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Abstract 
 
 
Data (or information) fusion (or integration) from different sources is found in many 

applications, from epidemiology, medicine, biology, and business to military applications such 
as intelligence.  Data fusion may involve integration of spectral content with imaging, text, and 
many other observations or sensor data.  In this paper, we review the methodologies and 
implementations of the data-fusion process used in the literature and illustrate in more detail the 
methodologies involved by presenting three examples.  We propose that the data-fusion process 
can be viewed as multi-path and multi-stage mappings and that the development of a data-fusion 
system for each specific application involves integrating four tool boxes: structure tools for data-
fusion structure specifications, analytic tools for mapping methodologies, visualization tools for 
human and machine interface, and evaluation tools for evaluating fusion outcomes.  
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I. Introduction 
 
 
Data, or information, integration exists in many fields of study, from epidemiology to 

medicine, biology, business, military applications such as intelligence, and non-destructive 
testing.   For example, in epidemiology, information is often obtained based on many studies 
conducted by different researchers at different regions with different protocols.  In medicine, the 
diagnosis of a disease is often based on imaging (MRI, x-ray, and CT), clinical examination, 
patients’ description of symptoms, and lab results.  In biology, information is obtained based on 
studies conducted on many different species (DuMouchel and Groer 1983), and many different 
tools such as electrophoresis and spectrometry.  In business, financial as well as political 
information is gathered and analyzed.  In intelligence and military fields, data can be from radar 
sensors, text messages, chemical/biological sensors, acoustic sensors, optical warnings, and 
many other sources (Cato and Simmen 1987; Pemberton, Dotterweich et al. 1987; Simpson and 
Kelley 1987).  In non-destructive testing, visual examination, eddy current testing, and other 
kinds of tests (e.g., ultrasonic test results) are integrated to detect the flaw and its depth and 
length (Gros 1997).   

 
“Data fusion,” “information fusion,” “data integration,” and “information integration” are all 

used synonymously.  In this paper, we use data fusion and information fusion interchangeably. 
 
There are several versions of generalization of data fusion.  Hall and Llinas (2001) pointed 

out three processing architectures: direct fusion of sensor data, fusion of extracted features data 
from sensor data, and the fusion of decision data formed from individual sensors.  Gros (1997) 
adopted this integration paradigm to the non-destructive testing situation, as data fusion at the 
signal level (data), evidence level (features), and dynamics level (decision).  This paradigm can 
be generalized to all types of data, including sensor data fusion, as three types of architectures:  
raw data fusion, feature data fusion, and decision data fusion.  Figure 1.1 depicts this 
classification. 

 

Data fusion Features fusion Decision fusion

Final data/Information
fusion for estimation,

prediction or
decisions

 
Figure 1.1. Data fusion classified into data fusion, features fusion, and 

decision fusion (adopted from Hall and Llinas, 2001, and Gros, 
1997) 

 
There are situations in which featured data may need to be combined with raw data or 

decision level data to reveal the correlations among different attributes of variables.  In this case, 
the process is a hybrid of data fusion and feature fusion, or feature fusion and decision fusion.  
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So, this classification does not capture the interactions among different parts of the data-fusion 
process. 

 
The Joint Directors of Laboratories (JDL) Fusion Working Group has defined four different 

levels for the data-fusion process, targeted mainly at military applications (Steinberg and 
Bowman 2001).  This is a four-level functional model for the data-fusion process:  level 1 
involves object assessment from the raw sensor data; level 2 take the results from level1 to 
perform situation assessment; level 3 takes results from level 2 to have impact assessment; and 
level 4 provides resource management and feedback for refinement of the three previous three 
levels.  This definition assumes a sequential flow of information.  However, there might be 
situations for which results from both levels 1 and 2 need to be considered to assess impacts.  
Most recently, a level 5 process was proposed for this model (Hall and McMullen 2004).  This 
level captures the human interaction with computers in the process of data fusion.  JDL’s 
classification is a good overview of the data fusion process but does not indicate how different 
levels of the process interact.  Figure 1.2 illustrates JDL’s four-level fusion process.  

