

Assessment of the 296-S-21 Stack Sampling Probe Location

J. A. Glissmeyer

September 2006

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-ACO5-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576 5728 email: reports@adonis.osti.gov

ASSESSMENT OF THE 296-S-21 STACK SAMPLING PROBE LOCATION

J. A. Glissmeyer

September 2006

Prepared for CH2MHill under a Related Services Agreement with the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

ABSTRACT

Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, *Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities*. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed:

- 1. Angular Flow—The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20°. The measured values ranged from 5 to 10 degrees on the scale model and 10 to 12 degrees on the actual stack.
- 2. Uniform Air Velocity—The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ≤20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion.

To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8 % COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the actual stack suggests that the other test results on the scale model are conservative relative to the actual stack.

- 3. Uniform Concentration of Tracer Gases—A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that 1) the COV of the measured tracer gas concentration is ≤20% across the center two-thirds of the sampling plane and 2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%.
- 4. Uniform Concentration of Tracer Particles—Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-µm aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ≤20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%.

Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

iii

ACKNOWLEDGMENTS

The author would like to express his appreciation to James G. Droppo and Brad G. Fritz of Pacific Northwest National Laboratory for performing most of the testing required for the work described in this report. Wayne Cosby formatted and edited the report.

CONTENTS

ABS	STRACT	iii
ACl	KNOWLEDGMENTS	V
AC	RONYMS	xi
1.0	INTRODUCTION: QUALIFICATION OF HV-C2 AIR MONITORIN	IG LOCATION1.1
2.0	QUALIFICATION CRITERIA	2.1
3.0	SCALE MODEL CONFIGURATION	3.1
	3.1 PHYSICAL ARRANGEMENT	3.1
	3.2 SCALE MODEL FLOWS	3.9
4.0	TEST METHODS	4.1
	4.1 FLOW-ANGLE TEST	4.1
	4.2 VELOCITY UNIFORMITY TEST	4.1
	4.3 FLOW-CONTROLS CALIBRATION	4.3
	4.4 GAS-TRACER UNIFORMITY TEST	4.3
	4.5 PARTICLE-TRACER UNIFORMITY TEST	4.6
5.0	TEST RUNS	5.1
6.0	TEST RESULTS	6.1
	6.1 FAN CONTROLS CORRELATION	6.1
	6.2 FLOW-ANGLE TEST	6.1
	6.3 VELOCITY UNIFORMITY TEST	
	6.3.1 Actual Stack Measurements	
	6.3.3 Scale Model Validation Measurements	
	6.4 GAS-TRACER UNIFORMITY TEST	6.5
	6.5 PARTICLE TRACER UNIFORMITY TEST	6.7
7.0	CONCLUSIONS	7.1
8.0	REFERENCES	8.1
API	PENDIX A: FLOW CALIBRATION PROCEDURE	A.1
ΔPI	PENDIX B: FLOW CALIBRATION DATA SHEETS	B 1

APPENDIX C: VELOCITY UNIFORMITY PROCEDURE	C.1
APPENDIX D: VELOCITY UNIFORMITY DATA SHEETS	D.1
APPENDIX E: FLOW ANGLE PROCEDURE	E.1
APPENDIX F: FLOW ANGLE DATA SHEETS	F.1
APPENDIX G: TRACER GAS UNIFORMITY PROCEDURE	G.1
APPENDIX H: TRACER GAS UNIFORMITY DATA SHEETS	H.1
APPENDIX I: PARTICLE TRACER UNIFORMITY PROCEDURE	I.1
APPENDIX J: PARTICLE TRACER UNIFORMITY DATA SHEETS	J.1
APPENDIX K: FLOW ANGLE AND VELOCITY UNIFORMITY DATA FOR THE ACTUAL STACK	K1

FIGURES

3.1.	Layout of Actual Stack as Viewed from Southeast of the Stack	3.1
3.2.	Diagram of Duct Positions at Base of Stack	3.2
3.3.	Plan and End Views of Scale Model.	3.3
3.4.	Side View of Test Section.	3.4
3.5.	View of Scale Model Showing (l. to r.) Fans 1 to 4, HEPA Filters, and Injection Ports	3.5
3.6.	Duct from Fan 1 to the Base of the Stack and the Aerosol Tracer Injection Setup	3.6
3.7.	Base of Stack and Connection of Discharge Ducts from Fans 2, 3, and 4 (l. to r.)	3.7
3.8.	Side of Stack Showing Test Ports and the Transition to the Stack	3.7
3.9.	View of Static Mixer	3.8
3.10	. View Down Stack Towards Static Mixer	3.8
4.1.	Flow Angle Measurement Apparatus	4.2
4.2.	View of Type-S Pitot Tube Inserted into Model Stack	4.2
4.3.	Electronic Manometer and Pitot Tube Inserted in Stack	4.3
4.4.	Tracer Gas Sampling Probe Inserted in Stack	4.4
4.5.	Tracer Gas Sampling Pump	4.5
4.6.	Tracer Gas Analyzer	4.5
4.7.	Particle Counter Connected to Probe	4.6
6.1.	Plot of Scale Model Flow Angle Results with Fans 3 and 4 Operating (Run FA-9)	6.2
6.2.	Plot of Flow Angle Measurements on Actual Stack, Run 4, Fans 3, 4	6.3
6.3.	Velocity Profile at Actual Stack with Fans 1, 2, and 3 (Run 1)	6.4
6.4.	Scale Model Velocity Profile with Fans 1, 2, and 3 Operating (Run VT-6)	6.5
6.5.	Plot of Gas-Tracer Results for Injection Port 1 and Fans 1, 2, and 3 (Run GT-1)	6.7
6.6.	Plot of Particle Tracer Concentration for Run PT-1	6.8

TABLES

3.1.	Key Dimensions of Actual and Scale-Model Stacks	3.4
3.2	Summary of Flow Parameters of Actual Stack and Scale Model at Port 4	3.9
5.1.	Minimum Test Runs to be Performed on Scale Model.	5.1
6.1.	Flowrates Measured at Test Port 4 During Control Correlation	6.1
6.2.	Flow Angle Tests on Scale Model	6.2
6.3.	Flow Angle Tests on Actual Stack.	6.2
6.4.	Velocity Uniformity Tests on Actual Stack	6.3
6.5.	Velocity Uniformity Tests on Scale Model at Air Sampling Probe Location	6.4
6.6.	Scale Model Velocity Uniformity Tests Simulating Actual Stack Tests	6.5
6.7.	Summarized Results of Gas-Tracer Uniformity Tests at Test Port 4	6.6
6.8.	Results of Gas-Tracer Uniformity Tests at Other Test Ports	6.7
6.9.	Summarized Particle Tracer Uniformity Tests	6.8
7.1.	Conclusions on Air Sampling System Tests	7.1

ACRONYMS

AD aerodynamic diameter

COV coefficient of variance

EPA U.S. Environmental Protection Agency

HEPA high-efficiency particulate air

OPC optical particle counter

Q/D ratio of flowrate (Q) to stack diameter (D)

1.0 INTRODUCTION: QUALIFICATION OF HV-C2 AIR MONITORING LOCATION

This series of tests documents an assessment of how the current air-monitoring system for the 296-S-21 Stack meets the applicable regulatory criteria regarding the placement of the air-sampling probe. Pacific Northwest National Laboratory conducted the tests on a scale model of the stack. CH2MHill staff also conducted some confirmatory tests at the actual 291-S-21 stack. The standard governing the performance of the tests, test methods, and acceptance criteria is ANSI/HPS N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stack and Ducts of Nuclear Facilities.

2.0 QUALIFICATION CRITERIA

The qualification criteria for an air-monitoring probe location are as follows:

- Angular Flow—Sampling nozzles are usually aligned with the axis of the stack. If the air travels up the stack in cyclonic fashion, the air velocity vector approaching the nozzle could be misaligned with the sampling nozzles enough to impair the extraction of particles. Consequently, the flow angle is measured in the stack at the elevation of the sampling nozzle. The average flow angle must not deviate from the axis of the sampling nozzle by more than 20°.
- 2. Uniform Air Velocity—The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. Consequently, the velocity is measured at several points in the stack at the elevation of the sampling nozzle. The uniformity is expressed as the variability of the measurements about the mean. This is expressed using the coefficient of variance (COV), which is the standard deviation divided by the mean and expressed as a percentage. The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ≤20% across the center two-thirds of the area of the stack
- 3. Uniform Concentration of Tracer Gases—A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This is first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fan provides worst-case results. The acceptance criteria are that 1) the COV of the measured tracer gas concentration is ≤20% across the center two-thirds of the sampling plane, and 2) at no point in the sampling plane does the concentration vary from the mean by >30%.
- 4. Uniform Concentration of Tracer Particles—Uniformity in contaminant concentration at the sampling probe is further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-μm aerodynamic diameter (AD) are used by default unless it is known that larger particles are present in the airstream. The acceptance criterion is that the COV of particle concentration is ≤20% across the center two-thirds of the sampling plane.

The tests to assess compliance with Criteria 1 to 4 can be performed on the actual stack or with a scale model. The ANSI/HPS N13.1-1999 standard sets acceptance criteria for the use of a scale model as a substitute for the actual stack.

- The scale model and its sampling location must be geometrically similar to the actual stack.
- The product of the model's mean air velocity times the hydraulic diameter will be within a factor of six of the actual stack.
- The Reynolds number for the prototype and model stacks must >10,000.

The scale model results are considered valid if:

- The velocity profile in the actual stack meets the uniformity criterion.
- The velocity uniformity COV for the actual and model stacks agree within 5% COV.

3.0 SCALE MODEL CONFIGURATION

This section describes the configuration for the scale model and the flows in the scale model.

3.1 PHYSICAL ARRANGEMENT

Four fans are available to power the exhaust air in the 296-S-21 stack, three electric (EF1, EF2, and EF3) fans and one diesel powered (EF4). Normally, only the three electric fans are used. The diesel fan is used as a backup in case of a loss of electric power, during which time operations inside the 222-S laboratory cease. It is also used in conjunction with any one of the electric fans during maintenance of one of those fans.

Figure 3.1 shows the stack with the ducts from each fan feeding the bottom of the stack. Three of the four ducts are shown, and the fourth is behind the others. A static mixer is located at the top of the square-round transition. The sampling point is close to the top of the stack. The fan output runs about 29,000, 23,500, 26,500, and 50,000 cfm for fans EF1, EF2, EF3, and EF4, respectively.

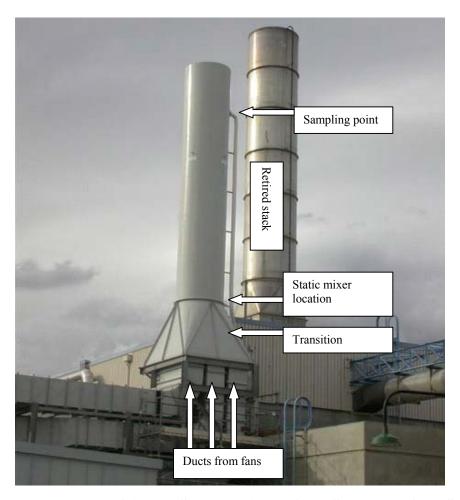


Figure 3.1. Layout of Actual Stack as Viewed from Southeast of the Stack

Figure 3.2 is a crude representation of the base of the stack proper where the four ducts discharge into the stack. Note that the output of each fan enters the stack base at a different position instead of through a common manifold arrangement.

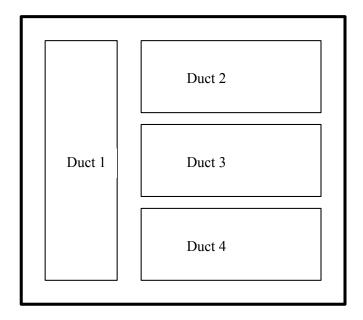


Figure 3.2. Diagram of Duct Positions at Base of Stack

Assuming that the flowrate from any one fan varies only within a small range (\pm 20%), the only potential cause for changes in mixing would be which combination of fans is in use. The tests documented in this report will assess whether that mixing occurs for each different combination of fans. There are four possible combinations of fans when the lab is operating—Fans 1, 2, and 3 run most of the time, and when Fan 4 is used, it is run with any one of the others. Potentially, if there is a release of airborne contaminants, it could be entering the stack from more than one fan at a time; however, it is assumed that a release via one duct at a time would be the worst case for mixing.

Figure 3.3 shows the plan and end views of the scale model. For convenience in testing, the stack was modeled as if it were tipped on its side in the easterly direction. This does not affect the test results.

It was necessary to only model the stack from the final bends in the four ducts entering the stack to the top of the stack. It was recognized that regardless of the mixing that occurs between the fans and the base of the transition, the discharge from each fan does not mix with that of the other fans until the transition and static mixer are reached. The mixing of the fan discharges occurs entirely between the base of the transition and the sampling point. The shape of the last bends into the transition base was also retained to preserve whatever flow-angle effects are caused by these bends. The distance from the transition base to the tracer injection points was also scaled from the same distances on the actual stack to the injection points that would have been used had the tests been done on the actual stack.

Figure 3.4 shows a side view of the test section with the test-port pairs numbered left to right. Most tests were done using Test Port 4 because that simulates the location of the sampling probe. Some scale model validity tests were also done at Test Port 3 to simulate the test ports CH2MHill used for flow angle and velocity uniformity determinations on the actual stack. Test Ports 1 and 2 were available for supplementary tests at different distances from the static mixer if that became necessary.

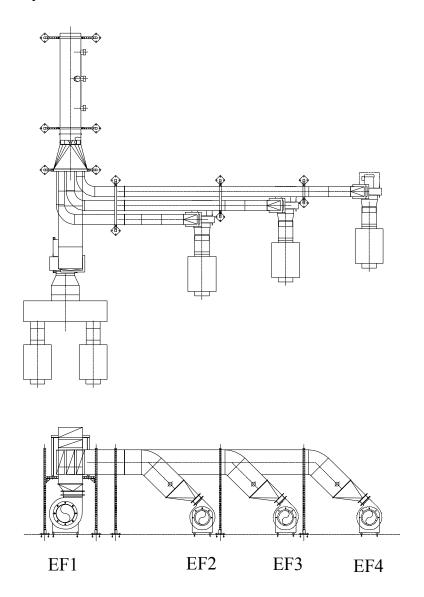


Figure 3.3. Plan and End Views of Scale Model

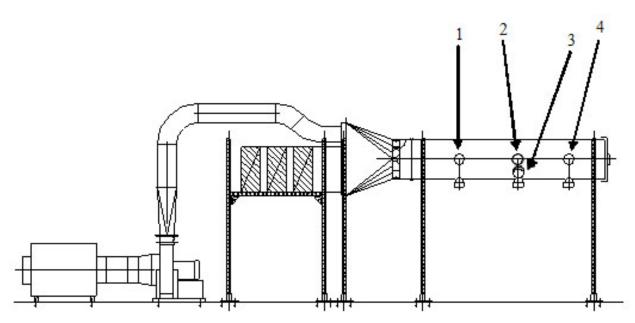


Figure 3.4. Side View of Test Section

Table 3.1 lists some key dimensions of the actual and as-built scale model stack.

Table 3.1. Key Dimensions of Actual and Scale-Model Stacks

Key dimensions	Actual Stack	Scale Model
End of mixer to end of stack	342.4 in. (5.2 D)	92.625 in. (5.1 D)
End of mixer to Test Port 1	N.A.	27.375 in. (1.5 D)
End of mixer to velocity test ports (Test Port 3)	198 in. (3.0 D)	54.625 in. (3.0 D)
End of mixer to probe location (Test Port 4)	282.4 in. (4.3 D)	77.75 in. (4.3 D)
Stack diameter	66 in.	18 in. at Test Ports 1, 2, & 3 17-7/8 in. at Test Port 4
Transition length	84.5 in.	33 in.
Overall transition base H × W	122-in. H × 106.5-in W	33.25-in. H × 29-in. W
Fan duct cross sections at transition base W × H	76-in. W × 26-in. H	20.75-in. W × 7-in. H
Fan duct cross sections at injection ports	78-in. W × 32-in. H	21.25-in. W × 8.75-in H
Distance from transition base to		
tracer injection port		
Fan 1	20.5 ft	5.1 ft
Fan 2	32.5 ft	8.4 ft
Fan 3	39.8 ft	9.9 ft
Fan 4	>98 ft	21.5 ft

Figure 3.5 to Figure 3.10 show views of the scale model. Figure 3.5 shows the scale model from the side of the fans and ducts and the high-efficiency particulate air (HEPA) filters used at the fan inlets. Figure 3.6 shows the model from the side showing how the discharge from Fan-1 connects with the base of the stack. Figure 3.7 shows the ducts from Fans 2, 3, and 4 connecting to the base of the stack. Figure 3.8 shows the side of the stack and the transition from the base to the stack. The static mixer is located where the transition meets the stack. Figure 3.9 shows the static mixer before installation, and Figure 3.10 is a view down the stack looking at the static mixer.

Figure 3.5. View of Scale Model Showing (l. to r.) Fans 1 to 4, HEPA Filters, and Injection Ports

Figure 3.6. Duct from Fan 1 to the Base of the Stack and the Aerosol Tracer Injection Setup

Figure 3.7. Base of Stack and Connection of Discharge Ducts from Fans 2, 3, and 4 (l. to r.)

Figure 3.8. Side of Stack Showing Test Ports and the Transition to the Stack

Figure 3.9. View of Static Mixer

Figure 3.10. View Down Stack Towards Static Mixer

3.2 SCALE MODEL FLOWS

For the scale model results to apply to the actual stack, the ANSI N13.1-1999 standard requires that the scale model's product of mean velocity \times hydraulic diameter be within a factor of six of the actual stack. For stacks with a circular cross section, this is equivalent to requiring that the ratio of flowrate to stack diameter (Q/D) be within a factor of six of the actual stack. The standard also requires that the Reynolds number for the prototype and model stacks must >10,000.

Table 3.2 summarizes the prototype and scale model flow parameters that satisfy the scaling requirements, assuming that the scale model stack has a $17^{-7}/_{8}$ -in. diameter that was measured at Port 4. CH2MHill provided the data for the actual stack. (The diameter measured at the other ports was 18-in.) The flowrate and velocity values for the scale model are treated as minimum target values. These are helpful for selecting fans with appropriate capacity. Higher values can be used. It was prudent to choose equipment with higher values in mind to verify that the minima are achieved.

Table 3.2 Summary of Flow Parameters of Actual Stack and Scale Model at Port 4

	Air	Flow cfm	Air V	Air Velocity fpm		lds Number
Fan	Actual	Scale Model	Actual	Scale Model	Actual	Scale Model
Combinations	Stack	Min.	Stack	Min.	Stack	Min.
1	29000	1309	1221	751	7.1E+05	1.2E+05
2	23500	1061	989	609	5.7E+05	9.5E+04
3	26500	1196	1115	686	6.5E+05	1.1E+05
4	50000	1743	2105	1295	1.2E+06	2.0E+05
1, 2, 3	79000	3566	3325	2046	1.9E+06	3.2E+05
1, 4	79000	3566	3325	2046	1.9E+06	3.2E+05
2, 4	73500	3318	3094	1904	1.8E+06	3.0E+05
3, 4	76500	3453	3220	1981	1.9E+06	3.1E+05

The air temperature in the operating stack did not need to be simulated because it had a negligible effect on the scale of turbulence produced by the geometry of the system. However, the air temperature in the model was maintained above 55°F so that the tracer measurement instrumentation was within its operating range and provided reliable data.

4.0 TEST METHODS

This section describes the flow-angle and velocity uniformity tests, the flow-controls calibration, and the gas-tracer and particle-tracer uniformity tests.

4.1 FLOW-ANGLE TEST

The air velocity vector approaching the sample nozzle should be aligned with the axis of the nozzle, within an acceptable angle, so sample extraction performance is not degraded. The test method is based on 40 CFR 60, Appendix A, Method 1, Section 2.4, "Verification of the Absence of Cyclonic Flow."

The term "flow angle" is the angle between the air velocity vector and the axis of the sampling nozzle. The flow angle was measured at a grid of points in a cross section of the stack at the scaled elevation of the actual sampling probe. The grid was an array of points in an x-pattern in the cross section of the duct. One line of points was aligned in the same direction as the existing actual sampling probe. The other line will be perpendicular to that. The number and distance between measurement points was based on the U.S. Environmental Protection Agency (EPA) procedure 40 CFR 60, Appendix A, Method 1.

Measurements were made using a type-S pitot tube attached by flexible tubes to a slant-tube manometer, and an angle-indicating device was attached to the pitot tube as shown in Figure 4.1. Figure 4.2 shows the view down the stack towards the type-S pitot tube at Port 3 Northeast. Procedure EMS-JAG-05, "Test to Determine Flow Angle at the Elevation of a Sampler Probe," provides the general procedure to determine the mean flow angle. A copy of the procedure is in Appendix E.

4.2 VELOCITY UNIFORMITY TEST

The uniformity of air velocity where the air sample is being extracted verifies that the air momentum in the stack is well mixed. To determine uniformity, air velocity was measured at the same grid of points used for the angular flow test. The method used was based on 40 CFR 60, Appendix A, Method 1.

The air velocity was measured three times at each grid point, and each measurement was recorded. The measurements at each grid point are averaged to determine the average velocity at each grid point. The values for each grid point in the center $^2/_3$ of the stack are used to calculate the mean and standard deviation of velocity for the sampling location. The percent relative standard deviation (also called the COV) was calculated as 100 times the standard deviation divided by the mean. This value should be less than or equal to 20%.

The equipment used included a standard pitot tube (Prandtl type) and a calibrated electronic manometer and air velocity meter. Figure 4.3 shows the setup. Procedure EMS-JAG-04, "Test to Determine Uniformity of Gas Velocity at the Elevation of a Sampler Probe," shown in Appendix C, was used for this test.

Figure 4.1. Flow Angle Measurement Apparatus

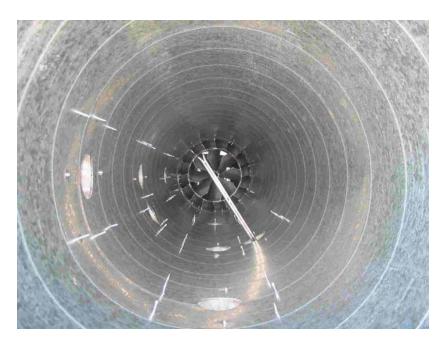


Figure 4.2. View of Type-S Pitot Tube Inserted into Model Stack

Figure 4.3. Electronic Manometer and Pitot Tube Inserted in Stack

4.3 FLOW-CONTROLS CALIBRATION

The first test performed with the scale model was to obtain an approximate calibration of the fan flow controls. Each fan has its own speed control, which is a variable frequency drive with settings from 0 to 60 Hz. The first step was to measure the flowrate of each fan separately with the speed control set at 30 Hz. Then a point with average velocity is identified. A calibrated air velocity meter is used to take readings at that point while the speed settings are varied from 5 to 60 Hz. Procedure EMS-JAG-03, "Test to Calibrate Ventilation Flow Controller," shown in Appendix A, was used for this preliminary test. The results provide the approximate settings to achieve the flowrate desired for the balance of the tests.

4.4 GAS-TRACER UNIFORMITY TEST

The gaseous contaminant concentration uniformity was demonstrated using sulfur hexafluoride as a tracer gas. The tracer gas was injected into the air downstream of a fan along the centerline of the duct. One injection location at a time was tested. Once the injection point yielding the worst case results was identified, additional tests were done where the tracer was injected along the centerline of the duct and at four points near the corners or edge of the duct.

For each injection position, the tracer concentration was measured at the sampling location using the same measurement grid used for the other tests. The tracer concentration was measured three

times at each grid point, and each measurement was recorded. The measurements at each grid point are averaged to determine the average concentration at each grid point. The values for each grid point in the center 2/3 of the stack are used to calculate the mean and standard deviation of concentration for the sampling location. The percent COV is calculated as 100 times the standard deviation divided by the mean. This value should be less than or equal to 20%. The average concentration values for all grid points were also compared to the mean to determine if the concentration at any point deviates from the mean by more than 30%.

The tracer gas concentration was measured with an Innova AirTech Instruments A/S (Ballerup, Denmark) Model 1302 photoacoustic gas analyzer. Because the result is the standard deviation of the readings divided by the mean, the calibration bias is unimportant to the test results. However, the analyzer response was checked using calibration standards before conducting the test series to verify that the instrument responds adequately to changes in concentration. If the indicated concentration was within 20% of the standard, the response was acceptable.

The measurements were made at Test Port 4 because they simulate the position of the sampling probe. Figure 4.4 to Figure 4.6 show the tracer gas sampling probe, the sampling pump, and the gas analyzer, respectively. Procedure EMS-JAG-01, "Test to Determine Uniformity of a Tracer Gas at a Sampler Probe," shown in Appendix G, was used for this test.

Figure 4.4. Tracer Gas Sampling Probe Inserted in Stack

Figure 4.5. Tracer Gas Sampling Pump

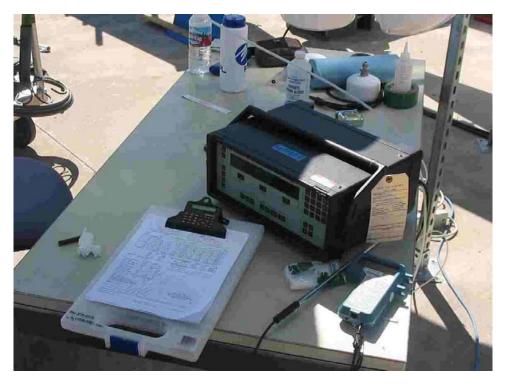


Figure 4.6. Tracer Gas Analyzer

4.5 PARTICLE-TRACER UNIFORMITY TEST

The test for uniformity of tracer particles is similar to the test for uniformity of tracer gases. The general approach is to inject a polydisperse aerosol into the test stack downstream of a fan. The concentration of the particles is then measured at the sampling grid points with a calibrated optical particle counter (OPC, Met-One Model A2408, Grants Pass, Oregon). A simple probe was used to extract the sample and deliver it to the OPC. Figure 4.7 shows the sampling probe and OPC located at Test Port 4.

Figure 4.7. Particle Counter Connected to Probe

The tracer aerosol was vacuum pump oil (Fisherbrand 19TM). It is drawn into a compressed-air-driven spray nozzle and is housed in the chamber shown in Figure 3.6. The chamber provides a means for injecting the particles into the airflow through a probe.

The tracer injection ports were the same as for the gaseous tracer; however, only the centerline injection point was used. The layout of measurement points was the same as for all of the other tests.

The OPCs sort the number of particles into six size channels. Each concentration reading was the count of particles in the 9- to 11- μ m channel. The readings were recorded on a data sheet. Three readings were taken at each point and averaged. The coefficient of variance of the average concentration readings at all points was calculated, and the result was compared to the acceptance criterion for uniformity. The particle mixing was acceptable if the COV of the tracer particles of 10- μ m AD was less than or equal to 20% across the center two-thirds of the sampling plane.

Procedure EMS-JAG-02, "Test to Determine Uniformity of a Tracer Aerosol at a Sampler Probe," shown in Appendix I, was used for this test.

5.0 TEST RUNS

Table 5.1 lists the test matrix where one of each test type was conducted for each fan (and potential source of contamination) combination. There are 10 such combinations.

Only a single test run was required for a given combination for the flow angle, velocity uniformity, and particle-tracer uniformity measurements. However, to completely qualify a monitoring location, ANSI/HPS N13.1-1999 requires that the gas tracer be injected at five positions in the injection cross section, one at a time, along the centerline, and four positions around the perimeter or in the corners of the duct. This could result in five test runs for the gastracer injection, or about 50 gas-tracer runs to cover all of the combinations.

To reduce the time to perform the gas-tracer tests, we performed one gas-tracer injection per combination. After the combination with the worst case of results was identified, then the additional corner injection tests were conducted for that one configuration.

Additional flow angle and velocity uniformity tests were performed using Test Port 3 to compare with the same measurements made on the actual stack. Also, additional flow-measurement tests were performed over the range of fan control settings to obtain an approximate calibration of the fan control setting versus flowrate.

Table 5.1. Minimum Test Runs to be Performed on Scale Model

		Es	timated Num	ber of Test F	Runs	
Fan Where Tracer Was Injected	Other Operating Fans	Flow Angle	Velocity	Gas Tracer	Part Tra	
Same as used on actua	stack for validation	2	2			
1	2, 3	1	1	1	1	
2	1, 3	0	0	1	1	
3	1, 2	0	0	1	1	
1	4	1	1	1	1	
2	4	1	1	1	1	
3	4	1	1	1	1	
4	1	0	0	1	1	
4	2	0	0	1	1	
4	3	0	0	1	1	
4	none	1	1	1	1	
Worst case gas-tra	cer combination	0	0	5	C)
Total		7	7	15	10	39

6.0 TEST RESULTS

The results will be presented by each type of test.

6.1 FAN CONTROLS CORRELATION

All of the measurements made for this test were done using Test Port 4. The half speed measurements were done prior to any of the other scale model tests. Table 6.1 lists the results. These measurements were repeated later at the speed settings used for the tracer tests, and those results are included in Table 6.1. The flowrates were measured using the same procedure as for the velocity uniformity test. The observed uniformity COV result was also calculated for these tests for comparison with the velocity uniformity tests. The measurements of velocity as a function of control setting are shown in Appendix B.

Operating Fans	Run No.	Flowrate cfm	% COV with Center- Point	% COV Without Center-Point
1-half speed	VT-4	751	5.4	-
1–56 Hz	VT-17 ^(a)	1411	4.5	4.5
2- half speed	VT-3	816	4.3	-
2–44 Hz	VT-18 ^(a)	1218	4.4	4.5
3-half speed	VT-2	827	6.6	-
3–50 Hz	VT-19 ^(a)	1401	7.7	8.0
4-half speed	VT-1	1329	9.2	-
4–52 Hz	VT-20 ^(a)	2523	10.6	11.0
(a) Done with only tw	o replicates in each traver	rse direction.		

Table 6.1. Flowrates Measured at Test Port 4 During Control Correlation

Because of inefficiencies in the scale-model fans, the target flowrates were not always achieved in the other tests, even though settings based on the control calibration indicated that the targets should be met. This did not turn out to be very consequential because the test results are more dependent on the geometry than the flowrate. Table 6.1 shows that there was no significant difference in velocity uniformity when the fans were at half speed versus the settings usually used in the tests.

6.2 FLOW-ANGLE TEST

Table 6.2 lists the results for the flow-angle tests performed on the scale model. Tests were done for all fan combinations at Test Port 4 and selected combinations for the other test ports. Figure 6.1 shows a chart of typical results from the scale model.

CH2MHill also tested the actual stack using ports equivalent to the scale model's Test Port 3. Table 6.3 shows the results. Figure 6.2 shows a plot of typical results from these tests. In all cases, the results at the actual stack and with the scale model meet the criterion that the average absolute angle be less than 20°. Appendix F provides the data sheets.

Table 6.2. Flow Angle Tests on Scale Model

Test Port	Operating Fans	Run No.	Avg. Absolute Angle
4	1, 2, 3	FA-1	5.2
4	1, 4	FA-2	6.4
4	2, 4	FA-3	5.6
4	3, 4	FA-4	6.6
4	4	FA-5	6.8
4	4	FA-6	7.3
1	1, 2, 3	FA-7	10.3
3	1, 2, 3	FA-8	7.3
3	3, 4	FA-9	7.8

Table 6.3. Flow Angle Tests on Actual Stack

Test Port	Operating Fans	Run No.	Avg. Absolute Angle
3 equivalent	1, 2, 3	1	12.4
3 equivalent	1, 4	2	10.5
3 equivalent	2, 4	3	10.8
3 equivalent	3, 4	4	9.9

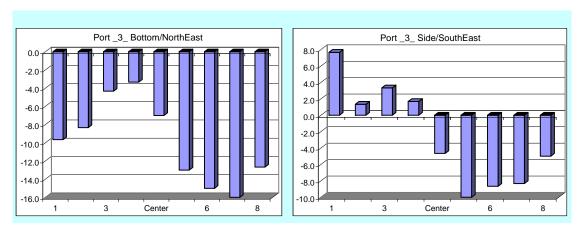


Figure 6.1. Plot of Scale Model Flow Angle Results with Fans 3 and 4 Operating (Run FA-9)

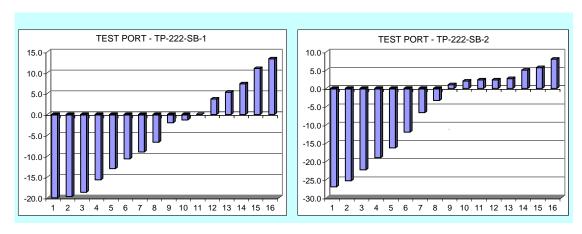


Figure 6.2. Plot of Flow Angle Measurements on Actual Stack, Run 4, Fans 3, 4

6.3 VELOCITY UNIFORMITY TEST

6.3.1 Actual Stack Measurements

CH2MHill provided velocity uniformity data taken on the actual 296-S-21 stack at an elevation equivalent to the Test Port 3 on the scale model. A 16-point measurement grid per the EPA method was used, and no centerpoint readings were taken. Appendix D shows the results in detail. The % COV is calculated for the center two-thirds area of the stack, and Table 6.4 summarizes the values. The <20% COV criterion is met in these tests.

The COV values in Table 6.4 are those that the scale model results for Test Port 3 should match within 5% COV units. Figure 6.3 shows a sample plot for when Fans 1, 2, and 3 are operational. Note the artifact of the static mixer where low velocity is found in the middle of the stack in addition to the outer edges. One factor to be aware of is that the values taken at the first couple of points may be biased by the large yaw angles measured at those points as shown in Figure 6.2. However, even if those possible are affected, they do not enter into the calculation of the % COV in the center two-thirds of the cross sectional area.

Table 6.4. Velocity Uniformity Tests on Actual Stack

			Center 2/3 area % COV	
Operating Fans	Run No.	Flowrate cfm	w/o Center-Point	Meets COV Criterion
1, 2, 3	1	81331	7.2	Yes
1,4	2	78668	6.3	Yes
2, 4	3	76964	7.9	Yes
3, 4	4	76983	6.7	Yes

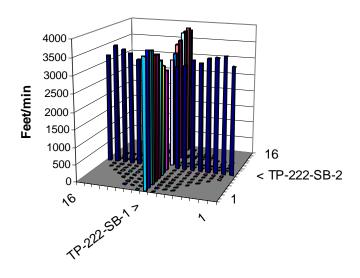


Figure 6.3. Velocity Profile at Actual Stack with Fans 1, 2, and 3 (Run 1)

6.3.2 Scale Model Measurements

Several test runs were performed on the scale model using an 8-point traverse grid with the addition of the centerpoint. Generally, the addition of the centerpoint has little impact on the COV results and provides information on whether something interesting happens at the center. Appendix D provides the detailed results for each test. Table 6.5 summarizes the results for the various fan combinations. The tests done at the Test Port 4 simulate the elevation of the sampling probe.

For the 8-point traverse grid, the center two-thirds area excludes the measurement points nearest the wall. The % COV was calculated for the center two-thirds area both with and without considering the centerpoint measurements. In all cases, the uniformity criterion is met for the location simulating the sampling probe. In addition, one test performed at Test Port 1 shows that the velocity is sufficiently non-uniform to prohibit air sampling that close to the static mixer.

Table 6.5. Velocity Uniformity Tests on Scale Model at Air Sampling Probe Location

Test Port	Operating Fans	Run No.	Flowrate cfm	Center 2/3 Area % COV with Center-Point	Center 2/3 Area % COV w/o Center- Point	Meets COV Criterion
1	1, 2, 3	VT-7	3515	72.3	42.8	No
4	1, 2, 3	VT-6	3443	4.8	3.7	Yes
4	1, 4	VT-8	3298	6.1	5.9	Yes
4	2, 4	VT-9	3029	5.2	5.3	Yes
4	3, 4	VT-10	3146	6.8	6.4	Yes
4	4	VT-11	2324	10.8	11.1	Yes

Figure 6.4 shows the plot of the velocity profile at Test Port 4 with Fans 1, 2, and 3 operating.

6.3.3 Scale Model Validation Measurements

Several velocity uniformity test runs were also performed at Test Port 3 that simulate the test elevation on the actual stack where measurements were made. Appendix D shows the detailed results from each test, and Table 6.6 summarizes those results. The results where the centerpoint is omitted must be used for comparison against the measurements on the actual stack.

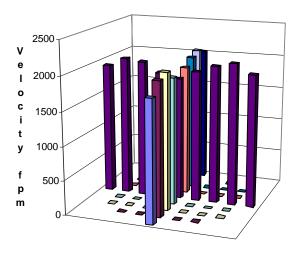


Figure 6.4. Scale Model Velocity Profile with Fans 1, 2, and 3 Operating (Run VT-6)

The difference in the center two-thirds area COV between the actual stack and scale model were calculated, and the individual run results were somewhat mixed with some meeting the <5% COV criterion and some slightly exceeding that criterion. In the case of Run VT-12 where Fans 3 and 4 were running, that configuration was repeated twice more using means to more accurately relocate the pitot tube each time. It was then repeated a fourth time with a 16-point traverse, like the actual stack. These modifications to the technique reduced the difference to a % COV value to within the 5% criterion. A 16-point traverse was then conducted to repeat Run VT-15 where Fans 1 and 4 were operating. In that case, the difference increased. Overall, the average difference of all the runs in Table 6.6 was 4.8% COV and was within the criterion.

Table 6.6. Scale Model Velocity Uniformity Tests Simulating Actual Stack Tests

Test Port	Operating fans	Run No.	Flowrate cfm	Center 2/3 area % COV with center- point	Center 2/3 area % COV w/o center-point	Actual stack	Model (–) Actual COV
3	1, 2, 3	VT-5	3544	13.9	10.5	7.2	3.3
3	1 4	VT-15	3721	13.9	11.4	6.3	5.1
3	1, 4	VT-21	3826	-	12.4	0.3	6.1
3	2, 4	VT-14	3435	13.4	11.0	7.9	3.1
2		VT-12	3372	14.7	12.7		6.0
3 3,4	2 /	VT-13	3540	14.2	11.6	6.7	4.9
	3,4	VT-16	3665	14.7	12.1	0.7	5.4
		VT-22	3773	-	11.3		4.6

6.4 GAS-TRACER UNIFORMITY TEST

Several gas-tracer uniformity tests were performed on the scale model at the location corresponding to the elevation of the sampling probe. Test Port 4 is 4.3 stack diameters downstream of the static mixer. Appendix H provides the detailed results for each run. Table 6.7 summarizes these results. The % COV was calculated for the measured gas

concentration at the points in the center two-thirds area of the stack. The percent deviation from the mean concentration was also calculated for any point in the measurement grid.

The tracer was initially injected on the centerline on the injection ports for the fan combinations. The worst case from these tests was when the tracer was injected downstream of Fan 1 when Fans 1, 2, and 3 were used. Additional tests were performed for this configuration with tracer injected in the center of the duct and within 25% of a hydraulic diameter from the corners. Figure 6.5 shows a sample plot of results from a gas-tracer test.

Table 6.7. Summarized Results of Gas-Tracer Uniformity Tests at Test Port 4

Fan Where Tracer Is			Center 2/3 %	% Deviation
Injected	Other Operating Fans	Run No.	COV	from Mean
1 center	2, 3	GT-1	4.7	8.2
1 center	2, 3	GT-11	5.2	9.4
1 northwest	2, 3	GT-13	4.2	-10.2
1 northeast	2, 3	GT-12	4.8	-10
1 southwest	2, 3	GT-14	5.9	9.6
1 southeast	2, 3	GT-15	4.9	8.4
2 center	1, 3	GT-10	3.8	-6.7
3 center	1, 2	GT-9	3.3	-8.3
1 center	4	GT-2	3.6	7.5
2 center	4	GT-3	2.4	-5.9
3 center	4	GT-4	3.2	-6.8
4 center	1	GT-6	1.9	-4.4
4 center	2	GT-7	0.9	2.0
4 center	3	GT-5	1.8	2.6
4 center	none	GT-8	0.3	0.7

The % COV results ranged from 0.3 to 5.9. The maximum deviation from the mean concentration observed during a run ranged from 0.7 to -10.2. Therefore, the acceptance criteria were easily met, namely that 1) the COV of the measured tracer gas concentration is \leq 20% across the center two-thirds of the sampling plane, and 2) at no point in the sampling plane does the concentration vary from the mean by >30%. The static mixer seems to perform its mixing function by the time the air reaches the sampling point.

While not directly pertaining to meeting performance criteria, two additional tests were performed at Test Ports 1 and 2 to investigate how proximity to the static mixer could effect the mixing of the gas tracer. The results are listed in Table 6.8. These results show that, in this case, a sampling location as close as 3.0 stack diameters to the mixer would also have been acceptable. In contrast, at only 1.5 stack diameters distance, the criterion governing deviation from the mean would not have been met.

	Other	Test ports and number of stack			
Fan Where	Operating	diameters from static		Center 2/3 %	% Deviation
Tracer Is Injected	Fans	mixer	Run No.	COV	from Mean
1 center	2, 3	2 (3.0 D)	GT-16	5.8	-9.6
1 center	2, 3	1 (1.5 D)	GT-17	13.3	35.8

6.5 PARTICLE TRACER UNIFORMITY TEST

Several runs of the particle tracer uniformity test were performed with measurements made at Test Port 4, simulating the location of the sampling probe. The tracer aerosol was injected along the duct centerlines downstream of the fans with the various combinations of operating fans. Appendix J gives the detailed results for each run, and Table 6.9 summarizes those results. The % COV was calculated for the 9- to 11-µm-diameter particle concentration at the measurement points in the center two-thirds area of the stack.

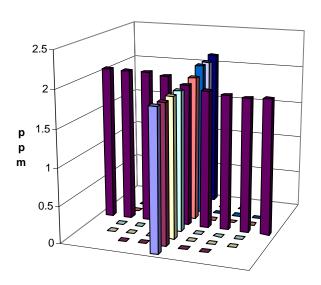


Figure 6.5. Plot of Gas-Tracer Results for Injection Port 1 and Fans 1, 2, and 3 (Run GT-1)

The output of the aerosol generator was varying with time and affecting the results

(Runs PT-6, 7 and 9) in some tests. Concentration readings were normalized to equalize the centerpoint values to remove that effect. Table 6.9 shows the COV values both with and without normalization. Cases where the time variation occurred are apparent when the COV values are compared. The runs were completed in the two cases with the most temporal significant effect. Examining these cases (Runs PT 7 and 11, and Runs PT 9, 12, and 13) shows that the normalization method was valid because where the temporal variation did not occur, both the normalized and un-normalized COVs were more consistent.

Figure 6.6 shows the bar chart particle concentration measurements for Run PT-1. The acceptance criteria were easily met, namely that the COV of the measured tracer particles is ≤20% across the center two-thirds of the sampling plane.

Table 6.9. Summarized Particle Tracer Uniformity Tests

Fan Where Tracer Is	Other Operating	Number		Un-normalized %	Normalized
Injected	Fans	Runs	Run No.	COV	% COV
1	2, 3	2	PT-1, 14	8.8, 11.0	6.5, 9.0
2	1, 3	1	PT-3	5.6	5.0
3	1, 2	1	PT-4	6.7	3.4
1	4	1	PT-2	9.9	7.0
2	4	1	PT-6	18.1	4.0
3	4	1	PT-5	5.7	5.2
4	1	2	PT-7, 11	27.3, 6.7	3.6, 4.3
4	2	1	PT-8	6.4	3.5
4	3	3	PT-9, 12, 13	21.6, 4.0, 3.6	2.0, 3.2, 3.4
4	none	1	PT-10	4.8	3.9

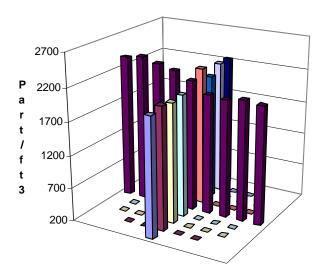


Figure 6.6. Plot of Particle Tracer Concentration for Run PT-1

7.0 CONCLUSIONS

Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, *Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities.* A scale model of the stack was used for most of the tests. As required, CH2MHill performed some confirmatory tests on the actual stack, and the results compared well with that of the scale model. The tests demonstrated that the location for the air-sampling probe meets all performance criteria for air sampling systems at nuclear facilities. The tests on the scale model were shown to apply to the actual stack as indicated by the comparison of velocity uniformity results. Table 7.1 summarizes the results and conclusions for these tests.

Table 7.1. Conclusions on Air Sampling System Tests

Test	Criteria	Range of results	Meets
Flow angle on scale model stack	<20°	5° – 10°	Yes
Flow angle on actual stack	<20°	10° - 12°	Yes
Velocity uniformity on scale model stack	COV ≤20%	4 – 11% COV at probe 10 – 13% at 1.5D upstream of probe	Yes
Velocity uniformity on actual stack	COV ≤20%	6 – 8% at 1.5D upstream of probe	Yes
Velocity uniformity comparison,	Agree within +/- 5 % COV	3.3 – 6.1 % (4.8% on average)	Yes
Gas-tracer uniformity on scale model stack	COV ≤20% in center 2/3 of stack	0.3 – 6 %COV	Yes
	≤30% maximum deviation from mean	-10% deviation from mean	Yes
Particle tracer uniformity on scale model stack. Time-normalized results.	COV ≤20% in center 2/3 of stack	2 – 9 %COV	Yes

8.0 REFERENCES

40 CFR 60, Appendix A, Method 1. "Method 1 – Sample and Velocity Traverses for Stationary Sources." U.S. Environmental Protection Agency, *Code of Federal Regulations*, as amended

American National Standards Institute (ANSI). 1999. Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities. ANSI/HPS N13.1 – 1999, American National Standards Institute, New York.

Appendix A Flow Calibration Procedure

APPENDIX A: FLOW CALIBRATION PROCEDURE

PNNL Operating Procedure			
Title: Test to Calibrate Ventilation Flow Controller	Org. Code: Procedure No.: Rev. No.:	D7E74 EMS-JAG-03 1	
Work Location: General	Effective Date:	April 28, 2006	
Author: John A. Glissmeyer	Supersedes Date:	November 18, 199	98
Identified Hazards: ☐ Radiological ☐ Hazardous Materials ☑ Physical Hazards ☐ Hazardous Environment ☐ Other: ☐ Are One-Time Modifications Allow	Identified Use Categ ☐ Mandatory Use ☐ Continuous Use ☑ Reference Use ☐ Information Use ved? ☐ Yes ☑	;	
Person Signing	Signa		Date
Technical review: J. Matthew Barnett			
Project Manager: John Glissmeyer			
Line Manager: James Droppo			
Quality Engineer: Barry L. Sachs			

1.0 Purpose

The performance of new stack sampling systems must be shown to satisfy the requirements of 40 CFR 61, Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities." This regulation governs portions of the design and implementation of effluent air sampling. The stack sampler performance is adequately characterized when potential contaminants in the effluent are of a uniform concentration at the sampling location (plane) and line losses are within acceptable limits. This procedure is used when needed to facilitate testing these characteristics. This procedure is a means to quickly correlate flow control device settings with the ventilation flowrate in a stack or duct. This correlation is determined prior to other tests of the stack monitoring system. This correlation makes it easier to set the flow control to achieve repeatable values of flowrate. Other procedures that may follow address flow angle, uniformity of gas velocity, and uniformity of gas and aerosol contaminants.

2.0 Applicability

This procedure can be used for tests on actual or scale model stacks and ducts to determine the correlation between stack flow control settings and the measured stack flowrate. The tests are applicable within the following constraints:

- The flowrate range covered in the test includes the target flowrate range outlined in the applicable test plan.
- The operating limits of the air velocity measurement device used.

This procedure may need to be repeated if there are significant changes made in the ventilation system or loading of the ventilation filters during the conduct of the overall test plan.

3.0 Prerequisites and Conditions

Conditions and concerns that must be satisfied prior to performing this procedure are listed below:

- The job-hazards analysis for the work area must be followed.
- Special training may be required to access the test ports.
- The flow control device must be installed and means available for its adjustment.
- Air velocity measurement equipment must be within calibration.
- The Test Instruction must be read and understood.
- This procedure must be read and understood.

4.0 Precautions and Limitations

Access to the test ports may require the use of ladders, scaffolding or manlifts, which may necessitate special training for sampling personnel and any observers. The training requirements will be indicated in the job hazard analysis.

5.0 Equipment Used for Measurements

The following are essential items of equipment:

- Calibrated electronic air velocity sensor; or a pitot tube compliant with acceptable design and a calibrated slant tube or electronic manometer to read the pitot tube differential pressure,
- To provide information about the test conditions, commercial grade sensors for stack temperature, barometric pressure, static pressure, and humidity provide acceptable information. Likewise, data from a nearby meteorology or facility station is acceptable.
- Platform, ladders, or manlifts as needed to access the test ports,
- Fittings to limit leakage around the velocity sensor and to stabilize it sufficiently so it can be re-positioned for repeatability.

6.0 Work Instructions for Setup, Measurements, and Data Reduction

Job specific instructions given in the Test Instruction, illustrated in Exhibit A, will provide specific details and operating parameters necessary to perform this procedure.

6.1 Preliminary Steps

6.1.1 Verify that the interior dimensions of the stack or duct at the measurement location agree with those used in calculating the grid of measurement points given in the Test Instruction or data form. The measurement location should be approximately the same as the air sampling nozzle inlet.

Note. The grid of velocity measurement points is calculated in accordance with 40 CFR 60, Appendix A, Method 1. A center point is also added.

- 6.1.2 Provide essential supplies at the sampling location. (velocity sensor or pitot tube, manometer, connecting tubing, fittings to adapt pitot tube to the test ports, marking pens, data forms, writing and pitot tube supporting platforms).
- 6.1.3 Verify that the flow control device is capable of the flow control settings given in the Test Instruction, particularly that setting to be used for the detailed velocity traverse.
- 6.1.4 Prepare a spreadsheet for calculating results and plotting data. See the illustration in Exhibit B. Label the columns of traverse data by the

direction of the traverse. For example, if the first reading is closest to the east port, and the last reading is closest to the west port, then label the traverse east-west. Print blank copies of the spreadsheet as data forms for hand recording measurements for later transfer to the spreadsheet.

- 6.1.5 Mark the pitot tube or velocity sensor for each point in the measurement grid. Use a permanent marker so the inlet can be placed at each successive measurement point.
- 6.1.6 Obtain barometric pressure, stack static pressure, stack air temperature, and stack air relative humidity information for the flow measurement location.
- 6.1.7 If a pitot tube is used, attach the manometer to the pitot tube. Insert the pitot tube or velocity sensor in the stack and seal the opening around it.

6.2 Flow Measurement

- 6.2.1 Set the flow controller as instructed for the detailed velocity traverse.
- 6.2.2 Verify that the directional orientations and the numbered sample positions are consistent with the data form
- 6.2.3 Measure and record, on the data form, the velocity reading at each measurement point in succession. If the readout device has an averaging feature, record the average of a series of several readings.
- 6.2.4 Repeat Step 6.2.3 two more times for a total of three measurements at each point.
- 6.2.5 Calculate the average air velocity at each grid point and then for the entire grid, by hand or using the spreadsheet, and identify the point(s) where the velocity most nearly equals the average.
 - Review the data forms for completeness.
 - Sign and date the data forms attesting to having completed the data collection portion of the procedure.

6.3 Estimated Flow at Other Settings

- 6.3.1 Prepare a data form for recording average air velocity measured over the range of flow control settings. (See Exhibit C.)
- 6.3.2 Place the velocity sensor or pitot tube at the point of average velocity as determined in Step 6.2.5.
- 6.3.3 Record the velocity reading for each flow controller setting specified in the Test Instruction.
- 6.3.4 Repeat Step 6.3.3 two more times for a total of three replicate measurements at each flow setting.
- 6.3.5 Review the data forms for completeness.
- 6.3.6 Sign and date the data forms attesting to having completed this portion of the procedure.

