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ABSTRACT 
Expression arrays are introducing a paradigmatic change in biology by shifting experimental approaches from 
single gene studies to genome-level analysis, monitoring the expression levels of several thousands of genes in 
parallel. The massive amounts of data obtained from the microarray data needs to be integrated and interpreted to 
infer biological meaning within the context of information-rich pathways.  In this paper, we present a methodolo-
gy that integrates textual information with annotations from cross-referenced ontologies to map genes to pathways 
in a semi-automated way. We illustrate this approach and compare it favorably to other tools by analyzing the 
gene expression changes underlying the biological phenomena related to stroke.  Stroke is the third leading cause 
of death and a major disabler in the United States.  Through years of study, researchers have amassed a significant 
knowledge base about stroke, and this knowledge, coupled with new technologies, is providing a wealth of new 
scientific opportunities. The potential for neuroprotective stroke therapy is enormous.  However, the roles of neu-
rogenesis, angiogenesis, and other proliferative responses in the recovery process following ischemia and the mo-
lecular mechanisms that lead to these processes still need to be uncovered.  Improved annotation of genomic and 
proteomic data, including annotation of pathways in which genes and proteins are involved, is required to facili-
tate their interpretation and clinical application.  While our approach is not aimed at replacing existing curated 
pathway databases, it reveals multiple hidden relationships that are not evident with the way these databases ana-
lyze functional groupings of genes from the Gene Ontology. 

 

 

INTRODUCTION  
A detailed knowledge of the functional roles played by the expressed genes in the context of the biological 
pathways and networks is essential to identify the role of these genes in different biological processes.  The 
number and diversity of genes exceed the ability of any single investigator to track the complex relationships 
established by the data sets. Therefore additional tools are required for data analysis.  At the same time, the 
massive amount of data obtained from the microarray data needs to be integrated and interpreted correctly and 
further information is required to achieve this goal.  

The clustering of gene expression data based on common experimental features is a widely used technique for 
automating the analysis of gene expression patterns. However, these clustering techniques often yield too many 
groups, thus generating a crowded information environment in which relevant gene clusters and their functionality 
are not easily identified.  A further limitation of current gene expression analytic approaches such as clustering is 
that  
 
they do not incorporate comprehensive background knowledge about the genes—i.e., functional genomic 
information—into the analysis.   Functional genomics is concerned with the establishment of a verifiable link 
between gene expression and cell/organ/tissue function and dysfunction.  Different tools have been proposed for 
pathway analysis (or functional enrichment), however they can be limited to specific organisms.  

There are two main sources of functional genomic evidence that can be used to support the automated 
identification of gene expression patterns from microarray data:  textual evidence from relevant biomedical 
literature and the Gene Ontology. The exploitation of these sources presents great opportunities for biological 
discovery. 

The amount of information about biological entities and their interactions is huge and growing fast. The 
biomedical literature database MEDLINE indexes over 12 million articles, and it is growing by over 2000 daily. 
The traditional practice of manually retrieving gene information from biomedical document repositories (e.g., 
PubMed) and then filtering this information for significant and meaningful relationships is very time-consuming, 
usually requires biological experts, and often is not very successful.  Automatic information extraction from 
online biomedical articles and abstracts can provide a more efficient and comprehensive way of retrieving 
functional information about gene groups. For example, Raychaudhuri et al. (2003a, 2003b) show that genes can 
be clustered into functionally related groups by using textual evidence automatically extracted from biomedical 
articles and abstracts. However, to maximize the utility of information extraction for the elicitation of biomedical 



evidence, it is necessary to construct a reliable model for Entity Recognition and Relation Identification, as 
described in Pustejovsky et al. (2002), that is capable of establishing  
• equivalences across identical biological entities that can appear under diverse names (e.g., SPP1 = OPN = 
BNSP = Secreted phosphoprotein 1 = osteopontin)  
• relevant links among them (e.g.,OPN is expressed during embryogenesis).  
Moreover, the extraction process must be tuned to the focus problem at hand, in order to increase relevance and 
precision. 

