PNNL-15003

Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2005

LE Bisping

February 2005

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. This report is a summary of major or significant activities occurring at the Hanford Site only, and is not a full disclosure of all details associated with Hanford-related activities, nor a substitute for legally required information subject to reporting requirements regarding releases, violations, etc.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

May be available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

May be available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

PNNL-15003

Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2005

L. E. Bisping

February 2005

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

SUMMARY

Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL)^(a) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, *Environmental Protection Program*, and DOE Order 5400.5, *Radiation Protection of the Public and the Environment.* The sampling design is described in the Hanford Site *Environmental Monitoring Plan* (DOE/RL-91-50, U.S. Department of Energy, Richland Operations Office, Richland, Washington). The changing mission at Hanford from plutonium production to clean-up has resulted in decreases in radiological sampling scope over the past ten years.

This document contains the calendar year 2005 schedules for the routine and non-routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2005 in which case the anticipated year for collection is provided. In addition, a map showing approximate sampling locations is included for each media scheduled for collection in 2005.

SESP SAMPLING

The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media and assess the integrated effects of these materials on the environment and the public. Project staff collect samples of air, surface water, agricultural products, wildlife, and sediments. In addition, soil and natural vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, and volatile organic compounds. In addition, the project includes the capability to measure ambient external radiation and monitor particulate matter mass concentrations in air.

⁽a) Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830.

DRINKING WATER MONITORING PROJECT SAMPLING

Fluor Hanford, Inc. is responsible for monitoring the quality of drinking water supplied by the DOE to its onsite facilities in accordance with federal and state regulations. PNNL conducts radiological monitoring of onsite drinking water for Fluor Hanford concurrent with SESP activities to promote sampling efficiency and consistency, utilize expertise developed over the years, and reduce costs associated with management, sample collection procedure development, analytical contracting, data management, quality control, and reporting.

DATA MANAGEMENT

The Hanford Environmental Information System (HEIS) database is used as a repository for data gathered during environmental surveillance activities at the Hanford Site. For ease in retrieving SESP or drinking water data from the HEIS database, the majority of the location names in this document are the location names used in the database.

SCHEDULED CHANGES

This schedule is subject to modification during the year in response to changes in site operations, program requirements, and the nature of the observed results. Operational limitations such as weather, mechanical failures, sample availability, etc., may also impact scheduled sampling. Therefore, this document may not be an accurate record of samples collected during the year.

CO-SAMPLES

Samples that are co-sampled and analyzed by both PNNL and the Washington State Department of Health (DOH) are indicated in the schedule, as are samples that are co-sampled and analyzed by both PNNL and the U.S. Food and Drug Administration (FDA).

ADDITIONAL INFORMATION

Questions relating to the content of this document can be directed to Mr. T. M. Poston, Manager, Surface Environmental Surveillance Project, (509) 376-5678 or Mr. R.W. (Bill) Hanf, Manager, Drinking Water Monitoring Project, (509) 376-8264.

SUN	ИMA	RY	iii
ABE	BREV	/IATIONS	vii
1.0	AIR	SURVEILLANCE	1
	1.1	AIR – PARTICULATE FILTER	1
	1.2	AIR – TRITIUM AND IODINE	3
	1.3	AIR – PARTICULATE MASS CONCENTRATION	3
2.0	SUR	RFACE WATER SURVEILLANCE	5
	2.1	WATER – COLUMBIA RIVER	5
	2.2	WATER – RIVERBANK SPRINGS	7
	2.3	WATER – ONSITE POND	8
	2.4	WATER – OFFSITE IRRIGATION	
		WATER – ONSITE DRINKING	
3.0		TA	
5.0	-	FOODSTUFFS AND FARM PRODUCTS	
	5.1	3.1.1 Whole Milk	
		3.1.2 Leafy Vegetables	
		3.1.3 Vegetables	
		3.1.4 Fruit	
		3.1.5 Wine	
		3.1.6 Alfalfa 3.1.7 Honey	
	37	WILDLIFE	
	3.2	3.2.1 Aquatic Biota	
		3.2.2 Geese	
		3.2.3 Game Birds	16
		3.2.4 Rabbits	
		3.2.5 Deer/Elk	17
4.0	SOI	L AND VEGETATION	19
	4.1	SOIL	19
	4.2	VEGETATION	20
5.0	SED	DIMENT	21
6.0	ЕХТ	FERNAL RADIATION	23
	6.1	THERMOLUMINESCENT DOSIMETERS (TLDS)	23
		6.1.1 Terrestrial Locations	23
		6.1.2 Columbia River Shoreline Locations	27
	6.2	COLUMBIA RIVER SHORELINE RADIATION SURVEYS	27

CONTENTS

FIGURES

Figure 1.1.	2005 Air Sampling Locations	4
Figure 2.1.	2005 Surface Water and Drinking Water Sampling Locations	10
Figure 3.1.	2005 Food and Farm Product Sampling Locations	14
Figure 3.2.	2005 Wildlife Sampling Locations	18
Figure 5.1.	2005 Sediment Sampling Locations	22
Figure 6.1.	2005 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Site	25
	2005 Thermoluminescent Dosimeter (TLD) Locations for Perimeter, y, and Distant Sites	26
0	2005 Thermoluminescent Dosimeter (TLD) and Radiation Survey Locations ford Reach of the Columbia River	28

ABBREVIATIONS

FREQUENCY SYMBOLS USED

А	annually
11	5
BE	biennially (every 2 years)
BW	biweekly (every 2 weeks)
Μ	monthly
M Comp.	monthly composite
Q	quarterly
Q Comp.	quarterly composite
SA	semiannually (twice each year)
TE	triennially (every 3 years)

ANALYTICAL SYMBOLS USED

Generally, standard element, chemical, and isotope designations are used to indicate the analyses

performed. Other analytical designations used are:

Alpha	gross alpha activity of sample
Anions	major anions-generally chloride, fluoride, nitrate, nitrite, sulfate
Beta	gross beta activity of sample
DDD	dichlorodiphenyl dichloroethane
DDE	dichlorodiphenyl dichloroethylene
DDT	dichlorodiphenyl trichloroethane
Gamma Scan	analysis of photon energy spectrum for individual photon-emitting
	radionuclides
HTO	tritiated water $({}^{3}\text{H}{}^{1}\text{H}{}^{16}\text{O})$
Hg-CVAA	mercury by cold vapor atomic absorbance spectrometry
Hg-CVAF	total mercury in water by cold vapor atomic fluorescence
ICP-MS	major metals by inductively coupled plasma mass spectrometry - samples
	unfiltered unless otherwise noted
Lo ³ H	analytical procedure includes electrolytic enrichment
$PM_{10} \& PM_{2.5}$	particulates having an aerodynamic diameter less than 10 and
	2.5 micrometers respectively. Note that a PM_{10} sample includes $PM_{2.5}$
	particulates
Pu	isotopic plutonium (²³⁸ Pu, ^{239/240} Pu)
SEM/AVS	Simultaneously Extracted Metals/Acid Volatile Sulfide
TOC	Total Organic Carbon
U	isotopic uranium (234 U, 235 U, 238 U)
VOA	Volatile Organic Compounds

INSTRUMENT SYMBOLS USED

BICRON	Microrem meter
GM	Geiger-Müeller counter
PIC	Pressurized ionization chamber