 

Level 1
Object

assessment

Level 2
Situation

assessment

Level 3
Impact

assessment

Level 4
Resouce

management and
feed back for
refinement  

 
Figure 1.2. Joint Directors of Laboratories (JDL) process model for data 

fusion targeted at military applications (adopted from Steinberg 
and Bowman, 2001) 

 
 

Kokar (Kokar, Tomasik et al. 2004) proposed using category theory from mathematics to 
classify information fusion systems.  This classification, which consists of algebraic 
specifications and morphisms among the specifications, classifies information fusion into three 
classes: data fusion, decision fusion, and data association.  They claim that decision fusion and 
data association can be framed as a special case of data fusion.  Their classification can 
potentially provide a framework for computers to automatically specify algorithms and to 
synthesize and analyze a fusion system. 

 
Effective development and assessment of methodologies are vital to integrating the data, 

whether it is raw data, feature-extracted data, or individual decision data.  Depending on the kind 
of data to be combined, both methodology and evaluation of the effectiveness of the method can 
vary.   For raw data or extracted features, methods include parametric templating, cluster 
analysis, adaptive neural networks, physical models, knowledge-based methods, and others.  For 
the decision-level data, methods include classical statistical inference, Bayesian inference, 
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Dempster-Shafer’s method, and other heuristic methods (Hall and Llinas 2001; Hall and 
McMullen 2004).   

 
The framework or classifications of data/information fusion are still evolving.  However, in 

all the classifications mentioned above, the fusion process depends on the types of data (e.g., raw 
data, extracted-feature data, or decision-type data) and the methodologies used.  

 
It is clear that, no matter how the process is classified or framed, information fusion contains 

many steps of data processes that entail mapping data from one domain to another with varying 
methodologies.   

 
In this paper, we divide data fusion into three parallel steps: the data-fusion process, fusion 

methodologies, and fusion development/implementation.  The data-fusion process describes the 
overall structure of the fusion; fusion methodologies are the methods of linking all structures 
together; and fusion-system development is the framework for the fusion to be applied.   We 
illustrate these three steps in three examples and propose a multi-path, multi-stage mapping 
structure as a unified approach to the data-fusion process and system implementation.   
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II. Information Fusion Models 
 
 
Every time a decision is made based on analyzing data, a data-fusion process is performed.  

Three examples are considered below:  (1) the discovery of the preventive effect of fluoridated 
water on tooth decay; (2) the cross-referencing of information among studies on the effect of 
difference diesels conducted on both animals and humans; and (3) the command and control 
management of battlefields.  In each situation, the data-fusion process, data-fusion methodology, 
and possible system development are discussed. 

II.1. Fluoridated Water and Tooth Decay 
In 1908, there was a brown stain (enamel fluorosis) endemic in Colorado among children,  

ages 12 to 14 (Hilleboe 1956).  Subsequently, from 1908 to 1942, several historical studies and 
observations were conducted to study the cause of the brown stain.  Clinical dental and health 
examinations involving the color of teeth, x-ray estimations of bone maturation, blood counts, 
eye and ear tests, test for excretion of albumin and for red blood cells, and casts were recorded.  
It was found that the stain was caused by fluoride in the water.  Meanwhile, it was observed that 
those with brown stain had fewer dental caries.  The more brown stains, the fewer dental caries.  
This led to the hypothesis that fluoridated water prevents the dental caries.  In 1945, the 
Newburgh-Kingston caries-fluorine study, a prospective study, confirmed that the more fluorine 
in the water given to a study population, the fewer dental caries (Schlesinger, Overton et al. 
1950; Dean 1953; Schlesinger, Overton et al. 1953; Ast, Smith et al. 1956; Dean 1956; 
Schlesinger, Overton et al. 1956).  This study led to new public health policies recommending 
that fluorine be added in drinking water or that toothpastes and fluorine tables or solution be used 
in the prevention of cavities. 
 