6.4 Calculations

- 6.4.1 Perform the following calculations using a spreadsheet as illustrated in Attachment B
- 6.4.2 Calculate the mean velocity at each flow control setting
- 6.4.3 Calculate the cross sectional area of the stack or duct where the flow measurements were taken
- 6.4.4 Calculate the approximate flowrate at each flow control setting
- 6.4.5 Plot the measured velocity and flow versus flow control setting as illustrated in Attachment B
- 6.4.6 Have the data transfers and calculations reviewed and verified, including those done in step 6.2.5. The reviewer should sign the finished data forms.

7.0 Records

7.1 Transfer the original data forms and calculations to the records custodian as project records

Exhibits/Attachments

Exhibit A – Typical Test Instruction

	Test Instruction	
Project: Model Stack	Date: December 25, 2006	Work Package: K83017
Calibration 28361		_
Tests: Calibration of	of Ventilation Flow Controller	for Model Full-Scale Stack
Staff: David Maughan		
Reference Procedures:		
1. Operating Manual for	r Solomat Zephyr	
2. Procedure EMS-JAG	-03 Test to Calibrate Ventilati	on Flow Controller.
Equipment:		
1. Full-Scale Model Sta	ck, Fan and Fan Speed Contro	oller located in ELF Bldg.
2. Solomat Zephyr and	pitot tube	
Safety Considerations:		
Review and observe the appl	licable Workshop Job Hazard	Analysis for the project
Instructions:		
1. Assemble the equipm	nent for the flow controller cal	ibration test at the ports at the
elevation of the sampling pro	obe	
		distances from the inside of the
	.04, 3.16, 4.28, 5.10, 5.66, 5.83	
1	at each point with the flow co	ontroller set at 30 Hz. Repeat each
measurement thrice.		
4. Record data on veloc	-	
5. Identify point of aver		
-	nat point and measure velocity	at 5 Hz increments on the controller
over the 5 - 60 Hz range		
7. Record and plot the d		
	nting fixtures and retain assen	nbly for subsequent tests
Desired Completion Date:		
Approvals:		
John Glissmeyer,	project manager	Date
Test completed by:		Date:

Exhibit B - Typical Velocity Traverse Data Form

VELOCITY TRAVERSE DATA FORM

 Site Date
 Model

 Date Oct. 16, 2001
 Glissmeyer and Maughan

 Stack Dia.
 23.5 in.

 Stack X-Area Elevation
 433.7 in.2

 Distance to disturbance
 75 inches

Velocity units ft/min

 Run No.
 VT-1

 Fan Configuration
 4-fan: EF1, EF4, EF5, EF7

 Fan Setting
 51 Hz

 Stack Temp
 71.7 deg F

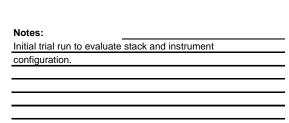
 Start/End Time
 1432-1530 hours

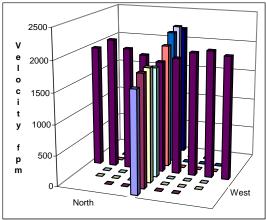
 Center 2/3 from
 2.16
 to:
 21.34

 Points in Center 2/3
 2
 to:
 7

Traverse>		West				North			
Trial>		1	2	3	Mean	1	2	3	Mean
CorrectLabel	Depth, in.		Velo	city			Velo	ocity	
1	0.75	2044	1990	1967	2000.3	1603	1611	1734	1649.3
2	2.47	2058	2067	2069	2064.7	1768	1877	1825	1823.3
3	4.56	2036	2067	1941	2014.7	1849	1830	1859	1846.0
4	7.59	1892	1965	1855	1904.0	1811	1723	1823	1785.7
Center	11.75	1868	1808	1793	1823.0	1783	1892	1769	1814.7
5	15.91	1982	1875	1892	1916.3	1997	1998	2070	2021.7
6	18.94	1972	2016	2009	1999.0	2193	2220	2157	2190.0
7	21.03	2096	2181	2099	2125.3	2241	2235	2258	2244.7
8	22.75	1960	1978	1987	1975.0	2193	2132	2174	2166.3
Averages> 1989.8 1994.1 1956.9 1980.3 1937.6 1946.4 1		1963.2	1949.1						

Data Files: NA


AII	<u>ft/min</u>	Dev. from mean	Center 2/3	West	<u>North</u>	<u>All</u>
Mean	1964.7		Mean	1978.1	1960.9	1969.5
Min Point	1649.3	-16.1%	Std. Dev.	103.5	191.9	148.4
Max Point	2244.7	14.3%	COV as %	5.2	9.8	7.5


Flow w/o C-Pt 5973 acfm Vel Avg w/o C-Pt 1983 fpm

Start Finish 72.5 70.8 71.6 75 70 70.7 0.5 0.52 mbars 986.3 985.8 mbars 986.8 986.3 mbars 38% 36% RH

Instuments Used: Pitot #5, 36-in. standard

Solmat Zephyr SN 12951472 Cal. Due 7/26/02

Signature signifies compliance with Procedure EMS-JAG-4 Signature verifying data and calculations:

Signature/date

Stack temp

Stack static

Equipment temp

Ambient pressure

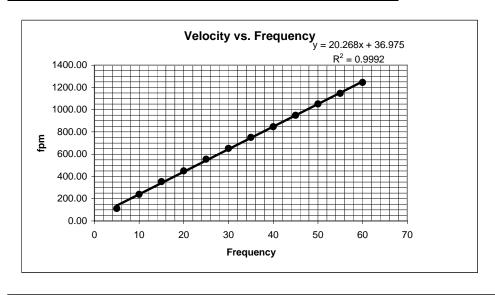
Ambient humidity

Total Stack pressure

Ambient temp

 $\begin{array}{cccc} Exhibit \ C-\ Typical \ Velocity \ vs. \ Flow \ Controller \ Setting \ Data \ Form \\ \ Velocity \ vs. \ FREQUENCY \ DATA \ FORM \end{array}$

Site	Мо	del	Run No. VT-1			
Date	3/28/	2006	Stack Temp	75	deg F	
Tester	Glissr	neyer	Stack RH%	3	35%	
Stack Dia.	18	in.	Baro Press	1000	mbar	
Stack X-Area	254.5	in2	Fan Configuration	F	an 2	
Elevation	100 in.		Start/End Time	143	0/1532	
El. above disturbance	50	inches	Reference point from	velocity	test VT	: East 4


Velocity Readings, units = fpm

Target Target Estmtd cfm fpm Hz 5800 1926 50 fpm 5900 1960 52 StDev 2 StDev Hz Mean cfm 3 122 100 112 111.33 11.02 22.03 196.74 5 10 230 252 236 22.74 239.33 11.37 422.94 15 350 349 360 353.00 6.08 12.17 623.80 20 452 450 445 449.00 3.61 7.21 793.45 25 10.00 550 560 555 555.00 5.00 980.77

30	650	655	652	652.33	2.52	5.03	1152.77	
35	750	745	758	751.00	6.56	13.11	1327.13	
40	850	846	845	847.00	2.65	5.29	1496.77	
45	950	956	940	948.67	8.08	16.17	1676.43	
50	1050	1043	1062	1051.67	9.61	19.22	1858.45	
55	1150	1152	1135	1145.67	9.29	18.58	2024.56	
60	1250	1235	1248	1244.33	8.14	16.29	2198.92	

Instuments Used: Solmat Zephyr SN 12951472 Cal Exp. Date: 7/26/2006

Pitot #5, 36-in. standard

Signature signifies compliance with Procedure EMS-JAG-3 Signature/date Signature verifying data and calculations:

Appendix B Flow Calibration Data Sheets

APPENDIX B: FLOW CALIBRATION DATA SHEETS

VELOCITY TRAVERSE DATA FORM

			•		
Site	296-S-21 Model	Run No.	VT-1		
Date	7/12/2006	Fan Configuration	EF4	no prefilter	
Testers	Brad Fritz & John Glissm	eyer Fan Setting	30	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	79.5	deg F	
Stack X-Area	250.9 in.2	Start/End Time	10:20/11:17		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South		
Trial>		1	2	3	Mean	1	2	3	Mean	
Point	Depth, in.		Velocity				Velocity			
1	0.58	589	630	619	612.7	741	721	669	710.3	
2	1.89	689	692	675	685.3	773	754	759	762.0	
3	3.49	688	702	682	690.7	754	752	726	744.0	
4	5.81	691	695	647	677.7	720	697	700	705.7	
Center	9.00	747	689	743	726.3	715	724	687	708.7	
5	12.19	779	824	759	787.3	751	772	785	769.3	
6	14.51	844	839	844	842.3	859	874	836	856.3	
7	16.11	877	835	869	860.3	845	896	876	872.3	
8	17.42	805	846	806	819.0	793	858	768	806.3	
Averages	>	745.4	750.2	738.2	744.6	772.3	783.1	756.2	770.6	

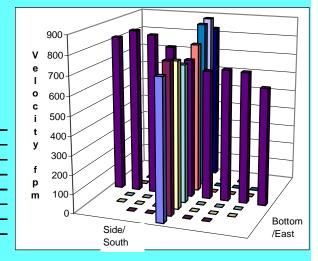
AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	757.6		Mean	752.9	774.0	763.5
Min Point	612.7	-19.1%	Std. Dev.	77.0	66.4	69.9
Max Point	872.3	15.1%	COV as %	10.2	8.6	9.2

Flow w/o C-Pt 1329 acfm Vel Avg w/o C-Pt 763 fpm

Stack temp
Equipment temp
Ambient temp
Stack static
Ambient pressure
Total Stack pressure
Ambient humidity

Start	Finish	_
78	81	F
N.A.	N.A.	F
77	80	F
0.00	0.00	mbars
29.4	29.4	in. Hg
996.3	996.3	mbars
36%	36%	RH

Notes: Horizontal diam. 17-7/8 in.


Vertical diam. 17-7/8 in.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature verifying data and calculations: Signature on file copy

Signature/date

Site 296-S-21 Model Run No. VT-2 no prefilter Date 7/12/2006 Fan Configuration **EF3** Testers Brad Fritz & John Glissmeyer Fan Setting 30 Hz Stack Dia. 17 7/8 in. Stack Temp 85.0 deg F Stack X-Area 250.9 in.2 Start/End Time 11:30/12:15 Elevation N.A. Center 2/3 from 1.64 to: 16.23 77 3/4 inches Distance to disturbance Points in Center 2/3 2 to: Velocity units ft/min Data Files: NA

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.	Velocity			Velocity				
1	0.58	433	408	374	405.0	383	420	480	427.7
2	1.89	440	448	451	446.3	480	460	479	473.0
3	3.49	454	438	454	448.7	481	476	455	470.7
4	5.81	432	460	424	438.7	444	443	447	444.7
Center	9.00	459	465	450	458.0	443	481	456	460.0
5	12.19	504	504	455	487.7	497	481	505	494.3
6	14.51	514	513	492	506.3	487	521	550	519.3
7	16.11	551	523	507	527.0	548	524	505	525.7
8	17.42	491	485	490	488.7	515	521	439	491.7
Averages	>	475.3	471.6	455.2	467.4	475.3	480.8	479.6	478.6

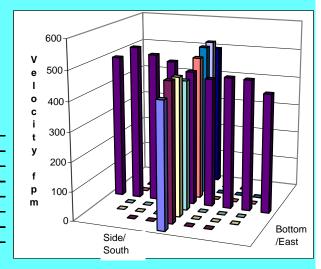
AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	473.0		Mean	473.2	484.0	478.6
Min Point	405.0	-14.4%	Std. Dev.	34.0	30.3	31.5
Max Point	527.0	11.4%	COV as %	7.2	6.3	6.6

Flow w/o C-Pt 827 acfm Vel Avg w/o C-Pt 475 fpm

Stack temp
Equipment temp
Ambient temp
Stack static
Ambient pressure
Total Stack pressure
Ambient humidity

Finish	
84	F
N.A.	F
83	F
0.00	mbars
29.42	in. Hg
996.3	mbars
31%	RH
	84 N.A. 83 0.00 29.42 996.3

Notes: Horizontal diam. 17-7/8 in.


Vertical diam. 17-7/8 in.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations:

Site 296-S-21 Model Date 7/12/2006 Testers Brad Fritz Stack Dia. 17 7/8 in. Stack X-Area 250.9 in.2 Elevation N.A 77 3/4 inches

Run No. VT-3 no prefilter Fan Configuration **EF2** Fan Setting 30 Hz Stack Temp 86.4 deg F Start/End Time 1300/1350 Center 2/3 from 1.64 to: 2

Distance to disturbance

Points in Center 2/3

16.23 to:

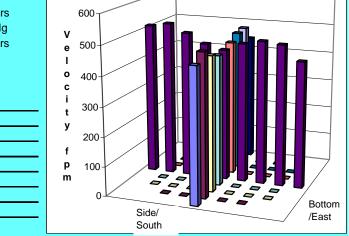
Velocity units ft/min

Data Files: NA

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.	Velocity				Velocity			
1	0.58	413	418	428	419.7	471	460	439	456.7
2	1.89	467	479	461	469.0	497	463	496	485.3
3	3.49	475	492	460	475.7	441	485	452	459.3
4	5.81	467	455	466	462.7	457	433	445	445.0
Center	9.00	451	431	431	437.7	466	438	444	449.3
5	12.19	463	449	448	453.3	469	461	454	461.3
6	14.51	484	516	454	484.7	470	475	499	481.3
7	16.11	516	519	500	511.7	452	509	500	487.0
8	17.42	505	504	494	501.0	408	459	450	439.0
Averages	>	471.2	473.7	460.2	468.4	459.0	464.8	464.3	462.7

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	465.5		Mean	470.7	467.0	468.8
Min Point	419.7	-9.9%	Std. Dev.	23.7	17.5	20.1
Max Point	511.7	9.9%	COV as %	5.0	3.7	4.3

Flow w/o C-Pt 816 acfm Vel Avg w/o C-Pt 468 fpm


> Start Finish 85.6 89.4 N.A. N.A. F F 84 89 0.00 0.00 mbars 29.41 29.42 in. Hg 996.0 996.0 mbars 31% 29% RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Notes:

Stack temp

Equipment temp

Ambient pressure

Ambient humidity

Total Stack pressure

Ambient temp

Stack static

Horizontal diam. 17-7/8 in.

Vertical diam. 17-7/8 in.

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site 296-S-21 Model Date 7/12/2006 Testers Brad Fritz Stack Dia. 17 7/8 in. Stack X-Area 250.9 in.2 Elevation N.A 77 3/4 inches

no prefilter Fan Configuration **EF1** Fan Setting 30 Hz Stack Temp 88.9 deg F Start/End Time 1400/1450 Center 2/3 from 1.64 to:

2

Distance to disturbance

Points in Center 2/3

16.23 to:

Velocity units ft/min

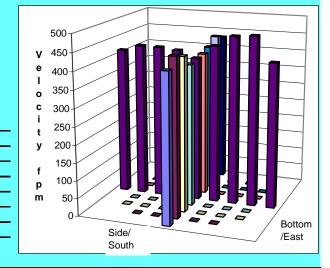
Data Files: NA

Run No. VT-4

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.	Velocity					Velo	ocity	
1	0.58	415	422	387	408.0	419	401	435	418.3
2	1.89	482	470	480	477.3	439	447	450	445.3
3	3.49	466	460	492	472.7	428	441	434	434.3
4	5.81	448	429	451	442.7	396	401	406	401.0
Center	9.00	412	411	392	405.0	398	406	418	407.3
5	12.19	410	439	421	423.3	378	434	416	409.3
6	14.51	425	431	430	428.7	429	394	434	419.0
7	16.11	414	433	442	429.7	455	435	431	440.3
8	17.42	410	416	413	413.0	441	432	415	429.3
Averages	>				426.6	422.7			

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	428.0		Mean	439.9	422.4	431.1
Min Point	401.0	-6.3%	Std. Dev.	26.5	17.6	23.4
Max Point	477.3	11.5%	COV as %	6.0	4.2	5.4

Flow w/o C-Pt 751 acfm Vel Avg w/o C-Pt 431 fpm


> Start Finish 89.4 89.6 N.A. N.A. F F 88.7 89.1 0.00 mbars 0.00 29.41 29.41 in. Hg 996.0 996.0 mbars 31% 31% RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Notes:

Stack temp

Equipment temp

Ambient pressure

Ambient humidity

Total Stack pressure

Ambient temp

Stack static

Horizontal diam. 17-7/8 in.

Vertical diam. 17-7/8 in.

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site Date 7/13/2006
Tester BG Fritz
Stack Dia. 17.875 in.
Stack X-Area 250.9 in2
Elevation Ports # 4

 Idel
 Run No.
 VF-1

 Stack Temp
 89.2
 deg F

 Stack RH%
 34%
 %RH

 Baro Press
 1003
 mbar

 Fan Configuration
 #1- no pre-filter

 Start/End Time
 11:25 to 12:00

inches Reference point from velocity test VT : Port south 4-3

Velocity Readings, units = fpm

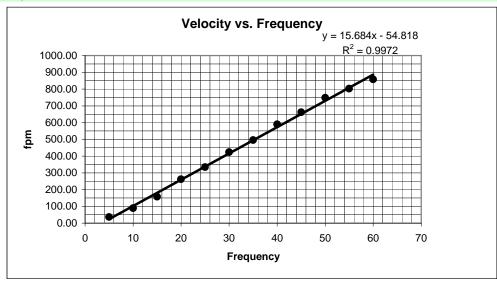
El. above disturbance 77.75

v clocity ixea	unigo, unit	<i>3</i> –	трии				
				•	Target	Target	Estmtd
					cfm	fpm	Hz
					1309	751	51
	fpm						
Hz	1	2	3	Mean	StDev	2 StDev	cfm
5	86	23	0	36.33	44.52	89.05	63.32
10	135	57	75	89.00	40.84	81.68	155.10
15	200	143	131	158.00	36.86	73.73	275.34
20	265	304	217	262.00	43.58	87.16	456.58
25	344	312	348	334.67	19.73	39.46	583.22
30	440	403	427	423.33	18.77	37.54	737.74
35	508	486	492	495.33	11.37	22.74	863.21
40	606	575	588	589.67	15.57	31.13	1027.60
45	663	675	648	662.00	13.53	27.06	1153.66
50	761	749	734	748.00	13.53	27.06	1303.53
55	788	802	818	802.67	15.01	30.02	1398.80
60	847	842	885	858.00	23.52	47.03	1495.23

Instuments Used:

Cal Exp. Date:

Solmat Zephyr SN 12951472


8/29/2006

Pitot # 5 Dwyer Std. 36-in

N.A.

Temp >> TSI 8360 SN 209060

9/27/2006

Signature signifies compliance with Procedure EMS-JAG-3
Signature/date

Signature verifying data and calculations:

Signature on file

Site 296-S-21 Scale Model 7/13/2006 Date Tester BG Fritz Stack Dia. 17.875 in. Stack X-Area 250.9 in2 Elevation Ports # 4

Run No. VF-2 Stack Temp 89 deg F Stack RH% 30% %RH Baro Press 1003 mbar Fan Configuration #2 no pre-filter Start/End Time 1400 to 1425

Target

Estmtd

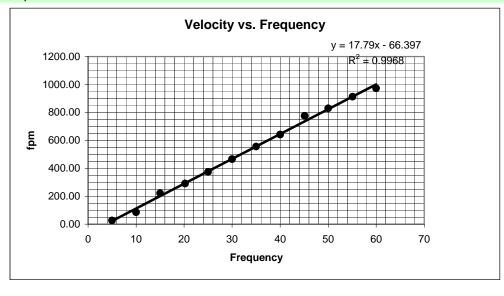
Target

El. above disturbance 77.75 inches Reference point from velocity test VT : Port East 4- 2

Velocity Readings, units = fpm

					cfm	fpm	Hz
					1061	609	38
		fp	m				
Hz	1	2	3	Mean	StDev	2 StDev	cfm
5	35	17	*	26.00	12.73	25.46	45.31
10	18	107	129	84.67	58.77	117.55	147.55
15	208	217	237	220.67	14.84	29.69	384.55
20.2	284	301	287	290.67	9.07	18.15	506.54
25	378	371	371	373.33	4.04	8.08	650.60
30	481	449	466	465.33	16.01	32.02	810.93
35	542	563	562	555.67	11.85	23.69	968.35
40	634	642	649	641.67	7.51	15.01	1118.22
45.1	762	793	772	775.67	15.82	31.64	1351.74
50	811	860	818	829.67	26.50	53.00	1445.85
55.1	927	908	903	912.67	12.66	25.32	1590.49
60	1008	932	977	972.33	38.21	76.43	1694.47

^{*} Value recorded originally as -2 was not used in calculation.


Instuments Used: Solmat Zephyr SN 12951472 Cal Exp. Date: 8/29/2006

Pitot # 5 Dwyer Std. 36-in

N.A.

Temp >> TSI 8360 SN 209060

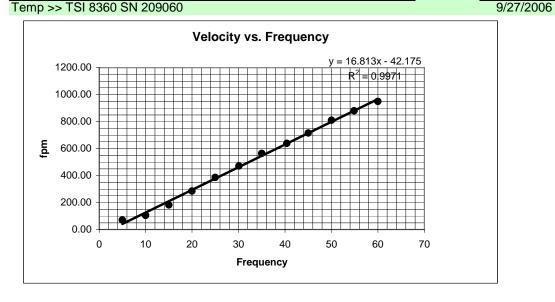
9/27/2006

Signature signifies compliance with Procedure EMS-JAG-3 Signature/date

Signature verifying data and calculations: Signature on file

Site 296-S-21 Scale Model Run No. VF-3 Stack Temp 90.7 deg F 7/13/2006 Date Tester BC Stack Dia. 17.875 Stack RH% 34% BG Fritz %RH Baro Press 1003 mbar Stack X-Area 250.9 in2 Fan Configuration Fan 3 no pre-filter Elevation Ports # 4 Start/End Time 1250 to 1325

El. above disturbance 77.75 inches Reference point from velocity test VT : Port South 4-2


Velocity Readings, units = fpm

					Target	Target	Estmtd
					cfm	fpm	Hz
					1196	686	43
		fp	m				
Hz	1	2	3	Mean	StDev	2 StDev	cfm
5	N.A.	49	92	70.50	30.41	60.81	122.86
10	142	68	104	104.67	37.00	74.01	182.40
15	182	189	177	182.67	6.03	12.06	318.33
20	277	280	297	284.67	10.79	21.57	496.09
25	390	368	400	386.00	16.37	32.74	672.68
30.1	475	471	467	471.00	4.00	8.00	820.81
35	565	594	534	564.33	30.01	60.01	983.46
40.4	643	662	612	639.00	25.24	50.48	1113.58
45	702	735	708	715.00	17.58	35.16	1246.02
50	845	788	799	810.67	30.24	60.48	1412.74
54.9	865	867	907	879.67	23.69	47.38	1532.98
60	962	921	966	949.67	24.91	49.81	1654.97

Note -- 81 fpm appears to be the minimum detectable velocity for the Zephyr. The instrument's readings are biased by the contribution of many zero readings. ambient temperature was 85 deg. F.

Instuments Used: Cal Exp. Date: 8/29/2006 Solmat Zephyr SN 12951472

Pitot # 5 Dwyer Std. 36-in

Signature signifies compliance with Procedure EMS-JAG-3

Signature verifying data and calculations: Signature on file

N.A.

Signature/date

Site Date 7/13/2006
Tester BG Fritz
Stack Dia. 17.875 in.
Stack X-Area 250.9 in2
Elevation Ports # 4

 Iel
 Run No.
 VF-4

 Stack Temp
 89
 deg F

 Stack RH%
 30%
 %RH

 Baro Press
 1003
 mbar

 Fan Configuration
 fan 4 no pre-filter

 Start/End Time
 1330 to 1350

Target

Estmtd

Target

El. above disturbance 77.75 inches Reference point from velocity test VT : port south 4-5

Velocity Readings, units = fpm

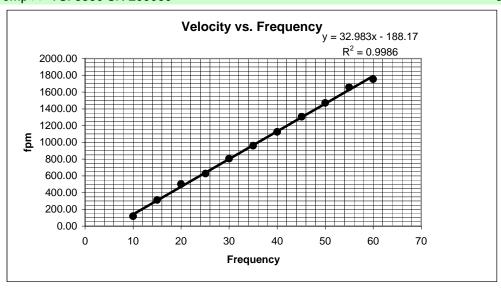
				cfm	fpm	Hz	
					1743	1295	45
		fp	m				
Hz	1	2	3	Mean	StDev	2 StDev	cfm
5	N.A.	N.A.	N.A.	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
10	95	125	133	117.67	20.03	40.07	205.06
15	311	307	318	312.00	5.57	11.14	543.72
20	493	508	503	501.33	7.64	15.28	873.67
25.1	656	581	646	627.67	40.72	81.45	1093.83
30	806	807	805	806.00	1.00	2.00	1404.61
35	980	938	961	959.67	21.03	42.06	1672.40
40	1143	1139	1092	1124.67	28.36	56.72	1959.94
45.1	1302	1303	1312	1305.67	5.51	11.02	2275.37
50	1461	1488	1460	1469.67	15.89	31.77	2561.17
55	1651	1685	1636	1657.33	25.11	50.21	2888.21
60	1716	1757	1788	1753.67	36.12	72.23	3056.09

Note -- Values less than 81 fpm were not recorded.

Instuments Used:

Cal Exp. Date:

Solmat Zephyr SN 12951472


8/29/2006

Pitot # 5 Dwyer Std. 36-in

N.A.

Temp >> TSI 8360 SN 209060

9/27/2006

Signature signifies compliance with Procedure EMS-JAG-3 Signature/date Signature verifying data and calculations:

Signature on file

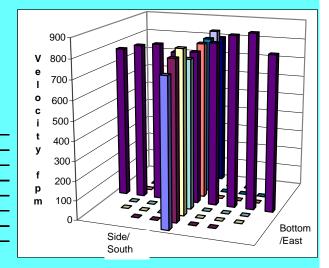
VELOCITY TRAVERSE DATA FORM									
Site	296-S-21 Model	Run No.	VT-17	/T-17					
Date	8/7/2006	Fan Configuration	1	no prefilter					
Testers	BG Fritz	Fan Setting	56	Hz					
Stack Dia.	17 7/8 in.	Stack Temp	100.0	deg F					
Stack X-Area	250.9 in.2	Start/End Time	14:30 to 15:3	30					
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23				
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7				
Velocity units	ft/min	Data Files:	NA						
Traverse>	Port 4 R	ottom/Fast		Port 4 S	Side/South	Ī			

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velocity				Velo	ocity	
1	9/16	790	813	774	792.3	747	740	764	750.3
2	1 14/16	853	899	917	889.7	793	849	787	809.7
3	3 8/16	908	862	848	872.7	847	855	815	839.0
4	5 13/16	860	804	826	830.0	794	743	770	769.0
Center	9	804	766	764	778.0	784	808	761	784.3
5	12 3/16	780	780	753	771.0	824	805	801	810.0
6	14 8/16	820	788	808	805.3	815	834	804	817.7
7	16 1/16	800	803	775	792.7	842	841	843	842.0
8	17 6/16	772	772	763	769.0	813	810	751	791.3
Averages>		820.8	809.7	803.1	811.2	806.6	809.4	788.4	801.5

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	806.3		Mean	819.9	810.2	815.1
Min Point	750.3	-6.9%	Std. Dev.	46.3	26.7	36.6
Max Point	889.7	10.3%	COV as %	5.6	3.3	4.5

Flow w/o C-Pt 1411 acfm Vel Avg w/o C-Pt 809 fpm

	Start	Finish
Stack temp	105.0	105.0
Equipment temp	-	-
Ambient temp	101	99
Stack static	0.00	0.00
Ambient pressure	29.36	29.33
Total Stack pressure	994	993
Ambient humidity	24%	23%


Notes:

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Signature on file copy

mbars

in Hg

mbars

RH

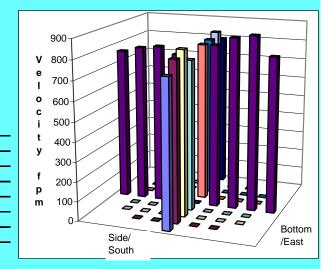
	VELOCITY	KAVERSE DATA FORM	l		
Site	296-S-21 Model Run No		VT-17	No cente	rpoint
Date	8/7/2006	Fan Configuration	1	no prefilt	er
Testers	BG Fritz	Fan Setting	56		Hz
Stack Dia.	17 7/8 in.	Stack Temp	100.0	deg F	
Stack X-Area	250.9 in.2	Start/End Time	14:30 to 15:	30	
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velocity				Velo	ocity	
1	9/16	790	813	774	792.3	747	740	764	750.3
2	1 14/16	853	899	917	889.7	793	849	787	809.7
3	3 8/16	908	862	848	872.7	847	855	815	839.0
4	5 13/16	860	804	826	830.0	794	743	770	769.0
Center	9	804	766	764	N.A.	784	808	761	N.A.
5	12 3/16	780	780	753	771.0	824	805	801	810.0
6	14 8/16	820	788	808	805.3	815	834	804	817.7
7	16 1/16	800	803	775	792.7	842	841	843	842.0
8	17 6/16	772	772	763	769.0	813	810	751	791.3
Averages>		820.8	809.7	803.1	815.3	806.6	809.4	788.4	803.6

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	809.5		Mean	826.9	814.6	820.7
Min Point	750.3	-7.3%	Std. Dev.	46.5	26.4	36.6
Max Point	889.7	9.9%	COV as %	5.6	3.2	4.5

Flow w/o C-Pt 1411 acfm Vel Avg w/o C-Pt 809 fpm

Notes:


	Start	Finish	
Stack temp	105.0	105.0	F
Equipment temp	-	-	F
Ambient temp	101	99	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.36	29.33	in Hg
Total Stack pressure	994	993	mbars
Ambient humidity	24%	23%	RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site 296-S-21 Model Run No. VT-18 Date 8/8/2006 Fan Configuration 2 no prefilter Testers BG Fritz Fan Setting 44 Hz Stack Dia. Stack Temp 86.5 deg F 17 7/8 in. Stack X-Area 250.9 in.2 Start/End Time 10:00 to 10:35 Elevation N.A Center 2/3 from 1.64 to: 16.23 77 3/4 inches Distance to disturbance Points in Center 2/3 2 to: Velocity units ft/min Data Files: NA

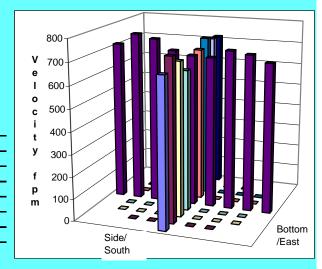
Traverse>	e> Port _4_ Bottom/East Port _4_ Side/South			Port _4_ Bottom/East					
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity		Velocity			
1	9/16	639	680		659.5	658	689		673.5
2	1 14/16	701	677		689.0	719	748		733.5
3	3 8/16	698	704		701.0	682	710		696.0
4	5 13/16	656	675		665.5	613	663		638.0
Center	9	678	659		668.5	672	700		686.0
5	12 3/16	683	687		685.0	691	702		696.5
6	14 8/16	732	729		730.5	753	715		734.0
7	16 1/16	753	742		747.5	707	730		718.5
8	17 6/16	678	717		697.5	722	705		713.5
Averages>		690.9	696.7	#DIV/0!	693.8	690.8	706.9	#DIV/0!	698.8

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	696.3		Mean	698.1	700.4	699.3
Min Point	638.0	-8.4%	Std. Dev.	30.8	33.4	30.9
Max Point	747.5	7.4%	COV as %	4.4	4.8	4.4

Flow w/o C-Pt 1218 acfm Vel Avg w/o C-Pt 699 fpm

Stack temp
Equipment temp
Ambient temp
Stack static
Ambient pressure
Total Stack pressure
Ambient humidity

Finish	
86.0	F
-	F
84	F
0.00	mbars
29.509	in Hg
999	mbars
37%	RH
	86.0 - 84 0.00 29.509 999


Notes: Based on VT-17, 2 traverses were considered enough for these supplemental tests. There was not a significant change in the velocity profile of VT-17 when analyzed using 2 or 3 traverses.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations: **Signature on file copy**

Site 296-S-21 Model Date 8/8/2006 Testers BG Fritz Stack Dia. 17 7/8 in. Stack X-Area 250.9 in.2 Elevation N.A 77 3/4 inches Distance to disturbance

Run No. VT-18 No centerpoint Fan Configuration 2 no prefilter Fan Setting 44 Hz Stack Temp 86.5 deg F Start/End Time 10:00 to 10:35 Center 2/3 from 1.64 to: 16.23

2

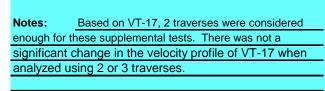
Velocity units ft/min

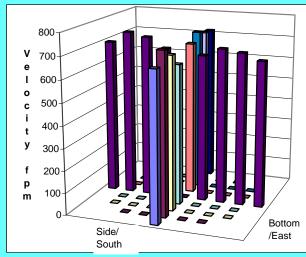
Points in Center 2/3 Data Files: NA to:

Traverse>		Port _4_ Bottom/East			Port _4_ Side/South				
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	639	680		659.5	658	689		673.5
2	1 14/16	701	677		689.0	719	748		733.5
3	3 8/16	698	704		701.0	682	710		696.0
4	5 13/16	656	675		665.5	613	663		638.0
Center	9	678	659		N.A.	672	700		N.A.
5	12 3/16	683	687		685.0	691	702		696.5
6	14 8/16	732	729		730.5	753	715		734.0
7	16 1/16	753	742		747.5	707	730		718.5
8	17 6/16	678	717		697.5	722	705		713.5
Averages	>	690.9	696.7	#DIV/0!	696.9	690.8	706.9	#DIV/0!	700.4

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	698.7		Mean	703.1	702.8	702.9
Min Point	638.0	-8.7%	Std. Dev.	30.6	35.9	31.8
Max Point	747.5	7.0%	COV as %	4.3	5.1	4.5

Flow w/o C-Pt 1218 acfm Vel Avg w/o C-Pt 699 fpm


Start Finish Stack temp 90.0 86.0 Equipment temp F Ambient temp 89 84 Stack static 0.00 0.00 mbars 29.492 29.509 Ambient pressure in Hg Total Stack pressure 999 999 mbars Ambient humidity 32% 37% RH


Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

B.12

VECOMI INAVERSE DATATORII							
Site	296-S-21 Model	Run No.	VT-19				
Date	8/8/2006	Fan Configuration	3	no p	refilter		
Testers	BG Fritz	Fan Setting	50		Hz		
Stack Dia.	17 7/8 in.	Stack Temp	85.	0 deg	F		
Stack X-Area	250.9 in.2	Start/End Time	11:15 to 1	1:40			
Elevation	N.A.	Center 2/3 from	1.6	4	to:	16.23	
Distance to disturbance	77 3/4 inches	Points in Center 2/3		2	to:	7	
Velocity units	ft/min	Data Files:	NA				

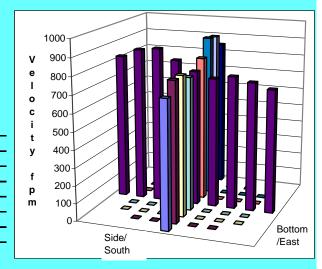
Traverse>		Port _4_ Bottom/East				Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity		Velocity			_
1	9/16	701	702		701.5	715	720		717.5
2	1 14/16	726	737		731.5	779	796		787.5
3	3 8/16	759	755		757.0	778	803		790.5
4	5 13/16	757	716		736.5	734	780		757.0
Center	9	775	763		769.0	774	758		766.0
5	12 3/16	827	821		824.0	830	808		819.0
6	14 8/16	896	869		882.5	931	899		915.0
7	16 1/16	864	875		869.5	922	889		905.5
8	17 6/16	827	822		824.5	852	829		840.5
Averages>		792.4	784.4	#DIV/0!	788.4	812.8	809.1	#DIV/0!	810.9

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	799.7		Mean	795.7	820.1	807.9
Min Point	701.5	-12.3%	Std. Dev.	62.7	64.7	62.5
Max Point	915.0	14.4%	COV as %	7.9	7.9	7.7

Flow w/o C-Pt 1401 acfm Vel Avg w/o C-Pt 804 fpm

Stack temp
Equipment temp
Ambient temp
Stack static
Ambient pressure
Total Stack pressure
Ambient humidity

Start	Finish	
86.0	86.0	F
-	-	F
84	86	F
0.00	0.00	mbars
29.509	29.51	in Hg
999	999	mbars
32%	35%	RH


Notes: Only 2 traverses done per port. See note on data sheet VT-18.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations:

Site	296-S-21 Model
Date	8/8/2006
Testers	BG Fritz
Stack Dia.	17 7/8 in.
Stack X-Area	250.9 in.2
Elevation	N.A.
Distance to disturbance	77 3/4 inches

Run No. VT-19 No centerpoint Fan Configuration 3 no prefilter Fan Setting 50 Hz Stack Temp 85.0 deg F Start/End Time 11:15 to 11:40 Center 2/3 from 1.64 to: 16.23 Points in Center 2/3 2 to:

Velocity units ft/min

Data Files: NA

Traverse>		Port _4_ Bottom/East					Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	701	702		701.5	715	720		717.5
2	1 14/16	726	737		731.5	779	796		787.5
3	3 8/16	759	755		757.0	778	803		790.5
4	5 13/16	757	716		736.5	734	780		757.0
Center	9	775	763		N.A.	774	758		N.A.
5	12 3/16	827	821		824.0	830	808		819.0
6	14 8/16	896	869		882.5	931	899		915.0
7	16 1/16	864	875		869.5	922	889		905.5
8	17 6/16	827	822		824.5	852	829		840.5
Averages	>	792.4	784.4	#DIV/0!	790.9	812.8	809.1	#DIV/0!	816.6

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	803.7		Mean	800.2	829.1	814.6
Min Point	701.5	-12.7%	Std. Dev.	67.5	65.9	65.4
Max Point	915.0	13.8%	COV as %	8.4	8.0	8.0

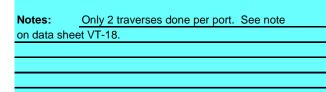
Flow w/o C-Pt 1401 acfm Vel Avg w/o C-Pt 804 fpm

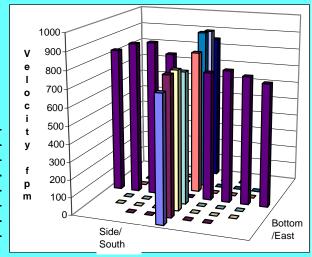
mbars

in Hg

mbars

RH


	Start	Finish
Stack temp	86.0	86.0
Equipment temp	-	-
Ambient temp	84	86
Stack static	0.00	0.00
Ambient pressure	29.509	29.51
Total Stack pressure	999	999
Ambient humidity	32%	35%


Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site 296-S-21 Model Date 8/8/2006 Testers BG Fritz Stack Dia. 17 7/8 in. Stack X-Area 250.9 in.2 Elevation N.A 77 3/4 inches

Run No. VT-20 no prefilter Fan Configuration 4 Fan Setting 52 Hz Stack Temp 82.0 deg F Start/End Time 11:50 to 12:30 Center 2/3 from 1.64 to:

2

Distance to disturbance

Points in Center 2/3

16.23 to:

Velocity units ft/min

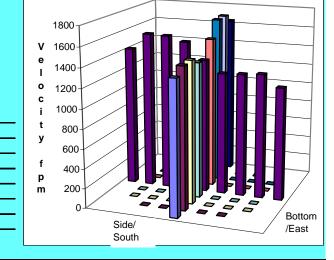
D

Jata Files: IN/	ata Files: N
-----------------	--------------

Traverse>		Port _4_ Bottom/East				Port _4_ S	Side/South		
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	1136	1167		1151.5	1342	1359		1350.5
2	1 14/16	1265	1276		1270.5	1423	1421		1422.0
3	3 8/16	1221	1288		1254.5	1439	1431		1435.0
4	5 13/16	1267	1226		1246.5	1369	1371		1370.0
Center	9	1354	1378		1366.0	1338	1365		1351.5
5	12 3/16	1502	1573		1537.5	1542	1509		1525.5
6	14 8/16	1573	1599		1586.0	1684	1697		1690.5
7	16 1/16	1584	1601		1592.5	1684	1715		1699.5
8	17 6/16	1436	1415		1425.5	1580	1658		1619.0
Averages	>	1370.9	1391.4	#DIV/0!	1381.2	1489.0	1502.9	#DIV/0!	1495.9

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>North</u>	<u>All</u>
Mean	1438.6		Mean	1407.6	1499.1	1453.4
Min Point	1151.5	-20.0%	Std. Dev.	159.6	144.9	154.0
Max Point	1699.5	18.1%	COV as %	11.3	9.7	10.6

Flow w/o C-Pt 2524 acfm Vel Avg w/o C-Pt 1449 fpm


> Start Finish 86.0 78.0 F 86 78 0.00 0.00 mbars 29.509 29.51 in Hg 999 999 mbars 35% 53% RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Notes:

Stack temp

Equipment temp

Ambient pressure

Ambient humidity

Total Stack pressure

Ambient temp

Stack static

Only 2 traverses done per port. See note

on data sheet VT-18.

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

 Site
 296-S-21 Model

 Date
 8/8/2006

 Testers
 BG Fritz

 Stack Dia.
 17 7/8 in.

 Stack X-Area
 250.9 in.2

 Elevation
 N.A.

 Distance to disturbance
 77 3/4 inches

Velocity units ft/min

 Run No.
 VT-20
 No centerpoint

 Fan Configuration
 4
 no prefilter

 Fan Setting
 52
 Hz

 Stack Temp
 82.0 deg F

 Start/End Time
 11:50 to 12:30

 Center 2/3 from
 1.64
 to:
 16.23

Points in Center 2/3

Data Files: NA

2 to: 7

Traverse>		Port _4_ Bottom/East					Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	1136	1167		1151.5	1342	1359		1350.5
2	1 14/16	1265	1276		1270.5	1423	1421		1422.0
3	3 8/16	1221	1288		1254.5	1439	1431		1435.0
4	5 13/16	1267	1226		1246.5	1369	1371		1370.0
Center	9	1354	1378		N.A.	1338	1365		N.A.
5	12 3/16	1502	1573		1537.5	1542	1509		1525.5
6	14 8/16	1573	1599		1586.0	1684	1697		1690.5
7	16 1/16	1584	1601		1592.5	1684	1715		1699.5
8	17 6/16	1436	1415		1425.5	1580	1658		1619.0
Averages	>	1370.9	1391.4	#DIV/0!	1383.1	1489.0	1502.9	#DIV/0!	1514.0

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>North</u>	<u>All</u>
Mean	1448.5		Mean	1414.6	1523.8	1469.2
Min Point	1151.5	-20.5%	Std. Dev.	173.7	141.8	161.6
Max Point	1699.5	17.3%	COV as %	12.3	9.3	11.0

Flow w/o C-Pt 2524 acfm Vel Avg w/o C-Pt 1449 fpm

Stack temp

Equipment temp

Ambient pressure

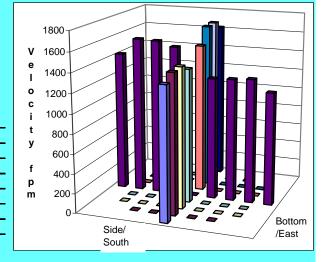
Ambient humidity

Total Stack pressure

Ambient temp

Stack static

Notes:


Start Finish 86.0 78.0 F 86 78 0.00 0.00 mbars 29.509 29.51 in Hg 999 999 mbars 35% 53% RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

on data sheet VT-18.

Only 2 traverses done per port. See note

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations:

Appendix C Velocity Uniformity Procedure

APPENDIX C: VELOCITY UNIFORMITY PROCEDURE

PNNL Operating Procedure			
Title: Test to Determine Uniformity of Gas Velocity at the Elevation of a Sampler Probe	Org. Code: Procedure No.: Rev. No.:	D7E74 EMS-JAG-04 1	
Work Location: General	Effective Date:	April 28, 2006	
Author: John A. Glissmeyer	Supersedes Date:	November 24, 1998	}
Identified Hazards: ☐ Radiological ☐ Hazardous Materials ☑ Physical Hazards ☐ Hazardous Environment ☐ Other:	☐ Mandatory Use ☐ Continuous Use ☐ Reference Use ☐ Information Use	e e se	
Are One-Time Modifications Allow Person Signing		No ature	Date
Technical review: J. Matthew Barnett			
Project Manager: John Glissmeyer			
Line Manager: James Droppo			
Quality Engineer: Barry L. Sachs			

1.0 Purpose

The performance of new stack sampling systems must be shown to satisfy the requirements of 40 CFR 61, Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities." This regulation governs portions of the design and implementation of effluent air sampling. The stack sampler performance is adequately characterized when potential contaminants in the effluent are of a uniform concentration at the sampling plane and line losses are within acceptable limits. (The sampling plane is the cross section of the stack or duct where the sampling nozzle inlet is located.) Uniformity of contaminant concentration is unlikely where the gas velocity throughout the sampling plane is significantly non-uniform. This procedure provides the means to determine the uniformity of gas velocity, and is performed prior to measurements of contaminant uniformity. This procedure is performed after the range of gas flow conditions are established. Other procedures that usually follow address flow angle, and uniformity of gas and aerosol contaminants.

2.0 Applicability

This procedure can be used for tests on actual or scale model stacks and ducts to determine the uniformity of air velocity throughout the sampling plane. The results also provide a detailed determination of the flowrate at the ventilation control settings used for the procedure. The tests are applicable within the following constraints:

- The operating limits of the air velocity measurement device used are observed.
- The air velocity sensor element does not occupy more than a few percent of the cross sectional area in the sampling plane.

This procedure may need to be repeated if there are significant changes made in the configuration of the ventilation system during the conduct of the remainder of the test plan. If the system under test operates within a limited range of airflow that does not change more than \pm 25%, then this procedure is usually conducted once at the middle of the range. If the flow may vary more, then the procedure is performed at least at the extremes of flow.

3.0 Prerequisites and Conditions

Conditions and concerns that must be satisfied prior to performing this procedure are listed below:

- The job-hazards analysis for the work area must be prepared and followed.
- Safety glasses, hard toed or substantial shoes may be required in the work areas.
- Special training may be required to access the test ports of the stack.
- The flow control device must be installed and means available for its adjustment.
- Air velocity measurement equipment must be within calibration.
- The Test Instruction must be read and understood.
- This procedure must be read and understood.

4.0 Precautions and Limitations

Access to the test ports may require the use of ladders, scaffolding or manlifts, which may necessitate special training for sampling personnel and any observers. The training requirements will be indicated in the job hazard analysis.

5.0 Equipment Used for Measurements

The following are essential items of equipment:

- Air velocity measurement apparatus, which may consist of a calibrated slant tube or electronic manometer, pitot tube, or an electronic sensor;
- Platform, ladders, or manlifts as needed to access the test ports;
- Fittings to limit leakage around the velocity sensor and to stabilize the sensor so it can be repositioned precisely.
- To provide information about the test conditions, commercial grade sensors for stack temperature, barometric pressure, static pressure, and humidity provide acceptable information. Likewise, data from a nearby meteorology or facility station is acceptable.

Further details on specific equipment for the job are provided in the Test Instruction. The air velocity instrumentation may be either the types used in 40 CFR 60, Appendix A, Method 2, or other measurement device for discrete points, such as a rotating vane or thermal anemometer. The user must be aware that different devices may give readings in terms of different gas conditions

6.0 Work Instructions for Setup, Measurements, and Calculations

Job specific instructions given in the Test Instruction, illustrated in Exhibit B, will provide details and operating parameters necessary to perform this procedure.

6.1 Preparing for Measurements:

- 6.1.1 Verify that the interior dimensions of the stack or duct at the sampling plane agree with those used in calculating the grid of measurement points given in the Test Instruction or data sheet.
- 6.1.2 Provide essential supplies at the sampling location (velocity measuring instrumentation, fittings to adapt the sensor to the test ports, marking pens, data sheets, writing and sensor supporting platforms).
- 6.1.3 Verify that the ventilation flow control device is capable of the flow control settings given in the Test Instruction.

6.1.4 Prepare a spreadsheet for calculating results and plotting data. See the illustration in Exhibit A. Label the columns of traverse data by the direction of the traverse. For example, if the first reading is closest to the east port, and the last reading is closest to the west port, then label the traverse east-west. Print blank copies of the spreadsheet as data forms for hand recording measurements for later transfer to the spreadsheet.

Note. For example, if the first reading is closest to the east port, and the last reading is closest to the west port, then label the traverse east-west. Also the first point is the one closest to the port.

Note. The grid of velocity measurement points is calculated in accordance with 40 CFR 60, Appendix A, Method 1. A centerpoint is included as a common reference and for graphical purposes. The layout design divides the area of the sampling plane so that each point represents approximately an equal-sized area

- 6.1.5 Mark the velocity sensor body to indicate the insertion depth for each point in the measurement grid.
- 6.1.6 Obtain barometric pressure, relative humidity, and stack or duct temperature and static pressure if needed to convert the velocity sensor readings to velocity units.
- 6.1.7 Insert the velocity sensor in the stack or duct and seal the opening around it. The seal does not have to be air tight.

6.2 Velocity Uniformity Measurement

- 6.2.1 Set the ventilation flow controller per the Test Instruction.
- 6.2.2 Verify that the directional orientations and the numbered measurement positions are consistent with the data sheet.
- 6.2.3 Measure and record, on the data sheet, the velocity or pressure reading at each measurement point in succession. If the readout device has an averaging feature, record the average of a series of several readings.
- 6.2.4 Repeat Step 6.2.3 two more times for a total of three measurements at each point.
- 6.2.5 Calculate the average air velocity for each measurement point.

- 6.2.6 Review the data form for completeness.
- 6.2.7 Sign and date the data form indicating completion of the data collection portion of the procedure.

6.3 Calculations

- 6.3.1 Transfer the data to the spreadsheet created in Step 6.1.4.
- 6.3.2 Calculate the overall average and standard deviation of the velocity.
- 6.3.3 Calculate the coefficient of variance (COV, 100 times the standard deviation divided by the mean) using the average velocity for all points in the inner two-thirds of the cross section area (including the centerpoint).
- 6.3.4 Compare the observed COV for each run to the acceptance criterion. The acceptance criterion for the COV is \bigcirc 20% for the inner two-thirds of the stack diameter.
- 6.3.5 Have the data transfers and calculations reviewed and verified. The reviewer should sign the printed data form.

7.0 Records

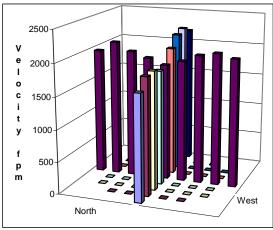
7.1 Transfer the original data forms and calculations to the records custodian as project records

Exhibits/Attachments

Exhibit A - Typical Velocity Traverse Data Form VELOCITY TRAVERSE DATA FORM

	VLLOCIII IN	AVENSE DATA I ONIVI				
Site	Model	Run No.	VT-1			
Date	Oct. 16, 2001	Fan Configuration	4-fan: EF1,	EF4, EF5	5, EF7	
Testers	Glissmeyer and Maughan	Fan Setting	51 Hz		<u> </u>	
Stack Dia.	23.5 in.	Stack Temp	71.7	deg F	<u> </u>	
Stack X-Area	433.7 in.2	Start/End Time	1432-1530 l	hours	<u> </u>	
Elevation		Center 2/3 from	2.16	to:	21.34	
Distance to disturbance	75 inches	Points in Center 2/3	2	to:	7	_
Velocity units	ft/min	Data Files:	NA	_	·	_

Traverse>			We	est			No	rth	
Trial>		1	2	3	Mean	1	2	3	Mean
CorrectLabel	Depth, in.		Velo	ocity			Velo	ocity	
1	0.75	2044	1990	1967	2000.3	1603	1611	1734	1649.3
2	2.47	2058	2067	2069	2064.7	1768	1877	1825	1823.3
3	4.56	2036	2067	1941	2014.7	1849	1830	1859	1846.0
4	7.59	1892	1965	1855	1904.0	1811	1723	1823	1785.7
Center	11.75	1868	1808	1793	1823.0	1783	1892	1769	1814.7
5	15.91	1982	1875	1892	1916.3	1997	1998	2070	2021.7
6	18.94	1972	2016	2009	1999.0	2193	2220	2157	2190.0
7	21.03	2096	2181	2099	2125.3	2241	2235	2258	2244.7
8	22.75	1960	1978	1987	1975.0	2193	2132	2174	2166.3
Averages	>	1989.8	1994.1	1956.9	1980.3	1937.6	1946.4	1963.2	1949.1


AII	<u>ft/min</u>	Dev. from mean	Center 2/3	West	<u>North</u>	<u>All</u>
Mean	1964.7		Mean	1978.1	1960.9	1969.5
Min Point	1649.3	-16.1%	Std. Dev.	103.5	191.9	148.4
Max Point	2244.7	14.3%	COV as %	5.2	9.8	7.5

Pitot #5, 36-in. standard

Flow w/o C-Pt 5973 acfm Instuments Used: Vel Avg w/o C-Pt 1983 fpm

	Start	Finish	_
Stack temp	72.5	70.8	F
Equipment temp	71.6	75	F
Ambient temp	70	70.7	F
Stack static	0.5	0.52	mbars
Ambient pressure	986.3	985.8	mbars
Total Stack pressure	986.8	986.3	mbars
Ambient humidity	38%	36%	RH

Solmat Zephyr SN 12951472 Cal. Due 7/26/02

Notes	s:
Initial	trial

Signature/date

Initial trial run to evaluate stack and instrument configuration.