1.0 AIR SURVEILLANCE

1.1 AIR – PARTICULATE FILTER

	Individual Samples			Composited Samples			
	Location	Fre-	-		Fre-	•	
Location	Number ^(a)	quency	Analyses	Composite Group	quency	Analyses	
<u>Onsite</u>							
100 K Area	1	BW	Beta, Alpha				
100 N-1325 Crib	2	BW	Beta, Alpha	100 Areas	Q	⁹⁰ Sr, Pu, Gamma Scan	
100 D Area	3	BW	Beta, Alpha				
100 F Met Tower	4	BW	Beta, Alpha		0	90, , , , , , , , , , , , , , , , , , ,	
Hanford Townsite	5	BW	Beta, Alpha∫	Hanford Townsite	Q	⁹⁰ Sr, Pu, Gamma Scan	
N of 200 E	6	BW	Beta, Alpha	N of 200 E	Q	Gamma Scan	
200 ESE ^(b)	7	BW	Beta, Alpha)	200 E A	0	⁹⁰ Sr, Pu, U, Gamma Scan	
S of 200 E	8	BW	Beta, Alpha∫	200 E Area	Q	Sr, Pu, U, Gamma Scan	
B Pond	9	BW	Beta, Alpha	B Pond	Q	⁹⁰ Sr, Pu, U, Gamma Scan	
Army Loop Camp	10	BW	Beta, Alpha		0	90.0 0 0 0	
200 Tel. Exchange	11	BW	Beta, Alpha }	200 W South East	Q	⁹⁰ Sr, Pu, U, Gamma Scan	
SW of B/C Cribs	12	BW	Beta, Alpha				
200 W SE	13	BW	Beta, Alpha	200 West Area	Q	⁹⁰ Sr, Pu, U, Gamma Scan	
300 Water Intake	14	BW	Beta, Alpha		0	90.0 0 0 0	
300 South Gate	15	BW	Beta, Alpha }	300 Area	Q	⁹⁰ Sr, Pu, U, Gamma Scan	
300 South West	16	BW	Beta, Alpha				
300 Trench	17	BW	Beta, Alpha	200 N/F	0	⁹⁰ a p. u. a. a	
300 NE	18	BW	Beta, Alpha∫	300 NE	Q	⁹⁰ Sr, Pu, U, Gamma Scan	
400 E	19	BW	Beta , Alpha]				
400 W	20	BW	Beta, Alpha	400.4	Q	⁹⁰ Sr, Pu, Gamma Scan	
400 S	21	BW	Beta , Alpha	400 Area	Q	Sr, Pu, Gamma Scan	
400 N	22	BW	Beta , Alpha J				
Wye Barricade ^(b)	23	BW	Beta, Alpha	Wye Barricade	Q	⁹⁰ Sr, Pu, U, Gamma Scan	
Perimeter							
Ringold Met Tower	24	BW	Beta, Alpha	Ringold Met Tower	Q	⁹⁰ Sr, Pu, Gamma Scan	
W End of Fir Road ^(b)	25	BW	Beta, Alpha	W End of Fir Road	Q	⁹⁰ Sr, Pu, U, Gamma Scan	

1.1 AIR – PARTICULATE FILTER (cont

	Individual Samples			Composited Samples		
	Location	Fre-	<u> </u>		Fre-	·····
Location	Number ^(a)	quency	Analyses	Composite Group	quency	Analyses
Perimeter						
Dogwood Met Tower	26	BW	Beta, Alpha	Dogwood Met Tower	Q	⁹⁰ Sr, Pu, U, Gamma Scan
Byers Landing	27	BW	Beta, Alpha	Byers Landing	Q	⁹⁰ Sr, Pu, U, Gamma Scan
Battelle Complex ^(b)	28	BW	Beta, Alpha	Battelle Complex	Q	Gamma Scan
Horn Rapids Substa Prosser Barricade ^(b)	29 30	BW BW	Beta, Alpha Beta, Alpha ∫	Prosser Barricade	Q	⁹⁰ Sr, Pu, U, Gamma Scan
Yakima Barricade ^(b) Rattlesnake Springs	31 32	BW BW	Beta, Alpha Beta, Alpha ∫	Yakima Barricade	Q	⁹⁰ Sr, Pu, Gamma Scan
Wahluke Slope S End Vernita Bridge	33 34	BW BW	Beta, Alpha Beta, Alpha ∫	Wahluke Slope	Q	⁹⁰ Sr, Pu, Gamma Scan
Community						
Basin City School ^(c)	35	BW	Beta, Alpha	Basin City School	Q	⁹⁰ Sr, Pu, U, Gamma Scan
Leslie Groves-Rchlnd ^(c)	36	BW	Beta, Alpha	Leslie Groves-Rchlnd	Q	⁹⁰ Sr, Pu, U, Gamma Scan
Pasco Kennewick-Ely Street	37 38	BW BW	Beta Beta , Alpha }	Tri Cities	Q	⁹⁰ Sr, Pu, Gamma Scan
Benton City	39	BW	Beta	Benton City	Q	Gamma Scan
Edwin Markham School ^(c)	40	BW	Beta, Alpha	Edwin Markham School	Q	⁹⁰ Sr, Pu, U, Gamma Scan
Mattawa	41	BW	Beta	Mattawa	Q	Gamma Scan
Othello	42	BW	Beta	Othello	Q	Gamma Scan
<u>Distant</u>						
Yakima	43	BW	Beta, Alpha	Yakima	Q	⁹⁰ Sr, Pu, U, Gamma Scan
Toppenish ^(c)	44	BW	Beta, Alpha	Toppenish	Q	⁹⁰ Sr, Pu, U, Gamma Scan

(a) Refer to Figure 1.1, 2005 Air Sampling Locations.
(b) Washington State Department of Health air sampler also at this location.
(c) Community-operated environmental surveillance station.