Data-fusion process 

In this case, the data fusion process encompasses two components: the hypothesis generated 
and the hypothesis supported.  Historical observations on brown stains and fluorine contents in 
drinking water and tooth decay were sequentially combined to infer correlations between brown 
stain and fluorine and brown stain and cavities.  From those correlations, a hypothesis was 
postulated and supported by prospective observations of cavities and fluorine contents.  Figure 
2.1 depicts the process. 
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Figure 2.1. Data-fusion process for the fluorine and tooth decay situation 
 
Data-fusion methodology 

Exploratory analyses with bar charts, scatter plots, and list of frequency tables were used to 
model the data.  Variables of interest, such as fluorine content in ppm, the number of decayed, 
missing, or filled (DMF) teeth per 100 erupted permanent teeth, and many other were identified.  
Regression analysis was used to identify the correlations between brown stain and fluorine, 
brown stain and dental caries, and dental caries and fluorine.  For example, pairs of the index of 
dental fluorosis and fluoride content in water in ppm were extracted from different cities and 
states and scatter-plotted (see Figure 2.2) to generate relationships between fluorosis and fluorine 
content (Dean 1956).  Regression analysis of these pairs of data resulted:   

 
               Fluorosis index = 0.237 + 2.275 x Fluorine content 
 
with a 95% confidence interval for the coefficient of fluorine content between 1.589 and 2.961, 
showing the statistical significance of the fluorine content to the fluorosis content.  This same 
regression analysis and a classical testing of the hypothesis were used to deduce a strong effect 
of fluorine content on dental caries. 
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Fluorosis 
Index 

Fluorine 
Content, 

ppm 
3.4 14.1 
3.3 8.0 
3.2 7.6 
3.3 5.7 
2.7 4.4 
2.1 4.0 
2.3 3.9 
1.8 2.9 
1.3 2.6 
1.4 2.2 
0.69 1.9 
0.67 1.8 
0.46 1.3 
0.32 1.2 
0.31 0.9 
0.17 0.6 
0.22 0.5 
0.25 0.4 
0.09 0.3 
0.08 0.2 
0.01 0.1 
0.01 0.0 

 
 

0

1

2

3

4

0 5 10 15

Fluorine content, ppm
In

de
x 

of
 d

en
ta

l f
lu

or
os

is

 

  
Figure 2.2. Scatter plot of fluorosis versus fluorine content 

 
Possible system development 

A software system can be developed to facilitate knowledge discoveries of a similar kind.  
For example, an outbreak can occur in a small group.  To find out the cause of the outbreak, 
demographic, environmental, and other data potentially related to the outbreak need to be 
collected.   The correlations among different variables should be sought.  Analysis tools such as 
scatter plots, bar charts, contingency tables, regression analysis, classical test of hypothesis, and 
many others can be put in place to facilitate the process. 

II.2. Effect of Chemicals (Diesels) on Humans and Animals 
Cancer risk assessment of the effects of chemicals on humans is an important component in 

government agencies’ decisions about chemical regulations.  Chemical cancer risk is often 
studied in vitro or in animals.  Sometimes, observations of the effect of similar chemicals on 
particular organs of humans can be observed in occupational studies.  In the second example, 37 
risk assessments of 10 chemicals were conducted on five cell lines, on animal systems, or on 
humans.  Among those 37 studies, only 4 human lung cancers studies were observed.  
Combining biological information and similarities among the structures of the chemicals, 
Bayesian approaches were employed to help extrapolate cancer risk of the chemicals to those 
species on which no studies were conducted (DuMouchel and Groer 1983).   Similar approaches 
were also applied to assess the effect of plutonium on human bone cancer(DuMouchel and Groer 
1989). 
 
Data-fusion process 

The data-fusion process in this case encompasses two stages.  The first stage is the 
estimations of the dose response slopes and their coefficient of variations for all 37 
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experiments/studies separately with their respective dose-response models.  The second stage is 
the estimation/extrapolation of the dose-response slopes and their coefficient of variations for all 
chemical/species combinations using hierarchical Bayesian models.  Figure 2.3 depicts the 
process. 

 

 
 

Figure 2.3. Data-fusion process for the effect of chemicals on human and 
animals 

 
Data-fusion methodology 

A hierarchical Bayesian approach, combined with regression analysis, was used to combine 
the results from the studies conducted on 37 chemical and cell line/animal/human combinations 
and to extrapolate to all 50 chemical and cell line/animal/human combinations.  This modeling 
was applied to the dose-response summaries obtained from the individual studies.  Specifically, 
suppose the log of the response slope can be decomposed into three components (mean effect, 
species-specific effect, and agent-specific effect).  Then, let Y denote the collection of all 
observed/estimated log slopes; β the collection of those mean effect, species-specific effect and 
agent-specific effect; X a design matrix appropriate chosen; δ  the random effect from the 
combination of different species and agents; and ε the overall dose slope estimation error.   

