72.99	0.6398	-2.9332
Na+	0.0002946	6.767	0.8886	-3.5820
02(aq)	0.0002500	7.993	1.0000	-3.6020
HCO3-	0.0001266	7.715	0.8886	-3.9490
CaOH+	7.909e-005	4.511	0.8886	-4.1532
A102-	6.420e-005	3.783	0.8886	-4.2438
Cr04	4.920e-005	5.702	0.6209	-4.5150
NO3-	2.585e-005	1.601	0.8849	-4.6406
Cl-	2.340e-005	0.8286	0.8849	-4.6840
F-	2.228e-005	0.4228	0.8868	-4.7043
SO4	7.254e-006	0.6961	0.6209	-5.3464
NaCO3-	2.167e-006	0.1797	0.8886	-5.7154
CaPO4-	2.122e-006	0.2863	0.8886	-5.7245
CaHCO3+	1.644e-006	0.1660	0.8886	-5.8355
CaSO4(aq)	6.784e-007	0.09227	1.0000	-6.1685
NaOH(aq)	1.791e-007	0.007157	1.0000	-6.7468
Ca2UO2(CO3)3	1.680e-007	0.08901	1.0000	-6.7746
CaNO3+	1.505e-007	0.01535	0.8886	-6.8738
CaF+	1.246e-007	0.007353	0.8886	-6.9558
Pb(OH)3-	1.106e-007	0.02854	0.8886	-7.0074
UO2(OH)3-	9.960e-008	0.03194	0.8886	-7.0531
NaHCO3(aq)	4.198e-008	0.003523	1.0000	-7.3769
Pb(OH)2(aq) (only species >	2.278e-008 1e-8 molal list	0.005490 ted)	1.0000	-7.6424

Mineral saturation states

log Q/K log Q/K _____

Fluorapatite	14.8352s/sat	Ice	-0.1387
Hydroxylapatite	9.2501s/sat	Diaspore	-0.1508
CaUO4	4.9236s/sat	Boehmite	-0.5547
Calcite	2.8991s/sat	Gibbsite	-0.7465
Aragonite	2.7547s/sat	Portlandite	-2.2284
Monohydrocalcite	2.0654s/sat	Fluorite	-2.3049
Whitlockite	1.5663s/sat	Cerussite	-2.9221
Plattnerite	1.4327s/sat		

Gases	fugacity	log fug.
 02(g) H2O(g)	0.1978 0.02598	-0.704 -1.585
CO2(g) HF(g)	1.716e-008 3.573e-018	-7.765 -17.447
HCl(g)	2.402e-023	-22.619
NO2(g)	1.831e-024	-23.737
N2(g)	8.145e-029 2.759e-030	-28.089
NO(g) Cl2(g)	3.721e-038	-29.559 -37.429
H2(g)	6.301e-042	-41.201
CO(g)	3.378e-053	-52.471
Pb(g) SO2(g)	4.363e-065 2.923e-065	-64.360 -64.534
U02F2(g)	1.594e-067	-66.797
U03(g)	3.897e-071	-70.409
Na(g)	1.215e-072	-71.916
NH3(g) UO2Cl2(g)	1.088e-073 8.867e-081	-72.963 -80.052
UOF4(g)	8.252e-090	-89.083
F2(g)	6.466e-091	-90.189
UF5(g)	2.347e-107	-106.629
UF4(g) UF6(g)	2.853e-112 1.901e-116	-111.545 -115.721
UO2(g)	5.458e-124	-123.263
Ca(g)	1.122e-143	-142.950
UCl4(g)	5.444e-144	-143.264
CH4(g) H2S(g)	2.158e-150 1.806e-152	-149.666 -151.743
UC15(g)	2.096e-155	-154.679
UF3(g)	1.589e-158	-157.799
UC16(g)	1.499e-161	-160.824
UC13(g) U2F10(g)	7.278e-170 6.167e-189	-169.138 -188.210
Al(g)	1.217e-191	-190.915
C(g)	1.781e-194	-193.749
UF2(g)	1.305e-201 3.036e-208	-200.884
UO(g) UCl2(g)	5.267e-213	-207.518 -212.278
UF(g)	2.640e-238	-237.578
C2H4(g)	2.314e-247	-246.636
S2(g) UCl(g)	1.831e-247 8.350e-254	-246.737 -253.078
U2C18(g)	7.305e-254	-276.136
U2Cl10(g)	8.767e-284	-283.057
U(g)	3.960e-293	-292.402

		In fl	luid	Son	rbed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Al+++	6.42e-005	6.42e-005	1.73			
Ca++	0.00748	0.00748	300.			
C1-	2.34e-005	2.34e-005	0.829			
Cr04	4.92e-005	4.92e-005	5.70			
F-	2.24e-005	2.24e-005	0.425			
H+	-0.0144	-0.0144	-14.5			
H2O	55.5	55.5	9.99e+005			
HCO3-	55.5 0.00930 2.13e-006	0.00930	567.			
HPO4	2.13e-006	2.13e-006	0.204			
NH3(aq)	2.60e-005	2.60e-005	0.442			
Na+	0.000297	0.000297	6.82			
02(aq)	0.000302	0.000302	9.66			
Pb++	1.34e-007	1.34e-007	0.0277			
SO4	7.94e-006	7.94e-006	0.762			
UO2++	2.74e-007	2.74e-007	0.0739			
Ilamantal sama		-	r. 61		C a sala a a	3
Elemental compo					Sorbec	
					es	
Aluminum	6.420e-00!	6.420e-	-005	1.731		
Calcium	0.007480	0.00	7480	299.5		
Carbon	0.009299	0.009	9299	111.6		
Chlorine	2.340e-00!	5 2.340e-	-005 0	.8289		
Chromium	4.920e-00!	5 4.920e-	-005	2.556		
Fluorine	2.240e-00! 111.0 1.340e-00'	5 2.240e-	-005 0	.4252		
Hydrogen	111.0) 11	11.0 1.118	e+005		
Lead	1.340e-00	7 1.340e-	-007 0.	02774		
Nitrogen	2.600e-00	2.600e-	-005 0	.3639		
Oxygen	55.5		5.54 8.878			
Phosphorus	2.130e-000	5 2.130e-	-006 0.	06592		
Sodium						
Sulfur						
Uranium	2.740e-00	7 2.740e-	-007 0.	06516		

Sample 19250 CaCO₃ leach, 1 day (Stage 1).

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars pH = 8.980 log fO2 = -0.851 Eh = 0.6852 volts pe = 11.5837 Ionic strength = 0.010709

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.009294	213.5	0.8992	-2.0779
HCO3-	0.004000	243.9	0.8992	-2.4441
F-	0.001459	27.69	0.8977	-2.8829
HPO4	0.0003241	31.09	0.6518	-3.6752
CO3	0.0002456	14.73	0.6559	-3.7929
UO2(CO3)3	0.0002286	102.8	0.1799	-4.3858
02(aq)	0.0001782	5.698	1.0000	-3.7491
NO3-	0.0001580	9.788	0.8962	-3.8490
Fe(OH)3(aq)	0.0001158	12.37	1.0000	-3.9362
A102-	4.671e-005	2.753	0.8992	-4.3767
NaHCO3(aq)	4.286e-005	3.598	1.0000	-4.3679
Ca++	4.088e-005	1.637	0.6678	-4.5639
Fe(OH)4-	3.090e-005	3.825	0.8992	-4.5562
MnO4-	2.787e-005	3.312	0.8977	-4.6018
Cr04	2.564e-005	2.972	0.6518	-4.7770
NaHPO4-	1.633e-005	1.942	0.8992	-4.8331
SO4	1.553e-005	1.491	0.6518	-4.9946
OH-	1.076e-005	0.1828	0.8977	-5.0151
Ni++	1.032e-005	0.6054	0.6678	-5.1616
CaCO3(aq)	9.340e-006	0.9342	1.0000	-5.0296
UO2(CO3)2	8.866e-006	3.456	0.6518	-5.2382
CaPO4-	8.420e-006	1.136	0.8992	-5.1209
CO2(aq)	8.329e-006	0.3663	1.0000	-5.0794
Cl-	6.042e-006	0.2141	0.8962	-5.2664
NaCO3-	4.895e-006	0.4060	0.8992	-5.3564
Ca2UO2(CO3)3	4.861e-006	2.576	1.0000	-5.3133
H2PO4-	3.948e-006	0.3826	0.8992	-5.4498
CaHPO4(aq)	3.169e-006	0.4309	1.0000	-5.4991
PbCO3(aq)	1.858e-006	0.4961	1.0000	-5.7310
MnCO3(aq)	1.472e-006	0.1691	1.0000	-5.8320
CaHCO3+	1.216e-006	0.1228	0.8992	-5.9612

NoE(oa)	1.100e-006	0.04618	1.0000	-5.9584
NaF(aq)				
NaSO4-	6.217e-007	0.07396	0.8992	-6.2526
MnPO4-	4.572e-007	0.06849	0.8992	-6.3861
Mn++	4.133e-007	0.02269	0.6678	-6.5591
Pb(CO3)2	3.034e-007	0.09922	0.6518	-6.7038
Fe(OH)2+	2.883e-007	0.02589	0.8992	-6.5862
PO4	2.522e-007	0.02394	0.3812	-7.0170
MnO4	2.416e-007	0.02871	0.6518	-6.8028
MnHPO4(aq)	2.217e-007	0.03343	1.0000	-6.6543
CaF+	1.910e-007	0.01128	0.8992	-6.7650
UO2(OH)3-	1.589e-007	0.05097	0.8992	-6.8451
(UO2)2CO3(OH)3-	1.488e-007	0.09681	0.8992	-6.8735
HA102(aq)	1.241e-007	0.007438	1.0000	-6.9063
UO2(OH)2(aq)	1.208e-007	0.03671	1.0000	-6.9179
UO2PO4-	7.370e-008	0.02688	0.8992	-7.1787
PbOH+	6.501e-008	0.01457	0.8992	-7.2332
Ni(OH)2(aq)	6.430e-008	0.005957	1.0000	-7.1918
NaAlO2(aq)	6.340e-008	0.005193	1.0000	-7.1979
HCrO4-	6.075e-008	0.007103	0.8992	-7.2626
CaSO4(aq)	3.569e-008	0.004856	1.0000	-7.4474
Pb(OH)2(aq)	2.248e-008	0.005418	1.0000	-7.6483
CaNO3+	2.154e-008	0.002198	0.8992	-7.7128
NaOH(aq)	1.280e-008	0.0005117	1.0000	-7.8927
MnF+	1.082e-008	0.0007994	0.8992	-8.0119
, -		7.		

Mineral saturation states

Milleral Saturation	log Q/K		log Q/K
Birnessite Todorokite Trevorite Hematite Pyromorphite Fluorapatite Hausmannite Bixbyite Pyrolusite MnO2(gamma) Pyromorphite-OH Ferrite-Ca Goethite Pb40(PO4)2 Parsonsite Manganite Magnetite Hydroxylapatite Pb3(PO4)2 Hydrocerussite	log Q/K	Cerussite Whitlockite CaUO4 Corundum Ca-Autunite Dawsonite Bunsenite Rhodochrosite Calcite Ni(OH)2 Mn(OH)3 Aragonite Ice Fluorite Crocoite Monohydrocalcite Corkite UO3:2H2O Schoepite UO2(OH)2(beta)	log Q/K 1.2269s/sat 1.1429s/sat 0.8509s/sat 0.7411s/sat 0.6812s/sat 0.6582s/sat 0.3265s/sat 0.1696s/sat 0.1234s/sat 0.0499s/sat 0.0414s/sat -0.0210 -0.1387 -0.2926 -0.5773 -0.7103 -1.1615 -1.4366 -1.4366 -1.5490
PbHPO4	3.5342s/sat	UO3:.9H2O(alpha)	-1.6200
Plumbogummite MnHPO4	2.8976s/sat 2.7127s/sat	Schoepite-dehy(. Schoepite-dehy(.	-1.6200 -1.7003
Fe(OH)3(ppd) Diaspore Boehmite Gibbsite	2.4082s/sat 2.3663s/sat 1.9624s/sat 1.7706s/sat	Schoepite-dehy(1 Na2U2O7(c) NiCO3 PbCO3.PbO	-1.7064 -1.9941 -2.1375 -2.2113
Ni3(PO4)2	1.7663s/sat	Strengite	-2.2285

Plattnerite 1.3533s/sat Schoepite-dehy(. -2.8096 (only minerals with log Q/K > -3 listed)

O2(g) 0.1410 -0.851 H20(g) 0.02598 -1.585 CO2(g) 0.0002452 -3.610 HF(g) 1.058e-013 -12.975 NO2(g) 5.508e-021 -20.259 HC1(g) 2.806e-021 -20.552 N2(g) 1.452e-021 -20.838 NO(g) 9.832e-027 -26.007 C12(g) 4.288e-034 -33.368 H2(g) 7.464e-042 -41.127 CO(g) 5.716e-049 -48.243 U02F2(g) 1.008e-055 -54.997 SO2(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 U03(g) 2.810e-068 -67.551 U0F4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 U02C12(g) 8.729e-074 -73.025 U02C12(g) 8.729e-074 -73.025 UF5(g) 4.194e-082 -81.320 UF5(g) 9.243e-087 -86.034 UF4(g) 1.8732e-079 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.561 H2S(g) 1.559e-150 -149.807 UC13(g) 1.559e-160 -159.967 A1(g) 5.160e-189 -188.936 C(g) 3.571e-190 -188.936 C(g) 3.571e-190 -188.936	Gases	fugacity	log fug.		
CO2(g)	O2(g)	0.1410	-0.851		
HF(g) 1.058e-013 -12.975 NO2(g) 5.508e-021 -20.259 HC1(g) 2.806e-021 -20.552 N2(g) 1.452e-021 -20.838 NO(g) 9.832e-027 -26.007 C12(g) 4.288e-034 -33.368 H2(g) 7.464e-042 -41.127 CO(g) 5.716e-049 -48.243 U02F2(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 U03(g) 2.810e-068 -67.551 U0F4(g) 4.575e-069 -68.340 NH3(g) 9.448e-074 -73.025 U02C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.287 UF2(g) 1.158e-189 -188.287	H2O(g)	0.02598	-1.585		
NO2(g) 5.508e-021 -20.259 HC1(g) 2.806e-021 -20.552 N2(g) 1.452e-021 -20.838 NO(g) 9.832e-027 -26.007 C12(g) 4.288e-034 -33.368 H2(g) 7.464e-042 -41.127 C0(g) 5.716e-049 -48.243 U02F2(g) 1.008e-055 -54.997 S02(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 U03(g) 2.810e-068 -67.551 U0F4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 U02C12(g) 8.729e-074 -73.025 U02C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.287 UF2(g) 1.158e-189 -188.287	CO2(g)	0.0002452	-3.610		
HCl(g) 2.806e-021 -20.552 N2(g) 1.452e-021 -20.838 N0(g) 9.832e-027 -26.007 Cl2(g) 4.288e-034 -33.368 H2(g) 7.464e-042 -41.127 CO(g) 5.716e-049 -42.243 U02F2(g) 1.008e-055 -54.997 SO2(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 U03(g) 2.810e-068 -67.551 U0F4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 U02Cl2(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.58e-189 -188.936	HF(g)	1.058e-013	-12.975		
N2(g)	NO2(g)	5.508e-021	-20.259		
NO(g) 9.832e-027 -26.007 C12(g) 4.288e-034 -33.368 H2(g) 7.464e-042 -41.127 C0(g) 5.716e-049 -48.243 U02F2(g) 1.008e-055 -54.997 S02(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 U03(g) 2.810e-068 -67.551 U0F4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 U02C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CC44(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.559e-150 -149.807 UC13(g) 5.160e-189 -188.287 UF2(g) 5.160e-189 -188.287 UF2(g) 1.558e-189 -188.936	HCl(g)		-20.552		
C12(g) 4.288e-034 -33.368 H2(g) 7.464e-042 -41.127 CO(g) 5.716e-049 -48.243 U02F2(g) 1.008e-055 -54.997 S02(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 U03(g) 2.810e-068 -67.551 U0F4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 U02C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CUC15(g) 6.070e-146 -145.217 UC16(g) 1.594e-146 -145.561 H2S(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.287 UF2(g) 1.158e-189 -188.287	N2(g)				
H2(g) 7.464e-042 -41.127 CO(g) 5.716e-049 -48.243 UO2F2(g) 1.008e-055 -54.997 SO2(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 UO3(g) 2.810e-068 -67.551 UOF4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 UO2C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 UZF10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.416 UC15(g) 3.582e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.936			-26.007		
CO(g) 5.716e-049 -48.243 UO2F2(g) 1.008e-055 -54.997 SO2(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 UO3(g) 2.810e-068 -67.551 UOF4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 UO2C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.55e-189 -188.936					
U02F2(g) 1.008e-055 -54.997 S02(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 U03(g) 2.810e-068 -67.551 U0F4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 U02C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.327 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 1.594e-146 -145.797 Ca(g) 1.594e-146 -145.797 Ca(g) 1.594e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
SO2(g) 1.553e-059 -58.809 Pb(g) 5.099e-065 -64.292 UO3(g) 2.810e-068 -67.551 UOF4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 UO2C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
Pb(g) 5.099e-065 -64.292 UO3(g) 2.810e-068 -67.551 UOF4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 UO2C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.797 Ca(g) 1.594e-146 -145.797 Ca(g) 1.599e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g)					
UO3(g) 2.810e-068 -67.551 UOF4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 UO2C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UOF4(g) 4.575e-069 -68.340 NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 UO2C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
NH3(g) 5.923e-070 -69.227 Na(g) 9.448e-074 -73.025 U02Cl2(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
Na(g) 9.448e-074 -73.025 U02Cl2(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 U02(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UO2C12(g) 8.729e-074 -73.059 F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
F2(g) 4.786e-082 -81.320 UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UF5(g) 4.194e-082 -81.377 UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UF6(g) 9.243e-087 -86.034 UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UF4(g) 1.873e-091 -90.727 UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UO2(g) 4.662e-121 -120.331 UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UC14(g) 8.668e-133 -132.062 U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 A1(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936	-				
U2F10(g) 1.969e-138 -137.706 UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UF3(g) 3.835e-142 -141.416 UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UC15(g) 3.582e-142 -141.446 CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
CH4(g) 6.070e-146 -145.217 UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UC16(g) 2.751e-146 -145.561 H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UC13(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
H2S(g) 1.594e-146 -145.797 Ca(g) 1.559e-150 -149.807 UCl3(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
Ca(g) 1.559e-150 -149.807 UCl3(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UCl3(g) 1.079e-160 -159.967 Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
Al(g) 5.160e-189 -188.287 UF2(g) 1.158e-189 -188.936					
UF2(g) 1.158e-189 -188.936					
3.3716 130 103.117					
UO(g) 3.071e-205 -204.513					
UCl2(g) 7.276e-206 -205.138					
UF(g) 8.609e-231 -230.065					
S2(g) 1.018e-235 -234.992					
C2H4(g) 1.305e-238 -237.884					
UCl(g) 1.074e-248 -247.969		1.074e-248	-247.969		
U2Cl8(g) 1.852e-254 -253.732					
U2Cl10(g) 2.561e-257 -256.592		2.561e-257			
U(g) 4.746e-290 -289.324			-289.324		
In fluid Sorbed Kd			n fluid	Sorbed	Kd
Original basis total moles moles mg/kg moles mg/kg L/kg	Original basis to	tal moles moles	mg/kg	moles mg/kg	L/kg
Al+++ 4.69e-005 4.69e-005 1.26	Al+++ 4	.69e-005 4.69e-0	005 1.26		
Ca++ 7.30e-005 7.30e-005 2.92	Ca++ 7	.30e-005 7.30e-0	005 2.92		
Cl- 6.05e-006 6.05e-006 0.214	Cl- 6	.05e-006 6.05e-0	0.214		

CrO4	2.57e-005	2.57e-005	2.98
F-	0.00146	0.00146	27.7
Fe++	0.000147	0.000147	8.20
H+	-0.00175	-0.00175	-1.76
H2O	55.5	55.5	9.99e+005
HCO3-	0.00503	0.00503	307.
HPO4	0.000357	0.000357	34.2
Mn++	3.07e-005	3.07e-005	1.69
NH3(aq)	0.000158	0.000158	2.69
Na+	0.00936	0.00936	215.
Ni++	1.04e-005	1.04e-005	0.610
02(aq)	0.000566	0.000566	18.1
Pb++	2.26e-006	2.26e-006	0.468
SO4	1.62e-005	1.62e-005	1.56
UO2++	0.000243	0.000243	65.6

Elemental composition		In fl	uid	Sor	Sorbed	
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	4.690e-005	4.690e-005	1.265			
Calcium	7.300e-005	7.300e-005	2.924			
Carbon	0.005034	0.005034	60.43			
Chlorine	6.050e-006	6.050e-006	0.2143			
Chromium	2.570e-005	2.570e-005	1.335			
Fluorine	0.001460	0.001460	27.72			
Hydrogen	111.0	111.0	1.118e+005			
Iron	0.0001470	0.0001470	8.204			
Lead	2.260e-006	2.260e-006	0.4679			
Manganese	3.070e-005	3.070e-005	1.685			
Nickel	1.040e-005	1.040e-005	0.6100			
Nitrogen	0.0001580	0.0001580	2.212			
Oxygen	55.53	55.53	8.878e+005			
Phosphorus	0.0003570	0.0003570	11.05			
Sodium	0.009360	0.009360	215.0			
Sulfur	1.620e-005	1.620e-005	0.5191			
Uranium	0.0002430	0.0002430	57.80			

Sample 19250 CaCO₃ leach, 1 month.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.009921	227.9	0.8968	-2.0508
HCO3-	0.004468	272.4	0.8968	-2.3972
F-	0.001908	36.23	0.8953	-2.7674
HPO4	0.0004182	40.11	0.6447	-3.5692
02(aq)	0.0002387	7.632	1.0000	-3.6222
NO3-	0.0002360	14.62	0.8937	-3.6760
UO2(CO3)3	0.0002033	91.41	0.1722	-4.4558
CO3	0.0001827	10.95	0.6490	-3.9260
NaHCO3(aq)	5.083e-005	4.267	1.0000	-4.2939
A102-	4.594e-005	2.708	0.8968	-4.3851
Ca++	2.674e-005	1.071	0.6614	-4.7523
Cr04	2.561e-005	2.968	0.6447	-4.7822
NaHPO4-	2.225e-005	2.645	0.8968	-4.7000
Cl-	2.157e-005	0.7642	0.8937	-4.7149
Fe(OH)3(aq)	1.982e-005	2.117	1.0000	-4.7029
SO4	1.925e-005	1.848	0.6447	-4.9063
CO2(aq)	1.404e-005	0.6176	1.0000	-4.8525
UO2(CO3)2	1.036e-005	4.039	0.6447	-5.1751
Ni++	1.036e-005	0.6073	0.6614	-5.1644
H2PO4-	7.647e-006	0.7411	0.8968	-5.1638
OH-	7.128e-006	0.1211	0.8953	-5.1951
CaPO4-	4.613e-006	0.6225	0.8968	-5.3833
CaCO3(aq)	4.454e-006	0.4454	1.0000	-5.3513
MnO4-	4.361e-006	0.5182	0.8953	-5.4085
NaCO3-	3.845e-006	0.3189	0.8968	-5.4624
Fe(OH)4-	3.503e-006	0.4336	0.8968	-5.5029
CaHPO4(aq)	2.621e-006	0.3563	1.0000	-5.5815
Ca2UO2(CO3)3	1.737e-006	0.9201	1.0000	-5.7603
NaF(aq)	1.528e-006	0.06412	1.0000	-5.8158
CaHCO3+	8.799e-007	0.08889	0.8968	-6.1029
NaSO4-	8.133e-007	0.09676	0.8968	-6.1370