The Gene Ontology (GO, http://www.geneontology.org) provides three orthogonal networks of about 17,000 
classificatory terms (GO codes) structured through semantic relationships such as inheritance (IS-A) and 
meronymy (PART-OF). GO codes encode biological process (BP), molecular function (MF) and cellular 
component (CC) properties of gene and gene products. Several web-based GO tools 
(http://www.geneontology.org/GO.tools.shtml) are now available that allow users to classify genes from gene 
expression microarrays (or other experimental studies). The Gene Ontology has also been used as a resource for 
measuring semantic similarity between gene products (see Lord et al. 2002, 2003; Couto et al. 2003; Azuaje et al. 
2005, Bodenreider et al. 2005, Posse et al. 2006). 

The Gene Ontology clearly constitutes a very important functional genomic knowledge resource and provides a 
structure for organizing genes into biologically relevant groupings. However, in its current form, it presents 
several critical limitations.  For example, there are no associative   relations across the three ontologies capable of 
indicating that a cellular component is the location of a molecular function and that a molecular function is 
involved in a biological process. The lack of such associative relations weakens reasoning power across GO 
codes, as recognized by Bada et al. (2004) and Bodenreider et al. (2005).  Also, while GO contains about 200 
terms corresponding to “pathways”, it does not address the relations between processes/functions and pathways.  
As Bodenreider et al. (2005) show, associative relations can be inferred through a variety of statistical techniques 
that estimate the similarity of two GO codes inter-ontologically in terms of the distribution of the gene product 
annotations associated with the two GO codes in the GO database. However, as Posse et al. (2006) point out (see 
also section C3), these methods yield associative similarity values that are not commensurate with values obtained 
through methods that estimate GO code similarity intra-ontologically (Lord et al. 2002, 2003; Couto et al. 2003; 
Azuaje et al. 2005). Therefore, intra- and inter-ontological GO code similarity cannot therefore be used in 
conjunction with ensuing reduced inference power. 

Finally, while there is an upsurge in the number of tools that use the Gene Ontology and Information Extraction 
techniques to assign biological significance to gene expression data, relatively little work has been devoted to the 
development of analytic methods that integrate GO annotations and textual evidence. This integration can be very 
powerful, especially in cases where one source of evidence alone is not sufficient to assist in the acquisition of the 
relevant biomedical knowledge. 

The goal of the high-throughput data analysis such as microarray data is to infer biological meaning within the 
context of information-rich pathways.  While GO has been used to annotate microarray data both by hand and by 
some software packages (Doniger et al. 2003), there has been no automated way to use it for pathway-based 
analysis except MAPPFinder, a tool that dynamically links gene-expression data to the GO hierarchy 
(http://www.genmapp. org/MAPPFinder.html).  There are several other pathway databases like MetacoreTM 
(www.genego.com) that use the Gene Ontology to map the functional processes onto pathway maps and signaling 
networks, but have limited functionality, e.g.  simple look-up of existing annotations and significance analysis of 
the categories found.  Moreover, none of these tools take into account one major limitation with the current GO 
structure: the gene ontologies address only one knowledge domain at a time and are not cross-referenced, despite 
the obvious similarities between terms across the three gene ontologies.  This could not only lead to a biased 
representation of functional processes, but also increase the chance of missing important relationships between 
genes in the presence of evidence supporting such relationships.  

The system we propose addresses these inadequacies by mapping genes to pathways in a semi-automated way 
by harnessing the combined functionality of (1) XOA, a methodology for computing semantic similarities 
between the gene annotations from cross-referenced gene ontologies, and (2) Medstract, an information extraction 
approach tuned to the biomedical domain. This system complements existing curated commercial pathway 
databases by revealing relationships that remain inscrutable for the GO-based functional analysis of gene 
grouping used in current pathway databases.  

  



 

 Stroke:  a specific problem 
Stroke is the third leading cause of death and the leading cause of disability in the United States. Of 
approximately 750,000 people afflicted, 158,000 die annually. The incidence of stroke is predicted to increase to 
over one million per year by 2050.  The potential for neuroprotective stroke therapy is enormous, even if it 
requires treatment prior to ischemic event. For instance, 50% of patients who undergo coronary artery bypass 
surgery suffer permanent cognitive decline from intraoperative emboli. Preoperative treatment of such patients 
(336,000 annually) could reduce stroke incidence and morbidity. 