Y = Xβ + δ + ε. 
Bayesian hierarchical modeling assumes that, we can specify the following distributions in a 

hierarchical order: 
σ ~ (distributed as)  p(σ), 
(β.|σ) ~ N (b, V), N represents normal distribution, 
(θ.|β, σ) ~ N (Xβ, σ2I), where θ = Xβ + δ, 
(Y.| θ, β, σ) ~ N (θ, C). 
The estimate of β was obtained by maximizing the posterior distribution of β given the data 

Y, P(β|Y), which is a mixture of multivariate normal distributions. 
 
Possible system development 

In this case, software toolboxes for individual risk assessment can be developed to facilitate 
data processing for individual experiments.  Algorithms for implementing methodologies such as 
clustering, Bayesian, and others can be put together to facilitate final data fusion for cross-
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referencing other experiments.  Analysis tools should be flexible enough for prior distribution 
specifications in Bayesian analysis in different hierarchies.  

II.3. Battlefield Management 
Development in data fusion, especially in multisensor data fusion, provides a platform for 

automated battlefield management.  Several command and control systems for battlefield 
management have been developed (Cato and Simmen 1987; Hafner and Thompson 1988).  Such 
a system should be able to manage data from multiple sources, to correlate and evaluate the data, 
and to provide consistent and coherent tactical support to the commander.  Data sources for such 
systems can include a chemical/biological sensor, radar sensor, acoustic sensor, nuclear detector, 
free text message, and many others.  Developments of methodologies in target detection and 
tactical situation assessment (Pemberton, Dotterweich et al. 1987; Waltz 1987) are continuing.  
A fully integrated command and control system for real-time use of battlefield management is 
not too far from reality. 
 
Data-fusion process 

Data from each individual sensor were processed separately to provide state determination 
(state signature), which includes the identification of objects/targets and their position, velocity, 
and other physical parameters.  Each individual target is further differentiated by a probability 
assessment and its physical state from all sensors having potential information about it.  Target 
information is further fused/analyzed to provide a tactical assessment (e.g., friend-foe-neutral, 
attach, or watch) to the command team.   Figure 2.4 illustrates the data-fusion process for 
battlefield management. 

 
Data-fusion methodology 

Physical information and templating are used by each sensor to detect targets (Hall and 
McMullen 2004) and estimate/extract qualities of the physical state (position, velocity, etc.).  
Weighted, least-squares splines models can be used in tracking targets (Campbell and Samaan 
1988).  A knowledge-based system with lookup tables is used to correlate results from all sensors 
for event detection and situation assessment.  Both Bayesian probabilistic and Dempster-Shafer’s 
evidential reasoning are used to further assess tactical situations (Carl 2001; Stone 2001). 

 
In the Bayesian approach to combining evidence of multiple sources for target identification, 

the probability of target identification (e.g., friendly, foe, or neutral) is computed from posterior 
distributions.  The prior specifications of the probabilities of events are required to be mutually 
exclusive and consistent.  However, inconsistent evidence is more realistic.  Because of the 
uncertainties in sensors as well as situations, different sensors may provide different evidence for 
the same or similar events and conflicting evidence for the same situation or events may occur.   
In the Dempster-Shafer approach, two beliefs are computed: a) the belief of the event given by 
the data and b) 1 – belief of the complement of the event.  Because the prior specification need 
not be mutually exclusive, inconsistent evidence for specifying priors is allowed.   However, 
more efficient analytic tools for implementing the Dempster-Shafer method are still needed (Carl 
2001; Hall and McMullen 2004).   
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Figure 2.4. Data-fusion process for the battlefield management situation 

 
Possible system development 

Caito and Simmen (1987) developed a prototype of a vehicle-integrated defense system.  
Such a system needs to combine both hardware and software.  The hardware includes sensors, 
such as optical warning sensors, laser detection systems, passive missile detectors, nuclear 
detectors, and millimeter wave radar detectors.  The software includes data-management 
components as well as collections of algorithms for target detection and for situation and tactical 
assessments.  System development should be done in a way that the addition of methodologies 
will not trigger a substantial modification of the system. 
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III. A Unified Approach: Multi-path and Multi-stage 
Mappings 

 
 
As described in section II, we divide data fusion into three different steps: the data-fusion 

process, fusion methodologies, and fusion development/implementation for the three examples 
illustrated.  We propose independent development of the fusion process, the methodology of 
fusion (mapping), the evaluation criteria, and the visualization tools.   