PbCO3(aq)	5.286e-007	0.1412	1.0000	-6.2768
MnCO3(aq)	4.069e-007	0.04674	1.0000	-6.3905
PO4	2.180e-007	0.02069	0.3720	-7.0910
HAlO2(aq)	1.842e-007	0.01104	1.0000	-6.7347
CaF+	1.619e-007	0.009558	0.8968	-6.8380
Mn++	1.567e-007	0.008603	0.6614	-6.9845
MnPO4-	1.451e-007	0.02174	0.8968	-6.8855
(UO2)2CO3(OH)3-	1.443e-007	0.09390	0.8968	-6.8880
UO2PO4-	1.330e-007	0.04852	0.8968	-6.9233
UO2(OH)2(aq)	1.126e-007	0.03421	1.0000	-6.9485
MnHPO4(aq)	1.062e-007	0.01602	1.0000	-6.9737
UO2(OH)3-	9.808e-008	0.03147	0.8968	-7.0557
HCrO4-	9.109e-008	0.01065	0.8968	-7.0878
Fe(OH)2+	7.490e-008	0.006725	0.8968	-7.1729
NaAlO2(aq)	6.620e-008	0.005422	1.0000	-7.1792
Pb(CO3)2	6.423e-008	0.02100	0.6447	-7.3829
NaCl(aq)	2.866e-008	0.001674	1.0000	-7.5427
CaSO4(aq)	2.835e-008	0.003856	1.0000	-7.5475
Ni(OH)2(aq)	2.789e-008	0.002583	1.0000	-7.5546
MnO4	2.341e-008	0.002782	0.6447	-7.8213
CaNO3+	2.085e-008	0.002126	0.8968	-7.7283
PO3F	1.792e-008	0.001754	0.6447	-7.9373
PbOH+	1.665e-008	0.003730	0.8968	-7.8259
NiSO4(aq)	1.135e-008	0.001755	1.0000	-7.9450
(only species >)	1e-8 molal listed	d)		

	log Q/K		log Q/K
Birnessite	62.3600s/sat	Corundum	1.0843s/sat
Todorokite	54.1760s/sat	Ca-Autunite	1.0034s/sat
Trevorite	17.2423s/sat	Dawsonite	0.9038s/sat
Hematite	14.4857s/sat	Cerussite	0.6811s/sat
Pyromorphite	14.2189s/sat	Plattnerite	0.6440s/sat
Fluorapatite	14.1573s/sat	Whitlockite	0.4295s/sat
Bixbyite	12.2232s/sat	CaUO4	0.2717s/sat
Hausmannite	11.7134s/sat	Bunsenite	-0.0363
Pyrolusite	10.2410s/sat	Ice	-0.1387
MnO2(gamma)	8.7232s/sat	Calcite	-0.1983
Goethite	6.7626s/sat	Fluorite	-0.2502
Parsonsite	6.1572s/sat	Ni(OH)2	-0.3129
Pyromorphite-OH	6.1037s/sat	Aragonite	-0.3427
Ferrite-Ca	5.9203s/sat	Rhodochrosite	-0.3889
Manganite	5.7935s/sat	Mn(OH)3	-0.7123
Pb40(P04)2	4.9111s/sat	Crocoite	-0.9953
Magnetite	3.8347s/sat	Monohydrocalcite	-1.0320
Hydroxylapatite	3.8053s/sat	UO3:2H2O	-1.4672
Pb3(PO4)2	3.6436s/sat	Schoepite	-1.4672
Plumbogummite	3.5717s/sat	UO2(OH)2(beta)	-1.5796
PbHPO4	3.2275s/sat	UO3:.9H2O(alpha)	-1.6506
Diaspore	2.5379s/sat	Schoepite-dehy(.	-1.6506
MnHPO4	2.3933s/sat	Schoepite-dehy(.	-1.7309
Boehmite	2.1340s/sat	Schoepite-dehy(1	-1.7370
Gibbsite	1.9422s/sat	NiCO3	-2.2734
Hydrocerussite	1.7654s/sat	Na2U2O7(c)	-2.3611
Fe(OH)3(ppd)	1.6415s/sat	Strengite	-2.5292
Ni3(PO4)2	1.6098s/sat	Schoepite-dehy(.	-2.8402

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.		
02(g)	0.1889	-0.724		
H2O(g)	0.02598	-1.585		
CO2(g)	0.0004134	-3.384		
HF(g)	2.089e-013	-12.680		
HCl(g)	1.512e-020	-19.820		
NO2(g)	1.154e-020	-19.938		
N2(g)	3.553e-021	-20.449		
NO(g)	1.780e-026	-25.750		
Cl2(g)	1.441e-032	-31.841		
H2(g)	6.449e-042	-41.191		
CO(g)	8.326e-049	-48.080		
UO2F2(g)	3.662e-055	-54.436		
SO2(g)	3.767e-059	-58.424		
Pb(g)	7.435e-066	-65.129		
UOF4(g)	6.481e-068	-67.188		
UO3(g)	2.619e-068	-67.582		
NH3(g)	7.442e-070	-69.128		
UO2Cl2(g)	2.362e-072	-71.627		
Na(g)	6.177e-074	-73.209		
UF5(g)	1.090e-080	-79.962		
F2(g)	2.160e-081	-80.666		
UF6(g)	5.105e-085	-84.292		
UF4(g)	2.293e-090	-89.640		
UO2(g)	3.754e-121	-120.426		
UC14(g)	5.882e-130	-129.231		
U2F10(g)	1.331e-135	-134.876		
UCl5(g)	1.409e-138	-137.851		
UF3(g)	2.209e-141 6.271e-142	-140.656		
UCl6(g) CH4(g)	5.703e-146	-141.203 -145.244		
H2S(g)	2.495e-146	-145.603		
Ca(g)	3.810e-151	-150.419		
UCl3(g)	1.264e-158	-157.898		
Al(g)	6.152e-189	-188.211		
UF2(g)	3.141e-189	-188.503		
C(g)	4.494e-190	-189.347		
UCl2(g)	1.469e-204	-203.833		
UO(g)	2.137e-205	-204.670		
UF(g)	1.099e-230	-229.959		
S2(g)	3.338e-235	-234.476		
C2H4(g)	1.543e-238	-237.812		
UCl(g)	3.743e-248	-247.427		
U2Cl8(g)	8.525e-249	-248.069		
U2Cl10(g)	3.962e-250	-249.402		
U(g)	2.853e-290	-289.545		
	_	- 61	21	77.7
Original basis		n fluid s mg/kg	Sorbed moles mg/kg	Kd L/kg
				п, ид
Al+++	4.62e-005 4.62e-0	005 1.25		
Ca++	4.30e-005 4.30e-0	005 1.72		
Cl-	2.16e-005 2.16e-0			
Cr04	2.57e-005 2.57e-0	2.98		

F-	0.00191	0.00191	36.3
Fe++	2.34e-005	2.34e-005	1.31
H+	-0.00130	-0.00130	-1.31
H2O	55.5	55.5	9.99e+005
HCO3-	0.00536	0.00536	327.
HPO4	0.000456	0.000456	43.7
Mn++	5.21e-006	5.21e-006	0.286
NH3(aq)	0.000236	0.000236	4.02
Na+	0.0100	0.0100	230.
Ni++	1.04e-005	1.04e-005	0.610
02(aq)	0.000722	0.000722	23.1
Pb++	6.19e-007	6.19e-007	0.128
SO4	2.01e-005	2.01e-005	1.93
UO2++	0.000216	0.000216	58.3
		_	

Elemental comp	position	In fl	uid	Sork	ped
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	4.620e-005	4.620e-005	1.246		
Calcium	4.300e-005	4.300e-005	1.722		
Carbon	0.005361	0.005361	64.35		
Chlorine	2.160e-005	2.160e-005	0.7652		
Chromium	2.570e-005	2.570e-005	1.335		
Fluorine	0.001910	0.001910	36.26		
Hydrogen	111.0	111.0	1.118e+005		
Iron	2.340e-005	2.340e-005	1.306		
Lead	6.190e-007	6.190e-007	0.1282		
Manganese	5.210e-006	5.210e-006	0.2860		
Nickel	1.040e-005	1.040e-005	0.6099		
Nitrogen	0.0002360	0.0002360	3.303		
Oxygen	55.53	55.53	8.878e+005		
Phosphorus	0.0004560	0.0004560	14.11		
Sodium	0.01000	0.01000	229.7		
Sulfur	2.010e-005	2.010e-005	0.6441		
Uranium	0.0002160	0.0002160	51.38		

Sample 19250 CaCO₃ leach, Stage 2.

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.001971	120.2	0.9463	-2.7293
Na+	0.001664	38.25	0.9463	-2.8028
02(aq)	0.0002463	7.879	1.0000	-3.6086
F-	0.0002249	4.272	0.9459	-3.6722
HPO4	0.0001416	13.59	0.8013	-3.9451
Ca++	4.416e-005	1.769	0.8067	-4.4483
CO2(aq)	3.593e-005	1.581	1.0000	-4.4446
A102-	3.193e-005	1.883	0.9463	-4.5197
H2PO4-	1.676e-005	1.625	0.9463	-4.7997
UO2(CO3)2	1.503e-005	5.861	0.8013	-4.9193
UO2(CO3)3	1.297e-005	5.836	0.4121	-5.2721
Fe(OH)3(aq)	1.276e-005	1.363	1.0000	-4.8941
NO3-	1.260e-005	0.7809	0.9455	-4.9241
CO3	1.251e-005	0.7507	0.8027	-4.9981
(UO2)2CO3(OH)3-	4.404e-006	2.867	0.9463	-5.3801
NaHCO3(aq)	4.188e-006	0.3518	1.0000	-5.3780
Cr04	3.284e-006	0.3809	0.8013	-5.5797
SO4	2.883e-006	0.2769	0.8013	-5.6364
UO2PO4-	2.425e-006	0.8849	0.9463	-5.6393
CaHPO4(aq)	2.221e-006	0.3022	1.0000	-5.6534
Ni++	1.849e-006	0.1085	0.8067	-5.8263
Cl-	1.810e-006	0.06414	0.9455	-5.7668
NaHPO4-	1.571e-006	0.1868	0.9463	-5.8279
Mn++	1.562e-006	0.08582	0.8067	-5.8995
OH-	1.228e-006	0.02087	0.9459	-5.9351
Ca2UO2(CO3)3	1.075e-006	0.5701	1.0000	-5.9684
UO2(OH)2(aq)	9.363e-007	0.2846	1.0000	-6.0286
CaHCO3+	7.818e-007	0.07902	0.9463	-6.1309
CaCO3(aq)	7.599e-007	0.07604	1.0000	-6.1193
HA102(aq)	7.425e-007	0.04453	1.0000	-6.1293
CaPO4-	6.742e-007	0.09103	0.9463	-6.1952

MnHPO4(aq)	5.438e-007	0.08205	1.0000	-6.2646
MnCO3(aq)	4.192e-007	0.04818	1.0000	-6.3776
Fe(OH)4-	3.889e-007	0.04816	0.9463	-6.4341
MnO4-	3.145e-007	0.03740	0.9459	-6.5265
PbCO3(aq)	2.655e-007	0.07092	1.0000	-6.5760
Fe(OH)2+	2.511e-007	0.02256	0.9463	-6.6241
UO2(OH)3-	1.407e-007	0.04515	0.9463	-6.8758
MnPO4-	1.281e-007	0.01920	0.9463	-6.9164
HCrO4-	7.562e-008	0.008846	0.9463	-7.1453
UO2CO3(aq)	6.813e-008	0.02248	1.0000	-7.1667
NaCO3-	5.464e-008	0.004534	0.9463	-7.2865
U02HP04(aq)	4.579e-008	0.01675	1.0000	-7.3393
CaF+	3.848e-008	0.002273	0.9463	-7.4388
NaF(aq)	3.368e-008	0.001414	1.0000	-7.4726
NaSO4-	2.540e-008	0.003023	0.9463	-7.6191
MnHCO3+	1.891e-008	0.002193	0.9463	-7.7472
PbOH+	1.702e-008	0.003815	0.9463	-7.7930
CaSO4(aq)	1.063e-008	0.001447	1.0000	-7.9735
PO4	1.022e-008	0.0009708	0.6074	-8.2069
(only enecies	> 1a-8 molal ligte	<i>d</i>)		

log Q/K

(only species > 1e-8 molal listed)

Mineral saturation states log Q/K

	3 ~		3 ~·
Birnessite	59.2409s/sat	CaUO4	0.0158s/sat
Todorokite	51.4451s/sat	Plattnerite	-0.0563
Trevorite	14.7178s/sat	Ice	-0.1387
Hematite	14.1031s/sat	(UO2)3(PO4)2:4H2	-0.2372
Pyromorphite	13.6839s/sat	Rhodochrosite	-0.3760
Bixbyite	11.4401s/sat	Schoepite	-0.5473
Fluorapatite	11.4252s/sat	UO3:2H2O	-0.5473
Hausmannite	10.5353s/sat	UO2(OH)2(beta)	-0.6597
Pyrolusite	9.8528s/sat	UO3:.9H2O(alpha)	-0.7307
MnO2(gamma)	8.3350s/sat	Schoepite-dehy(.	-0.7307
Parsonsite	7.8712s/sat	Schoepite-dehy(.	-0.8110
Plumbogummite	6.8890s/sat	Schoepite-dehy(1	-0.8171
Goethite	6.5714s/sat	Whitlockite	-0.8901
Pyromorphite-OH	5.8806s/sat	Calcite	-0.9663
Manganite	5.4019s/sat	Crocoite	-1.0199
Ferrite-Ca	4.3617s/sat	Mn(OH)3	-1.1039
Pb40(PO4)2	4.2910s/sat	Aragonite	-1.1107
Ca-Autunite	3.8756s/sat	Strengite	-1.6163
Pb3(PO4)2	3.7306s/sat	Fluorite	-1.7556
PbHPO4	3.6245s/sat	Monohydrocalcite	-1.8000
Magnetite	3.2574s/sat	Schoepite-dehy(.	-1.9203
Diaspore	3.1433s/sat	Bunsenite	-2.1782
MnHPO4	3.1024s/sat	UO2CO3	-2.3766
Boehmite	2.7394s/sat	Rutherfordine	-2.3969
Gibbsite	2.5476s/sat	Schoepite-dehy(.	-2.4383
Corundum	2.2951s/sat	Ni(OH)2	-2.4548
Fe(OH)3(ppd)	1.4503s/sat	Berlinite	-2.5528
Hydroxylapatite	1.2380s/sat	Ni3(PO4)2	-2.6077
Hydrocerussite	0.4601s/sat	Corkite	-2.7467
Dawsonite	0.4251s/sat	UO2HPO4:4H2O	-2.7560
Cerussite	0.3819s/sat		
(only minerals	with log Q/K >	-3 listed)	

Gases	fugacity	log fug.			
02(g)	0.1949	-0.710			
H2O(g)	0.02598	-1.585			
CO2(g)	0.001058	-2.976			
HF(g)	1.430e-013	-12.845			
HCl(g)	7.374e-021	-20.132			
NO2(g)	3.555e-021	-20.449			
N2(g)	3.166e-022	-21.500			
NO(g)	5.397e-027	-26.268			
Cl2(g)	3.481e-033	-32.458			
H2(g)	6.349e-042	-41.197			
CO(g)	2.097e-048	-47.678			
UO2F2(g)	1.426e-054	-53.846			
S02(g)	2.085e-058	-57.681			
Pb(g)	1.437e-066	-65.843			
UO3(g)	2.178e-067	-66.662			
UOF4(g)	1.182e-067	-66.928			
NH3(g)	2.170e-070	-69.664			
UO2Cl2(g)	4.672e-072	-71.331			
Na(g)	1.974e-075	-74.705			
UF5(g)	1.350e-080	-79.870			
F2(g)	1.027e-081	-80.988			
UF6(g)	4.358e-085	-84.361			
UF4(g)	4.116e-090	-89.386			
UO2(g)	3.073e-120	-119.512			
UCl4(g)	2.725e-130	-129.565			
U2F10(g)	2.039e-135	-134.691			
UCl5(g)	3.208e-139	-138.494			
UF3(g)	5.751e-141	-140.240			
UC16(g) CH4(g)	7.019e-143 1.371e-145	-142.154			
H2S(g)	1.318e-145	-144.863 -144.880			
Ca(g)	2.502e-152	-151.602			
UC13(g)	1.191e-158	-157.924			
Al(g)	2.422e-188	-187.616			
UF2(g)	1.186e-188	-187.926			
C(g)	1.114e-189	-188.953			
UCl2(g)	2.818e-204	-203.550			
UO(g)	1.722e-204	-203.764			
UF(g)	6.016e-230	-229.221			
S2(g)	9.608e-234	-233.017			
C2H4(g)	9.196e-238				
UCl(g)	1.460e-247				
U2Cl8(g)	1.829e-249				
U2Cl10(g)		-250.687			
U(g)	2.264e-289	-288.645			
		n fluid	Sork	oed	Kd
Original basis	total moles mole	s mg/kg	moles	mg/kg	L/kg
Al+++	3.27e-005 3.27e-	005 0.882			
Ca++	5.08e-005 5.08e-				
Cl-	1.81e-006 1.81e-				
Cr04	3.36e-006 3.36e-				
F-	0.000225 0.000				
Fe++	1.34e-005 1.34e-				

H+	-0.000228	-0.000228	-0.230
H2O	55.5	55.5	1.00e+006
HCO3-	0.00210	0.00210	128.
HPO4	0.000166	0.000166	15.9
Mn++	3.00e-006	3.00e-006	0.165
NH3(aq)	1.26e-005	1.26e-005	0.215
Na+	0.00167	0.00167	38.4
Ni++	1.85e-006	1.85e-006	0.109
02(aq)	0.000275	0.000275	8.80
Pb++	2.98e-007	2.98e-007	0.0617
SO4	2.92e-006	2.92e-006	0.280
UO2++	4.15e-005	4.15e-005	11.2

Elemental comp	osition	In fl	uid	.d Sorbed	
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	3.270e-005	3.270e-005	0.8821		
Calcium	5.080e-005	5.080e-005	2.036		
Carbon	0.002103	0.002103	25.25		
Chlorine	1.810e-006	1.810e-006	0.06416		
Chromium	3.360e-006	3.360e-006	0.1747		
Fluorine	0.0002250	0.0002250	4.274		
Hydrogen	111.0	111.0	1.119e+005		
Iron	1.340e-005	1.340e-005	0.7482		
Lead	2.980e-007	2.980e-007	0.06173		
Manganese	3.000e-006	3.000e-006	0.1648		
Nickel	1.850e-006	1.850e-006	0.1086		
Nitrogen	1.260e-005	1.260e-005	0.1764		
Oxygen	55.52	55.52	8.880e+005		
Phosphorus	0.0001660	0.0001660	5.141		
Sodium	0.001670	0.001670	38.38		
Sulfur	2.920e-006	2.920e-006	0.09361		
Uranium	4.150e-005	4.150e-005	9.876		

Sample 19250 CaCO₃ leach, Stage 3.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.001794	109.5	0.9460	-2.7702
Na+	0.001535	35.28	0.9460	-2.8380
02(aq)	0.0002389	7.642	1.0000	-3.6218
F-	0.0001969	3.740	0.9456	-3.7300
HPO4	0.0001182	11.34	0.8003	-4.0242
A102-	7.240e-005	4.269	0.9460	-4.1644
Ca++	4.873e-005	1.953	0.8057	-4.4060
NO3-	4.759e-005	2.950	0.9452	-4.3470
UO2(CO3)3	3.020e-005	13.59	0.4100	-4.9073
CO3	2.173e-005	1.303	0.8017	-4.7590
UO2(CO3)2	2.010e-005	7.838	0.8003	-4.7936
CO2(aq)	1.716e-005	0.7550	1.0000	-4.7655
(UO2)2CO3(OH)3-	1.043e-005	6.786	0.9460	-5.0060
CrO4	1.008e-005	1.169	0.8003	-5.0933
Fe(OH)3(aq)	7.469e-006	0.7980	1.0000	-5.1267
H2PO4-	7.334e-006	0.7111	0.9460	-5.1588
MnO4-	7.302e-006	0.8683	0.9456	-5.1609
Ni++	6.986e-006	0.4099	0.8057	-5.2496
Mn++	5.452e-006	0.2994	0.8057	-5.3573
NaHCO3(aq)	3.515e-006	0.2952	1.0000	-5.4541
Ca2UO2(CO3)3	3.027e-006	1.604	1.0000	-5.5190
MnCO3(aq)	2.534e-006	0.2912	1.0000	-5.5963
OH-	2.340e-006	0.03979	0.9456	-5.6551
CaHPO4(aq)	2.041e-006	0.2776	1.0000	-5.6901
UO2PO4-	1.711e-006	0.6244	0.9460	-5.7908
Cl-	1.600e-006	0.05670	0.9452	-5.8205
MnHPO4(aq)	1.580e-006	0.2383	1.0000	-5.8014
UO2(OH)2(aq)	1.510e-006	0.4590	1.0000	-5.8211
CaCO3(aq)	1.453e-006	0.1453	1.0000	-5.8379
SO4	1.450e-006	0.1393	0.8003	-5.9353
PbCO3(aq)	1.219e-006	0.3256	1.0000	-5.9140

NaHPO4- CaPO4- HA102(aq) CaHCO3+ MnPO4- Fe(OH)4- UO2(OH)3- HCrO4- NaCO3- PbOH+ Fe(OH)2+ MnHCO3+	1.208e-006 1.181e-006 8.831e-007 7.846e-007 7.094e-007 4.339e-007 4.324e-007 1.217e-007 8.741e-008 8.590e-008 7.716e-008 6.001e-008	0.1437 0.1594 0.05296 0.07930 0.1063 0.05374 0.1388 0.01423 0.007253 0.01925 0.006932	0.9460 0.9460 1.0000 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460 0.9460	-5.9421 -5.9519 -6.0540 -6.1295 -6.1732 -6.3867 -6.3883 -6.9389 -7.0826 -7.0901 -7.1367 -7.2459
HCrO4-	1.217e-007	0.01423	0.9460	-6.9389
PbOH+	8.590e-008	0.01925	0.9460	-7.0901
U02C03(aq)	5.247e-008	0.01731	1.0000	-7.2801
CaF+ NaF(aq) MnOH+	3.714e-008 2.719e-008 2.611e-008	0.002193 0.001141 0.001878	0.9460 1.0000 0.9460	-7.4543 -7.5656 -7.6073
MnF+ Pb++	2.327e-008 2.296e-008	0.001720 0.004756	0.9460 0.8017	-7.6573 -7.7350
NaAlO2(aq) Pb(CO3)2	1.796e-008 1.753e-008	0.001472 0.005734	1.0000	-7.7457 -7.8530
UO2HPO4(aq) PO4 NaSO4-	1.695e-008 1.629e-008 1.177e-008	0.006203 0.001546 0.001401	1.0000 0.6057 0.9460	-7.7708 -8.0060 -7.9532
MnO4	1.156e-008 > 1e-8 molal listed	0.001375	0.8003	-8.0337

Bacaración	log Q/K		log Q/K
Birnessite Todorokite	68.0189s/sat 59.1274s/sat	CaUO4 Dawsonite	0.8256s/sat 0.4243s/sat
Pyromorphite	16.3473s/sat	Rhodochrosite	0.4053s/sat
Trevorite	15.3893s/sat	Mn(OH)3	-0.0050
Hausmannite	13.8353s/sat	Crocoite	-0.1107
Hematite	13.6379s/sat	Ice	-0.1387
Bixbyite	13.6378s/sat	UO3:2H2O	-0.3398
Fluorapatite	12.1816s/sat	Schoepite	-0.3398
Pyrolusite	10.9484s/sat	Whitlockite	-0.3614
MnO2(gamma)	9.4306s/sat	UO2(OH)2(beta)	-0.4522
Pyromorphite-OH	8.8776s/sat	Ni3(PO4)2	-0.4757
Parsonsite	8.7662s/sat	UO3:.9H2O(alpha)	-0.5232
Pb40(PO4)2	6.9442s/sat	Schoepite-dehy(.	-0.5232
Plumbogummite	6.8197s/sat	Schoepite-dehy(.	-0.6035
Manganite	6.5008s/sat	Schoepite-dehy(1	-0.6096
Goethite	6.3388s/sat	Calcite	-0.6849
Pb3(PO4)2	5.4010s/sat	Aragonite	-0.8293
Ferrite-Ca	4.4988s/sat	(UO2)3(PO4)2:4H2	-0.8928
PbHPO4	3.9683s/sat	Bunsenite	-1.0415
Ca-Autunite	3.6148s/sat	Ni(OH)2	-1.3181
MnHPO4	3.5656s/sat	Monohydrocalcite	-1.5186
Diaspore	3.2186s/sat	Schoepite-dehy(.	-1.7128
Boehmite	2.8147s/sat	Fluorite	-1.8290
Hydrocerussite	2.7668s/sat	Becquerelite	-2.1647
Gibbsite	2.6229s/sat	Schoepite-dehy(.	-2.2308
Magnetite	2.5629s/sat	Strengite	-2.4880
Corundum	2.4457s/sat	UO2CO3	-2.4900
Hydroxylapatite	2.3322s/sat	Rutherfordine	-2.5103