Biologists at Oregon Health and Science University have developed a mouse model of neuroprotection in stroke 
and have carried out gene expression profiling studies to identify potential neuroprotective genes and their 
associated pathways (under a Program Project Grant funded by NINDS, PO1-NS035965). The goal of this work 
is to determine the endogenous molecular mechanisms involved in LPS preconditioning by examining the 
genomic changes associated with LPS-induced neuroprotection against focal ischemia.  Studies have shown that 
LPS preconditioning, via prior systemic administration of low doses of LPS, induces marked neuroprotection 
against subsequent stroke injury.  The cellular mechanisms of neuroprotection induced by preconditioning offer 
attractive targets for the development of therapeutic approaches (Stenzel-Poore et al. 2003).  However, in order to 
uncover such mechanisms, it is necessary to develop a holistic systems perspective capable of providing a better 
understanding of the roles played by both the trigger (LPS) and its outcome (the expressed genes).  For example, 
it is important to know how and in what experimental conditions or biological systems (e.g., heart, liver, brain) 
endotoxin (i.e., LPS) serves as a neuroprotectant.    Deciphering the relationship among genes with similar 
regulation pattern, such as genes upregulated in experimental cohorts pretreated with LPS, can lead to the 
discovery of genes that act as mediators of the protective phenotype. For example, by identifying the central 
mediators involved in LPS preconditioning, we may be able to define essential pathways responsible for this 
important cellular program and thereby provide novel therapeutic strategies in stroke. Our hypothesis, based on 
these preliminary studies is that knowledge about relationships among genes is instrumental in predicting how 
LPS may be regulating these genes and how these genes may be involved in neuroprotection, with consequent 
identification of which genes act as mediators of the protective phenotype. A detailed knowledge of the functional 
roles played by the expressed genes in the context of the biological pathways and networks that lead to cell death 
or cell survival is essential in order to identify the biomarkers of stroke and uncover the endogenous mechanisms 
of neuroprotection.  



METHODOLOGIES 
 Information Extraction using Medstract 

Medstract (Pustejovsky et al. 2002) comprises a set of robust natural language processing (NLP) tools for the 
automated extraction of unstructured information and the creation of bio-entities and bio-relations from Medline 
publications. We outline the general architecture of these tools for developing databases for domain-specific 
information servers. Currently, two databases have been built: a Bio-Acronym Server, Acromed, and an 
Inhibitory-Relation Server. Acromed results from the following processing of Medstract NLP modules: 
1. Preprocessing:  tokenization, tagging, stemming 
2. Shallow parsing and entity recognition and relation identification 
3. Semantic typing: semantic tag look-up and type composition 
4. Acronym and abbreviation recognition 
5. Anaphora and coherence resolution  
6. Database normalization. 

The relation identification module was developed independently of the specifics of how the particular relation 
(e.g., inhibit) and associated nominals behave in Medline. This module was defined and designed to work on the 
output of the shallow parsing module to identify argument and relational chunks, independently of any specific 
lexical item. The extraction of a particular relation (e.g., inhibit or regulate) is accomplished by identifying 
lexical items that denote the target relation. This task is subdivided in two parts:  
1. Sentence-level parsing identifies the predicate and the subject and object chunks as well as subordinate clauses 

and coordination 
2. Nominal level parsing identifies relations within a noun phrase. 

Using this machinery, a bio-relational database was built which contains regulatory and inhibitory relations of 
bio-entities (proteins, cellular processes, etc.) extracted from Medline data (2001 distribution). This database 
contains over 6,969,000 relations. The system has been measured at a performance of 90% precision, 59% recall, 
and 22% partial recall (Pustejovsky et al. 2002).  The user can select the type of relation to be searched (i.e., 
inhibit, regulate, etc.) as well as the Unified Medical Language System (UMLS) type (e.g., gene, amino acid) or 
name of the bio-entities, which are the arguments to the relation. As a result of the search, all biological relations 
relevant to the specified bio-entities are returned in either the form of a database table or a navigable hyperbolic 
graph. Both forms link directly to the citations from the abstracts. The server is in beta release and is being 
extended to other types of biological relations (e.g., acylation, phosphorylation). 

 Cross-Ontological Analytics (XOA) 
Until recently two orthogonal GO-based similarity approaches have been used. One approach assesses GO code 
similarity in terms of shared hierarchical relations, within each gene ontology (BP, MF, or CC) (Lord et al. 2002, 
2003; Couto et al. 2003; Azuaje et al. 2005).  For example, the relative semantic closeness of two biological 
processes would be determined by the informational specificity of the most immediate parent that the two 
biological processes share in the BP ontology. The other approach establishes GO code similarity by leveraging 
associative relations across the three gene ontologies (Bodenreider et al. 2005). Such associative relations make 
predictions such as which cellular component is most likely to be the location of a given biological process and 
which molecular function is most likely to be involved in a given biological process. 