1.2 AIR – TRITIUM AND IODINE

$ \begin{array}{c c c c c c c } \hline Since S$	Location	Location Number ^(a)	Frequency ^(b)	<u>Analysis</u>	<u>Frequency</u>	<u>Analysis^(c)</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Onsite					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 K Area	1			М	
200 Tell r n 3H 300 Water Intake ^(d) 14 M 3H 300 Water Intake ^(d) 14 M 3H 300 South Gate ^(e) 15 M 3H 300 South West 16 M 3H 300 Trench 17 M 3H 300 NE 18 M 3H 400 E 19 M 3H Perimeter M 3H 3H Dogwood Met Tower 24 Q Comp. 1 ¹²⁹ I M 3H Byers Landing 27 Q Comp. 1 ¹²⁹ I M 3H Battelle Complex ^(d) 28 M 3H M 3H Vahuke Slope 33 M 3H M 3H Ocommunity ^(f) M 3G M 3H Edwin Markham School 35 M 3H Distant M 3H 3H 3H	100 N-1325 Crib	2			Μ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200 ESE	7	Q Comp.	¹²⁹ I	Μ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200 Tel. Exchange	11			М	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14			Μ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300 South Gate ^(e)	15			Μ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300 South West	16			Μ	
400 E 19M ${}^{3}\text{H}$ PerimeterRingold Met Tower24Q Comp. ${}^{129}\text{I}$ M ${}^{3}\text{H}$ Dogwood Met Tower26M ${}^{3}\text{H}$ ${}^{3}\text{H}$ ${}^{3}\text{H}$ Byers Landing27Q Comp. ${}^{129}\text{I}$ M ${}^{3}\text{H}$ Battelle Complex ^(d) 28M ${}^{3}\text{H}$ ${}^{3}\text{H}$ Prosser Barricade ^(d) 30M ${}^{3}\text{H}$ Wahluke Slope33M ${}^{3}\text{H}$ Community ^(f) M ${}^{3}\text{H}$ Basin City School35M ${}^{3}\text{H}$ Leslie Groves-Rchlnd36M ${}^{3}\text{H}$ Edwin Markham School40M ${}^{3}\text{H}$ Distant43Q Comp. ${}^{129}\text{I}$ M ${}^{3}\text{H}$	300 Trench	17			Μ	
PerimeterRingold Met Tower24Q Comp. ^{129}I M ^{3}H Dogwood Met Tower26M ^{3}H Byers Landing27Q Comp. ^{129}I M ^{3}H Battelle Complex ^(d) 28M ^{3}H Prosser Barricade ^(d) 30M ^{3}H Wahluke Slope33M ^{3}H Dommunity ^(f) Basin City School35MLeslie Groves-Rehlnd36M ^{3}H Edwin Markham School40M ^{3}H DistantYakina43Q Comp. ^{129}I M ^{3}H	300 NE	18			Μ	
Ringold Met Tower24Q Comp. ^{129}I M ^{3}H Dogwood Met Tower26M ^{3}H Byers Landing27Q Comp. ^{129}I M ^{3}H Battelle Complex ^(d) 28M ^{3}H Prosser Barricade ^(d) 30M ^{3}H Wahluke Slope33M ^{3}H Basin City School35M ^{3}H Leslie Groves-Rchlnd36M ^{3}H Edwin Markham School40M ^{3}H Distant43Q Comp. ^{129}I M ^{3}H	400 E	19			М	³ H
Imight NutriendImight NutriendImight NutriendImight NutriendDogwood Met Tower26M3Byers Landing27Q Comp.129 IBattelle Complex ^(d) 28M3HProsser Barricade ^(d) 30M3HWahluke Slope33M3HCommunity ^(f) Basin City School35MLeslie Groves-Rchlnd36MAddition Markham School40MDistantImight NutriendYakima43Q Comp.129 IM3H	<u>Perimeter</u>					
By ers Landing Battelle Complex27 28Q Comp. ^{129}I MM ^{3}H 	Ringold Met Tower	24	Q Comp.	¹²⁹ I	М	
Battelle Complex ^(d) 28 M ³ H Prosser Barricade ^(d) 30 M ³ H Wahluke Slope 33 M ³ H <u>Community^(f)</u> 35 M ³ H Basin City School 35 M ³ H Leslie Groves-RchInd 36 M ³ H <u>Distant</u> Yakima 43 Q Comp. ¹²⁹ I M ³ H	Dogwood Met Tower	26			Μ	
Prosser Barricade ^(d) 30M ${}^{3}H$ Wahluke Slope33M ${}^{3}H$ Community ^(f) Basin City School35M ${}^{3}H$ Leslie Groves-Rchlnd36M ${}^{3}H$ Edwin Markham School40M ${}^{3}H$ DistantYakima43Q Comp. ${}^{129}I$ MM ${}^{3}H$		27	Q Comp.	¹²⁹ I	Μ	^{3}H
Wahluke Slope33M ${}^{3}H$ Community(f)Basin City School35M ${}^{3}H$ Leslie Groves-Rchlnd36M ${}^{3}H$ Edwin Markham School40M ${}^{3}H$ DistantVakima43Q Comp. ${}^{129}I$ MYakima43Q Comp. ${}^{129}I$ M ${}^{3}H$	Battelle Complex ^(d)	28			Μ	^{3}H
Community ^(f) Basin City School 35 M ³ H Leslie Groves-Rchlnd 36 Edwin Markham School 40 Distant Yakima 43 Q Comp. ¹²⁹ I M ³ H		30			Μ	³ H
Basin City School35M 3 HLeslie Groves-RchInd36M 3 HEdwin Markham School40M 3 HDistantYakima43Q Comp. 129 IM	Wahluke Slope	33			Μ	³ H
Leslie Groves-RchInd36M ³ HEdwin Markham School40M ³ HDistantVakima43Q Comp.129M ³ H	Community ^(f)					
Edwin Markham School40M ${}^{3}H$ Distant43Q Comp. ${}^{129}I$ M ${}^{3}H$	Basin City School	35			М	
Distant Yakima 43 Q Comp. ¹²⁹ I M ³ H	Leslie Groves-Rchlnd	36			Μ	
Yakima 43 Q Comp. ¹²⁹ I M ³ H	Edwin Markham School	40			М	³ H
	Distant					
	Yakima	43	Q Comp.	¹²⁹ I	М	³ H
	Toppenish ^(f)	44			Μ	³ H

(a) Refer to Figure 1.1, 2005 Air Sampling Locations.

(b) Samples are collected monthly and composited for quarterly analyses.

(c) As HTO.

(d) Washington State Department of Health air sampler also at this location.

(e) Two tritium samples are collected from this location.

(f) Community-operated environmental surveillance station.

1.3 AIR – PARTICULATE MASS CONCENTRATION

Location	Location Number ^(a)	Frequency	Analysis ^(b)
Hanford Meteorological Station	45	Hourly	Mass Concentration

(a) Refer to Figure 1.1, 2005 Air Sampling Locations.

(b) Hourly average mass concentration data are collected at the Hanford Meteorological Station for two size fractions, PM_{10} and $PM_{2.5}$. These data are not available in the HEIS database but can be obtained from the SESP manager.

Figure 1.1. 2005 Air Sampling Locations

2.0 SURFACE WATER SURVEILLANCE

2.1 WATER – COLUMBIA RIVER

Location ^(a)	Sample Type	Frequency	Analyses/Co-sample
Priest Rapids-River	Cumulative	M Comp. ^(b) Q Comp. ^(b)	Alpha, Beta, Lo 3 H, 90 Sr, 99 Tc, U, DOH $^{(c)}$
	Particulate (filter)	M Com.p ^(d)	Gamma Scan
		Q Comp. ^(d)	Pu
	Soluble (resin)	M Comp. ^(d)	Gamma San
		Q Comp. ^(d)	Pu
Rich.Pmphs HRM 46.4	Cumulative	M Comp. ^(b) Q Comp. ^(b)	Alpha, Beta, Lo 3 H, 90 Sr, 99 Tc, U 129 I
	Particulate (filter)	M Comp. ^(d)	Gamma Scan
		Q Comp. ^(d)	Pu
	Soluble (resin)	M Comp. ^(d)	Gamma Scan
		Q Comp. ^(d)	Pu
	Grab	3/Yr	USGS-NASQAN ^(e)
Rich.Pmphs-1 HRM46.4 ^(f)	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
Rich.Pmphs-2 HRM46.4	Transect	A Q	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA Lo ³ H, ⁹⁰ Sr, U, Anions
Rich.Pmphs-3 HRM46.4	Transect	A Q	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA Lo ³ H, ⁹⁰ Sr, U, Anions
Rich.Pmphs-5 HRM46.4	Transect	A Q	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA Lo ³ H, ⁹⁰ Sr, U, Anions
Renii inplis 5 mani-o.+	Tunseet	A	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA
Rich.Pmphs-7 HRM46.4	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
Rich.Pmphs-10 HRM46.4	Transect	A Q	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA Lo ³ H, ⁹⁰ Sr, U, Anions
Ren.i mpns 10 mR0140.4	Transect	A	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA
Rich.Pmphs HRM 43.5	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
		А	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA, DOH ^(g)
Rich.Pmphs HRM 43.9	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
		А	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA, DOH ^(g)
Rich.Pmphs HRM 45.0	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
		А	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA, DOH ^(g)
Rich.Pmphs HRM 45.8	Transect	Q	$Lo^{3}H$, ^{90}Sr , U, Anions
		А	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA, DOH ^(g)
Vernita	Grab	3/Yr	USGS-NASQAN ^(e)
Vernita-1 HRM 0.3	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
	TT ·	A	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA
Vernita-2 HRM 0.3	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
		А	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA

2.1 WATER – COLUMBIA RIVER (contd)

Location ^(a)	Sample <u>Type</u>	Frequency	Analyses/Co-sample
Vernita-3 HRM 0.3	Transect	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
		А	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA
Vernita-4 HRM 0.3	Transect	Q	Lo 3 H, 90 Sr, U, Anions
		А	ICP-MS, Hg-CVAF, ICP-MS Filtered, VOA
100 N -1 HRM 9.5 ^(h)	Transect		Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 N -2 HRM 9.5	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 N -3 HRM 9.5	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 N -5 HRM 9.5	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 N -7 HRM 9.5	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 N -10 HRM 9.5	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 N Shore HRM 8.4	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
100 N Shore HRM 8.9	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
100 N Shore HRM 9.2	Transact	•	DOH ^(g)
100 N Shore HKW 9.2	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions, DOH ^(g)
100 N Shore HRM 9.8	Transect		
100 N Shole HKW 9.8	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
100 F -1 HRM 19.0	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 F -2 HRM 19.0	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 F -3 HRM 19.0	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 F -5 HRM 19.0	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
00 F -7 HRM 19.0	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 F -10 HRM 19.0	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100 F Shore HRM 18	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
00 F Shore HRM 22	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			$\mathrm{DOH}^{(\mathrm{g})}$
100 F Shore HRM 23	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
Hanfrd TS-1 HRM 28.7	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
Hanfrd TS-2 HRM 28.7	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
Hanfrd TS-3 HRM 28.7	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
Hanfrd TS-5 HRM 28.7	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
Hanfrd TS-7 HRM 28.7	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
Hanfrd TS-10 HRM 28.7	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
Hanfrd Twnsite HRM26	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
Hanfrd Twnsite HRM27	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			$DOH^{(g)}$
Hanfrd Twnsite HRM28	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
		••	DOH ^(g)
Hanfrd Twnsite HRM30	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
		••	DOH ^(g)

2.1 WATER – COLUMBIA RIVER (contd)

Location ^(a)	Sample <u>Type</u>	Frequency	Analyses/Co-sample
300 Area -1 HRM 43.1	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
300 Area -2 HRM 43.1	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
300 Area -3 HRM 43.1	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
300 Area -5 HRM 43.1	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
300 Area -7 HRM 43.1	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
300 Area -10 HRM 43.1	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
300 Area Shr HRM41.5	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
300 Area Shr HRM42.1	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
300 Area Shr HRM42.4	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
300 Area Shr HRM42.9	Transect	А	Lo ³ H, ⁹⁰ Sr, U, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions,
			DOH ^(g)
300 Area Outfl13	Grab	Q	Lo ³ H, ⁹⁰ Sr, U, Anions
500 mea Oum15	Giub	Q A	ICP-MS, Hg-CVAF, ICP-MS Filtered
		А	

(a) Refer to Figure 2.1, 2005 Surface Water and Drinking Water Sampling Locations. Hanford River Markers (HRM) are a series of signposts along the Hanford shoreline of the Columbia River that are roughly 1 mile apart. Vernita Bridge is HRM #0 and Ferry Street in Richland is HRM #46. Samples collected between HRMs are assigned a decimal.

(b) Cumulative sample is collected weekly and composited for analysis.

(c) Co-sample provided to the Washington State Department of Health (January and June only).

(d) Sample is collected biweekly and composited for analysis.

(e) Analyses are performed by the United States Geological Survey (USGS) in conjunction with the National Stream Quality Accounting Network (NASQAN) Program, and include: conductance, pH, temperature, turbidity, dissolved oxygen, hardness, Ca, Mg, alkalinity, carbonates, sulfate, Cl, F, solids, NH₄-N, NO₃+NO₂, N-Kjeldahl, P, Cr, Fe, dissolved organic carbon.

(f) Quality Assurance sample submitted for analyses twice per year.

(g) One co-sample provided to the Washington State Department of Health.

(h) Quality Assurance sample submitted for analyses once per year.

2.2 WATER – RIVERBANK SPRINGS

Location ^(a)	HRM ^(b)	Sample Type	Fre- quency	Analyses/Co-sample
100-B Spring 38-3	3.8	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, ⁹⁹ Tc, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions, VOA
100-B Spring 39-2	3.9	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, ⁹⁹ Tc, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions, VOA
100-K Spring 63-1	6.3	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions, VOA, DOH ^(c)
100-K Spring 77-1	7.6	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions, VOA, DOH ^(c)
100-N Spring Near 199N-46	8.9	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, U, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions
100-N Spring 8-13	9.3	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered, Anions, DOH ^(c)

2.2 WATER – RIVERBANK SPRINGS (contd)

		Sample	Fre-	
Location ^(a)	HRM ^(b)	Type	quency	Analyses/Co-sample
100-D Spring 102-1	10.2	Grab	Α	Alpha, Beta, ³ H, ⁹⁰ Sr, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered,
				Anions
100-D Spring 110-1	11.0	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS Filtered,
				Anions
100-H Spring 145-1	14.4	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, ⁹⁹ Tc, U, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
				Filtered, Anions
100-H Spring 152-2	15.3	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, ⁹⁹ Tc, U, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
				Filtered, Anions
100 E Saria - 207 1	21.2	Cash	А	Alpha, Beta, ³ H, ⁹⁰ Sr, U, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
100-F Spring 207-1	21.3	Grab	А	Filtered, Anions, VOA
				Filtered, Alliolis, VOA
Hanford Spr UR 28-2 ^(d)	27.8	Grab	А	Alpha, Beta, ³ H, ⁹⁹ Tc, U, ¹²⁹ I, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
				Filtered, Anions
Hanford Spring 28-2	28.1	Grab	А	Alpha, Beta, ³ H, ⁹⁹ Tc, U, ¹²⁹ I, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
1 0				Filtered, Anions, DOH ^(c)
Hanford Spr DR 28-2 ^(e)	28.3	Grab	А	Alpha, Beta, ³ H, ⁹⁹ Tc, U, ¹²⁹ I, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
I.				Filtered, Anions
				•
300 Area Spring 41-9	41.9	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, U, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
				Filtered, Anions
300 Area Spring 42-2	42.1	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, U, ¹²⁹ I, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
(e)	10.4			Filtered, Anions, VOA
300 Area Spr DR 42-2 ^(e)	42.4	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, U, ¹²⁹ I, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
		~ .		Filtered, Anions, VOA, DOH ^(c)
300 Area Spring 42-7	42.7	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, U, Gamma Scan, Anions
Richland Spr(SRL 437-1)	43.7	Grab	А	Alpha, Beta, ³ H, ⁹⁰ Sr, U, Gamma Scan, ICP-MS, Hg-CVAF, ICP-MS
Kiemanu Spi(SKL 457-1)	43.7	Grau	Л	Filtered, Anions
				r moroa, r mono

(a) Refer to Figure 2.1, 2005 Surface Water and Drinking Water Sampling Locations.

(b) Hanford River Markers (HRM) are a series of signposts along the Hanford shoreline of the Columbia River that are roughly 1 mile apart. Vernita Bridge is HRM #0 and Ferry Street in Richland is HRM #46. Samples collected between HRMs are assigned a decimal. (c) One co-sample provided to the Washington State Department of Health.

(d) UR - Upriver from noted location.

(e) DR - Downriver from noted location.

2.3 WATER - ONSITE POND

Location ^(a)	Sample Type	Frequency	Analyses
West Lake	Grab	Q	³ H
FFTF Pond ^(b)	Grab	Q	Alpha, Beta, ³ H, Gamma Scan

(a) Refer to Figure 2.1, 2005 Surface Water and Drinking Water Sampling Locations.

(b) Quality Assurance sample submitted for analyses once per year.

2.4 WATER - OFFSITE IRRIGATION

Location ^(a)	Sample Type	Frequency	Analyses/Co-sample
Riverview Canal	Grab	3 (May-Sept)	Alpha, Beta, Lo ³ H, ⁹⁰ Sr, U, Gamma Scan, DOH ^(b)
Horn Rapids Area	Grab	3 (May-Sept)	Alpha, Beta, Lo ³ H, ⁹⁰ Sr, U, Gamma Scan, DOH ^(b)

(a) Refer to Figure 2.1, 2005 Surface Water and Drinking Water Sampling Locations.