Fe(OH)3(ppd) 1.2177s/sat Na2U2O7(c) -2.6005 Cerussite 1.0439s/sat PbCO3.PbO -2.8914

Cerussite 1.0439s/sat Plattnerite 0.9200s/sat

O2(g)	(Only minera	is with log Q/K > -3	ilsted)		
H2O(g)	Gases	fugacity	log fug.		
H2O(g)	02(q)	0.1890	-0.724		
CO2(g)					
HF(g) 6.567e-014 -13.183 NO2(g) 7.099e-021 -20.149 HC1(g) 3.420e-021 -20.466 N2(g) 1.342e-021 -20.872 NO(g) 1.094e-026 -25.961 C12(g) 7.375e-034 -33.132 H2(g) 6.446e-042 -41.191 C0(g) 1.017e-048 -47.993 U02F2(g) 4.853e-055 -54.314 S02(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 U03(g) 3.512e-067 -66.454 U0F4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 U02C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 U02(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 1.07e-151 -150.993 UC16(g) 1.07e-151 -150.993 UC12(g) 1.938e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.07e-151 -150.993 UC12(g) 2.948e-188 -187.531 UF2(g) 4.629e-230 -229.335 S2(g) 2.946e-254 -203.543 UC1(g) 1.07e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 UC18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
NO2(g) 7.099e-021 -20.149 HC1(g) 3.420e-021 -20.466 N2(g) 1.342e-021 -20.872 NO(g) 1.094e-026 -25.961 C12(g) 7.375e-034 -33.132 H2(g) 6.446e-042 -41.191 C0(g) 1.017e-048 -47.993 U02F2(g) 4.853e-055 -54.314 S02(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 U03(g) 3.512e-067 -66.454 U0F4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 U02C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 U02(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.07e-151 -150.993 UC13(g) 1.938e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 U0(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
HCl(g) 3.420e-021 -20.466 N2(g) 1.342e-021 -20.872 NO(g) 1.094e-026 -25.961 Cl2(g) 7.375e-034 -33.132 H2(g) 6.446e-042 -41.191 CO(g) 1.017e-048 -47.993 UO2F2(g) 4.853e-055 -54.314 SO2(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 UO3(g) 3.512e-067 -66.454 UOF4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 UO2Cl2(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 U2F4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 1.26e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.07e-151 -150.993 UC13(g) 1.96e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.07e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC18(g) 1.134e-247 -246.945 U2C18(g) 1.134e-247 -246.945 U2C18(g) 1.134e-247 -246.945 U2C18(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
N2(g)					
NO(g)					
C12(g) 7.375e-034 -33.132 H2(g) 6.446e-042 -41.191 C0(g) 1.017e-048 -47.993 U02F2(g) 4.853e-055 -54.314 S02(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 U03(g) 3.512e-067 -66.454 U0F4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 U02C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 U1F4(g) 3.001e-091 -90.523 U02(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 U0(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
H2(g) 6.446e-042 -41.191 CO(g) 1.017e-048 -47.993 U02F2(g) 4.853e-055 -54.314 SO2(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 U03(g) 3.512e-067 -66.454 U0F4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 U02C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 U02(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 U0(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
CO(g)			-33.132		
UO2F2(g) 4.853e-055 -54.314 SO2(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 UO3(g) 3.512e-067 -66.454 UOF4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 UO2C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 1.919e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.938e-146 -145.713 Ca(g) 4.159e-189 -188.381 C(g) <t< td=""><td>H2(g)</td><td>6.446e-042</td><td>-41.191</td><td></td><td></td></t<>	H2(g)	6.446e-042	-41.191		
SO2(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 UO3(g) 3.512e-067 -66.454 UOF4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 UO2C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 Al(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g)	CO(g)	1.017e-048	-47.993		
SO2(g) 2.930e-059 -58.533 Pb(g) 1.402e-065 -64.853 UO3(g) 3.512e-067 -66.454 UOF4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 UO2C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF(g) <t< td=""><td>UO2F2(g)</td><td>4.853e-055</td><td>-54.314</td><td></td><td></td></t<>	UO2F2(g)	4.853e-055	-54.314		
Pb(g)		2.930e-059	-58.533		
UO3(g) 3.512e-067 -66.454 UOF4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 UO2C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.5943 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.99e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
UOF4(g) 8.484e-069 -68.071 NH3(g) 4.571e-070 -69.340 UO2C12(g) 1.620e-072 -71.790 Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 4.159e-189 -188.381 C(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 1.050e-251 -250.979 U2C110(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
NH3(g)					
U02Cl2(g)					
Na(g) 3.495e-075 -74.457 UF5(g) 4.486e-082 -81.348 F2(g) 2.135e-082 -81.671 UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
UF5(g)					
F2(g)					
UF6(g) 6.603e-087 -86.180 UF4(g) 3.001e-091 -90.523 U02(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
UF4(g) 3.001e-091 -90.523 UO2(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 Al(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 1.34e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418	_				
UO2(g) 5.032e-120 -119.298 UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 Al(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
UC14(g) 2.064e-131 -130.685 U2F10(g) 2.253e-138 -137.647 UC15(g) 1.118e-140 -139.951 UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 Al(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
U2F10(g)					
UC15(g)					
UF3(g) 9.196e-142 -141.036 UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418		2.253e-138	-137.647		
UC16(g) 1.126e-144 -143.948 CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 3.821e-289 -288.418 In fluid Sork	UC15(g)	1.118e-140	-139.951		
CH4(g) 6.957e-146 -145.158 H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 3.821e-289 -288.418 In fluid Sorb	UF3(g)	9.196e-142	-141.036		
H2S(g) 1.938e-146 -145.713 Ca(g) 1.017e-151 -150.993 UC13(g) 1.960e-159 -158.708 A1(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorb	UCl6(g)	1.126e-144	-143.948		
Ca(g) 1.017e-151 -150.993 UCl3(g) 1.960e-159 -158.708 Al(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UCl2(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UCl(g) 1.134e-247 -246.945 U2Cl8(g) 1.050e-251 -250.979 U2Cl10(g) 3.821e-289 -288.418 In fluid Sorb	CH4(g)	6.957e-146	-145.158		
Ca(g) 1.017e-151 -150.993 UCl3(g) 1.960e-159 -158.708 Al(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UCl2(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UCl(g) 1.134e-247 -246.945 U2Cl8(g) 1.050e-251 -250.979 U2Cl10(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorb	H2S(g)	1.938e-146	-145.713		
UC13(g)		1.017e-151	-150.993		
Al(g) 2.948e-188 -187.531 UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
UF2(g) 4.159e-189 -188.381 C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorbe					
C(g) 5.487e-190 -189.261 UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
UO(g) 2.863e-204 -203.543 UC12(g) 1.007e-204 -203.997 UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
UC12(g)					
UF(g) 4.629e-230 -229.335 S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418					
S2(g) 2.016e-235 -234.696 C2H4(g) 2.299e-238 -237.639 UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorbe					
C2H4(g) 2.299e-238 -237.639 UCl(g) 1.134e-247 -246.945 U2Cl8(g) 1.050e-251 -250.979 U2Cl10(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorbo					
UC1(g) 1.134e-247 -246.945 U2C18(g) 1.050e-251 -250.979 U2C110(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorbe					
U2Cl8(g) 1.050e-251 -250.979 U2Cl10(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorb					
U2Cl10(g) 2.497e-254 -253.603 U(g) 3.821e-289 -288.418 In fluid Sorb					
U(g) 3.821e-289 -288.418 In fluid Sorb					
In fluid Sorbo	U2Cl10(g)				
	U(g)	3.821e-289	-288.418		
		Tr	ı fluid	Sor	·be
	Original basis			_	שבנ
			,		r

Ca++	6.03e-005	6.03e-005	2.42
Cl-	1.60e-006	1.60e-006	0.0567
Cr04	1.02e-005	1.02e-005	1.18
F-	0.000197	0.000197	3.74
Fe++	7.98e-006	7.98e-006	0.446
H+	-0.000573	-0.000573	-0.577
H2O	55.5	55.5	1.00e+006
HCO3-	0.00199	0.00199	122.
HPO4	0.000134	0.000134	12.9
Mn++	1.77e-005	1.77e-005	0.972
NH3(aq)	4.76e-005	4.76e-005	0.810
Na+	0.00154	0.00154	35.4
Ni++	6.99e-006	6.99e-006	0.410
02(aq)	0.000345	0.000345	11.0
Pb++	1.36e-006	1.36e-006	0.282
SO4	1.47e-006	1.47e-006	0.141
UO2++	7.79e-005	7.79e-005	21.0

Elemental comp	position	In fl	uid	Sorl	Sorbed	
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	7.330e-005	7.330e-005	1.977			
Calcium	6.030e-005	6.030e-005	2.416			
Carbon	0.001993	0.001993	23.94			
Chlorine	1.600e-006	1.600e-006	0.05671			
Chromium	1.020e-005	1.020e-005	0.5302			
Fluorine	0.0001970	0.0001970	3.742			
Hydrogen	111.0	111.0	1.119e+005			
Iron	7.980e-006	7.980e-006	0.4456			
Lead	1.360e-006	1.360e-006	0.2817			
Manganese	1.770e-005	1.770e-005	0.9722			
Nickel	6.990e-006	6.990e-006	0.4102			
Nitrogen	4.760e-005	4.760e-005	0.6666			
Oxygen	55.52	55.52	8.880e+005			
Phosphorus	0.0001340	0.0001340	4.150			
Sodium	0.001540	0.001540	35.40			
Sulfur	1.470e-006	1.470e-006	0.04713			
Uranium	7.790e-005	7.790e-005	18.54			

Sample 19250 CaCO₃ leach, Stage 4.

O2(g) -- fixed fugacity buffer --

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.001512	92.25	0.9570	-2.8395
Na+	0.0008131	18.69	0.9570	-3.1089
02(aq)	0.0002446	7.825	1.0000	-3.6116
Ca++	4.260e-005	1.707	0.8419	-4.4453
HPO4	4.126e-005	3.960	0.8384	-4.4610
CO2(aq)	3.847e-005	1.693	1.0000	-4.4148
AlO2-	3.844e-005	2.267	0.9570	-4.4344
F-	3.609e-005	0.6855	0.9567	-4.4619
UO2(CO3)2	2.137e-005	8.333	0.8384	-4.7468
(UO2)2CO3(OH)3-	2.063e-005	13.43	0.9570	-4.7046
Fe(OH)3(aq)	1.945e-005	2.079	1.0000	-4.7110
NO3-	1.720e-005	1.066	0.9565	-4.7839
UO2(CO3)3	9.049e-006	4.072	0.4938	-5.3498
Ni++	6.988e-006	0.4101	0.8419	-5.2304
H2PO4-	6.974e-006	0.6763	0.9570	-5.1756
CO3	6.726e-006	0.4036	0.8393	-5.2483
Mn++	3.367e-006	0.1850	0.8419	-5.5474
Cr04	3.088e-006	0.3582	0.8384	-5.5868
UO2PO4-	2.493e-006	0.9100	0.9570	-5.6223
UO2(OH)2(aq)	2.314e-006	0.7034	1.0000	-5.6357
SO4	1.704e-006	0.1636	0.8384	-5.8452
NaHCO3(aq)	1.606e-006	0.1349	1.0000	-5.7944
Cl-	1.290e-006	0.04572	0.9565	-5.9088
HA102(aq)	1.248e-006	0.07482	1.0000	-5.9040
Ca2UO2(CO3)3	9.113e-007	0.4831	1.0000	-6.0403
OH-	8.793e-007	0.01495	0.9567	-6.0751
CaHPO4(aq)	6.818e-007	0.09274	1.0000	-6.1664
CaHCO3+	6.038e-007	0.06104	0.9570	-6.2382
MnCO3(aq)	5.299e-007	0.06091	1.0000	-6.2758
Fe(OH)2+	5.225e-007	0.04694	0.9570	-6.3010
CaCO3(aq)	4.300e-007	0.04303	1.0000	-6.3666

Fe(OH)4-	4.247e-007	0.05260	0.9570	-6.3910
MnHPO4(aq)	3.729e-007	0.05626	1.0000	-6.4285
PbCO3(aq)	3.676e-007	0.09820	1.0000	-6.4347
MnO4-	2.636e-007	0.03135	0.9567	-6.5982
UO2(OH)3-	2.490e-007	0.07993	0.9570	-6.6229
NaHPO4-	2.340e-007	0.02783	0.9570	-6.6499
U02C03(aq)	1.803e-007	0.05950	1.0000	-6.7440
CaPO4-	1.482e-007	0.02001	0.9570	-6.8482
HCrO4-	1.015e-007	0.01188	0.9570	-7.0124
UO2HPO4(aq)	6.572e-008	0.02405	1.0000	-7.1823
MnPO4-	6.293e-008	0.009432	0.9570	-7.2203
MnHCO3+	3.264e-008	0.003784	0.9570	-7.5054
PbOH+	3.004e-008	0.006733	0.9570	-7.5414
Pb++	2.041e-008	0.004227	0.8393	-7.7663
NaCO3-	1.501e-008	0.001245	0.9570	-7.8429
H+	1.253e-008	1.263e-005	0.9594	-7.9200
Al(OH)2+	1.080e-008	0.0006588	0.9570	-7.9856
(only species >	1e-8 molal liste	ed)		

Mineral saturation states $\log \, {\rm Q/K}$

Mineral Sacuración	log Q/K		log Q/K
Birnessite Todorokite Trevorite Hematite Pyromorphite Bixbyite Hausmannite Pyrolusite Fluorapatite MnO2(gamma) Parsonsite Plumbogummite Goethite Pyromorphite-OH Manganite Ferrite-Ca Pb40(PO4)2 Ca-Autunite Magnetite Pb3(PO4)2 PbHPO4 Diaspore Boehmite MnHPO4 Gibbsite Corundum Fe(OH)3(ppd) Hydrocerussite	10g Q/K	CaUO4 Plattnerite Ice U03:2H2O Schoepite U02(OH)2(beta) Rhodochrosite U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Schoepite-dehy(1) Crocoite Hydroxylapatite Mn(OH)3 Calcite Aragonite Schoepite-dehy(. Strengite Bunsenite Becquerelite U02CO3 Rutherfordine Schoepite-dehy(. Monohydrocalcite Ni3(PO4)2 Ni(OH)2 Whitlockite Corkite	0.1316s/sat 0.0538s/sat 0.0538s/sat -0.1387 -0.1544 -0.1544 -0.2668 -0.2742 -0.3378 -0.4181 -0.4242 -0.6355 -0.8552 -1.0326 -1.2136 -1.3580 -1.5274 -1.6691 -1.8623 -1.9318 -1.9539 -1.9742 -2.0454 -2.0473 -2.1317 -2.1389 -2.1932 -2.2505
Cerussite (UO2)3(PO4)2:4H2	0.5232s/sat 0.4696s/sat	Berlinite UO2HPO4:4H2O	-2.2503 -2.5634 -2.5990
(UO2)3(PO4)2:4H2 Dawsonite (only minerals w	0.2341s/sat	UO2HPO4	-2.5990 -2.9439

Gases fugacity log fug.

O2(g) H2O(g) CO2(g) HF(g) HC1(g) NO2(g) N2(g) N0(g) C12(g) H2(g) CO(g) U02F2(g) SO2(g) Pb(g) U03(g) U0F4(g) NH3(g) U02C12(g) Na(g) F2(g) UF5(g) UF5(g) UF6(g) UF4(g) UC15(g) UC14(g) UC15(g) UC16(g) UC16(g) UC16(g) UF3(g) H2S(g) CH4(g) Ca(g) UC13(g) UC12(g) UC12(g) UC12(g)	0.1935 0.02598 0.001133 3.203e-014 7.340e-021 6.787e-021 1.170e-021 1.034e-026 3.437e-033 6.371e-042 2.254e-048 1.769e-055 2.465e-058 1.864e-066 5.382e-067 7.356e-070 4.193e-070 1.144e-071 7.079e-076 5.138e-083 1.886e-083 1.886e-083 1.362e-088 2.571e-092 7.621e-120 6.631e-130 7.759e-139 3.981e-141 1.687e-142 1.687e-142 1.574e-145 1.488e-145 1.326e-152 2.917e-158 4.091e-188 1.481e-189 1.202e-189 6.945e-204 4.286e-204	-0.713 -1.585 -2.946 -13.494 -20.134 -20.168 -20.932 -25.985 -32.464 -41.196 -47.647 -54.752 -57.608 -65.730 -66.269 -69.133 -69.377 -70.942 -75.150 -82.289 -82.725 -87.866 -91.590 -119.118 -129.178 -138.110 -140.400 -141.773 -141.794 -144.803 -144.827 -151.877 -157.535 -187.388 -188.830 -188.920 -203.158 -203.368		
_				
UO(g)	4.286e-204	-203.368		
UF(g)	3.359e-230	-229.474		
S2(g) C2H4(g)	1.361e-233 1.077e-237	-232.866 -236.968		
UCl(g)	3.622e-247			
U2Cl8(g)	1.084e-248	-247.965		
U2Cl10(g)	1.201e-250			
U(g)	5.652e-289	-288.248		
	Ir	n fluid	Sorbed	Kd
Original basis	total moles moles			L/kg
Al+++ Ca++	3.97e-005 3.97e-0 4.63e-005 4.63e-0			
Cl-	1.29e-006 1.29e-0			
Cr04	3.19e-006 3.19e-0			
F-	3.61e-005 3.61e-0			
Fe++	2.04e-005 2.04e-0			
H+ H2O		343 -0.346 5.5 1.00e+006		
-				

HCO3-	0.00165	0.00165	101.
HPO4	5.23e-005	5.23e-005	5.02
Mn++	4.64e-006	4.64e-006	0.255
NH3(aq)	1.72e-005	1.72e-005	0.293
Na+	0.000815	0.000815	18.7
Ni++	6.99e-006	6.99e-006	0.410
02(aq)	0.000284	0.000284	9.10
Pb++	4.22e-007	4.22e-007	0.0874
SO4	1.72e-006	1.72e-006	0.165
UO2++	7.79e-005	7.79e-005	21.0

Elemental comp	osition	In fl	uid	Sorl	oed
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	3.970e-005	3.970e-005	1.071		
Calcium	4.630e-005	4.630e-005	1.855		
Carbon	0.001654	0.001654	19.87		
Chlorine	1.290e-006	1.290e-006	0.04573		
Chromium	3.190e-006	3.190e-006	0.1658		
Fluorine	3.610e-005	3.610e-005	0.6857		
Hydrogen	111.0	111.0	1.119e+005		
Iron	2.040e-005	2.040e-005	1.139		
Lead	4.220e-007	4.220e-007	0.08742		
Manganese	4.640e-006	4.640e-006	0.2549		
Nickel	6.990e-006	6.990e-006	0.4102		
Nitrogen	1.720e-005	1.720e-005	0.2409		
Oxygen	55.51	55.51	8.881e+005		
Phosphorus	5.230e-005	5.230e-005	1.620		
Sodium	0.0008150	0.0008150	18.73		
Sulfur	1.720e-006	1.720e-006	0.05514		
Uranium	7.790e-005	7.790e-005	18.54		

Sample 19250 CaCO₃ leach, Stage 5.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 7.550
 log f02 = -0.705

 Eh = 0.7720 volts
 pe = 13.0502

 Ionic strength
 0.001294

 Activity of water
 1.000000

 Solvent mass
 = 1.000001 kg

 Solution mass
 = 1.000136 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000001 molal

 Dissolved solids
 = 135 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 73.31 mg/kg as CaCO3

 Step # Xi = 0.0000

Reactants	moles remaining	moles reacted	grams reacted	cm3 reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.001415	86.31	0.9605	-2.8668
Na+	0.0004142	9.521	0.9605	-3.4003
02(aq)	0.0002495	7.982	1.0000	-3.6030
Ca++	0.0001434	5.745	0.8538	-3.9122
CO2(aq)	8.470e-005	3.727	1.0000	-4.0721
NO3-	1.599e-005	0.9913	0.9600	-4.8139
UO2(CO3)2	1.159e-005	4.519	0.8507	-5.0063
AlO2-	9.555e-006	0.5635	0.9605	-5.0373
(UO2)2CO3(OH)3-	7.516e-006	4.893	0.9605	-5.1415
F-	7.444e-006	0.1414	0.9603	-5.1458
HPO4	6.298e-006	0.6044	0.8507	-5.2710
Mn++	4.220e-006	0.2318	0.8538	-5.4433
CO3	2.656e-006	0.1593	0.8515	-5.6456
H2PO4-	2.523e-006	0.2447	0.9605	-5.6156
Ca2UO2(CO3)3	2.340e-006	1.240	1.0000	-5.6308
CaHCO3+	1.928e-006	0.1949	0.9605	-5.7323
SO4	1.909e-006	0.1833	0.8507	-5.7895
UO2(CO3)3	1.881e-006	0.8465	0.5236	-6.0066
Fe(OH)3(aq)	1.866e-006	0.1994	1.0000	-5.7292
UO2(OH)2(aq)	1.444e-006	0.4389	1.0000	-5.8405
Cl-	1.140e-006	0.04041	0.9600	-5.9609
NaHCO3(aq)	7.708e-007	0.06475	1.0000	-6.1130
HA102(aq)	7.296e-007	0.04376	1.0000	-6.1369
CaCO3(aq)	5.878e-007	0.05883	1.0000	-6.2307
UO2PO4-	5.629e-007	0.2054	0.9605	-6.2671
OH-	3.737e-007	0.006355	0.9603	-6.4451
Cr04	3.720e-007	0.04314	0.8507	-6.4997
CaHPO4(aq)	3.604e-007	0.04903	1.0000	-6.4432
MnCO3(aq)	2.698e-007	0.03101	1.0000	-6.5690
UO2CO3(aq)	2.477e-007	0.08173	1.0000	-6.6061
Ni++	1.950e-007	0.01144	0.8538	-6.7787

Fe(OH)2+ MnHPO4(aq) UO2(OH)3- MnHCO3+ UO2HPO4(aq) CaPO4- H+ HCrO4- MnO4- CaSO4(aq) PbCO3(aq) NaHPO4- Fe(OH)4- Al(OH)2+	1.170e-007 7.340e-008 6.604e-008 3.881e-008 3.490e-008 2.928e-008 2.899e-008 2.656e-008 2.567e-008 2.339e-008 1.846e-008	0.01052 0.01108 0.02120 0.004500 0.01277 0.004497 2.951e-005 0.003391 0.003159 0.003494 0.006248 0.002196 0.002144	0.9605 1.0000 0.9605 0.9605 1.0000 0.9605 0.9626 0.9605 0.9603 1.0000 1.0000 0.9605	-6.9492 -7.1343 -7.1977 -7.4286 -7.4571 -7.4950 -7.5553 -7.5933 -7.5906 -7.6310 -7.7513 -7.7792 -7.8485
Al(OH)2+	1.476e-008	0.0002144	0.9605	-7.8485
(only species >	• 1e-8 molal liste	ed)		

	log Q/K		log Q/K
Birnessite	54.7471s/sat	 UO3:2H2O	-0.3592
Todorokite	47.5123s/sat	Schoepite	-0.3592
Hematite	12.4331s/sat	UO2(OH)2(beta)	-0.4716
Trevorite	11.0753s/sat	UO3:.9H2O(alpha)	-0.5426
Bixbyite	10.3152s/sat	Schoepite-dehy(.	-0.5426
Pyrolusite	9.2918s/sat	Rhodochrosite	-0.5674
Hausmannite	8.8466s/sat	Schoepite-dehy(.	-0.6229
MnO2(gamma)	7.7740s/sat	Schoepite-dehy(1	-0.6290
Fluorapatite	7.1241s/sat	Cerussite	-0.6731
Pyromorphite	5.9446s/sat	Calcite	-1.0777
Goethite	5.7363s/sat	Pb3(PO4)2	-1.1638
Manganite	4.8394s/sat	Aragonite	-1.2221
Plumbogummite	4.8269s/sat	Plattnerite	-1.4810
Parsonsite	4.5924s/sat	Mn(OH)3	-1.6664
Ca-Autunite	3.1560s/sat	Schoepite-dehy(.	-1.7322
Diaspore	3.1357s/sat	UO2CO3	-1.8160
Boehmite	2.7318s/sat	Rutherfordine	-1.8363
Gibbsite	2.5400s/sat	Monohydrocalcite	-1.9114
Corundum	2.2799s/sat	Pb40(PO4)2	-2.0309
MnHPO4	2.2327s/sat	Hydroxylapatite	-2.0995
Ferrite-Ca	2.2077s/sat	Pyromorphite-OH	-2.1747
PbHPO4	1.8911s/sat	Schoepite-dehy(.	-2.2502
Magnetite	0.7509s/sat	Crocoite	-2.3474
Fe(OH)3(ppd)	0.6152s/sat	Strengite	-2.7573
Ice	-0.1387	Berlinite	-2.8663
CaUO4	-0.2801	UO2HPO4:4H2O	-2.8738
(UO2)3(PO4)2:4H2	-0.2848	Whitlockite	-2.9538
Dawsonite	-0.3175		
(only minerals w	ith log Q/K > ·	-3 listed)	