Signature signifies compliance with Procedure EMS-JAG-4

Signature verifying data and calculations:

Exhibit B - Typical Test Instruction

	Test Instruction	1						
Project: Model Stack	Date: August 19, 2007	Work Package: K83017						
Tests: V	elocity Uniformity High Flo	w in Model Stack						
Staff: David Maughan	Staff: David Maughan							
Reference Procedures: 1. Operating Manual for So	olomat Zenhvr							
	ormity of Gas Velocity at the	Elevation of a Sampler Probe,						
Equipment:								
	an Speed Controller located	in 305 Bldg.						
2. Solomat Zephyr and pito	ot tube							
Safety Considerations:								
Review and observe the appl	icable Job Hazard Analysis	for the project						
Instructions:								
1. Assemble the equipment sampling probe	t for the velocity uniformity	test at the ports at the elevation of the						
	t points with the following d 4, 3.16, 4.28, 5.10, 5.66, 5.8	istances from the inside of the stack 3 inches						
	each point at the high (400 c	fm) extreme of stack flow. Repeat						
4. Record data on velocity								
_	res and retain assembly for s	subsequent tests						
Desired Completion Date: 12								
Approvals:								
John Glissmeyer,	project manager	Date						
Test completed by:		Date:						

Appendix D Velocity Uniformity Data Sheets

APPENDIX D: VELOCITY UNIFORMITY DATA SHEETS

VELOCITY TRAVERSE DATA FORM

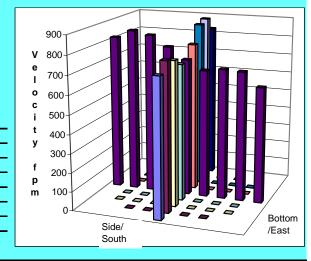
Site	296-S-21 Model		Run No.	VT-1					
Date	7/12/2006		Fan Configuration	EF4		no pre	filter		
Testers	Brad Fritz & John Glissm	eyer	Fan Setting	30			Hz		
Stack Dia.	17 7/8 in.		Stack Temp		79.5	deg F			
Stack X-Area	250.9 in.2		Start/End Time	10:20/	11:17				
Elevation	N.A.		Center 2/3 from		1.64	to):	16.23	
Distance to disturbance	77 3/4 inches	F	Points in Center 2/3		2	to):	7	
Velocity units	ft/min		Data Files:	NA					

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	0.58	589	630	619	612.7	741	721	669	710.3
2	1.89	689	692	675	685.3	773	754	759	762.0
3	3.49	688	702	682	690.7	754	752	726	744.0
4	5.81	691	695	647	677.7	720	697	700	705.7
Center	9.00	747	689	743	726.3	715	724	687	708.7
5	12.19	779	824	759	787.3	751	772	785	769.3
6	14.51	844	839	844	842.3	859	874	836	856.3
7	16.11	877	835	869	860.3	845	896	876	872.3
8	17.42	805	846	806	819.0	793	858	768	806.3
Averages	>	745.4	750.2	738.2	744.6	772.3	783.1	756.2	770.6

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	757.6		Mean	752.9	774.0	763.5
Min Point	612.7	-19.1%	Std. Dev.	77.0	66.4	69.9
Max Point	872.3	15.1%	COV as %	10.2	8.6	9.2

Flow w/o C-Pt 1329 acfm Vel Avg w/o C-Pt 763 fpm

	Start	Finish	
Stack temp	78	81	F
Equipment temp	N.A.	N.A.	F
Ambient temp	77	80	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.4	29.4	in. Hg
Total Stack pressure	996.3	996.3	mbars
Ambient humidity	36%	36%	RH


Notes: Horizontal diam. 17-7/8 in. Vertical diam. 17-7/8 in.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4

Signature/date

Signature verifying data and calculations:

	*LL00!!!	MATERIOL DATA I ONI	•		
Site	296-S-21 Model	Run No.	VT-2		
Date	7/12/2006	Fan Configuration	EF3	no prefilter	
Testers	Brad Fritz & John Glissm	eyer Fan Setting	30	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	85.0	deg F	
Stack X-Area	250.9 in.2	Start/End Time	11:30/12:15		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>			Port _4_ Bottom/East				Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean	
Point	Depth, in.		Velo	ocity			Velo	ocity		
1	0.58	433	408	374	405.0	383	420	480	427.7	
2	1.89	440	448	451	446.3	480	460	479	473.0	
3	3.49	454	438	454	448.7	481	476	455	470.7	
4	5.81	432	460	424	438.7	444	443	447	444.7	
Center	9.00	459	465	450	458.0	443	481	456	460.0	
5	12.19	504	504	455	487.7	497	481	505	494.3	
6	14.51	514	513	492	506.3	487	521	550	519.3	
7	16.11	551	523	507	527.0	548	524	505	525.7	
8	17.42	491	485	490	488.7	515	521	439	491.7	
Averages>		475.3	471.6	455.2	467.4	475.3	480.8	479.6	478.6	

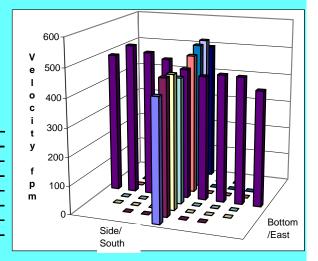
AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	473.0		Mean	473.2	484.0	478.6
Min Point	405.0	-14.4%	Std. Dev.	34.0	30.3	31.5
Max Point	527.0	11.4%	COV as %	7.2	6.3	6.6

Flow w/o C-Pt 827 acfm
Vel Avg w/o C-Pt 475 fpm

Stack temp
Equipment temp
Ambient temp
Stack static
Ambient pressure
Total Stack pressure
Ambient humidity

Finish	_
84	F
N.A.	F
83	F
0.00	mbars
29.42	in. Hg
996.3	mbars
31%	RH
	84 N.A. 83 0.00 29.42 996.3

Notes: Horizontal diam. 17-7/8 in.


Vertical diam. 17-7/8 in.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4

Signature/date

Signature verifying data and calculations:

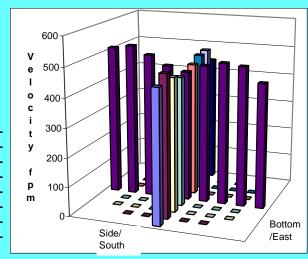
Site **296-S-21 Model** Run No. VT-3 no prefilter Fan Configuration **EF2** Date 7/12/2006 Testers Brad Fritz Fan Setting 30 Hz Stack Dia. Stack Temp 86.4 deg F 17 7/8 in. Stack X-Area 250.9 in.2 Start/End Time 1300/1350 Elevation N.A. Center 2/3 from 1.64 to: 16.23 Distance to disturbance 77 3/4 inches Points in Center 2/3 2 to: Velocity units ft/min Data Files: NA

Traverse>		Port _4_ Bottom/East Port _4_ Side/South							
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velocity		
1	0.58	413	418	428	419.7	471	460	439	456.7
2	1.89	467	479	461	469.0	497	463	496	485.3
3	3.49	475	492	460	475.7	441	485	452	459.3
4	5.81	467	455	466	462.7	457	433	445	445.0
Center	9.00	451	431	431	437.7	466	438	444	449.3
5	12.19	463	449	448	453.3	469	461	454	461.3
6	14.51	484	516	454	484.7	470	475	499	481.3
7	16.11	516	519	500	511.7	452	509	500	487.0
8	17.42	505	504	494	501.0	408	459	450	439.0
Averages	>	471.2	473.7	460.2	468.4	459.0	464.8	464.3	462.7

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	All
Mean	465.5		Mean	470.7	467.0	468.8
Min Point	419.7	-9.9%	Std. Dev.	23.7	17.5	20.1
Max Point	511.7	9.9%	COV as %	5.0	3.7	4.3

Flow w/o C-Pt 816 acfm Vel Avg w/o C-Pt 468 fpm

Start Finish 85.6 89.4 F Equipment temp N.A. N.A. Ambient temp 84 89 0.00 0.00 mbars Ambient pressure 29.42 29.41 in. Hg Total Stack pressure 996.0 996.0 mbars Ambient humidity 31% 29% RH


Notes: Horizontal diam. 17-7/8 in. Vertical diam. 17-7/8 in.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with

Signature verifying data and calculations: Signature on file copy

Signature/date

Stack temp

Stack static

D.3

Procedure EMS-JAG-4

Site 296-S-21 Model
Date 7/12/2006
Testers Brad Fritz
Stack Dia. 17 7/8 in.
Stack X-Area 250.9 in.2
Elevation N.A.
Distance to disturbance 77 3/4 inches

Velocity units ft/min

 Run No.
 VT-4

 Fan Configuration
 EF1 no prefilter

 Fan Setting
 30 Hz

 Stack Temp
 88.9 deg F

 Start/End Time
 1400/1450

 Center 2/3 from
 1.64 to:
 1

 Center 2/3 from
 1.64
 to:
 16.23

 Points in Center 2/3
 2
 to:
 7

 Data Files:
 NA

Traverse>			Port _4_ B	ottom/East			Port _4_ 9	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velocity		
1	0.58	415	422	387	408.0	419	401	435	418.3
2	1.89	482	470	480	477.3	439	447	450	445.3
3	3.49	466	460	492	472.7	428	441	434	434.3
4	5.81	448	429	451	442.7	396	401	406	401.0
Center	9.00	412	411	392	405.0	398	406	418	407.3
5	12.19	410	439	421	423.3	378	434	416	409.3
6	14.51	425	431	430	428.7	429	394	434	419.0
7	16.11	414	433	442	429.7	455	435	431	440.3
8	17.42	410	416	413	413.0	441	432	415	429.3
Averages	>	431.3	434.6	434.2	433.4	420.3	421.2	426.6	422.7

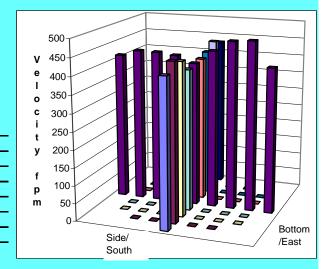
AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	428.0		Mean	439.9	422.4	431.1
Min Point	401.0	-6.3%	Std. Dev.	26.5	17.6	23.4
Max Point	477.3	11.5%	COV as %	6.0	4.2	5.4

Flow w/o C-Pt 751 acfm Vel Avg w/o C-Pt 431 fpm

Stack temp
Equipment temp
Ambient temp
Stack static
Ambient pressure
Total Stack pressure
Ambient humidity

Start	Finish	
89.4	89.6	F
N.A.	N.A.	F
88.7	89.1	F
0.00	0.00	mbars
29.41	29.41	in. Hg
996.0	996.0	mbars
31%	31%	RH

Notes: Horizontal diam. 17-7/8 in.


Vertical diam. 17-7/8 in.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations: **Signature on file copy**

Site 296-S-21 Model Date 7/14/2006 Testers JGD & JAG Stack Dia. 18 in. Stack X-Area 254.5 in.2 Elevation N.A 54 5/8 inches Distance to disturbance

Velocity units ft/min

Run No. VT-5 Fan Configuration 1, 2, 3 no prefilter Fan Setting 53, 40, 45 Hz Stack Temp 96.5 deg F Start/End Time 1437/1545 Center 2/3 from 1.65 to:

2

Points in Center 2/3 Data Files: NA

16.35 to:

Traverse>		F	Port _3_ Botte	om/NorthEas	st		Port _3_ Sid	e/SouthEast	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velocity				Velo	ocity	
1	9/16	2211	2354	2331	2298.7	1999	2064	1986	2016.3
2	1 14/16	2253	2223	2242	2239.3	2155	2060	2089	2101.3
3	3 8/16	2086	2068	2075	2076.3	1949	1998	1986	1977.7
4	5 13/16	1720	1760	1795	1758.3	1561	1618	1670	1616.3
Center	9	1510	1480	1476	1488.7	1468	1413	1381	1420.7
5	12 3/16	1732	1703	1738	1724.3	1747	1589	1716	1684.0
6	14 8/16	2004	2016	2001	2007.0	1989	1976	2067	2010.7
7	16 1/16	2142	2078	2159	2126.3	2125	2212	2042	2126.3
8	17 6/16	2141	2106	2151	2132.7	2229	2123	2232	2194.7
Averages	>	1977.7	1976.4	1996.4	1983.5	1913.6	1894.8	1907.7	1905.3

AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	<u>SouthEast</u>	<u>All</u>
Mean	1944.4		Mean	1917.2	1848.1	1882.7
Min Point	1420.7	-26.9%	Std. Dev.	266.8	273.3	261.9
Max Point	2298.7	18.2%	COV as %	13.9	14.8	13.9

Flow w/o C-Pt 3544 acfm Vel Avg w/o C-Pt 2006 fpm

Finish

102.0

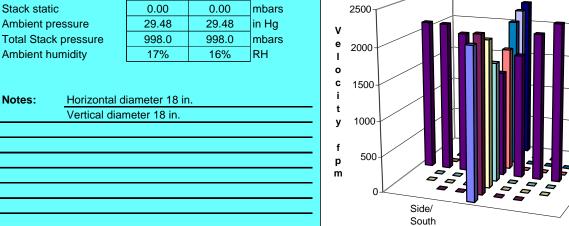
89

98

F F

Start Stack temp 101.0 Equipment temp 83 Ambient temp 95 Stack static 0.00 Ambient pressure 29.48 Total Stack pressure 998.0 Ambient humidity 17%

Instuments Used:


Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Bottom

/East

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

	VLL00111 1	MATERIOL DATA I ONI	1		
Site	296-S-21 Model	Run No.	VT-5	No C.P.	
Date	7/14/2006	Fan Configuration	1, 2, 3	no prefilter	
Testers	JGD & JAG	Fan Setting	53, 40, 45	Hz	Z
Stack Dia.	18 in.	Stack Temp	96.5	deg F	
Stack X-Area	254.5 in.2	Start/End Time	1437/1545		
Elevation	N.A.	Center 2/3 from	1.65	to:	16.35
Distance to disturbance	54 5/8 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>		F	ort _3_ Botto	om/NorthEas	st		Port _3_ Sid	e/SouthEast	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velocity			Velocity			
1	9/16	2211	2354	2331	2298.7	1999	2064	1986	2016.3
2	1 14/16	2253	2223	2242	2239.3	2155	2060	2089	2101.3
3	3 8/16	2086	2068	2075	2076.3	1949	1998	1986	1977.7
4	5 13/16	1720	1760	1795	1758.3	1561	1618	1670	1616.3
Center	9	1510	1480	1476	N.A.	1468	1413	1381	N.A.
5	12 3/16	1732	1703	1738	1724.3	1747	1589	1716	1684.0
6	14 8/16	2004	2016	2001	2007.0	1989	1976	2067	2010.7
7	16 1/16	2142	2078	2159	2126.3	2125	2212	2042	2126.3
8	17 6/16	2141	2106	2151	2132.7	2229	2123	2232	2194.7
Averages	>	1977.7	1976.4	1996.4	2045.4	1913.6	1894.8	1907.7	1965.9

All	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	<u>SouthEast</u>	<u>All</u>
Mean	2005.6		Mean	1988.6	1919.4	1954.0
Min Point	1616.3	-19.4%	Std. Dev.	206.3	216.8	204.9
Max Point	2298.7	14.6%	COV as %	10.4	11.3	10.5

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Instuments Used:

2500

Flow w/o C-Pt 3544 acfm Vel Avg w/o C-Pt 2006 fpm

	Start	Finish	
Stack temp	101.0	102.0	F
Equipment temp	83	89	F
Ambient temp	95	98	F
Stack static	0.00	0.00	mbars
Ambient pressure	998.00	998.00	in. Hg
Total Stack pressure	998.0	998.0	mbars
Ambient humidity	17%	16%	RH

	101.0	102.0	Г
emp	83	89	F
np	95	98	F
	0.00	0.00	mbars
ssure	998.00	998.00	in. Hg
pressure	998.0	998.0	mbars
midity	17%	16%	RH

2000 0 С 1500 Notes: 1000 у 500 р m Horizontal diameter 18 in. Vertical diameter 18 in. Bottom Side/ /East South

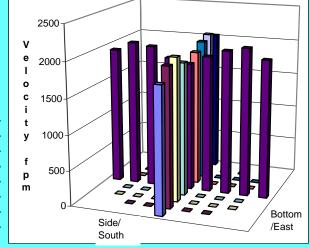
Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

Site	296-S-21 Model	Run No.	VT-6		
Date	7/15/2006	Fan Configuration	1, 2, 3	no prefilter	
Testers	Droppo & Glissmeyer	Fan Setting	54, 41, 46	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	81.5	deg F	
Stack X-Area	250.9 in.2	Start/End Time	1020/1130		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>		Port _4_ Bottom/East Port _4_ Side			Side/South				
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	city	
1	9/16	1942	1982	1938	1954.0	1664	1850	1820	1778.0
2	1 14/16	2044	2142	2105	2097.0	1973	1942	1967	1960.7
3	3 8/16	2036	2042	2042	2040.0	1985	2119	1956	2020.0
4	5 13/16	1939	1952	1926	1939.0	1874	1957	1828	1886.3
Center	9	1770	1844	1837	1817.0	1818	1829	1785	1810.7
5	12 3/16	1838	1865	1941	1881.3	1919	1800	2040	1919.7
6	14 8/16	2001	2032	2044	2025.7	2016	1915	2128	2019.7
7	16 1/16	2024	2041	2115	2060.0	2070	2006	2154	2076.7
8	17 6/16	1962	1942	1910	1938.0	2069	1907	2065	2013.7
Averages>		1950.7	1982.4	1984.2	1972.4	1932.0	1925.0	1971.4	1942.8

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1957.6		Mean	1980.0	1956.2	1968.1
Min Point	1778.0	-9.2%	Std. Dev.	103.1	91.3	94.4
Max Point	2097.0	7.1%	COV as %	5.2	4.7	4.8


Flow w/o C-Pt 3443 acfm Vel Avg w/o C-Pt 1976 fpm

Start	Finish
89.0	89.0
77	82
80	83
0.00	0.00
1003 mb	29.60
1003.0	1002.0
33%	29%
	89.0 77 80 0.00 1003 mb 1003.0

	89.0	89.0	F
	77	82	F
	80	83	F
	0.00	0.00	mbars
	1003 mb	29.60	in Hg
ure	1003.0	1002.0	mbars
	33%	29%	RH

Notes: Horizontal diameter 17-7/8 in. Vertical diameter 17-7/8 in.

Instuments Used: Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06 Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

	7220011 110.172.102 D7.17.11 01.111					
Site	296-S-21 Model	Run No.	VT-6	No C.P.		
Date	7/15/2006	Fan Configuration	1, 2, 3	no prefilter		
Testers	Droppo & Glissmeyer	Fan Setting	54, 41, 46	Hz		
Stack Dia.	17 7/8 in.	Stack Temp	81.5	deg F		
Stack X-Area	250.9 in.2	Start/End Time	1020/1130			
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23	
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7	
Velocity units	ft/min	Data Files:	NA			

Traverse>		Port _4_ Bottom/East			Port _4_ S	Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	ocity	
1	9/16	1942	1982	1938	1954.0	1664	1850	1820	1778.0
2	1 14/16	2044	2142	2105	2097.0	1973	1942	1967	1960.7
3	3 8/16	2036	2042	2042	2040.0	1985	2119	1956	2020.0
4	5 13/16	1939	1952	1926	1939.0	1874	1957	1828	1886.3
Center	9	1770	1844	1837	N.A.	1818	1829	1785	N.A.
5	12 3/16	1838	1865	1941	1881.3	1919	1800	2040	1919.7
6	14 8/16	2001	2032	2044	2025.7	2016	1915	2128	2019.7
7	16 1/16	2024	2041	2115	2060.0	2070	2006	2154	2076.7
8	17 6/16	1962	1942	1910	1938.0	2069	1907	2065	2013.7
Averages>		1950.7	1982.4	1984.2	1991.9	1932.0	1925.0	1971.4	1959.3

	AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
	Mean	1975.6		Mean	2007.2	1980.5	1993.8
	Min Point	1778.0	-10.0%	Std. Dev.	80.9	71.1	74.0
	Max Point	2097.0	6.1%	COV as %	4.0	3.6	3.7
٩t	3443	acfm	Instuments	Used:			

Flow w/o C-Pt 3443 acfm Vel Avg w/o C-Pt 1976 fpm

	Start	Finish
Stack temp	89.0	89.0
Equipment temp	77	82
Ambient temp	80	83
Stack static	0.00	0.00
Ambient pressure	1003 mb	29.60
Total Stack pressure	1003.0	1002.0
Ambient humidity	33%	29%

mbars in Hg mbars RH

	2500 V e 2000 c 1500 i t y 1000 f p 500 m
--	--

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Horizontal diameter 17-7/8 in.

Vertical diameter 17-7/8 in.

Notes:

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

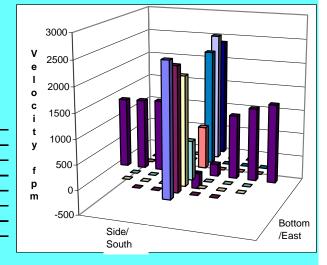
Signature verifying data and calculations: Signature on file copy

	VLLOCIII I	NAVENSE DATA I ONI			
Site	296-S-21 Model	Run No.	VT-7		
Date	7/15/2006	Fan Configuration	1, 2, 3	no prefilter	
Testers	Droppo & Glissmeyer	Fan Setting	54, 41, 46	Hz	
Stack Dia.	18 in.	Stack Temp	84.5	deg F	
Stack X-Area	254.5 in.2	Start/End Time	1145/1250		
Elevation	N.A.	Center 2/3 from	1.65	to:	16.35
Distance to disturbance	27 3/8 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>			Port _1_ Bottom/East				Port _1_ S	ort _1_ Side/South		
Trial>		1	2	3	Mean	1	2	3	Mean	
Point	Depth, in.		Velocity				Velo	ocity		
1	9/16	2606	2582	2607	2598.3	2484	2573	2756	2604.3	
2	1 14/16	2406	2400	2424	2410.0	2414	2495	2374	2427.7	
3	3 8/16	2182	2186	1974	2114.0	2249	2207	2014	2156.7	
4	5 13/16	514	93	580	395.7	700	899	759	786.0	
Center	9	-429	-476	-678	-527.7	-760	-126	-56	-314.0	
5	12 3/16	1252	976	1359	1195.7	860	1173	516	849.7	
6	14 8/16	2382	2305	2442	2376.3	2279	2371	2269	2306.3	
7	16 1/16	2366	2388	2283	2345.7	2762	2549	2403	2571.3	
8	17 6/16	2471	2321	2172	2321.3	2304	2375	2433	2370.7	
Averages	>	1750.0 1641.7 1684.8 1692.1 1699.1 1835.1 1718			1718.7	1751.0				

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1721.6		Mean	1472.8	1540.5	1506.7
Min Point	-527.7	-130.7%	Std. Dev.	1162.4	1103.1	1089.3
Max Point	2604.3	51.3%	COV as %	78.9	71.6	72.3

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06


Pitot # 5 -- 36" Standard Pitot Dwyer

Instuments Used:

Flow w/o C-Pt 3515 acfm Vel Avg w/o C-Pt 1989 fpm

	Start	Finish	
Stack temp	89.0	91.0	F
Equipment temp	82	83	F
Ambient temp	83	86	F
Stack static	-0.35	-0.12	mbars
Ambient pressure	29.6	29.58	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	29%	29%	RH

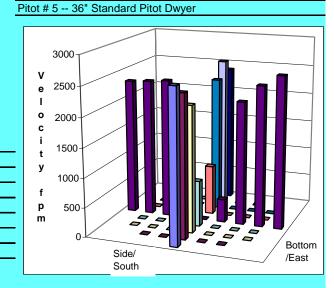
Notes:			
Horizontal dia	ameter 18 in.		
Vertical diam	eter 18 in.		

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

	VLLOCITI	INAVENSE DATATONI		
Site	296-S-21 Model	Run No.	VT-7	No C.P
Date	7/15/2006	Fan Configuration	1, 2, 3	no pref
Testers	Droppo & Glissmeyer	Fan Setting	54, 41, 46	
Stack Dia.	18 in.	Stack Temp	84.5	deg F
Stack X-Area	254.5 in.2	Start/End Time	1145/1250	
Elevation	N.A.	Center 2/3 from	1.65	to:
Distance to disturbance	27 3/8 inches	Points in Center 2/3	2	to:
Velocity units	ft/min	Data Files:	NA	

Traverse>			Port _1_ B	ottom/East			Port _1_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	2606	2582	2607	2598.3	2484	2573	2756	2604.3
2	1 14/16	2406	2400	2424	2410.0	2414	2495	2374	2427.7
3	3 8/16	2182	2186	1974	2114.0	2249	2207	2014	2156.7
4	5 13/16	514	93	580	395.7	700	899	759	786.0
Center	9	-429	-476	-678	N.A.	-760	-126	-56	N.A.
5	12 3/16	1252	976	1359	1195.7	860	1173	516	849.7
6	14 8/16	2382	2305	2442	2376.3	2279	2371	2269	2306.3
7	16 1/16	2366	2388	2283	2345.7	2762	2549	2403	2571.3
8	17 6/16	2471	2321	2172	2321.3	2304	2375	2433	2370.7
Averages	>	1750.0	1641.7	1684.8	1969.6	1699.1	1835.1	1718.7	2009.1


ı Pt	3515		Instuments		.0.0		12.0
	Max Point	2604.3	30.9%	COV as %	45.9	43.9	42.8
	Min Point	395.7	-80.1%	Std. Dev.	829.2	811.1	782.3
	Mean	1989.4		Mean	1806.2	1849.6	1827.9
	All	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>

Flow w/o C-Pt 3515 acfm Vel Avg w/o C-Pt 1989 fpm

	Start	Finish	
Stack temp	89.0	91.0	F
Equipment temp	82	83	F
Ambient temp	83	86	F
Stack static	-0.35	-0.12	mbars
Ambient pressure	29.6	29.58	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	29%	29%	RH

=quipment temp	82	83	F
Ambient temp	83	86]F
Stack static	-0.35	-0.12	mbars
Ambient pressure	29.6	29.58	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	29%	29%	RH

Notes: Horizontal diameter 18 in. Vertical diameter 18 in.

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

No C.P. no prefilter

to:

to:

Hz

16.35

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

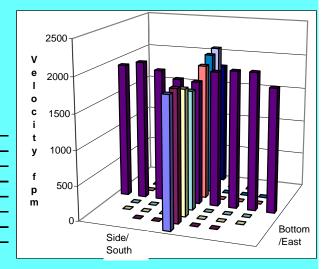
	VLLOCITI	NAVENSE DATA I ONI				
Site	296-S-21 Model	Run No.	VT-8			
Date	7/15/2006	Fan Configuration	1, 4	no prefilter		
Testers	Droppo & Glissmeyer	Fan Setting	54, 48	H:	z	
Stack Dia.	17 7/8 in.	Stack Temp	88.0	deg F		
Stack X-Area	250.9 in.2	Start/End Time	1255/1330			
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23	
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7	
Velocity units	ft/min	Data Files:	NA			

Traverse>			Port _4_ Bottom/East				Port _4_ Side/South		
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	ocity	
1	9/16	1771	1748	1777	1765.3	1841	1895	1821	1852.3
2	1 14/16	1954	1936	1991	1960.3	1921	1848	1838	1869.0
3	3 8/16	1918	1962	1989	1956.3	1757	1825	1819	1800.3
4	5 13/16	1849	1988	1932	1923.0	1715	1697	1719	1710.3
Center	9	1785	1743	1755	1761.0	1742	1821	1757	1773.3
5	12 3/16	1782	1732	1825	1779.7	1901	1947	1996	1948.0
6	14 8/16	1919	1885	1849	1884.3	2068	2073	2017	2052.7
7	16 1/16	1916	1994	2032	1980.7	2083	2145	2074	2100.7
8	17 6/16	1932	1935	1891	1919.3	1887	1684	1765	1778.7
Averages	>	1869.6	1880.3	1893.4	1881.1	1879.4	1881.7	1867.3	1876.1

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1878.6		Mean	1892.2	1893.5	1892.8
Min Point	1710.3	-9.0%	Std. Dev.	88.9	146.3	116.3
Max Point	2100.7	11.8%	COV as %	4.7	7.7	6.1

Flow w/o C-Pt 3298 acfm Vel Avg w/o C-Pt 1893 fpm

	Start	Finish	
Stack temp	91.0	93.0	F
Equipment temp	83	85	F
Ambient temp	86	90	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.58	29.57	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	29%	28%	RH


	Start	Finish	
	91.0	93.0	F
	83	85	F
	86	90	F
	0.00	0.00	mbars
	29.58	29.57	in Hg
)	1002	1002	mbars
	29%	28%	RH

Notes: Horizontal diameter 17-7/8 in. Vertical diameter 17-7/8 in.

Instuments Used: Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

VELOCITI TRAVERSE DATATORM								
Site	296-S-21 Model	Run No.	VT-8	No C.P.				
Date	7/15/2006	Fan Configuration	1, 4	no prefilter				
Testers	Droppo & Glissmeyer	Fan Setting	54, 48	Hz				
Stack Dia.	17 7/8 in.	Stack Temp	88.0	deg F				
Stack X-Area	250.9 in.2	Start/End Time	1255/1330					
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23			
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7			
Velocity units	ft/min	Data Files:	NA					

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	1771	1748	1777	1765.3	1841	1895	1821	1852.3
2	1 14/16	1954	1936	1991	1960.3	1921	1848	1838	1869.0
3	3 8/16	1918	1962	1989	1956.3	1757	1825	1819	1800.3
4	5 13/16	1849	1988	1932	1923.0	1715	1697	1719	1710.3
Center	9	1785	1743	1755	N.A.	1742	1821	1757	N.A.
5	12 3/16	1782	1732	1825	1779.7	1901	1947	1996	1948.0
6	14 8/16	1919	1885	1849	1884.3	2068	2073	2017	2052.7
7	16 1/16	1916	1994	2032	1980.7	2083	2145	2074	2100.7
8	17 6/16	1932	1935	1891	1919.3	1887	1684	1765	1778.7
Averages	>	1869.6	1880.3	1893.4	1896.1	1879.4	1881.7	1867.3	1889.0

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1892.6		Mean	1914.1	1913.5	1913.8
Min Point	1710.3	-9.6%	Std. Dev.	74.0	149.4	112.4
Max Point	2100.7	11.0%	COV as %	3.9	7.8	5.9
t 3298	acfm	Instuments	Used:			

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Flow w/o C-Pt 3298 acfm Vel Avg w/o C-Pt 1893 fpm

	Start	Finish	
Stack temp	91.0	93.0	F
Equipment temp	83	85	F
Ambient temp	86	90	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.58	29.57	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	29%	28%	RH

Stack static	0.00	0.00	mbars	2500
mbient pressure	29.58	29.57	in Hg	V
otal Stack pressure	1002	1002	mbars	
mbient humidity	29%	28%	RH	e 2000
lotes:				o c 1500 i t y 1000 f p 500
lorizontal diameter 17-7	/8 in.			
ertical diameter 17-7/8	in.			Bottom
				Side/ /East

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

VECONT TRAVERSE DATATORM										
Site	296-S-21 Model	Run No.	VT-9							
Date	7/17/2006	Fan Configuration	2, 4	no prefilter						
Testers	Droppo & Fritz	Fan Setting	41, 48	Hz						
Stack Dia.	17 7/8 in.	Stack Temp	86.0	deg F						
Stack X-Area	250.9 in.2	Start/End Time	1045/1130							
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23					
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7					
Velocity units	ft/min	Data Files:	NA							

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	city	
1	9/16	1667	1720	1697	1694.7	1585	1653	1623	1620.3
2	1 14/16	1803	1701	1794	1766.0	1688	1716	1605	1669.7
3	3 8/16	1770	1856	1791	1805.7	1646	1623	1702	1657.0
4	5 13/16	1703	1710	1741	1718.0	1576	1572	1581	1576.3
Center	9	1614	1703	1727	1681.3	1681	1592	1658	1643.7
5	12 3/16	1613	1751	1745	1703.0	1714	1808	1738	1753.3
6	14 8/16	1760	1804	1696	1753.3	1928	1938	1867	1911.0
7	16 1/16	1763	1762	1759	1761.3	1881	1899	1847	1875.7
8	17 6/16	1649	1693	1678	1673.3	1764	1941	1915	1873.3
Averages	>	1704.7	1744.4	1736.4	1728.5	1718.1	1749.1	1726.2	1731.1

All	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1729.8		Mean	1741.2	1726.7	1734.0
Min Point	1576.3	-8.9%	Std. Dev.	42.6	125.5	90.4
Max Point	1911.0	10.5%	COV as %	2.4	7.3	5.2

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Instuments Used:

Flow w/o C-Pt 3029 acfm Vel Avg w/o C-Pt 1738 fpm

	Start	Finish
Stack temp	87.4	88.7
Equipment temp	N.A.	84
Ambient temp	86	86
Stack static	0.00	0.00
Ambient pressure	29.63	29.62
Total Stack pressure	1003	1003
Ambient humidity	30%	27%

F mbars in Hg mbars RH

- - -	2000 V 1800 e 1600 I 1400 c 1200 i 1000 y 800 f 400 m 200
-	Side/ South

Notes:

Horizontal diameter 17-7/8 in. Vertical diameter 17-7/8 in.

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

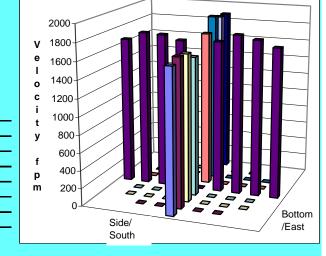
	VLL00111 1	MATERIOL DATA I ORIN	•		
Site	296-S-21 Model	Run No.	VT-9	No C.P.	
Date	7/17/2006	Fan Configuration	2, 4	no prefilter	
Testers	Droppo & Fritz	Fan Setting	41, 48	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	86.0	deg F	
Stack X-Area	250.9 in.2	Start/End Time	1045/1130		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	1667	1720	1697	1694.7	1585	1653	1623	1620.3
2	1 14/16	1803	1701	1794	1766.0	1688	1716	1605	1669.7
3	3 8/16	1770	1856	1791	1805.7	1646	1623	1702	1657.0
4	5 13/16	1703	1710	1741	1718.0	1576	1572	1581	1576.3
Center	9	1614	1703	1727	N.A.	1681	1592	1658	N.A.
5	12 3/16	1613	1751	1745	1703.0	1714	1808	1738	1753.3
6	14 8/16	1760	1804	1696	1753.3	1928	1938	1867	1911.0
7	16 1/16	1763	1762	1759	1761.3	1881	1899	1847	1875.7
8	17 6/16	1649	1693	1678	1673.3	1764	1941	1915	1873.3
Averages	>	1704.7	1744.4	1736.4	1734.4	1718.1	1749.1	1726.2	1742.1

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1738.3		Mean	1751.2	1740.5	1745.9
Min Point	1576.3	-9.3%	Std. Dev.	36.7	131.5	92.2
Max Point	1911.0	9.9%	COV as %	2.1	7.6	5.3

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer


Instuments Used:

Flow w/o C-Pt 3029 acfm Vel Avg w/o C-Pt 1738 fpm

	Start	Finish	
Stack temp	87.4	88.7	F
Equipment temp	N.A.	84	F
Ambient temp	86	86	F
Stack static	0.00	0.00	mbar
Ambient pressure	29.63	29.62	in Hg
Total Stack pressure	1003	1003	mbar
Ambient humidity	30%	27%	RH

Start	Finish	
87.4	88.7	F
N.A.	84	F
86	86	F
0.00	0.00	mbars
29.63	29.62	in Hg
1003	1003	mbars
30%	27%	RH

Notes:			
Horizontal o	diameter 17-7/8 in		
Vertical dia	meter 17-7/8 in.		

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

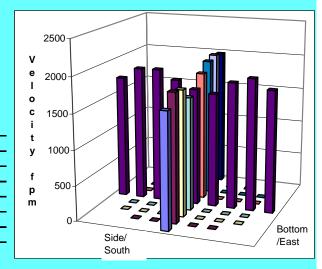
	VELOCITY	KAVERSE DATA FORM			
Site	296-S-21 Model	Run No.	VT-10		
Date	7/17/2006	Fan Configuration	3, 4	no prefilter	
Testers	BF & JD	Fan Setting	46, 48	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	93.6	deg F	
Stack X-Area	250.9 in.2	Start/End Time	12:45/13:18		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	1773	1710	1758	1747.0	1627	1639	1598	1621.3
2	1 14/16	1954	1837	1871	1887.3	1817	1821	1761	1799.7
3	3 8/16	1760	1837	1825	1807.3	1838	1759	1709	1768.7
4	5 13/16	1558	1609	1707	1624.7	1560	1644	1595	1599.7
Center	9	1606	1709	1691	1668.7	1596	1670	1685	1650.3
5	12 3/16	1815	1802	1730	1782.3	1774	1922	1756	1817.3
6	14 8/16	1914	1926	1892	1910.7	1951	1903	1962	1938.7
7	16 1/16	1914	1899	1898	1903.7	2042	1903	1992	1979.0
8	17 6/16	1743	1781	1721	1748.3	1961	1998	1891	1950.0
Averages	>	1781.9	1790.0	1788.1	1786.7	1796.2	1806.6	1772.1	1791.6

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1789.1		Mean	1797.8	1793.3	1795.6
Min Point	1599.7	-10.6%	Std. Dev.	114.7	138.3	122.1
Max Point	1979.0	10.6%	COV as %	6.4	7.7	6.8

Flow w/o C-Pt 3146 acfm Vel Avg w/o C-Pt 1805 fpm

	Start	Finish	
Stack temp	93.6	94.2	F
Equipment temp	76	83	F
Ambient temp	93	93	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.59	29.58	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	16%	18%	RH


Notes:

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

	VLLOOIII I	INAVENDE DATATONI	•		
Site	296-S-21 Model	Run No.	VT-10	No C.P.	
Date	7/17/2006	Fan Configuration	3, 4	no prefilter	
Testers	BF & JD	Fan Setting	46, 48	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	93.6	deg F	
Stack X-Area	250.9 in.2	Start/End Time	12:45/13:18		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velocity			Velocity			
1	9/16	1773	1710	1758	1747.0	1627	1639	1598	1621.3
2	1 14/16	1954	1837	1871	1887.3	1817	1821	1761	1799.7
3	3 8/16	1760	1837	1825	1807.3	1838	1759	1709	1768.7
4	5 13/16	1558	1609	1707	1624.7	1560	1644	1595	1599.7
Center	9	1606	1709	1691	N.A.	1596	1670	1685	N.A.
5	12 3/16	1815	1802	1730	1782.3	1774	1922	1756	1817.3
6	14 8/16	1914	1926	1892	1910.7	1951	1903	1962	1938.7
7	16 1/16	1914	1899	1898	1903.7	2042	1903	1992	1979.0
8	17 6/16	1743	1781	1721	1748.3	1961	1998	1891	1950.0
Averages	>	1781.9	1790.0	1788.1	1801.4	1796.2 1806.6 1772.1 1809.3			1809.3

Mean Min Point	1805.4 1599.7		Mean Std. Dev.	1819.3 109.1	1817.2 134.8	1818.3 116.9
Max Point	1979.0		COV as %	6.0	7.4	
t 3146	acfm	Instuments	Used:			

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Flow w/o C-Pt 3146 acfm Vel Avg w/o C-Pt 1805 fpm

	Start	Finish	
Stack temp	93.6	94.2	F
quipment temp	76	83	F
mbient temp	93	93	F
Stack static	0.00	0.00	mbars
mbient pressure	29.59	29.58	in Hg
otal Stack pressure	1002	1002	mbars
mbient humidity	16%	18%	RH

2000 **v** 1800 1600 1400 o С 1200 1000 800 у 600 400 р m 200 Bottom Side/ /East South

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Notes:

Signature verifying data and calculations: Signature on file copy

	VEEGOTT THAVEROE BATATORIII							
Site	296-S-21 Model	Run No.	VT-11					
Date	7/17/2006	Fan Configuration	4	no prefil	ter			
Testers	BF & JD	Fan Setting	50		Hz			
Stack Dia.	17 7/8 in.	Stack Temp	93.6	deg F				
Stack X-Area	250.9 in.2	Start/End Time	1325/1350					
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23			
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7			
Velocity units	ft/min	Data Files:	NA					

Traverse>			Port _4_ Bo	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city		Velocity			
1	9/16	1147	1109	1072	1109.3	1134	1177	1170	1160.3
2	1 14/16	1132	1221	1231	1194.7	1362	1384	1258	1334.7
3	3 8/16	1158	1107	1176	1147.0	1230	1284	1283	1265.7
4	5 13/16	1132	1151	1100	1127.7	1296	1243	1222	1253.7
Center	9	1228	1266	1277	1257.0	1209	1203	1235	1215.7
5	12 3/16	1442	1452	1378	1424.0	1310	1345	1397	1350.7
6	14 8/16	1517	1528	1514	1519.7	1548	1534	1505	1529.0
7	16 1/16	1474	1543	1526	1514.3	1488	1567	1443	1499.3
8	17 6/16	1427	1415	1356	1399.3	1524	1540	1450	1504.7
Averages	>	1295.2	1310.2	1292.2	1299.2	2 1344.6 1364.1 1329.2 134			1346.0

t 2324	acfm	Instuments	Used:			
Max Point	1529.0	15.6%	COV as %	13.0	9.0	10.8
Min Point	1109.3	-16.1%	Std. Dev.	170.6	121.8	143.7
Mean	1322.6		Mean	1312.0	1349.8	1330.9
AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Flow w/o C-Pt 2324 acfm Vel Avg w/o C-Pt 1333 fpm

	Start	Finish	
Stack temp	94.2	93.9	F
Equipment temp	84	87	F
Ambient temp	93	93	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.58	29.58	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	18%	18%	RH
'			=

Otart	1 11 11011	
94.2	93.9	F
84	87	F
93	93	F
0.00	0.00	mbars
29.58	29.58	in Hg
1002	1002	mbars
18%	18%	RH

1600 1400 1200 0 1000 С 800 t у 600 f 400 р 200 m Bottom Side/ /East South

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Notes:

Signature verifying data and calculations: Signature on file copy

Site	296-S-21 M	odel	Run No.	VT-11
Date	7/17/2006		Fan Configuration	4
Testers	BF & JD		Fan Setting	50
Stack Dia.	17 7/8	in.	Stack Temp	
Stack X-Area	250.9	in.2	Start/End Time	1325/13
Elevation	N.A.		Center 2/3 from	
Distance to disturbance	77 3/4	inches	Points in Center 2/3	
Velocity units	ft/min		Data Files:	NA

Traverse>		Port _4_ Bottom/East Port _4_ Side/South							
Trial>		1	1 2 3 Mean			1	2	3	Mean
Point	Depth, in.		Velo	ocity		Velocity			
1	9/16	1147	1109	1072	1109.3	1134	1177	1170	1160.3
2	1 14/16	1132	1221	1231	1194.7	1362	1384	1258	1334.7
3	3 8/16	1158	1107	1176	1147.0	1230	1284	1283	1265.7
4	5 13/16	1132	1151	1100	1127.7	1296	1243	1222	1253.7
Center	9	1228	1266	1277	N.A.	1209	1203	1235	N.A.
5	12 3/16	1442	1452	1378	1424.0	1310	1345	1397	1350.7
6	14 8/16	1517	1528	1514	1519.7	1548	1534	1505	1529.0
7	16 1/16	1474	1543	1526	1514.3	1488	1567	1443	1499.3
8	17 6/16	1427	1415	1356	1399.3	1524	1540	1450	1504.7
Averages> 1295.2 1310.2 1292.2 1304.5 1344.6 1364.1 1329.2			1362.3						

Ρt	2324	acfm	Instuments	Used:			
	Max Point	1529.0	14.7%	COV as %	14.0	8.5	11.1
	Min Point	1109.3	-16.8%	Std. Dev.	185.0	116.6	149.8
	Mean	1333.4		Mean	1321.2	1372.2	1346.7
	All	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	All

Flow w/o C-Pt 2324 acfm Vel Avg w/o C-Pt 1333 fpm

	Start	Finish	
tack temp	94.2	93.9	F
quipment temp	84	87	F
mbient temp	93	93	F
tack static	0.00	0.00	mbars
mbient pressure	29.58	29.58	in Hg
otal Stack pressure	1002	1002	mbars
mbient humidity	18%	18%	RH

V e l o c i t y f p m	1600 1400 1200 1000 800 400 200 Side/ South	Bottom /East
-----------------------	---	--------------

No C.P.

93.6 deg F

2

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

1325/1350 1.64

no prefilter

to:

to:

Hz

16.23

Signature signifies compliance with Procedure EMS-JAG-4

Signature verifying data and calculations:

Signature on file copy

Signature/date

Notes:

Site	296-S-21 Model	
Date	7/17/2006	Fan Co
Testers	BF & JD	F
Stack Dia.	18 in.	S
Stack X-Area	254.5 in.2	Star
Elevation	N.A.	Cent
Distance to disturbance	54 5/8 inches	Points in

Run No. VT-12 no prefilter onfiguration 3, 4 Fan Setting 48, 50 Hz Stack Temp 93.6 deg F rt/End Time 1400/1420 iter 2/3 from 1.65 to:

2

n Center 2/3

16.35 to:

Velocity units ft/min

Data Files

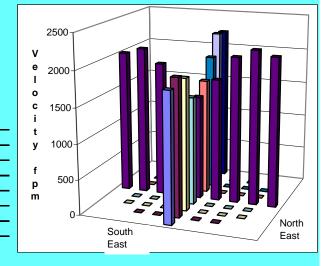
Data	Fi	les:

Traverse>			Port _3_	No. East			Port _3_	So. East	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	2040	2159	2155	2118.0	1688	1911	1759	1786.0
2	1 14/16	2202	2186	2193	2193.7	1890	1868	1912	1890.0
3	3 8/16	1946	2116	2171	2077.7	1917	1783	1762	1820.7
4	5 13/16	1666	1728	1827	1740.3	1549	1405	1535	1496.3
Center	9	1512	1435	1472	1473.0	1436	1427	1451	1438.0
5	12 3/16	1593	1584	1499	1558.7	1658	1559	1598	1605.0
6	14 8/16	1817	1972	1929	1906.0	1929	1890	1835	1884.7
7	16 1/16	2134	2041	2130	2101.7	2193	2145	2184	2174.0

2011 2045 2010 17 6/16 2022.0 2051 2165 2257 2157.7 Averages -----> 1880.1 1918.4 1931.8 1910.1 1812.3 1794.8 1810.3 1805.8

AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	SouthEast	<u>All</u>
Mean	1858.0		Mean	1864.4	1758.4	1811.4
Min Point	1438.0	-22.6%	Std. Dev.	281.1	259.7	265.7
Max Point	2193.7	18.1%	COV as %	15.1	14.8	14.7

Flow w/o C-Pt 3372 acfm Vel Avg w/o C-Pt 1908 fpm


	Start	Finish	
Stack temp	93.9	95.6	F
Equipment temp	87	88	F
Ambient temp	92	93	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.57	29.56	in Hg
Total Stack pressure	1002	1002	mbars
Ambient humidity	18%	16%	RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Notes:

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site	296-S-21 Model
Date	7/17/2006
Testers	BF & JD
Stack Dia.	18 in.
Stack X-Area	254.5 in.2
Elevation	N.A.
Distance to disturbance	54 5/8 inches

Velocity units ft/min

 Run No.
 VT-12
 No C. P.