While these two approaches are fully complementary, no effort has been made so far to combine them. One 
major difficulty in carrying out such a combination resides in the heterogeneity of the two measures, one based on 
a hierarchical assessment and the other on an associative one. This means that results relative to inter-ontological 
similarity relationships are not commensurable with intra-ontological ones. Posse et al. (2006) present a 
methodology, XOA for Cross-Ontological Analytics, where this difficulty can be solved so that the two 
approaches can be integrated, with ensuing benefits in coverage and accuracy.  

XOA provides a GO-based similarity algorithm capable of combining intra- and inter-ontological relations by 
“translating” each associative relation across the gene ontologies into a hierarchical relation within a single 
ontology, so that all GO similarities can be computed as intra-ontological relationships and therefore yield 
commensurable scores. More precisely, let c1 (c2) denote a GO code in the gene ontology O1 (O2), the XOA 
similarity score between c1 and c2 is defined as follows: 
 



 

XOA(c1, c2)  = 
max{sim(c1, c3)*cos(c2,c3), sim(c2,c4)*cos(c1, c4)} 

 
where cos(ci,cj) denotes the cosine associative measure proposed by Bodenreider et al. (2005), sim(ci,cj) denotes 
any of the three intra-ontological semantic similarities used by  Lord et al. (2002, 2003), and Azuaje et al. (2005), 
that is, the similarity measures proposed by Resnik (1995), Jiang and Conrath (1997) and Lin (1998), and the 
maximum is taken over all GO codes c3 in O1 and c4 in O2. 

In the next section, we present a case study of how an integrated analysis of XOA and Medstract reveals 
biologically meaningful relationships that are not identified with other data analysis approaches, including 
microarray analysis. 

 

Case Study: Using XOA and Medstract to relate genes to the TGF-beta signaling pathway 
In an effort to determine neuroprotective pathways associated with LPS preconditioning, we performed 
bioinformatics analysis, manual literature and database searches on the genes regulated in our microarray analysis.  
Promoter analysis of the microarray data, using PAINT (Vadigepalli et al. 2003), together with our data mining 
and manual literature curation, revealed a distinct role for TGFβ in LPS preconditioned mice that tips the balance 
in favor of SMAD1 signaling and away from SMAD3 pathways which may be harmful.  The TGFβ superfamily 
of proteins have been associated with improved outcome following brain ischemia, therefore we were interested 
in determining if TGFβ may be a candidate mediator of LPS induced neuroprotection. 

To date, 35 genes in our gene expression dataset have been identified as having associations with the TGFβ 
family of signaling molecules and the corresponding signaling pathways. As a case study, we used these 35 genes 
to determine whether the commonly used data analysis tools were able to map these genes to TGFβ pathways or 
to find linkages to TGFβ.  

We examined tools from the four common methods of data analysis: GoStat (Beissbarth and Speed 2004) for 
Gene Ontology, MetacoreTM (www.genego.com) for pathway databases, FatiWise (Mulder et al. 2003) for 
pathway prediction and Medstract for information extraction. The criteria for selecting these tools as a 
representative of each methodology were based on their demonstrated evidence in similar areas of research. As 
shown in Table 1, no single method succeeded in relating all 35 genes to TGFβ. Medstract and MetacoreTM 
performed the best by revealing 19 and 27 gene-to-TGFβ associations respectively. If all four techniques are 
combined, 34 of the 35 genes are identified as associated with TGFβ; Stk11ip is the gene for which no  TGFβ 
association is found. 