Gases	fugacity	log fug.
02(g) H20(q)	0.1974 0.02598	-0.705 -1.585
CO2(g)	0.002493	-2.603
HF(g) HCl(q)	1.555e-014 1.526e-020	-13.808 -19.816
NO2(g)	1.478e-020	-19.830

```
N2(g)
                  5.331e-021
 NO(g)
                  2.229e-026
                               -25.652
 C12(g)
                  1.501e-032
                               -31.824
 H2(g)
                  6.308e-042 -41.200
                  4.912e-048
                              -47.309
 CO(q)
                  2.600e-056
                              -55.585
 UO2F2(g)
                  1.525e-057
                               -56.817
 SO2(g)
                               -66.474
                  3.358e-067
 UO3(g)
                 5.335e-068
                               -67.273
 Pb(g)
 NH3(g)
                 8.818e-070
                               -69.055
                 3.086e-071
 U02Cl2(g)
                               -70.511
                 2.547e-071
                              -70.594
 UOF4(g)
                  1.536e-076
                              -75.814
 Na(g)
 F2(g)
                  1.222e-083
                              -82.913
                  3.154e-085
                              -84.501
 UF5(g)
                  1.111e-090
                               -89.954
-93.055
 UF6(g)
                  8.816e-094
 UF4(q)
                  4.708e-120 -119.327
 UO2(g)
                  7.661e-129 -128.116
 UCl4(g)
                  1.873e-137 -136.727
 UC15(g)
                  8.509e-141
                             -140.070
 UCl6(g)
                  1.129e-143
                              -142.947
 UF3(g)
 U2F10(g)
                  1.113e-144
                              -143.953
                9.450e-145 -144.025
 H2S(q)
                 3.149e-145 -144.502
 CH4(g)
 Ca(g)
                 8.156e-153 -152.089
 UC13(g)
                 1.612e-157 -156.793
                  2.357e-188 -187.628
 Al(g)
                  2.593e-189 -188.586
 C(g)
                  2.134e-190 -189.671
1.837e-203 -202.736
 UF2(g)
 UCl2(g)
                  2.622e-204 -203.581
 UO(g)
                 9.924e-231 -230.003
 UF(g)
                 5.005e-232 -231.301
 S2(q)
                  4.916e-237
                             -236.308
 C2H4(g)
                 1.446e-246
                              -245.840
 U2Cl8(g)
                            -246.339
 UCl(q)
                  4.585e-247
 U2Cl10(g)
                  7.002e-248 -247.155
                  3.423e-289 -288.466
 U(g)
                                              Sorbed
                            In fluid
                                                               Kd
Original basis total moles moles mg/kg moles mg/kg L/kg
______
              1.03e-005 1.03e-005 0.278
 Al+++
 Ca++
                                   6.05
              0.000151 0.000151
 Cl-
             1.14e-006 1.14e-006 0.0404
            4.01e-007 4.01e-007 0.0465
 CrO4--
                                  0.142
             7.45e-006 7.45e-006
          2.00e-006 2.00e-000
-4.69e-005 -4.69e-005 -0.0473
55.5 55.5 1.00e+006
0.00155 94.5
            2.00e-006 2.00e-006
                                   0.112
 Fe++
 H+
 H20
 HCO3-
 Mn++ 4.64e-006 4.64e-006
NH3(aq) 1.60e-005 1.60e-005
                                   0.951
                                   0.255
                                   0.272
                                   9.54
              0.000415 0.000415
 Ni++ 1.95e-007 1.95e-007 0.0114
```

-20.273

02(aq)	0.000282	0.000282	9.02
Pb++	2.87e-008	2.87e-008	0.00595
SO4	1.94e-006	1.94e-006	0.186
UO2++	3.32e-005	3.32e-005	8.96

Elemental comp	position	In fl	uid	Sor!	oed
	total moles	moles	mg/kg	moles	mg/kg
Aluminum	1.030e-005	1.030e-005	0.2779		
Calcium	0.0001510	0.0001510	6.051		
Carbon	0.001549	0.001549	18.61		
Chlorine	1.140e-006	1.140e-006	0.04041		
Chromium	4.010e-007	4.010e-007	0.02085		
Fluorine	7.450e-006	7.450e-006	0.1415		
Hydrogen	111.0	111.0	1.119e+005		
Iron	2.000e-006	2.000e-006	0.1117		
Lead	2.870e-008	2.870e-008	0.005946		
Manganese	4.640e-006	4.640e-006	0.2549		
Nickel	1.950e-007	1.950e-007	0.01144		
Nitrogen	1.600e-005	1.600e-005	0.2241		
Oxygen	55.51	55.51	8.881e+005		
Phosphorus	9.910e-006	9.910e-006	0.3069		
Sodium	0.0004150	0.0004150	9.539		
Sulfur	1.940e-006	1.940e-006	0.06220		
Uranium	3.320e-005	3.320e-005	7.901		

Sample 19250 CaCO₃ leach, Stage 6.

Step # Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars
pH = 8.300 log fO2 = -0.778
Eh = 0.7265 volts pe = 12.2818
Ionic strength = 0.002488 Activity of water = 0.999998 Solvent mass = 0.999998

Solution mass = 1.000237 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000059 molal

Dissolved solids = 246 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 116.03 mg/kg as CaCO3

	moles	moles	grams	cm3	
Reactants	remaining	reacted	reacted	reacted	
02(g)	fixed fuga	acity buffer			

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
HCO3-	0.002073	126.5	0.9466	-2.7072
Na+	0.001137	26.12	0.9466	-2.9682
02(aq)	0.0002106	6.737	1.0000	-3.6766
NO3-	0.0001280	7.932	0.9458	-3.9171
Fe(OH)3(aq)	0.0001062	11.34	1.0000	-3.9740
F-	0.0001039	1.974	0.9462	-4.0072
A102-	9.274e-005	5.468	0.9466	-4.0566
Ca++	6.638e-005	2.660	0.8076	-4.2708
Cl-	5.919e-005	2.098	0.9458	-4.2520
HPO4	4.270e-005	4.097	0.8023	-4.4652
UO2(CO3)3	3.650e-005	16.42	0.4141	-4.8205
UO2(CO3)2	2.322e-005	9.054	0.8023	-4.7298
CO3	2.285e-005	1.371	0.8037	-4.7360
CO2(aq)	2.175e-005	0.9570	1.0000	-4.6625
Cr04	1.342e-005	1.556	0.8023	-4.9678
Mn++	1.028e-005	0.5644	0.8076	-5.0810
Ni++	9.292e-006	0.5452	0.8076	-5.1247
(UO2)2CO3(OH)3-	9.043e-006	5.886	0.9466	-5.0675
MnO4-	8.933e-006	1.062	0.9462	-5.0730
Ca2UO2(CO3)3	6.888e-006	3.651	1.0000	-5.1619
Fe(OH)4-	5.622e-006	0.6962	0.9466	-5.2740
MnCO3(aq)	5.047e-006	0.5800	1.0000	-5.2970
NaHCO3(aq)	3.010e-006	0.2528	1.0000	-5.5214
H2PO4-	2.911e-006	0.2822	0.9466	-5.5598
SO4	2.801e-006	0.2690	0.8023	-5.6483
OH-	2.133e-006	0.03626	0.9462	-5.6951
CaCO3(aq)	2.091e-006	0.2092	1.0000	-5.6797
PbCO3(aq)	1.700e-006	0.4543	1.0000	-5.7694
UO2(OH)2(aq)	1.308e-006	0.3977	1.0000	-5.8833
$\mathtt{HAlO2}(\mathtt{aq})$	1.241e-006	0.07444	1.0000	-5.9062
CaHCO3+	1.237e-006	0.1251	0.9466	-5.9313

Fe(OH)2+	1.202e-006	0.1080	0.9466	-5.9440
MnHPO4(aq)	1.081e-006	0.1631	1.0000	-5.9662
CaHPO4(aq)	1.009e-006	0.1373	1.0000	-5.9960
UO2PO4-	5.884e-007	0.2147	0.9466	-6.2541
CaPO4-	5.321e-007	0.07185	0.9466	-6.2978
MnPO4-	4.424e-007	0.06630	0.9466	-6.3780
UO2(OH)3-	3.415e-007	0.1096	0.9466	-6.4905
NaHPO4-	3.238e-007	0.03852	0.9466	-6.5135
HCrO4-	1.780e-007	0.02082	0.9466	-6.7734
MnHCO3+	1.310e-007	0.01519	0.9466	-6.9066
PbOH+	1.036e-007	0.02322	0.9466	-7.0085
NaCO3-	6.823e-008	0.005662	0.9466	-7.1899
UO2CO3(aq)	5.764e-008	0.01902	1.0000	-7.2393
MnOH+	4.496e-008	0.003234	0.9466	-7.3710
CaNO3+	3.435e-008	0.003506	0.9466	-7.4879
Pb++	3.030e-008	0.006277	0.8037	-7.6134
CaF+	2.676e-008	0.001581	0.9466	-7.5963
Pb(CO3)2	2.572e-008	0.008412	0.8023	-7.6855
MnF+	2.321e-008	0.001715	0.9466	-7.6582
NaAlO2(aq)	1.706e-008	0.001398	1.0000	-7.7681
NaSO4-	1.688e-008	0.002009	0.9466	-7.7966
CaSO4(aq)	1.556e-008	0.002118	1.0000	-7.8080
MnO4	1.329e-008	0.001580	0.8023	-7.9722
NaF(aq)	1.064e-008	0.0004466	1.0000	-7.9731
NaCl(aq)	1.006e-008	0.0005880	1.0000	-7.9972
(only species >	· 1e-8 molal liste	ed)		

	log Q/K		log Q/K
Birnessite	69.4249s/sat	 CaUO4	0.8185s/sat
Todorokite	60.3646s/sat	Rhodochrosite	0.7046s/sat
Trevorite	17.7398s/sat	Dawsonite	0.5049s/sat
Pyromorphite	17.0806s/sat	Mn(OH)3	0.1776s/sat
Hematite	15.9435s/sat	Crocoite	0.1365s/sat
Hausmannite	14.3968s/sat	Ice	-0.1387
Bixbyite	14.0030s/sat	Schoepite	-0.4020
Fluorapatite	11.1371s/sat	UO3:2H2O	-0.4020
Pyrolusite	11.1173s/sat	Corkite	-0.4538
MnO2(gamma)	9.5995s/sat	UO2(OH)2(beta)	-0.5144
Parsonsite	8.0651s/sat	Calcite	-0.5267
Pyromorphite-OH	8.0024s/sat	UO3:.9H2O(alpha)	-0.5854
Goethite	7.4915s/sat	Schoepite-dehy(.	-0.5854
Ferrite-Ca	6.8596s/sat	Schoepite-dehy(.	-0.6657
Manganite	6.6834s/sat	Aragonite	-0.6711
Plumbogummite	6.5825s/sat	Schoepite-dehy(1	-0.6718
Pb40(PO4)2	6.3885s/sat	Whitlockite	-0.9179
Magnetite	6.0349s/sat	Bunsenite	-0.9966
Pb3(PO4)2	4.8036s/sat	Ni3(PO4)2	-1.0631
PbHPO4	3.6488s/sat	Ni(OH)2	-1.2732
MnHPO4	3.4008s/sat	Monohydrocalcite	-1.3604
Diaspore	3.3664s/sat	Strengite	-1.6963
Hydrocerussite	3.0976s/sat	Schoepite-dehy(.	-1.7750
Boehmite	2.9625s/sat	(UO2)3(PO4)2:4H2	-1.8017
Ca-Autunite	2.8233s/sat	Fluorite	-2.2483
Gibbsite	2.7707s/sat	Schoepite-dehy(.	-2.2930
Corundum	2.7413s/sat	UO2CO3	-2.4492

Fe(OH)3(ppd) 2.3704s/sat Rutherfordine -2.4695 Hydroxylapatite 1.5250s/sat Becquerelite -2.4830 Cerussite 1.1885s/sat PbCO3.PbO -2.7052 Plattnerite 0.9342s/sat

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
Gases	fugacity	log fug. -0.778 -1.585 -3.194 -13.420 -18.857 -19.665 -19.796 -25.450 -29.943 -41.163 -47.862 -54.851 -58.139 -64.784 -66.517 -68.636 -68.761 -69.082 -74.613 -82.172 -82.583 -87.666 -91.506 -119.333 -124.286 -131.957 -134.360 -140.117 -141.769 -144.945 -145.236 -150.910 -153.903 -187.342 -188.863 -189.103 -200.787 -203.551 -229.566
C(g) UC12(g) UO(g)	7.890e-190 1.632e-201 2.814e-204	-189.103 -200.787 -203.551

In fluid Sorbed Kd Original basis total moles moles mg/kg moles mg/kg L/kg ______

Al+++	9.40e-005	9.40e-005	2.54
Ca++	8.51e-005	8.51e-005	3.41
Cl-	5.92e-005	5.92e-005	2.10
Cr04	1.36e-005	1.36e-005	1.58
F-	0.000104	0.000104	1.98
Fe++	0.000113	0.000113	6.31
H+	-0.000987	-0.000987	-0.995
H2O	55.5	55.5	1.00e+006
HCO3-	0.00232	0.00232	141.
HPO4	4.96e-005	4.96e-005	4.76
Mn++	2.60e-005	2.60e-005	1.43
NH3(aq)	0.000128	0.000128	2.18
Na+	0.00114	0.00114	26.2
Ni++	9.30e-006	9.30e-006	0.546
02(aq)	0.000506	0.000506	16.2
Pb++	1.87e-006	1.87e-006	0.387
SO4	2.84e-006	2.84e-006	0.273
UO2++	8.70e-005	8.70e-005	23.5

Elemental comp	nposition In		uid	Sorl	Sorbed	
	total moles	moles	mg/kg	moles	mg/kg	
Aluminum	9.400e-005	9.400e-005	2.536			
Calcium	8.510e-005	8.510e-005	3.410			
Carbon	0.002317	0.002317	27.82			
Chlorine	5.920e-005	5.920e-005	2.098			
Chromium	1.360e-005	1.360e-005	0.7070			
Fluorine	0.0001040	0.0001040	1.975			
Hydrogen	111.0	111.0	1.119e+005			
Iron	0.0001130	0.0001130	6.309			
Lead	1.870e-006	1.870e-006	0.3874			
Manganese	2.600e-005	2.600e-005	1.428			
Nickel	9.300e-006	9.300e-006	0.5457			
Nitrogen	0.0001280	0.0001280	1.792			
Oxygen	55.52	55.52	8.880e+005			
Phosphorus	4.960e-005	4.960e-005	1.536			
Sodium	0.001140	0.001140	26.20			
Sulfur	2.840e-006	2.840e-006	0.09105			
Uranium	8.700e-005	8.700e-005	20.70			

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (1).

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.038	2.197e+004	0.6606	-0.1638
NO3-	1.000	5.708e+004	0.6066	-0.2171
OH-	0.009370	146.7	0.6351	-2.2254
CO3	0.002053	113.4	0.1631	-3.4751
NaCO3-	0.001137	86.84	0.6606	-3.1245
NaOH(aq)	0.0006473	23.83	1.0000	-3.1889
02(aq)	0.0002500	7.364	1.0000	-3.6020
Cl-	2.637e-005	0.8607	0.6066	-4.7959
HCO3-	1.837e-005	1.032	0.6606	-4.9160
NaHCO3(aq)	1.187e-005	0.9177	1.0000	-4.9257
UO2(OH)3-	3.990e-006	1.179	0.6606	-5.5791
NaCl(aq)	1.834e-006	0.09864	1.0000	-5.7367
UO2(OH)4	1.699e-007	0.05286	0.1423	-7.6167
UO2(CO3)3	9.507e-008	0.03939	0.0003	-10.5354
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 4.3662s/sat Schoepite -2.9603
Na2U2O7(am) 1.8579s/sat UO3:2H2O -2.9603
Ice -0.1387
(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g) CO2(g)	0.02598 1.342e-009	-1.585 -8.872
NO2(g)	3.519e-020	-19.454
N2(g)	3.010e-020	-19.521 -22.871
HCl(g) NO(g)	1.345e-023 5.303e-026	-22.871 -25.275
Cl2(g)	1.168e-038	-37.933
H2(g)	6.301e-042	-41.201
CO(g)	2.642e-054	-53.578

Na(g) NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g)	4.390e-(2.092e-(8.415e-(6.009e-(1.179e-1)69 -68)70 -69)80 -79 L22 -121	3.358 3.679 3.075 3.221 3.929		
CH4(g)	1 6886-1	51 <u> </u> 150	.773		
UC15(g)	2.497e-1	L55 -154	.603		
UCl6(g)	1.000e-1		.000		
UC13(g)	2.763e-1		3.559		
C(g) UO(g)	1.393e-1 6.555e-2	195 -194	856 5.183		
UC12(g)	3.570e-2	207 -200 212 -211	447		
C2H4(g)	1.416e-2	249 –248	3.849		
UCl(g)	1.010e-2		.996		
U2C18(g)	3.303e-2	276 –275			
U2Cl10(g)	1.244e-2	276 –275 283 –282	2.905		
U(g)	8.551e-2	292 –291	068		
Original basis	total moles	In flui	mg/kg mc	Sorbed bles mg/kg	Kd L/kg
Cl-	2.82e-005 2.				
H+	-1.01	-1.01	-940.		
H2O	54.5 0.00322	54.5 9.	04e+005		
HCO3-	0.00322	0.00322	181.		
NH3(aq)	1.00 1.04	1.00 1.	57e+004		
Na+					
02(aq)	2.00	2.00 5.	89e+004		
02(aq)		2.00 5.	89e+004		
02(aq) U02++	2.00 4.26e-006 4	2.00 5. .26e-006	89e+004 1.06	Sorb	ed
02(aq)	2.00 4.26e-006 4 esition total moles	2.00 5. .26e-006 In moles	89e+004 1.06 fluid	Sorb moles	

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (2).

Xi = 0.0000Solvent mass = 1.000000 kg

Solution mass = 1.086916 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 79966 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 229.54 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.069	2.260e+004	0.6605	-0.1513
NO3-	1.000	5.705e+004	0.6062	-0.2174
OH-	0.009350	146.3	0.6349	-2.2265
CO3	0.001333	73.61	0.1625	-3.6642
NaCO3-	0.0007569	57.80	0.6605	-3.3011
NaOH(aq)	0.0006644	24.45	1.0000	-3.1775
02(aq)	0.0002500	7.360	1.0000	-3.6020
C1-	2.632e-005	0.8586	0.6062	-4.7970
HCO3-	1.192e-005	0.6690	0.6605	-5.1040
NaHCO3(aq)	7.922e-006	0.6123	1.0000	-5.1012
NaCl(aq)	1.882e-006	0.1012	1.0000	-5.7254
UO2(OH)3-	1.788e-006	0.5281	0.6605	-5.9278
UO2(OH)4	7.623e-008	0.02371	0.1417	-7.9665
UO2(CO3)3	1.188e-008	0.004919	0.0003	-11.4480
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K _____ Na2U2O7(c) 3.6937s/sat Ice Na2U2O7(am) 1.1854s/sat -0.1387

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	8.731e-010	-9.059
NO2(g)	3.526e-020	-19.453
N2(g)	3.022e-020	-19.520
HCl(g)	1.346e-023	-22.871
NO(g)	5.313e-026	-25.275
Cl2(g)	1.168e-038	-37.933
H2(g)	6.301e-042	-41.201
CO(g)	1.718e-054	-53.765
Na(q)	4.506e-069	-68.346

NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	3.779e-07 2.699e-08 5.294e-12 5.201e-14 1.098e-15 1.122e-15 4.494e-16 1.241e-16 9.062e-19 2.944e-20 1.603e-21 5.991e-25 4.537e-25 6.667e-27 2.511e-28	-122.2 -143.2 -150.9 -154.9 -168.9 -168.9 -195.0 -206.5 -249.2 -37 -276.1	223 669 276 884 559 550 447 96 43 331 295 223 443 76		
Original basis	total moles m		/kg mo	Sorbed les mg/kg	
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++		32e-005 -1.01 54.5 9.04 0.00211 1.00 1.57 1.07 2.26 2.00 5.89	0.920 -939. e+005 118. e+004 e+004		
Elemental compo	osition total moles		mg/kg		ed mg/kg
Nitrogen Oxygen Sodium	0.002110 2.821e-005 111.0 1.000 58.53	0.002110 2.821e-005 111.0 1.000 58.53 1.070	23.32		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 1 week.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.019	2.158e+004	0.6607	-0.1718
NO3-	1.000	5.711e+004	0.6070	-0.2168
OH-	0.009371	146.8	0.6353	-2.2252
CO3	0.0007885	43.58	0.1637	-3.8891
NaOH(aq)	0.0006357	23.42	1.0000	-3.1967
NaCO3-	0.0004299	32.87	0.6607	-3.5466
02(aq)	0.0002500	7.368	1.0000	-3.6020
Cl-	2.640e-005	0.8622	0.6070	-4.7952
HCO3-	7.075e-006	0.3976	0.6607	-5.3302
NaHCO3(aq)	4.488e-006	0.3472	1.0000	-5.3480
NaCl(aq)	1.803e-006	0.09705	1.0000	-5.7440
UO2(OH)3-	1.492e-006	0.4413	0.6607	-6.0061
UO2(OH)4	6.330e-008	0.01971	0.1429	-8.0435
/]	1 0 - 1 - 1	۱ مما <i>۱</i>		

-0.1387

(only species > 1e-8 molal listed)

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 3.4960s/sat Ice Na2U2O7(am) 0.9877s/sat

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	5.170e-010	-9.287
NO2(g)	3.520e-020	-19.454
N2(g)	3.011e-020	-19.521
HCl(g)	1.347e-023	-22.871
NO(g)	5.304e-026	-25.275
Cl2(g)	1.171e-038	-37.932
H2(g)	6.301e-042	-41.201
CO(g)	1.017e-054	-53.993
Na(g)	4.311e-069	-68.365
NH3(g)	2.092e-069	-68.679

U03(g) U02Cl2(g) U02(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) UC(g) UC(g) UC12(g) C2H4(g) UC1(g) UC2Cl8(g) U2Cl10(g) U(g)	2.253e-04 4.407e-13 4.352e-14 6.500e-15 9.398e-15 3.770e-16 1.037e-16 5.365e-15 2.451e-26 1.338e-25 2.100e-25 3.782e-26 4.668e-27 1.763e-26	44 -143.3 52 -151.1 56 -155.0 62 -161.4 69 -168.9 96 -195.2 07 -206.6 12 -211.8 50 -249.6 53 -252.4 77 -276.3 84 -283.7 92 -291.4	47 56 61 87 27 24 84 70 11 73 78 22 31 54		
Original basis	total moles n		/kg moles		
_	54.5 0.00123	-1.01 54.5 9.05 0.00123 1.00 1.57 1.02 2.16 2.00 5.90	-939. e+005 69.1 e+004 e+004 e+004		
Elemental comp	osition total moles	In fl moles	uid mg/kg	Sorbec moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.001230 2.821e-005 111.0 1.000 58.52 1.020 1.559e-006	0.001230 2.821e-005 111.0 1.000 58.52 1.020	13.61 0.9211 1.031e+005 1.290e+004 8.624e+005 2.160e+004		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 1 month.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.099	2.322e+004	0.6604	-0.1393
NO3-	1.000	5.701e+004	0.6058	-0.2177
OH-	0.009320	145.7	0.6346	-2.2281
CO3	0.001115	61.52	0.1619	-3.7435
NaOH(aq)	0.0006806	25.03	1.0000	-3.1671
NaCO3-	0.0006482	49.47	0.6604	-3.3685
02(aq)	0.0002500	7.356	1.0000	-3.6020
Cl-	2.628e-005	0.8566	0.6058	-4.7981
HCO3-	9.964e-006	0.5590	0.6604	-5.1817
NaHCO3(aq)	6.808e-006	0.5259	1.0000	-5.1670
UO2(OH)3-	5.197e-006	1.534	0.6604	-5.4645
NaCl(aq)	1.930e-006	0.1037	1.0000	-5.7145
UO2(OH)4	2.218e-007	0.06894	0.1410	-7.5048
UO2(CO3)3	2.064e-008	0.008541	0.0003	-11.2181
(only species >	le-8 molal list	ted)		

	log Q/K		log Q/K
Na2U2O7(c) Na2U2O7(am)	4.6443s/sat 2.1360s/sat -0.1387	Schoepite U03:2H20 U02(OH)2(beta)	-2.8430 -2.8430 -2.9554
Ice (only minerals	-0.1387 with log Q/K >	(- , (,	-2.9554

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) CO2(g) CO2(g)	0.1978 0.02598 7.326e-010 3.536e-020 3.039e-020 1.347e-023 5.329e-026 1.170e-038 6.301e-042	-0.704 -1.585 -9.135 -19.451 -19.517 -22.871 -25.273 -37.932 -41.201 -53.841
\ J /		

Na(g) NH3(g) UO3(g) UO2Cl2(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	4.615e-0 2.102e-0 1.102e-0 7.890e-0 1.544e-1 1.524e-1 9.212e-1 3.290e-1 1.319e-1 3.632e-1 7.603e-1 8.588e-2 4.687e-2 4.217e-2 1.325e-2 5.721e-2 2.160e-2 1.120e-2	669 -68.9 1669 -68.9 180 -79.3 122 -121.3 143 -142.3 155 -154.3 161 -160.3 169 -168.3 1607 -206.3 1612 -211.3 152 -249.3 152 -251.3 163 -282.3 164 -290.3	577 958 103 311 317 936 483 380 440 119 966 329 375 378 243 666		
Original basis	total moles	In fluid moles mag		Sorbed les mg/kg	Kd L/kg
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	54.5 0.00178	-1.01 54.5 9.03 0.00178 1.00 1.5 1.10 2.3 2.00 5.89	99.9 7e+004 3e+004 9e+004		
Elemental compo	osition total moles	In fi	luid mg/kg	Sorbe moles	ed mg/kg
Hydrogen Nitrogen Oxygen Sodium	0.001780 2.821e-005 111.0 1.000 58.52 1.100 5.444e-006	2.821e-005	0.9195 1.029e+005 1.288e+004 8.609e+005		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (1), duplicate.