 Fan Configuration
 3, 4
 no prefilter

 Fan Setting
 48, 50
 Hz

 Stack Temp
 93.6 deg F

 Start/End Time
 1400/1420

 Center 2/3 from
 1.65
 to:
 1

 Center 2/3 from
 1.65
 to:
 16.35

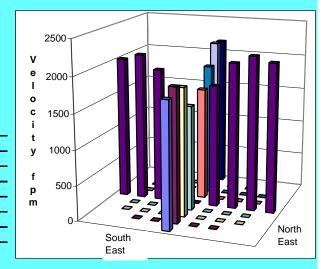
 Points in Center 2/3
 2
 to:
 7

 Data Files:
 NA

Traverse>			Port _3_ No. East				Port _3_	So. East	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	2040	2159	2155	2118.0	1688	1911	1759	1786.0
2	1 14/16	2202	2186	2193	2193.7	1890	1868	1912	1890.0
3	3 8/16	1946	2116	2171	2077.7	1917	1783	1762	1820.7
4	5 13/16	1666	1728	1827	1740.3	1549	1405	1535	1496.3
Center	9	1512	1435	1472	N.A.	1436	1427	1451	N.A.
5	12 3/16	1593	1584	1499	1558.7	1658	1559	1598	1605.0
6	14 8/16	1817	1972	1929	1906.0	1929	1890	1835	1884.7
7	16 1/16	2134	2041	2130	2101.7	2193	2145	2184	2174.0
8	17 6/16	2011	2045	2010	2022.0	2051	2165	2257	2157.7
Averages	>	1880.1	1918.4	1931.8	1964.8	1812.3	1794.8	1810.3	1851.8

AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	SouthEast	<u>All</u>
Mean	1908.3		Mean	1929.7	1811.8	1870.7
Min Point	1496.3	-21.6%	Std. Dev.	243.0	238.7	237.8
Max Point	2193.7	15.0%	COV as %	12.6	13.2	12.7

Flow w/o C-Pt 3372 acfm Vel Avg w/o C-Pt 1908 fpm


	Start	Finish	
tack temp	93.9	95.6	F
quipment temp	87	88	F
mbient temp	92	93	F
tack static	0.00	0.00	mbars
mbient pressure	29.57	29.56	in Hg
otal Stack pressure	1002	1002	mbars
mbient humidity	18%	16%	RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Notes:

Signature verifying data and calculations:

	VELOCITI TRAVERSE DATA FORM								
Site	296-S-21 Model	Run No.	VT-13						
Date	7/18/2006	Fan Configuration	3, 4	no prefilte	er				
Testers	JAG & BGF	Fan Setting	50,52		Hz				
Stack Dia.	18 in.	Stack Temp	93.6	deg F					
Stack X-Area	254.5 in.2	Start/End Time	1015/1105						
Elevation	N.A.	Center 2/3 from	1.65	to:	16.35				
Distance to disturbance	54 5/8 inches	Points in Center 2/3	2	to:	7				
Velocity units	ft/min	Data Files:	NA						

Traverse>			Port _3_	No. East			Port _3_	So. East	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	ocity	
1	9/16	2067	2185	2234	2162.0	2018	1865	1922	1935.0
2	1 14/16	2384	2219	2296	2299.7	1992	1945	1982	1973.0
3	3 8/16	2063	2192	2067	2107.3	1818	1856	1746	1806.7
4	5 13/16	1870	1863	1903	1878.7	1621	1562	1581	1588.0
Center	9	1464	1497	1517	1492.7	1503	1490	1550	1514.3
5	12 3/16	1727	1682	1683	1697.3	1666	1872	1788	1775.3
6	14 8/16	1995	1965	1971	1977.0	2043	2116	2156	2105.0
7	16 1/16	2175	2107	2121	2134.3	2302	2334	2285	2307.0
8	17 6/16	2040	2025	2043	2036.0	2283	2261	2263	2269.0
Averages	>	1976.1	1970.6	1981.7	1976.1	1916.2	1922.3	1919.2	1919.3

ı ۲	3540		Instuments				
	Max Point	2307.0	18.4%	COV as %	14.3	15.1	14.2
	Min Point	1492.7	-23.4%	Std. Dev.	276.7	281.6	270.9
	Mean	1947.7		Mean	1941.0	1867.0	1904.0
	All	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	SouthEast	<u>All</u>

Flow w/o C-Pt 3540 acfm Vel Avg w/o C-Pt 2003 fpm

	Start	Finish	
Stack temp	79.2	82.0	F
Equipment temp	76	78	F
Ambient temp	77	79	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.65	29.65	in Hg
Total Stack pressure	1004	1004	mbars
Ambient humidity	32%	27%	RH

2500 2000 o С 1500 1000 у 500 р m North South East East

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Notes:

Signature verifying data and calculations: Signature on file copy

Site	296-S-21 Model	
Date	7/18/2006	Fan Con
Testers	JAG & BGF	Fa
Stack Dia.	18 in.	Sta
Stack X-Area	254.5 in.2	Start/
Elevation	N.A.	Cente
Distance to disturbance	54 5/8 inches	Points in C

Velocity units ft/min

Run No. VT-13 No C.P. nfiguration 3, 4 no prefilter an Setting 50,52 Hz tack Temp 93.6 deg F /End Time 1015/1105 1.65 er 2/3 from to: 16.35 Center 2/3 to:

Data Files: NA

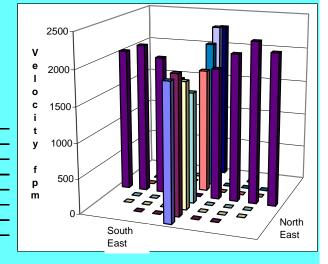
Port _3_ No. East Port _3_ So. East Traverse--> Trial ----> 3 Mean Mean 1 2 1 2 Velocity Point Depth, in. Velocity 2067 2018 1922 9/16 2185 2234 2162.0 1865 1935.0 2 1 14/16 2384 2219 2296 2299.7 1992 1945 1982 1973.0 2067 3 2192 1806.7 3 8/16 2063 2107.3 1818 1856 1746 5 13/16 1863 1903 1878.7 1588.0 1870 1621 1562 1581 Center 9 1464 1497 1517 N.A. 1503 1490 1550 N.A. 12 3/16 1727 1682 1683 1666 1872 1788 1697.3 1775.3 14 8/16 1995 1965 1971 1977.0 2043 2116 2156 2105.0 1/16 2175 2107 2121 2134.3 2302 2334 2285 2307.0 16 8 17 6/16 2040 2025 2043 2036.0 2283 2261 2263 2269.0 1969.9 Averages -----> 1976.1 1970.6 1981.7 2036.5 1916.2 1922.3 1919.2

AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	<u>SouthEast</u>	<u>All</u>
Mean	2003.2		Mean	2015.7	1925.8	1970.8
Min Point	1588.0	-20.7%	Std. Dev.	212.0	257.1	229.5
Max Point	2307.0	15.2%	COV as %	10.5	13.4	11.6

Flow w/o C-Pt 3540 acfm Vel Avg w/o C-Pt 2003 fpm

Notes:

Signature/date


	Start	Finish	
Stack temp	79.2	82.0	F
Equipment temp	76	78	F
Ambient temp	77	79	F
Stack static	0.00	0.00	mbars
Ambient pressure	29.65	29.65	in Hg
Total Stack pressure	1004	1004	mbars
Ambient humidity	32%	27%	RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4

Signature verifying data and calculations:

72200111 110(V21(02 D)(1)(1) 01(III							
Site	296-S-21 Model	Run No.	VT-14				
Date	7/18/2006	Fan Configuration	2, 4	no prefilter			
Testers	JAG & BGF	Fan Setting	45, 52	Hz	l		
Stack Dia.	18 in.	Stack Temp	93.6	deg F			
Stack X-Area	254.5 in.2	Start/End Time	1112/1150				
Elevation	N.A.	Center 2/3 from	1.65	to:	16.35		
Distance to disturbance	54 5/8 inches	Points in Center 2/3	2	to:	7		
Velocity units	ft/min	Data Files:	NA				

Traverse>			Port _3_	No. East			Port _3_	So. East	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	city	
1	9/16	2173	2121	2129	2141.0	1895	1987	1871	1917.7
2	1 14/16	2172	2091	2132	2131.7	1919	1924	1982	1941.7
3	3 8/16	2056	2054	1992	2034.0	1761	1840	1830	1810.3
4	5 13/16	1764	1795	1673	1744.0	1508	1543	1632	1561.0
Center	9	1450	1485	1436	1457.0	1471	1545	1526	1514.0
5	12 3/16	1509	1598	1603	1570.0	1783	1911	1833	1842.3
6	14 8/16	1924	1917	1936	1925.7	2138	2066	1997	2067.0
7	16 1/16	2049	2035	2086	2056.7	2241	2208	2192	2213.7
8	17 6/16	1954	1900	1987	1947.0	2196	2193	2195	2194.7
Averages	>	1894.6	1888.4	1886.0	1889.7	1879.1	1913.0	1895.3	1895.8

t 3435	acfm	Instuments	Used:			
Max Point	2213.7	17.0%	COV as %	14.1	13.7	13.4
Min Point	1457.0	-23.0%	Std. Dev.	260.0	253.6	246.7
Mean	1892.7		Mean	1845.6	1850.0	1847.8
AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	SouthEast	All

Flow w/o C-Pt 3435 acfm Vel Avg w/o C-Pt 1944 fpm

	Start	Finish	
Stack temp	82.0	84.0	7
Equipment temp	78	79]
Ambient temp	79	79	F
Stack static	0.00	0.00	r
Ambient pressure	29.65	29.64	j
Total Stack pressure	1004	1004	r
Ambient humidity	27%	26%] -

	82.0	84.0	F
np	78	79	F
	79	79	F
	0.00	0.00	mbars
ure	29.65	29.64	in Hg
essure	1004	1004	mbars
dity	27%	26%	RH

2500 2000 0 С 1500 1000 у 500 р m

South

East

North

East

Pitot # 5 -- 36" Standard Pitot Dwyer

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Horizontal diameter 18 in. Vertical diameter 18 in.

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Notes:

Signature verifying data and calculations: Signature on file copy

Site	296-S-21 Model
Date	7/18/2006
Testers	JAG & BGF
Stack Dia.	18 in.
Stack X-Area	254.5 in.2
Elevation	N.A.
Distance to disturbance	54 5/8 inches

No C.P. Run No. VT-14 Fan Configuration 2, 4 no prefilter Fan Setting 45, 52 Hz Stack Temp 93.6 deg F Start/End Time 1112/1150 Center 2/3 from 1.65 to:

2

Velocity units ft/min

Points in Center 2/3

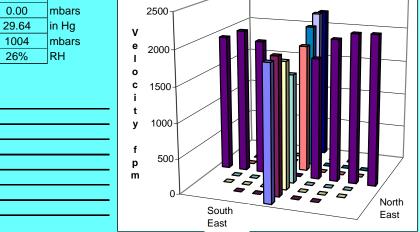
Data Files: NA

16.35 to:

Traverse>			Port _3_	No. East			Port _3_	So. East	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	2173	2121	2129	2141.0	1895	1987	1871	1917.7
2	1 14/16	2172	2091	2132	2131.7	1919	1924	1982	1941.7
3	3 8/16	2056	2054	1992	2034.0	1761	1840	1830	1810.3
4	5 13/16	1764	1795	1673	1744.0	1508	1543	1632	1561.0
Center	9	1450	1485	1436	N.A.	1471	1545	1526	N.A.
5	12 3/16	1509	1598	1603	1570.0	1783	1911	1833	1842.3
6	14 8/16	1924	1917	1936	1925.7	2138	2066	1997	2067.0
7	16 1/16	2049	2035	2086	2056.7	2241	2208	2192	2213.7
8	17 6/16	1954	1900	1987	1947.0	2196	2193	2195	2194.7
Averages	>	1894.6	1888.4	1886.0	1943.8	1879.1	1913.0	1895.3	1943.5

AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	<u>SouthEast</u>	<u>All</u>
Mean	1943.6		Mean	1910.3	1906.0	1908.2
Min Point	1561.0	-19.7%	Std. Dev.	214.2	225.4	209.7
Max Point	2213.7	13.9%	COV as %	11.2	11.8	11.0

Flow w/o C-Pt 3435 acfm Vel Avg w/o C-Pt 1944 fpm


Start	Finish	
82.0	84.0	F
78	79	F
79	79	F
0.00	0.00	mbars
29.65	29.64	in Hg
1004	1004	mbars
27%	26%	RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Notes:

Stack temp

Equipment temp Ambient temp Stack static

Ambient pressure Total Stack pressure

Ambient humidity

Horizontal diameter 18 in.

Vertical diameter 18 in.

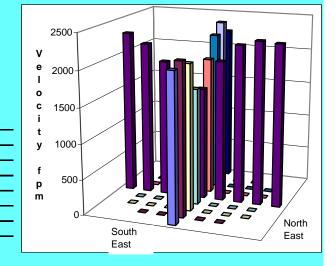
Signature signifies compliance with Procedure EMS-JAG-4

Signature/date

Signature verifying data and calculations:

Site	296-S-21 Model	Run No.	VT-15		
Date	8/7/2006	Fan Configuration	1, 4	no prefilter	
Testers	JGD & BGF	Fan Setting	56, 52	H:	Z
Stack Dia.	18 in.	Stack Temp	93.6	deg F	
Stack X-Area	254.5 in.2	Start/End Time	1100/1200		
Elevation	N.A.	Center 2/3 from	1.65	to:	16.35
Distance to disturbance	54 5/8 inches	Points in Center 2/3	2	to:	7
Velocity units	ft/min	Data Files:	NA		

	•								
						1st			
Traverse>			Port _3_	No. East			Port _3_	So. East	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	ocity	
1	9/16	2303	2253	2320	2292.0	2062	2120	2073	2085.0
2	1 14/16	2302	2340	2298	2313.3	2126	2133	2199	2152.7
3	3 8/16	2233	2242	2239	2238.0	2064	1999	2127	2063.3
4	5 13/16	1980	1996	2007	1994.3	1615	1690	1651	1652.0
Center	9	1628	1591	1545	1588.0	1609	1604	1557	1590.0
5	12 3/16	1708	1631	1687	1675.3	1992	1926	1945	1954.3
6	14 8/16	1949	1974	1879	1934.0	2272	2233	2246	2250.3
7	16 1/16	2135	2204	2162	2167.0	2407	2385	2383	2391.7
8	17 6/16	2254	2351	2304	2303.0	2233	2303	2133	2223.0
Averages	>	2054.7	2064.7	2049.0	2056.1	2042.2	2043.7	2034.9	2040.3


AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	SouthEast	All
Mean	2048.2		Mean	1987.1	2007.8	1997.5
Min Point	1588.0	-22.5%	Std. Dev.	277.2	298.4	276.9
Max Point	2391.7	16.8%	COV as %	14.0	14.9	13.9

Flow w/o C-Pt 3721 acfm Vel Avg w/o C-Pt 2106 fpm

	Start	Finish	
Stack temp	97.0	96.0	F
quipment temp	83	87	F
mbient temp	91	93	F
Stack static	0.00	0.00	mbars
mbient pressure	29.42	29.40	in Hg
otal Stack pressure	996	996	mbars
mbient humidity	28%	23%	RH

Instuments Used: Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06 Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance v	with

Notes:

Signature/date

Signature verifying data and calculations:

Procedure EMS-JAG-4 Signature on file copy

VELOCITY TRAVERSE DATA FORM								
	Site	296-S-21 Mo	odel		Run No.	VT-15	No centerpo	int
	Date	8/7/2006		Fan C	onfiguration	1, 4	no prefilter	
	Testers	JGD & BGF			Fan Setting	56, 52	Hz	
	Stack Dia.	18	in.		Stack Temp	93.6	deg F	
S	Stack X-Area	254.5	in.2	Sta	rt/End Time	1100/1200		
	Elevation	N.A.		Cer	nter 2/3 from	1.65	to:	16.35
Distance to	disturbance	54 5/8	inches	Points in	n Center 2/3	2	to:	7
V	elocity units	ft/min			Data Files:	NA		
						1st		
Traverse>			Port _3_	No. East			Port _3_	So. East
Trial>		1	2	3	Mean	1	2	3
Point	Depth, in.		Veld	ocity			Velo	ocity
1	9/16	2303	2253	2320	2292.0	2062	2120	2073
2	1 14/16	2302	2340	2298	2313.3	2126	2133	2199
3	3 8/16	2233	2242	2239	2238.0	2064	1999	2127
4	5 13/16	1980	1996	2007	1994.3	1615	1690	1651

1545 N.A.

1687

1879

2162

2304

2049.0

AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	SouthEast	<u>All</u>
Mean	2105.6		Mean	2053.7	2077.4	2065.5
Min Point	1652.0	-21.5%	Std. Dev.	234.6	257.2	235.0
Max Point	2391.7	13.6%	COV as %	11.4	12.4	11.4

Flow w/o C-Pt 3721 acfm Vel Avg w/o C-Pt 2106 fpm

12 3/16

16 1/16

17 6/16

14

8/16

1628

1708

1949

2135

2254

2054.7

1591

1631

1974

2204

2351

2064.7

Center

8

Averages ----->

Notes:

	Start	Finish	
Stack temp	97.0	96.0	F
Equipment temp	83	87	F
Ambient temp	91	93	F
Stack static	0.00	0.00	mbar
Ambient pressure	29.42	29.40	in Hg
Total Stack pressure	996	996	mbar
Ambient humidity	28%	23%	RH

Instuments Used:

1675.3

1934.0

2167.0

2303.0

2114.6

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

1609

1992

2272

2407

2233

2042.2

1604

1926

2233

2385

2303

2043.7

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Mean

2085.0 2152.7 2063.3 1652.0

1954.3

2250.3

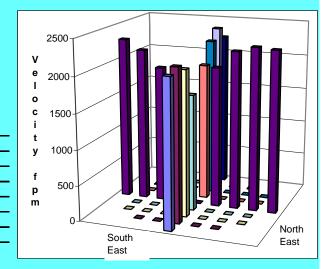
2391.7

2223.0

2096.5

1557 N.A.

1945


2246

2383

2133

2034.9

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site	296-S-21 Model	Run No.
Date	8/7/2006	Fan Configuration
Testers	BG Fritz	Fan Setting
Stack Dia.	18 in.	Stack Temp
Stack X-Area	254.5 in.2	Start/End Time
Elevation	N.A.	Center 2/3 from
Distance to disturbance	54 5/8 inches	Points in Center 2/3

 Run No.
 VT-16

 fan Configuration
 3 & 4
 no prefilter

 Fan Setting
 50 & 52
 Hz

 Stack Temp
 96.5 deg F

 Start/End Time
 13:00 to 14:00

 Center 2/3 from
 1.65
 to:

Velocity units ft/min

Data Files: NA

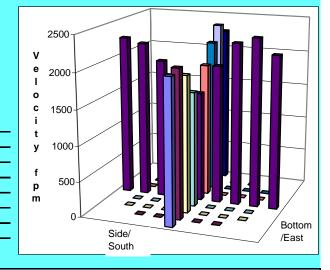
2 to: 7

16.35

Traverse>			Port _3_	Northeast			Port _3_ \$	Southeast	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	2136	2217	2096	2149.7	2042	2054	2006	2034.0
2	1 14/16	2409	2319	2364	2364.0	2046	2082	2125	2084.3
3	3 8/16	2292	2281	2257	2276.7	1901	1972	1918	1930.3
4	5 13/16	1992	1950	1891	1944.3	1615	1649	1639	1634.3
Center	9	1538	1523	1566	1542.3	1541	1539	1588	1556.0
5	12 3/16	1661	1644	1680	1661.7	1889	1856	1947	1897.3
6	14 8/16	1946	1952	1976	1958.0	2187	2148	2177	2170.7
7	16 1/16	2187	2191	2179	2185.7	2336	2396	2411	2381.0
8	17 6/16	2233	2293	2219	2248.3	2325	2199	2244	2256.0
Averages	>	2043.8	2041.1	2025.3	2036.7	1986.9	1988.3	2006.1	1993.8

AII	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	<u>SouthEast</u>	<u>All</u>
Mean	2015.3		Mean	1990.4	1950.6	1970.5
Min Point	1542.3	-23.5%	Std. Dev.	308.7	291.7	289.3
Max Point	2381.0	18.1%	COV as %	15.5	15.0	14.7

Flow w/o C-Pt 3664 acfm Vel Avg w/o C-Pt 2074 fpm


	Start	Finish
stack temp	100.0	100.0
quipment temp	78	-
mbient temp	94	99
stack static	0.00	0.00
mbient pressure	29.393	29.36
otal Stack pressure	995	994
mbient humidity	23%	21%

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4

Notes:

Signature/date

Signature verifying data and calculations:

Signature on file copy

mbars

in Hg mbars

RH

Site	296-S-21 Model
Date	8/7/2006
Testers	BG Fritz
Stack Dia.	18 in.
Stack X-Area	254.5 in.2
Elevation	N.A.
	E 4 E /O : I

Fan Configuration 3 & 4 no prefilter Fan Setting 50 & 52 Hz Stack Temp 96.5 deg F Start/End Time 13:00 to 14:00 Center 2/3 from 1.65 to: 2

Run No. VT-16

Distance to disturbance 54 5/8 inches Points in Center 2/3

16.35 to:

No centerpoint

Velocity units ft/min

Data Files: NA

Traverse>			Port _3_ l	Vortheast			Port _3_ 9	Southeast	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	ocity	
1	9/16	2136	2217	2096	2149.7	2042	2054	2006	2034.0
2	1 14/16	2409	2319	2364	2364.0	2046	2082	2125	2084.3
3	3 8/16	2292	2281	2257	2276.7	1901	1972	1918	1930.3
4	5 13/16	1992	1950	1891	1944.3	1615	1649	1639	1634.3
Center	9	1538	1523	1566	N.A.	1541	1539	1588	N.A.
5	12 3/16	1661	1644	1680	1661.7	1889	1856	1947	1897.3
6	14 8/16	1946	1952	1976	1958.0	2187	2148	2177	2170.7
7	16 1/16	2187	2191	2179	2185.7	2336	2396	2411	2381.0
8	17 6/16	2233	2293	2219	2248.3	2325	2199	2244	2256.0
Averages	>	2043.8	2041.1	2025.3	2098.5	1986.9	1988.3	2006.1	2048.5

All	ft/min	Dev. from mean	Center 2/3	<u>NorthEast</u>	SouthEast	<u>All</u>
Mean	2073.5		Mean	2065.1	2016.3	2040.7
Min Point	1634.3	-21.2%	Std. Dev.	259.8	256.5	247.4
Max Point	2381.0	14.8%	COV as %	12.6	12.7	12.1

Flow w/o C-Pt 3664 acfm Vel Avg w/o C-Pt 2074 fpm

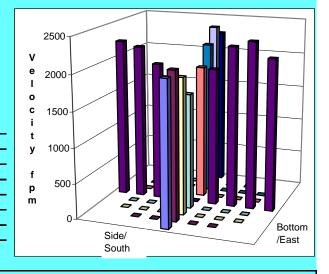
Stack temp

Equipment temp Ambient temp Stack static

Ambient pressure Total Stack pressure

Ambient humidity

Notes:


Start	Finish	
100.0	100.0	F
78	-	F
94	99	F
0.00	0.00	mbars
29.393	29.36	in Hg
995	994	mbars
23%	21%	RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with

Signature verifying data and calculations:

Signature on file copy

Procedure EMS-JAG-4 Signature/date

VEI	CITY	TDA	VERSE	DATA	EODM
vei		IΚΔ	VERSE	11414	FURIN

	VELOCITY T	TRAVERSE DATA FORM	l			
Site	296-S-21 Model	Run No.	VT-17			
Date	8/7/2006	Fan Configuration	1	no prefilter		
Testers	BG Fritz	Fan Setting	56	Hz		
Stack Dia.	17 7/8 in.	Stack Temp	100.0	deg F		
Stack X-Area	250.9 in.2	Start/End Time	14:30 to 15:3	30		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23	
Distance to disturbance	77 3/4 inches	Points in Center 2/3	2	to:	7	
Velocity units	ft/min	Data Files:	NA			
Traverse>	Port _4_ B	ottom/East		Port _4_ S	Side/South	
Trial .	4 0	2 Maan	1	2		2

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	ocity	
1	9/16	790	813	774	792.3	747	740	764	750.3
2	1 14/16	853	899	917	889.7	793	849	787	809.7
3	3 8/16	908	862	848	872.7	847	855	815	839.0
4	5 13/16	860	804	826	830.0	794	743	770	769.0
Center	9	804	766	764	778.0	784	808	761	784.3
5	12 3/16	780	780	753	771.0	824	805	801	810.0
6	14 8/16	820	788	808	805.3	815	834	804	817.7
7	16 1/16	800	803	775	792.7	842	841	843	842.0
8	17 6/16	772	772	763	769.0	813	810	751	791.3
Averages	>	820.8	809.7	803.1	811.2	806.6	809.4	788.4	801.5

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	806.3		Mean	819.9	810.2	815.1
Min Point	750.3	-6.9%	Std. Dev.	46.3	26.7	36.6
Max Point	889.7	10.3%	COV as %	5.6	3.3	4.5

Flow w/o C-Pt 1411 acfm Vel Avg w/o C-Pt 809 fpm

Stack temp

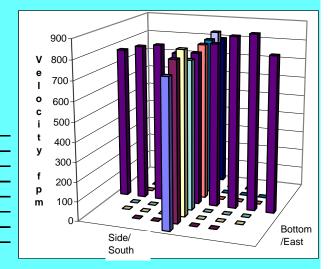
Equipment temp Ambient temp Stack static

Ambient pressure

Ambient humidity

Notes:

Total Stack pressure


Start	Finish	
105.0	105.0	F
-	-	F
101	99	F
0.00	0.00	mbars
29.36	29.33	in Hg
994	993	mbars
24%	23%	RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

VELOCITY TRAVERSE DATA FORM								
Site	296-S-21 Model	Run No.	VT-17	No	centerp	<mark>o</mark> int		
Date	8/7/2006	Fan Configuration	1	no	prefilter			
Testers	BG Fritz	Fan Setting	56		Hz			
Stack Dia.	17 7/8 in.	Stack Temp	10	0.0 <mark>de</mark>	g F			
Stack X-Area	250.9 in.2	Start/End Time	14:30 to	15:30				
Elevation	N.A.	Center 2/3 from	1	.64	to:	16.23		
Distance to disturbance	77 3/4 inches	Points in Center 2/3		2	to:	7		
Velocity units	ft/min	Data Files:	NA					

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	790	813	774	792.3	747	740	764	750.3
2	1 14/16	853	899	917	889.7	793	849	787	809.7
3	3 8/16	908	862	848	872.7	847	855	815	839.0
4	5 13/16	860	804	826	830.0	794	743	770	769.0
Center	9	804	766	764	N.A.	784	808	761	N.A.
5	12 3/16	780	780	753	771.0	824	805	801	810.0
6	14 8/16	820	788	808	805.3	815	834	804	817.7
7	16 1/16	800	803	775	792.7	842	841	843	842.0
8	17 6/16	772	772	763	769.0	813	810	751	791.3
Averages	>	820.8	809.7	803.1	815.3	806.6	809.4	788.4	803.6

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	809.5		Mean	826.9	814.6	820.7
Min Point	750.3	-7.3%	Std. Dev.	46.5	26.4	36.6
Max Point	889.7	9.9%	COV as %	5.6	3.2	4.5

Temp >> TSI 8360 SN 209060 Cal due 9/27/06 Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

South

/East

Pitot # 5 -- 36" Standard Pitot Dwyer

Instuments Used:

900

Flow w/o C-Pt 1411 acfm Vel Avg w/o C-Pt 809 fpm

	Start	Finish	
Stack temp	105.0	105.0	F
quipment temp	-	-	F
mbient temp	101	99	F
Stack static	0.00	0.00	mba
mbient pressure	29.36	29.33	in H
otal Stack pressure	994	993	mba
mbient humidity	24%	23%	RH

ars

Hg **V** 800 ars 700 0 600 С 500 Notes: t 400 у 300 f 200 р m 100 Bottom Side/

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations: Signature on file copy

Site 296-S-21 Model Date 8/8/2006 Testers BG Fritz Stack Dia. 17 7/8 in. Stack X-Area 250.9 in.2 Elevation N.A 77 3/4 inches Distance to disturbance

Velocity units ft/min

Run No. VT-18 no prefilter Fan Configuration 2 Fan Setting 44 Hz Stack Temp 86.5 deg F Start/End Time 10:00 to 10:35 Center 2/3 from 1.64 to: 16.23

Data Files: NA

Points in Center 2/3 2 to:

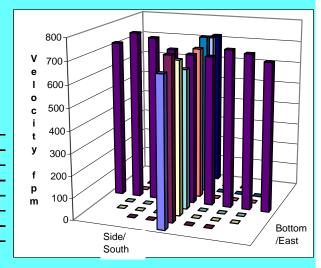
Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	639	680		659.5	658	689		673.5
2	1 14/16	701	677		689.0	719	748		733.5
3	3 8/16	698	704		701.0	682	710		696.0
4	5 13/16	656	675		665.5	613	663		638.0
Center	9	678	659		668.5	672	700		686.0
5	12 3/16	683	687		685.0	691	702		696.5
6	14 8/16	732	729		730.5	753	715		734.0
7	16 1/16	753	742		747.5	707	730		718.5
8	17 6/16	678	717		697.5	722	705		713.5
Averages	>	690.9	696.7	#DIV/0!	693.8	690.8	706.9	#DIV/0!	698.8

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	696.3		Mean	698.1	700.4	699.3
Min Point	638.0	-8.4%	Std. Dev.	30.8	33.4	30.9
Max Point	747.5	7.4%	COV as %	4.4	4.8	4.4

Flow w/o C-Pt 1218 acfm Vel Avg w/o C-Pt 699 fpm

Stack temp Equipment temp Ambient temp Stack static Ambient pressure Total Stack pressure Ambient humidity

Start	Finish	
90.0	86.0	F
-	-	F
89	84	F
0.00	0.00	mbars
29.492	29.509	in Hg
999	999	mbars
32%	37%	RH
32%	37%	KH


Notes: Based on VT-17, 2 traverses were considered enough for these supplemental tests. There was not a significant change in the velocity profile of VT-17 when analyzed using 2 or 3 traverses.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site 296-S-21 Model Date 8/8/2006 Testers BG Fritz Stack Dia. 17 7/8 in. Stack X-Area 250.9 in.2 Elevation N.A 77 3/4 inches Distance to disturbance

Fan Setting 44 Stack Temp 86.5 deg F Start/End Time 10:00 to 10:35 Center 2/3 from 1.64 to: 2

Run No. VT-18

Points in Center 2/3

Fan Configuration 2

16.23 to:

No centerpoint

Hz

no prefilter

Velocity units ft/min

D

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity	_		Velo	ocity	
1	9/16	639	680		659.5	658	689		673.5
2	1 14/16	701	677		689.0	719	748		733.5
3	3 8/16	698	704		701.0	682	710		696.0
4	5 13/16	656	675		665.5	613	663		638.0
Center	9	678	659		N.A.	672	700		N.A.
5	12 3/16	683	687		685.0	691	702		696.5
6	14 8/16	732	729		730.5	753	715		734.0
7	16 1/16	753	742		747.5	707	730		718.5
8	17 6/16	678	717		697.5	722	705		713.5
Averages	>	690.9	696.7	#DIV/0!	696.9	690.8	706.9	#DIV/0!	700.4

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	698.7		Mean	703.1	702.8	702.9
Min Point	638.0	-8.7%	Std. Dev.	30.6	35.9	31.8
Max Point	747.5	7.0%	COV as %	4.3	5.1	4.5

Flow w/o C-Pt 1218 acfm Vel Avg w/o C-Pt 699 fpm

Stack temp

Equipment temp

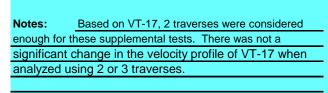
Ambient pressure

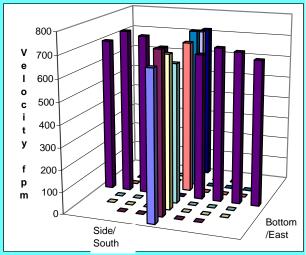
Ambient humidity

Total Stack pressure

Ambient temp

Stack static


Start Finish 90.0 86.0 F 89 84 0.00 0.00 mbars 29.492 29.509 in Hg 999 999 mbars 32% 37% RH


Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date

Signature verifying data and calculations:

Site 296-S-21 Model
Date 8/8/2006
Testers BG Fritz
Stack Dia. 17 7/8 in.
Stack X-Area 250.9 in.2
Elevation N.A.
Distance to disturbance 77 3/4 inches

Run No. VT-19
Fan Configuration 3 no prefilter
Fan Setting 50 Hz
Stack Temp 85.0 deg F
Start/End Time 11:15 to 11:40
Center 2/3 from 1.64 to: 16.23
oints in Center 2/3 2 to: 7

Points in Center 2/3

Data Files: NA

Velocity units	ft/min			Data Files:	NA		
Traverse>		Port _4_ B	ottom/East			Port _4_ Side	e/South
Trial>	1	2	3	Mean	1	2	(
Daint Danth in		1/414				\/alaa:4	

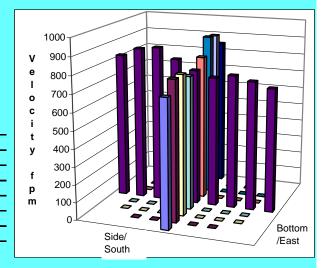
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity		Velocity			
1	9/16	701	702		701.5	715	720		717.5
2	1 14/16	726	737		731.5	779	796		787.5
3	3 8/16	759	755		757.0	778	803		790.5
4	5 13/16	757	716		736.5	734	780		757.0
Center	9	775	763		769.0	774	758		766.0
5	12 3/16	827	821		824.0	830	808		819.0
6	14 8/16	896	869		882.5	931	899		915.0
7	16 1/16	864	875		869.5	922	889		905.5
8	17 6/16	827	822		824.5	852	829		840.5
Averages	>	792.4	784.4	#DIV/0!	788.4	812.8	809.1	#DIV/0!	810.9

AII	ft/min	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	799.7		Mean	795.7	820.1	807.9
Min Point	701.5	-12.3%	Std. Dev.	62.7	64.7	62.5
Max Point	915.0	14.4%	COV as %	7.9	7.9	7.7

Flow w/o C-Pt 1401 acfm Vel Avg w/o C-Pt 804 fpm

	Sta
Stack temp	86.
Equipment temp	-
Ambient temp	84
Stack static	0.0
Ambient pressure	29.5
Total Stack pressure	99
Ambient humidity	329

Finish	
86.0	F
-	F
86	F
0.00	mbars
29.51	in Hg
999	mbars
35%	RH
	86.0 - 86 0.00 29.51 999


Notes: Only 2 traverses done per port. See note on data sheet VT-18.

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations:

Site	296-S-21 Model
Date	8/8/2006
Testers	BG Fritz
Stack Dia.	17 7/8 in.
Stack X-Area	250.9 in.2
Elevation	N.A.
Distance to disturbance	77 3/4 inches

 Run No.
 VT-19
 No centerpoint

 Fan Configuration
 3
 no prefilter

 Fan Setting
 50
 Hz

 Stack Temp
 85.0
 deg F

 Start/End Time
 11:15 to 11:40

 Center 2/3 from
 1.64
 to: 16.23

Velocity units ft/min

Points in Center 2/3 2 to: 7
Data Files: NA

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Veld	ocity	
1	9/16	701	702		701.5	715	720		717.5
2	1 14/16	726	737		731.5	779	796		787.5
3	3 8/16	759	755		757.0	778	803		790.5
4	5 13/16	757	716		736.5	734	780		757.0
Center	9	775	763		N.A.	774	758		N.A.
5	12 3/16	827	821		824.0	830	808		819.0
6	14 8/16	896	869		882.5	931	899		915.0
7	16 1/16	864	875		869.5	922	889		905.5
8	17 6/16	827	822		824.5	852	829		840.5
Averages	>	792.4	784.4	#DIV/0!	790.9	812.8	809.1	#DIV/0!	816.6

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	803.7		Mean	800.2	829.1	814.6
Min Point	701.5	-12.7%	Std. Dev.	67.5	65.9	65.4
Max Point	915.0	13.8%	COV as %	8.4	8.0	8.0

Flow w/o C-Pt 1401 acfm Vel Avg w/o C-Pt 804 fpm

Stack temp

Equipment temp

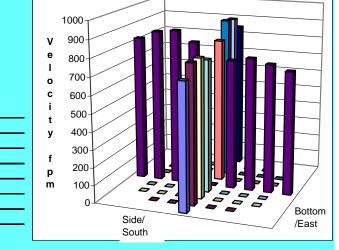
Ambient pressure

Ambient humidity

Total Stack pressure

Ambient temp

Stack static


Start Finish 86.0 86.0 F F 84 86 0.00 0.00 mbars 29.509 29.51 in Hg 999 999 mbars 32% 35% RH

Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Notes: Only 2 traverses done per port. See note on data sheet VT-18.

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations: **Signature on file copy**

orginature on the copy

Site 296-S-21 Model
Date 8/8/2006
Testers BG Fritz
Stack Dia. 17 7/8 in.
Stack X-Area 250.9 in.2
Elevation N.A.
Distance to disturbance 77 3/4 inches

 Run No.
 VT-20

 Fan Configuration
 4
 no prefilter

 Fan Setting
 52
 Hz

 Stack Temp
 82.0 deg F

 Start/End Time
 11:50 to 12:30

 Center 2/3 from
 1.64
 to:

2

Points in Center 2/3

Data Files: NA

to: 16.23 to: 7

Velocity units ft/min

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velocity				Velo	ocity	
1	9/16	1136	1167		1151.5	1342	1359		1350.5
2	1 14/16	1265	1276		1270.5	1423	1421		1422.0
3	3 8/16	1221	1288		1254.5	1439	1431		1435.0
4	5 13/16	1267	1226		1246.5	1369	1371		1370.0
Center	9	1354	1378		1366.0	1338	1365		1351.5
5	12 3/16	1502	1573		1537.5	1542	1509		1525.5
6	14 8/16	1573	1599		1586.0	1684	1697		1690.5
7	16 1/16	1584	1601		1592.5	1684	1715		1699.5
8	17 6/16	1436	1415		1425.5	1580	1658		1619.0
Averages	>	1370.9	1391.4	#DIV/0!	1381.2	1489.0	1502.9	#DIV/0!	1495.9

AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>North</u>	<u>All</u>
Mean	1438.6		Mean	1407.6	1499.1	1453.4
Min Point	1151.5	-20.0%	Std. Dev.	159.6	144.9	154.0
Max Point	1699.5	18.1%	COV as %	11.3	9.7	10.6

Flow w/o C-Pt 2524 acfm Vel Avg w/o C-Pt 1449 fpm

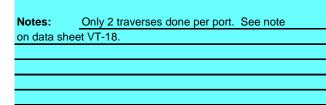
Stack temp

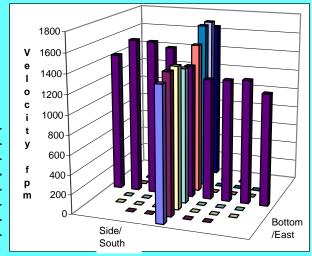
Equipment temp Ambient temp Stack static

Ambient pressure

Ambient humidity

Total Stack pressure


Start	Finish	
86.0	78.0	F
-	-	F
86	78	F
0.00	0.00	mbars
29.509	29.51	in Hg
999	999	mbars
35%	53%	RH


Instuments Used:

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations:

dure EMS-JAG-4 Signature on file copy

Site	296-S-21 Model
Date	8/8/2006
Testers	BG Fritz
Stack Dia.	17 7/8 in.
Stack X-Area	250.9 in.2
Elevation	N.A.
Distance to disturbance	77 3/4 inches

Run No. VT-20 No centerpoint Fan Configuration 4 no prefilter Fan Setting 52 Hz Stack Temp 82.0 deg F Start/End Time 11:50 to 12:30 Center 2/3 from 1.64 to: 16.23 Points in Center 2/3 2 to:

Data Files: NA

Velocity units ft/min

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	ocity			Velo	ocity	
1	9/16	1136	1167		1151.5	1342	1359		1350.5
2	1 14/16	1265	1276		1270.5	1423	1421		1422.0
3	3 8/16	1221	1288		1254.5	1439	1431		1435.0
4	5 13/16	1267	1226		1246.5	1369	1371		1370.0
Center	9	1354	1378		N.A.	1338	1365		N.A.
5	12 3/16	1502	1573		1537.5	1542	1509		1525.5
6	14 8/16	1573	1599		1586.0	1684	1697		1690.5
7	16 1/16	1584	1601		1592.5	1684	1715		1699.5
8	17 6/16	1436	1415		1425.5	1580	1658		1619.0
Averages	>	1370.9	1391.4	#DIV/0!	1383.1	1489.0	1502.9	#DIV/0!	1514.0

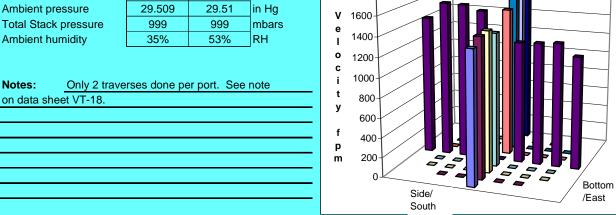
AII	<u>ft/min</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>North</u>	<u>All</u>
Mean	1448.5		Mean	1414.6	1523.8	1469.2
Min Point	1151.5	-20.5%	Std. Dev.	173.7	141.8	161.6
Max Point	1699.5	17.3%	COV as %	12.3	9.3	11.0

Flow w/o C-Pt 2524 acfm Vel Avg w/o C-Pt 1449 fpm

Stack temp

Equipment temp Ambient temp Stack static

Start	Finish	
86.0	78.0	F
-	-	F
86	78	F
0.00	0.00	mbars
29.509	29.51	in Hg
999	999	mbars
35%	53%	RH


Instuments Used:

1800

Temp >> TSI 8360 SN 209060 Cal due 9/27/06

Vel >> Solomat Zephyr SN 12951472 Cal due 8/29/06

Pitot # 5 -- 36" Standard Pitot Dwyer

Signature signifies compliance with Procedure EMS-JAG-4 Signature/date Signature verifying data and calculations: **Signature on file copy**

D.36

	VELOCITY TRAVERSE DATA FORM								
	Site	296-S-21 Mo	del		Run No.	VT-21			
	Date	8/11/2006		Fan Co	onfiguration	Fan 1 & 4			
	Testers	BGF		F	an Setting	56, 52	Hz		
	Stack Dia.	18	in.	S	Stack Temp	77.5	deg F	•	
S	tack X-Area	254.5	in.2	Star	t/End Time	0930 / 1030			
	Elevation	N.A.		Cent	er 2/3 from	1.65	to:	16.35	
Distance to	disturbance	54.625	inches	Points in	Center 2/3	4	to:	13	
Order>		1st							
Traverse>			3-So	Ea.			3-N	оЕа	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo	ocity	
1	0.50	2118	2118	2088	2108.0	2192	2277	2288	2252.3
2	0.88	2192	2191	2237	2206.7		2346	2323	2365.3
3	1.53	2146	2235	2239	2206.7	2370	2371	2295	2345.3
4	2.25	2180	2245	2161	2195.3		2326	2331	2343.7
5	3.04	2091	2050	2081	2074.0		2294	2320	2264.7
6	3.96	1949	1998	1894	1947.0		2226	2212	2214.7
7	5.09	1785	1724	1836	1781.7	2137	2045	2147	2109.7
8	6.75	1529	1552	1659	1580.0		1843	1858	1857.7
9	11.25	1836	1879	1781	1832.0		1589	1598	1585.7
10	12.91	2113	2110	2082	2101.7	1705	1677	1747	1709.7
11	14.04	2247	2216	2264	2242.3		1956	1885	1942.0
12	14.96	2315	2408	2432	2385.0		1931	2069	2003.7
13	15.75	2427	2392	2432	2415.0		2077	2200	2153.0
14	16.47	2427	2409	2420	2439.0		2259	2237	2246.3
15	17.12	2250	2282	2258	2439.0		2229	2237	2224.3
16	17.12								
		2147 2111.0	2113 2120.1	2277 2135.8	2179.0 2122.3	2166 2114.4	2208 2103.4	2277 2126.3	2217.0 2114.7
Averages	>	2111.0 All							
			<u>ft/min</u>	Dev.	from mean		3-SoEa.	3-NoEa	<u>All</u>
		Mean	2118.5		05 40/	Mean	2055.4	2018.4	2036.9
		Min Point	1580.0			Std. Dev.	270.3	246.3	252.4
Г	/a C Dt	Max Point	2439.0			COV as %	13.2	12.2	12.4
	w w/o C-Pt				Instument		.4.470		Cal Due
vei Av	/g w/o C-Pt		•			ephyr SN 1295			8/29/2006
.		Start	Finish	l_	Pitot # 5	36" Standard	Pitot Dwyer		N.A.
Stack temp		77	78	F					
Equipment to	•	-		F					
Ambient tem	р	78	78	F .			4		
Stack static		0	0	mbars	2500			-000	
Ambient pres		29.595		in. Hg			an. 1881		
Total Stack p		1002	1002	mbars	2000-				
Ambient hum	nidity	37	33	RH					
Notes:					1500-				
Centerpoint \									
Centerpoint Vel 3NE = 1615 ft/min				1000-	t Hill				
					500		555		0
								3-NoEa	a .
						16 15 14 13 12 11 10 9		5	
						10 g	8 7 6 5 4 3	2 1	
V	elocity units	ft/min							
Signature sig	mifies compl	iance with		Verified by:					
Procedure El		iance with		vermed by:					
Procedure El	WIS-JAG-4								

Signature/date

	Site	296-S-21 Mo	del		Run No.				
	Date	8/11/2006		Fan Co	onfiguration	Fan 3 & 4			
	Testers	BGF		ſ	Fan Setting	50, 52	Hz		
	Stack Dia.	18	in.		Stack Temp		deg F		
S	tack X-Area	254.5	in.2	Star	t/End Time	1040 / 1150			
	Elevation	N.A.		Cent	er 2/3 from	1.65	to:	16.35	
Distance to	disturbance	54.625	inches	Points in	Center 2/3	4	to:	13	
Order>							1st		
Traverse>			3-So	Ea.			3-No	oEa	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		Velo	city			Velo		
1	0.50		1907	2092	2003.7	2388	2450	2299	2379.0
2	0.88		2035	2073		2401	2399	2308	2369.3
3	1.53	2038	2077	2098	2071.0	2381	2258	2341	2326.7
4	2.25		2080	2054	2082.3	2413	2349	2359	2373.7
5	3.04	2063	2073	1969	2035.0	2239	2260	2261	2253.3
6	3.96		1930	1918		2096	2173	2216	2161.7
7	5.09		1718	1726		2041	2081	2029	2050.3
8	6.75		1639	1642	1644.7	1754	1656	1685	1698.3
9	11.25	1852	1807	1914	1857.7	1604	1764	1620	1662.7
10	12.91	2018	2081	2114	2071.0	1848	1747	1815	1803.3
11	14.04	2199	2217	2269	2228.3	2019	2040	1993	2017.3
12	14.96	2277	2273	2333	2294.3	1975	2084	2023	2027.3
13	15.75	2351	2343	2389	2361.0	2183	2110	2228	2173.7
14	16.47	2416	2302	2420	2379.3	2302	2212	2270	2261.3
15	17.12		2261	2259	2282.3	2259	2239	2243	2247.0
16	17.50	2004	2049	2033	2028.7	1920	1884	1850	1884.7
Averages	>	2068.6	2049.5	2081.4	2066.5	2113.9	2106.6	2096.3	2105.6
		AII	<u>ft/min</u>	Dev.	from mean	Cntr 2/3	3-SoEa.	3-NoEa	<u>All</u>
		Mean	2086.1			Mean	2024.5	2022.2	2023.3
		Min Point	1644.7			Std. Dev.	235.1	236.2	229.4
		Max Point	2379.3		14.1%	COV as %	11.6	11.7	11.3
	w w/o C-Pt		acfm		Instument	s Used:			Cal Due
Vel Av	∕g w/o C-Pt	2135	fpm		Solomat Z	ephyr SN 1295	51472		8/29/2006
		Start	Finish	,	Pitot # 5	36" Standard	Pitot Dwyer		N.A.
Stack temp		78	81	F					
Equipment te	emp	-	-	F ر					
Ambient temp	р	77	80	F					
Stack static		0	0	mbars	2500			0-00	
Ambient pres		29.595	-	in. Hg					
Total Stack p		1002	1002	mbars	2000-				
Ambient hum	nidity	33	30	RH					
Notes:					1500-				
Centerpoint \									
Centerpoint \	/el 3NE = 16	604 ft/min			1000-				
				500			$\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij}^{n}$	3	
					^			3-NoEa	
					U	16 15 14 13 12 11 10 9		5	
						11 10 9	8 7 6 5 4 3	2 1	
V	Velocity units ft/min					•	m		
0.				., ,,,					
Signature sig		iance with		Verified by:					
Procedure El									
Signature/da	te								

Appendix E Flow Angle Procedure

APPENDIX E: FLOW ANGLE PROCEDURE

PNNL Operating Procedure			
Title: Test to Determine Flow Angle	Org. Code: Procedure No.: Rev. No.:	D7E74 EMS-JAG-05 1	
Work Location: General	Effective Date:	April 28, 2006	
Author: John A. Glissmeyer	Supersedes Date:	November 24, 199	8
☐ Radiological ☐ Hazardous Materials ☑ Physical Hazards ☐ Hazardous Environment ☐ Other: Are One-Time Modifications Allow	☐ Mandatory Use ☐ Continuous Use ☑ Reference Use ☐ Information Use wed? ☐ Yes ☑	No	
Person Signing	Signa	ture	Date
Technical review: J. Matthew Barnett			
Project Manager: John Glissmeyer			
Line Manager: James Droppo			
Quality Engineer: Barry L. Sachs			

1.0 Purpose

The performance of new stack sampling systems must be shown to satisfy the requirements of 40 CFR 61, Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities." This regulation governs portions of the design and implementation of effluent air sampling. The stack sampler performance is adequately characterized when potential contaminants in the effluent are of a uniform concentration at the sampling plane and line losses are within acceptable limits. (The sampling plane is the cross section of the stack or duct where the sampling nozzle inlet is located.) Uniformity of contaminant concentration is highly unlikely where the mean angle of the gas velocity throughout the cross section of the stack or duct is significantly non-zero. This condition would also mean that the air velocity approaches the sampling nozzle at an unacceptable angle, degrading the performance of the nozzle. This procedure provides the means to determine the mean flow angle, and is performed prior to measurements of contaminant uniformity. This procedure is performed after the range of gas flow conditions is established. Other associated procedures generally follow and address uniformity of flow and of gas and aerosol contaminants.

2.0 Applicability

This procedure can be used in the field or on modeled stacks and ducts to determine the angle of the air velocity relative to the axis of the duct or stack. The angle measured is the roll angle. This should be determined at the sampling plane. The tests are applicable within the following constraints:

- The operating limits of the air velocity measurement device used are observed.
- The air velocity sensor element does not occupy more than a few percent of the cross-sectional area in the plane of the element.

This procedure may need to be repeated if there are changes made in the configuration of the ventilation system during the conduct of the remaining tests in the Test Plan. If the system under test operates within a limited range of airflow that does not change more than \pm 25%, this procedure is usually conducted once at the middle of the range. If the flow varies more, the procedure is performed at least at the extremes of flow.

3.0 Prerequisites and Conditions

Conditions and concerns that must be satisfied prior to performing this procedure are listed below:

- The job-hazards analysis for the work area must be followed.
- Safety glasses, hard toed or substantial shoes may be required in the work areas.
- Special training may be required to access the test ports.
- Means must be provided to achieve the airflow parameters in the Test Instruction.
- Air velocity measurement equipment must be within calibration.

- The Test Instruction must be read and understood.
- This procedure must be read and understood.

4.0 Precautions and Limitations

Access to the test ports may require the use of ladders, scaffolding or manlifts, which may necessitate special training for sampling personnel and any observers. The training requirements will be indicated in the job hazard analysis.

5.0 Equipment Used for Measurements

The following are essential items of equipment:

- A Type-S pitot tube with sufficient length to reach across the diameter of the test stack,
- Slant tube or calibrated electronic manometer to indicate when the differential pressure reading of the pitot tube is about zero,
- Device for measuring the pitot tube angle at traverse points (e.g., a commercial protractor level with good angle resolution). (Note: A three dimensional velocity probe capable of measuring both pitch and yaw angles of gas flow is also acceptable provided that modifications in the method outlined below are made),
- Tape or template to mark insertion depths on the pitot tube,
- Velocity sensor to check the stack airflow,
- Platform, ladders, or manlifts as needed to support equipment and to access the test ports,
- Fittings to limit leakage around the pitot tube and to stabilize the tube so that it can be positioned repeatedly in the test stack at the same location.
- To provide information about the test conditions, commercial grade sensors for stack temperature, barometric pressure, static pressure, and humidity provide acceptable information. Likewise, data from a nearby meteorology or facility station is acceptable.

Further details on specific equipment for the job are provided in the Test Instruction. The test method is based on 40 CFR 60, Appendix A, Method 1, Section 2.4, "Verification of the Absence of Cyclonic Flow." The measurement instrumentation may be either the type used in Method 1, or another measurement device designed for measuring the angle of the velocity vector at discrete points. The user should be aware that different devices may give different readings.

6.0 Work Instructions for Setup, Measurements, and Calculations

Job specific instructions given in the Test Instruction, illustrated in Exhibit A, will provide details and operating parameters necessary to perform this procedure. Prior to determination of flow angles, measurements should be made to assess whether the stack velocity flow is within normal limits.

6.1 Preliminary Steps:

6.1.1 Verify that the interior dimensions of the stack or duct at the measurement locations agree with those used in calculating the grid of measurement points given in the Test Instruction or data form.

Note. The grid of measurement points is calculated in accordance with 40 CFR 60, Appendix A, Method 1. A centerpoint is included as a common reference and for graphical purposes. The layout design divides the area of the sampling plane so that each point represents approximately an equal-sized area.

- 6.1.2 Provide essential supplies at the sampling location. (S-Type pitot tube, manometer, tubing, fittings to adapt the sensor to the test ports, marking pens, data forms, writing and sensor supporting platforms).
- 6.1.3 Verify that the ventilation flow control device is capable of the flow control settings given in the Test Instruction.
- 6.1.4 Prepare a data form for the measurement traverse. See illustration in Exhibit B. Label the columns of traverse data by the direction of the traverse. For example, if the first reading is closest to the east port, and the last reading is closest to the west port, then label the traverse "eastwest." Print blank copies of the data form.
- 6.1.5 Record on the data form the test setup parameters characterizing the airflow, configuration and conditions as applicable according to the Test Instruction.
- 6.1.6 Mark the Type-S pitot tube to indicate the insertion depth for each point in the measurement grid.
- 6.1.7 Set the stack flow control per the Test Instruction. (Use a velocity or flow sensor to verify that target flow condition has been achieved within ± 10%.)

Note. Flow verification can be based on a single point velocity reading. The single point can be the same one determined in the stack flow controller calibration in Procedure EMS-JAG-03.

6.1.8 Insert the Type-S pitot tube in the stack or duct, seal the opening around it, and check for smooth operation of the pitot tube.

Note. Good measurements are dependent upon making small repeatable rotations of the pitot tube in the available fittings.

6.1.9 Establish a convention for representing the angular direction of flow.

Note. If an inclined manometer is used, connect the flexible tubes between the connectors on the pitot tube and the manometer so that rotating the pitot tube assembly clockwise drives the meniscus to the right, i.e., to higher positive numbers.