Using XOA, we examined the potential TGFβ link of our 35 genes by calculating the XOA score between every 
GO code of the gene and the GO code of TGFβ receptor signaling pathway (GO:0007179). For every gene, the 
GO code with the highest XOA score to the TGFβ receptor signaling pathway is shown in Table 1. In cases where 
several GO codes shared the highest XOA score (which reflects the actual biological nature of more than one 
processes or function being attributed to a pathway), these codes were ranked according to their informational 
specificity (see previous section) and the most specific GO code was retained. For illustrative purposes, the XOA 
score is given with reference to the Resnik-based similarity measure. The other variants of XOA based on Lin and 
Jiang & Conrath similarity measures (not shown) strongly corroborate the findings in Table 1 (correlations 
between XOA scores are close to 1). Table 1 also reports p-values associated with the XOA scores. The p-value is 
obtained by comparing the XOA score with the distribution of all possible scores obtained by computing the XOA 
score between all possible pairs of GO codes from the three gene ontologies.  
As Table 1 shows, XOA succeeds in finding a relation between all the 35 genes and the TGFβ receptor signaling 
pathway. Moreover, all but two XOA scores are associated with p-values ≤ 0.07. Stk11ip, the gene not identified 
by any of the above four methods, produces an XOA score corresponding to a p-value of 0.14 while the largest p-
value of 0.15 is observed with the gene Lefty1. However, the XOA score by itself is not sufficient to make a 
biological interpretation of a link unless it is supported by evidence from literature. This is where Medstract 
complements XOA. Table 1 reveals that when XOA scores are high enough (e.g. XOA≥ 5.83), the GO code 
linking one of the 35 genes to the TGFβ receptor signaling pathway is specific enough to provide an adept 
pathway link. In these cases, Medstract can be profitably queried using as input the gene and GO code link and 
the TGFβ pathway to obtain the appropriate information that validates and further characterizes the new pathway 
link discovered.  



When lower XOA scores are obtained (i.e., XOA<5.83), the GO code link tends to be less specific and therefore 
has a higher chance to refer to genes that may not be associated with the TGFβ receptor signaling pathway.  In 
these cases, several strategies for reducing these false positives are available. First, we can enrich the cohort of 
GO codes associated with the gene using GoPubmed (Doms and Schroeder 2005). GoPubmed is a web server that 
allows users to explore PubMed search results using the Gene Ontology for categorization and navigation 
purposes (available at http://www.gopubmed.org).  Querying GoPubmed with the gene returns a list of GO codes 
that can be filtered according to their informational content. The new list of specific GO codes is then used to find 
links to pathways using the XOA approach.  If these results are not satisfactory and continue to produce only 
generic GO code links, we can look for gene similarities between the gene of interest and the members of the 
TGFβ pathway.  As shown in Posse et al. (2006) the XOA methodology can be efficiently extended to gene 
product similarities as follows:  

Let GP1 and GP2 be two genes/gene products. Let c11,c12,…, c1n denote the set of GO codes associated with 
GP1 and c21, c22,…., c2m the set of GO codes associated with GP2. The XOA similarity between GP1 and 
GP2 is given by  

XOA(GP1,G P2) = max{XOA(c1i , c2j)} (1) 

where i=1,…,n and j=1,…,m. 
The higher the semantic similarity between the gene of interest and one of the genes in the pathway, the more 
likely it is that the gene of interest belongs to the pathway.  Medstract can be used to further substantiate this 
finding. 

 Discussion & Evaluation 
Unlike other GO tools or pathway prediction tools, XOA identifies which one amongst the many processes or 
functions that a gene performs can be correlated to a pathway. Such correlation is further substantiated by evi-
dence from literature using Medstract.   

Table 2, shows the GO terms found in association with the 35 genes spread across the three ontologies.  This 
shows that a gene product can have one or more molecular functions, be used in one or more biological processes 
and may be associated with one or more cellular components. While GO acts as a repository of the known 
functional biological information on each gene, the ability to determine which of the many biological processes or 
molecular functions or cellular components that a gene product has, can be correlated to a pathway has not been 
explored by the existing ontological analysis tools.  Though, GO molecular function terms have been used to 
predict subcellular locations (Lu and Hunter 2005), the current approaches used for ontological analysis are 
limited to looking up existing annotations and performing a significance analysis for the categories found.  These 
approaches may not be able to discover previously unknown functions for known genes even if there is data 
justifying such inference across the three ontologies.   