(b) One co-sample provided to the Washington State Department of Health.

2.5 WATER – ONSITE DRINKING

			Individual Samples	Composited Samples		
Location ^(a)	Sample <u>Type</u>	Fre- quency	Analyses/Co-sample	Composite Group	Fre- quency	<u>Analyses</u>
100 N Area	Grab	M ^(b)		100 N Area	Q	Beta
100 N Area	Grab	Q ^(c)	Alpha, 226 Ra, 228 Ra, 131 I }	100 N Area	А	⁹⁰ Sr, ³ H
200 W Area	Grab	M ^(b)		200 W Area	Q	Beta
200 W Area	Grab	Q ^(c)	Alpha, 226 Ra, 228 Ra, 131 I }	200 W Area	А	⁹⁰ Sr, ³ H
100 K Area	Grab	M ^(b)		100 K Area	Q	Beta
100 K Area	Grab	Q ^(c)	Alpha, 226 Ra, 228 Ra, 131 I }	100 K Area	А	⁹⁰ Sr, ³ H
400 Area	Grab	M ^(b)		400 Area	Q	Beta
400 Area	Grab	Q ^(c)	Alpha, 226 Ra, 228 Ra, 131 I, 3 H, DOH $^{(d)}$ }	400 Area	А	⁹⁰ Sr

(a) Refer to Figure 2.1, 2005 Surface Water and Drinking Water Sampling Locations.

(b) Sample is collected monthly and composited for quarterly analysis.

(c) Sample is collected and analyzed quarterly and then composited for annual analysis.

(d) One co-sample provided to the Washington State Department of Health for ³H (January only).

Figure 2.1. 2005 Surface Water and Drinking Water Sampling Locations

3.1 FOODSTUFFS AND FARM PRODUCTS

3.1.1 Whole Milk

Location ^(a)	Frequency	Analyses
East Wahluke Area ^(b)	Q SA	Lo ³ H, ⁹⁰ Sr, Gamma Scan ¹²⁹ I
Sagemoor Composite ^{(b)(c)}	Q SA	Lo ³ H, ⁹⁰ Sr, Gamma Scan ¹²⁹ I
Sunnyside Area	Q SA	Lo ³ H, ⁹⁰ Sr, Gamma Scan ¹²⁹ I

(a) Refer to Figure 3.1, 2005 Food and Farm Product Sampling Locations.

(b) Sample composited from multiple dairies in each area.

(c) Quality Assurance samples submitted for analyses once per year.

3.1.2 Leafy Vegetables

Location ^{(a)(b)}	Frequency ^(c)	Analyses/Co-sample
Riverview Area Sunnyside Area Sagemoor Area East Wahluke Area	A A BE (2005) BE (2006)	 ⁹⁰Sr, Gamma Scan, FDA^(d) ⁹⁰Sr, Gamma Scan, FDA^(d) ⁹⁰Sr, Gamma Scan, DOH^(e) ⁹⁰Sr, Gamma Scan, DOH^(e)

(a) Refer to Figure 3.1, 2005 Food and Farm Product Sampling Locations.

(b) Two samples collected for PNNL within each area, one sample analyzed and one archived.

(c) Samples are collected in 2005 according to their specified frequency unless otherwise noted.

(d) Two co-samples sent to U.S. Food and Drug Administration.

(e) One co-sample provided to the Washington State Department of Health.

3.1.3 Vegetables

Location ^{(a)(b)}	Sample Type	Frequency ^(c)	Analyses/Co-sample
Riverview Area	Potatoes	А	⁹⁰ Sr, Gamma Scan
	Tomatoes	А	⁹⁰ Sr, ³ H, Gamma Scan
	Asparagus	А	⁹⁰ Sr, U, Gamma Scan
Sunnyside Area	Potatoes	А	⁹⁰ Sr, Gamma Scan, FDA ^(d)
	Asparagus	А	⁹⁰ Sr, U, Gamma Scan
East Wahluke Area	Potatoes	А	⁹⁰ Sr, Gamma Scan
Harrah/Wapato Area	Tomatoes	А	⁹⁰ Sr, ³ H, Gamma Scan
Sagemoor Area	Asparagus	А	⁹⁰ Sr, U, Gamma Scan, DOH ^(e)
	Potatoes	TE (2006)	⁹⁰ Sr, Gamma Scan, DOH ^(e) , FDA ^(d)
Horn Rapids Area	Potatoes	TE (2005)	⁹⁰ Sr, Gamma Scan, DOH ^(e) , FDA ^(d)

(a) Refer to Figure 3.1, 2005 Food and Farm Product Sampling Locations.

(b) Two samples collected for PNNL within each area, one sample analyzed and one archived.

(c) Samples are collected in 2005 according to their specified frequency unless otherwise noted.

(d) Two co-samples sent to U.S. Food and Drug Administration.

(e) One co-sample provided to the Washington State Department of Health.

3.1.4 Fruit

Location ^{(a)(b)}	Somelo Tuno	Frequency ^(c)	Collection	Analyses/Co. somple
Location	Sample Type	<u>Frequency</u>	Period	Analyses/Co-sample
Sagemoor Area	Cherries	TE (2005)	June	⁹⁰ Sr, Gamma Scan, DOH ^(d) , FDA ^(e)
	Apples	TE (2006)	September	⁹⁰ Sr, Gamma Scan, DOH ^(d) , FDA ^(e)
	Concord Grapes ^(f)	TE (2007)	September	⁹⁰ Sr, Gamma Scan, DOH ^(d)
Sunnyside Area	Cherries	TE (2005)	June	⁹⁰ Sr, Gamma Scan
	Apples	TE (2006)	September	⁹⁰ Sr, Gamma Scan, DOH ^(d)
	Concord Grapes ^(f)	TE (2007)	September	⁹⁰ Sr, Gamma Scan
Riverview Area	Cherries	TE (2005)	June	⁹⁰ Sr, Gamma Scan
	Apples	TE (2006)	September	⁹⁰ Sr, Gamma Scan, DOH ^(d) , FDA ^(e)
	Concord Grapes ^(f)	TE (2007)	September	⁹⁰ Sr, Gamma Scan, DOH ^(d) , FDA ^(e)
Ringold Area	Cherries	TE (2005)	June	⁹⁰ Sr, Gamma Scan, DOH ^(d)
East Wahluke Area	Cherries	TE (2005)	June	⁹⁰ Sr, Gamma Scan
Mattawa Area	Apples	TE (2006)	September	⁹⁰ Sr, Gamma Scan, DOH ^(d)
Cold Creek Area	Concord Grapes ^(f)	TE (2007)	September	⁹⁰ Sr, Gamma Scan

(a) Refer to Figure 3.1, 2005 Food and Farm Product Sampling Locations.

(b) Two samples collected for PNNL within each area, one sample analyzed and one archived.

(c) Samples are collected in 2005 according to their specified frequency unless otherwise noted.

(d) One co-sample provided to the Washington State Department of Health.

(e) Two co-samples sent to U.S. Food and Drug Administration.

(f) Concord grapes preferred; table grapes acceptable if concord grapes are unavailable.

3.1.5 Wine

Location ^{(a)(b)}	Sample Type	Frequency	Collection Period	Analyses/Co-sample
Columbia Basin	White	A	December	Lo ³ H, Gamma Scan, DOH ^(c)
	Red	A	December	Lo ³ H, Gamma Scan, DOH ^(c)
Yakima Valley	White	A	December	Lo ³ H, Gamma Scan, DOH ^(c)
	Red	A	December	Lo ³ H, Gamma Scan, DOH ^(c)

(a) Refer to Figure 3.1, 2005 Food and Farm Product Sampling Locations.