III.1. Data-fusion process 
As indicated in section I, the information-fusion process can be categorized in different ways: 

from the perspectives of architecture, pure data flow, or mathematical category theory.  These 
classifications each try to put a structure to the data-fusion process.  However, as can be seen in 
previous examples, those structures depend on a specific application and cannot be described in 
one uniform classification. 

 
From an examination of the existing fusion methodologies at all stages of data fusion, it can 

be seen that the key component is the transformation/mapping of a set of 
measurements/observations from one domain to another.  For example, in the case of a radar 
sensor used for target tracking (e.g., Stone 2001), observations in measurement space (radar) are 
mapped to the space of location and time period.  Different sensors have different measurement 
spaces.  To combine data from all sensors, data from measurement spaces for target tracking 
often need to be mapped into the same location and time space.  The mapping can take many 
different forms, depending on the domains and the objectives of the mapping.  For example, with 
radar sensor data, spectral data are mapped to the location and time space, e.g., in Kalman 
filtering, neural networks, and splines (Campbell and Samaan 1988; Wahba 1990; Kay and 
Titterington 1999; Hall and McMullen 2004).   If the purpose of the radar data is to identify a 
target, then mapping will be pattern recognition, which can take the form of templating, 
clustering analysis, an adaptive neural network, or a knowledge-based technique.  If we use X to 
denote the original measurement space of a sensor, Z the (location, time) space, and MX  the 
mapping (be it Kalman filter, neural network, splines, clustering analysis, or Bayesian analysis, 
etc.), then we can write: ZX XM⎯⎯→⎯  and use (X, Z, Mx: ZX XM⎯⎯→⎯ )  to represent the process 
of the mapping of space containing X to space containing Y, with method of mapping MX.  The 
elements in either X or Z can take continuous values or a discrete value, such as 0 or 1.   

 
With the notation above, data fusion can be described as one-time data-mapping process, or a 

process that maps two or more times.  Therefore, it can be a multi-path and multi-stage 
construction of mappings, depending on the specific data-fusion application.   
 

In the example of the effect of fluoridated water on dental cavities, let X1 be the collection of 
observations of the severity of the brown stains and the severity of cavities, Y1 the correlation 
coefficient with its uncertainty assessment, and M1 the regression model.  Then, (X1, Y1, M1 
: 11

1 YX M⎯→⎯ )  represents the mapping between the severity of the brown stains and the severity 
of the cavities and their correlation assessment.  Similarly, (X2, Y2, M2 : 22

2 YX M⎯→⎯ ) represents 
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the mapping between the severity of the brown stains and the fluorine content in the drinking 
water and their correlation assessment.  For Y1 and Y2 combined, noted as (Y1, Y2), and letting Z 
denote the decision space as 0 or 1, with 1 = the drinking water reduceing cavities and 0 
otherwise, and MY be the method of hypothesis, then, ((Y1, Y2), Z, MY: ZYY My⎯→⎯),( 21 ) 

represents the second stage of the mapping process of the forming of the fluorine-cavity 
hypothesis.  In this example, with observations from the prospective study denoted as W, Z as 
above and MW the method of hypothesis testing, the last stage of the data fusion is ZW WM⎯⎯→⎯ , 
the mapping of W to Z.  There are a total of three stages of mappings to arrive to a final 
conclusion.  Using the multi-stage mapping approach, we can have the schematic shown in 
Figure 3.1.  This schematic is a symbolic version of Figure 2.1. 

 
 

 
 

 
 
 
 
 

 
Figure 3.1. Schematic of multi-stage mapping of fluorine-cavity situation 

 
In the case of the effect of diesel on humans and animals, each individual experiment (ith 

experiment) has mappings of the dose-response slope and coefficient of variation (Yi1) to the 
dose (Xi1) through the dose-response model (Mi1).  Letting (Y11, Y21, …, Y37,1) be the collection of 
all the (Yi1),  Z the collection of all the dose-response slopes and their coefficients of variation for 
all the species and chemicals (thus, there are 50 components in Z), and M  the Bayesian 
methodology, then ((Y11, Y21, …, Y37,1), Z, M) represents the final mapping of the data-fusion 
process.  So, in this case, there are two constructions of mappings.   See Figure 3.2 for a 
schematic. 
 