Attach a circular protractor to the pitot tube near the tubing connectors. Generally the protractor hangs below the pitot tubes. When the parallel tubes are in horizontal position, the protractor should indicate zero degrees. If the tubing assembly is rotated clockwise, the resulting counter-clockwise movement of the angle indicator produces an angle that is read as a positive number. This is consistent with the convention for reading circular angles.

6.1.10 Position the inclined manometer on a stable platform and level the manometer.

Note: Movement on the test platform may affect the manometer level. It should be checked frequently. Adjustments can be made at any time when the pitot tube is moved to the next position, but not during readings at any single point.

- 6.1.11 Connect the flexible tubes to the inclined manometer but disconnect them from the pitot tube.
- 6.1.12 Increase or decrease the red oil level in the inclined portion of the manometer to zero the meniscus. (This is done using a finger-adjustable screw at the base of the manometer.)
- 6.1.13 Reconnect the flexible tubes to the pitot tube.

6.2 Angular Flow Measurements

- 6.2.1 Verify that the directional orientations and the numbered measurement positions are consistent with the data form.
- 6.2.2 Measure and record, on the data form, the angular reading at each measurement point in succession. If the readout device has an averaging feature, record the average of a series of several readings.

Note: The readings may be erratic for some flow conditions and at some traverse positions. Care should be taken to approach these variable readings from both higher and lower angles to obtain the most accurate equilibrium reading.

- 6.2.3 Repeat Step 6.2.2 two more times for a total of three measurements at each grid point.
- 6.2.4 Review the dataforms for completeness.
- 6.2.5 Sign and date the data forms attesting to having completed the data collection portion of the procedure.

6.3 Calculations

- 6.3.1 Perform the following calculations using a spreadsheet or hand calculations
- 6.3.2 Calculate the absolute average air-flow angle for each measurement point.
- 6.3.3 Calculate the average absolute flow angle for all measurement points.
- 6.3.4 Have the data transfers and calculations reviewed and verified

Note: The acceptance criterion is that the average flow angle not exceed 20 degrees.

7.0 Records

7.1 Transfer the original data forms and calculations to the records custodian as project records

Exhibits/Attachments

$Exhibit \ A-Typical \ Test \ Instruction$

	Test Instruction	
Project: Model Stack	Date: December 25, 2007	Work Package: K83017
Tests:	Flow Angle at High Flow in t	he Model Stack
Staff: David Maughan		
Reference Procedures: 1. Operating Manual for So	- ·	
2. Test to Determine Flow 05	Angle at the Elevation of a S	ampler Probe, Procedure EMS-JAG-
	Fan and Fan Speed Controlle tube or electronic manometer	
Safety Considerations: Review and observe the appl	icable Job Hazard Analysis fo	or the project
Instructions:	•	
1. Assemble the equipment sampling probe.	t for the flow angle test at the	ports at the elevation of the
	t points with the following dis 4, 3.16, 4.28, 5.10, 5.66, 5.83	stances from the inside of the stack inches.
3. Measure the flow angle each measurement twice	<u> </u>	cfm) extreme of stack flow. Repeat
4. Record the data on flow		
5. Diagram mounting fixtu	res and retain assembly for su	ubsequent tests
Desired Completion Date: 12	2/25/07	
Approvals:		
John Glissmeyer,	project manager	Date
Test completed by:		Date:

Exhibit B - Typical Flow Angle Data Form

FLOW ANGLE DATA FORM

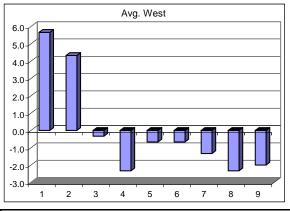
Site		
Date	10/19/2002	
Tester	Maughan	
Stack Dia.	23.5	in
Stack X-Area	433.7	in2
Elevation	N.A.	ft
Distance to disturbance	75	in

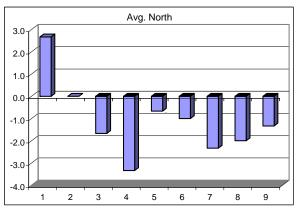
Run No. FA-1
Fan Setting 50 Hz
Fan configuration 4-fan: EF1, EF4, EF5, EF7, 15 deg port
Approx. stack flow ~5860 cfm
Units degrees (clockwise > pos. nos.)

Baro Press 992.4 mb
Rel Hum 57% RH
Stack Temp 55 F

Traverse>			W	est		North			
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	0.75	7	4	6	5.7	2	2	4	2.7
2	2.47	4	5	4	4.3	-1	1	0	0.0
3	4.56	-2	0	1	-0.3	-2	-1	-2	-1.7
4	7.59	-2	-2	-3	-2.3	-3	-4	-3	-3.3
Center	11.75	-1	0	-1	-0.7	0	-1	-1	-0.7
5	15.91	0	-1	-1	-0.7	-1	-1	-1	-1.0
6	18.94	-1	-1	-2	-1.3	-3	-2	-2	-2.3
7	21.03	-2	-3	-2	-2.3	-3	-2	-1	-2.0
8	22.75	-2	-2	-2	-2.0	-2	-1	-1	-1.3
Mean of abs	solute values	2.3	2.0	2.4		1.9	1.7	1.7	
w/o points by	wall:	1.7	1.7	2.0		1.9	1.7	1.4	
								all	2.0

Instuments Used:


all 2.0 w/o wall pts 1.7


			Cal. Due
S-type pitot	Pitot-2	36 inch	Cert. of compliance
Stanley protractor level	Prot-1		N.A.
Manometer	Man-1	S/N 14591	4/1/2007

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Notes:

Signature signifies compliance with Signature verifying data and calculations:

Procedure EMS-JAG-05

Signature/date

Appendix F Flow Angle Data Sheets

APPENDIX F: FLOW ANGLE DATA SHEETS

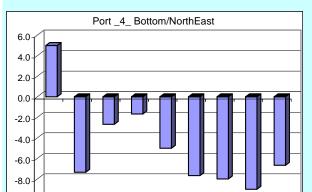
FLOW ANGLE DATA FORM

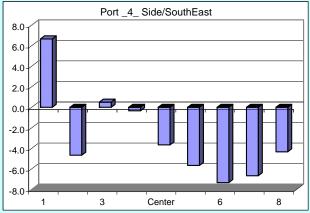
	I LOW ANGLE DATA I ONM								
	Site	296-S-21 M	odel	Run No. FA-1					
	Date	7/18/2006		Fan Setting 56, 45, 50 Hz					
	Tester	Glissmeyer,	Droppo, Fritz	Fan configuration 1, 2, 3					
	Stack Dia.	17 7/8	in	Approx. air vel. 2280 fpm at point > 4	So8				
	Stack X-Area	250.9	in2	Units degrees (clockwise > pos. nos.)					
	Elevation	N.A.	ft						
Distance t	o disturbance	77 3/4	in						
S	tart/End Time	1435/1540		Stack Temp N.A. °F					

Traverse>			Port _4_ Bott	om/NorthEast			Port _4_ Sid	le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	5	8	2	5.0	7	7	6	6.7
2	1 14/16	-8	-6	-8	-7.3	-6	-5	-3	-4.7
3	3 8/16	-5	0	-3	-2.7	1	0.5	0	0.5
4	5 13/16	-1	-3	-1	-1.7	-1	-1	1	-0.3
Center	9	-5	-5	-5	-5.0	-4	-4	-3	-3.7
5	12 3/16	-8	-7	-8	-7.7	-7	-6	-4	-5.7
6	14 8/16	-7	-8	-9	-8.0	-8	-7	-7	-7.3
7	16 1/16	-9	-9	-9	-9.0	-7	-7	-6	-6.7
8	17 6/16	-6	-6	-8	-6.7	-5	-5	-3	-4.3
Mean of abs	solute values	6.0	5.8	5.9		5.1	4.7	3.7	
w/o points by	wall:	6.1	5.4	6.1		4.9	4.4	3.4	
•								- 11	٠,

 S-type pitot
 Pitot 2
 36 inch
 Cert. of compliance

 Velocity sensor
 TSI SN 209060
 9/27/2006


 Angle indicator
 Prot
 Commercial grade


 Manometer
 Man-2
 8/24/2006

 Notes:

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Signature signifies compliance with

Procedure EMS-JAG-05

Signatures on file copy

Signature/date

	Site 296-S-21 Model							
	Date 7/18/2006							
	Tester Droppo, Fritz							
	Stack Dia.	17 7/8	in					
	Stack X-Area	250.9	in2					
	Elevation	N.A.	ft					
Distance t	o disturbance	77 3/4	in					
S	tart/End Time	1545/1604						

Run No. FA-2
Fan Setting 56, 52 Hz
Fan configuration 1, 4
Approx. air vel. 2350 fpm at point > 4So8
Units degrees (clockwise > pos. nos.)

 Rel Hum
 N.A.
 % RH

 Stack Temp
 N.A.
 °F

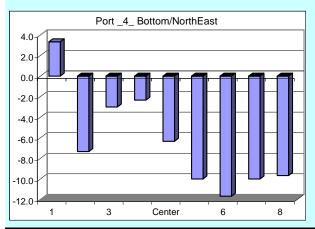
Traverse>		Port _4_ Bottom/NorthEast Port _4_ Si						le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	2	4	4	3.3	8	9	10	9.0
2	1 14/16	-6	-9	-7	-7.3	-5	-4	-4	-4.3
3	3 8/16	-4	-4	-1	-3.0	0	0	1	0.3
4	5 13/16	-4	0	-3	-2.3	-4	0	-2	-2.0
Center	9	-7	-7	-5	-6.3	-6	-5	-5	-5.3
5	12 3/16	-10	-10	-10	-10.0	-9	-9	-9	-9.0
6	14 8/16	-12	-11	-12	-11.7	-8	-9	-7	-8.0
7	16 1/16	-10	-10	-10	-10.0	-8	-7	-7	-7.3
8	17 6/16	9	-10	-10	-9.7	-6	-6	-5	-5.7
Mean of abs	solute values	7.1	7.2	6.9		6.0	5.4	5.6	
w/o points by	wall:	7.6	7.3	6.9		5.7	4.9	5.0	
								_	0.4

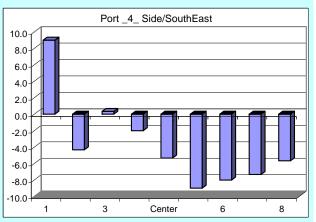
Instuments Used:

Cal. Due

all 6.4

W/o wall pts 6.2


S-type pitot Velocity sensor Angle indicator Manometer


Pitot 2	36 inch	Cert. of compliance
TSI SN 2090	60	9/27/2006
Prot		Commercial grade
Man-2		8/24/2006

Notes:

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Signature signifies compliance with Procedure EMS-JAG-05

Signature verifying data and calculations:

Signature/date

	Site 296-S-21 Model					
	Date 7/19/2006					
	Tester Fritz					
	Stack Dia.	17 7/8	in			
	Stack X-Area	250.9	in2			
	Elevation	N.A.	ft			
Distance t	o disturbance	77 3/4	in			
S	tart/End Time	1215/1255				

Run No. FA-3 Fan Setting 45, 52 Hz Fan configuration 2,4 4So8 Approx. air vel. 2150 fpm at point >

Units degrees (clockwise > pos. nos.)

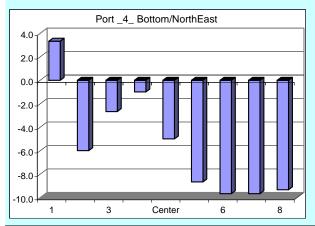
w/o wall pts

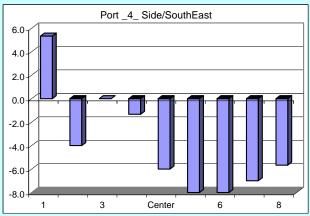
5.5

Rel Hum	28	% RH
Stack Temp	87	٥F

Traverse>			Port _4_ Bott	om/NorthEast			Port _4_ Sid	le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	3	3	4	3.3	3	7	6	5.3
2	1 14/16	-5	-6	-7	-6.0	-4	-5	-3	-4.0
3	3 8/16	-3	-4	-1	-2.7	0	1	-1	0.0
4	5 13/16	-2	-1	0	-1.0	-2	-1	-1	-1.3
Center	9	-5	-4	-6	-5.0	-6	-6	-6	-6.0
5	12 3/16	-9	-9	-8	-8.7	-8	-8	-8	-8.0
6	14 8/16	-10	-10	-9	-9.7	-9	-8	-7	-8.0
7	16 1/16	-9	-10	-10	-9.7	-7	-7	-7	-7.0
8	17 6/16	-9	-10	-9	-9.3	-5	-6	-6	-5.7
Mean of abs	solute values	6.1	6.3	6.0		4.9	5.4	5.0	
w/o points by	wall:	6.1	6.3	5.9		5.1	5.1	4.7	
								а	ll 5.6

Instuments Used: Cal. Due Pitot 2 36 inch S-type pitot


Velocity sensor Angle indicator Prot Manometer Man-2


Cert. of compliance TSI SN 209060 9/27/2006 Commercial grade 8/24/2006

Notes:

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Signature signifies compliance with Procedure EMS-JAG-05

Signature verifying data and calculations:

Signature/date

Site **296-S-21 Model** Date 7/19/2006 Tester Fritz Stack Dia. 17 7/8 in Stack X-Area 250.9 in2 Elevation N.A. ft Distance to disturbance 77 3/4 in Start/End Time 1300/1325

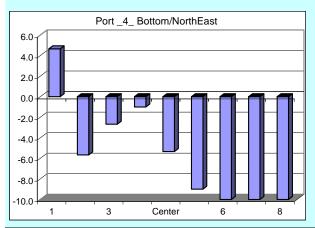
Run No. FA-4 Fan Setting 50, 52 Hz Fan configuration 3,4 4So8 Approx. air vel. 2200 fpm at point > Units degrees (clockwise > pos. nos.)

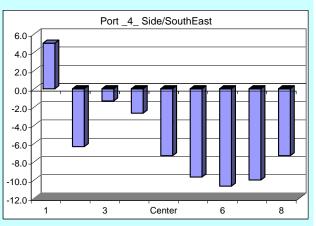
Rel Hum 29 % RH 89.5 °F Stack Temp

Traverse>			Port _4_ Bott	om/NorthEast			Port _4_ Sid	e/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	5	5	4	4.7	6	6	3	5.0
2	1 14/16	-6	-6	-5	-5.7	-5	-8	-6	-6.3
3	3 8/16	-3	-2	-3	-2.7	-1	-2	-1	-1.3
4	5 13/16	-2	0	-1	-1.0	-2	-2	-4	-2.7
Center	9	-5	-6	-5	-5.3	-7	-7	-8	-7.3
5	12 3/16	-9	-10	-8	-9.0	-10	-10	-9	-9.7
6	14 8/16	-10	-10	-10	-10.0	-10	-11	-11	-10.7
7	16 1/16	-10	-10	-10	-10.0	-10	-10	-10	-10.0
8	17 6/16	-10	-10	-10	-10.0	-7	-7	-8	-7.3
Mean of abs	olute values	6.7	6.6	6.2		6.4	7.0	6.7	
w/o points by	wall:	6.4	6.3	6.0		6.4	7.1	7.0	

Instuments Used:

Cal. Due


all 6.6 w/o wall pts


S-type pitot Velocity sensor Angle indicator Manometer

Note:

Pitot 2 36 inch Cert. of compliance TSI SN 209060 9/27/2006 Prot Commercial grade Man-2 8/24/2006 Notes:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Signature signifies compliance with Procedure EMS-JAG-05

Signature verifying data and calculations:

Signature/date

	Site 296-S-21 Model							
	Date 7/19/2006							
	Tester Fritz							
	Stack Dia.	17 7/8	in					
	Stack X-Area	250.9	in2					
	Elevation	N.A.	ft					
Distance t	o disturbance	77 3/4	in					
S	tart/End Time	1330/1410						

Run No. FA-5 Fan Setting Ηz Fan configuration 4 Approx. air vel. 1575 4So8 fpm at point > Units degrees (clockwise > pos. nos.)

w/o wall pts

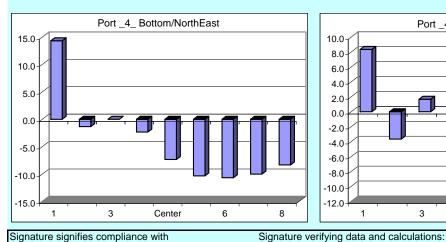
Rel Hum	28	% RH
Stack Temp	88	٥F

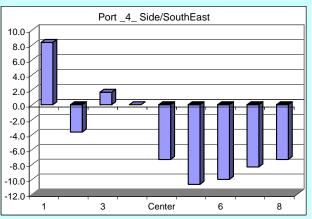
Traverse>			Port _4_ Bott	om/NorthEast			Port _4_ Sid	le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	14	14	15	14.3	10	7	8	8.3
2	1 14/16	-3	0	-1	-1.3	-5	-3	-3	-3.7
3	3 8/16	0	0	0	0.0	2	3	0	1.7
4	5 13/16	-3	-2	-2	-2.3	0	0	0	0.0
Center	9	-8	-7	-7	-7.3	-8	-7	-7	-7.3
5	12 3/16	-10	-10	-11	-10.3	-11	-11	-10	-10.7
6	14 8/16	-10	-11	-11	-10.7	-10	-10	-10	-10.0
7	16 1/16	-10	-10	-10	-10.0	-7	-9	-9	-8.3
8	17 6/16	-8	-9	-8	-8.3	-7	-8	-7	-7.3
Mean of abs	solute values	7.3	7.0	7.2		6.7	6.4	6.0	
w/o points by	wall:	6.3	5.7	6.0		6.1	6.1	5.6	
								all	6.8

Instuments Used:

S-type pitot Velocity sensor Angle indicator Manometer

Cal. Due 36 inch Cert. of compliance TSI SN 209060 9/27/2006 Commercial grade


Notes:


Prot Man-2 8/24/2006

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Pitot 2

Signature signifies compliance with Procedure EMS-JAG-05

Signature/date

	Site 296-S-21 Model							
	Date 7/19/2006							
	Tester Fritz							
	Stack Dia.	17 7/8	in					
	Stack X-Area	250.9	in2					
	Elevation	N.A.	ft					
Distance t	o disturbance	77 3/4	in					
S	tart/End Time	1415/1440						

Run No. FA-6
Fan Setting 52 Hz
Fan configuration 4
Approx. air vel. 1500 fpm at point > 4So8
Units degrees (clockwise > pos. nos.)

w/o wall pts

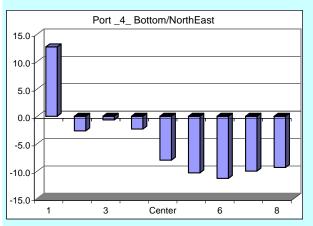
6.6

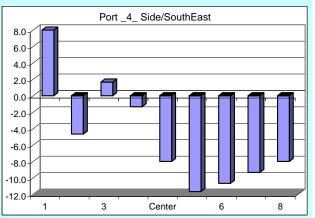
 Rel Hum
 19 % RH

 Stack Temp
 92 °F

Traverse>			Port _4_ Bott	om/NorthEast			Port _4_ Sid	le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	12	13	13	12.7	10	7	7	8.0
2	1 14/16	-2	-3	-3	-2.7	-5	-5	-4	-4.7
3	3 8/16	-1	0	-1	-0.7	3	1	1	1.7
4	5 13/16	-2	-3	-2	-2.3	-1	-1	-2	-1.3
Center	9	-8	-7	-9	-8.0	-9	-7	-8	-8.0
5	12 3/16	-10	-10	-11	-10.3	-11	-12	-12	-11.7
6	14 8/16	-11	-12	-11	-11.3	-10	-11	-11	-10.7
7	16 1/16	-10	-10	-10	-10.0	-9	-9	-10	-9.3
8	17 6/16	-10	-9	-9	-9.3	-9	-7	-8	-8.0
Mean of abs	solute values	7.3	7.4	7.7		7.4	6.7	7.0	
w/o points by	wall:	6.3	6.4	6.7		6.9	6.6	6.9	
-								all	7.3

Instuments Used:


S-type pitot Velocity sensor Angle indicator Manometer


		Cal. Due
Pitot 2	36 inch	Cert. of compliance
TSI SN 20	9060	9/27/2006
Prot		Commercial grade
Man-2		8/24/2006

Notes:

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Signature signifies compliance with Procedure EMS-JAG-05 Signature verifying data and calculations:

Signature/date

Site **296-S-21 Model** Date 7/19/2006 Tester Fritz Stack Dia. 18 in Stack X-Area 254.5 in2 Elevation N.A. ft Distance to disturbance 27 3/8 in Start/End Time 1450/1520

Run No. FA-7
Fan Setting 56, 45, 50 Hz
Fan configuration 1, 2, 3
Approx. air vel. 2180 fpm at point > 4So8
Units degrees (clockwise > pos. nos.)

12.6

 Rel Hum
 15 % RH

 Stack Temp
 97 °F

Traverse>			Port _1_ Bott	om/NorthEast			Port _1_ Sid	le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	-1	-3	-3	-2.3	-5	-6	-5	-5.3
2	1 14/16	-5	-4	-3	-4.0	-3	-2	-3	-2.7
3	3 8/16	4	4	3	3.7	7	5	7	6.3
4	5 13/16	15	17	16	16.0	19	21	19	19.7
Center	9	-1	0	1	0.0	0	2	1	1.0
5	12 3/16	-30	-34	-31	-31.7	-31	-25	-27	-27.7
6	14 8/16	-21	-21	-22	-21.3	-20	-22	-20	-20.7
7	16 1/16	-11	-13	-9	-11.0	-9	-10	-11	-10.0
8	17 6/16	-1	2	0	0.3	0	-1	0	-0.3
Mean of abs	olute values	9.9	10.9	9.8		10.4	10.4	10.3	
w/o points by	wall:	12.4	13.3	12.1		12.7	12.4	12.6	
								al	10.3

Instuments Used:

Cal. Due

Wo wall pts

S-type pitot

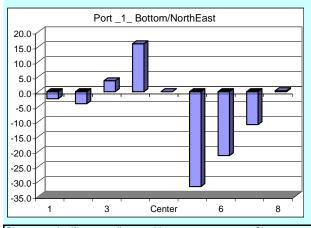
Pitot 2 36 inch

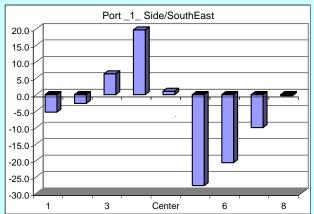
Cert. of compliance

 S-type pitot
 Pitot 2
 36 inch
 Cert. of compliance

 Velocity sensor
 TSI SN 209060
 9/27/2006

 Angle indicator
 Prot
 Commercial grade


 Manometer
 Man-2
 8/24/2006


Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Notes:

The approximate air velocity at point 1So8 is 2800 fpm

Signature signifies compliance with Procedure EMS-JAG-05 Signature verifying data and calculations:

Signatures on file copy

Signature/date

Site **296-S-21 Model** Date 7/20/2006 Tester Fritz Stack Dia. 18 in Stack X-Area 254.5 in2 ft Elevation N.A. Distance to disturbance 54 5/8 in Start/End Time 0900/0930

Run No. FA-8
Fan Setting 56, 45, 50 Hz
Fan configuration 1, 2, 3
Approx. air vel. 2320 fpm at point > 4So8
Units degrees (clockwise > pos. nos.)

 Rel Hum
 30 % RH

 Stack Temp
 85 °F

Traverse>	ſ		Port _3_ Bott	om/NorthEast			Port _3_ Sid	le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	-7	-9	-9	-8.3	2	4	4	3.3
2	1 14/16	-8	-5	-4	-5.7	0	2	2	1.3
3	3 8/16	-4	-5	-3	-4.0	-1	4	1	1.3
4	5 13/16	-4	-4	-2	-3.3	-3	0	-1	-1.3
Center	9	-7	-7	-7	-7.0	-8	-5	-5	-6.0
5	12 3/16	-11	-13	-12	-12.0	-11	-12	-10	-11.0
6	14 8/16	-16	-15	-14	-15.0	-10	-10	-10	-10.0
7	16 1/16	-14	-14	-13	-13.7	-8	-8	-9	-8.3
8	17 6/16	-13	-12	-13	-12.7	-6	-5	-6	-5.7
Mean of absolute values		9.3	9.3	8.6		5.4	5.6	5.3	
w/o points by	wall:	9.1	9.0	7.9		5.9	5.9	5.4	

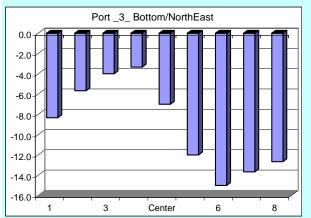
Instuments Used:

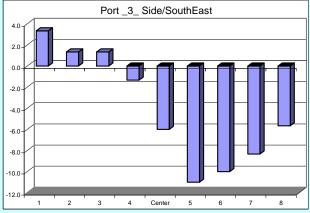
Cal. Due

Wo wall pts 7.2

 S-type pitot
 Pitot 2
 36 inch
 Cert. of compliance

 Velocity sensor
 TSI SN 209060
 9/27/2006


 Angle indicator
 Prot
 Commercial grade


 Manometer
 Man-2
 8/24/2006

 Notes:

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Signature signifies compliance with Procedure EMS-JAG-05 Signature verifying data and calculations:

Signature/date

	Site 296-S-21 Model							
	Date	Date 7/20/2006						
	Tester Fritz							
	Stack Dia.	18	in					
	Stack X-Area	254.5	in2					
	Elevation	N.A.	ft					
Distance t	o disturbance	54 5/8	in					
S	tart/End Time	0940/1015						

Run No.	FA-9	_	
Fan Setting	50, 52	Hz	
Fan configuration	3, 4		
Approx. air vel.	2250	fpm at point >	4So8
Units	degrees (clos	ckwise > pos. nos.)	

 Rel Hum
 30 % RH

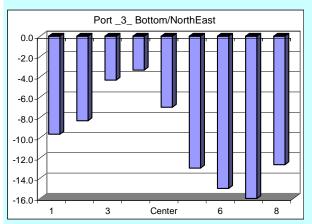
 Stack Temp
 85 °F

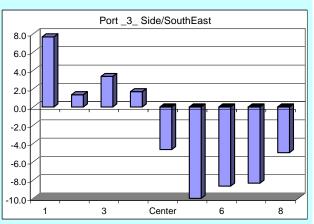
Traverse>			Port _3_ Bott	om/NorthEast			Port _3_ Sid	le/SouthEast	
Trial>		1	2	3		1	2	3	
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.
1	9/16	-11	-9	-9	-9.7	8	7	8	7.7
2	1 14/16	-8	-8	-9	-8.3	2	0	2	1.3
3	3 8/16	-5	-4	-4	-4.3	3	3	4	3.3
4	5 13/16	-4	-3	-3	-3.3	1	2	2	1.7
Center	9	-7	-7	-7	-7.0	-6	-4	-4	-4.7
5	12 3/16	-13	-13	-13	-13.0	-11	-9	-10	-10.0
6	14 8/16	-15	-16	-14	-15.0	-9	-8	-9	-8.7
7	16 1/16	-16	-16	-16	-16.0	-7	-9	-9	-8.3
8	17 6/16	-14	-13	-11	-12.7	-5	-5	-5	-5.0
Mean of abs	solute values	10.3	9.9	9.6		5.8	5.2	5.9	
w/o points by	wall:	9.7	9.6	9.4		5.6	5.0	5.7	
								الم	7.0

Instuments Used:

Cal. Due

all 7.8


W/o wall pts 7.5


Notes:

S-type pitot	Pitot 2	36 inch	Cert. of compliance
Velocity sensor	TSI SN 2090	60	9/27/2006
Angle indicator	Prot		Commercial grade
Manometer	Man-2		8/24/2006

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

Signature signifies compliance with Signature verifying data and calculations:

Procedure EMS-JAG-05

Signatures on file copy

Signature/date

Appendix G Tracer Gas Uniformity Procedure

APPENDIX G: TRACER GAS UNIFORMITY PROCEDURE

PNNL Operating Procedure			
Title: Test to Determine Uniformity of a Tracer Gas at a Sampler Probe	Org. Code: Procedure No.: Rev. No.:	D7E74 EMS-JAG-01 2	
Work Location: General	Effective Date:	April 28, 2006	
Author: John A. Glissmeyer	Supersedes Date:	May 26, 2000	
Identified Hazards:	Identified Use Cate	egory:	
□ Radiological	☐ Mandatory Use		
☐ Hazardous Materials☒ Physical Hazards	☐ Continuous Use ☑ Reference Use		
☐ Hazardous Environment	☐ Information Use		
□ Other:			
Are One-Time Modifications Allow	ved? ■ Yes 🗷	No	
Person Signing	Signa	ature	Date
Technical review: J. Matthew Barnett			
Project Manager:			
John Glissmeyer			
Line Manager:			
James Droppo			
Concurrence:			
Quality Engineer:			
Barry L. Sachs			

1.0 Purpose

The performance of new stack sampling systems must be shown to satisfy the requirements of 40 CFR 61, Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities." This regulation governs portions of the design and implementation of effluent air sampling. The stack sampler performance is adequately characterized when potential contaminants in the effluent are of a uniform concentration at the sampling location (plane), and line losses are within acceptable limits. This procedure determines whether the concentration of gaseous contaminants is uniformly distributed in the area of the sampling probe. Other procedures address flow angle, uniformity of gas velocity, and uniformity of particulate contaminants. A contaminant concentration that is uniform at the sampling plane enables the extraction of samples that represent the true emission concentration

The uniformity is expressed as the variability of the measurements about the mean. This is expressed using the relative coefficient of variance (COV), which is the standard deviation divided by the mean and expressed as a percentage. The lower the COV value, the more uniform the gas concentration. The acceptance criterion is that the COV of the measured gas concentrations be \bigcirc 20% across the center two-thirds of the area of the stack. Furthermore, the average concentration measured at any point cannot differ from the mean of all points by more than 30%.

2.0 Applicability

This procedure can be used in the field or on scale model stacks to determine whether air-sampling probes can collect representative samples under normal operations. The test procedure is applicable to effluent stacks or ducts within the following constraints:

- The tracer gas tests are generally limited to stacks with flowrates greater than 50 cubic feet per minute range. The upper bound of flowrate is determined by the sensitivity of the gas analyzer, the background reading for the tracer gas, and the availability of the tracer.
- Environmental constraints the operating temperature range of the gas analyzer must be observed (minimum of 55°F).

3.0 Prerequisites and Conditions

Conditions and concerns that must be satisfied before obtaining measurements are listed below:

- Safety glasses, hard toed or substantial shoes may be required in the work areas.
- Properly constructed and inspected work platforms may be needed to access the test ports.
- Special training may be required in some instances to access the sampling ports of the stack.

- Alcohol (methanol, ethanol, or rubbing) may be used to erase grid point markings on the sampling probes. A flammable equipment storage cabinet is required for flammable chemicals.
- Familiarity with the use and operation of compressed gas delivery systems and the ability to detect concentration build-ups of the gas is essential to avoid exceeding ACGIH concentration for the tracer gas.
- Knowledge of the setup, use of, and operation of flowmeters, gas analyzers, and computers is essential.
- A job-hazards analysis may be required in certain cases.
- Read and understand this procedure (documented required reading)

4.0 Precautions and Limitations

Caution: The American Conference of Governmental Industrial Hygienists (ACGIH) 8-hour time-weighted average limit for human exposure to sulfur hexafluoride gas is 1000 ppm (6,000 mg/m³). It is colorless and odorless.

During the tests, sulfur hexafluoride will be injected into the base of the stack or duct at a rate to achieve a target concentration < 5 ppm at the sampling ports. The gas is five times as heavy as air. If a leak occurs in the gas delivery system, the potential is present for a buildup of SF_6 in confined spaces and in low areas. Leak tests of the delivery system will be made at least daily to prevent such an occurrence.

Access to the test ports may require the use of scaffolding or manlifts, either of which will necessitate special training for test personnel and observers. The training requirements will be indicated in the job hazard analysis. This will limit access to the sampling ports to trained personnel.

If the purpose of a given run is to investigate the sensitivity of the COV determination to the tracer-injection location, the test may be invalid if the ending ambient concentration is elevated above that at the start of the test. This would indicate poor dispersion away from the test site and recirculation of the tracer to the inlet of the fan if the stack exhaust point is in view of and is reasonably close to the fan inlet. This may result in a false indication of good mixing. The tracer recycle and buildup conditions are unlikely in outdoor tests.

5.0 Equipment Used for Stack Measurements

Specific calibration check standards, probe dimensions, measurement grids, flow rates, and other special requirements will be provided in the specific Test Instruction. Exhibit A shows a typical Test Instruction. Exhibits B and C provide a typical layout for the test setup. The following are essential items of equipment:

- Sulfur hexafluoride calibration standards
- Sulfur hexafluoride bulk gas
- Bruel and Kjaer Model 1302 Gas analyzer and associated users manual.
- Gas regulators and flowmeters

- Gas sampling probe
- Gas injection probe
- Vacuum pump
- Air velocity meter
- Platform, ladders, or manlifts as needed to access the test ports;
- Fittings to limit leakage around the sampling probe and to stabilize it so it can be repositioned repeatedly.
- To provide information about the test conditions, commercial grade sensors for stack temperature, barometric pressure, static pressure, air velocity, and humidity provide acceptable information. Likewise, data from a nearby meteorology or facility station is acceptable.

The absolute calibration of the gas analyzer is not as important as its general response because the concentration data are used in a relative manner in calculating the COV and in plotting the concentrations at the measurement points. Consequently, the analyzer is Category 2 MTE (user calibrated) and will be checked against a calibrated gas mixture before and after the series of tests, and the instrument's response may be checked on a daily basis. Agreement within 10% of the calibration gas is acceptable.

6.0 Work Instructions for Setup, Measurements, and Calculations

The steps taken to setup, configure, and operate the stack fans and test equipment are listed. Based on previous field measurements, the steps are ordered to achieve maximum efficiency in the testing. In addition to these steps, test instructions, which are developed for each test series, provide specific details and operating parameters.

6.1 Gas Analyzer Calibration Check

Check the gas analyzer calibration by subjecting the analyzer to sulfur hexafluoride calibration gas. Refer to the analyzer's manual, parts 2 and 4. Perform this check at least at the beginning and end of the series of test runs, and at least weekly during the test runs. It is also recommended to repeat these steps if the following conditions are observed during the uniformity test runs: concentration drift with time not accounted for by changing flowrates, or a test with results failing to meet the acceptance criteria.

- 6.1.1 Prepare a data form such as that shown in Exhibit D.
- 6.1.2 Record the ambient barometric pressure, temperature and humidity on the data from.
- 6.1.3 Record the cylinder number, sulfur hexafluoride concentration and expiration date for each standard being used.

- 6.1.4 Program the analyzer's "units of measurement" as in its manual Part 4.2.3. Set the gas analyzer's clock.
- 6.1.5 Enter the barometric pressure in mm Hg pressure, standard temperature (that used by the calibration gas vendor), and the sampling tube length into the analyzer's environmental setup menu (analyzer manual Part 4.2.4). Record the information on the data form.
- 6.1.6 Program for a continuous monitoring task, with water compensation, and initiate monitoring (manual sections 4.2.5 & 4.2.6).
- 6.1.7 Monitor the sulfur hexafluoride concentration at the test location, and record the measurements for at least 5 minutes on the data form.

Note: If the test location has a buildup of the gas, a zero air cylinder or clean air supply will be needed. The SF_6 concentration in the room should be several orders of magnitude below that of the calibration-gas.

- 6.1.8 Repeat the previous step with water vapor compensation disabled.
- 6.1.9 Attach the regulator to the calibration gas with the lowest concentration. To the regulator discharge valve, attach flexible tubing, and a tee with one leg exhausting excess gas through a rotameter and the other leg attached to the inlet of the gas analyzer. The rotameter's valve must be wide open.
- 6.1.10 Start the flow of calibration gas with the valve at the regulator. The flowrate should be just high enough so the rotameter float is showing a non-zero flow with the analyzer sampling.
- 6.1.11 With the water compensation still disabled, sample the calibration gas for at least five readings or until no observable trend is found. Record the identification of the calibration gas used. Record the concentration readings on the data form.
- 6.1.12 Repeat Step 6.1.11 with water compensation enabled.
- 6.1.13 Repeat Steps 6.1.9 to 6.1.12 with the higher concentration of calibration gas.

Note: Set the calibration gas flow rate just high enough to ensure that the ball in the rotameter does not drop to zero during any of the observed steps of a sample cycle. As the calibration check continues, calibration gas will be released into the room, and the SF_6 background concentrations may increase as the analyzer is checked. The analyzer's SF_6 reading should be within 10% of the calibration-gas concentration, and the water content should be much lower than ambient

Note: The readings will generally be recorded from the analyzer's digital display. Optionally, it may be convenient to record the data on a printer or computer, which can be coupled to the analyzer. See the analyzer's Manual Part 12 (especially Part 12.2.5) for connecting to a printer in data log mode.

Note: Gas analyzer readings can be made with or without water-vapor correction. If the air is sufficiently dry (< than about 60% relative humidity) where the water vapor contribution is negligible (< than about 14.5E+03 ppm), the readings can be made without water vapor compensation to reduce sample times. The preliminary measurements of Steps 6.1.7 and 6.1.8 will determine whether water compensation will be needed for the uniformity

6.2 Preparing for Measurements:

- 6.2.1 Prepare a spreadsheet for calculating results and plotting data similar to the illustration in Exhibit E. Label the columns of data by the direction to be used in traversing the stack. For example, if the first reading is closest to the east port, and the last reading is closest to the west port, then label the traverse east-west. Print blank copies of the spreadsheet as data forms for hand recording measurements for later transfer to the spreadsheet.
- 6.2.2 Provide essential supplies at the sampling location. (gas cylinders and regulators, fittings and probe-port couplers, marking pens, data sheets, writing, and probe-supporting platforms).
- 6.2.3 Setup the test parameters characterizing the stack or duct airflow, configuration and conditions according to the test instruction.
- 6.2.4 Fill in test information on data form (run number, test crew, instrumentation used, configuration, date, etc.).
- 6.2.5 Set up the gas analyzer system at the test port according to the illustrations in Exhibits B and C.

- 6.2.6 Enter the barometric pressure and the sampling tube length into the analyzer's environmental setup menu (analyzer manual Part 4.2.4). Also record the information on the data form.
- 6.2.7 Program the analyzer for:
 - 60-second samples,
 - continuous operation,
 - moisture compensation if needed as determined in Section 6.1.
- 6.2.8 Mark the sampling probe with a permanent marker so the inlet can be placed at the successive measurement points.
- 6.2.9 Assemble the injection equipment according to the Test Instruction and generally as shown in Exhibits B and C. The equipment consists of:
 - A pressurized cylinder of sulfur hexafluoride
 - a gas regulator,
 - valve,
 - flowmeter,
 - flexible tubing, and a stainless steel injection probe with a 90° bend at the discharge end
- 6.2.10 Plug the end of the injection probe. Pressurize the probe with the gas cylinder and check for leaks with soap bubble solution. For the same test setup, any future leak checks can be performed with the flowmeter valve closed instead of plugging the probe.
- 6.2.11 Secure the injection probe at one of the five injection positions according to the test instruction.

Note: **The sampling probe** consists of a stainless steel tube (1/4 or 3/8-inch) with enough length to reach across the inside of the stack or duct, allowing for fittings. The intake end should have a 90° bend so that the open end of the tube faces downward or into the flow within the stack. The discharge end of the probe should terminate in a tee. One leg of the tee connects by flexible tubing to a rotameter and vacuum pump. This leg should draw about a 10-lpm flow of air, depending on the volumetric flow in the stack. The other leg of the tee connects via flexible tubing to an in-line filter (47-mm-diameter glass fiber filter) and then to the gas analyzer inlet. To minimize tubing length to the analyzer, locate the gas analyzer near the test ports.

Note: Sampling plane traverse points Use the grid of measurement points provided with the test instruction and data form. This is usually the same as used for the velocity uniformity test (EMS-JAG-04). A centerpoint, is included as a common reference and for graphical purposes. The layout design divides the area of the sampling plane so that each point represents approximately an equal-sized area

6.3 System Startup

- 6.3.1 If not already running, start the stack fan(s) and make adjustments to obtain the fan configuration or flow setting called for in the test instruction and recorded on the data form.
- 6.3.2 Use a velocity or flow sensor to verify that the target flow condition has been achieved within \pm 10%. Record the value on the data form.
- 6.3.3 Set the sample probe at the center position.
- 6.3.4 Start the sampler vacuum pump and set its flowrate at about 10 lpm
- 6.3.5 After the analyzer has stabilized (about 10 minutes), record at least four consecutive background readings on the data form. Do not proceed with the test if the background exceeds 5% of the anticipated average concentration in the stack.
- 6.3.6 Start the flow of the tracer gas and adjust its flow rate as called for in the test instruction.
- 6.3.7 Record the starting
 - tracer injection flow rate
 - time
 - pressure in the tracer gas cylinder
 - ambient temperature
 - stack air temperature
 - stack air velocity or flowrate
 - sampling flowrate
 - ambient pressure
 - ambient humidity
 - analyzer water vapor correction setting

Note: Estimation of Sulfur Hexafluoride Injection Rate

Estimate the SF₆ injection rate so the average diluted concentration will be within the range calibration gas standards and according to the following equation:

$$injection\ flowrate = stack\ flowrate \times \frac{target\ ppmv}{10^6}$$

The rotameter reading should be adjusted for the density of the SF₆. The air equivalent reading is about

 $rotameter\ reading = k\ x\ actual\ flowrate$

where k is 2.53 (the square-root of the density) for SF₆.

6.4 Record Measurements

- 6.4.1 Position the sample probe at the first measurement point. After the analyzer has drawn the sample, move the probe to the second point. After a few seconds, the analyzer will display the tracer concentration for the sample drawn at the first measurement point. Record the reading on the data form as the reading for the first point and in the first column.
- 6.4.2 After the analyzer draws the sample at the second measurement point move the probe to the third position. After a few more seconds, the analyzer will display the concentration of tracer for the sample drawn from the second point. Record that value as the second reading.
- 6.4.3 Proceed in a similar manner through all of the points across the stack, moving the probe after each sample is drawn so that it is in the proper position to draw the next sample. In this manner, while the analyzer is waiting to draw the next sample, the display will change to show the concentration of the previously drawn sample.
- 6.4.4 After drawing the last sample across the stack, move the probe back to the first position and record the second series of measurements for that traverse direction.
- 6.4.5 After drawing the sample for the second time at the last position, move the probe back to the first position and record the third series of measurements for that traverse direction.

Note: The calculations use three measurements taken at each measurement point in each traverse direction. The repeats are made during the three separate traverses across and not as three consecutive measurements at each point.

6.4.6 After completing the three measurements for the points in the first traverse

- direction, relocate the probe to the second test port.
- 6.4.7 In a manner similar to Steps 6.4.1 6.4.5, make three tracer concentration measurements at each point along the traversing direction through the second test port.
- 6.4.8 Record the ending:
 - tracer injection flow rate
 - time
 - pressure in the tracer gas cylinder
 - ambient temperature
 - stack air temperature
 - stack air velocity or flowrate
 - sampling flowrate
 - ambient pressure
 - ambient humidity
 - analyzer water vapor correction setting
- 6.4.9 Shut down the delivery of tracer gas.
- 6.4.10 Continue operation of the gas analyzer for several minutes to purge any remaining gas through the exhauster and the analyzer.
- 6.4.11 Record on the data form at least four background tracer gas concentration readings.
- 6.4.12 Record any deviations from the above procedure on the data form.
- 6.4.13 Verify that the data form is complete and sign and date in the signature block attesting to performing this procedure to this point.
- 6.4.14 Repeat steps 6.4.1 6.4.13 for each run as indicated in the Test Instruction

6.5 Calculations

- 6.5.1 For a test run, transfer the hand written data into the electronic spreadsheet.
- 6.5.2 Calculate the COV for the run and the maximum percent deviation from the mean.

Note: The spreadsheet shown in Exhibit E is set up to calculate the COV for each tracer gas concentration traverse using the average concentration data from all points in the inner two-thirds of the cross section area of the plane (including the center point). The calculation of percent deviation from the mean includes all measurement points.

6.5.3 Compare the observed COV and percent deviation from the mean to the acceptance criterion.

Note: The test is acceptable if the COV is within $\pm 20\%$ for the inner two-thirds of the stack diameter and if no point in the entire grid of points differs from the mean by more than 30%. This is determined by inspecting the average concentration at each measurement point. The COV is 100 times the standard deviation divided by the mean.

- 6.5.4 Have the data transfers and calculations independently reviewed and verified and the finished spreadsheets signed by the reviewer.
- 6.5.5 Complete the calculations for each test run in the Test Instruction

7.0 Records

7.1 Transfer the original signed data forms and verified spreadsheets to the records custodian as project records.

Exhibits

Exhibit A – Typical Test Instruction.

Test Instruction							
Project: Model Tests Date: November 10, 2007 Work Package: K97052							
Tests	Tests: Tracer Gas Uniformity of Full-Scale Stack						
Staff: David Maughan, John	Glissmeyer						
Reference Procedures:							
		Uniformity of a Tracer Gas at a					
Sampler Probe, April 14 2. Operating Manual for B	ruel and Kjaer Model 1302 Ga	as Analyzer					
Equipment:	ruer and Kjaer Woder 1902 Ga	is Allaryzer					
Model stack and inspect	ed work platforms						
<u> </u>	<u> </u>	ulator, control valve, rotameter,					
_	$D \times 36$ in. long stainless tubing						
	1302 Gas Analyzer, probe, vac						
Safety Considerations:	, , , , , , , , , , , , , , , , , , ,						
Review and observe the applicable Job Hazard Analysis for the project							
Instructions:							
		mentation is within calibration					
	tion from the Hanford Weathe	r Service, phone 373-2716 or					
http://etd.pnl.gov:2080/l							
4. Install equipment as dire	-						
1 0 1	or the measurement points show						
1	about the target flowrate of 90	` I /					
	e at about 0.76 lpm for a trace	r concentration of ~ 3 ppm					
	e at approximately 10 lpm acer mixing tests at the following	ng sets of conditions:					
	ion point at duct from fan to st						
	rline, top left, top right, bottom						
		on the rectangular discharge of the					
. 5	from the point of view of the fa						
10. Record data on copies o	±	,					
11. Repeat the test with the	worst case result two additiona	al times					
	res and retain assembly for an	y subsequent re-tests					
13. Weigh the tracer gas cyl							
Desired Completion Date: 1	1/20/2007						
Approvals:							
-	er, Project Manager	Date					
Test completed by:		Date:					

Exhibit B – Overview of Stack and Injection/Sampling Setups

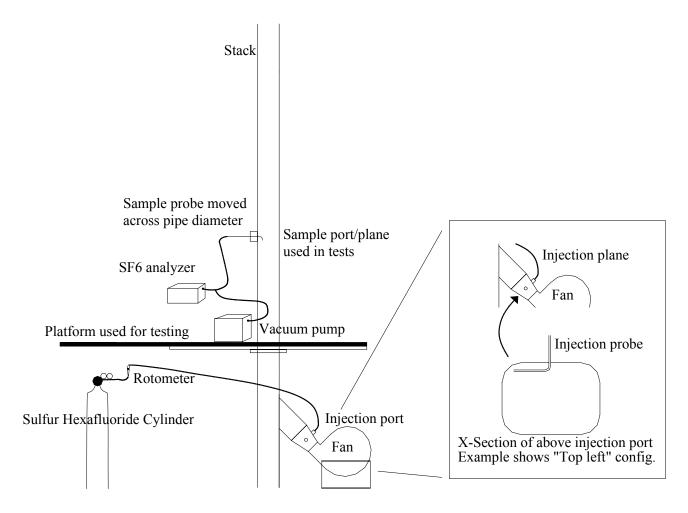
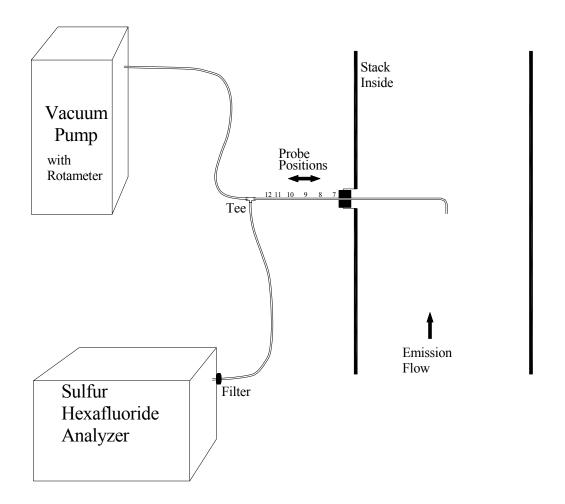



Exhibit C – Details for Stack Sampling Probe and Gas Analyzer Setup

Exhibit D – Typical Calibration Check of Gas Analyzer

Sulfur hexafluoride Gas Calibration performed on B&K on

12/12/2008 by

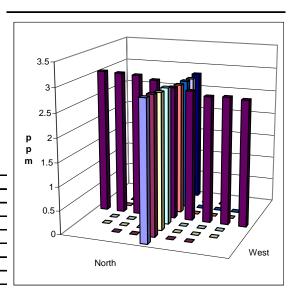
John Glissmeyer

Setup details: B&K sample inlet tube = 6 ft
992.7 mbar station pressure, analyzer corrects to 20 deg C
38 deg F ambient temp
87 percent RH

```
1.1 ppm SF<sub>6</sub> +/- 10% standard
21 ppm SF<sub>6</sub> +/- 5% standard
           Cylinder: FF18781 w/ starting P of
                                                     1000 psi
                                                                                  Cylinder: FF18763 w/ starting P of
                                                                                                                             750
                                    End press
                                                      900 psi
                                                                                                           end P =
                                                                                                                             750
                                                                      B&K
B&K
Calibration
                                                                      Calibration
readings:
                                                                      readings:
(ppm)
                                                                      (ppm)
        22.7 Compensating for water vapor
                                                                               1.17 Compensating for water vapor
       22.7
                                                                               1.16
        22.6
                                                                               1.16
        22.6
                                                                               1.17
        22.6
                                                                               1.16
        22.7 Not compensating for water vapor
                                                                               1.16
        22.7
                                                                               1.17 Not compensating for water vapor
        22.5
                                                                               1.16
        22.6
                                                                               1.17
        22.5
                                                                               1.16
        22.5
                                                                               1.16
                                                                               1.16 = avg
       22.6 = avg
Pre-Test Room background, ppb
             Not compensating for water vapor, monitoring task 2
                                                                 54.1
                               59.5
                                          64.9
                                                     60.4
                                                                               67.7
        55.1
                   50.6
             Compensating for water vapor, monitoring task 1
                                                     28.7
                                                                               35.0
                   25.4
                               28.4
                                          31.8
                                                                 30.8
Standards Used:
                                                                      Expiration date:
Signature signifies compliance with
                                               Signature verifying data and calculations:
Procedure EMS-JAG-01
Signature/date (on field data form)
```

Exhibit E – Typical Data Form							
TRACER GAS TRAVERSE DATA FORM							
Site	Model	Run No.	GT-23				
Date	5/6/2007	Fan Configuration	on Turbine Fans, 30 degree east po				
Tester	Glissmeyer	Fan Setting	60 Hz		<u> </u>		
Stack Dia.	23.5 in.	Stack Temp	59 d	eg F	<u></u>		
Stack X-Area	433.7 in.2	Start/End Time	957/1245		_		
Elevation	N.A.	Center 2/3 from	2.16	to:	21.34		
Distance to disturbance	75 inches	Points in Center 2/3	2	to:	7		
Measurement units	ppm SF6	Injection Point	ET8 centerlin	ne			
	1st	•					

		101							
Traverse>			W	est			No	rth	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	m			pp	om	
1	0.75	2.70	2.64	2.64	2.660	2.95	2.87	2.93	2.917
2	2.47	2.72	2.68	2.67	2.690	2.97	2.82	2.92	2.903
3	4.56	2.66	2.70	2.66	2.673	2.89	2.85	2.85	2.863
4	7.59	2.81	2.76	2.71	2.760	2.87	2.88	2.88	2.877
Center	11.75	2.82	2.78	2.81	2.803	2.80	2.82	2.79	2.803
5	15.91	2.94	2.93	2.92	2.930	2.80	2.76	2.79	2.783
6	18.94	3.03	3.02	2.97	3.007	2.76	2.79	2.82	2.790
7	21.03	2.96	3.03	3.09	3.027	2.78	2.78	2.75	2.770
8	22.75	3.07	3.03	3.02	3.040	2.80	2.79	2.82	2.803
Averages	>	2.857	2.841	2.832	2.843	2.847	2.818	2.839	2.834


All	<u>ppm</u>	Dev. from mean	Center 2/3	West	<u>North</u>	<u>All</u>
Mean	2.84		Mean	2.84	2.83	2.83
Min Point	2.66	-6.3%	Std. Dev.	0.15	0.05	0.11
Max Point	3.04	7.1%	COV as %	5.2	1.9	3.7

Avg. Conc. 2.843 ppm Gas analyzer checked: 6-May-07

	Start	Finish	-
Tracer tank pressure	100	170	psig
Sample Port Temp	58	60	F*
Centerline vel.	n 1285	w 1364/1330	fpm
Injection flowmeter	20	20	ball**
Stack flow			cfm
Sampling flowmeter	10	10	Ipm Sierra
Ambient pressure	1001.5	1000.1	mbar
Ambient humidity	98	99	RH
B&K vapor correction	Y	Y	Y/N
Back-Gd gas ppb	21/21/14/20	44/49/30/18/	
No. Bk-Gd samples	4	4	n
Ambient Temp, F	31	30	
Instuments Used:			

B & K Model 1302 #1765299	
Sierra Inc. Constant Flow Air Sampler	
Solmat Zephyr SN 12951472 Cal. Due 7/26/07	

Notes:		

Signature signifies compliance with Procedure EMS-JAG-01 Signature/date

Signature verifying data and calculations:

Appendix H Tracer Gas Uniformity Data Sheets

APPENDIX H: TRACER GAS UNIFORMITY DATA SHEETS

TRACER GAS TRAVERSE DATA FORM

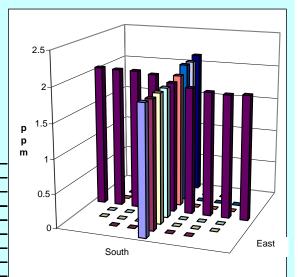
Site	296-S-21 Model	Run No.	GT-1		
Date	7/28/2006	Fan Configuration	1, 2, 3		
Tester	Jag/Jgd	Fan Setting	56, 45, 50	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	100.8	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	1415/1540		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	Fan 1		
			1st		

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		рр	m			pp	om	
1	0.58	1.78	1.82	1.86	1.820	1.88	1.82	1.88	1.860
2	1.89	1.79	1.81	1.81	1.803	1.84	1.84	1.86	1.847
3	3.49	1.79	1.84	1.83	1.820	1.86	1.87	1.87	1.867
4	5.81	1.80	1.90	1.87	1.857	1.89	1.89	1.85	1.877
Center	9.00	1.94	1.89	1.90	1.910	1.89	1.89	1.89	1.890
5	12.19	2.00	2.02	2.01	2.010	1.98	1.95	1.89	1.940
6	14.51	2.02	2.06	2.05	2.043	2.09	2.04	2.01	2.047
7	16.11	2.06	2.06	2.02	2.047	2.05	2.04	2.04	2.043
8	17.42	2.06	2.05	2.06	2.057	2.11	2.11	2.06	2.093
Averages	>	1.916	1.939	1.934	1.930	1.954	1.939	1.928	1.940

AII	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	1.94		Mean	1.93	1.93	1.93
Min Point	1.80	-6.8%	Std. Dev.	0.11	0.08	0.09
Max Point	2.09	8.2%	COV as %	5.5	4.3	4.7

Avg. Conc. 1.939 ppm

Gas analyzer checked: 25-Jul-06


	Start	Finish	
Tracer tank pressure	450	400	psig
Stack Temp	101	100.6	F ^o
Ref. Pt. air vel.	2260	2260	fpm
Injection flowmeter	12	10	ball**
Stack flow	-	-	cfm
Sampling flowmeter	10	10	Ipm Sierra
Ambient pressure	29.4	29.3	in Hg
Ambient humidity	18	15	RH
B&K vapor correction	N	N	Y/N
Back-Gd gas ppb	32,28,27,26,30	23,24,26,28,28	
No. Bk-Gd samples	5	5	n
Ambient Temp, F	95	96	
Instuments Used:			

B & K Model 1302 #1765299
Sierra Inc. Constant Flow Air Sampler
TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8.