Xi = 0.0000Activity of water = 0.999999

Solvent mass = 1.000000 kg

Solution mass = 1.086054 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 79235 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 332.63 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.028	2.177e+004	0.6606	-0.1679
иоз-	1.000	5.709e+004	0.6068	-0.2170
OH-	0.009380	146.9	0.6352	-2.2249
CO3	0.001957	108.1	0.1634	-3.4953
NaCO3-	0.001074	82.11	0.6606	-3.1488
NaOH(aq)	0.0006419	23.64	1.0000	-3.1925
02(aq)	0.0002500	7.366	1.0000	-3.6020
Cl-	2.639e-005	0.8614	0.6068	-4.7956
HCO3-	1.751e-005	0.9838	0.6606	-4.9367
NaHCO3(aq)	1.121e-005	0.8668	1.0000	-4.9506
UO2(OH)3-	2.092e-006	0.6184	0.6606	-5.8595
NaCl(aq)	1.818e-006	0.09781	1.0000	-5.7405
UO2(OH)4	8.901e-008	0.02771	0.1426	-7.8966
UO2(CO3)3	4.283e-008	0.01775	0.0003	-10.8781
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K _____ Na2U2O7(c) 3.7971s/sat Ice Na2U2O7(am) 1.2888s/sat -0.1387

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) NO(g)	0.1978 0.02598 1.278e-009 3.516e-020 3.005e-020 1.345e-023 5.298e-026	-0.704 -1.585 -8.893 -19.454 -19.522 -22.871 -25.276
Cl2(g) H2(g) CO(g) Na(g)	1.167e-038 6.301e-042 2.516e-054 4.353e-069	-37.933 -41.201 -53.599 -68.361

NH3(g) UO3(g) UO2Cl2(g) UO2(g) UCl4(g) CH4(g) UCl5(g) UCl6(g) UCl3(g) C(g) UO(g) UCl2(g) C2H4(g) UCl(g) UCl(g) UC2Cl8(g) U(g)	4.407e-0 3.144e-0 6.172e-1 6.055e-1 1.607e-1 1.305e-1 5.227e-1 1.445e-1 1.327e-1 3.433e-2 1.868e-2 1.284e-2 5.288e-2 9.034e-2 3.400e-2	.44	356 502 210 218 794 384 282 340 377 464 729 391 277 044		
Original basis	total moles	In fluid		Sorbed les ma/ka	
Cl-	2.82e-005 2.	82e-005	0.921		
H+	-1.01 54.5 0.00306	-1.01	-940.		
H2O	54.5	54.5 9.0	4e+005		
HCO3- NH3(aq)	1.00	1.00 1.5	1/2.		
Na+		1.00 1.3			
	2.00				
_	2.23e-006 2.				
002					
Elemental compo	osition	In f	luid	Sorbe	ed
	total moles	moles	mg/kg	moles	mg/kg
Carbon	0.003060				
	2.821e-005				
Hydrogen	111.0	111.0	1.030e+005		
Nitrogen	1.000	1.000	1.030e+005 1.290e+004		
Oxygen	58.53	58.53	8.622e+005		
Sodium	1.030	1.030	2.180e+004		
Uranium	2.226e-006	2.226e-006	0.4878		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (2), duplicate.

Xi = 0.0000Solvent mass = 1.000000 kg

Solution mass = 1.086683 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 79769 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 224.06 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.059	2.240e+004	0.6605	-0.1554
NO3-	1.000	5.706e+004	0.6063	-0.2173
OH-	0.009355	146.4	0.6349	-2.2262
CO3	0.001305	72.09	0.1627	-3.6727
NaCO3-	0.0007352	56.15	0.6605	-3.3137
NaOH(aq)	0.0006588	24.25	1.0000	-3.1813
02(aq)	0.0002500	7.362	1.0000	-3.6020
C1-	2.634e-005	0.8593	0.6063	-4.7967
HCO3-	1.168e-005	0.6556	0.6605	-5.1128
NaHCO3(aq)	7.690e-006	0.5944	1.0000	-5.1141
NaCl(aq)	1.866e-006	0.1004	1.0000	-5.7290
UO2(OH)3-	1.700e-006	0.5024	0.6605	-5.9495
UO2(OH)4	7.245e-008	0.02254	0.1419	-7.9879
UO2(CO3)3	1.054e-008	0.004366	0.0003	-11.4964
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K _____ Na2U2O7(c) 3.6421s/sat Ice Na2U2O7(am) 1.1338s/sat -0.1387

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) NO(q)	0.1978 0.02598 8.548e-010 3.524e-020 3.019e-020 1.346e-023 5.311e-026	-0.704 -1.585 -9.068 -19.453 -19.520 -22.871 -25.275
C12(g) H2(g) CO(g) Na(g)	1.168e-038 6.301e-042 1.682e-054 4.467e-069	-37.933 -41.201 -53.774 -68.350

NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	1.524e-2. 5.742e-2. 4.313e-2. 6.029e-2. 2.271e-2.	70	45 91 98 06 69 72 69 28 52 53 17 41 65 20 44		
		In fluid		Sorbed	
Original basis	total moles r			es mg/kg 	L/kg
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	0.00206 1.00	-1.01 54.5 9.04 0.00206 1.00 1.57 1.06 2.24 2.00 5.89	-939. e+005 116. e+004 e+004 e+004		
Elemental comp	osition total moles			Sorbed moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.002060 2.821e-005 111.0 1.000 58.53 1.060 1.785e-006	0.002060 2.821e-005 111.0 1.000 58.53 1.060	22.77		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 1 week, duplicate.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.019	2.158e+004	0.6607	-0.1718
NO3-	1.000	5.711e+004	0.6070	-0.2168
OH-	0.009369	146.8	0.6353	-2.2253
NaOH(aq)	0.0006356	23.42	1.0000	-3.1968
CO3	0.0006179	34.16	0.1637	-3.9950
NaCO3-	0.0003370	25.76	0.6607	-3.6524
02(aq)	0.0002500	7.369	1.0000	-3.6020
Cl-	2.640e-005	0.8622	0.6070	-4.7952
HCO3-	5.547e-006	0.3117	0.6607	-5.4360
NaHCO3(aq)	3.518e-006	0.2722	1.0000	-5.4537
NaCl(aq)	1.803e-006	0.09706	1.0000	-5.7440
UO2(OH)3-	1.451e-006	0.4290	0.6607	-6.0184
UO2(OH)4	6.152e-008	0.01916	0.1429	-8.0559
, -	4 0 7 7 7 1			

(only species > 1e-8 molal listed)

Mineral saturation states

log Q/K log Q/K
-----Na2U2O7(c) 3.4716s/sat Ice -0.1387

Na2U2O7(c) 3.4716s/sat Ice Na2U2O7(am) 0.9633s/sat

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) C12(g) H2(g) CO(g) Na(g)	0.1978 0.02598 4.054e-010 3.520e-020 3.013e-020 1.348e-023 5.305e-026 1.171e-038 6.301e-042 7.977e-055 4.310e-069	-0.704 -1.585 -9.392 -19.453 -19.521 -22.870 -25.275 -37.931 -41.201 -54.098 -68.365
NH3(g)	2.093e-069	-68.679

U03(g) U02Cl2(g) U02(g) UCl4(g) CH4(g) UCl5(g) UCl3(g) UCl3(g) UC(g) UC(g) UCl2(g) C2H4(g) UCl(g) UC2Cl8(g) U2Cl10(g) U(g)	2.192e-08 4.285e-12 4.236e-14 5.097e-15 9.149e-15 3.671e-16 1.009e-16 4.207e-19 2.383e-20 1.302e-21 1.291e-25 3.678e-25 4.422e-27 1.671e-28 3.109e-29	-143.3 -151.2 -155.0 -161.4 -168.9 -195.3 -206.6 -211.8 -249.8 -276.3 -283.7 -291.5	59 68 73 93 39 35 96 76 23 85 89 34 54 77		
Original basis	total moles m		/kg moles		
NH3(aq) Na+ O2(aq)	2.82e-005 2.8 -1.01 54.5 0.000964 0. 1.00 1.02 2.00 1.51e-006 1.5	-1.01 54.5 9.05 .000964 1.00 1.57 1.02 2.16 2.00 5.90	-939. e+005 54.2 e+004 e+004 e+004		
Elemental comp	osition total moles	In fl moles	uid mg/kg	Sorbed moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.0009640 2.821e-005 111.0 1.000 58.52 1.020 1.515e-006	0.0009640 2.821e-005 111.0 1.000 58.52 1.020	10.66 0.9211 1.031e+005 1.290e+004 8.624e+005 2.160e+004		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 1 month, duplicate.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.059	2.240e+004	0.6605	-0.1553
NO3-	1.000	5.706e+004	0.6063	-0.2173
OH-	0.009347	146.3	0.6350	-2.2266
CO3	0.001096	60.54	0.1628	-3.7485
NaOH(aq)	0.0006582	24.23	1.0000	-3.1816
NaCO3-	0.0006175	47.16	0.6605	-3.3895
02(aq)	0.0002500	7.362	1.0000	-3.6020
Cl-	2.634e-005	0.8594	0.6063	-4.7967
HCO3-	9.814e-006	0.5511	0.6605	-5.1883
NaHCO3(aq)	6.464e-006	0.4997	1.0000	-5.1895
UO2(OH)3-	3.508e-006	1.037	0.6605	-5.6350
NaCl(aq)	1.866e-006	0.1004	1.0000	-5.7290
UO2(OH)4	1.493e-007	0.04645	0.1419	-7.6738
UO2(CO3)3	1.291e-008	0.005346	0.0003	-11.4082
(only species >	1e-8 molal list	ted)		

Mineral saturation states

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(q)	0.1978 0.02598 7.192e-010 3.527e-020 3.024e-020 1.347e-023	-0.704 -1.585 -9.143 -19.453 -19.519 -22.871
NO(g) Cl2(g) H2(g) CO(g) Na(g)	5.315e-026 1.170e-038 6.301e-042 1.415e-054 4.464e-069	-25.274 -37.932 -41.201 -53.849

NH3(g) UO3(g) UO2Cl2(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	7.418e-07 5.308e-08 1.039e-12 1.025e-14 9.043e-15 2.213e-15 8.875e-16 2.443e-16 7.464e-19 5.779e-20 3.153e-21 4.064e-25 8.914e-25 2.589e-27 9.772e-28	2 -121.9 3 -142.9 2 -151.0 5 -154.6 2 -161.0 9 -168.6 6 -195.1 7 -206.2 2 -211.5 0 -249.3 3 -252.0	.30 .275 .883 .889 .444 .555 .052 .12 .27 .238 .601 .891 .050		
Original basis	total moles m	In fluid oles mo		Sorbed bles mg/kg	
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	1.06	2e-005 -1.01 54.5 9.04 .00173 1.00 1.57 1.06 2.24 2.00 5.89	0.920 -938. le+005 97.1 'e+004 le+004		
Elemental compo	total moles		mg/kg		ed mg/kg
Nitrogen Oxygen Sodium	0.001730 2.821e-005 111.0 1.000 58.52 1.060 3.674e-006	0.001730 2.821e-005 111.0 1.000 58.52 1.060	19.12	2 2 5 4 5	

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661 yellow, 24 hour (1).

Xi = 0.0000Solvent mass = 1.000000 kg

Solution mass = 1.085818 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 79035 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 320.60 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.018	2.156e+004	0.6607	-0.1721
NO3-	1.000	5.710e+004	0.6069	-0.2169
OH-	0.009382	146.9	0.6353	-2.2247
CO3	0.001892	104.6	0.1636	-3.5093
NaCO3-	0.001030	78.75	0.6607	-3.1670
NaOH(aq)	0.0006360	23.43	1.0000	-3.1966
02(aq)	0.0002500	7.368	1.0000	-3.6020
Cl-	2.640e-005	0.8621	0.6069	-4.7952
HCO3-	1.695e-005	0.9524	0.6607	-4.9509
NaHCO3(aq)	1.074e-005	0.8311	1.0000	-4.9689
UO2(OH)3-	3.167e-006	0.9364	0.6607	-5.6794
NaCl(aq)	1.802e-006	0.09698	1.0000	-5.7443
UO2(OH)4	1.346e-007	0.04189	0.1428	-7.7163
UO2(CO3)3	5.831e-008	0.02417	0.0003	-10.7404
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K _____ Na2U2O7(c) 4.1489s/sat Ice Na2U2O7(am) 1.6406s/sat -0.1387

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	1.237e-009	-8.908
NO2(g)	3.515e-020	-19.454
N2(g)	3.004e-020	-19.522
HCl(g)	1.346e-023	-22.871
NO(g)	5.298e-026	-25.276
Cl2(g)	1.168e-038	-37.933
H2(g)	6.301e-042	-41.201
CO(g)	2.434e-054	-53.614
Na(g)	4.313e-069	-68.365

NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	6.669e-0 4.764e-0 9.341e-1 9.183e-1 1.555e-1 1.981e-1 7.938e-1 2.191e-1 1.284e-1 5.195e-2 2.830e-2 1.202e-2 8.007e-2 2.078e-2 7.831e-2	44 -143.0 51 -150.8 55 -154.7 62 -161.1 69 -168.6 95 -194.8 07 -206.2 12 -211.5	76 22 30 37 08 03 00 59 92 84 48 20 97 82 06		
				Sorbed	
Original basis	total moles r			s mg/kg 	L/kg
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	0.00295 1.00 1.02	-1.01 54.5 9.05 0.00295 1.00 1.57 1.02 2.16 2.00 5.89	-940. e+005 166. e+004 e+004		
Elemental compo	osition total moles			Sorbed moles	l mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen	0.002950 2.821e-005 111.0 1.000 58.53 1.020 3.363e-006	0.002950 2.821e-005 111.0 1.000 58.53	32.63		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661 yellow, 24 hour (2).

Xi = 0.0000Solvent mass = 1.000000 kg

Solution mass = 1.087120 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 80138 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 181.71 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.079	2.281e+004	0.6605	-0.1472
NO3-	1.000	5.704e+004	0.6061	-0.2175
OH-	0.009340	146.1	0.6348	-2.2270
CO3	0.001052	58.07	0.1623	-3.7676
NaOH(aq)	0.0006699	24.65	1.0000	-3.1740
NaCO3-	0.0006022	45.98	0.6605	-3.4004
02(aq)	0.0002500	7.359	1.0000	-3.6020
C1-	2.631e-005	0.8580	0.6061	-4.7974
HCO3-	9.404e-006	0.5278	0.6605	-5.2068
NaHCO3(aq)	6.310e-006	0.4876	1.0000	-5.2000
NaCl(aq)	1.898e-006	0.1021	1.0000	-5.7216
UO2(OH)3-	1.790e-006	0.5286	0.6605	-5.9273
UO2(OH)4	7.635e-008	0.02374	0.1415	-7.9665
_				

-0.1387

(only species > 1e-8 molal listed)

Mineral saturation states

log Q/K

Na2U2O7(c) 3.7029s/sat Ice Na2U2O7(am) 1.1946s/sat

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	6.897e-010	-9.161
NO2(g)	3.529e-020	-19.452
N2(g)	3.027e-020	-19.519
HCl(g)	1.346e-023	-22.871
NO(g)	5.318e-026	-25.274
Cl2(g)	1.169e-038	-37.932
H2(g)	6.301e-042	-41.201
CO(g)	1.357e-054	-53.867
Na(g)	4.543e-069	-68.343
NH3(g)	2.098e-069	-68.678

U03(g) U02Cl2(g) U02(g) UC14(g) CH4(g) UC15(g) UC13(g) UC13(g) UC(g) UC(g) UC12(g) C2H4(g) UC1(g) U2C18(g) U2C110(g) U(g)	2.707e-08 5.306e-12 5.220e-14 8.673e-15 1.126e-15 4.513e-16 7.159e-19 2.951e-20 1.608e-21 3.739e-25 4.549e-25 6.715e-27 2.531e-28 3.849e-29	-143.2 -151.0 -154.9 -161.3 -168.9 -6 -195.1 -206.5 -2 -211.7 -249.4 -252.3 -276.1 -283.5 -291.4	68 75 82 62 48 45 05 45 30 94 27 42 73 97		
Original basis	total moles m	In fluid noles mg		Sorbed s mg/kg	
	54.5 0.00167 0	-1.01 54.5 9.03 0.00167 1.00 1.57 1.08 2.28 2.00 5.89	-938. e+005 93.7 e+004 e+004 e+004		
Elemental comp	osition total moles	In fl moles	uid mg/kg	Sorbed moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.001670 2.821e-005 111.0 1.000 58.52 1.080 1.874e-006	0.001670 2.821e-005 111.0 1.000 58.52 1.080	18.45 0.9199 1.029e+005 1.288e+004 8.613e+005 2.284e+004		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661 yellow, 1 week.

Xi = 0.0000Solvent mass = 1.000000 kg

Solution mass = 1.085465 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 78736 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 100.17 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.009	2.137e+004	0.6608	-0.1760
NO3-	1.000	5.712e+004	0.6072	-0.2167
OH-	0.009374	146.9	0.6354	-2.2250
NaOH(aq)	0.0006299	23.21	1.0000	-3.2007
CO3	0.0005928	32.77	0.1640	-4.0124
NaCO3-	0.0003206	24.51	0.6608	-3.6740
02(aq)	0.0002500	7.370	1.0000	-3.6020
Cl-	2.642e-005	0.8629	0.6072	-4.7948
HCO3-	5.324e-006	0.2993	0.6608	-5.4537
NaHCO3(aq)	3.345e-006	0.2588	1.0000	-5.4757
NaCl(aq)	1.787e-006	0.09623	1.0000	-5.7478
UO2(OH)3-	1.472e-006	0.4355	0.6608	-6.0119
UO2(OH)4	6.237e-008	0.01943	0.1432	-8.0491
(only species >	le-8 molal list	ted)		

Mineral saturation states

log Q/K Na2U2O7(c) 3.4759s/sat Ice Na2U2O7(am) 0.9676s/sat -0.1387

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) NO(g) C12(g) H2(g) CO(g) Na(g)	0.1978 0.02598 3.888e-010 3.519e-020 3.010e-020 1.348e-023 5.303e-026 1.172e-038 6.301e-042 7.652e-055 4.271e-069	-0.704 -1.585 -9.410 -19.454 -19.521 -22.870 -25.275 -37.931 -41.201 -54.116 -68.369
NH3(g)	2.092e-069	-68.679

U03(g) U02Cl2(g) U02(g) UC14(g) CH4(g) UC15(g) UC13(g) UC13(g) UC(g) UC(g) UC12(g) C2H4(g) UC1(g) UC2Cl8(g) U2Cl10(g) U(g)	2.223e-08 4.346e-12 4.299e-14 4.889e-15 9.286e-15 3.727e-16 1.024e-16 4.036e-19 2.417e-20 1.321e-21 1.188e-25 3.731e-25 4.553e-25 1.721e-28 3.153e-29	-151.3 -155.0 -161.4 -168.9 -195.3 -206.6 -211.8 -249.9 -252.4 -276.3 -283.7 -291.5	53 62 67 11 32 29 90 94 17 79 25 28 42 64		
Original basis	total moles n			Sorbed s mg/kg	
NH3(aq) Na+ O2(aq)	2.82e-005 2.8 -1.01 54.5 0.000922 0. 1.00 1.01 2.00 1.54e-006 1.5	-1.01 54.5 9.05 .000922 1.00 1.57 1.01 2.14 2.00 5.90	-939. e+005 51.8 e+004 e+004 e+004		
	osition total moles	In fl moles	uid mg/kg	Sorbec moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.0009220 2.821e-005 111.0 1.000 58.52 1.010 1.537e-006	0.0009220 2.821e-005 111.0 1.000 58.52 1.010	10.20 0.9213 1.031e+005 1.290e+004 8.626e+005 2.139e+004		

Experiment #1 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661 yellow, 1 month.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.268	2.671e+004	0.6601	-0.0771
NO3-	1.000	5.681e+004	0.6036	-0.2192
OH-	0.009230	143.8	0.6335	-2.2331
CO3	0.001369	75.26	0.1585	-3.6637
NaCO3-	0.0008993	68.38	0.6601	-3.2265
NaOH(aq)	0.0007764	28.45	1.0000	-3.1099
02(aq)	0.0002500	7.329	1.0000	-3.6020
Cl-	2.601e-005	0.8448	0.6036	-4.8041
HCO3-	1.212e-005	0.6774	0.6601	-5.0970
NaHCO3(aq)	9.550e-006	0.7350	1.0000	-5.0200
UO2(OH)3-	4.681e-006	1.377	0.6601	-5.5101
NaCl(aq)	2.197e-006	0.1176	1.0000	-5.6582
UO2(OH)4	2.026e-007	0.06274	0.1374	-7.5553
UO2(CO3)3	3.792e-008	0.01564	0.0003	-11.0094
(only species >	1e-8 molal list	ted)		