TGFβ exerts its action by binding to its transmembrane serine/threonine kinase receptors, which in turn triggers 
activation of various intracellular signaling pathways.  Though a biological process is not equivalent to a pathway, 
the GO term descriptions (like regulation of TGFβ receptor signaling pathway, or transmembrane protein 
serine/threonine kinase signaling pathway, etc.,), explicitly shows biological relevance to the TGFβ pathway.  The 
Stat1 gene has 15 biological processes, 6 of which returned the same highest XOA score to the pathway (signal 
transduction, intracellular signaling cascade, JAK-STAT cascade, tyrosine phosphorylation of STAT protein, 
STAT protein nuclear translocation, I-kappaB kinase/NF-kappaB cascade).  More than one biological process can 
be involved in a pathway, and in the case of Stat1, all these 6 process terms seemed relevant in the context of 
TGFβ pathway. XOA correctly identified the term, ‘JAK-STAT cascade’ as the more specific in terms of their 
information content to the pathway.     

In addition to mapping GO terms to pathways, XOA identifies relationships across ontologies.  For example, the 
gene “Fos” returned the biological process term, ‘Regulation of transcription, DNA dependent’ as the highest 
correlation to the TGFβ receptor signaling pathway.  When queried for highest XOA score to the pathway, for GO 
terms across ontologies, we observed the molecular function term ‘DNA binding’ and cellular location term 
‘Nucleus’ as the best correlations.  In the data observed, when a biological process can be defined as a series of 
events carried out by one or more ordered assemblies of molecular functions, then XOA has been able to identify 



 

that the biological process,“regulation of transcription, DNA dependent” constitutes the molecular function “DNA 
binding”, and the cellular location where this process or function happens is “Nucleus”.  

The XOA methodology has the ability to build semantic bridges between the three hierarchies of molecular 
functions, cellular components, and biological processes that provide a more clear view of how processes, 
functions and locations are related in the context of pathways.  

A biological process is a recognized series of events but not equivalent to a pathway although some GO codes 
do describe pathways. Since TGFβ receptor signaling pathway already had a GO code, we used the same for this 
case study.  However, in cases where the GO code for a specific pathway is not available, there are alternate ways 
of calculating semantic similarities, using XOA.  For example, as discussed in the previous section, we could use 
XOA to calculate the gene similarities between all the members of the pathway and the gene(s) of interest.  The 
higher the XOA score for common processes/functions, the closer is the semantic similarity between the gene of 
interest and the pathway under study.  We can use Medstract to understand what these processes or functions 
contribute to the pathway.   

SUMMARY & FUTURE WORK 
 The main motivation for exploring the relationship across the three gene ontologies is to understand the nature of 
their contribution in unraveling the biological phenomena performed by the genes and gene products.  The case 
study presented above shows that the combination of XOA and Medstract has the potential of identifying bio-
markers of stroke and uncovering the processes through which the genes carry out the biological phenomena.  
This provides a clear indication that XOA and Medstract have a very promising potential as pathway discovery 
tools. Moving forward, the evaluation of our preliminary study suggests that the alternative strategies have to be 
developed to properly address cases where more precision is required in associating genes to pathways. 
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Table 1: Comparison of methods relating genes to pathways using a set of 35 genes from microarray analysis of 
LPS preconditioning that have been manually identified as having associations with the TGFβ  receptor signaling 
pathway. 
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Semantically similar GO code of gene to TGFβ receptor 
pathway (GO:0007179)  

XOA Score

       Resnik P-value
Serpine1 √ √ √ √  GO:0005576 (Extracellular region) - CC 5.32 0.07
Smad1 √ √ √ √ √ GO:0007182 (SMAD protein heteromerization) - BP 11.76 0.00
Foxh1 √ √ √   GO:0003677 (DNA binding) - MF 5.22 0.07
Map3k7 √ √ √   GO:0007179 (TGFβ receptor signaling pathway) - BP 11.76 0.00
Strap √ √ √  √ GO:0030512 (negative regulation of TGFβ receptor signaling 

pathway) - BP
11.76 0.00

Tgfb3 √ √ √   GO:0007179 (TGFβ receptor signaling pathway) - BP 11.76 0.00
Tieg1 √ √ √   GO:0003676 (nucleic acid binding) - MF 5.31 0.07
Nodal √ √  √ √ GO:0007179 (TGFβ receptor signaling pathway) - BP 11.76 0.00
Catnb √ √ √ √  GO:0016055 (Wnt receptor signaling pathway) - BP 7.06 0.02
Fos √ √    GO:0003677 (DNA binding) - MF 5.22 0.07
Jun √ √    GO:0003677 (DNA binding) - MF 5.22 0.07
Runx2 √ √ √   GO:0040036 (regulation of fibroblast growth factor signaling 