 
 
 
 
 

 
Figure 3.2. Schematic of multi-stage mapping of the effect of diesels on 

human and animals 
 

The mappings get more complicated in the case of battlefield management.  Letting XC  be 
the collection of measurements from a chemical/biological sensor for target identification and YC  
the collection of values resulted from transforming/estimating XC with mapping method MC, 
then, (XC, YC, MC : C

M
C YX C⎯→⎯ ) represents the process.  Similarly, we can have  (XR, YR, MR : 

R
M

R YX R⎯→⎯ ) for the radar sensor, (XA, YA, MA : A
M

A YX A⎯→⎯ ) for the acoustic sensor, (XT, YT, 

(Xi1, Yi1, Mi1:                   )
i = 1, 2, …, 37

11
1

i
M

i YX i⎯→⎯
((Y11, Y21, …, Y37,1), Z,  M :                                     )ZYYY M⎯→⎯),,,( 1,372111 K

Setting  up maximum
amount allowed for

the chemicals released 
to the environment

(X1, Y1, M1:                  )

22
2 YX M⎯→⎯(X2, Y2, M2:                     )

11
1 YX M⎯→⎯

((Y1, Y2), Z1, MY:                       )121 ),( ZYY YM⎯→⎯

(W, Z2, MW:                   )2ZW WM⎯⎯→⎯

Final data fusion 
outcome
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MT : T
M

T YX T⎯→⎯ ) for the text message, etc.   The next natural stage is to combine sources of 
information obtained to identify potential targets, 1, 2, …, n.  This process can be n separate 
processes for those n target assessments, or it can be one process.  Figure 3.3 depicts n separated 
processes/mappings.   The last stage of the data fusion is the tactical situation assessment for 
commanders to take necessary actions. 
 

 
 
 

 
 
 
 
 
 
 
 
Figure 3.3. Schematic of multi-stage mapping of battlefield management 

 
III.2. Data-fusion methodologies 

Methodologies or mappings for data fusion include pixel-level fusion, Bayesian theory, the 
Dempster-Shafer theory of evidence, neural networks, the Newman-Pearson criteria, fuzzy logic, 
knowledge based systems, or Markov random fields (Gros 1997; Hall and McMullen 2004).   

 
Data can be generated from radar or biological sensors, microarrays, or other spectral data, 

can be sets of new data, often referred to as kinematic and attribute estimation (extracted 
features) in target tracking or as biological signature generation in biological biomarker 
discovery, and can involve mapping methods such as a Kalman-filter, Alpha-Beta filter, least 
squares estimation, and principle component analysis (Hilario, Kalousis et al. 2003; Hall and 
McMullen 2004).  From either a set of raw or extracted features to a set of identities, the methods 
used include clustering, physical templating, pattern recognition, and knowledge-based database 
matching (Hilario, Kalousis et al. 2003; Hall and McMullen 2004; Gasparini and Hayes 2005; 
Johnson, Davis et al. 2005).  For mapping a set of identities to another set of identities, methods 
used include Bayesian, Dempster-Shafer, and fuzzy logic (Carl 2001; Mahler 2001; Stone 2001; 
Hall and McMullen 2004). 
 

Data fusion is not a simple combination of data from all sources; it includes consolidation, 
re-organization, and abstraction of data (Antony 2001).  The purpose of fusion is to optimize the 
total information content from multiple sources.  Antony (2001) pointed out that total 
information content can be enhanced in at least four approaches for the case of multiple sensors 
fusion: 

 

1. New sensors can be used to provide more data, and old sensors can be improved. 

2. Similar sensors can be added to provide more coverage or more confidence for observed 
data. 

(XC, YC,, MC:                   )

A
M

A YX A⎯→⎯

(XR, YR, MR:                     )

C
M

C YX C⎯→⎯
((YC, YR , …, YA , YT), Z1, M1:                                      )1

1),,...,,( ZYYYY M
TARC ⎯→⎯

((YC, YR , …, YA , YT), Zn, Mn:                                      )

Tactical situation 
assessment

R
M

R YX R⎯→⎯

(XA, YA, MA:                      )

T
M

T YX T⎯→⎯(XT, YT, MT:                      )

.   .   .

n
M

TARC ZYYYY n⎯→⎯),,...,,(

.   .   .
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3. Dissimilar sensors can be used to complement the other sensors. 