(b) Two samples of each type collected for PNNL within each area.

(c) One co-sample provided to the Washington State Department of Health.

3.1.6 Alfalfa

Location ^{(a)(b)}	Sample Type	Frequency	Collection Period	Analyses/Co-sample
Sagemoor Area	Alfalfa	BE (2005)	May	⁹⁰ Sr, Gamma Scan, DOH ^(c)
Riverview Area	Alfalfa	BE (2005)	May	⁹⁰ Sr, Gamma Scan, DOH ^(c) , FDA ^(d)
Sunnyside Area	Alfalfa	BE (2005)	May	⁹⁰ Sr, Gamma Scan, FDA ^(d)
Horn Rapids Area	Alfalfa	BE (2005)	May	⁹⁰ Sr, Gamma Scan, DOH ^(c)

(a) Refer to Figure 3.1, 2005 Food and Farm Product Sampling Locations.

(b) Two samples collected for PNNL within each area, one sample analyzed and one archived.

(c) One co-sample provided to the Washington State Department of Health

(d) Two co-samples sent to U.S. Food and Drug Administration.

3.1.7 Honey

Location ^{(a)(b)}	Sample Type	Frequency	Collection Period	Analyses/Co-sample
East Wahluke Area	Honey	BE (2005)	Aug-Oct	 ⁹⁰Sr, Pu, U, Lo ³H, Gamma Scan, DOH^(c) ⁹⁰Sr, Pu, U, Lo ³H, Gamma Scan, DOH^(c)
Yakima Valley	Honey	BE (2005)	Aug-Oct	

(a) Refer to Figure 3.1, 2005 Food and Farm Product Sampling Locations.

(b) One sample collected for PNNL within each area.

(c) One co-sample provided to the Washington State Department of Health.

Figure 3.1. 2005 Food and Farm Product Sampling Locations

3.2 WILDLIFE

3.2.1 Aquatic Biota

Location ^(a)	Species/ <u>Sample</u>	Number of Samples	Frequency ^(b)	Collection Period	Analyses/Co-sample
100 N/ 100 D	XX/1 '4 C' 1				
100-N to 100-D	Whitefish	5	DE (2005)	T	
	Fillet	5	BE (2005)	January	Gamma Scan, $DOH^{(c)}$
	Carcass Liver ^(d)	5 5	BE (2005)	January	⁹⁰ Sr, DOH ^(c) ICP-MS
	Liver	5	BE (2005)	January	ICP-MIS
	Carp				
	Fillet	5	BE (2006)	June	Gamma Scan, DOH ^(c)
	Carcass	5	BE (2006)	June	90 Sr, DOH ^(c)
	Liver ^(d)	5	BE (2006)	June	ICP-MS
300 Area	Bass				
	Fillet	5	TE (2005)	May-June	Gamma Scan, U, DOH ^(c)
	Carcass	5	TE (2005)	May-June	90 Sr, DOH ^(c)
	Liver ^(d)	5	TE (2005)	May-June	ICP-MS, Hg-CVAA
	Carp				
	Fillet	5	BE (2006)	June	Gamma Scan, U, DOH ^(c)
	Carcass	5	BE (2006)	June	90 Sr, DOH ^(c)
	Liver ^(d)	5	BE (2006)	June	ICP-MS, Hg-CVAA
100 F Slough	Bass				
	Fillet	5	TE (2005)	May-June	Gamma Scan, DOH ^(c)
	Carcass	5	TE (2005)	May-June	90 Sr, DOH ^(c)
	Liver ^(d)	5	TE (2005)	May-June	ICP-MS, Hg-CVAA
Hanford Slough	Dece				
Hamord Slough	Bass Fillet	5	TE (2005)	May-June	Comme Soon DOU ^(c)
				-	Gamma Scan, DOH ^(c) ⁹⁰ Sr, DOH ^(c)
	Carcass	5 5	TE (2005)	May-June	,
	Liver ^(d)	5	TE (2005)	May-June	ICP-MS, Hg-CVAA
Background - Priest	XX 71 1 C 1				
Rapids/Wanapum Pools	Whitefish	5	DE (2005)	I. P. D.	Gamma Scan
	Fillet	5	BE (2005)	Jan & Dec Jan & Dec	⁹⁰ Sr
	Carcass Liver ^(d)	5 5	BE (2005)	Jan & Dec	Sr ICP-MS, Hg-CVAA
	Liver	5	BE (2005)	Jan & Dec	ICP-M5, пд-С VAA
Background - Desert	D				
Aire/Vantage	Bass	_		T	Comme Co. II
	Fillet	5	TE (2005)	June	Gamma Scan, U ⁹⁰ Sr
	Carcass	5	TE (2005)	June	
	Liver ^(d)	5	TE (2005)	June	ICP-MS, Hg-CVAA
	Carp				
	Fillet	5	BE (2006)	June	Gamma Scan, U
	Carcass	5	BE (2006)	June	⁹⁰ Sr
	Liver ^(d)	5	BE (2006)	June	ICP-MS, Hg-CVAA

(a) Refer to Figure 3.2, 2005 Wildlife Sampling Locations.
(b) Samples are collected in 2005 according to their specified frequency unless otherwise noted.
(c) One co-sample provided to the Washington State Department of Health.

(d) Ecological assessment sample.

3.2.2 Geese

		Number		Collection	
Location ^(a)	Species/Sample	of Samples	Frequency	Period	Analyses
100 Areas	Canada Goose				
	Muscle	5	BE (2005)	Jul-Aug	Gamma Scan
	Bone	5	BE (2005)	Jul-Aug	⁹⁰ Sr
	Liver ^(b)	5	BE (2005)	Jul-Aug	ICP-MS, Hg-CVAA
	Eggshells ^(b)	10	BE (2005)	May-June	⁹⁰ Sr
Hanf Townsite to					
300 Area	Canada Goose	5	BE (2005)	T 1 4	Gamma Scan
	Muscle			Jul-Aug	⁹⁰ Sr
	Bone	5	BE (2005)	Jul-Aug	ICP-MS, Hg-CVAA
	Liver ^(b)	5	BE (2005)	Jul-Aug	ICI-INIS, Hg-CVAA
	Eggshells ^(b)	10	BE (2005)	May-June	⁹⁰ Sr
Background -Vantage	Canada Goose				
	Muscle	5	BE (2005)	Jul-Aug	Gamma Scan
	Bone	5	BE (2005)	Jul-Aug	⁹⁰ Sr
	Liver ^(b)	5	BE (2005)	Jul-Aug	ICP-MS, Hg-CVAA
	Eggshells ^(b)	10	BE (2005)	May-June	⁹⁰ Sr

(a) Refer to Figure 3.2, 2005 Wildlife Sampling Locations.

(b) Ecological assessment sample.

3.2.3 **Game Birds**

Location	Species/Sample ^(a)	Number of Samples	Frequency	Collection Period	Analyses/Co-sample
100-D to 100-H	Pheasant				
	Muscle	4	BE (2006)	September	Gamma Scan
	Bone	4	BE (2006)	September	⁹⁰ Sr
	Liver ^(b)	4	BE (2006)	September	ICP-MS
100-H to 100-F	Pheasant				
	Muscle	6	BE (2006)	September	Gamma Scan, DOH ^(c)
	Bone	6	BE (2006)	September	⁹⁰ Sr, DOH ^(c)
	Liver ^(b)	6	BE (2006)	September	ICP-MS
Background	Pheasant				
	Muscle	5	BE (2006)	September	Gamma Scan, DOH ^(c)
	Bone	5	BE (2006)	September	⁹⁰ Sr, DOH ^(c)
	Liver ^(b)	6	BE (2006)	September	ICP-MS

(a) Pheasant preferred; chukar or quail acceptable if pheasant is unavailable.(b) Ecological assessment sample.