Mineral saturation states

	log Q/K		log Q/K	_
Na2U2O7(c) Na2U2O7(am)	4.6775s/sat 2.1692s/sat	Schoepite UO3:2H2O	-2.8836 -2.8836	_
Ice	-0.1387	UO2(OH)2(beta)	-2.9960	
(only minerals	with log Q/K >	-3 listed)		

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g) CO2(q)	0.02598 9.007e-010	-1.585 -9.045
NO2(g)	3.564e-020	-19.448
N2(g) HCl(q)	3.088e-020 1.344e-023	-19.510 -22.872
NO(g)	5.371e-026	-25.270
Cl2(g)	1.165e-038	-37.934
H2(g)	6.301e-042	-41.201
CO(g)	1.773e-054	-53.751

Na(g) NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g) UC15(g) UC16(g) UC13(g) UC13(g) UC12(g) UC12(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	1.406e-1 1.375e-1 1.133e-1 2.961e-1 1.185e-1 3.285e-1 9.348e-1 7.820e-2 4.249e-2 6.375e-2 1.204e-2 4.658e-2	1669 -68.6 1669 -68.6 180 -79.3 122 -121.8 151 -150.9 155 -154.5 161 -160.9 169 -168.4 197 -206.3 122 -211.3 150 -249.3	574 998 146 352 362 946 529 926 484 029 107 372 195 920 332		
Original basis		In fluid moles mg	g/kg mol	Sorbed es mg/kg	Kd L/kg
	2.00 4.93e-006 4.	-1.01 54.5 9.00 0.00229 1.00 1.56 1.27 2.6 2.00 5.86 93e-006	-935. De+005 128. 5e+004 7e+004 5e+004 1.22		
Elemental compo	sition total moles		mg/kg	Sorbe moles	ed mg/kg
Hydrogen Nitrogen Oxygen Sodium	0.002290 2.821e-005 111.0 1.000 58.53 1.270 4.925e-006	0.002290 2.821e-005 111.0 1.000 58.53 1.270	25.20 0.9161 1.025e+005 1.283e+004 8.579e+005 2.675e+004		-

Experiment #2 (1.0 M NaOH) sample 19661, 24 hour (1).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.771
 log fo2 = -0.704

 Eh = 0.4040 volts
 pe = 6.8296

 Ionic strength
 = 0.963136

 Activity of water
 = 0.999999

 Solvent mass
 = 1.0000000 kg

 Solution mass
 = 1.041200 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 39570 mg/kg sol'n

 Rock mass
 = 0.0000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+ OH- NaOH(aq) O2(aq) UO2(OH)4 UO2(OH)3- C1-	0.9881 0.9376 0.06185 0.0002500 0.0001171 2.804e-005 2.645e-005	2.182e+004 1.532e+004 2376. 7.683 38.03 8.646 0.9006	0.6613 0.6365 1.0000 1.0000 0.1456 0.6613 0.6088	-0.1848 -0.2242 -1.2087 -3.6020 -4.7682 -4.7318 -4.7931
NaCl(aq) (only species >	1.758e-006 · 1e-8 molal list	0.09869 ted)	1.0000	-5.7549

Mineral saturation states

Na2U2O7(c) 6.0187s/sat Ice -0.1387 Na2U2O7(am) 3.5104s/sat Na2UO4(alpha) -2.1318

Gases	fugacity	log fug.
Gases 02(g) H2O(g) H2(g) H2(g) C12(g) Na(g) U03(g) U02C12(g) U02(g) UC14(g) UC15(g) UC13(g) U0(g)	fugacity 0.1978 0.02598 1.350e-025 6.301e-042 1.176e-042 4.194e-067 5.903e-071 4.246e-085 8.268e-124 8.242e-153 1.784e-166 7.173e-175 1.960e-176 4.598e-208	log fug. -0.704 -1.585 -24.870 -41.201 -41.930 -66.377 -70.229 -84.372 -123.083 -152.084 -165.749 -174.144 -175.708 -207.337
UC12(g) UC1(g) U(g) U2C18(g)	2.522e-217 7.112e-256 5.998e-293 1.674e-294	-216.598 -255.148 -292.222 -293.776

U2Cl10(g) 6.351e-306 -300.000

Original basis	total moles		uid mg/kg		rbed mg/kg	Kd L/kg
C1- H+ H2O Na+ O2(aq) UO2++	56.5 1.05 0.000250	-1.00 56.5 1.05	-968. 9.78e+005 2.32e+004 7.68			
Elemental compo		I			Sorbe	
	total moles	s moles	mg/.	kg 	moles	mg/kg
Chlorine Hydrogen Oxygen Sodium	2.821e-005 112.0 56.51 1.050) 11 56	005 0 2.0 1.084 .51 8.683 050 2.318	e+005 e+005		

Experiment #2 (1.0 M NaOH) sample 19661, 24 hour (2).

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.035	2.284e+004	0.6610	-0.1647
OH-	0.9351	1.526e+004	0.6360	-0.2257
NaOH(aq)	0.06456	2477.	1.0000	-1.1900
02(aq)	0.0002500	7.675	1.0000	-3.6020
UO2(OH)4	6.280e-005	20.37	0.1444	-5.0424
C1-	2.637e-005	0.8970	0.6080	-4.7949
UO2(OH)3-	1.497e-005	4.611	0.6610	-5.0045
NaCl(aq) (only species >	1.834e-006 1e-8 molal list	0.1028	1.0000	-5.7366

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 5.5135s/sat Ice -0.1387
Na2U2O7(am) 3.0052s/sat Na2UO4(alpha) -2.3657

Gases	fugacity	log fug.
O2(g) H2O(g) HC1(g) H2(g) C12(g) Na(g) U03(g) U02C12(g) UC14(g) UC15(g) UC16(g) UC13(g) UC(g) UC(g) UC(g)	0.1978 0.02598 1.349e-025 6.301e-042 1.174e-042 4.378e-067 3.161e-071 2.271e-085 4.428e-124 4.401e-153 9.518e-167 3.824e-175 1.047e-176 2.463e-208 1.349e-217 3.806e-256	-0.704 -1.585 -24.870 -41.201 -41.930 -66.359 -70.500 -84.644 -123.354 -152.356 -166.021 -174.417 -175.980 -207.609 -216.870 -255.420
U(g) U2Cl8(g)	3.212e-293 4.772e-295	-292.493 -294.321

U2Cl10(g) 1.808e-306 -300.000

			luid		orbed	
Original basis	total moles	moles	mg/kg 	moles	mg/kg 	L/kg
Cl-	2.82e-005	2.82e-005	0.959			
H+	-1.00	-1.00	-967.			
H2O	56.5	56.5	9.77e+005			
Na+	1.10	1.10	2.43e+004			
02(aq)	0.000250	0.000250	7.68			
UO2++	7.78e-005	7.78e-005	20.1			
Elemental comp	osition]	In fluid		Sorbe	ed
	total moles	s moles	s mg	r/kg	moles	mg/kg
Chlorine	2.821e-005	5 2.821e-	 -005	0.9594		
Hydrogen	112.0) 11	L2.0 1.08	3e+005		
Oxygen	56.51	1 56	5.51 8.67	4e+005		
Sodium	1.100	1.	.100 2.42	6e+004		
Uranium	7.777e-005	7.777e-	-005	17.76		

Experiment #2 (1.0 M NaOH) sample 19661, 1 week.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.769
 log f02 = -0.704

 Eh = 0.4041 volts
 pe = 6.8316

 Ionic strength
 = 0.994362

 Activity of water
 = 0.999999

 Solvent mass
 = 1.000000 kg

 Solution mass
 = 1.042783 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 41027 mg/kg sol'n

 Rock mass
 = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+ OH- NaOH(aq) O2(aq) UO2(OH)4 C1- UO2(OH)3-	1.054 0.9342 0.06564 0.0002500 3.649e-005 2.634e-005 8.686e-006	2.324e+004 1.524e+004 2518. 7.672 11.83 0.8956 2.674	0.6609 0.6358 1.0000 1.0000 0.1440 0.6077	-0.1569 -0.2263 -1.1828 -3.6020 -5.2795 -4.7957
NaCl(aq)	1.864e-006	0.1045	1.0000	-5.2410 -5.7295
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 5.0561s/sat Ice -0.1387
Na2U2O7(am) 2.5478s/sat Na2UO4(alpha) -2.5872

Gases	fugacity	log fug.
O2(g) H2O(g) H2(g) H2(g) C12(g) Na(g) U03(g) U02C12(g) U02(g) UC14(g) UC15(g) UC16(g) UC13(g) UC(g) UC12(g)	0.1978 0.02598 1.349e-025 6.301e-042 1.174e-042 4.451e-067 1.836e-071 1.318e-085 2.572e-124 2.553e-153 5.520e-167 2.217e-175 6.077e-177 1.430e-208 7.830e-218 2.210e-256 1.866e-293	-0.704 -1.585 -24.870 -41.201 -41.930 -66.352 -70.736 -84.880 -123.590 -152.593 -166.258 -174.654 -176.216 -207.845 -217.106 -255.656 -292.729
U2Cl8(g)	1.606e-295	-294.794

U2Cl10(g) 6.081e-307 -300.000

			luid		orbed	
Original basis	total moles	moles	mg/kg 	moles	mg/kg 	L/kg
C1-	2.82e-005	2.82e-005	0.959			
H+	-1.00	-1.00	-967.			
H2O	56.5	56.5	9.76e+005			
Na+	1.12	1.12	2.47e+004			
02(aq)	0.000250	0.000250	7.67			
UO2++	4.52e-005	4.52e-005	11.7			
Elemental compo	osition]	In fluid		Sorbe	ed
	total moles	s moles	s mg	/kg	moles	mg/kg
Chlorino	2 9210-010	2 9210-		0 0500		
		_				
Chlorine Hydrogen Oxygen Sodium	total moles 	moles 	mg -005 12.0 1.08 5.51 8.67	0.9590 3e+005 0e+005 9e+004		

Experiment #2 (1.0 M NaOH) sample 19661, 1 month.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.771
 log f02 = -0.704

 Eh = 0.4040 volts
 pe = 6.8297

 Ionic strength
 = 0.967592

 Activity of water
 = 0.999999

 Solvent mass
 = 1.000000 kg

 Solution mass
 = 1.041398 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 39752 mg/kg sol'n

 Rock mass
 = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+ OH- NaOH(aq) O2(aq) C1- UO2(OH)4 UO2(OH)3-	0.9976 0.9375 0.06242 0.0002500 2.643e-005 2.053e-005 4.909e-006	2.202e+004 1.531e+004 2397. 7.682 0.8999 6.665 1.513	0.6612 0.6364 1.0000 1.0000 0.6086 0.1453 0.6612	-0.1807 -0.2243 -1.2047 -3.6020 -4.7935 -5.5251 -5.4886
<pre>NaCl(aq) (only species ></pre>	1.773e-006 1e-8 molal list	0.09952 ted)	1.0000	-5.7512

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 4.5132s/sat Ice -0.1387
Na2U2O7(am) 2.0049s/sat Na2UO4(alpha) -2.8805

Gases	fugacity	log fug.
Gases	1ugacity 0.1978 0.02598 1.350e-025 6.301e-042 1.175e-042 4.233e-067 1.034e-071 7.427e-086 1.448e-124 1.440e-153 3.115e-167 1.252e-175 3.426e-177 8.052e-209 4.412e-218 1.245e-256	-0.704 -1.585 -24.870 -41.201 -41.930 -66.373 -70.986 -85.129 -123.839 -152.842
U(g) U2Cl8(g)	1.050e-293 5.110e-296	-292.979 -295.292

U2Cl10(g) 1.937e-307 -300.000

			luid		rbed	
Original basis	total moles	moles	mg/kg	moles	mg/kg 	L/kg
Cl-	2.82e-005	2.82e-005	0.960			
H+	-1.00	-1.00	-968.			
H2O	56.5	56.5	9.78e+005			
Na+	1.06	1.06	2.34e+004			
02(aq)	0.000250	0.000250	7.68			
UO2++	2.54e-005	2.54e-005	6.60			
Elemental compo	osition	-	n fluid		Sorbe	d
Trememour comp					moles	
Chlorine	2.821e-005	5 2.821e-	-005 (0.9602		
Hydrogen	112.0) 11	1.084	4e+005		
Oxygen	56.51	L 56	5.51 8.682	2e+005		
Sodium	1.060	1.	060 2.340	0e+004		
Uranium	2.544e-005	2.544e-	-005	5.815		

Experiment #2 (1.0 M NaOH) sample 19661, 24 hour (1), duplicate.

Xi = 0.0000Solvent mass = 0.9999999

Solvent mass = 1.000000 kg

Solution mass = 1.041199 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 39569 mg/kg sol'n

Rock mass = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.9881	2.182e+004	0.6613	-0.1848
OH-	0.9376	1.532e+004	0.6365	-0.2242
NaOH(aq)	0.06185	2376.	1.0000	-1.2087
02(aq)	0.0002500	7.683	1.0000	-3.6020
UO2(OH)4	0.0001141	37.06	0.1456	-4.7794
UO2(OH)3-	2.732e-005	8.425	0.6613	-4.7431
Cl-	2.645e-005	0.9006	0.6088	-4.7931
NaCl(aq)	1.758e-006	0.09869	1.0000	-5.7549
(only species >	1e-8 molal list	ted)		

Mineral saturation states

UCl6(g) UC13(q) UO(g) UCl2(g) UCl(g) U(g)

log Q/K log Q/K _____ Na2U2O7(c) 5.9962s/sat Ice -0.1387 Na2U2O7(am) 3.4879s/sat Na2UO4(alpha) -2.1430 -0.1387

(only minerals with log Q/K > -3 listed) fugacity log fug. 0.1978 -0.704 02(g) 0.1978 -0.704 0.02598 -1.585 1.350e-025 -24.870 6.301e-042 -41.201 1.176e-042 -41.930 4.194e-067 -66.377 5.752e-071 -70.240 H2O(g) HCl(g)H2(g) Cl2(g) Na(g) UO3(g) UO3(g) UO2C12(g) UCl4(g)UC15(g)

U2Cl10(g) 6.030e-306 -300.000

		In fl	luid	So	rbed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
C1-	2.82e-005	2.82e-005	0.960			
H+	-1.00	-1.00	-968.			
H2O	56.5	56.5	9.78e+005			
Na+	1.05	1.05	2.32e+004			
02(aq)	0.000250	0.000250	7.68			
UO2++	0.000141	0.000141	36.7			
Elemental gemn	ogition	7	n fluid		Sorbe	a
Elemental comp				(1		
	total moles	moles	mg/	кд 	moles	mg/kg
Chlorine	2.821e-005	2.821e-	-005	.9604		
Hydrogen	112.0	11	1.084	le+005		
Oxygen	56.51	. 56	5.51 8.683	8e+005		
Sodium	1.050	1.	.050 2.318	8e+004		
Uranium	0.0001415	0.0001	L415	32.34		

Experiment #2 (1.0 M NaOH) sample 19661, 24 hour (2), duplicate.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.770
 log fo2 = -0.704

 Eh = 0.4041 volts
 pe = 6.8307

 Ionic strength
 = 0.9980976

 Activity of water
 = 0.999999

 Solvent mass
 = 1.0000000 kg

 Solution mass
 = 1.042103 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 40402 mg/kg sol'n

 Rock mass
 = 0.0000000 kg

 Xi = 0.0000

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+ OH- NaOH(aq) O2(aq) UO2(OH)4 C1- UO2(OH)3- NaCl(aq)	1.026 0.9357 0.06402 0.0002500 6.608e-005 2.639e-005 1.577e-005	2.263e+004 1.527e+004 2457. 7.677 21.44 0.8977 4.857 0.1020	0.6611 0.6361 1.0000 1.0000 0.1447 0.6082 0.6611 1.0000	-0.1686 -0.2254 -1.1937 -3.6020 -5.0196 -4.7946 -4.9820 -5.7402
	1e-8 molal list	ted)		

Mineral saturation states

log Q/K ______ Na2U2O7(c) 5.5506s/sat Ice -0.1387 Na2U2O7(am) 3.0423s/sat Na2UO4(alpha) -2.3508 -0.1387

Gases	fugacity	log fug.
Gases	fugacity	log fug
U(g) U2C18(g)	3.381e-293 5.290e-295	-292.471 -294.277

U2Cl10(g) 2.005e-306 -300.000

		In fl	luid	So	rbed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
C1-	2.82e-005	2.82e-005	0.960			
H+		-1.00				
Н2О	56.5	56.5	9.77e+005			
Na+	1.09	1.09	2.40e+004			
02(aq)	0.000250	0.000250	7.68			
UO2++	8.18e-005	8.18e-005	21.2			
Elemental comp	osition]	In fluid		Sorbe	d
	total moles	s moles	s mg/	/kg	moles	mg/kg
Chlorine	2.821e-00	 5 2.821e-	 -005 ().9596		
Hydrogen	112.0		L2.0 1.083			
Oxygen	56.53	1 56	5.51 8.676	5e+005		
Sodium	1.090	1.	090 2.405	5e+004		
Uranium	8.184e-005	8.184e-	-005	18.69		

Experiment #2 (1.0 M NaOH) sample 19661, 1 week, duplicate.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.769
 log fo2 = -0.704

 Eh = 0.4041 volts
 pe = 6.8310

 Ionic strength
 0.985437

 Activity of water
 0.999999

 Solvent mass
 1.000000 kg

 Solution mass
 1.013 g/cm3

 Chlorinity
 0.000028 molal

 Dissolved solids
 40604 mg/kg sol'n

 Rock mass
 0.0000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.035	2.284e+004	0.6610	-0.1647
NaOH(aq)	0.9353	1.526e+004	0.6360	-0.2256
	0.06457	2478.	1.0000	-1.1900
02(aq)	0.0002500	7.675	1.0000	-3.6020
UO2(OH)4	3.648e-005	11.83	0.1444	-5.2783
Cl-	2.637e-005	0.8970	0.6080	-4.7949
UO2(OH)3-	8.697e-006	2.679	0.6610	-5.2404
NaCl(aq)	1.834e-006 1e-8 molal list	0.1028	1.0000	-5.7366

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 5.0417s/sat Ice -0.1387
Na2U2O7(am) 2.5334s/sat Na2UO4(alpha) -2.6016

Gases	fugacity	log fug.
O2(g) H2O(g) H2(g) H2(g) C12(g) Na(g) U03(g) U02C12(g) U02(g) UC14(g) UC15(g) UC16(g) UC13(g)	0.1978 0.02598 1.349e-025 6.301e-042 1.174e-042 4.378e-067 1.836e-071 1.318e-085 2.572e-124 2.555e-153 5.525e-167 2.220e-175 6.080e-177	-0.704 -1.585 -24.870 -41.201 -41.930 -66.359 -70.736 -84.880 -123.590 -152.593 -166.258 -174.654 -176.216
UO(g) UC12(g) UC1(g) U(g) U2C18(g)	1.430e-208 7.833e-218 2.210e-256 1.866e-293 1.608e-295	-207.845 -217.106 -255.656 -292.729 -294.794

U2Cl10(g) 6.092e-307 -300.000

			luid		rbed	
Original basis	total moles	moles	mg/kg	moles	mg/kg 	L/kg
Cl-	2.82e-005	2.82e-005	0.959			
H+	-1.00	-1.00	-967.			
H2O	56.5	56.5	9.77e+005			
Na+	1.10	1.10	2.43e+004			
02(aq)	0.000250	0.000250	7.68			
UO2++	4.52e-005	4.52e-005	11.7			
Elemental compo	osition	-	n fluid		Sorbe	4
Diemenear comp				'kg	moles	
Chlorine	2.821e-005	2.821e-	-005 C).9594		
Hydrogen	112.0) 11	12.0 1.083	Be+005		
Oxygen	56.51	L 56	5.51 8.674	le+005		
Sodium	1.100	1.	100 2.426	5e+004		
Uranium	4.518e-005	4.518e-	-005	10.32		

Experiment #2 (1.0 M NaOH) sample 19661, 1 month, duplicate.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.770
 log f02 = -0.704

 Eh = 0.4041 volts
 pe = 6.8303

 Ionic strength
 = 0.976513

 Activity of water
 = 0.999999

 Solvent mass
 = 1.000000 kg

 Solution mass
 = 1.041859 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 40178 mg/kg sol'n

 Rock mass
 = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+ OH- NaOH(aq) O2(aq) C1- U02(OH)4 U02(OH)3-	1.017 0.9364 0.06349 0.0002500 2.640e-005 2.559e-005 6.109e-006	2.243e+004 1.529e+004 2438. 7.679 0.8984 8.304 1.883	0.6611 0.6362 1.0000 1.0000 0.6083 0.1449 0.6611	-0.1726 -0.2250 -1.1973 -3.6020 -4.7942 -5.4309 -5.3937
NaCl(aq)	1.804e-006 1e-8 molal list	0.1012	1.0000	-5.7438

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 4.7192s/sat Ice -0.1387
Na2U2O7(am) 2.2109s/sat Na2UO4(alpha) -2.7701

Gases	fugacity	log fug.
O2(g) H2O(g) H2(g) H2(g) C12(g) Na(g) U03(g) U02C12(g) UC14(g) UC15(g) UC16(g) UC13(g) UC12(g) UC12(g)	0.1978 0.02598 1.349e-025 6.301e-042 1.175e-042 4.306e-067 1.288e-071 9.252e-086 1.804e-124 1.793e-153 3.879e-167 1.558e-175 4.267e-177 1.003e-208 5.496e-218 1.551e-256	-0.704 -1.585 -24.870 -41.201 -41.930 -66.366 -70.890 -85.034 -123.744 -152.746 -166.411 -174.807 -176.370 -207.999 -217.260 -255.809
U(g) U2C18(g)	1.309e-293 7.925e-296	-292.883 -295.101

U2Cl10(g) 3.002e-307 -300.000

Original basis	total moles		luid mg/kg		rbed mg/kg	
Cl- H+ H2O Na+ O2(aq) UO2++	56.5	-1.00 56.5 1.08 0.000250	-967. 9.77e+005 2.38e+004 7.68			
Elemental comp				kg	Sorbe moles	-
Chlorine Hydrogen Oxygen Sodium Uranium	2.821e-005 112.0 56.53 1.080 3.170e-005) 11 L 56) 1.	12.0 1.084 5.51 8.678 .080 2.383	e+005 e+005		

Experiment #2 (1.0 M NaOH) sample 19661 yellow, 24 hour (1).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.771
 log fo2 = -0.704

 Eh = 0.4040 volts
 pe = 6.8297

 Ionic strength
 = 0.993139

 Activity of water
 = 0.999999

 Solvent mass
 = 1.000000 kg

 Solution mass
 = 1.041226 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 39593 mg/kg sol'n

 Rock mass
 = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.9882	2.182e+004	0.6613	-0.1848
OH-	0.9373	1.531e+004	0.6365	-0.2243
NaOH(aq)	0.06183	2375.	1.0000	-1.2088
O2(aq)	0.0002500	7.683	1.0000	-3.6020
UO2(OH)4	0.0001924	62.47	0.1456	-4.5526
UO2(OH)3-	4.608e-005	14.21	0.6613	-4.5161
C1-	2.645e-005	0.9005	0.6088	-4.7931
NaCl(aq)	1.758e-006 1e-8 molal list	0.09869	1.0000	-5.7549

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 6.4501s/sat Ice -0.1387
Na2U2O7(am) 3.9418s/sat Na2UO4(alpha) -1.9162

Gases	fugacity	log fug.
Gases	1 1978 0.1978 0.02598 1.351e-025 6.301e-042 1.177e-042 4.193e-067 9.704e-071 6.985e-085 1.359e-123 1.357e-152 2.938e-166 1.182e-174 3.225e-176 7.559e-208 4.150e-217 1.170e-255	log fug
U(g) U2Cl8(g)	9.861e-293 4.537e-294	-292.006 -293.343