pathway) - BP
9.76 0.00

Ski √ √ √   GO:0005737 (cytoplasm) - CC 5.22 0.07
Stat3 √ √    GO:0007259 (JAK-STAT cascade) – BP 5.83 0.05
Tgif2 √ √ √   GO:0003677 (DNA binding) – MF 5.22 0.07
Thbs1 √ √ √   GO:0007155 (cell adhesion) – BP 5.57 0.05
Acvr2 √  √   GO:0007178 (transmembrane protein serine/threonine kinase 

signaling pathway) – BP
11.07 0.00

Gdnf √  √  √ GO:0007179 (TGFβ receptor signaling pathway) – BP 11.76 0.00
Lefty1 √  √   GO:0007275 (development) – BP 3.51 0.15
Prss11 √  √  √ GO:0030512 (negative regulation of TGFβ receptor signaling 

pathway) – BP
11.76 0.00

Sara1 √  √   GO:0007264 (small GTPase mediated signal transduction) - 
BP 

5.83 0.05

Bmp8a √   √ √ GO:0007179 (TGFβ receptor signaling pathway) - BP 11.76 0.00
Inhba √   √  GO:0007166 (cell surface receptor linked signal transduction) - 

BP 
7.06 0.02

D0H4S11
4 

√    √ GO:0017015 (regulation of TGFβ receptor signaling pathway) 
– BP 

11.76 0.00

Tob1 √  √  √ GO:0007184 (SMAD nuclear protein translocation) – BP 11.76 0.00
Fhl2 √  √   GO:0008270 (zinc ion binding) – MF 5.22 0.07
Lef1 √ √ √   GO:0016055 (Wnt receptor signaling pathway) – BP 7.06 0.02
Lmo4 √  √   GO:0008270 (zinc ion binding) – MF 5.22 0.07
Miz1 √ √ √   GO:0008270 (zinc ion binding) – MF 5.22 0.07
Pias1 √  √   GO:0007259 (JAK-STAT cascade) – BP 5.83 0.05
OPN  √  √   GO:0007160 (cell-matrix adhesion) – BP 5.57 0.05
Stat1 √ √ √   GO:0007262 (STAT protein nuclear translocation) – BP 5.83 0.05
Stk11ip √     GO:0016301 (kinase activity) – MF 3.76 0.14
Tcf4 √  √   GO:0003677 (DNA binding) – MF 5.22 0.07
Tgif √  √   GO:0003677 (DNA binding) - MF 5.22 0.07



 

 

Table 2: Distribution of GO codes for 35 genes across the three ontologies – 
[Biological Process (BP), Molecular Function (MF), and Cellular Component (CC)] 
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Gene Symbols 
(# of GO 
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# of 
CC 
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Serpine1 
(10) 

3 4 3 Lefty1 
(7) 

3 3 1 

Smad1 
(23) 

16 3 4 Prss11 
(14) 

4 8 2 

Foxh1 
(14) 

9 3 2 Sara1 
(11) 

6 2 3 

Map3k7 
(14) 

3 11 - Bmp8a 
(10) 

7 2 1 

Strap 
(16) 

2 4 - Inhba 
(29) 

21 6 2 

Tgfb3 
(19) 

15 2 2 D0H4S114 
(2) 

1 1 - 

Tieg1 
(10) 

 

5 4 1 Tob1 
(7) 

3 3 1 

Nodal 
(10) 

7 2 1 Fhl2 
(5) 

1 3 1 

Catnb 
(49) 

25 9 15 Lef1 
(15) 

8 4 3 

Fos 
(14) 

7 2 5 Lmo4 
(11) 

5 4 2 

Jun 
(15) 

7 4 4 Miz1 
(8) 

4 3 1 

Runx2 
(17) 

10 5 2 Pias1 
(10) 

4 4 2 

Ski 
(5) 

1 1 3 OPN 
(32) 

18 6 8 

Stat3 
(27) 

15 8 4 Stat1 
(20) 

12 6 2 

Tgif2 
(6) 

3 2 1 Stk11ip 
(1) 

- 1 - 

Thbs1 
(8) 

2 4 2 Tcf4 
(16) 

6 8 2 

Acvr2 
(20) 

2 13 5 Tgif 
(9) 

4 3 2 

Gdnf 
(19) 

15 3 1     