(c) One co-sample provided to the Washington State Department of Health.

3.2.4 Rabbits

		Number		Collection	
Location ^(a)	Species/Sample	of Samples	Frequency	Period	Analyses/Co-sample
100 N Area	Cottontail				
	Muscle	4	BE (2005)	Jan-Dec	Gamma Scan, DOH ^(b)
	Bone	4	BE (2005)	Jan-Dec	90 Sr, DOH ^(b)
	Liver ^(c)	4	BE (2005)	Jan-Dec	ICP-MS
200 E Area	Cottontail				
	Muscle	4	BE (2005)	Jan-Dec	Gamma Scan, DOH ^(b)
	Bone	4	BE (2005)	Jan-Dec	⁹⁰ Sr, DOH ^(b)
	Liver ^(c)	4	BE (2005)	Jan-Dec	Pu, ICP-MS
200 West	Cottontail				
	Muscle	4	BE (2005)	Jan-Dec	Gamma Scan, DOH ^(b)
	Bone	4	BE (2005)	Jan-Dec	⁹⁰ Sr, DOH ^(b)
	Liver ^(c)	4	BE (2005)	Jan-Dec	Pu, ICP-MS
Background - Grant/					
Douglas Counties	Cottontail				
-	Muscle	5	BE (2005)	Jan-Dec	Gamma Scan
	Bone	5	BE (2005)	Jan-Dec	⁹⁰ Sr
	Liver ^(c)	5	BE (2005)	Jan-Dec	Pu, ICP-MS

(a) Refer to Figure 3.2, 2005 Wildlife Sampling Locations.

(b) One co-sample provided to the Washington State Department of Health.

(c) Ecological assessment sample.

3.2.5 **Deer/Elk**

Location	Species/Sample	Number of Samples	Frequency	Collection Period	Analyses/Co-sample
100 N Area	Mule Deer				
	Muscle	2	BE (2006)	Nov-Dec	Gamma Scan, DOH ^(a)
	Bone	2	BE (2006)	Nov-Dec	⁹⁰ Sr, DOH ^(a)
	Liver ^(b)	2	BE (2006)	Nov-Dec	ICP-MS
200 Areas	Mule Deer				
	Muscle	2	BE (2006)	December	Gamma Scan
	Bone	2	BE (2006)	December	⁹⁰ Sr
	Liver ^(b)	2	BE (2006)	December	Pu, ICP-MS
Road Kill at	Mule Deer or Elk				
Onsite Location ^(c)	Muscle	10	BE (2006)	As Available	Gamma Scan
	Bone	10	BE (2006)	As Available	⁹⁰ Sr
Background ^(d)	Mule Deer				
	Muscle	2	BE (2006)	October	Gamma Scan, DOH ^(a)
	Bone	2	BE (2006)	October	⁹⁰ Sr, DOH ^(a)
	Liver ^(b)	2	BE (2006)	October	Pu, ICP-MS

(a) One co-sample provided to the Washington State Department of Health.
(b) Ecological assessment sample.

(c) As available, according to location.

⁽d) One background sample provided to the Washington State Department of Health, the other background sample will be provided to PNNL by Washington State Department of Health.

Figure 3.2. 2005 Wildlife Sampling Locations

4.0 SOIL AND VEGETATION

4.1 SOIL

Location	Frequency ^(a)	Collection Period	Analyses/Co-sample
100 K Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
NE of 100 N Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
E of 100 N Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
100N Shore Above HGP	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
100N Spring Shoreline	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Above 100D Pumphouse	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
100 Area Fire Stat	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
200 ENC	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
E of 200 E	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
200 ESE	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, ²⁴¹ Am
S of 200 E	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
SW of B/C Cribs	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, ²⁴¹ Am, DOH ^(b)
E of 200 W Gate	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, ²⁴¹ Am, DOH ^(b)
S of 200 W	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Rattlesnake Springs	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Yakima Barricade	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
400 E	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
SE Side of FFTF	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
North of 300 Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
South of 300 Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Hanford Townsite	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Wye Barricade ^(c)	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Prosser Barricade	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
ALE Field Lab	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
N End Vernita Bridge	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Wahluke Slope	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Berg Ranch	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Ringold Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
W End of Fir Road	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Taylor Flats No. 2	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Sagemoor Farm ^(c)	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, ²⁴¹ Am
Byers Landing	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Riverview-Harris	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Benton City	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Sunnyside	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, ²⁴¹ Am
McNary Dam	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Walla Walla	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Washtucna	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Toppenish	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
George	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Othello	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Wanapum	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)

(a) Samples are collected once every 3 to 5 years and will be collected in 2007.
(b) One co-sample provided to the Washington State Department of Health.
(c) Two Quality Assurance samples submitted for analyses.

4.2 VEGETATION

Location	F (a)	Collection	Analyzas/Co. comple
Location	Frequency ^(a)	Period	Analyses/Co-sample
100 K Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
NE of 100 N Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
E of 100 N Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
100N Spring Shoreline	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
E of 200 W Gate	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
300 Area Shoreline	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Hanford Townsite	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Hanford Twnsite HRM28	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Ringold Area	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Sagemoor Farm	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Byers Landing	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Riverview-Harris	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Sunnyside	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
Toppenish	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu
George	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Othello	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)
Wanapum	3 to 5 yrs	June-Sept	Gamma Scan, ⁹⁰ Sr, U, Pu, DOH ^(b)

(a) Samples are collected once every 3 to 5 years and will be collected in 2007.
(b) One co-sample provided to the Washington State Department of Health.

5.0 SEDIMENT

Location ^(a)	HRM ^(b)	Frequency	Analyses/Co-sample
Onsite Pond West Lake		Q	Gamma Scan, ⁹⁰ Sr, U, ⁹⁹ Tc, Alpha, Beta
River			
McNary Dam McNary-OR. Side Near Dam		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC, DOH ^(c)
McNary-Wash. Side Near Dam		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC, DOH ^(c)
Priest Rapids Dam (PRD)			
PRD-Grant Side Near Dam		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC, DOH ^(c)
PRD-Yakima Side Near Dam		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC, DOH ^(c)
White Bluffs Slough		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC
100 F Slough		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC, DOH ^(c)
Hanford Slough		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC
Richland		А	Gamma Scan, ⁹⁰ Sr, U, Pu, ICP-MS, Hg-CVAA, SEM/AVS, Hg-CVAF, TOC
Riverbank Springs			
100-B Spring 38-3	3.8	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA
100-K Spring 63-1	6.3	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA, DOH ^(c)
100-H Spring 145-1	14.4	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA
100-F Spring 207-1	21.3	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA
Hanford Spr UR 28-2 ^(d)	27.8	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA
Hanford Spr DR 28-2 ^(e)	28.3	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA, DOH ^(c)
300 Area Spring 41-9	41.9	А	Gamma Scan, U
300 Area Spring 42-2	42.1	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA
300 Area Spr DR 42-2 ^(e)	42.4	А	Gamma Scan, ⁹⁰ Sr, U, ICP-MS, Hg-CVAA, DOH ^(c)
300 Area Spring 42-7	42.7	А	Gamma Scan, U
Richland Spr(SRL 437-1)	43.7	А	Gamma Scan, U

(a) Refer to Figure 5.1, 2005 Sediment Sampling Locations.

(b) Hanford River Markers (HRM) are a series of signposts along the Hanford shoreline of the Columbia River that are roughly 1 mile apart. Vernita Bridge is HRM #0 and Ferry Street in Richland is HRM #46. Samples collected between HRMs are assigned a decimal. (c) One co-sample provided to the Washington State Department of Health.