U2Cl10(g) 1.722e-305 -300.000

		In fl	uid	Son	rbed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
C1-	2.82e-005	2 820-005	0 960			
H+		-1.00				
H2O		56.5				
Na+		1.05				
02(aq)	0.000250					
U2(aq) U02++	0.000230					
002++	0.000230	0.000236	01.9			
Elemental comp	osition	I	n fluid		Sorbe	d
-	total moles			kg	moles	mg/kg
Chlorine	2.821e-005	2.821e-	-005 0	.9604		
Hydrogen	112.0	11	2.0 1.084	e+005		
Oxygen	56.51	56	5.51 8.683	e+005		
Sodium	1.050	1.	050 2.318	e+004		
Uranium	0.0002385	0.0002	2385	54.52		

Experiment #2 (1.0 M NaOH) sample 19661 yellow, 24 hour (2).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 13.768
 log f02 = -0.704

 Eh = 0.4042 volts
 pe = 6.8324

 Ionic strength
 = 1.003294

 Activity of water
 = 0.999999

 Solvent mass
 = 1.000000 kg

 Solution mass
 = 1.043271 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 41476 mg/kg sol'n

 Rock mass
 = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.073	2.365e+004	0.6608	-0.1492
OH-	0.9327	1.521e+004	0.6356	-0.2271
NaOH(aq)	0.06669	2557.	1.0000	-1.1759
02(aq)	0.0002500	7.668	1.0000	-3.6020
UO2(OH)4	0.0001215	39.36	0.1435	-4.7586
UO2(OH)3-	2.888e-005	8.888	0.6608	-4.7193
C1-	2.631e-005	0.8942	0.6074	-4.7964
NaCl(aq)	1.894e-006	0.1061	1.0000	-5.7226
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 6.1149s/sat Ice -0.1387
Na2U2O7(am) 3.6066s/sat Na2UO4(alpha) -2.0509

Gases	fugacity	log fug.
Gases	fugacity	-0.704 -1.585 -24.870 -41.201 -41.930 -66.345 -70.214 -84.357 -123.067 -152.070 -165.735 -174.131 -175.694 -207.322
U(g) U2Cl8(g)	6.215e-293 1.785e-294	-292.207 -293.748

U2Cl10(g) 6.760e-306 -300.000

			uid		rbed	
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Cl-	2.82e-005	2.82e-005	0.959			
H+	-1.00	-1.00	-966.			
H2O	56.5	56.5	9.76e+005			
Na+	1.14	1.14	2.51e+004			
02(aq)	0.000250	0.000250	7.67			
UO2++	0.000150	0.000150	38.9			
Elemental composition		In fluid			Sorbed	
HICHCITCAL COMP	total moles			ka		
Chlorine	2.821e-005	2.821e-	-005 0	.9585		
Hydrogen	112.0	11	2.0 1.082	e+005		
Oxygen	56.51	. 56	5.51 8.666	e+005		
Sodium	1.140	1.	140 2.512	e+004		
Uranium	0.0001504	0.0001	.504	34.30		

Experiment #2 (1.0 M NaOH) sample 19661 yellow, 1 week.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+ OH- NaOH(aq) O2(aq) U02(OH)4 C1- U02(OH)3-	1.035 0.9352 0.06456 0.0002500 4.755e-005 2.637e-005 1.133e-005	2.284e+004 1.526e+004 2478. 7.675 15.42 0.8970 3.491	0.6610 0.6360 1.0000 1.0000 0.1444 0.6080 0.6610	-0.1647 -0.2256 -1.1900 -3.6020 -5.1632 -4.7949
NaCl(aq)	1.834e-006	0.1028	1.0000	-5.1254 -5.7366
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 5.2718s/sat Ice -0.1387
Na2U2O7(am) 2.7635s/sat Na2UO4(alpha) -2.4865

U2Cl10(g) 1.035e-306 -300.000

		In fl	luid	So	rbed	Kd
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Cl-	2.82e-005	2.82e-005	0.959			
H+		-1.00				
Н2О	56.5	56.5	9.77e+005			
Na+	1.10	1.10	2.43e+004			
02(aq)	0.000250	0.000250	7.68			
UO2++	5.89e-005	5.89e-005	15.3			
Elemental composition		In fluid			Sorbed	
	total moles	s moles	s mg	/kg	moles	mg/kg
Chlorine	2 821e-00 ¹	 5 2 821e-	-005	 N 9594		
Hydrogen	112.0		2.0 1.08			
Oxygen	56.53	1 56	5.51 8.67	4e+005		
Sodium	1.100	1.	100 2.42	6e+004		
Uranium	5.888e-005	5.888e-	-005	13.45		

Experiment #2 (1.0 M NaOH) sample 19661 yellow, 1 month.

Step # 0
Temperature = 25.0 C
Pressure = 1.013 bars
pH = 13.768
Eh = 0.4042 volts
Ionic strength = 1.003288
Activity of water = 0.999999
Solvent mass = 1.000000 kg
Solution mass = 1.043238 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000028 molal
Dissolved solids = 41446 mg/kg sol'n
Rock mass = 0.000000 kg

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+ OH- NaOH(aq) O2(aq) C1- UO2(OH)4 UO2(OH)3-	1.073 0.9332 0.06672 0.0002500 2.631e-005 2.295e-005 5.454e-006	2.365e+004 1.521e+004 2558. 7.668 0.8942 7.437 1.678	0.6608 0.6356 1.0000 1.0000 0.6074 0.1435 0.6608	-0.1492 -0.2269 -1.1758 -3.6020 -4.7964 -5.4823 -5.4432
NaCl(aq) (only species >	1.894e-006 1e-8 molal list	0.1061 ted)	1.0000	-5.7226

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 4.6671s/sat Ice -0.1387
Na2U2O7(am) 2.1588s/sat Na2UO4(alpha) -2.7746

Gases	fugacity	log fug.
Gases	fugacity 0.1978 0.02598 1.349e-025 6.301e-042 1.173e-042 4.524e-067 1.154e-071 8.282e-086 1.617e-124 1.603e-153 3.466e-167 1.392e-175 3.817e-177	log fug. -0.704 -1.585 -24.870 -41.201 -41.931 -66.344 -70.938 -85.082 -123.791 -152.795 -166.460 -174.856 -176.418
UO(g) UC12(g) UC1(g) U(g) U2C18(g)	8.993e-209 4.920e-218 1.389e-256 1.173e-293 6.335e-296	-208.046 -217.308 -255.857 -292.931 -295.198

U2C110(g) 2.397e-307 -300.000

			luid		rbed	
Original basis	total moles	moles	mg/kg	moles	mg/kg	L/kg
Cl-	2.82e-005	2.82e-005	0.959			
H+	-1.00	-1.00	-966.			
H2O	56.5	56.5	9.76e+005			
Na+	1.14	1.14	2.51e+004			
02(aq)	0.000250	0.000250	7.67			
UO2++	2.84e-005	2.84e-005	7.35			
Elemental comp	osition]	In fluid		Sorbe	ed.
	total moles	s moles	s mg,	/kg	moles	mg/kg
Chlorine	2.821e-00	2.821e-	-005 (0.9586		
Hydrogen	112.0) 11	12.0 1.082	2e+005		
Oxygen	56.53	1 56	5.51 8.666	бе+005		
Sodium	1.140	1.	140 2.51	2e+004		
Uranium	2.840e-005	2.840e-	-005	6.481		

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (1).

Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars log fO2 = -0.704pH = 11.774Eh = 0.5222 voltspe = 8.8269Ionic strength = 1.033659 Activity of water = 0.999999 Solvent mass = 1.000000 kg
Solution mass = 1.086538 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000028 molal
Dissolved solids = 79645 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity= 1207.13 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.025	2.170e+004	0.6606	-0.1692
NO3-	1.000	5.707e+004	0.6064	-0.2172
OH-	0.009455	148.0	0.6350	-2.2216
CO3	0.007111	392.7	0.1629	-2.9362
NaCO3-	0.003883	296.6	0.6606	-2.5909
NaOH(aq)	0.0006450	23.74	1.0000	-3.1904
02(aq)	0.0002500	7.363	1.0000	-3.6020
HCO3-	6.298e-005	3.537	0.6606	-4.3809
NaHCO3(aq)	4.018e-005	3.107	1.0000	-4.3960
Cl-	2.639e-005	0.8612	0.6064	-4.7957
NaCl(aq)	1.812e-006	0.09746	1.0000	-5.7419
UO2(OH)3-	1.031e-006	0.3046	0.6606	-6.1669
UO2(CO3)3	9.978e-007	0.4133	0.0003	-9.5180
UO2(OH)4	4.434e-008	0.01380	0.1421	-8.2007
(only species >	1e-8 molal list	ted)		

Mineral saturation states

	log Q/K		log Q/K
Na2U2O7(c) Na2U2O7(am) Ice	3.1797s/sat 0.6714s/sat -0.1387	Natron Na2CO3:7H2O	-2.5559 -2.8916

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) NO(q)	0.1978 0.02598 4.562e-009 3.487e-020 2.956e-020 1.334e-023 5.255e-026	-0.704 -1.585 -8.341 -19.458 -19.529 -22.875 -25.279
Cl2(g) H2(g) CO(g)	1.148e-038 6.301e-042 8.978e-054	-37.940 -41.201 -53.047

Na(g) NH3(g) UO3(g) UO2Cl2(g) UO2(g) UC14(g) CH4(g) UC15(g) UC13(g) UC13(g) UC12(g) UC12(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	4.374e-0 2.073e-0 2.154e-0 1.513e-0 3.018e-1 2.868e-1 5.737e-1 6.133e-1 2.437e-1 6.900e-1 4.735e-1 1.678e-2 8.989e-2 1.636e-2 2.565e-2 2.026e-2 7.506e-2	69	83 67 20 20 42 41 12 13 61 25 75 46 86 91 93 25		
Original basis	total moles	In fluid moles mg	r/kg mole	Sorbed es mg/kg	Kd L/kg
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	54.5 0.0111	-1.02 54.5 9.04 0.0111 1.00 1.57 1.03 2.18 2.00 5.89	-947. e+005 623. e+004 e+004		
Elemental compo	sition total moles	In fl moles		Sorbe moles	d mg/kg
Hydrogen Nitrogen Oxygen Sodium	0.01110 2.821e-005 111.0 1.000 58.55 1.030 2.074e-006	2.821e-005 111.0 1.000 58.55 1.030			

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (2).

Xi = 0.0000Solvent mass = 1.000000 kg

Solution mass = 1.087347 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 80330 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 593.13 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.077	2.278e+004	0.6604	-0.1478
NO3-	1.000	5.702e+004	0.6059	-0.2176
OH-	0.009375	146.6	0.6347	-2.2255
CO3	0.003436	189.7	0.1621	-3.2541
NaCO3-	0.001962	149.8	0.6604	-2.8875
NaOH(aq)	0.0006715	24.70	1.0000	-3.1730
02(aq)	0.0002500	7.357	1.0000	-3.6020
HCO3-	3.057e-005	1.715	0.6604	-4.6949
Cl-	2.631e-005	0.8579	0.6059	-4.7975
NaHCO3(aq)	2.048e-005	1.582	1.0000	-4.6886
NaCl(aq)	1.896e-006	0.1019	1.0000	-5.7223
UO2(OH)3-	1.385e-006	0.4090	0.6604	-6.0386
UO2(CO3)3	1.576e-007	0.06522	0.0003	-10.3317
UO2(OH)4	5.939e-008	0.01846	0.1413	-8.0763
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K _____ Na2U2O7(c) 3.4790s/sat Ice -0.1387 Na2U2O7(am) 0.9707s/sat Natron -2.8311 (only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	2.234e-009	-8.651
NO2(g)	3.515e-020	-19.454
N2(g)	3.004e-020	-19.522
HCl(g)	1.341e-023	-22.873
NO(g)	5.298e-026	-25.276
Cl2(g)	1.160e-038	-37.936
H2(g)	6.301e-042	-41.201
CO(g)	4.396e-054	-53.357
Na(g)	4.554e-069	-68.342

NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	2.921e-07 2.072e-08 4.091e-12 3.965e-14 2.809e-15 8.522e-15 3.403e-16 9.494e-17 2.318e-19 2.276e-20 1.231e-21 3.921e-24 3.495e-25 3.875e-27	14 -143.4 -150.5 56 -155.0 52 -161.4 70 -169.0 95 -194.6 07 -206.6 12 -211.9	34 84 88 02 51 69 68 23 35 43 10 07 57 12		
0-4-41 14-				Sorbed	
	total moles n			:S (1197 kg	L/kg
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	1.08	-1.02 54.5 9.03 0.00545 1.00 1.57 1.08 2.28 2.00 5.89	-941. e+005 306. e+004 e+004 e+004		
	osition total moles	moles	mg/kg	Sorbec moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen	0.005450 2.821e-005 111.0 1.000 58.54 1.080 1.604e-006	0.005450 2.821e-005 111.0 1.000 58.54	60.20		

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 1 week.

Xi = 0.0000Solvent mass = 1.000000 kg

Solution mass = 1.086697 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 79780 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 249.08 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.059	2.239e+004	0.6605	-0.1554
NO3-	1.000	5.706e+004	0.6063	-0.2173
OH-	0.009359	146.5	0.6349	-2.2260
CO3	0.001451	80.14	0.1627	-3.6268
NaCO3-	0.0008172	62.41	0.6605	-3.2678
NaOH(aq)	0.0006589	24.25	1.0000	-3.1812
02(aq)	0.0002500	7.362	1.0000	-3.6020
Cl-	2.634e-005	0.8593	0.6063	-4.7967
HCO3-	1.297e-005	0.7285	0.6605	-5.0670
NaHCO3(aq)	8.544e-006	0.6605	1.0000	-5.0683
NaCl(aq)	1.866e-006	0.1004	1.0000	-5.7291
UO2(OH)3-	1.207e-006	0.3567	0.6605	-6.0983
UO2(OH)4	5.146e-008	0.01601	0.1419	-8.1365
UO2(CO3)3	1.028e-008	0.004256	0.0003	-11.5077
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K log Q/K _____ Na2U2O7(c) 3.3446s/sat Ice Na2U2O7(am) 0.8363s/sat -0.1387

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) NO(g) C12(g)	0.1978 0.02598 9.496e-010 3.523e-020 3.017e-020 1.345e-023 5.309e-026 1.167e-038 6.301e-042 1.869e-054	
CO(g) Na(g)	4.468e-069	-68.350

NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	1.081e-21 7.086e-25 3.060e-25 3.028e-27 1.140e-28	0 -69.5 0 -79.7 3 -122.4 4 -143.4 1 -150.9 6 -155.1 2 -161.5 0 -169.0 6 -195.0 7 -206.7 2 -211.9	94 40 47 55 23 22 19 77 06 02 66 50 14 19 43		
		In fluid		Sorbed	
original basis	total moles m			s IIIg/kg 	L/kg
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	2.82e-005 2.8 -1.01 54.5 0.00229 0 1.00 1.06 2.00 1.27e-006 1.2	-1.01 54.5 9.04 .00229 1.00 1.57 1.06 2.24 2.00 5.89	-939. e+005 129. e+004 e+004 e+004		
Elemental comp	osition total moles		uid mg/kg	Sorbed moles	l mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.002290 2.821e-005 111.0 1.000 58.53 1.060 1.270e-006	0.002290 2.821e-005 111.0 1.000 58.53	25.31		

Experiment #3 (0.01 M NaOH, 0.001 M Na₂CO₃) sample 19661, 1 month.

Xi = 0.0000Temperature = 25.0 C Pressure = 1.013 bars Solvent mass = 1.000000 kg

Solution mass = 1.001041 kg

Solution density = 1.013 g/cm3

Chlorinity = 0.000028 molal

Dissolved solids = 1040 mg/kg sol'n

Rock mass = 0.000000 kg

Carbonate alkalinity= 119.23 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.02333	535.8	0.8757	-1.6898
OH-	0.007252	123.2	0.8735	-2.1983
CO3	0.001112	66.67	0.5909	-3.1823
UO2(OH)3-	0.0008982	288.1	0.8757	-3.1043
02(aq)	0.0002500	7.992	1.0000	-3.6020
NaCO3-	5.012e-005	4.155	0.8757	-4.3577
Cl-	2.812e-005	0.9960	0.8711	-4.6109
HCO3-	2.555e-005	1.557	0.8757	-4.6503
NaOH(aq)	2.052e-005	0.8200	1.0000	-4.6877
UO2(OH)4	1.312e-005	4.432	0.5851	-5.1147
UO2(OH)2(aq)	1.014e-006	0.3080	1.0000	-5.9939
NaHCO3(aq)	6.517e-007	0.05469	1.0000	-6.1860
(UO2)3(OH)7-	5.833e-007	0.5414	0.8757	-6.2918
UO2(CO3)3	4.675e-007	0.2102	0.1166	-7.2636
NaCl(aq)	8.363e-008	0.004883	1.0000	-7.0776
(UO2)2CO3(OH)3-	6.697e-008	0.04356	0.8757	-7.2317
(only species >	1e-8 molal list	ced)		

Na2U2O7(c) 6.2639s/sat Schoepite-dehy(0.6960 Na2U2O7(am) 3.7556s/sat UO3:.9H2O(alpha) -0.6960 Ice -0.1387 Schoepite-dehy(0.7763 Schoepite -0.5126 Schoepite-dehy(1 -0.7824 UO3:2H2O -0.5126 Schoepite-dehy(1.8856 UO2(OH)2(beta) -0.6250 Schoepite-dehy(2.4036 (only minerals with log Q/K > -3 listed)		log Q/K		log Q/K
	Na2U2O7(am) Ice Schoepite UO3:2H2O UO2(OH)2(beta)	3.7556s/sat -0.1387 -0.5126 -0.5126 -0.6250	U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(1 Schoepite-dehy(. Schoepite-dehy(.	-0.6960 -0.7763 -0.7824 -1.8856

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	2.325e-009	-8.634
HCl(g)	1.936e-023	-22.713
Cl2(g)	2.417e-038	-37.617

H2(g) CO(g) UO3(g) Na(g) Na(g) UO2Cl2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) UC12(g) UC12(g) C2H4(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	6.301e-0 4.576e-0 2.359e-0 1.392e-0 3.487e-0 3.304e-1 1.391e-1 2.924e-1 4.314e-1 2.487e-1 2.413e-1 1.838e-2 2.071e-2 4.249e-2 4.765e-2 3.715e-2 2.397e-2	54	40 27 56 58 81 57 34 65 04 37 17 36 84 72 90 22		
Original basis	total moles	In fluid		Sorbed es mg/kg	Kd L/kg
C1- H+ H2O HCO3- Na+ O2(aq) UO2++	2.82e-005 2. -0.0112 55.5 0.00119 0.0234 0.000250 0 0.000915 0	-0.0112 55.5 9.99 0.00119	-11.3 e+005 72.5		
Elemental compo	osition total moles		mg/kg		ed mg/kg
Carbon Chlorine Hydrogen Oxygen Sodium Uranium	0.001190 2.821e-005 111.0 55.52 0.02340	0.001190 2.821e-005 111.0 55.52 0.02340	14.28 0.9990 1.118e+005 8.874e+005		

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (1), duplicate.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.771
 log fO2 = -0.704

 Eh = 0.5223 volts
 pe = 8.8294

 Ionic strength
 1.031926

 Activity of water
 0.999999

 Solvent mass
 1.000000 kg

 Solution mass
 1.013 g/cm3

 Chlorinity
 0.000028 molal

 Dissolved solids
 79575 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 641.58 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.037	2.195e+004	0.6606	-0.1642
NO3-	1.000	5.707e+004	0.6065	-0.2172
OH-	0.009401	147.2	0.6350	-2.2240
CO3	0.003764	207.9	0.1630	-3.2122
NaCO3-	0.002080	158.9	0.6606	-2.8620
NaOH(aq)	0.0006488	23.88	1.0000	-3.1879
02(aq)	0.0002500	7.363	1.0000	-3.6020
HCO3-	3.354e-005	1.884	0.6606	-4.6545
Cl-	2.638e-005	0.8607	0.6065	-4.7960
NaHCO3(aq)	2.165e-005	1.674	1.0000	-4.6646
NaCl(aq)	1.832e-006	0.09852	1.0000	-5.7372
UO2(OH)3-	1.706e-006	0.5042	0.6606	-5.9481
UO2(CO3)3	2.488e-007	0.1031	0.0003	-10.1200
UO2(OH)4	7.294e-008	0.02269	0.1422	-7.9843
(only species >	1e-8 molal list	ted)		

	log Q/K	log Q/K
Na2U2O7(c)	3.6274s/sat Ice	-0.1387
Na2U2O7(am)	1.1191s/sat Natron	-2.8220
(only minerals	with $\log Q/K > -3 $ listed)	

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	2.444e-009	-8.612
NO2(g)	3.507e-020	-19.455
N2(g)	2.990e-020	-19.524
HCl(g)	1.341e-023	-22.873
NO(g)	5.285e-026	-25.277
Cl2(g)	1.160e-038	-37.936
H2(g)	6.301e-042	-41.201
CO(g)	4.809e-054	-53.318
Na(g)	4.399e-069	-68.357

NH3(g) UO3(g) UO2Cl2(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2Cl8(g) U2Cl10(g) U(g)	3.586e-0 2.544e-0 5.023e-1 4.870e-1 3.073e-1 1.047e-1 4.180e-1 1.166e-1 2.536e-1 2.794e-2 1.511e-2 4.692e-2 4.291e-2 5.845e-2 2.187e-2	44 -143.3 51 -150.5 55 -154.9 62 -161.3 69 -168.9 95 -194.5 07 -206.5 12 -211.8 49 -248.3 53 -252.3	445 594 299 312 512 980 379 933 596 554 321 329 367 233		
Original basis	total moles	In fluid moles mo		Sorbed bles mg/kg	
	2.82e-005 2. -1.02 54.5 0.00590 1.00 1.04 2.00 2.03e-006 2.	82e-005 -1.02 54.5 9.04 0.00590 1.00 1.57 1.04 2.20 2.00 5.89	0.920 -942. 4e+005 331. 7e+004 0e+004		
Elemental compo		In fl moles	mg/kg	Sorb moles	
Carbon Chlorine Hydrogen Nitrogen Oxygen	0.005900 2.821e-005	0.005900 2.821e-005 111.0 1.000 58.54	0.9204 1.030e+009 1.289e+004 8.620e+009	3 4 5 4 5	

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 24 hour (2), duplicate.