4. Domain knowledge can be used to constrain the decision process. 
 
These four approaches can be extended to integrating information other than from sensors.  

Specifically, these approaches can be used to create composite knowledge signatures from 
multiple sources.   Suppose that multiple signatures have been created from each individual 
source (e.g., remote imaging, text documents, and spectral analysis, etc.).  The composite 
knowledge signatures can be formed by 1) creating new signatures and improving the existing 
ones from raw data; 2) adding additional signatures to the existing ones to increase coverage; 3) 
studying the dissimilarity among signatures, and creating signatures that complement each other; 
or 4) using expert knowledge to facilitate the above three ways to fusion. 

 
Selection of mapping methodology depends on the effectiveness measures.  There is no 

uniform standard for choosing one mapping over the other.  In the case of the Bayesian 
approach, the evaluation is done through minimizing cost functions or maximizing the posterior 
distribution functions (Hall and McMullen 2004).  The development of methodologies is coupled 
with the development of effectiveness assessments of the methods and data-fusion outcomes.   
Research into the effectiveness of assessments/criteria and of methodologies is needed to 
broaden data fusion to the next level of advancement.  

III.3. Data-fusion system development 
To facilitate data-fusion activities, a software or hardware system needs to be developed.  

This system should be user-friendly and easily modified.  Current data-fusion systems are 
methodology-specific and need to be reworked when new methodologies are implemented.  With 
the framework proposed here, the fusion-process structures and mapping methodologies can be 
developed independently.  A collection of methodologies can be managed independently in an 
analytical tools database and can be retrieved when needed.  To further facilitate the fusion 
process, collections of visualization and evaluation tools for comparing different fusion 
outcomes should be developed as well.  With those four components independently managed, 
specific data-fusion activities can be performed by retrieving elements from those four 
components, as illustrated in Figure 3.4.   

 
Many data-fusion systems are implemented or prototyped for military applications 

(Dannenberg and Smetek 1984; Cato and Simmen 1987; Hafner and Thompson 1988; Antony 
1995; Antony 2001; Bowman and Steinberg 2001).   The need for more standard effectiveness 
measurement/criteria to evaluate a fusion system, as well as to evaluate an individual algorithm, 
is well recognized (Bowman and Steinberg 2001; Hall and McMullen 2004; Kokar, Tomasik et 
al. 2004).  Either methodologies or effectiveness criteria should be generalized from examination 
of specific fields of application fields, such as military, medical diagnosis, and genomics and 
proteomics, which would benefit most from such fusion-system development.  In fact, software 
such as BLAST, MASCOT, SEQUEST, In-SPIRE, OmniViz, and ACQUIRE are examples of 
fusion systems currently applied to genomics and proteomics. 
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Figure 3.4. Schematic of a unified approach to data fusion 
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IV. Future Work of Data/Information Fusion 
 
 
Data fusion (information integration) takes many forms, from simple exploratory data 

summarizing to sophisticated expert system with evidential reasoning.  Developments in both 
methodology and system implementation are still evolving.  This paper presents three specific 
examples in which data fusion is present and points out that a software system will benefit the 
knowledge-discovery process and facilitate further understanding of the problem at hand.  
Because methodologies are often specific to a scientific discipline and dependent on the 
evaluation criteria selected, new problems and new criteria will trigger the development of new 
methodologies.  The unified approaches proposed here allow the collection of methodologies and 
evaluation criteria to expand and evolve independently of the fusion process.  System 
development facilitates the selection of methodologies based on chosen evaluation criteria, 
combined with the selection of the mapping stages and paths.  Extending the system 
developments shown in the three examples in section II into similar disciplines will demonstrate 
the advantages of the proposed unified approach.   Future work should, therefore, be in selecting 
a collection of mappings, methodologies, and evaluation tools, and putting together sample 
systems for selected applications.  Once a system for a specific application is ready, new 
methodologies with various evaluation criteria can be evaluated and compared.  In turn, this will 
facilitate new knowledge discovery in the application fields. 
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