Signature signifies comp	liance with	Signature verifying data and calculations:
Procedure EMS-JAG-01		
Signature/date	JAG	Signatures on file copy

Site 296-S-21 Model Date 7/28/2006 Tester Jag/Jgd Stack Dia. 17 7/8 in. 250.9 in.² Stack X-Area Elevation N.A. 77.75 inches Distance to disturbance Measurement units ppm SF6

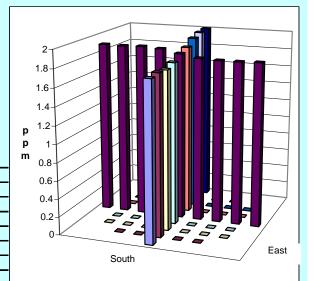
Run No. GT-2 Fan Configuration 1,4 Fan Setting 56,52 Hz Stack Temp 100.1 deg F Start/End Time 1545/1645 Center 2/3 from 1.64

Injection Point Fan 1

Points in Center 2/3 to:

16.23

1st


Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		ppm				pp	m	
1	0.58	1.82	1.83	1.79	1.813	1.78	1.76	1.74	1.760
2	1.89	1.84	1.78	1.80	1.807	1.79	1.76	1.78	1.777
3	3.49	1.83	1.81	1.78	1.807	1.75	1.75	1.79	1.763
4	5.81	1.85	1.81	1.79	1.817	1.81	1.78	1.81	1.800
Center	9.00	1.88	1.88	1.80	1.853	1.84	1.87	1.86	1.857
5	12.19	1.91	1.87	1.90	1.893	1.87	1.89	1.91	1.890
6	14.51	1.94	1.86	1.92	1.907	1.95	1.97	1.95	1.957
7	16.11	1.92	1.89	1.89	1.900	1.99	1.98	2.00	1.990
8	17.42	1.90	1.90	1.91	1.903	2.02	1.99	1.99	2.000
Averages	>	1.877	1.848	1.842	1.856	1.867	1.861	1.870	1.866

AII	ppm	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	1.86	l l	Mean	1.85	1.86	1.86
Min Point	1.76	-5.4%	Std. Dev.	0.05	0.09	0.07
Max Point	2.00	7.5%	COV as %	2.4	4.8	3.6

Avg. Conc. 1.861 ppm Gas analyzer checked:

25-Jul-06

	Start	Finish					
Tracer tank pressure	400	450	psig				
Stack Temp	100.6	99.6	F°				
Ref. Pt. air vel.	2310	2350	fpm				
Injection flowmeter	10	9	ball**				
Stack flow	-	-	cfm				
Sampling flowmeter	10	10	Ipm Sierra				
Ambient pressure	29.3	29.3	in Hg				
Ambient humidity	15	15	RH				
B&K vapor correction	N	N	Y/N				
Back-Gd gas ppb	23,24,26,28,28	30,30.28,31,33					
No. Bk-Gd samples	5	5	n				
Ambient Temp, F	96	97.1					
Instuments Used:							
B & K Model 1302 #1765	B & K Model 1302 #1765299						

Notes:

** black glass ball

Reference point air velocity measured at point 4So8

Signature signifies compliance with Procedure EMS-JAG-01

Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

Signature verifying data and calculations:

Signature/date

JAG Signatures on file copy

Site 296-S-21 Model Date 7/28/2006 Tester Jag/Jgd Stack Dia. 17 7/8 in. 250.9 in.² Stack X-Area Elevation N.A. 77.75 inches Distance to disturbance Measurement units ppm SF6

Run No. GT-3 Fan Configuration 2,4 Fan Setting 45,52 Hz Stack Temp 98.85 deg F Start/End Time 1650/1740 Center 2/3 from 16.23 1.64 Points in Center 2/3 to:

> Injection Point 2 1st

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		ppm			ppm			
1	0.58	2.21	2.17	2.27	2.217	2.47	2.45	2.53	2.483
2	1.89	2.36	2.42	2.43	2.403	2.48	2.50	2.49	2.490
3	3.49	2.25	2.20	2.47	2.307	2.44	2.41	2.16	2.337
4	5.81	2.38	2.36	2.51	2.417	2.28	2.38	2.42	2.360
Center	9.00	2.30	2.50	2.41	2.403	2.21	2.22	2.37	2.267
5	12.19	2.51	2.33	2.31	2.383	2.46	2.33	2.28	2.357
6	14.51	2.35	2.34	2.37	2.353	2.45	2.30	2.36	2.370
7	16.11	2.52	2.25	2.31	2.360	2.52	2.18	2.18	2.293
8	17.42	2.34	2.44	2.32	2.367	2.31	2.20	2.23	2.247
Averages	>	2.358	2.334	2.378	2.357	2.402	2.330	2.336	2.356

AII	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	2.36		Mean	2.38	2.35	2.36
Min Point	2.22	-5.9%	Std. Dev.	0.04	0.07	0.06
Max Point	2.49	5.7%	COV as %	1.6	3.0	2.4

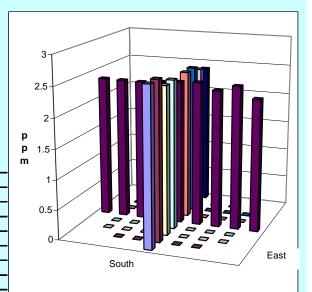
2.359 ppm Avg. Conc.

Gas analyzer checked:

25-Jul-06

	Start	Finish	
Tracer tank pressure	450	450	psig
Stack Temp	99.6	98.1	F°
Ref. Pt. air vel.	1920	1870	fpm
Injection flowmeter	10	10	ball**
Stack flow	-	-	cfm
Sampling flowmeter	10	10	Ipm Sierra
Ambient pressure	29.3	29.3	in Hg
Ambient humidity	15	17	RH
B&K vapor correction	N	N	Y/N
Back-Gd gas ppb	30,30,28,31,33	45,55,26,26	
No. Bk-Gd samples	5	4	n
Ambient Temp, F	97.1	98.6	
Instuments Used:			

B & K Model 1302 #1765299


Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JAG 7/28/2006 Signatures on file copy

	IRACER GAS	IRAVERSE DATA FOR	(IVI		
Site	296-S-21 Model	Run No.	GT-4		
Date	7/31/2006	Fan Configuration	3. 4		
Tester	Jag/Jgd	Fan Setting	50,52	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	74.5	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	0910/1031		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	Fan 3	_	
	4-4				

Port _4_ Side/South Port _4_ Bottom/East Traverse--> Trial ----> Mean Mean Point Depth, in. ppm ppm 1.88 1.933 1.77 1.71 0.58 2.01 1.760 1.91 1.80 2 1.89 1.92 2.01 1.83 1.80 1.76 1.91 1.947 1.797 3 3.49 1.86 1.91 1.86 1.877 1.81 1.79 1.81 1.803 4 5.81 1.97 1.91 1.97 1.950 1.80 1.75 1.62 1.723 1.70 Center 9.00 1.81 1.97 1.827 1.78 1.94 1.85 1.857 12.19 1.95 1.75 1.75 1.817 1.83 1.81 1.90 1.847 5 6 14.51 1.87 1.72 1.87 1.820 1.78 1.90 1.91 1.863 7 16.11 1.86 1.91 1.75 1.840 1.89 1.93 1.81 1.877 1.85 8 17.42 1.72 1.84 1.803 1.77 2.06 1.99 1.940 1.807 Averages ----> 1.899 1.858 1.848 1.868 1.864 1.818 1.830

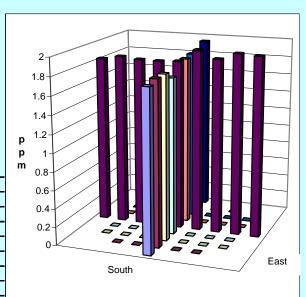
AII	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	1.85		Mean	1.87	1.82	1.85
Min Point	1.72	-6.8%	Std. Dev.	0.06	0.05	0.06
Max Point	1.95	5.5%	COV as %	3.1	2.9	3.2

Avg. Conc. 1.850 ppm Gas analyzer checked: 25-Jul-06

	Start	Finish	_
Tracer tank pressure	300	302	psig
Stack Temp	74	75	F°
Ref. Pt. air vel.	2250	2310	fpm
Injection flowmeter	10	8	ball**
Stack flow	-	-	cfm
Sampling flowmeter	10	10	lpm Sierra
Ambient pressure	29.6	29.5	in Hg
Ambient humidity	41	36	RH
B&K vapor correction	N	N	Y/N
Back-Gd gas ppb	33,30,28,24	28,28,28,34	
No. Bk-Gd samples	4	4	n
Ambient Temp, F	69	73	

Instuments Used:

B & K Model 1302 #1765299


Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8.

	INACEN GAS	INAVENSE DATATON	V I V I		
Site	296-S-21 Model	Run No.	GT-5		
Date	7/31/2006	Fan Configuration	3, 4		
Tester	Jag/Jgd	Fan Setting	50, 52	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	76.1	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	1031/1125		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	4	_	
			1st		

Traverse>			Port _4_ Bottom/East			Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	m			pp	om	
1	0.58	1.97	1.98	2.00	1.983	2.06	2.05	2.06	2.057
2	1.89	1.96	1.99	1.99	1.980	2.09	2.05	2.07	2.070
3	3.49	1.98	1.99	1.98	1.983	2.05	2.05	2.05	2.050
4	5.81	2.00	1.99	2.00	1.997	2.13	2.05	2.05	2.077
Center	9.00	2.00	2.02	2.04	2.020	2.05	1.99	2.02	2.020
5	12.19	2.03	2.03	2.05	2.037	2.10	1.96	1.98	2.013
6	14.51	2.03	2.06	2.09	2.060	1.97	1.98	1.99	1.980
7	16.11	2.06	2.07	2.08	2.070	1.97	1.98	1.97	1.973
8	17.42	2.05	2.06	2.09	2.067	1.99	1.99	1.98	1.987
Averages	>	2.009	2.021	2.036	2.022	2.046	2.011	2.019	2.025

All	ppm	Dev. from mean	Center 2/3	<u>East</u>	South	All
Mean	2.02		Mean	2.02	2.03	2.02
Min Point	1.97	-2.5%	Std. Dev.	0.04	0.04	0.04
Max Point	2.08	2.6%	COV as %	1.8	2.0	1.8

25-Jul-06

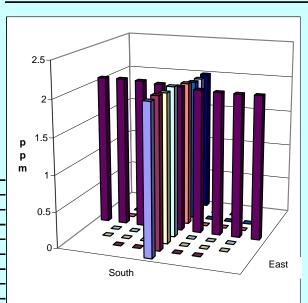
Avg. Conc. 2.024 ppm Gas analyzer checked:

Start Finish Tracer tank pressure 302 300 psig Stack Temp 77.2 F^o 75 Ref. Pt. air vel. 2310 2230 fpm 10 ball** Injection flowmeter 10 Stack flow cfm 10 Sampling flowmeter 10 lpm Sierra 29.5 29.5 in Hg Ambient pressure Ambient humidity 36 35 RH **B&K** vapor correction Ν N Y/N Back-Gd gas ppb 28,28,28,34 27,25,27,34 No. Bk-Gd samples 4 4

73 74

Ambient Temp, F Instuments Used:

B & K Model 1302 #1765299


Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8.

	TRACER GAS	IRAVERSE DATA FORI	IVI		
Site	296-S-21 Model	Run No.	GT-6		
Date	7/31/2006	Fan Configuration	1,4		
Tester	Jgd	Fan Setting	56,52	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	78.6	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	1130/1220		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	Fan 4		
	4-4				

Port _4_ Bottom/East Port _4_ Side/South Traverse--> Trial ----> Mean Mean Point Depth, in. ppm ppm 2.05 2.093 2.12 0.58 2.12 2.11 2.11 2.107 1 2.09 1.89 2.09 2.07 2.10 2.08 2 2.22 2.127 2.12 2.100 3 3.49 2.07 2.09 2.06 2.073 2.10 2.07 2.10 2.090 4 5.81 2.08 2.07 2.090 2.10 2.08 2.10 2.093 2.12 Center 9.00 2.07 2.08 2.05 2.067 2.10 2.05 2.08 2.077 12.19 2.05 2.09 2.02 2.053 2.02 1.99 2.03 2.013 5 6 14.51 2.03 2.02 2.02 2.023 1.97 1.97 2.00 1.980 7 16.11 2.07 1.99 2.04 2.033 2.26 1.99 1.99 2.080 8 17.42 2.10 2.07 2.08 2.083 1.97 1.95 2.00 1.973 Averages -----> 2.090 2.073 2.051 2.071 2.082 2.030 2.059 2.057

All	ppm	Dev. from mean	Center 2/3	<u>East</u>	South	All
Mean	2.06		Mean	2.07	2.06	2.06
Min Point	1.97	-4.4%	Std. Dev.	0.04	0.05	0.04
Max Point	2.13	3.0%	COV as %	1.7	2.2	1.9

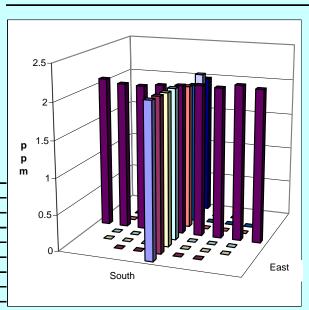
25-Jul-06

Avg. Conc. 2.063 ppm Gas analyzer checked:

Start Finish Tracer tank pressure 300 300 psig F٥ Stack Temp 77.2 08 Ref. Pt. air vel. 2320 fpm na Injection flowmeter 10 10 ball** Stack flow cfm 10 10 lpm Sierra Sampling flowmeter 29.5 in Hg 29.5 Ambient pressure 31 RH Ambient humidity 35 **B&K** vapor correction Ν N Y/N Back-Gd gas ppb 27,25,27,34 24,39,24,24 No. Bk-Gd samples 4 4 n Ambient Temp, F 74 79

Instuments Used:

B & K Model 1302 #1765299


Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8.

	TRACER GAS	IKAVERSE DATA FOR	. IVI		
Site	296-S-21 Model	Run No.	GT-7		
Date	7/31/2006	Fan Configuration	2, 4		
Tester	Jgd	Fan Setting	45, 52	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	81	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	1225/1325		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	Fan 4	_'	
			1st		

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		ppm				pp	m	
1	0.58	2.17	2.11	2.13	2.137	2.08	2.09	2.14	2.103
2	1.89	2.08	2.13	2.14	2.117	2.12	2.12	2.15	2.130
3	3.49	2.07	2.11	2.14	2.107	2.14	2.18	2.13	2.150
4	5.81	2.09	2.14	2.14	2.123	2.09	2.12	2.14	2.117
Center	9.00	2.08	2.13	2.14	2.117	2.18	2.11	2.11	2.133
5	12.19	2.10	2.11	2.13	2.113	2.10	2.11	2.12	2.110
6	14.51	2.12	2.16	2.23	2.170	2.12	2.07	2.14	2.110
7	16.11	2.13	2.14	2.19	2.153	2.09	2.07	2.19	2.117
8	17.42	2.15	2.19	2.16	2.167	2.03	2.12	2.16	2.103
Averages	>	2.110	2.136	2.156	2.134	2.106	2.110	2.142	2.119

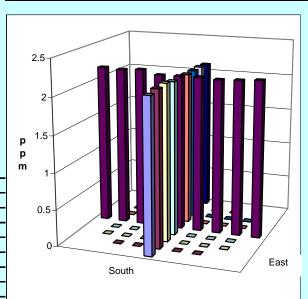
All	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	All
Mean	2.13		Mean	2.13	2.12	2.13
Min Point	2.10	-1.1%	Std. Dev.	0.02	0.01	0.02
Max Point	2.17	2.0%	COV as %	1.1	0.7	0.9

Avg. Conc. 2.127 ppm Gas analyzer checked: 25-Jul-06

	Start	Finish	
Tracer tank pressure	300	350	psig
Stack Temp	80	82	F ^o
Ref. Pt. air vel.	na	2180	fpm
Injection flowmeter	10	10	ball**
Stack flow	-	-	cfm
Sampling flowmeter	10	10	lpm Sierra
Ambient pressure	29.5	29.5	in Hg
Ambient humidity	31	31	RH
B&K vapor correction	N	N	Y/N
Back-Gd gas ppb	24,39,24,24	32,22,23,24	
No. Bk-Gd samples	4	4	n
Ambient Temp, F	79	77	

Instuments Used:

B & K Model 1302 #1765299


Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

N	o	t	е	s	
---	---	---	---	---	--

** black glass ball

Reference point air velocity measured at point 4So8.

 Site

 Date
 7/28/2006

 Tester
 Jgd

 Stack Dia.
 17 7/8 in.

 Stack X-Area
 250.9 in.²

 Elevation
 N.A.

 Distance to disturbance
 77.75 inches

 Measurement units
 ppm SF6

 Run No.
 GT-8

 Fan Configuration
 4

 Fan Setting
 52
 Hz

 Stack Temp
 82 deg F

 Start/End Time
 1330/1420

 Center 2/3 from
 1.64
 to:
 16.23

 Points in Center 2/3
 2
 to:
 7

Injection Point Fan 4

1st

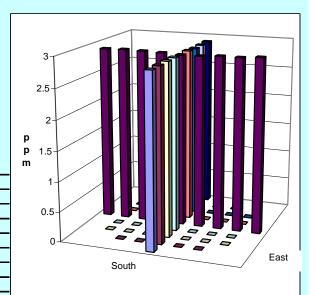
_						5 611 /6			
Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		ppm				pp	om	
1	0.58	2.92	2.92	2.88	2.907	2.88	2.87	2.87	2.873
2	1.89	2.90	2.88	2.87	2.883	2.86	2.91	2.87	2.880
3	3.49	2.90	2.87	2.89	2.887	2.89	2.87	2.91	2.890
4	5.81	2.89	2.85	2.86	2.867	2.88	2.89	2.90	2.890
Center	9.00	2.89	2.85	2.86	2.867	2.87	2.88	2.88	2.877
5	12.19	2.90	2.87	2.88	2.883	2.88	2.89	2.91	2.893
6	14.51	2.90	2.89	2.89	2.893	2.86	2.87	2.91	2.880
7	16.11	2.90	2.88	2.92	2.900	2.86	2.87	2.93	2.887
8	17.42	2.89	2.89	2.90	2.893	2.87	2.88	2.94	2.897
Averages	>	2.899	2.878	2.883	2.887	2.872	2.881	2.902	2.885

AII	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>
Mean	2.89		Mean	2.88	2.89	2.88
Min Point	2.87	-0.7%	Std. Dev.	0.01	0.01	0.01
Max Point	2.91	0.7%	COV as %	0.4	0.2	0.3

Avg. Conc. 2.888 ppm

Gas analyzer checked:

25-Jul-06


	Start	Finish	
Tracer tank pressure	350	400	psig
Stack Temp	82	82	F°
Ref. Pt. air vel.	1490	1530	fpm
Injection flowmeter	10	10	ball**
Stack flow	-	1	cfm
Sampling flowmeter	10	10	Ipm Sierra
Ambient pressure	29.5	29.5	in Hg
Ambient humidity	31	30	RH
B&K vapor correction	N	N	Y/N
Back-Gd gas ppb	32,22,23,24	26,23,26,26	
No. Bk-Gd samples	4	4	n
Ambient Temp, F	79	79	
Instuments Used:			

B & K Model 1302 #1765299
Sierra Inc. Constant Flow Air Sampler
TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8.

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JGD 7/31/2006 Signatures on file copy

	TRACER GAS	IRAVERSE DATA FOR	IVI		
Site	296-S-21 Model	Run No.	GT-9		
Date	7/31/2006	Fan Configuration	1,2,3		
Tester	Jgd	Fan Setting	56,45.50	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	87.5	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	1425 / 1525		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	Fan 3	_	
			1st		

Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		ppm				pp	om	
1	0.58	1.85	1.91	2.03	1.930	1.98	1.89	2.05	1.973
2	1.89	1.96	1.81	1.90	1.890	1.92	2.14	2.07	2.043
3	3.49	1.93	1.93	1.92	1.927	2.05	2.03	2.15	2.077
4	5.81	2.10	1.96	1.88	1.980	2.01	1.97	2.00	1.993
Center	9.00	1.93	1.88	1.91	1.907	1.94	1.95	1.95	1.947
5	12.19	1.99	1.83	1.86	1.893	1.98	1.79	1.93	1.900
6	14.51	2.03	1.74	1.77	1.847	1.81	2.00	1.91	1.907
7	16.11	1.86	1.99	2.03	1.960	1.88	1.95	1.87	1.900
8	17.42	1.92	1.81	1.83	1.853	1.91	1.67	1.72	1.767
Averages	>	1.952	1.873	1.903	1.910	1.942	1.932	1.961	1.945

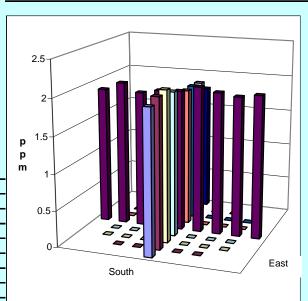
All	ppm	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	1.93		Mean	1.91	1.97	1.94
Min Point	1.77	-8.3%	Std. Dev.	0.05	0.07	0.06
Max Point	2.08	7.7%	COV as %	2.4	3.7	3.3

Avg. Conc. 1.928 ppm Gas analyzer checked: 25-Jul-06

	Start	Finish	_
Tracer tank pressure	400	400	psig
Stack Temp	88	87	F°
Ref. Pt. air vel.	2270	2340	fpm
Injection flowmeter	10	10	ball**
Stack flow	-	-	cfm
Sampling flowmeter	10	10	lpm Sierra
Ambient pressure	29.5	29.5	in Hg
Ambient humidity	25	25	RH
B&K vapor correction	N	N	Y/N
Back-Gd gas ppb	26,23,26,26	33,49,55,54,49	
No. Bk-Gd samples	4	5	n
Ambient Temp, F	84	84	

Instuments Used:

B & K Model 1302 #1765299


Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

N	0	t	е	s	:
---	---	---	---	---	---

** black glass ball

Reference point air velocity measured at point 4So8.

Signature signifies compliance with Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JGD 7/31/2006 Signatures on file copy

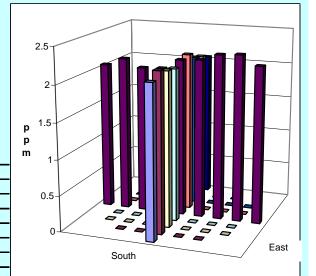
Site 296-S-21 Model Date 7/31/2006 Tester Jgd Stack Dia. 17 7/8 in. 250.9 in.² Stack X-Area Elevation N.A. 77.75 inches Distance to disturbance Measurement units ppm SF6

Run No. GT-10 Fan Configuration 1,2.3 Fan Setting **56,45,50** Hz Stack Temp 87 deg F Start/End Time 1645/1740 Center 2/3 from 1.64 Points in Center 2/3 to:

Injection Point Fan 2

16.23

1st


Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	m			pp	m	
1	0.58	2.10	1.86	2.36	2.107	2.09	2.08	2.17	2.113
2	1.89	2.29	2.16	2.26	2.237	2.14	2.28	2.20	2.207
3	3.49	2.20	2.15	2.31	2.220	2.05	2.25	2.16	2.153
4	5.81	2.11	2.13	2.16	2.133	2.14	2.11	2.13	2.127
Center	9.00	2.12	2.10	2.13	2.117	2.19	2.21	2.18	2.193
5	12.19	1.99	2.04	1.93	1.987	2.33	2.14	2.19	2.220
6	14.51	1.95	1.94	2.04	1.977	2.07	2.12	2.20	2.130
7	16.11	2.04	2.18	2.03	2.083	2.09	2.07	2.13	2.097
8	17.42	1.95	2.01	1.99	1.983	2.02	1.99	2.12	2.043
Averages	>	2.083	2.063	2.134	2.094	2.124	2.139	2.164	2.143

All	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	2.12		Mean	2.11	2.16	2.13
Min Point	1.98	-6.7%	Std. Dev.	0.10	0.05	0.08
Max Point	2.24	5.6%	COV as %	4.8	2.1	3.8

Avg. Conc. 2.114 ppm Gas analyzer checked:

25-Jul-06

	Start	Finish				
Tracer tank pressure	400	400	psig			
Stack Temp	89	85	F°			
Ref. Pt. air vel.	2240	2390	fpm			
Injection flowmeter	10	10.5	ball**			
Stack flow	-	-	cfm			
Sampling flowmeter	10	10	Ipm Sierra			
Ambient pressure	29.4	29.4	in Hg			
Ambient humidity	28	27	RH			
B&K vapor correction	N	N	Y/N			
Back-Gd gas ppb	31,71,52,34	44,52,71,28				
No. Bk-Gd samples	4	4	n			
Ambient Temp, F	80	83				
Instuments Used:						
B & K Model 1302 #1765299						

Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JAG 7/31/2006 Signatures on file copy

 Site

 Date
 8/1/2006

 Tester
 Jgd

 Stack Dia.
 17 7/8 in.

 Stack X-Area
 250.9 in.²

 Elevation
 N.A.

 Distance to disturbance
 77.75 inches

 Measurement units
 ppm SF6

Run No. GT-11

Fan Configuration 1,2.3
Fan Setting 56,45,50 Hz
Stack Temp 79 deg F
Start/End Time 0950/1040
Center 2/3 from 1.64 to: 16.23

Points in Center 2/3 2 Injection Point Fan 1 Center

1st

7

to:

Traverse>			Port _4_ Bottom/East				Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	m			pp	om	
1	0.58	1.82	1.82	1.83	1.823	1.86	1.84	1.87	1.857
2	1.89	1.83	1.80	1.76	1.797	1.91	1.84	1.83	1.860
3	3.49	1.78	1.77	1.77	1.773	1.91	1.88	1.84	1.877
4	5.81	1.79	1.80	1.81	1.800	1.91	1.96	1.93	1.933
Center	9.00	1.89	1.92	1.83	1.880	1.92	1.97	1.95	1.947
5	12.19	1.96	1.95	1.96	1.957	2.02	2.04	1.98	2.013
6	14.51	2.01	1.97	2.02	2.000	2.04	2.01	2.02	2.023
7	16.11	2.02	1.99	2.01	2.007	2.10	2.10	2.14	2.113
8	17.42	2.00	2.06	1.99	2.017	2.09	2.09	2.07	2.083
Averages	>	1.900	1.898	1.887	1.895	1.973	1.970	1.959	1.967

All	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	1.93		Mean	1.89	1.97	1.93
Min Point	1.77	-8.2%	Std. Dev.	0.10	0.09	0.10
Max Point	2.11	9.4%	COV as %	5.3	4.5	5.2

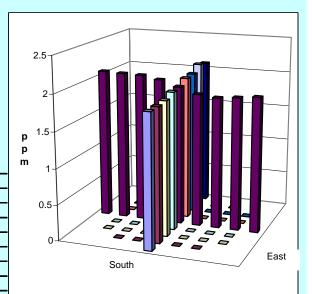
Avg. Conc. 1.933 ppm

Gas analyzer checked:

25-Jul-06

	Start	Finish				
Tracer tank pressure	290	300	psig			
Stack Temp	78	80	F°			
Ref. Pt. air vel.	2320	2290	fpm			
Injection flowmeter	10	9	ball**			
Stack flow	-	-	cfm			
Sampling flowmeter	10	10	Ipm Sierra			
Ambient pressure	29.6	29.5	in Hg			
Ambient humidity	41	37	RH			
B&K vapor correction	N	N	Y/N			
Back-Gd gas ppb	40, 49, 53, 31, 29	75, 86, 125, 104	, 90			
No. Bk-Gd samples	5	5	n			
Ambient Temp, F	73	74.5				
Instuments Used:						
B & K Model 1302 #1765299						

Instuments Used:


B & K Model 1302 #1765299

Sierra Inc. Constant Flow Air Sampler
TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8.

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JGD 8/1/2006 Signatures on file copy

Site 296-S-21 Model Date 8/1/2006 Tester Jgd Stack Dia. 17 7/8 in. 250.9 in.² Stack X-Area Elevation N.A. 77.75 inches Distance to disturbance Measurement units ppm SF6

Run No. GT-12 Fan Configuration 1,2.3 Fan Setting **56,45,50** Stack Temp 84.25 deg F Start/End Time 1110/1300 Center 2/3 from

Points in Center 2/3

16.23 to:

Injection Point Fan 1 Bottom N (NE)

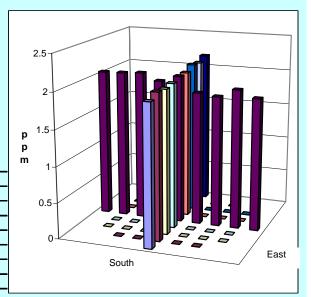
Traverse>		Port _4_ Bottom/East			Port _4_ Side/South				
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	om			pp	om	
1	0.58	1.84	1.69	1.92	1.817	1.93	1.95	1.99	1.957
2	1.89	1.90	2.04	1.80	1.913	2.04	1.97	2.06	2.023
3	3.49	1.76	1.73	1.91	1.800	1.98	2.06	1.97	2.003
4	5.81	1.83	1.86	1.80	1.830	1.96	2.19	1.92	2.023
Center	9.00	2.02	1.97	2.12	2.037	2.12	2.04	2.04	2.067
5	12.19	1.98	1.91	1.97	1.953	2.10	2.10	1.99	2.063
6	14.51	2.03	1.98	2.13	2.047	2.19	2.08	2.11	2.127
7	16.11	1.96	2.08	2.05	2.030	2.06	2.13	2.13	2.107
8	17.42	2.00	2.04	2.03	2.023	2.19	2.21	2.09	2.163
Averages	>	1.924	1.922	1.970	1.939	2.063	2.081	2.033	2.059

AII	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	2.00		Mean	1.94	2.06	2.00
Min Point	1.80	-10.0%	Std. Dev.	0.10	0.05	0.10
Max Point	2.16	8.2%	COV as %	5.2	2.2	4.8

Avg. Conc.

1.993 ppm

Gas analyzer checked:


25-Jul-06

	Start	Finish					
Tracer tank pressure	300	300	psig				
Stack Temp	83	85.5	F ^o				
Ref. Pt. air vel.	2270	2260	fpm				
Injection flowmeter	10	10	ball**				
Stack flow	-	-	cfm				
Sampling flowmeter	10	10	Ipm Sierra				
Ambient pressure	29.5	29.5	in Hg				
Ambient humidity	30	31	RH				
B&K vapor correction	Y	Y	Y/N				
Back-Gd gas ppb	0, 4, -2, 3, 0	26, 2, 24, 10					
No. Bk-Gd samples	5	4	n				
Ambient Temp, F	80	80.7					
Instuments Used:							

B & K Model 1302 #1765299

Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

Notes:

** black glass ball

Reference point air velocity measured at point 4So8.

Used 4th traverse data in place of 1st on bottom because

locations may have been wrong in 1st bottom traverse

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JGD

8/1/2006

Signatures on file copy

Site 296-S-21 Model Date 8/1/2006 Tester Jgd Stack Dia. 17 7/8 in. 250.9 in.² Stack X-Area Elevation N.A. 77.75 inches Distance to disturbance Measurement units ppm SF6

Run No. GT-13 Fan Configuration 1,2.3 Fan Setting **56,45,50** Hz Stack Temp 85.5 deg F Start/End Time 1305/1440 Center 2/3 from 1.64

Points in Center 2/3

to: Injection Point Fan 1 Top N (Northwest corner)

16.23

1st

Traverse>			Port _4_ B	ottom/East		Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	m			pp	m	
1	0.58	1.83	1.84	1.80	1.823	1.83	1.92	1.92	1.890
2	1.89	1.89	1.89	2.05	1.943	1.96	1.93	2.06	1.983
3	3.49	2.01	2.06	1.81	1.960	2.06	2.08	1.87	2.003
4	5.81	1.82	2.01	2.01	1.947	2.05	2.03	1.91	1.997
Center	9.00	2.16	1.95	1.93	2.013	2.04	2.07	2.00	2.037
5	12.19	1.96	2.13	2.21	2.100	1.93	2.04	2.01	1.993
6	14.51	2.21	2.20	2.19	2.200	2.02	2.03	2.02	2.023
7	16.11	2.11	2.16	2.27	2.180	2.22	2.07	2.16	2.150
8	17.42	2.17	2.15	2.08	2.133	2.23	2.10	2.17	2.167
Averages	>	2.018	2.043	2.039	2.033	2.038	2.030	2.013	2.027

All	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	2.03		Mean	2.05	2.03	2.04
Min Point	1.82	-10.2%	Std. Dev.	0.11	0.06	0.09
Max Point	2.20	8.4%	COV as %	5.4	2.8	4.2

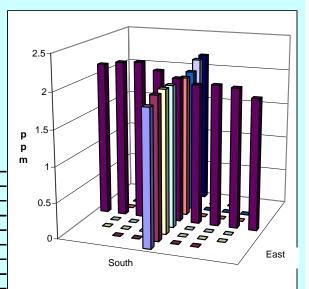
Avg. Conc. 2.031 ppm

Gas analyzer checked:

25-Jul-06

	Start	Finish	
Tracer tank pressure	300	300	psig
Stack Temp	85.5	85.5	F°
Ref. Pt. air vel.	2260	2340	fpm
Injection flowmeter	10	10	ball**
Stack flow	-	-	cfm
Sampling flowmeter	10	10	Ipm Sierra
Ambient pressure	29.5	29.5	in Hg
Ambient humidity	31	29	RH
B&K vapor correction	Y	Y	Y/N
Back-Gd gas ppb	26, 2, 24, 10, 6	7, 4, 3, 1, 1	
No. Bk-Gd samples	5	5	n
Ambient Temp, F	80.7	82.7	
Instuments Used:		•	

B & K Model 1302 #1765299


Sierra Inc. Constant Flow Air Sampler

TSI 8360 SN 209060 Cal due 9/27/06

** black glass ball

Reference point air velocity measured at point 4So8.

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JGD 8/1/2006 Signatures on file copy

	INACER GA	S INAVERSE DATA FOR	IVI		
Site	296-S-21 Model	Run No.	GT-14		
Date	8/1/2006	Fan Configuration	1,2.3		
Tester	Jgd	Fan Setting	56,45,50	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	89.8	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	1620/1740		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	Fan 1 Soutl	r	
			1st		

Traverse>			Port _4_ Bottom/East				Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean	
Point	Depth, in.		pp	m			pp	om		
1	0.58	1.77	1.78	1.86	1.803	1.85	1.83	1.76	1.813	
2	1.89	1.75	1.83	1.87	1.817	1.94	1.85	1.80	1.863	
3	3.49	1.73	1.80	1.83	1.787	2.02	1.84	1.77	1.877	
4	5.81	1.83	1.86	1.89	1.860	1.86	1.99	1.80	1.883	
Center	9.00	1.86	1.96	1.96	1.927	1.92	2.02	1.93	1.957	
5	12.19	1.99	2.10	2.04	2.043	2.00	1.95	2.06	2.003	
6	14.51	2.02	2.14	2.10	2.087	2.03	1.97	2.20	2.067	
7	16.11	2.11	2.12	2.11	2.113	2.18	2.02	2.21	2.137	
8	17.42	2.06	2.16	2.23	2.150	2.23	2.05	2.10	2.127	
Averages	>	1.902	1.972	1.988	1.954	2.003	1.947	1.959	1.970	

All	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	1.96		Mean	1.95	1.97	1.96
Min Point	1.79	-8.9%	Std. Dev.	0.13	0.10	0.12
Max Point	2.15	9.6%	COV as %	6.9	5.3	5.9

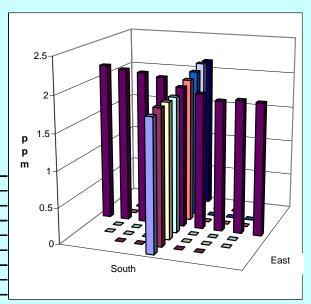
1.964 ppm Avg. Conc. Gas analyzer checked:

25-Jul-06

	Start	Finish	
Tracer tank pressure	375	400	psig
Stack Temp	89	90.6	F ^o
Ref. Pt. air vel.	2400	2450	fpm
Injection flowmeter	10	12*	ball**
Stack flow	-	-	cfm
Sampling flowmeter	10	10	Ipm Sierra
Ambient pressure	29.5	29.5	in Hg
Ambient humidity	18	16	RH
B&K vapor correction	Y	Y	Y/N
Back-Gd gas ppb	1, 5, 7, 6	7, 6, 6, 2	
No. Bk-Gd samples	4	4	n
Ambient Temp, F	88	90	
Instuments Used:			

B & K Model 1302 #1765299

Sierra Inc. Constant Flow Air Sampler


TSI 8360 SN 209060 Cal due 9/27/06

N	ი	t	e	s	•

** black glass ball

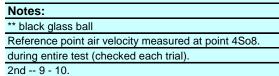
Reference point air velocity measured at point 4So8.

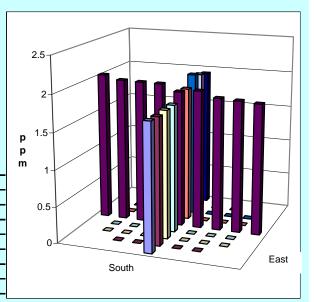
each traverse to a value of 10 (range 10 - 12).

Signature signifies compliance with		Signa	ture verifying data and calculations:
Procedure EMS-JAG	G-01		
Signature/date	JGD	8/1/2006	Signatures on file copy

	IRACER GAS	IKAVEKSE DATA FOR	. IVI		
Site	296-S-21 Model	Run No.	GT-15		
Date	8/2/2006	Fan Configuration	1, 2, 3		
Tester	Jgd	Fan Setting	56,45,50	Hz	
Stack Dia.	17 7/8 in.	Stack Temp	76.5	deg F	
Stack X-Area	250.9 in. ²	Start/End Time	0810 / 0948	3	
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	ppm SF6	Injection Point	Fan 1 Sout	heast corn	er
			1st		

Traverse>			Port _4_ Bottom/East P				Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	m			pp	m	
1	0.58	1.70	1.75	1.96	1.803	1.67	1.74	1.82	1.743
2	1.89	1.69	1.77	2.01	1.823	1.73	1.70	1.77	1.733
3	3.49	1.76	1.73	2.02	1.837	1.72	1.77	1.77	1.753
4	5.81	1.70	2.08	1.97	1.917	1.74	1.78	1.76	1.760
Center	9.00	1.79	1.82	2.04	1.883	1.91	1.90	1.83	1.880
5	12.19	1.90	2.06	1.96	1.973	1.84	1.89	1.86	1.863
6	14.51	1.88	2.08	1.97	1.977	2.02	2.08	1.93	2.010
7	16.11	1.94	2.07	1.94	1.983	1.95	1.98	1.96	1.963
8	17.42	1.92	2.26	1.94	2.040	1.91	1.95	1.92	1.927
Averages	>	1.809	1.958	1.979	1.915	1.832	1.866	1.847	1.848


All	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	1.88		Mean	1.91	1.85	1.88
Min Point	1.73	-7.9%	Std. Dev.	0.07	0.11	0.09
Max Point	2.04	8.4%	COV as %	3.5	5.9	4.9


Avg. Conc. 1.882 ppm Gas analyzer checked:

25-Jul-06

	Start	Finish					
Tracer tank pressure	350	375	psig				
Stack Temp	73	80	F°				
Ref. Pt. air vel.	2350	2370	fpm				
Injection flowmeter	10	10	ball**				
Stack flow	-	-	cfm				
Sampling flowmeter	10	10	lpm Sierra				
Ambient pressure	29.7	29.7	in Hg				
Ambient humidity	44	36	RH				
B&K vapor correction	Y	Y	Y/N				
Back-Gd gas ppb	12, 5, 3, 1, 2	0, 19, 1, 0, -5					
No. Bk-Gd samples	5	5	n				
Ambient Temp, F	70	79					
Instuments Used:							
D. O. IZ Maralal 4000 #4705	000						

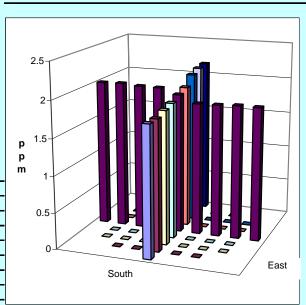
B & K Model 1302 #1765299
Sierra Inc. Constant Flow Air Sampler
TSI 8360 SN 209060 Cal due 9/27/06

TRACER GAS TRAVERSE DATA FORM								
Site	296-S-21 Model	Run No.	GT-16					
Date	8/17/2006	Fan Configuration	1,2,3					
Tester	JAG/JGD	Fan Setting	56,45,50	Hz				
Stack Dia.	18 in.	Stack Temp	97	deg F				
Stack X-Area	254.5 in. ²	Start/End Time	1540/1700					
Elevation	N.A.	Center 2/3 from	1.65	to:	16.35			
Distance to disturbance	54 5/8 inches	Points in Center 2/3	2	to:	7			
Measurement units	ppm SF6	Injection Point	1	-				
	2nd		1st					

Traverse>			Port _2_ B	ottom/East			Port _2_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		pp	m		ppm			
1	0.58	1.80	1.80	1.91	1.837	1.73	1.69	1.73	1.717
2	1.89	1.82	1.82	1.88	1.840	1.73	1.71	1.71	1.717
3	3.49	1.77	1.81	1.90	1.827	1.74	1.80	1.75	1.763
4	5.81	1.76	1.83	1.88	1.823	1.76	1.83	1.80	1.797
Center	9.00	1.88	1.94	1.96	1.927	1.84	1.87	1.85	1.853
5	12.19	1.96	1.99	2.05	2.000	1.87	1.94	1.88	1.897
6	14.51	1.97	2.01	2.03	2.003	2.03	2.08	1.94	2.017
7	16.11	2.03	2.00	2.04	2.023	2.00	2.16	2.02	2.060
8	17.42	2.03	1.95	2.07	2.017	2.10	2.05	2.08	2.077
Averages>		1.891	1.906	1.969	1.922	1.867	1.903	1.862	1.877

AII	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>
Mean	1.90		Mean	1.92	1.87	1.90
Min Point	1.72	-9.6%	Std. Dev.	0.09	0.13	0.11
Max Point	2.08	9.3%	COV as %	4.7	6.9	5.8

Avg. Conc. 1.901 ppm Gas analyzer checked: 17-Aug-06


	Start	Finish	
Tracer tank pressure	290	290	psig
Stack Temp	96	98	F°
Ref. Pt. air vel.	2270	2200	fpm
Injection flowmeter	10	10	ball**
Stack flow	N.A.	na	cfm
Sampling flowmeter	10	10	lpm Sierra
Ambient pressure	29.6	29.6	in Hg
Ambient humidity	22.0	19	RH
B&K vapor correction	у	у	Y/N
Back-Gd gas ppb	0.3,2,0,0,0	0,2,0,2,5	
No. Bk-Gd samples	5	5	n
Ambient Temp, F	90	92	
Instuments Used:			

B & K Model 1302 #1765299
Sierra Inc. Constant Flow Air Sampler
TSI 8360 SN 209060 Cal due 9/27/06

Notes: 1003 mbar

Bottom/East -- flow reset to 10 at 3 start,

Reference prwas low (about 8)

Signature signifies compliance with

Signature verifying data and calculations:

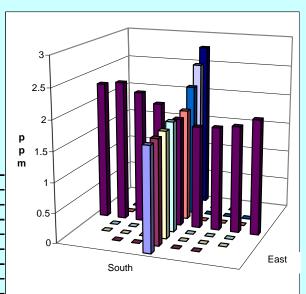
Procedure EMS-JAG-01

Signature/date JDroppo 8/17/06

TRACER GAS TRAVERSE DATA FORM									
Site	296-S-21 Model	Run No.	GT-17						
Date	8/17/2006	Fan Configuration	1,2,3						
Tester	JGD	Fan Setting	56,45,50	Hz					
Stack Dia.	18 in.	Stack Temp	94	deg F					
Stack X-Area	254.5 in. ²	Start/End Time	1700/1900						
Elevation	N.A.	Center 2/3 from	1.65	to:	16.35				
Distance to disturbance	27 3/8 inches	Points in Center 2/3	2	to:	7				
Measurement units	ppm SF6	Injection Point	1	_					
	4-4		2nd						

2nd Port _1_ Side/South Port _1_ Bottom/East Traverse--> Trial ----> Mean Mean ppm Point Depth, in. ppm 1.89 1.94 1.913 1.69 1.63 1.667 0.58 1.91 1.68 2 1.89 1.79 1.79 1.74 1.773 1.72 1.64 1.69 1.683 3 3.49 1.73 1.73 1.71 1.723 1.73 1.74 1.68 1.717 4 5.81 1.72 1.71 1.69 1.707 1.78 1.79 1.78 1.783 1.78 1.79 1.74 1.71 Center 9.00 1.84 1.80 1.807 1.747 2.02 5 12.19 2.05 2.03 2.033 1.83 1.81 1.79 1.810 6 14.51 2.17 2.21 2.21 2.197 2.15 2.07 2.17 2.130 7 16.11 2.32 2.30 2.40 2.340 2.42 2.48 2.41 2.437 8 17.42 2.34 2.35 2.19 2.293 2.70 2.63 2.69 2.673 1.983 1.979 Averages ----> 1.981 1.964 1.976 1.953 1.950 1.961

All	<u>ppm</u>	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	All
Mean	1.97		Mean	1.94	1.90	1.92
Min Point	1.67	-15.3%	Std. Dev.	0.25	0.28	0.26
Max Point	2.67	35.8%	COV as %	13.0	14.7	13.3


Avg. Conc. 1.993 ppm Gas analyzer checked:

17-Aug-06

	Start	Finish	
Tracer tank pressure	290	290	psig
Stack Temp	98	90	F ^o
Ref. Pt. air vel.	2200	2190.0	fpm
Injection flowmeter	10	10	ball**
Stack flow	na	na	cfm
Sampling flowmeter	10	10	lpm Sierra
Ambient pressure	29.610	29.6	in Hg
Ambient humidity	19	28	RH
B&K vapor correction	у	у	Y/N
Back-Gd gas ppb	0,2,0,2,5	1,0,3,7,0	
No. Bk-Gd samples	5	5	n
Ambient Temp, F	92	87	
Instuments Used:			

B & K Model 1302 #1765299
Sierra Inc. Constant Flow Air Sampler
TSI 8360 SN 209060 Cal due 9/27/06

Notes:

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-01

Signature/date JDroppo 8/17/06

Sulfur hexafluoride Gas Calibration performed on B8

7/25/2006 by

John Glissmeyer

Setup: 6.83 ft B&K sample inlet tube length

993 mbar station pressure

74 deg F ambie analyzer corrects to 20 deg C

53 percent RH

	5.0 p	pm				0.50	ppm	
Cylinder	SV17699	start P = 1	1850 psi	Cylinder		SV18280	start P =	1600 psi
		end P = 1	1750 psi				end P =	1500 psi
B&K				B&K				
Calibration				Calibration				
readings: (p	opm)			readings: (p	pm)			
	5.22 Compensati	ng for water v	apor	0.	.523	Compensa	ting for wate	er vapor
	5.23			0.	.530			
	5.22			0.	.520			
	5.22			0.	.518			
	5.23			0.	.516			
	5.22 Not compen	sating for wate	er vapor	0.	.512	Not compe	nsating for v	vater vapor
	5.21			0.	.514			
	5.22			0.	.509			
	5.21			0.	.514			
	5.20			0.	.511			
	5.218 = avg			0.	.517	= avg		

Pre-Test Room background, ppb									
	Not c	ompen	sating	for wa	ter vap	or, monito	oring task 2		
	3.9	55.9	50.5	47.1	49.4				
	Com	pensati	ing for	water	vapor,	monitoring	g task 1		
1	8.00	4.70	1.60	0.48	0.28	<0.1			

Standards U	sea:		Expiration date:	
SV18280	0.50 ppm	Matheson Gas	6/15/2008	
SV17699	5.0 ppm	Matheson Gas	5/15/2008	

B&K 1320 SN 1765299 Propert No. WD17210

Signature signifies compliance with Signature verifying data and calculations:

Procedure EMS-JAG-01 Signatures on file copy

Signature/date (on field data form)

Sulfur hexafluoride Gas Calibration performed on B8 8/4/2006 by John Glissmeyer

Setup: 6.83 ft B&K sample inlet tube length

996 mbar station pressure

77 deg F ambie analyzer corrects to 20 deg C

46 percent RH

	5.0 p	pm				0.50	ppm	
Cylinder	SV17699	start P =	1400 psi	Cylinder		SV18280	start P =	1400 psi
		end P =	1300 psi				end P =	1350 psi
B&K				B&K				
				L				
Calibration				Calibration				
readings: (ppm)			readings: (ppm)			
5.2	24 Compensati	ng for water	vapor	(0.508	Compensa	ting for wate	er vapor
5.2	25			(0.507			
5.2	24			(0.507			
5.2	24			(0.507			
5.2	23			(0.506			
5.2	Not compen	sating for wa	ater vapor	(0.499	Not compe	nsating for v	water vapor
5.2	22			(0.504			
5.2	22			(0.505			
5.2	22			(0.502			
5.2	22			(0.517			
5.22	28 = avg			(0.506	= avg		

Pre-Test Room background, ppb							
Not compensating for water vapor, monitoring task 2							
54.9	56.7	52.8	55.8	56.4	55.8		
Compensating for water vapor, monitoring task 1							
12.00	11.70	11.73	9.72	8.73	5.26		

Standards Us	sed:		Expiration date:
SV18280	0.50 ppm	Matheson Gas	6/15/2008
SV17699	5.0 ppm	Matheson Gas	5/15/2008

B&K 1320 SN 1765299 Propert No. WD17210

Signature signifies compliance with

Procedure EMS-JAG-01

Signatures on file copy

Signature/date (on field data form)

Sulfur hexafluoride Gas Calibration performed on B8 8/17/2006 by John Glissmeyer

Setup: 6.83 ft B&K sample inlet tube length

1003 mbar station pressure

78 deg F ambie analyzer corrects to 20 deg C

45 percent RH

	5.0 p	pm				0.50	ppm	
Cylinder	SV17699	start P =	1300 psi	Cylinder		SV18280	start P =	1300 psi
		end P =	1200 psi				end P =	1300 psi
B&K				B&K				
Calibration				Calibration	n			
readings: (ppm)				readings:	(ppm)			
5.24	Compensation	ng for water	vapor		0.503	Compensa	ting for wate	er vapor
5.26	6				0.504			
5.25	5				0.506			
5.26	6				0.503			
5.25	5				0.501			
5.26	Not compen	sating for wa	iter vapor		0.507	Not compe	nsating for v	vater vapor
5.25	5				0.508			
5.24	1				0.512			
5.24	1				0.509			
5.25	5							
5.250) = avg				0.506	= avg		

Pre-Test Room background, ppb							
Not compensating for water vapor, monitoring task 2							
	46.9	49.9	45.3	42.1	40.5	44.1	
Compensating for water vapor, monitoring task 1							
	3.85	1.46	4.32	5.67	1.07	3.82	

Standards Used:		⊏xpi	ration date.
SV18280	0.50 ppm	Matheson Gas	6/15/2008
SV17699	5.0 ppm	Matheson Gas	5/15/2008

B&K 1320 SN 1765299 Propert No. WD17210

Signature signifies compliance with Signature verifying data and calculations:

Procedure EMS-JAG-01 Signatures on file copy

Signature/date (on field data form)

Sulfur hexafluoride Gas Calibration performed on B8 8/23/2006 by

John Glissmeyer

6.83 ft B&K sample inlet tube length Setup:

1000.6 mbar station pressure

75 deg F ambie analyzer corrects to 20 deg C

37 percent RH

	5.0 p	pm				0.50	ppm	
Cylinder	SV17699	start P =	1200 psi	Cylinder		SV18280	start P =	1250 psi
		end P =	1100 psi				end P =	1150 psi
B&K				B&K				
Calibration				Calibration	n			
readings: (ppm)				readings:	(ppm)			
5.17	Compensatir	ng for water	vapor		0.493	Compensa	ting for wate	er vapor
5.16	S .				0.495			
5.18	3				0.501			
5.16	S .				0.496			
5.16	S .				0.500			
5.15	Not compens	sating for wa	iter vapor		0.500	Not compe	nsating for v	vater vapor
5.15	5				0.497			
5.15	5				0.495			
5.15	5				0.497			
5.15	5				0.496			
5.158	s = avg			-	0.497	= avg		

Pre-Test Room background, ppb							
Not compensating for water vapor, monitoring task 2							
40.5	37.7	37.7	37.6	37.4	35.6		
Compensating for water vapor, monitoring task 1							
7.80	9.10	6.60	2 90	6.60	10.5		

Standards Used: Expiration date: 0.50 ppm SV18280 Matheson Gas 6/15/2008 SV17699 5/15/2008 5.0 ppm Matheson Gas

B&K 1320 SN 1765299 Propert No. WD17210

Signature verifying data and calculations: Signature signifies compliance with

Procedure EMS-JAG-01 Signatures on file copy

Signature/date (on field data form)

Appendix I Particle Tracer Uniformity Procedure

APPENDIX I: PARTICLE TRACER UNIFORMITY PROCEDURE

PNNL Operating Procedure								
Title: Test to Determine Uniformity of a Tracer Aerosol at a Sampler Probe	Org. Code: Procedure No.: Rev. No.:	D7E74 EMS-JAG-02 2						
Work Location: General	Effective Date:	April 28, 2006						
Author: John A. Glissmeyer	Supersedes Date:	May 24, 2000						
Identified Hazards:	Identified Use Cate	egory:						
☐ Radiological	☐ Mandatory Use							
☐ Hazardous Materials☑ Physical Hazards	□ Continuous Use ☑ Reference Use							
☐ Hazardous Environment	☐ Information Use							
□ Other:								
Are One-Time Modifications Allow	ved? ■ Yes 🗷	l No						
Person Signing	Sign	ature	Date					
Technical review: J. Matthew Barnett								
Project Manager: John Glissmeyer								
Line Manager:								
James Droppo								
Concurrence:								
Quality Engineer:								
Barry L. Sachs								

1.0 Purpose

The performance of new stack sampling systems must be shown to satisfy the requirements of 40 CFR 61, Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities." This regulation governs portions of the design and implementation of effluent air sampling. The stack sampler performance is adequately characterized when potential contaminants in the effluent are of a uniform concentration at the sampling location (plane), and line losses are within acceptable limits. This procedure determines whether the concentration of aerosol particulate contaminants is uniformly distributed in the area of the sampling probe. Other procedures address flow angle, uniformity of gas velocity, and uniformity of gas contaminants. A contaminant concentration that is uniform at the sampling plane enables the extraction of samples that represent the true emission concentration.