Xi = 0.0000Solvent mass = 1.000000 kg
Solution mass = 1.087021 kg
Solution density = 1.013 g/cm3
Chlorinity = 0.000028 molal
Dissolved solids = 80054 mg/kg sol'n
Rock mass = 0.000000 kg
Carbonate alkalinity= 418.88 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.068	2.259e+004	0.6605	-0.1516
NO3-	1.000	5.704e+004	0.6061	-0.2174
OH-	0.009366	146.5	0.6348	-2.2258
CO3	0.002434	134.4	0.1624	-3.4031
NaCO3-	0.001380	105.4	0.6605	-3.0403
NaOH(aq)	0.0006652	24.48	1.0000	-3.1771
02(aq)	0.0002500	7.360	1.0000	-3.6020
Cl-	2.633e-005	0.8586	0.6061	-4.7971
HCO3-	2.170e-005	1.218	0.6605	-4.8436
NaHCO3(aq)	1.442e-005	1.114	1.0000	-4.8411
NaCl(aq)	1.881e-006	0.1011	1.0000	-5.7257
UO2(OH)3-	1.411e-006	0.4167	0.6605	-6.0306
UO2(OH)4	6.031e-008	0.01876	0.1416	-8.0686
UO2(CO3)3	5.683e-008	0.02353	0.0003	-10.7698
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K _____ Na2U2O7(c) 3.4875s/sat Ice -0.1387 Na2U2O7(am) 0.9792s/sat Natron -2.9877 (only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g)	0.1978 0.02598 1.587e-009 3.519e-020	-0.704 -1.585 -8.799 -19.454 -19.521
N2(g)	3.011e-020	-19.521
HCl(g)	1.343e-023	-22.872
NO(g)	5.304e-026	-25.275
Cl2(g)	1.164e-038	-37.934
H2(g)	6.301e-042	-41.201
CO(g)	3.124e-054	-53.505
Na(g)	4.511e-069	-68.346

NH3(g) UO3(g) UO2C12(g) UO2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UO(g) UC12(g) C2H4(g) UC1(g) UC2(g) UC2(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	2.320e-20 1.259e-21 1.980e-24 3.568e-21 4.079e-21	70	26 74 80 91 00 58 56 12 83 35 00 03 48 89		
0-4-41 14-			. /1	Sorbed	
original basis	total moles r			es (119 / kg 	L/kg
C1- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	0.00385	-1.01 54.5 9.04 0.00385 1.00 1.57 1.07 2.26 2.00 5.89	-940. e+005 216. e+004 e+004 e+004		
Elemental comp	osition total moles		uid mg/kg	Sorbed moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.003850 2.821e-005 111.0 1.000 58.53 1.070 1.529e-006	0.003850 2.821e-005 111.0 1.000 58.53	42.54		

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19661, 1 week, duplicate.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.059	2.240e+004	0.6605	-0.1553
NO3-	1.000	5.706e+004	0.6063	-0.2173
OH-	0.009353	146.4	0.6350	-2.2263
CO3	0.001052	58.09	0.1628	-3.7665
NaOH(aq)	0.0006587	24.24	1.0000	-3.1813
NaCO3-	0.0005925	45.26	0.6605	-3.4074
02(aq)	0.0002500	7.362	1.0000	-3.6020
Cl-	2.634e-005	0.8594	0.6063	-4.7967
HCO3-	9.411e-006	0.5285	0.6605	-5.2065
NaHCO3(aq)	6.199e-006	0.4792	1.0000	-5.2077
NaCl(aq)	1.867e-006	0.1004	1.0000	-5.7290
UO2(OH)3-	1.366e-006	0.4035	0.6605	-6.0448
UO2(OH)4	5.816e-008	0.01809	0.1419	-8.0833
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K log Q/K
----Na2U2O7(c) 3.4518s/sat Ice -0.1387

Na2U2O7(c) 3.4518s/sat Ice Na2U2O7(am) 0.9435s/sat

Gases	fugacity	log fug.
O2(g) H2O(g) CO2(g) NO2(g) N2(g) HC1(g) NO(g) C12(g)	0.1978 0.02598 6.892e-010 3.525e-020 3.021e-020 1.346e-023 5.312e-026 1.169e-038 6.301e-042	-0.704 -1.585 -9.162 -19.453 -19.520 -22.871 -25.275 -37.932 -41.201
CO(g) Na(g)	1.356e-054 4.467e-069	-53.868 -68.350
NH3(g)	2.096e-069	-68.679

U03(g) U02Cl2(g) U02(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) UC(g) UC(g) UC12(g) C2H4(g) UC1(g) UC2Cl8(g) U2Cl10(g) U(g)	2.062e-08 4.042e-12 3.978e-14 8.667e-15 8.582e-15 3.440e-16 9.488e-17 7.153e-19 2.248e-20 1.225e-21 3.733e-25 3.466e-25 3.899e-27 1.470e-28 2.932e-29	-122.3 -143.4 -143.4 -151.0 -155.0 -169.0 -195.1 -206.6 -211.9 -249.4 -276.4 -283.8 -291.5	86 93 00 62 66 63 23 45 48 12 28 60 09 33 33		
Original basis	total moles m	In fluid noles mg		Sorbed mg/kg	
_	2.82e-005 2.8 -1.01 54.5 0.00166 0 1.00 1.06 2.00 1.43e-006 1.4	-1.01 54.5 9.04 0.00166 1.00 1.57 1.06 2.24 2.00 5.89	-938. e+005 93.2 e+004 e+004		
Elemental comp	osition total moles	In fl moles	uid mg/kg	Sorbed moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen	0.001660 2.821e-005 111.0 1.000 58.52 1.060 1.429e-006	0.001660 2.821e-005 111.0 1.000 58.52	18.35 0.9203 1.030e+005 1.289e+004 8.617e+005		

Experiment #3 (0.01 M NaOH, 0.001 M Na₂CO₃) sample 19661, 1 month, duplicate.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.785
 log fO2 = -0.704

 Eh = 0.5215 volts
 pe = 8.8152

 Ionic strength
 0.019664

 Activity of water
 0.999999

 Solvent mass
 = 1.000000 kg

 Solution mass
 = 1.001131 kg

 Solution density
 = 1.013 g/cm3

 Chlorinity
 = 0.000028 molal

 Dissolved solids
 = 1130 mg/kg sol'n

 Rock mass
 = 0.000000 kg

 Carbonate alkalinity=
 126.25 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.02642	606.7	0.8715	-1.6378
OH-	0.007097	120.6	0.8691	-2.2099
CO3	0.001171	70.21	0.5798	-3.1681
UO2(OH)3-	0.0009488	304.3	0.8715	-3.0826
02(aq)	0.0002500	7.991	1.0000	-3.6020
NaCO3-	5.864e-005	4.862	0.8715	-4.2915
Cl-	2.811e-005	0.9956	0.8666	-4.6133
HCO3-	2.724e-005	1.660	0.8715	-4.6245
NaOH(aq)	2.252e-005	0.8997	1.0000	-4.6474
UO2(OH)4	1.370e-005	4.626	0.5736	-5.1046
UO2(OH)2(aq)	1.095e-006	0.3326	1.0000	-5.9606
NaHCO3(aq)	7.794e-007	0.06540	1.0000	-6.1082
(UO2)3(OH)7-	7.182e-007	0.6665	0.8715	-6.2035
UO2(CO3)3	6.361e-007	0.2859	0.1077	-7.1644
NaCl(aq)	9.373e-008	0.005472	1.0000	-7.0281
(UO2)2CO3(OH)3-	8.325e-008	0.05414	0.8715	-7.1394
(only species > 1	1e-8 molal list	ced)		

	log Q/K		log Q/K
Na2U2O7(c) Na2U2O7(am) Ice Schoepite UO3:2H2O UO2(OH)2(beta)	6.4111s/sat 3.9028s/sat -0.1387 -0.4793 -0.4793	Schoepite-dehy(. U03:.9H2O(alpha) Schoepite-dehy(. Schoepite-dehy(. Schoepite-dehy(. Schoepite-dehy(3 listed)	-0.6627 -0.6627 -0.7430 -0.7491 -1.8523 -2.3703
(Only minerals	with log Q/K >	-3 listed)	

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	2.534e-009	-8.596
HCl(g)	1.977e-023	-22.704
Cl2(g)	2.521e-038	-37.598

H2(g) CO(g) UO3(g) Na(g) Na(g) UO2Cl2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) UC12(g) UC12(g) C2H4(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	6.301e-0 4.988e-0 2.547e-0 1.527e-0 3.926e-0 3.567e-1 1.633e-1 3.187e-1 5.176e-1 2.653e-1 2.653e-1 2.630e-1 1.984e-2 2.333e-2 5.048e-2 4.492e-2 6.575e-2 5.347e-2 2.588e-2	54	902 994 916 906 448 87 997 886 916 902 932 997 448 82		
Original basis	total moles	In fluid moles mg		Sorbed es mg/kg	Kd L/kg
C1- H+ H2O HCO3- Na+ O2(aq) UO2++	2.82e-005 2. -0.0113 55.5 0.00126 0.0265 0.000250 0 0.000967 0	-0.0113 55.5 9.99 0.00126	-11.3 9e+005 76.8		
Elemental compo	osition total moles		mg/kg		ed mg/kg
Carbon Chlorine Hydrogen Oxygen Sodium Uranium	0.001260 2.821e-005 111.0 55.52 0.02650	0.001260 2.821e-005 111.0 55.52 0.02650	15.12 0.9989 1.118e+005 8.874e+005		

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19887 yellow, 24 hour (1).

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.771
 log fO2 = -0.704

 Eh = 0.5223 volts
 pe = 8.8299

 Ionic strength
 1.038281

 Activity of water
 0.999999

 Solvent mass
 1.000000 kg

 Solution mass
 1.013 g/cm3

 Chlorinity
 0.000028 molal

 Dissolved solids
 79826 mg/kg sol'n

 Rock mass
 0.000000 kg

 Carbonate alkalinity=
 759.23 mg/kg as CaCO3

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.047	2.215e+004	0.6605	-0.1602
NO3-	1.000	5.706e+004	0.6063	-0.2173
OH-	0.009392	147.0	0.6349	-2.2245
CO3	0.004439	245.1	0.1627	-3.1413
NaCO3-	0.002471	188.7	0.6605	-2.7872
NaOH(aq)	0.0006540	24.07	1.0000	-3.1844
02(aq)	0.0002500	7.361	1.0000	-3.6020
HCO3-	3.953e-005	2.220	0.6605	-4.5831
Cl-	2.636e-005	0.8599	0.6063	-4.7964
NaHCO3(aq)	2.575e-005	1.990	1.0000	-4.5893
UO2(OH)3-	5.937e-006	1.754	0.6605	-5.4065
NaCl(aq)	1.847e-006	0.09931	1.0000	-5.7336
UO2(CO3)3	1.432e-006	0.5930	0.0003	-9.3644
UO2(OH)4	2.541e-007	0.07903	0.1419	-7.4432
(only species >	1e-8 molal list	ted)		

	log Q/K		log Q/K	
Na2U2O7(c) Na2U2O7(am)	4.7184s/sat 2.2101s/sat	Schoepite UO2(OH)2(beta)	-2.7886 -2.9010	
Ice	-0.1387	UO3:.9H2O(alpha)	-2.9720	
Natron	-2.7432	Schoepite-dehy(.	-2.9720	
UO3:2H2O	-2.7886			
(only minerals	with log Q/K >	-3 listed)		

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	2.883e-009	-8.540
NO2(g)	3.510e-020	-19.455
N2(g)	2.995e-020	-19.524
HCl(g)	1.341e-023	-22.872
NO(g)	5.290e-026	-25.277
Cl2(g)	1.160e-038	-37.935

H2(g) 6.301e-042 -41.201 CO(g) 5.674e-054 -53.246 Na(g) 4.435e-069 -68.353 NH3(g) 2.087e-069 -68.681 U03(g) 1.249e-069 -68.903 U02C12(g) 8.866e-080 -79.052 U02(g) 1.750e-122 -121.757 UC14(g) 1.698e-143 -142.770 CH4(g) 3.625e-151 -150.441 UC15(g) 3.650e-155 -154.438 UC16(g) 1.458e-161 -160.836 UC13(g) 4.064e-169 -168.391 C(g) 2.992e-195 -194.524 UO(g) 9.733e-207 -206.012 UC12(g) 5.267e-212 -211.278 C2H4(g) 6.532e-249 -248.185 UC1(g) 1.495e-252 -251.825 U2C18(g) 7.104e-276 -275.148 U2C110(g) 2.659e-283 -282.575 U(g) 1.270e-291 -290.896	
In fluid Sorbed Original basis total moles moles mg/kg moles	. Kd mg/kg L/kg
Cl- 2.82e-005 2.82e-005 0.920 H+ -1.02 -1.02 -943.	
H2O 54 5 54 5 9 04a+005	
HCO3- 0.00698 0.00698 392.	
NH3(aq) 1.00 1.57e+004	
Na+ 1.05 1.05 2.22e+004 O2(aq) 2.00 2.00 5.89e+004	
UO2++ 7.63e-006 7.63e-006 1.90	
Flemental composition In fluid	Sorbed
	Sorbed es mg/kg
total moles moles mg/kg mol	
total moles moles mg/kg mol 	
total moles moles mg/kg mol Carbon 0.006980 0.006980 77.14 Chlorine 2.821e-005 2.821e-005 0.9202 Hydrogen 111.0 111.0 1.030e+005	
total moles moles mg/kg mol Carbon 0.006980 0.006980 77.14 Chlorine 2.821e-005 2.821e-005 0.9202 Hydrogen 111.0 111.0 1.030e+005 Nitrogen 1.000 1.000 1.289e+004	
total moles moles mg/kg mol Carbon 0.006980 0.006980 77.14 Chlorine 2.821e-005 2.821e-005 0.9202 Hydrogen 111.0 111.0 1.030e+005	

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19887 yellow, 24 hour (2).

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.088	2.301e+004	0.6604	-0.1435
NO3-	1.000	5.702e+004	0.6059	-0.2176
OH-	0.009331	145.9	0.6347	-2.2275
CO3	0.001916	105.7	0.1620	-3.5079
NaCO3-	0.001105	84.31	0.6604	-3.1370
NaOH(aq)	0.0006750	24.83	1.0000	-3.1707
02(aq)	0.0002500	7.357	1.0000	-3.6020
Cl-	2.629e-005	0.8572	0.6059	-4.7978
HCO3-	1.712e-005	0.9606	0.6604	-4.9467
NaHCO3(aq)	1.159e-005	0.8951	1.0000	-4.9361
UO2(OH)3-	7.172e-006	2.118	0.6604	-5.3245
NaCl(aq)	1.913e-006	0.1028	1.0000	-5.7182
UO2(OH)4	3.062e-007	0.09519	0.1412	-7.3642
UO2(CO3)3	1.437e-007	0.05948	0.0003	-10.3730
(only species >	1e-8 molal list	ted)		

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 4.9160s/sat UO2(OH)2(beta) -2.8160

Na2U2O7(am) 2.4077s/sat Schoepite-dehy(. -2.8870

Ice -0.1387 UO3:.9H2O(alpha) -2.8870

Schoepite -2.7036 Schoepite-dehy(. -2.9673

UO3:2H2O -2.7036 Schoepite-dehy(1 -2.9734

(only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	1.257e-009	-8.901
NO2(g)	3.532e-020	-19.452
N2(g)	3.033e-020	-19.518
HCl(g)	1.346e-023	-22.871
NO(g)	5.323e-026	-25.274
Cl2(g)	1.169e-038	-37.932

H2(g) CO(g) Na(g) NH3(g) UO3(g) UO2Cl2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) C(g) UC12(g) UC12(g) UC12(g) UC12(g) UC12(g) UC13(g) UC13(g) UC12(g) UC12(g) UC12(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	2.474e-054 4.577e-069 2.100e-069 1.520e-069 1.086e-079 2.128e-122 2.096e-143 1.581e-151 4.523e-155 1.813e-161 4.999e-169 1.305e-195 1.184e-206 6.454e-212 1.242e-249 1.825e-252 1.083e-275	-68.3 -68.6 -68.8 -78.9 -121.6 -142.6 -150.8 -154.3 -160.7 -168.3 -194.8 -205.9 -211.1 -248.9 -251.7 -274.9	07 39 78 18 64 72 79 01 45 42 01 85 27 90 06 39 65 89		
Original basis	total moles mo	In fluid oles mg			Kd L/kg
Cl- H+ H2O HCO3- NH3(aq) Na+ O2(aq) UO2++	2.82e-005 2.82 -1.01	e-005 -1.01 54.5 9.03 00305 1.00 1.57 1.09 2.30 2.00 5.89	0.920 -939. e+005 171. e+004 e+004 e+004		
Elemental compo	sition total moles		mg/kg	Sorbeo moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen Sodium	0.003050 2.821e-005 2 111.0 1.000 58.53 1.090 7.629e-006 7	0.003050 2.821e-005 111.0 1.000 58.53 1.090			

Experiment #3 (1.0 M NaNO₃, 0.01 M NaOH) sample 19887 yellow, 1 week.

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	1.089	2.302e+004	0.6604	-0.1433
NO3-	1.000	5.702e+004	0.6059	-0.2176
OH-	0.009339	146.1	0.6347	-2.2272
CO3	0.001256	69.34	0.1621	-3.6911
NaCO3-	0.0007247	55.32	0.6604	-3.3200
NaOH(aq)	0.0006758	24.86	1.0000	-3.1702
02(aq)	0.0002500	7.357	1.0000	-3.6020
Cl-	2.629e-005	0.8572	0.6059	-4.7978
HCO3-	1.122e-005	0.6295	0.6604	-5.1302
NaHCO3(aq)	7.595e-006	0.5868	1.0000	-5.1194
NaCl(aq)	1.914e-006	0.1029	1.0000	-5.7181
UO2(OH)3-	1.366e-006	0.4033	0.6604	-6.0447
UO2(OH)4	5.834e-008	0.01814	0.1412	-8.0841
	4 0 3 3 3 4			

-0.1387

(only species > 1e-8 molal listed)

Mineral saturation states

log Q/K log Q/K

Na2U2O7(c) 3.4758s/sat Ice Na2U2O7(am) 0.9675s/sat

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	8.230e-010	-9.085
NO2(g)	3.529e-020	-19.452
N2(g)	3.028e-020	-19.519
HCl(g)	1.345e-023	-22.871
NO(g)	5.318e-026	-25.274
Cl2(g)	1.167e-038	-37.933
H2(g)	6.301e-042	-41.201
CO(g)	1.620e-054	-53.791
Na(g)	4.583e-069	-68.339
NH3(g)	2.098e-069	-68.678

U03(g) U02Cl2(g) U02(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) UC(g) UC(g) UC12(g) C2H4(g) UC1(g) UC2Cl8(g) U2Cl10(g) U(g)	9.489e-17 8.542e-19 2.252e-20 1.226e-21 5.323e-25 3.470e-25 3.895e-27 1.466e-28 2.938e-29	0 -79.6 3 -122.3 4 -143.4 1 -150.9 6 -155.0 2 -161.4 0 -169.0 6 -195.0 7 -206.6 2 -211.9 0 -249.2 3 -252.4 7 -276.4 4 -283.8 2 -291.5	85 93 01 85 67 64 23 68 47 11 74 60 10 34		
Original basis	total moles me	In fluid oles mg		Sorbed s mg/kg	
_	54.5 0.00200 0	-1.01 54.5 9.03 .00200 1.00 1.57 1.09 2.30 2.00 5.89	-938. e+005 112. e+004 e+004 e+004		
Elemental comp	osition total moles	In fl moles	uid mg/kg	Sorbeo moles	d mg/kg
Carbon Chlorine Hydrogen Nitrogen Oxygen	0.002000 2.821e-005 111.0 1.000 58.53 1.090 1.433e-006	0.002000 2.821e-005 111.0 1.000 58.53	22.09		

Experiment #3 (0.01 M NaOH, 0.001 M Na₂CO₃) sample 19887 yellow, 1 month.

 Step # 0
 Xi = 0.0000

 Temperature = 25.0 C
 Pressure = 1.013 bars

 pH = 11.854
 log fO2 = -0.704

 Eh = 0.5174 volts
 pe = 8.7460

 Ionic strength
 0.019214

 Activity of water = 0.999999
 0.999999

 Solvent mass = 1.000000 kg
 1.000984 kg

 Solution density = 1.013 g/cm3
 0.000028 molal

 Chlorinity = 0.000002 molal
 983 mg/kg sol'n

 Rock mass = 0.000000 kg
 115.22 mg/kg as CaCO3

 Xi = 0.0000

No minerals in system.

Aqueous species	molality	mg/kg sol'n	act. coef.	log act.
Na+	0.02512	577 . 0	0.8726	-1.6591
OH-	0.008311	141.2	0.8703	-2.1407
CO3	0.001076	64.50	0.5828	-3.2027
UO2(OH)3-	0.0005489	176.0	0.8726	-3.3197
02(aq)	0.0002500	7.992	1.0000	-3.6020
NaCO3-	5.149e-005	4.270	0.8726	-4.3474
Cl-	2.812e-005	0.9959	0.8678	-4.6126
NaOH(aq)	2.515e-005	1.005	1.0000	-4.5995
HCO3-	2.142e-005	1.306	0.8726	-4.7283
UO2(OH)4	9.257e-006	3.126	0.5767	-5.2726
NaHCO3(aq)	5.843e-007	0.04904	1.0000	-6.2333
UO2(OH)2(aq)	5.409e-007	0.1643	1.0000	-6.2669
UO2(CO3)3	1.760e-007	0.07912	0.1100	-7.7131
(UO2)3(OH)7-	1.014e-007	0.09409	0.8726	-7.0533
NaCl(aq)	8.939e-008	0.005219	1.0000	-7.0487
(UO2)2CO3(OH)3-	1.597e-008	0.01039	0.8726	-7.8558
(only species >	1e-8 molal list	ced)		

Mineral saturation states

log Q/K ______ Na2U2O7(c) 5.8943s/sat Schoepite-dehy(. -0.9690 Na2U2O7(am) 3.3860s/sat U03:.9H2O(alpha) -0.9690 Ice -0.1387 Schoepite-dehy(. -1.0493 Schoepite -0.7856 Schoepite-dehy(1 -1.0554 U03:2H2O -0.7856 Schoepite-dehy(. -2.1586 U02(OH)2(beta) -0.8980 Schoepite-dehy(. -2.6766 (only minerals with log Q/K > -3 listed)

Gases	fugacity	log fug.
02(g)	0.1978	-0.704
H2O(g)	0.02598	-1.585
CO2(g)	1.702e-009	-8.769
HCl(g)	1.688e-023	-22.773
Cl2(g)	1.839e-038	-37.735

H2(g) CO(g) UO3(g) Na(g) Na(g) UO2Cl2(g) UC14(g) CH4(g) UC15(g) UC16(g) UC13(g) UC12(g) UC12(g) UC12(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g) UC1(g)	6.301e-0 3.349e-0 1.258e-0 1.705e-0 1.415e-0 1.762e-1 4.293e-1 2.140e-1 1.162e-1 5.841e-1 8.163e-1 1.766e-1 9.800e-2 8.404e-2 2.275e-2 1.895e-2 4.541e-2 2.693e-2 1.278e-2	54	75 00 68 49 54 67 70 35 34 88 53 09 76 43 22 43 70		
Original basis	total moles	In fluid moles mg		Sorbed es mg/kg	Kd L/kg
C1- H+ H2O HCO3- Na+ O2(aq) UO2++	2.82e-005 2. -0.0112 55.5 0.00115 0.0252 0.000250 0 0.000559 0	-0.0112 55.5 9.99 0.00115	-11.2 e+005 70.1		
Elemental compo	osition total moles		mg/kg		ed mg/kg
Carbon Chlorine Hydrogen Oxygen Sodium Uranium	0.001150 2.821e-005 111.0 55.52 0.02520	0.001150 2.821e-005 111.0 55.52 0.02520	13.80 0.9990 1.118e+005 8.875e+005		

Distribution

No. of Copies	No. of <u>Copies</u>	
OFFSITE Dirk A. Dunning Oregon Office of Energy 625 Mariona Street, N.E.	Wade Rigsbee Yakima Nation P.O. Box 151 Toppenish, WA 98948	
Salem, OR 97301-3742	ONSITE	
Dr. Daniel I. Kaplan Westinghouse Savannah River Company	2 DOE Office of River Protection	
Building 774-43A, Room 215	R. W. Lober	H6-60
Aiken, SC 29808	R. A. Quinterro	H6-60
Dr. David Kosson Vanderbilt University	2 DOE Richland Operations Office	
VU Station B #351831 2301 Vanderbilt Place	DOE Public Reading Room (2)	H2-53
Nashville, TN 37235-1831	7 CH2M HILL Hanford Group, Inc	: .
Dr. Christine Langston	M. P. Connelly (3)	H6-03
Westinghouse Savannah River Co.	F. M. Mann	H6-03
Building 774-43A	J. G. Kristofzski	H6-03
Aiken, SC 29808	D. Parker	H6-03
	D. M. Nguyen	R2-12
Sandra Lilligren		
Nez Perce	Washington State Department of	Ecology
P.O. Box 365		
Lapwai, ID 83540	Mike Barnes	H0-57
Phil Reed U.S. Nuclear Regulatory Commission	21 Pacific Northwest National Labor	atory
Office of Nuclear Regulatory Research	B. W. Arey	K8-93
Division of Systems Analysis and	C. F. Brown	P7-22
Regulatory Effectiveness	R. W. Bryce	E6-35
Radiation Protection, Env. Risk and Waste	K. J. Cantrell (5)	K6-81
Management Branch	W. J. Deutsch	K6-81
MS T9-F31	K. M. Geisler	P7-22
Washington, D.C. 20555-0001		,

No. of		No. of	
<u>Copies</u>		<u>Copies</u>	
A. R. Felmy	K8-96	H. T. Schaef	K6-81
M. D. Freshley	K9-33	W. Um	P7-22
K. M. Krupka (2)	K6-81	J. M. Zachara	K8-96
M. J. Lindberg	P7-22	Hanford Technical Library (2)	P8-55
R. J. Serne	P7-22		