The uniformity is expressed as the variability of the measurements about the mean. This is expressed using the relative coefficient of variance (COV), which is the standard deviation divided by the mean and expressed as a percentage. The lower the COV value, the more uniform the particle concentration. The acceptance criterion is that the COV of the measured particle concentrations be < 20% across the center two-thirds of the area of the stack.

2.0 Applicability

This procedure can be used for actual or scale model stacks to determine whether air-sampling probes can collect representative samples under normal operations. The tests are applicable to effluent stacks or ducts within the following constraints:

- The aerosol particulate tests are generally limited to stacks with flowrates greater than 50 cubic feet per minute range. The upper bound of flowrate is determined by the output capacity of the aerosol generator, the background reading for particulate aerosols, and the operational detection range of the optical particle counters.
- Environmental constraints the operating temperature range (55° 100° F) of the optical particle counter must be observed.

3.0 Prerequisites and Conditions

Conditions and concerns that must be satisfied before sampling are listed below:

- Safety glasses, hard toed or substantial shoes may be required in work areas.
- Test ports for tracer injection and sampling.
- Properly constructed and inspected work platforms may be needed to access the test and injection ports.
- Special training may be required in some instances to access the test ports of the stack.
- Alcohol (methanol, ethanol, or rubbing) may be used to erase grid point markings on the sampling probes. A flammable equipment storage cabinet may be required to hold chemicals. Material Safety Data Forms must be provided.

- Air pressure (up to about 75 psi) is used to aerosolize oil into fine particles. Observations of any buildup of oil mist outside of the generator are essential to prevent exceeding American Conference of Governmental Industrial Hygienists (ACGIH) levels listed below
- Knowledge of the setup, use of, and operation of pressurized air lines, flowmeters, and particle counters is essential.
- A job-hazards analysis may be required in certain cases.

4.0 Precautions and Limitations

Caution: The ACGIH 8-hour time-weighted average limit for human exposure to mineral oil mist is 5 mg/m³. It is odorless.

During the tests, oil droplets will be injected into the base of the stack or duct at a rate to achieve a target concentration of $200-4000\ 10$ -µm particles/ft³ (pt/ft³) at the test ports. The potential is present for a buildup of oil mist to occur outside of the aerosol generator that could approach the 5 mg/m³ caution level. The undiluted mist is heavier than air, so it may accumulate in confined spaces and in low areas. Visual inspections of the delivery system will be made at least daily to prevent such an occurrence. Adequate ventilation is an added mitigating precaution.

Access to the test ports may require the use of scaffolding or manlifts, either of which will necessitate special training for sampling personnel and any observers. The training requirements will be indicated in the job hazard analysis.

The test may be invalid if the background $9-11 \mu m$ aerosol concentration in the stack is more than about 20% of that observed during the test. This would indicate poor filtration of the air at the fan inlet. This may result in a false indication of good mixing.

5.0 Equipment Used for Measurements

Specific probe dimensions, measurement grids, stack flowrate settings, and other special requirements will be provided in a specific Test Instruction. Exhibit A provides a typical layout for the test setup. Exhibit C shows a typical Test Instruction. The following are essential items of equipment:

- Vacuum pump oil (or other approved oil specified in the Test Instruction)
- Oil mist generator
- Compressed air, compressed air hoses, air filter and air regulators
- Oil mist injection probe
- Aerosol sampling probes
- Mechanism for accurate placement of sampling probe
- Calibrated optical particle counter (OPC)
- OPTIONAL -- Computer linked to optical particle counter to log readings
- Platform, ladders, or manlifts as needed to access the test ports;

- Fittings to limit leakage around the sampling probe and to stabilize it so it can be repositioned repeatedly.
- To provide information about the test conditions, commercial grade sensors for stack temperature, barometric pressure, static pressure, air velocity, and humidity provide acceptable information. Likewise, data from a nearby meteorology or facility station is acceptable.

The optical particle counter is calibrated annually for particle sizing and internal flowrate. If there is reason to suspect a change in the tracer aerosol concentration with time, an optional second OPC may be used at a fixed location. The measurements from the fixed OPC may be used to determine a correction to the other OPC readings with time.

The aerosol generator siphons oil from a reservoir and forces the air/oil mixture through a spray nozzle to produce polydisperse particles. Non-hazardous oil with a low vapor pressure (such as Fisherbrand 19 vacuum pump oil) should be used in the reservoir. The quantity of aerosol generated is controlled by the compressed air pressure, which should be filtered and controlled by a regulator. The nozzle is mounted in a large diameter, clear-plastic pipe (4-inches diameter or larger) so the output level can be observed. The aerosol generator output should connect to an injection probe with an inside diameter of at least 0.5 inches to minimize collisions with the inner wall of the tubing. Optimal operation depends on uniformly "wetting" the inner surfaces of the generator and injection probes; thus, a warm up period of up to ½ hour is recommended for a constant aerosol output.

6.0 Work instructions for Setup, Measurements, and Calculations

The steps taken to set up, configure, and operate the stack fans and test equipment are listed. The test instruction (illustrated in Exhibit C) will provide more specific details and operating parameters.

6.1 Preparing for Measurements:

- 6.1.1 Prepare a spreadsheet for calculating results and plotting data similar to the illustration in Exhibit B. Label the columns of data by the direction to be used in traversing the stack. For example, if the first reading is closest to the east port, and the last reading is closest to the west port, then label the traverse east-west. Print blank copies of the spreadsheet as data forms for hand recording measurements for later transfer to the spreadsheet.
- 6.1.2 Provide essential supplies at the sampling location (aerosol generation equipment, compressed air, regulators, fittings and probe-port fittings, marking pens, data forms, writing and probe-supporting platforms).
- 6.1.3 Mark the sampling probe with a permanent marker so the inlet can be placed at each successive measurement point.

Note: Sampling plane traverse points. Use the grid of measurement points provided with the test instruction and dataform. This is usually the same as used for the velocity uniformity test (EMS-JAG-04). A center point is included as a common reference and for graphical purposes. The layout design divides the area of the sampling plane so that each point represents approximately an equal-sized area

- 6.1.4 Setup the test parameters characterizing the stack or duct airflow, configuration, fan control setting, and conditions according to the test instruction.
- 6.1.5 Record the test information on the data form (run number, test crew, instrumentation used, configuration, date, etc.).
- 6.1.6 Using an air velocity or flow sensor, verify that the target flow condition has been achieved within \pm 10%. Record the value on the data form.
- 6.1.7 Insert the sampling probe in a test port and connect the other end to the OPC as illustrated in Exhibit A.

Note: The **sampling probe** typically consists of stainless steel thin-wall tubing with ¾ outside diameter and with sufficient length to reach across the inside diameter of the stack while allowing for fittings. The sampling probe should have gradual 90° bends to minimize the inertial impact of particles with inner walls at bends, and the open end of the tube should face into the flow in the stack. The outlet end of the probe should terminate with a connection at the OPC inlet. This connection is typically a modified 1-inch plastic syringe body with the probe inserted into the body with o-rings to fit between the outside of the probe and the inside of the body. The needle end of the body is cut back and the taper has a rubber grommet inserted, which fits over the inlet of the OPC.

Note: The elevation of the sampling probe nozzle should be approximately in the same as the plane as the actual stack sampling probe nozzle. The intake nozzles may be of sub-isokinetic or of shrouded design to optimize the collection of 10-micron particles. Minimize tubing length to minimize particle losses.

The OPC should be mounted on a sliding platform to move as a unit, with its attached probe, along the axis of the test port.

- 6.1.8 On the data form, record the starting
 - ambient temperature
 - stack air temperature
 - stack air velocity or flowrate
 - ambient pressure
 - ambient humidity
 - time

- 6.1.9 Turn-on the optical particle counter. Ensure that internal air circulation fans in the OPCs are on and that the sample probe is tightly connected to the OPC inlet.
- 6.1.10 Program the OPC for
 - 60-second samples and a 15-sec hold time between samples
 - 9- to 11-micron particle counting
 - the current time
 - cumulative counting mode.
- 6.1.11 Set the OPC sample flowrate to 0.98 1.02 cfm. Allow it to warm up for 5 minutes.
- 6.1.12 Locate the sampling probe approximately in the middle of the stack.
- 6.1.13 Record on the data form at least four consecutive background particle concentration readings in the $9-11 \mu m$ channel.

6.2 Aerosol Injection

The aerosol injection equipment includes an air regulator, an air pressure gauge, and other components described in Section 5. The 1/2-inch (ID) (or larger) injection probe with a 90° bend (with an approximately 3-inch radius of turn) will inject aerosol particles in the direction of emission flow. The connections and fittings should be checked to ensure that they are secure and leak free.

Note: Location of the Injection Point

<u>Injection plane</u> -- The aerosol injection point is usually along the centerline of the duct or stack.

- 6.2.1 Position the injection probe, according to the test instruction.
- 6.2.2 Start and run the aerosol generator for approximately 30 minutes to stabilize its output. (For successive runs on the same day, a warm up time of less than 30 minutes may provide stable readings.)
- 6.2.3 Adjust the aerosol generator output so the particle count is at least five times background and no more than about 4000 pt/ft³ in the $9-11~\mu m$ channel.
- 6.2.4 Record on the data form the initial
 - injection system dispersion pressure in psi
 - compressor or air line pressure in psi

Note: The control over the aerosol injection rate is limited. The only apparent control is the selection of the spray nozzle and the air pressure to the nozzle. At air pressure readings above about 10 psi for the specific PNNL generator used, a dense oil mist is created in the generator and is available for injection. However, if there is backpressure in the stack, carrier air may be required to reach a concentration above 200 pt/ft³. In contrast, if there is little back-pressure, most of the generated aerosol, minus that lost from interactions with internal generator system and line walls, becomes available for injection. Here the output and concentration will be high.

Note: The OPC draws air from the stack, via the sample probe, at a fixed rate (one cubic foot per minute). Within the OPC, the air stream with particles passes through a laser beam where the particles are counted and placed in six size categories. In the less than 0.5-micron category, several hundred thousand differential counts are typical; but in the 9- to 11-micron category, oil mists greater than about 3,000 cpm cause a sensor overload condition. There is no adjustment of particle concentration range at the OPC, so the aerosol generator provides the only control for aerosol

6.3 Measurements

- 6.3.1 On the data form, mark which test port was used first with a "1st" indication.
- 6.3.2 Verify that the directional orientations and the numbered sample positions are consistent.
- 6.3.3 Position the OPC and sample probe at each measurement point in succession, and record the particle concentration reading on the data form.

Note: In each test, the measurement at each point is the average of three readings. The repeats are made as three separate runs and not as three consecutive measurements at each point.

- 6.3.4 Perform two additional repetitions of Step 6.3.3.
- 6.3.5 Switch to the other test port and repeat Steps 6.3.2 to 6.3.4.
- 6.3.6 During the making of measurements, periodically check the OPC flowrate and correct as needed.
- 6.3.7 Record on the data form the ending:
 - injection system dispersion pressure in psi
 - compressor or air line pressure in psi

- 6.3.8 Shut off the air pressure to the aerosol generator.
- 6.3.9 Continue operation of the OPCs for several minutes while any remaining test aerosol is purged from the stack.
- 6.3.10 Record on the data form at least four centerline background particulate concentrations on the $9-11 \mu m$ channel.
- 6.3.11 On the data form, record the final:
 - ambient temperature
 - stack air temperature
 - stack air velocity or flowrate
 - ambient pressure
 - ambient humidity
 - centerline air velocity
 - time
- 6.3.12 Record any deviations from the above procedure on the data form.
- 6.3.13 Verify that the data form is complete and sign and date in the signature block attesting to performing this procedure to this point.
- 6.3.14 Repeat steps 6.1.1 to 6.3.13 for each run as indicated in the test instruction.

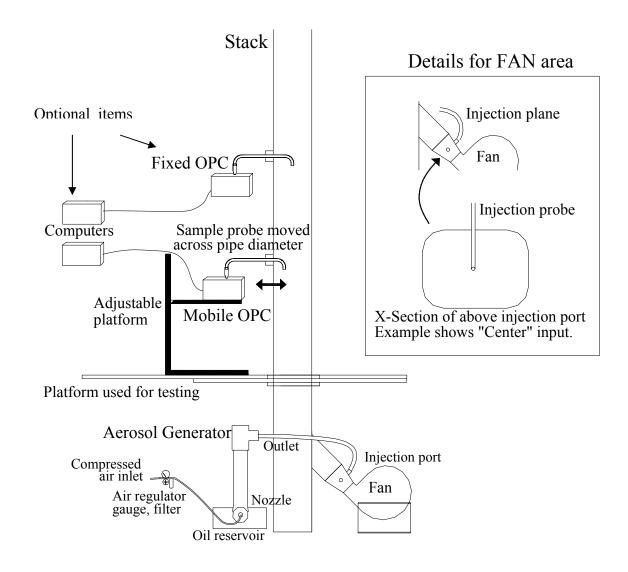
6.4 Calculations

- 6.4.1 Transfer the hand written data into the electronic spreadsheet.
- 6.4.2 Calculate the COV result for the run.

Note: The spreadsheet (Exhibit B is typical) will calculate the COV result using the average concentration data from all points in the inner two-thirds of the cross section area of the plane (including the center point). It also calculates the COV for each test port separately for information. It also attempts to correct the data for a change in aerosol concentration with time. It calculates a normalized overall COV by correcting the data from one test port as needed to equalize the center point averages for both test ports.

6.4.3 Compare the observed COV for each run to the acceptance criterion.

Note: The test is acceptable if the COV is < 20% for the inner two-thirds of the stack diameter.


- 6.4.4 Complete the calculations for each test run in the Test Instruction
- 6.4.5 Have the data transfers and calculations independently reviewed and verified. The reviewer should sign the finished data form.

7.0 Records

7.1 Transfer the original signed data forms and verified spreadsheets to the records custodian as project records.

Exhibits

Exhibit A – Overview of Stack and Injection Setup and Particle Counters

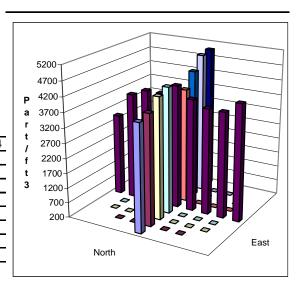
Exhibit B – Typical Data Collection Form Particle tracer traverse data form

Site Model Stack Run No. PT-2a Fan configuration Near Fan Date 9/17/2004 Tester JAG/MYB/JMB Fan Setting 37.1 Hz Stack Dia. 18 in. Stack Temp 66 deg F Stack X-Area 254.5 in.2 Start/End Time 10:50/13:20 16.35 Elevation N.A. Center 2/3 from Distance to disturbance 120 inches Points in Center 2/3 to: Injection Point Near Fan, Centerline downstream Measurement units particles/ft3

Order>	_		1st			2nd			
Traverse>			Ea	ast			No	rth	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particles/ft3				partic	les/ft3	
1	0.58	4987	2769	4527	4094.3	2629	2880	3068	2859.0
2	1.89	4980	2677	3534	3730.3	2772	3186	2879	2945.7
3	3.49	3190	3812	4235	3745.7	2758	3355	3548	3220.3
4	5.81	3499	4058	4313	3956.7	2787	3185	4027	3333.0
Center	9.00	4049	4810	4084	4314.3	2560	2986	4222	3256.0
5	12.19	4318	3638	3973	3976.3	2658	2651	3828	3045.7
6	14.51	3785	4313	3856	3984.7	3913	2753	3528	3398.0
7	16.11	3673	4102	3532	3769.0	3755	2513	4860	3709.3
8	17.42	3103	3172	2589	2954.7	2951	2999	5331	3760.3
Averages>		3953.8	3705.7	3849.2	3836.2	2975.9	2945.3	3921.2	3280.8

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>North</u>	<u>All</u>	Normlzd
Mean	3558.5		Mean	3925.3	3272.6	3598.93	4130.79
Min Point	2859.0	-19.7%	Std. Dev.	205.4	248.8	403.43	339.31
Max Point	4314.3	21.2%	COV as %	5.2	7.6	11.21	8.21

Avg Conc 3530 pt/ft3 Instuments Used:


TSI Velocity Calc Plus S/N 209060 Calib 8/25/04

	Start	Finish	
Generator Inlet Press	4	4	psig
Stack Temp	61	71	F
Centerline vel.	855	795.0	fpm
Ambient pressure	29.3	29.258	inHg
Ambient humidity	74%	53%	RH
Ambient temp	58	66	F
Back-Gd aerosol	3,3,2,3,4,5	1,3,4,3,0,3	pt/ft3
No. Bk-Gd samples	6	6	
Compressor output reg	110	115	psig

Optical Particle Counters:

Met One A2408	S/N 96258675	Cal 8/5/04
MELOTIE AZ400	3/14 30230073	Cai 0/3/04

Wind 12 mph steady
Oil Used: FisherBrand 19
Probe has a 4.5-in throw so is that much closer to the
stack than the port.

Signature signifies compliance with Procedure EMS-JAG-02

Signature/date

Signature verifying data and calculations:

Exhibit C – Typical Test Instruction

	Test Instruction								
Project: Model Stack Qualification	Date: November 10, 2008	Work Package: K97052							
Tests:	Particle Tracer Uniformity of F	ull-Scale Stack							
Staff: David Maughan, John	Glissmeyer								
Aerosol at a Sampler 2. Operating Manual for	-02, Rev. 2, Test to Determiner	2							
 Vacuum pump oil, oil mist Oil mist injection probe, Old OPCs with computers and low Velocity measurement device 									
Safety Considerations: Review and observe to	the applicable Job Hazard Ana	lysis for the project							
Instructions: 1. Verify training on the pr 2. Obtain Fisherbrand 19 N 3. Obtain climatic informath http://etd.pnl.gov:2080/I 4. Install equipment as directly of the sampling probe for the sampling probe for the sampling protes that are as the sampler flowrate flow of the sampler flowrate flowrate flow of the sampler flowrate fl	rocedure and that instrumentate Mechanical Pump Fluid tion from the Hanford Weather HMS/lastob.htm acted in the procedures of the measurement points show about the target flowrate 9000 system input psi at 5 and vary about 10 times background for at approximately 10 lpm accer mixing tests at the following on point at duct from fan to startine uld be at the fittings provided	ion is within calibration r Service, phone 373-2716 or wn on the data form 0 (2232 fpm) 7 to obtain particle counts at the 10-micron particles. sets of conditions:							
10. Record data on copies of11. Repeat the test	i the attached the data form								
12. Diagram mounting fixtu Desired Completion Date: 11	res and retain assembly for any 1/30/2008	y subsequent re-tests							
Approvals:									
John Glissmeyer,	Project Manager	Date							
Test completed by:		Date:							

Appendix J Particle Tracer Uniformity Data Sheets

APPENDIX J: PARTICLE TRACER UNIFORMITY DATA SHEETS

PARTICLE TRACER TRAVERSE DATA FORM

	Site	296-S-21 Mc	odel		Run No.	PT-1					
	Date	7/24/2006		Fan	configuration	1, 2, 3					
	Tester	BGF & JGD			Fan Setting	56, 45, 5	0		Hz		
Sta	ack Dia.	17 7/8	in.		Stack Temp	1	02 d	eg F			
Stack	X-Area	250.9	in.2	Sta	art/End Time	0915 / ab	t. 12	00			
EI	levation	N.A.		Cer	nter 2/3 from	1.	64	to:	16.23	3	
Distance to distu	urbance	77.75	inches	Points i	n Center 2/3		2	to:	7		
Measureme	nt units	particles/ft3		In	jection Point	Fan 1					
Order>						1st					
Traverse>			Port _4_ B	ottom/East				Port _4_	_ Side/S	outh	
Trial>		1	2	3	Mean		1		2	3	Ν
Point De	pth, in.		partic	les/ft3				par	ticles/ft3	3	
1	0.58	1687	1688	1798	1724.3	19	88	215	52	1852	19

Traverse>		Port _4_ Bottom/East Port _4_ Side/South					Side/South		
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	es/ft3			particl	es/ft3	
1	0.58	1687	1688	1798	1724.3	1988	2152	1852	1997.3
2	1.89	1767	1834	1665	1755.3	2048	2200	1915	2054.3
3	3.49	1739	1794	1630	1721.0	1961	2168	1923	2017.3
4	5.81	1830	1769	1646	1748.3	2075	2200	1866	2047.0
Center	9.00	1867	1992	1787	1882.0	2078	2475	1974	2175.7
5	12.19	1990	2064	1900	1984.7	2174	2524	2184	2294.0
6	14.51	1961	2221	1921	2034.3	2269	1603	2407	2093.0
7	16.11	2079	2231	1962	2090.7	2469	1808	2411	2229.3
8	17.42	2085	2051	2030	2055.3	2562	1728	2403	2231.0
Averages>		1889.4	1960.4	1815.4	1888.4	2180.4	2095.3	2103.9	2126.6

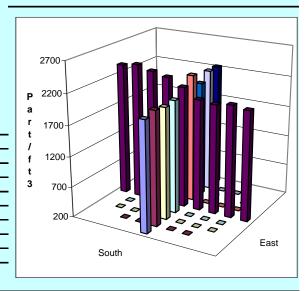
AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>North</u>	<u>All</u>	Normlzd
Mean	2007.5		Mean	1888.0	2130.1	2009.07	2156.38
Min Point	1721.0	-14.3%	Std. Dev.	151.0	104.5	177.04	140.90
Max Point	2294.0	14.3%	COV as %	8.0	4.9	8.81	6.53

Met One A2408

 Max Point
 2294.0
 14.3%
 COV as %
 8.0
 4.9
 8.81
 6.53

 Avg Conc
 2005 pt/ft3
 Instuments Used:
 Cal. Due

 Start
 Finish
 TSI Velocity Calc Plus
 S/N 209060
 9/27/2006


Generator Inlet Press
Stack Temp
Vel at 4So8
Ambient pressure
Ambient humidity
Ambient temp
Back-Gd aerosol
No. Bk-Gd samples
Compressor output reg

Start	Finish	_
5	5	psig
98	106	F
2030	1920.0	fpm
29.36	29.33	inHg
30%	19%	RH
98	101.4	F
1, 0, 1, 2	0, 3, 1, 0	pt/ft3
4	4	
90	92	psig

Data from a 1st transect (Port 4 So.) not used. Had quite low results, so a 4th transect was done and used here. It was suspected that the aerosol generation had not actually stabilized when we began.

Oil Used: FisherBrand 19

S/N 96258675

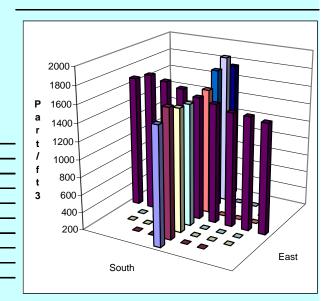
9/16/2006

Signature signifies compliance with Signature verifying data and calculations: Procedure EMS-JAG-02

Signature/date Signatures on file copies

	I ANTICLE INAC	EN INAVENSE DATAT	CIVIVI		
Site	296-S-21 Model	Run No.	PT-2		
Date	7/24/2006	Fan configuration	1, 4		
Tester	JGD & BGF	Fan Setting	56, 52		Hz
Stack Dia.	17 7/8 in.	Stack Temp	107.75	deg F	
Stack X-Area	250.9 in.2	Start/End Time	1300/1450		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 1		
Ouden :	4CT				

Order>		151							
Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	Mean		
Point	Depth, in.		particl	es/ft3			particl	les/ft3	
1	0.58	1703	1339	1289	1443.7	1159	1512	1138	1269.7
2	1.89	1794	1356	1279	1476.3	1386	1554	1170	1370.0
3	3.49	1692	1404	1361	1485.7	1447	1426	1076	1316.3
4	5.81	1833	1411	1393	1545.7	1429	1418	1067	1304.7
Center	9.00	1857	1485	1415	1585.7	1393	1465	1094	1317.3
5	12.19	1932	1517	1506	1651.7	1358	1507	1165	1343.3
6	14.51	1957	1605	1548	1703.3	1404	1662	1379	1481.7
7	16.11	1989	1660	1585	1744.7	1442	1885	1367	1564.7
8	17.42	1928	1533	1584	1681.7	1409	1559	1366	1444.7
Averages	verages> 1853.9 1478.9 1440.0 1590.9 1380.8 1554.2 1202			1202.4	1379.1				


pt/ft3

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>	Normlzd
Mean	1485.0		Mean	1599.0	1385.4	1492.21	1633.32
Min Point	1269.7	-14.5%	Std. Dev.	104.7	99.4	148.00	113.76
Max Point	1744.7	17.5%	COV as %	6.5	7.2	9.92	6.97

Avg Conc 1489 pt/ft3

Start Finish Generator Inlet Press 5 psig Stack Temp 107.5 108 Vel at 4So8 2450 2440.0 fpm Ambient pressure 29.3 29.27 inHg Ambient humidity 15% 17% RH 106 104 Ambient temp 4, 4, 5, 3 Back-Gd aerosol 1, 2, 1, 0 No. Bk-Gd samples Compressor output reg 90 psig

Instuments Used:		Cal. Due
TSI Velocity Calc Plus	S/N 209060	9/27/2006
Met One A2408	S/N 96258675	9/16/2006

OPC flow adjusted to 1.00 at the start of each traverse

Oil Used: FisherBrand 19

Signature signifies compliance with

Signature verifying data and calculations:

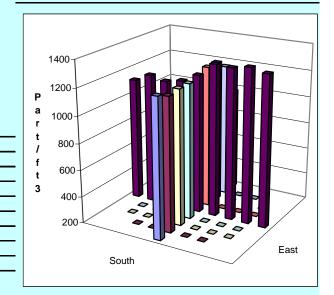
Procedure EMS-JAG-02

Signature/date Signatures on file copies

			•			
Site	296-S-21 Model	Run No.	Run No. PT-3			
Date	7/24/2006	Fan configuration	1, 2, 3	l, 2, 3		
Tester	JAG & BGF	Fan Setting	56, 45, 50		Hz	
Stack Dia.	17 7/8 in.	Stack Temp	112.5 deg F			
Stack X-Area	250.9 in.2	Start/End Time	1500/1645			
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23	
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7	
Measurement units	particles/ft3	Injection Point	Fan 2			
Order>			1ST			

Order>		1ST							
Traverse>		Port _4_ Bottom/East Port _4_ Side/South							
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	es/ft3			particl	es/ft3	
1	0.58	1159	1334	1473	1322.0	1424	1115	1040	1193.0
2	1.89	1124	1365	1553	1347.3	1368	1034	1070	1157.3
3	3.49	1154	1378	1442	1324.7	1438	1037	1042	1172.3
4	5.81	1195	1309	1491	1331.7	1419	961	1140	1173.3
Center	9.00	1092	1211	1401	1234.7	1423	1006	1163	1197.3
5	12.19	1061	1225	1238	1174.7	1310	1204	1151	1221.7
6	14.51	1017	1156	1281	1151.3	1382	1153	1138	1224.3
7	16.11	1029	1234	1270	1177.7	1324	1058	1114	1165.3
8	17.42	996	1171	1196	1121.0	1154	897	789	946.7
Averages	>	1091.9	1264.8	1371.7	1242.8	1360.2	1051.7	1071.9	1161.3

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>	Normlzd
Mean	1202.0		Mean	1248.9	1187.4	1218.12	1236.63
Min Point	946.7	-21.2%	Std. Dev.	84.2	27.2	68.09	61.65
Max Point	1347.3	12.1%	COV as %	6.7	2.3	5.59	4.99


 Avg Conc
 1200 pt/ft3

 Start
 Finish

 Generator Inlet Press
 5
 5 psig

Generator Inlet Press Stack Temp 112 113 Vel at 4So8 2350 2020.0 fpm Ambient pressure 29.27 29.23 inHg Ambient humidity 15% 10% RH 110 Ambient temp 111 4, 1, 0, 1 2, 1, 0, 2 Back-Gd aerosol pt/ft3 No. Bk-Gd samples 90 psig Compressor output reg

Instuments Used:		Cal. Due
TSI Velocity Calc Plus	S/N 209060	9/27/2006
Met One A2408	S/N 96258675	9/16/2006

Notes:

Oil Used: FisherBrand 19

Signature signifies compliance with

Procedure EMS-JAG-02

Signature/date Signatures on file copies

Signature verifying data and calculations:

	I ANTIOLL INAC	EN INAVENDE DATAT	CITIE			
Site	296-S-21 Model	Run No.	PT-4			
Date	7/25/2006	Fan configuration	1, 2, 3			
Tester	JAG & JGD	Fan Setting	56, 45, 50	6, 45, 50		
Stack Dia.	17 7/8 in.	Stack Temp	90 deg F		_	
Stack X-Area	250.9 in.2	Start/End Time	0750/1025			
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23	
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7	
Measurement units	particles/ft3	Injection Point	Fan 3			
Order>	1ST				•	

Oldel>		131							
Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	es/ft3			partic	les/ft3	
1	0.58	1132	1043	962	1045.7	987	1018	939	981.3
2	1.89	1146	1089	1050	1095.0	1077	995	945	1005.7
3	3.49	1197	1077	1010	1094.7	1053	1004	905	987.3
4	5.81	1033	1082	1014	1043.0	990	972	873	945.0
Center	9.00	1073	1072	1031	1058.7	971	957	957	961.7
5	12.19	1100	1042	1039	1060.3	1011	974	945	976.7
6	14.51	1105	1066	1128	1099.7	1065	975	886	975.3
7	16.11	1135	1192	1166	1164.3	969	930	872	923.7
8	17.42	1125	1107	981	1071.0	971	736	869	858.7
Averages	>	1116.2	1085.6	1042.3	1081.4	1010.4	951.2	910.1	957.3

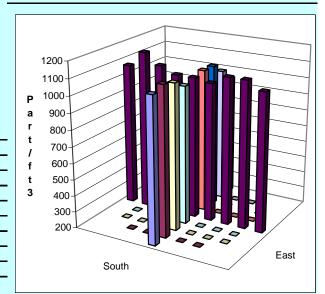
AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>	Normlzd
Mean	1019.3		Mean	1088.0	967.9	1027.93	1076.74
Min Point	858.7	-15.8%	Std. Dev.	40.2	27.3	70.49	36.02
Max Point	1164.3	14.2%	COV as %	3.7	2.8	6.86	3.35

Avg Conc 1020 pt/ft3

Generator Inlet Press
Stack Temp
Vel at 4So8
Ambient pressure
Ambient humidity
Ambient temp
Back-Gd aerosol
No. Bk-Gd samples
Compressor output reg

5 5 psig 86 94 F	
86 94 F	
2070 2020.0 fpm	
29.367 29.36 inHg	
42% 25% RH	
81 91 F	
0, 0, 0, 0 3, 11, 2, 4 pt/ft3	
4 4	
90 90 psig	

Notes:


Added 1/3 L oil to aerosol generator after 1st traverse of Port4South. Took an extra column of data so 1st column can be deleted.

Oil Used: FisherBrand 19

 Instuments Used:
 Cal. Due

 TSI Velocity Calc Plus
 S/N 209060
 9/27/2006

 Met One A2408
 S/N 96258675
 9/16/2006

Signature signifies compliance with

Procedure EMS-JAG-02

Signature/date

Signature verifying data and calculations:

Signatures on file copies

		PART	TICLE TRAC	ER TRAVEI	RSE DATA F	ORM			
	Site	296-S-21 Mc	odel		Run No.	PT-5			
	Date	7/25/2006		Fan	configuration	3, 4			
	Tester	BGF			Fan Setting	50, 52		Hz	
	Stack Dia.	17 7/8	in.		Stack Temp	96	deg F		
S	stack X-Area	250.9	in.2	Sta	art/End Time	1050/			
	Elevation	N.A.		Cei	nter 2/3 from	1.64	to:	16.23	
Distance to	disturbance	77.75	inches		in Center 2/3		to:	7	
Measur	rement units	particles/ft3		In	jection Point	Fan 3			
Order>						1ST			
Traverse>				ottom/East			Port _4_ S		
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		partic	1			particl		
1	0.58	2028	2087	2122			1789	1784	1793.7
2	1.89	2090	2057	2155			1690	1801	1767.0
3	3.49	2234	2050	2113			1679	1928	1787.3
4	5.81	2099	1998	2232			1734	2513	1991.7
Center	9.00 12.19	2047	1973	2137			1740	2105	1843.0
5		2022	1949	2038			1958	2276	2028.3
6 7	14.51 16.11	2007 1953	1887 1932	1962 2001			1881 1812	2253 2168	2026.0 1970.7
8	17.42	1933	1932	1860	1962.0 1907.7		1787	2019	1766.7
Averages		2045.8	1984.9	2068.9	2033.2	1778.4	1785.6	2019	1886.0
Averages		2043.0	1304.3	2000.9	2033.2	1770.4	1705.0	2094.1	1000.0
	AII	pt/ft3	Dev	. from mean	Center 2/3	East	South	All	Normlzd
	Mean	1959.6	<u> </u>		Mean	2044.6	1916.3	1980.43	2089.26
	Min Point	1766.7		-9.8%	Std. Dev.	73.3	113.7	113.47	109.67
	Max Point	2132.3			COV as %	3.6	5.9	5.73	5.25
Avg Conc		pt/ft3			Instuments				Cal. Due
J		Start	Finish		TSI Velocity		S/N 209060		9/27/2006
Generator Inl	let Press	5	5	psig	Met One A2	408	S/N 962586	675	9/16/2006
Stack Temp		94	98	F					
Vel at 4So8		2220	2210.0	fpm					
Ambient pres	ssure	29.36	29.34	inHg					
Ambient hum	nidity	25%	21%						
Ambient temp	р	91	97	F	2700-				
Back-Gd aer		3, 11, 2, 4	1, 2, 3, 3	pt/ft3					
No. Bk-Gd sa	amples	4	4		D 2200-	_			
Compressor	output reg	90	120	psig					
					a r ₁₇₀₀				
Notes:					1700 t				
					_ /				
					f 1200				
					_ t				
01111					3 700		」 	4 5	
Oil Used:	FisherBrand	119			-	/ ~			
					_ 200	0 - 4			J/
					-		U •	~ ~ /	/ Fost
					-	South		/	East
					-				

Signature signifies compliance with Procedure EMS-JAG-02

Signature verifying data and calculations:

Signature/date Signatures on file copies

			O				
Site	296-S-21 Model	Run No.	PT-6	- -6			
Date	7/25/2006	Fan configuration	2, 4	, 4			
Tester	BGF	Fan Setting	45, 52		Hz		
Stack Dia.	17 7/8 in.	Stack Temp	105 deg F				
Stack X-Area	250.9 in.2	Start/End Time	1300/1425)/1425			
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23		
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7		
Measurement units	particles/ft3	Injection Point	Fan 2				
Order>	1ST						

Order>		1ST	'						
Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	es/ft3			particl	les/ft3	
1	0.58	2427	2133	2208	2256.0	1615	1605	1578	1599.3
2	1.89	2516	2111	2253	2293.3	1565	1642	1513	1573.3
3	3.49	2534	2212	2306	2350.7	1541	1624	1500	1555.0
4	5.81	2661	2279	2122	2354.0	1560	1550	1521	1543.7
Center	9.00	2456	2146	2081	2227.7	1666	1569	1581	1605.3
5	12.19	2071	2058	2119	2082.7	1681	1601	1540	1607.3
6	14.51	2099	2128	2155	2127.3	1646	1482	1504	1544.0
7	16.11	2060	1975	2196	2077.0	1708	1587	1523	1606.0
8	17.42	1983	2113	2190	2095.3	1657	1454	1491	1534.0
Averages	>	2311.9	2128.3	2181.1	2207.1	1626.6	1568.2	1527.9	1574.2

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	South 8 1	All	Normlzd
Mean	1890.7		Mean	2216.1	1576.4	1896.24	2201.79
Min Point	1534.0	-18.9%	Std. Dev.	121.3	29.6	342.60	88.25
Max Point	2354.0	24.5%	COV as %	5.5	1.9	18.07	4.01

1887 pt/ft3 Avg Conc Instuments Used: Cal. Due TSI Velocity Calc Plus S/N 209060 9/27/2006 Start Finish Met One A2408 S/N 96258675 9/16/2006 5

5 psig Generator Inlet Press 104 106 F Stack Temp 2200.0 fpm Vel at 4So8 2150 29.3 inHg Ambient pressure 29.33 17% Ambient humidity 16% RH Ambient temp 103 104 F 2, 0, 0, 0 2, 0, 3, 0 Back-Gd aerosol pt/ft3 No. Bk-Gd samples 4 Compressor output reg 90 90 psig

2700 a r 1700 t 1 1200 t 3 700 East

Notes:

Oil Used: FisherBrand 19

Signature signifies compliance with Procedure EMS-JAG-02

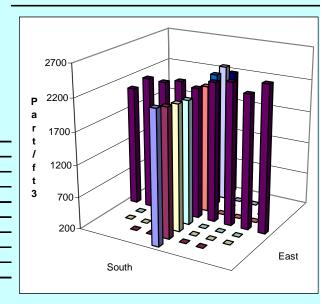
Signature verifying data and calculations:

Signature/date Signatures on file copies

			•			
Site	296-S-21 Model	Run No.	PT-7			
Date	7/25/2006	Fan configuration	1, 4			
Tester	BGF	Fan Setting	56, 52		Hz	
Stack Dia.	17 7/8 in.	Stack Temp	106.5	deg F	<u></u>	
Stack X-Area	250.9 in.2	Start/End Time	1440/1600			
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23	
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7	
Measurement units	particles/ft3	Injection Point	Fan 4			
• •			40-			

Order>						151			
Traverse>			Port _4_ Bottom/East				Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	les/ft3			partic	les/ft3	
1	0.58	1532	1380	1256	1389.3	2169	2294	2252	2238.3
2	1.89	1289	1321	1238	1282.7	2060	2279	2200	2179.7
3	3.49	1354	1408	1313	1358.3	2118	2223	2096	2145.7
4	5.81	1307	1417	1275	1333.0	2079	2190	2092	2120.3
Center	9.00	1233	1324	1215	1257.3	2012	2292	2352	2218.7
5	12.19	1322	1323	1237	1294.0	2030	2483	2015	2176.0
6	14.51	1280	1190	1320	1263.3	2058	2473	2327	2286.0
7	16.11	1276	1253	1290	1273.0	2080	2655	2287	2340.7
8	17.42	1204	1135	1144	1161.0	2146	2291	2082	2173.0
Averages	>	1310.8	1305.7	1254.2	1290.2	2083.6	2353.3	2189.2	2208.7

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>	Normlzd
Mean	1749.5		Mean	1294.5	2209.6	1752.05	2246.93
Min Point	1161.0	-33.6%	Std. Dev.	37.7	78.7	478.48	80.01
Max Point	2340.7	33.8%	COV as %	2.9	3.6	27.31	3.56


Avg Conc 1751 pt/ft3

•			
	Start	Finish	_
Generator Inlet Press	5	5	psig
Stack Temp	106	107	F
Vel at 4So8	2240	2200.0	fpm
Ambient pressure	29.3	29.27	inHg
Ambient humidity	17%	11%	RH
Ambient temp	104	105	F
Back-Gd aerosol	1, 3, 0, 3	1, 0, 1, 0	pt/ft3
No. Bk-Gd samples	4	4	
Compressor output rea	100	90	nsia

instuments	usea:		Cal. Due
TSI Velocity	Calc Plus	S/N 209060	9/27/2006
Met One A24	408	S/N 96258675	9/16/2006

Notes:

4th traverse done on bottom port because the						
concentrations from the 2nd and 3rd traverses						
were markedly lower than the concentrations						
during the first traverse. The 4th traverse data were used.						
Oil Used: FisherBrand 19						

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-02

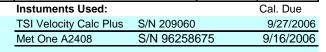
Signature/date Signatures on file copies

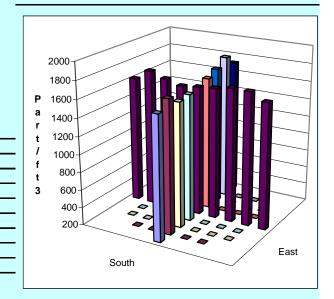
	FARTICLE INAC	EN INAVENSE DATA F	OKIVI		
Site	296-S-21 Model	Run No.	PT-8		
Date	7/25/2006	Fan configuration	2, 4		
Tester	BGF	Fan Setting	45, 52		Hz
Stack Dia.	17 7/8 in.	Stack Temp	106.5	deg F	
Stack X-Area	250.9 in.2	Start/End Time	1405/1535		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 4		
Order	1CT				

Order>		1ST							
Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	les/ft3			partic	les/ft3	
1	0.58	1432	1527	1420	1459.7	1572	1618	1572	1587.3
2	1.89	1501	1575	1527	1534.3	1547	1662	1847	1685.3
3	3.49	1507	1556	1552	1538.3	1554	1607	1628	1596.3
4	5.81	1471	1560	1497	1509.3	1510	1687	1661	1619.3
Center	9.00	1481	1529	1472	1494.0	1512	1745	1680	1645.7
5	12.19	1499	1492	1441	1477.3	1606	1679	1776	1687.0
6	14.51	1534	1498	1536	1522.7	1743	1753	1733	1743.0
7	16.11	1548	1636	1544	1576.0	1702	1885	1897	1828.0
8	17.42	1488	1511	1417	1472.0	1702	1760	1695	1719.0
Averages	>	1495.7	1542.7	1489.6	1509.3	1605.3	1710.7	1721.0	1679.0

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>	Normlzd
Mean	1594.1		Mean	1521.7	1686.4	1604.05	1681.29
Min Point	1459.7	-8.4%	Std. Dev.	32.3	79.1	103.29	59.16
Max Point	1828.0	14.7%	COV as %	2.1	4.7	6.44	3.52

Avg Conc 1597 pt/ft3


Generator Inlet Press Stack Temp Vel at 4So8 Ambient pressure Ambient humidity Ambient temp Back-Gd aerosol No. Bk-Gd samples Compressor output reg


Start	Finish	
5	5	psig
107	106	F
2275	2290.0	fpm
29.27	29.27	inHg
11%	13%	RH
105	106	F
1, 0, 1, 0	2, 3, 1, 1	pt/ft3
4	4	
90	90	psig

107	106	F
2275	2290.0	fpm
29.27	29.27	inHg
11%	13%	RH
105	106	F
1, 0, 1, 0	2, 3, 1, 1	pt/ft3
4	4	

Injector pointed about 45 degrees below centerline

Oil Used: FisherBrand 19

Signature signifies compliance with

Signature verifying data and calculations:

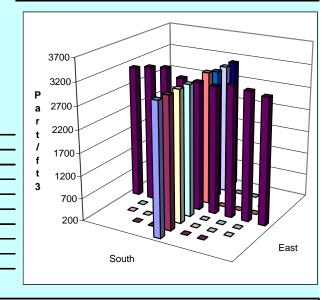
Procedure EMS-JAG-02

Signatures on file copies Signature/date

		EN INATENCE DATA	•		
Site	296-S-21 Model	Run No.	PT-9		
Date	7/26/2006	Fan configuration	3, 4		
Tester	BGF JAG JGD	Fan Setting	50, 52		Hz
Stack Dia.	17 7/8 in.	Stack Temp	88	deg F	
Stack X-Area	250.9 in.2	Start/End Time	0900/1020		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 4		
Order>			1ST		

Order>						1ST			
Traverse>			Port _4_ Bottom/East			Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	es/ft3			particl	les/ft3	
1	0.58	2932	3001	2958	2963.7	1957	1996	2147	2033.3
2	1.89	2969	3193	2913	3025.0	1938	1995	2159	2030.7
3	3.49	2988	3094	3184	3088.7	1999	1946	2173	2039.3
4	5.81	2964	2940	3091	2998.3	1984	1986	2135	2035.0
Center	9.00	3030	3061	3008	3033.0	1932	2051	2011	1998.0
5	12.19	3109	3130	2932	3057.0	2195	2037	1963	2065.0
6	14.51	3179	3233	3251	3221.0	2097	1946	2006	2016.3
7	16.11	3294	3188	3068	3183.3	2070	1947	2047	2021.3
8	17.42	3151	2985	3200	3112.0	1987	2006	2068	2020.3
Averages	>	3068.4	3091.7	3067.2	3075.8	2017.7	1990.0	2078.8	2028.8

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>	Normlzd
Mean	2552.3		Mean	3086.6	2029.4	2558.00	3083.63
Min Point	1998.0	-21.7%	Std. Dev.	84.4	20.9	551.75	61.35
Max Point	3221.0	26.2%	COV as %	2.7	1.0	21.57	1.99


Avg Conc 2557 pt/ft3

Generator Inlet Press Stack Temp Vel at 4So8 Ambient pressure Ambient humidity Ambient temp Back-Gd aerosol No. Bk-Gd samples Compressor output reg

Start	Finish	
5	5	psig
85	91	F
2450	2230.0	fpm
29.45	29.45	inHg
42%	27%	RH
82	87	F
2, 2, 0, 0	2, 2, 2, 1	pt/ft3
4	4	
110	90	psig

Instuments Used: TSI Velocity Calc Plus S/N 209060

Cal. Due 9/27/2006 Met One A2408 S/N 96258675 9/16/2006

Signature signifies compliance with

Oil Used: FisherBrand 19

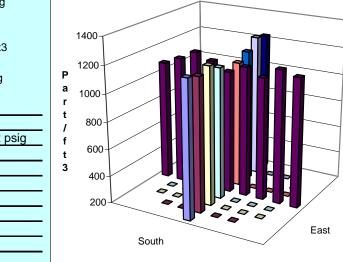
Signature verifying data and calculations:

Procedure EMS-JAG-02

Notes:

Signature/date

Signatures on file copies


	I ANTICLE THAC	EN INAVENSE DATA I	CIVIVI		
Site	296-S-21 Model	Run No.	PT-10		
Date	7/26/2006	Fan configuration	4		
Tester	BGF	Fan Setting	52		Hz
Stack Dia.	17 7/8 in.	Stack Temp	92	deg F	
Stack X-Area	250.9 in.2	Start/End Time	1020/1145		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 4		
<u> </u>					

					,				
Order>		1ST							
Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		partic	les/ft3			particl	les/ft3	
1	0.58	1145	1135	1148	1142.7	1031	1067	1225	1107.7
2	1.89	1239	1129	1157	1175.0	937	1044	1267	1082.7
3	3.49	1162	1058	1068	1096.0	962	1106	1280	1116.0
4	5.81	1193	1114	1146	1151.0	953	1095	1165	1071.0
Center	9.00	1149	1097	1043	1096.3	722	1122	1184	1009.3
5	12.19	1165	1179	1120	1154.7	733	1163	1213	1036.3
6	14.51	1228	1184	1184	1198.7	898	1206	1137	1080.3
7	16.11	1249	1137	1015	1133.7	1021	1315	1106	1147.3
8	17.42	1114	1088	1041	1081.0	1093	1295	1001	1129.7
Averages	>	1182.7	1124.6	1102.4	1136.6	927.8	1157.0	1175.3	1086.7

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	South	All	Normlzd
Mean	1111.6		Mean	1143.6	1077.6	1110.60	1157.04
Min Point	1009.3	-9.2%	Std. Dev.	38.3	46.1	53.23	45.05
Max Point	1198.7	7.8%	COV as %	3.3	4.3	4.79	3.89

1119 pt/ft3 Avg Conc Instuments Used: Cal. Due Start Finish TSI Velocity Calc Plus S/N 209060 9/27/2006 Met One A2408 S/N 96258675 9/16/2006

	Otart	1 1111311	_
Generator Inlet Press	2	2	psig
Stack Temp	91	93	F
Vel at 4So8	1560	1570.0	fpm
Ambient pressure	29.45	29.4	inHg
Ambient humidity	27%	20%	RH
Ambient temp	87	90	F
Back-Gd aerosol	1, 3, 2, 1	4, 3, 0, 1	pt/ft3
No. Bk-Gd samples	4	4	
Compressor output reg	90	90	psig

Notes:

5 psi on generator inlet resulted in concentrations >4000 pt/ft3. Regulator was adjusted down to ~ 2 psig

Oil Used: FisherBrand 19

Signature signifies compliance with Procedure EMS-JAG-02

Signature verifying data and calculations:

Signature/date Signatures on file copies

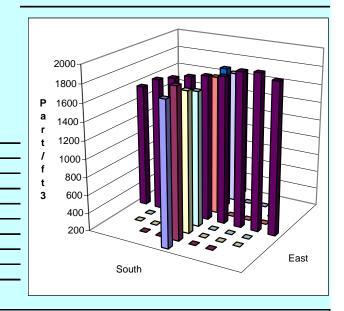
	I AITHOLL IIIAG	EN INAVENOL DATA	O1111		
Site	296-S-21 Model	Run No.	PT-11	Repeat of	<u>P</u> T-7
Date	7/26/2006	Fan configuration	1, 4		
Tester	BGF	Fan Setting	56, 52		Hz
Stack Dia.	17 7/8 in.	Stack Temp	101.5	deg F	
Stack X-Area	250.9 in.2	Start/End Time	1530/1710		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 4		
Order>	1ST				

Order>		101							
Traverse>			Port _4_ Bottom/East				Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		partic	les/ft3			partic	les/ft3	
1	0.58	2058	1862	1669	1863.0	1605	1785	1532	1640.7
2	1.89	2127	1943	1684	1918.0	1650	1876	1616	1714.0
3	3.49	2109	1882	1711	1900.7	1682	1700	1478	1620.0
4	5.81	2028	1788	1654	1823.3	1549	1713	1433	1565.0
Center	9.00	1975	1773	1652	1800.0	1797	1772	1430	1666.3
5	12.19	1980	1668	1645	1764.3	1464	1789	1576	1609.7
6	14.51	1838	1758	1567	1721.0	1425	1811	1716	1650.7
7	16.11	1818	1732	1479	1676.3	1402	1704	1567	1557.7
8	17.42	1706	1528	1472	1568.7	1663	1576	1376	1538.3
Averages	>	1959.9	1770.4	1614.8	1781.7	1581.9	1747.3	1524.9	1618.0

All	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	South	All	Normlzd
Mean	1699.9		Mean	1800.5	1626.2	1713.36	1778.58
Min Point	1538.3	-9.5%	Std. Dev.	88.9	55.8	115.18	76.43
Max Point	1918.0	12.8%	COV as %	4.9	3.4	6.72	4.30

 Avg Conc
 1696 pt/ft3
 Instuments Used:
 Cal. Due

 Start
 Finish
 TSI Velocity Calc Plus
 S/N 209060
 9/27/2006


 Generator Inlet Press
 4
 4 psig
 Met One A2408
 S/N 96258675
 9/16/2006

	Start	Finish	_
Generator Inlet Press	4	4	psig
Stack Temp	101	102	F
Vel at 4So8	2230	2250.0	fpm
Ambient pressure	1	-	inHg
Ambient humidity	19%	20%	RH
Ambient temp	100	97	F
Back-Gd aerosol	4, 4, 5, 2	0,2,0,1	pt/ft3
No. Bk-Gd samples	4	4	
Compressor output reg	90	60	psig

Called met station at be	ginning of test, but forgot to
record. Did not bothe	r tocall for end pressure.
Retrieve from HMS la	ter

Oil Used: FisherBrand 19

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-02

Signature/date Signatures on file copies

	I ANTICLE INAC	EN INAVENSE DATAT	CIVIVI		
Site	296-S-21 Model	Run No.	PT-12	Repeat of	PT-9
Date	7/27/2006	Fan configuration	3, 4		
Tester	JAG & JGD	Fan Setting	50, 52		Hz
Stack Dia.	17 7/8 in.	Stack Temp	89	deg F	
Stack X-Area	250.9 in.2	Start/End Time	0840/1050		_
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 4	_'	
Order>			1ST		

Order>						1ST			
Traverse>			Port _4_ Bottom/East			Port _4_ Side/South			
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	les/ft3		particles/ft3			
1	0.58	1019	1170	1042	1077.0	1217	1137	1201	1185.0
2	1.89	1186	1204	1088	1159.3	1204	1167	1094	1155.0
3	3.49	1205	1163	1113	1160.3	1224	1190	1099	1171.0
4	5.81	1240	1176	1127	1181.0	1256	1198	1180	1211.3
Center	9.00	1225	1080	1006	1103.7	1233	1200	1112	1181.7
5	12.19	1218	1113	1105	1145.3	1336	1227	1179	1247.3
6	14.51	1211	1208	1149	1189.3	1319	1260	1262	1280.3
7	16.11	1208	1128	1143	1159.7	1282	1227	1235	1248.0
8	17.42	1210	1103	1147	1153.3	1183	1161	1206	1183.3
Averages	>	1191.3	1149.4	1102.2	1147.7	1250.4	1196.3	1174.2	1207.0

AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	<u>All</u>	Normlzd
Mean	1177.3		Mean	1157.0	1213.5	1185.24	1226.12
Min Point	1077.0	-8.5%	Std. Dev.	27.8	46.6	47.13	39.78
Max Point	1280.3	8.7%	COV as %	2.4	3.8	3.98	3.24

Avg Conc 1182 pt/ft3

Generator Inlet Press

Stack Temp

Vel at 4So8

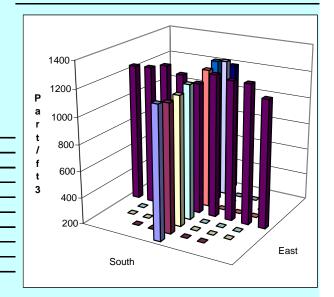
Ambient pressure

Ambient humidity

Back-Gd aerosol

No. Bk-Gd samples

Compressor output reg


Ambient temp

Start Finish 5 psig 84 94 2260 2210.0 fpm 29.397 29.379 inHg 48% 33% RH 86 92 0, 0, 0, 3 1, 1, 0, 1 pt/ft3 60 psig

 Instuments Used:
 Cal. Due

 TSI Velocity Calc Plus
 S/N 209060
 9/27/2006

 Met One A2408
 S/N 96258675
 9/16/2006

Notes:

Oil Used: FisherBrand 19

Signature signifies compliance with

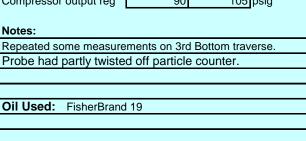
Procedure EMS-JAG-02

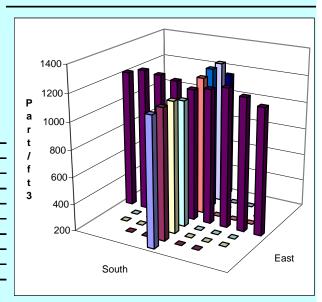
Signature/date Signatures on file copies

Signature verifying data and calculations:

			•		
Site	296-S-21 Model	Run No.	PT-13	Repeat of	PT-9
Date	7/27/2006	Fan configuration	3, 4		_
Tester	JAG	Fan Setting	50, 52		Hz
Stack Dia.	17 7/8 in.	Stack Temp	95.5	deg F	
Stack X-Area	250.9 in.2	Start/End Time	1055/1215		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 4		

Order ----> 1ST Port _4_ Bottom/East Port _4_ Side/South Traverse--> Trial ----> Mean 1 Mean particles/ft3 particles/ft3 Point Depth, in. 1148 1125 1130.3 1112 1179 1097 1129.3 0.58 1118 2 1126 1201 1105 1188 1.89 1209 1178.7 1128 1140.3 3 3.49 1292 1123 1252 1222.3 1139 1174 1125 1146.0 4 5.81 1126 1122 1076 1113.3 1185 1270 1193.7 1142 9.00 1161 1082 1269 1170.7 1134 1133 1198 1155.0 Center 5 12.19 1179 1193 1266 1212.7 1208 1173 1229 1203.3 6 14.51 1211 1208 1288 1238 1264 1204 1235.3 1235.7 7 16.11 1247 1163 1343 1251.0 1214 1258 1261 1244.3 17.42 1177 1212 1262 1217.0 1128 1137 1113 1126.0 1166.3 Averages -----> 1201.0 1150.1 1252.9 1201.3 1155.6 1175.8 1165.9


All	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	<u>South</u>	All	Normlzd
Mean	1183.6		Mean	1209.2	1176.8	1193.02	1201.01
Min Point	1113.3	-5.9%	Std. Dev.	29.7	50.8	43.36	41.26
Max Point	1251.0	5.7%	COV as %	2.5	4.3	3.63	3.44


 Avg Conc
 1186 pt/ft3
 Instuments Used:
 Cal. Due

 Start
 Finish
 TSI Velocity Calc Plus
 S/N 209060
 9/27/2006

 Generator Inlet Press
 5
 4 psig
 Met One A2408
 S/N 96258675
 9/16/2006

_	Start	Finish	_
Generator Inlet Press	5	4	psig
Stack Temp	94	97	F
Vel at 4So8	2210	2220.0	fpm
Ambient pressure	29.379	29.359	inHg
Ambient humidity	33%	33%	RH
Ambient temp	92	95	F
Back-Gd aerosol	1, 1, 0, 1	2, 0, 1, 2	pt/ft3
No. Bk-Gd samples	4	4	
Compressor output reg	90	105	psig

Signature signifies compliance with

Signature verifying data and calculations:

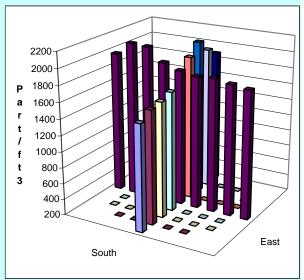
Procedure EMS-JAG-02

Signature/date Signatures on file copies

	I AITHOLL IIIAG	ER INAVERSE DATA	O1111		
Site	296-S-21 Model	Run No.	PT-14	Repeat of	f PT-1
Date	7/28/2006	Fan configuration	1, 2, 3		_
Tester	BGF	Fan Setting	56, 45, 50		Hz
Stack Dia.	17 7/8 in.	Stack Temp	85	deg F	
Stack X-Area	250.9 in.2	Start/End Time	0800/1030		
Elevation	N.A.	Center 2/3 from	1.64	to:	16.23
Distance to disturbance	77.75 inches	Points in Center 2/3	2	to:	7
Measurement units	particles/ft3	Injection Point	Fan 1		
Order	1CT				

Order>		1ST							
Traverse>			Port _4_ B	ottom/East			Port _4_ S	Side/South	
Trial>		1	2	3	Mean	1	2	3	Mean
Point	Depth, in.		particl	es/ft3			partic	les/ft3	
1	0.58	1936	1780	1656	1790.7	1317	1404	1448	1389.7
2	1.89	1966	1853	1638	1819.0	1390	1571	1454	1471.7
3	3.49	2072	1801	1704	1859.0	1472	1597	1423	1497.3
4	5.81	1987	1901	1645	1844.3	1496	1563	1580	1546.3
Center	9.00	2057	1862	1723	1880.7	1666	1672	1837	1725.0
5	12.19	2165	1860	1819	1948.0	1852	1824	1804	1826.7
6	14.51	2290	2040	1999	2109.7	1971	1982	1892	1948.3
7	16.11	2376	2098	1890	2121.3	1909	1665	1870	1814.7
8	17.42	2217	1880	1804	1967.0	1710	1659	1810	1726.3
Averages	>	2118.4	1897.2	1764.2	1926.6	1642.6	1659.7	1679.8	1660.7

pt/ft3


AII	pt/ft3	Dev. from mean	Center 2/3	<u>East</u>	South	<u>All</u>	Normlzd
Mean	1793.6		Mean	1940.3	1690.0	1815.14	1891.40
Min Point	1389.7	-22.5%	Std. Dev.	126.2	186.0	200.47	170.03
Max Point	2121.3	18.3%	COV as %	6.5	11.0	11.04	8.99

Avg Conc 1793 pt/ft3

Start Finish Generator Inlet Press Stack Temp 82 88 Vel at 4So8 2220 Batt dead fpm Ambient pressure 29.41 29.359 inHg Ambient humidity 40% 32% RH Ambient temp 81 86 0, 2, 2, 1 Back-Gd aerosol 0, 0, 0, 1 No. Bk-Gd samples Compressor output reg

	Instuments Used:		Cal. Due
	TSI Velocity Calc Plus	S/N 209060	9/27/2006
sig	Met One A2408	S/N 96258674	9/18/2006

90 psig Notes: Redid 2nd side traverse, 1st point. Wiggled and bumped intrument going from Point 8 back to Point 1. Immediately count went back to 1400 range. This is a different OPC than used for the other runs. Oil Used: FisherBrand 19

Signature signifies compliance with

Signature verifying data and calculations:

Procedure EMS-JAG-02

Signature/date Signatures on file copies

Appendix K

Flow Angle and Velocity Uniformity Data for the Actual Stack

(Calculated from Data Provided by CH2MHill)

APPENDIX K: FLOW ANGLE AND VELOCITY UNIFORMITY DATA FOR THE ACTUAL STACK

(Calculated from Data Provided by CH2MHill)

	FLOW ANGLE DATA FORM											
	Site	296-S-21 Sta		ANOLL DATE	A I OINI	Run No.	1					
		5/26/2006				Fan Setting	N.A.	-				
	Tester	slc			Fan	configuration	EF1, EF-2, E	F-3				
	Stack Dia.	66	in		Appr	ox. stack flow	N.A.	cfm				
	Stack X-Area	3421.2	in2			Units	N.A.					
	Elevation	728.5	ft			Baro Press	28.96					
Distance	to disturbance	N.A.	in			Rel Hum	22 to 25					
						Stack Temp	77	_				
Order>												
Traverse>			TEST PORT		1			- TP-222-SB-	·2			
Trial>		1	2	3	T	1	2	3				
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.			
1	1	-23	-23	-21	-22.3	-27	-27	-26	-26.7			
2	3 1/4	-20	-21	-21	-20.7	-22	-23	-23	-22.7			
3	5 5/8	-18	-19	-20	-19.0	-20	-21	-22	-21.0			
4	8 1/4	-16	-17	-17	-16.7	-17	-20	-20	-19.0			
5	11 1/8	-15	-16	-15	-15.3	-15	-18	-19	-17.3			
6	14 1/2	-14	-13	-14	-13.7	-15	-15	-16	-15.3			
7	18 5/8	-12	-10	-11	-11.0	-12	-11	-11	-11.3			
8	24 3/4	-8	-7	-9	-8.0	-10	-9	-10	-9.7			
9	41 1/4	-3	-3	-3	-3.0	-6	-3	-4	-4.3			
10	47 3/8	1	2	2	1.7	-2	0	1	-0.3			
11	51 1/2	5	4	3	4.0	1	2	3	2.0			
12	54 7/8	7	9	7	7.7	5	5	5	5.0			
13	57 3/4	8	10	9	9.0	10	9	9	9.3			
14	60 3/8	10	11	11	10.7	12	10	10	10.7			
15	62 3/4	12	14	14	13.3	15	14	13	14.0			
16	65	15	15	15	15.0	15	15	15	15.0			
	solute values o		12.1	12.0		12.8	12.6	12.9				
w/o points by	w/o points by wall: 10.6 11.1 11.1 11.6 11.4 11.9											
Instuments Used: all 12.4 w/o wall pts 11.3												
				Cal. Due								
S-type pitot		N.A.										
Stanley protr	actor level	N.A.										
Manometer		N.A.		N								
Maria				Notes:		ill Data Sheets		de la Colonia				
Note:	milar basa sann	aatiana						rices CH2M Hi				
	milar hose conne manometer and		tating		Harilold Glob	ip provided b	y Lucinua Boi	neman, 6/5/20	106			
	assembly clock	•	•									
	the right (to high											
momodd to	ano rigini (to riigi	ioi pool ilailia	010).									
									1			
	TEST PO	ORT - TP-222	SB-1			TEST F	PORT - TP-22	2-SB-2				
15.0				a fi	15.0				afi			
10.0				┱╢╢╟	10.0							
			a fi									
5.0				HHH	5.0			all				
0.0					0.0			_ , <u>_, _, _,</u>				
0.0				· · ·	-5.0	HHHH	╟┤╟┤╟┶┻					
-5.0												
		J			-15.0		J					
-15.0					-20.0							
-20.0	J				-25.0	•						
-25.0	2 3 4 5 6	7 8 9 10) 11 12 13 1	4 15 16	-30.0	3 4 5 6	7 8 9	10 11 12 13	14 15 16			
	- 3 - 3 6	, 0 3 10	, 11 12 13 1	- 10 10	1 2	J 7 J 0	, , , ,	10 11 12 13	17 10 10			
Signature ve	rifying data trans	sfer and calcu	lations:									
				Signature of	n file							

Signature/date

INPUT	Dataln		VELOCITY 1	TRAVERSE	DATA FORM	1				
	Site	296-S-21		_	Run No.	1		_		
	Date	5/26/2006		Fan C	Fan Configuration EF1, EF-2, EF-3			_		
	Testers	Vent & Balar	nce		Fan Setting	N.A.		_		
	Stack Dia.	66	in.		Stack Temp	77.0	deg F			
S	Stack X-Area	3421.2	in.2	Sta	rt/End Time	-1410, -144	5	_		
	Elevation	728.5 ft		Cen	ter 2/3 from	6.06	to:	59.94		
Distance to	disturbance	N.A.	inches	Points in	n Center 2/3	N.A.	to:	N.A.		
Velocity units ft/min Data Files: NA										
1st										
Traverse>	> TP-22			2-SB-1			TP-222	2-SB-2		
Trial>		1	2	3	Mean	1	2		Mean	
CorrectLabel	Depth, in.		VP (i	n. wg)			VP (ir	(in. wg)		
1	1.00	1.15	1.23	1.16	1.18	0.84	0.82	0.95	0.87	
2	3.25	1.25	1.30	1.22	1.26	1.03	1.02	1.04	1.03	
3	3.68	1.28	1.19	1.21	1.23	0.98	0.98	1.01	0.99	
4	8.25	1.10	1.12	1.15	1.12	0.95	1.02	0.94	0.97	
5	11.13	1.09	1.07	1.12	1.09	0.88	0.91	0.87	0.89	
6	14.50	0.97	0.98	0.95	0.97	0.90	0.96	0.91	0.92	
7	18.68	0.88	0.84	0.86	0.86	0.84	0.80	0.86	0.83	
8	24.75	0.72	0.80	0.79	0.77	0.83	0.80	0.79	0.81	
9	41.25	0.83	0.87	0.92	0.87	0.78	0.75	0.79	0.77	

Notes: Data from "Analytical and Technical Services CH2M Hill, Hanford Group" provided by Lucinda Borneman, 6/5/2006

1.00

1.09

1.12

1.22

1.24

1.26

1.20

1.09

0.95

1.09

1.14

1.26

1.26

1.31

1.24

1.10

0.76

0.82

0.82

1.02

1.02

1.06

0.83

0.90

0.76

0.89

0.87

0.91

1.01

1.14

0.92

0.91

0.79

0.87

0.92

0.97

1.03

1.04

0.97

0.92

0.77

0.86

0.87

0.97

1.02

1.08

0.91

0.91

10

11

12

13

14

15

16

Averages ----->

47.38

51.50

54.88

57.75

60.38

62.75

65.00

0.93

1.12

1.10

1.30

1.27

1.35

1.26

1.10

0.93

1.05

1.19

1.25

1.28

1.32

1.25

1.10

OUTPUT

12

13

14

15

16

Averages ---->

54.88

57.75

60.38

62.75

65.00

VELOCITY TRAVERSE DATA FORM

Mean
3136.3
3414.3
3347.3
3312.8
3167.7
3232.3
3070.7
3021.4
2958.3
2951.9
3119.4
-

3560

3716

3746

3776

3685

3511.5

AII	<u>ft/min</u>	Dev. from mean	Cntr 2/3	TP-222-SB-1	TP-222-SB-2	<u>All</u>
Mean	3360.8		Mean	3375.3	3127.8	3251.6
Min Point	2951.3	-12.2%	Std. Dev.	255.3	130.5	234.6
Max Point	3850 1	14 6%	COV as %	7.6	4 2	7.2

3586.2

3771.0

3781.2

3850.1

3741.0

3517.2

3046

3398

3398

3464

3065

3182.7

3138

3209

3381

3592

3227

3203.9

3227

3313

3414

3431

3313

3226.7

3137.1

3306.8

3397.6

3495.5

3201.7

3204.4

Flow w/o C-Pt 81331 acfm Instuments Used:
Vel Avg w/o C-Pt 3423 fpm See CH2M Hill Data Sheets

3670

3761

3806

3865

3761

3524.6

3528

3836

3791

3909

3776

3515.6

voi / (vg w/o o i t	0.120	٠.٠٠٠	CCC CHIZINI Filli Bata Chicoto
_	Start	Finish	
Stack temp	-		Velocity profile
Equipment temp	-		
Ambient temp	-		4000
Stack static	-		3500
Ambient pressure	-		3000
Total Stack pressure	-		
Ambient humidity	-		\$ 2000
Notes:			2500 2000 1500 1000 500 0 7P.222-SB-2
Signaturo/data			₹ ? "
Signature/date			

FLOW ANGLE DATA FORM

Site **296-S-21 Stack** Date 6/2/2006 Tester slc Stack Dia. Stack X-Area 3421.2 in2 Elevation 728.5 ft Distance to disturbance N.A. in

Run No. 2 Fan Setting Fan configuration EF1, EF-4 Approx. stack flow Units Baro Press 28.96 Rel Hum 54 to 59 Stack Temp 78

Order --->

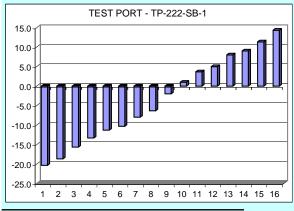
Traverse>	Traverse> TEST PORT - TP-222-SB-1 TEST PC						EST PORT -	ORT - TP-222-SB-2		
Trial>		1	2	3		1	2	3		
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.	
1	1	-20	-21	-20	-20.3	-27	-26	-28	-27.0	
2	3 1/4	-18	-20	-18	-18.7	-21	-26	-25	-24.0	
3	5 5/8	-16	-16	-15	-15.7	-22	-25	-25	-24.0	
4	8 1/4	-12	-14	-14	-13.3	-21	-20	-20	-20.3	
5	11 1/8	-11	-11	-12	-11.3	-17	-13	-17	-15.7	
6	14 1/2	-10	-10	-11	-10.3	-13	-10	-12	-11.7	
7	18 5/8	-9	-7	-8	-8.0	-9	-9	-8	-8.7	
8	24 3/4	-8	-6	-5	-6.3	-5	-6	-6	-5.7	
9	41 1/4	-2	-2	-2	-2.0	-1	-3	-4	-2.7	
10	47 3/8	2	1	0	1.0	0	0	-1	-0.3	
11	51 1/2	3	4	4	3.7	2	2	0	1.3	
12	54 7/8	5	6	4	5.0	5	3	3	3.7	
13	57 3/4	7	9	8	8.0	6	5	5	5.3	
14	60 3/8	8	9	10	9.0	9	8	6	7.7	
15	62 3/4	11	12	11	11.3	10	9	10	9.7	
16	65	14	15	14	14.3	11	11	10	10.7	
Mean of abs	solute values o	9.8	10.2	9.8		11.2	11.0	11.3		
w/o points by	wall:	8.7	9.1	8.7		10.1	9.9	10.1		
•								all	10.5	

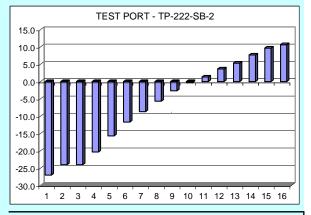
Instuments Used: Cal. Due

S-type pitot Stanley protractor level Manometer

N.A. N.A. N.A.

Note:

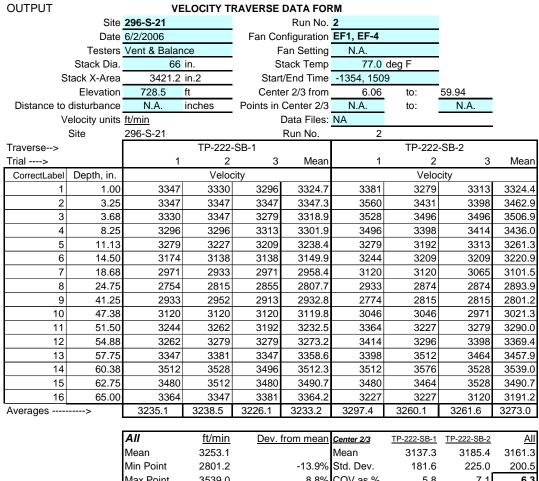

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

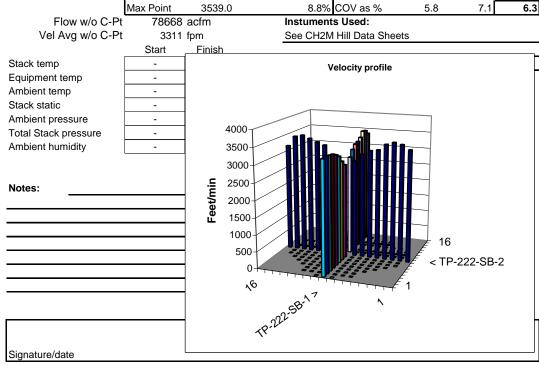

Notes: See CH2M Hill Data Sheets

Data from "Analytical and Technical Services CH2M Hill, Hanford Group" provided by Lucinda Borneman, 6/5/2006

w/o wall pts

9.4


Signature verifying data transfer and calculations:


Signature on file

Signature/date

INPUT	DataIn	,	VELOCITY 1	RAVERSE I	DATA FOR	M			
	Site	296-S-21			Run No.	2		_	
	Date	6/2/2006		Fan Co	nfiguration	EF1, EF-4		_	
	Testers	Vent & Balar	nce	F	an Setting	N.A.		_	
	Stack Dia.	66	in.	S	tack Temp	77.0	deg F	_	
S	tack X-Area	3421.2	in.2	Start	t/End Time	-1354, 1509)	_	
	Elevation	728.5	ft	Cente	er 2/3 from	6.06	to:	59.94	_
Distance to	disturbance	N.A.	inches	Points in	Center 2/3	N.A.	to:	N.A.	-
V	elocity units	ft/min			Data Files:	NA	•		_
		1st							•
Traverse>			TP-222	-SB-1			TP-222	2-SB-2	
Trial>		1	2	3	Mean	1	2	3	Mean
CorrectLabel	Depth, in.		VP (in	. wg)			VP (ir	n. wg)	
1	1.00	0.99	0.98	0.96	0.98	1.01	0.95	0.97	0.98
2	3.25	0.99	0.99	0.99	0.99	1.12	1.04	1.02	1.06
3	3.68	0.98	0.99	0.95	0.97	1.10	1.08	1.08	1.09
4	8.25	0.96	0.96	0.97	0.96	1.08	1.02	1.03	1.04
5	11.13	0.95	0.92	0.91	0.93	0.95	0.90	0.97	0.94
6	14.50	0.89	0.87	0.87	0.88	0.93	0.91	0.91	0.92
7	18.68	0.78	0.76	0.78	0.77	0.86	0.86	0.83	0.85
8	24.75	0.67	0.70	0.72	0.70	0.76	0.73	0.73	0.74
9	41.25	0.76	0.77	0.75	0.76	0.68	0.70	0.70	0.69
10	47.38	0.86	0.86	0.86	0.86	0.82	0.82	0.78	0.81
11	51.50	0.93	0.94	0.90	0.92	1.00	0.92	0.95	0.96
12	54.88	0.94	0.95	0.95	0.95	1.03	0.96	1.02	1.00
13	57.75	0.99	1.01	0.99	1.00	1.02	1.09	1.06	1.06
14	60.38	1.09	1.10	1.08	1.09	1.09	1.13	1.10	1.11
15	62.75	1.07	1.09	1.07	1.08	1.07	1.06	1.10	1.08
16	65.00	1.00	0.99	1.01	1.00	0.92	0.92	0.86	0.90
Averages	>	0.93	0.93	0.92	0.93	0.97	0.94	0.94	0.95

Notes: Data from "Analytical and Technical Services CH2M Hill, Hanford Group" provided by Lucinda Borneman, 6/5/2006

FLOW ANGLE DATA FORM

 Site 296-S-21 Stack

 Date 6/2/2006

 Tester slc

 Stack Dia. 66 in Stack X-Area 3421.2 Elevation 728.5 ft

 Distance to disturbance N.A. in

Run No. 3
Fan Setting N.A.
Fan configuration
Approx. stack flow N.A. cfm
Units N.A.
Baro Press
Rel Hum
Stack Temp 78

Order ---> TEST PORT - TP-222-SB-1 TEST PORT - TP-222-SB-2 Traverse--> Trial ----> 3 Point Depth, in. deg. cw deg. cw deg. cw Avg. deg. cw deg. cw deg. cw Avg. 1 1 -20 -20 -19 -19.7 -23 -26 -26 -25.0 3 1/4 -19 -18.7 2 -18 -19 -24 -25 -26 -25.0 5 5/8 -17 -22 3 -18 -18 -17.7 -21 -23 -22.0 4 8 1/4 -15 -15 -16 -15.3 -21 -19 -20 -20.0 5 11 1/8 -14 -14 -15 -14.3 -17 -16 -17 -16.7 14 1/2 -12 -11 -14 -12.3 -14 -12 -11 -12.3 6 7 18 5/8 -10 -9 -10 -9.7 -10 -9 -9 -9.3 24 3/4 8 -8 -8 -8 -8.0 -5 -5 -5 -5.0 9 41 1/4 -2 -2 -2 -2.0 0 1 1 0.7 47 3/8 10 -1 0 0 -0.3 2 2 1 1.7 51 1/2 11 4 4 3 2 3.0 3 3 3.3 12 54 7/8 5 4.7 5 5 4 5 5 5.0 13 57 3/4 7 7 6 6.7 6 5 5 5.3 14 60 3/8 10 9 9 9.3 7 8 7.3 62 3/4 15 14 13 14 13.7 7 8 9 8.0 16 65 16 15 9 9 10 9.3 15 15.3 Mean of absolute values of 10.8 10.5 10.7 11.0 10.8 11.2 w/o points by wall: 9.5 9.8 9.8 10.3 9.9 10.2

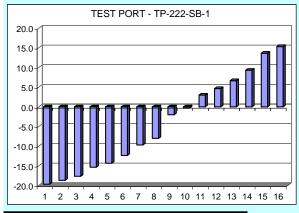
Instuments Used:

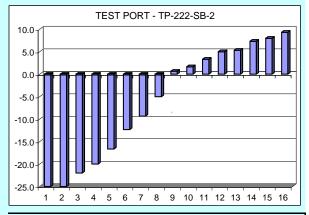
Cal. Due

S-type pitot Stanley protractor level Manometer N.A. N.A. N.A.

Note:

To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).


Notes: See CH2M Hill Data Sheets

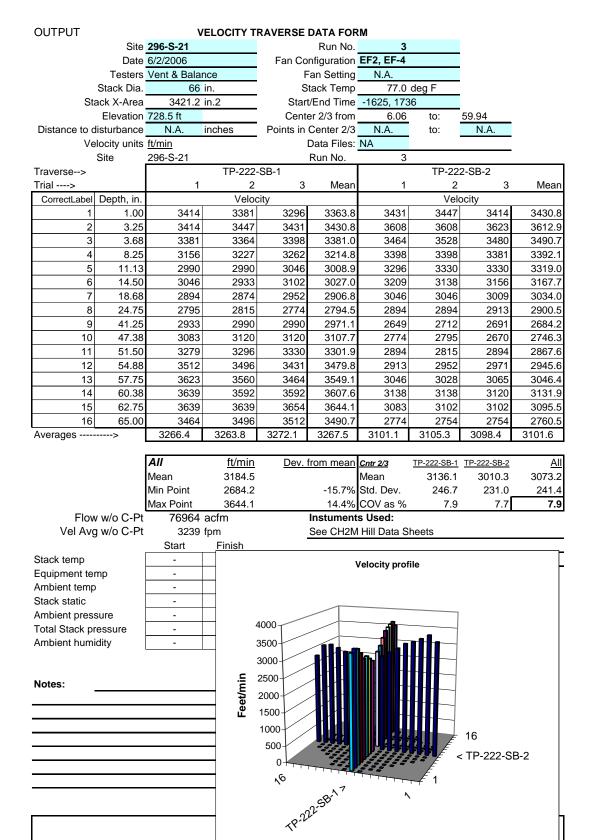

Data from "Analytical and Technical Services CH2M Hill, Hanford Group" provided by Lucinda Borneman, 6/5/2006

10.8

9.9

w/o wall pts

Signature verifying data transfer and calculations:


Signature on file

Signature/date

INPUT	DataIn		VELOCITY	TRAVERSE DATA FOR	М		
	Site	296-S-21		Run No.	3		
	Date	6/2/2006		Fan Configuration	EF2, EF-4		
	Testers	Vent & Balance		Fan Setting	N.A.		
	Stack Dia.	66 in.		Stack Temp	77.0 deg F		
	Stack X-Area	3421.	2 in.2	Start/End Time	-1625, 1736		<u> </u>
	Elevation	728.5 ft		Center 2/3 from	6.06	to:	59.94
Distance	to disturbance	N.A.	inches	Points in Center 2/3	N.A.	to:	N.A.
	Velocity units	ft/min		Data Files:	NA		

[1st	TD 000						
						TD 000	00.0	
		TP-222	_			TP-222	-SB-2	
	1	2	3	Mean	1	2	3	Mean
Depth, in.		VP (in	ı. wg)			VP (in.	. wg)	
1.00	1.03	1.01	0.96	1.00	1.04	1.05	1.03	1.04
3.25	1.03	1.05	1.04	1.04	1.15	1.15	1.16	1.15
3.68	1.01	1.00	1.02	1.01	1.06	1.10	1.07	1.08
8.25	0.88	0.92	0.94	0.91	1.02	1.02	1.01	1.02
11.13	0.79	0.79	0.82	0.80	0.96	0.98	0.98	0.97
14.50	0.82	0.76	0.85	0.81	0.91	0.87	0.88	0.89
18.68	0.74	0.73	0.77	0.75	0.82	0.82	0.80	0.81
24.75	0.69	0.70	0.68	0.69	0.74	0.74	0.75	0.74
41.25	0.76	0.79	0.79	0.78	0.62	0.65	0.64	0.64
47.38	0.84	0.86	0.86	0.85	0.68	0.69	0.63	0.67
51.50	0.95	0.96	0.98	0.96	0.74	0.70	0.74	0.73
54.88	1.09	1.08	1.04	1.07	0.75	0.77	0.78	0.77
57.75	1.16	1.12	1.06	1.11	0.82	0.81	0.83	0.82
60.38	1.17	1.14	1.14	1.15	0.87	0.87	0.86	0.87
62.75	1.17	1.17	1.18	1.17	0.84	0.85	0.85	0.85
65.00	1.06	1.08	1.09	1.08	0.68	0.67	0.67	0.67
·->	0.95	0.95	0.95	0.95	0.86	0.86	0.86	0.86
	1.00 3.25 3.68 8.25 11.13 14.50 18.68 24.75 41.25 47.38 51.50 54.88 57.75 60.38 62.75 65.00	1.00 1.03 3.25 1.03 3.68 1.01 8.25 0.88 11.13 0.79 14.50 0.82 18.68 0.74 24.75 0.69 41.25 0.76 47.38 0.84 51.50 0.95 54.88 1.09 57.75 1.16 60.38 1.17 62.75 1.17 65.00 1.06	1.00 1.03 1.01 3.25 1.03 1.05 3.68 1.01 1.00 8.25 0.88 0.92 11.13 0.79 0.79 14.50 0.82 0.76 18.68 0.74 0.73 24.75 0.69 0.70 41.25 0.76 0.79 47.38 0.84 0.86 51.50 0.95 0.96 54.88 1.09 1.08 57.75 1.16 1.12 60.38 1.17 1.14 62.75 1.17 1.17 65.00 1.06 1.08	1.00 1.03 1.01 0.96 3.25 1.03 1.05 1.04 3.68 1.01 1.00 1.02 8.25 0.88 0.92 0.94 11.13 0.79 0.79 0.82 14.50 0.82 0.76 0.85 18.68 0.74 0.73 0.77 24.75 0.69 0.70 0.68 41.25 0.76 0.79 0.79 47.38 0.84 0.86 0.86 51.50 0.95 0.96 0.98 54.88 1.09 1.08 1.04 57.75 1.16 1.12 1.06 60.38 1.17 1.14 1.14 62.75 1.17 1.17 1.18 65.00 1.06 1.08 1.09	1.00 1.03 1.01 0.96 1.00 3.25 1.03 1.05 1.04 1.04 3.68 1.01 1.00 1.02 1.01 8.25 0.88 0.92 0.94 0.91 11.13 0.79 0.79 0.82 0.80 14.50 0.82 0.76 0.85 0.81 18.68 0.74 0.73 0.77 0.75 24.75 0.69 0.70 0.68 0.69 41.25 0.76 0.79 0.79 0.78 47.38 0.84 0.86 0.86 0.85 51.50 0.95 0.96 0.98 0.96 54.88 1.09 1.08 1.04 1.07 57.75 1.16 1.12 1.06 1.11 60.38 1.17 1.14 1.14 1.15 62.75 1.17 1.17 1.18 1.17 65.00 1.06 1.08 1.09	1.00 1.03 1.01 0.96 1.00 1.04 3.25 1.03 1.05 1.04 1.04 1.15 3.68 1.01 1.00 1.02 1.01 1.06 8.25 0.88 0.92 0.94 0.91 1.02 11.13 0.79 0.79 0.82 0.80 0.96 14.50 0.82 0.76 0.85 0.81 0.91 18.68 0.74 0.73 0.77 0.75 0.82 24.75 0.69 0.70 0.68 0.69 0.74 41.25 0.76 0.79 0.79 0.78 0.62 47.38 0.84 0.86 0.86 0.85 0.68 51.50 0.95 0.96 0.98 0.96 0.74 54.88 1.09 1.08 1.04 1.07 0.75 57.75 1.16 1.12 1.06 1.11 0.82 60.38 1.17 1.14 </td <td>1.00 1.03 1.01 0.96 1.00 1.04 1.05 3.25 1.03 1.05 1.04 1.04 1.15 1.15 3.68 1.01 1.00 1.02 1.01 1.06 1.10 8.25 0.88 0.92 0.94 0.91 1.02 1.02 11.13 0.79 0.79 0.82 0.80 0.96 0.98 14.50 0.82 0.76 0.85 0.81 0.91 0.87 18.68 0.74 0.73 0.77 0.75 0.82 0.82 24.75 0.69 0.70 0.68 0.69 0.74 0.74 41.25 0.76 0.79 0.79 0.78 0.62 0.65 47.38 0.84 0.86 0.86 0.85 0.68 0.69 51.50 0.95 0.96 0.98 0.96 0.74 0.70 54.88 1.09 1.08 1.04 1.07 0.</td> <td>1.00 1.03 1.01 0.96 1.00 1.04 1.05 1.03 3.25 1.03 1.05 1.04 1.04 1.15 1.15 1.16 3.68 1.01 1.00 1.02 1.01 1.06 1.10 1.07 8.25 0.88 0.92 0.94 0.91 1.02 1.02 1.01 11.13 0.79 0.79 0.82 0.80 0.96 0.98 0.98 14.50 0.82 0.76 0.85 0.81 0.91 0.87 0.88 18.68 0.74 0.73 0.77 0.75 0.82 0.82 0.80 24.75 0.69 0.70 0.68 0.69 0.74 0.74 0.75 41.25 0.76 0.79 0.79 0.78 0.62 0.65 0.64 47.38 0.84 0.86 0.86 0.85 0.68 0.69 0.63 51.50 0.95 0.96</td>	1.00 1.03 1.01 0.96 1.00 1.04 1.05 3.25 1.03 1.05 1.04 1.04 1.15 1.15 3.68 1.01 1.00 1.02 1.01 1.06 1.10 8.25 0.88 0.92 0.94 0.91 1.02 1.02 11.13 0.79 0.79 0.82 0.80 0.96 0.98 14.50 0.82 0.76 0.85 0.81 0.91 0.87 18.68 0.74 0.73 0.77 0.75 0.82 0.82 24.75 0.69 0.70 0.68 0.69 0.74 0.74 41.25 0.76 0.79 0.79 0.78 0.62 0.65 47.38 0.84 0.86 0.86 0.85 0.68 0.69 51.50 0.95 0.96 0.98 0.96 0.74 0.70 54.88 1.09 1.08 1.04 1.07 0.	1.00 1.03 1.01 0.96 1.00 1.04 1.05 1.03 3.25 1.03 1.05 1.04 1.04 1.15 1.15 1.16 3.68 1.01 1.00 1.02 1.01 1.06 1.10 1.07 8.25 0.88 0.92 0.94 0.91 1.02 1.02 1.01 11.13 0.79 0.79 0.82 0.80 0.96 0.98 0.98 14.50 0.82 0.76 0.85 0.81 0.91 0.87 0.88 18.68 0.74 0.73 0.77 0.75 0.82 0.82 0.80 24.75 0.69 0.70 0.68 0.69 0.74 0.74 0.75 41.25 0.76 0.79 0.79 0.78 0.62 0.65 0.64 47.38 0.84 0.86 0.86 0.85 0.68 0.69 0.63 51.50 0.95 0.96

Notes: Data from "Analytical and Technical Services CH2M Hill, Hanford Group" provided by Lucinda Borneman, 6/5/2006

Signature/date

FLOW ANGLE DATA FORM

 Site
 296-S-21 Stack

 Date
 6/2/2006

 Tester

 Stack Dia.
 66
 in

 Stack X-Area
 3421.2
 in2

 Elevation
 728.5
 ft

 Distance to disturbance
 N.A.
 in

Run No. 4
Fan Setting N.A.
Fan configuration EF3, EF-4
Approx. stack flow N.A. cfm
Units N.A.
Baro Press 28.96
Rel Hum 45 to 48
Stack Temp 78 to 79

Order --->

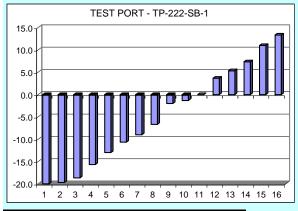
Traverse>			TEST PORT -	TP-222-SB-1		TEST PORT - TP-222-SB-2				
Trial>		1	2	3		1	2	3		
Point	Depth, in.	deg. cw	deg. cw	deg. cw	Avg.	deg. cw	deg. cw	deg. cw	Avg.	
1	1	-20	-20	-20	-20.0	-28	-26	-27	-27.0	
2	3 1/4	-19	-20	-20	-19.7	-26	-24	-26	-25.3	
3	5 5/8	-18	-19	-19	-18.7	-22	-22	-23	-22.3	
4	8 1/4	-16	-16	-15	-15.7	-19	-18	-20	-19.0	
5	11 1/8	-13	-13	-13	-13.0	-18	-15	-16	-16.3	
6	14 1/2	-10	-11	-11	-10.7	-13	-11	-12	-12.0	
7	18 5/8	-8	-9	-10	-9.0	-9	-5	-6	-6.7	
8	24 3/4	-6	-7	-7	-6.7	-4	-3	-3	-3.3	
9	41 1/4	-2	-2	-2	-2.0	1	1	1	1.0	
10	47 3/8	-2	-1	-1	-1.3	3	1	2	2.0	
11	51 1/2	0	0	0	0.0	3	2	2	2.3	
12	54 7/8	3	4	4	3.7	3	2	2	2.3	
13	57 3/4	5	6	5	5.3	2	3	3	2.7	
14	60 3/8	6	8	8	7.3	5	5	5	5.0	
15	62 3/4	11	12	10	11.0	6	6	5	5.7	
16	65	14	14	12	13.3	8	8	8	8.0	
Mean of abs	solute values o	9.6	10.1	9.8		10.6	9.5	10.1		
w/o points by	wall:	8.5	9.1	8.9		9.6	8.4	9.0		
								all	9.9	

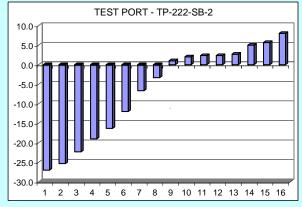
Instuments Used:

Cal. Due

S-type pitot Stanley protractor level Manometer N.A. N.A. N.A.

Note:


To assure similar hose connections between the manometer and pitot tube, rotating the pitot tube assembly clockwise drives the meniscus to the right (to higher pos. numbers).

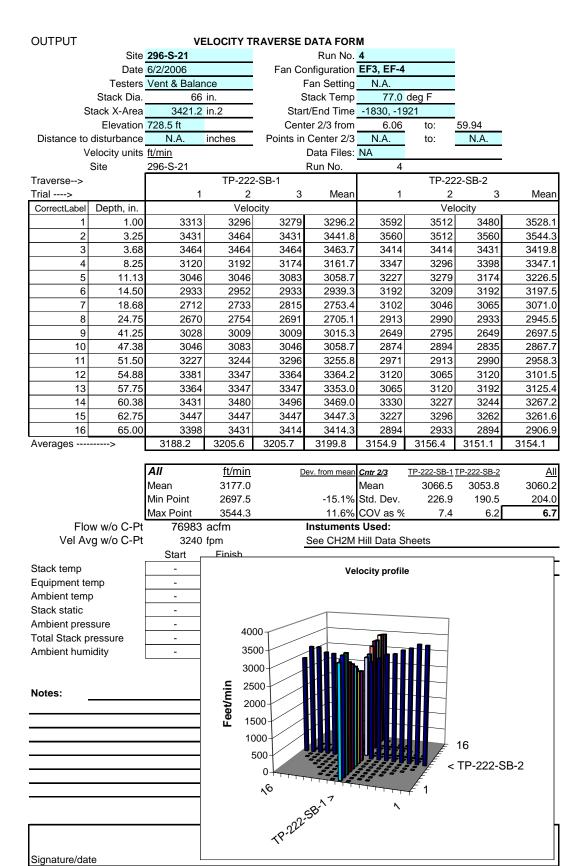

Notes: See CH2M Hill Data Sheets

Data from "Analytical and Technical Services CH2M Hill, Hanford Group" provided by Lucinda Borneman, 6/5/2006

w/o wall pts

8.9

Signature verifying data transfer and calculations:


Signature on file

Signature/date

INPUT	DataIn		VELOCITY TRAVERSE DATA FORM								
	Site	296-S-21		Run No.	Run No. <u>4</u>						
	Date	6/2/2006		Fan Configuration	Fan Configuration EF3, EF-4						
	Testers	Vent & Ba	ance	Fan Setting	N.A.						
	Stack Dia.	66 in.		Stack Temp	77.0 de	77.0 deg F					
	Stack X-Area	3421.	2 in.2	Start/End Time	-1830, -1921		<u> </u>				
	Elevation	728.5 ft		Center 2/3 from	6.06	to:	59.94				
Distance to	o disturbance	N.A.	inches	Points in Center 2/3	N.A.	to:	N.A.				
	Velocity units	ft/min		Data Files:	NA						
		1st				•					

Traverse>		TP-222-SB-1				TP-222-SB-2			
Trial>		1	2	3	Mean	1	2	3	Mean
CorrectLabel	Depth, in.		VP (ir	ո. wg)	VP (in. wg)		n. wg)		
1	1.00	0.97	0.96	0.95	0.96	1.14	1.09	1.07	1.10
2	3.25	1.04	1.06	1.04	1.05	1.12	1.09	1.12	1.11
3	3.68	1.06	1.06	1.06	1.06	1.03	1.03	1.04	1.03
4	8.25	0.86	0.90	0.89	0.88	0.99	0.96	1.02	0.99
5	11.13	0.82	0.82	0.84	0.83	0.92	0.95	0.89	0.92
6	14.50	0.76	0.77	0.76	0.76	0.90	0.91	0.90	0.90
7	18.68	0.65	0.66	0.70	0.67	0.85	0.82	0.83	0.83
8	24.75	0.63	0.67	0.64	0.65	0.75	0.79	0.76	0.77
9	41.25	0.81	0.80	0.80	0.80	0.62	0.69	0.62	0.64
10	47.38	0.82	0.84	0.82	0.83	0.73	0.74	0.71	0.73
11	51.50	0.92	0.93	0.96	0.94	0.78	0.75	0.79	0.77
12	54.88	1.01	0.99	1.00	1.00	0.86	0.83	0.86	0.85
13	57.75	1.00	0.99	0.99	0.99	0.83	0.86	0.90	0.86
14	60.38	1.04	1.07	1.08	1.06	0.98	0.92	0.93	0.94
15	62.75	1.05	1.05	1.05	1.05	0.92	0.96	0.94	0.94
16	65.00	1.02	1.04	1.03	1.03	0.74	0.76	0.74	0.75
Averages>		0.90	0.91	0.91	0.91	0.89	0.88	0.88	0.88

Notes: Data from "Analytical and Technical Services CH2M Hill, Hanford Group" provided by Lucinda Borneman, 6/5/2006

Distribution

No. of Copies

ONSITE

2	U.S. Department of Energy Office of River Protection						
	D. W. Bowser	H6-60					
	A. J. Stevens	H6-60					
10	CH2MHill						
	L. E. Borneman	T6-03					
	S. L. Brey	T6-04					
	B. H. Ruealas	T6-04					
	L. L. Weaver	T6-04					
	L. L. Penn	H6-03					
	P. Miller	R1-51					
	J. D. Guberski	R1-51					
	D. B. Hardy	T6-14					
	D. L. Renberger	H6-07					
	B. R. Hill	T6-03					
8	Pacific Northwest National Laboratory						
	J. A. Glissmeyer (5)	K3-54					
	K. Salisbury-Miller	K9-34					
	B. G. Fritz	K6-75					
	J. M. Barnett	J2-25					
2	Hanford Technical Library Technical Report Files	P8-55					
	recinical Report Files	10-33					