(d) UR - Upriver from noted location.

(e) DR - Downriver from noted location.

Figure 5.1. 2005 Sediment Sampling Locations

6.0 EXTERNAL RADIATION

6.1 THERMOLUMINESCENT DOSIMETERS (TLDS)

6.1.1 Terrestrial Locations

Location	Location <u>Number</u>	Frequency	Measurement/Co-sample	Instrument
Onsite ^(a)				
100 B Reactor Museum	1	Q	Ambient Dose, DOH ^(b)	
100 K Area ^(c)	2	Q	Ambient Dose	
100 D Area ^(c)	3	Q	Ambient Dose	
100 F Met Tower ^(c)	4	Q	Ambient Dose	
Hanford Townsite ^(c)	5	Q	Ambient Dose	
West Lake	6	Q	Ambient Dose	
N of 200 E ^(c)	7	Q	Ambient Dose, DOH ^(b)	
B Pond ^(c)	8	Q	Ambient Dose	
E of 200 E	9	Q	Ambient Dose, DOH ^(b)	
$200 \text{ ESE}^{(c)}$	10	Q	Ambient Dose	
S of 200 E ^(c)	11	Q	Ambient Dose	
200 Tel. Exchange ^(c)	12	Q	Ambient Dose	
SW of B/C Cribs ^(c)	13	Q	Ambient Dose	
200 W SE ^(c)	14	Q	Ambient Dose	
Army Loop Camp ^(c)	15	Q	Ambient Dose	
3705 Bldg. 300 Area	16	Q	Ambient Dose	
313 Bldg.	17	Q	Ambient Dose, DOH ^(b)	
300 Water Intake ^(c)	18	Q	Ambient Dose	
300 Southwest Gate	19	Q	Ambient Dose	
300 South Gate ^(c)	20	Q	Ambient Dose	
300 Trench ^(c)	21	Q	Ambient Dose	
300 NE ^(c)	22	Q	Ambient Dose	
$400 E^{(c)}$	23	Q	Ambient Dose	
$400 \text{ W}^{(c)}$	24	Q	Ambient Dose	
400 S ^(c)	25	Q	Ambient Dose	
400 N ^(c)	26	Q	Ambient Dose	
US Ecology NE Corner	27	Q	Ambient Dose, DOH ^(b)	
US Ecology SE Corner	28	Q	Ambient Dose, DOH ^(b)	
US Ecology NW Corner	29	Q	Ambient Dose, DOH ^(b)	
US Ecology SW Corner	30	Q	Ambient Dose, DOH	
Wye Barricade ^(c)	31	Q	Ambient Dose, DOH ^(b)	
WPPSS 1; S of WNP 2	32	Q	Ambient Dose	
LIGO	33	Q	Ambient Dose, DOH ^(b)	
Perimeter ^(d)				
Ringold Met Tower ^(c)	1	Q	Ambient Dose	
W End of Fir Road ^(c)	2	Q	Ambient Dose, DOH ^(b)	
Dogwood Met Tower ^(c)	3	Q	Ambient Dose	
Byers Landing ^(c)	4	Q	Ambient Dose, DOH ^(b)	
Battelle Complex ^(c)	5	Q	Ambient Dose	
WPPSS 4; WPS Warehse	6	Q	Ambient Dose, DOH ^(b)	
Horn Rapids Substa ^(c)	7	Q	Ambient Dose, DOH	

6.1.1 Terrestrial Locations (contd)

Location	Location <u>Number</u>	Frequency	Measurement/Co-sample	Instrument
Prosser Barricade ^(c)	8	Q	Ambient Dose	
Yakima Barricade ^(c)	9	Q	Ambient Dose, DOH ^(b)	
Rattlesnake Springs ^(c)	10	Q	Ambient Dose	
Wahluke Slope ^(c)	11	Q	Ambient Dose	
Community ^(d)				
Mattawa ^(c)	12	Q	Ambient Dose	
Othello ^(c)	13	Q	Ambient Dose, DOH ^(b)	
Basin City School ^{(c)(e)}	14	Q	Ambient Dose	PIC
Edwin Markham School ^{(c)(e)}	15	Q	Ambient Dose	PIC
Pasco ^(c)	16	Q	Ambient Dose	
Kennewick-Ely Street ^(c)	17	Q	Ambient Dose, DOH ^(b)	
Benton City ^(c)	18	Q	Ambient Dose	
Distant ^(d)				
Yakima ^(c)	19	Q	Ambient Dose, DOH ^(b)	
Toppenish ^{(c)(e)}	20	Q	Ambient Dose, DOH ^(b)	PIC

(a) Refer to Figure 6.1, 2005 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Site.

(b) Washington State Department of Health TLD also at this location.

(c) Collocated with air sampling station.

(d) Refer to Figure 6.2, 2005 Thermoluminescent Dosimeter (TLD) Locations for Perimeter, Community, and Distant Sites.

(e) Community-operated environmental surveillance station.

Figure 6.1. 2005 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Site

Figure 6.2. 2005 Thermoluminescent Dosimeter (TLD) Locations for Perimeter, Community, and Distant Sites

6.1.2 Columbia River Shoreline Locations

Location ^(a)	Location <u>Number</u>	Frequency	Measurement	Instrument
S End Vernita Bridge ^(b)	1	Q	Ambient Dose	
Above 100 B Area	2	Q	Ambient Dose	
Below 100 B Ret Basin	3	Q	Ambient Dose	
Coyote Rapids	4	Q	Ambient Dose	
Above 1K Boat Ramp	5	Q	Ambient Dose	
Below 100N Outfall	6	Q	Ambient Dose	
Above Tip 100N Berm	7	Q	Ambient Dose	
100 N Trench Spring	8	Q	Ambient Dose	
Below 100 D Area	9	Q	Ambient Dose	
100-D Island	10	Q	Ambient Dose	
100 H Area	11	Q	Ambient Dose	
Lo End Locke Isl	12	Q	Ambient Dose	
White Bluffs Fy Lnd.	13	Q	Ambient Dose	
White Bluffs Slough	14	Q	Ambient Dose	
Below 100 F	15	Q	Ambient Dose	
100 F Floodplain	16	Q	Ambient Dose	
Hanford Slough	17	Q	Ambient Dose	
Hanf Powerline Xing	18	Q	Ambient Dose	
Hanford RR Track	19	Q	Ambient Dose	
Savage Isl Slough	20	Q	Ambient Dose	
Ringold Island	21	Q	Ambient Dose	
Powerline Crossing	22	Q	Ambient Dose	
S End Wooded Island	23	Q	Ambient Dose	
Islnd Above 300 Area	24	Q	Ambient Dose	
Island Near 300 Area	25	Q	Ambient Dose	
Port of Benton-River	26	Q	Ambient Dose	
N. Richland	27	Q	Ambient Dose	PIC ^(c)
Riverview	28	Q	Ambient Dose	
Isl DS Bateman Isl	29	Q	Ambient Dose	

(a) Refer to Figure 6.3, 2005 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Reach of the Columbia River.

(b) Collocated with air sampling station.

(c) PIC located at Leslie Groves-Rchlnd air sampling station.

6.2 COLUMBIA RIVER SHORELINE RADIATION SURVEYS

Location ^(a)	Location <u>Number</u>	<u>Frequency</u>	Measurement	Instrument
S End Vernita Bridge	1	Q	Exposure, Surface contamination	BICRON, GM
Coyote Rapids	4	Q	Exposure, Surface contamination	BICRON, GM
Above 1K Boat Ramp	5	Q	Exposure, Surface contamination	BICRON, GM
Below 100N Outfall	6	Q	Exposure, Surface contamination	BICRON, GM
Above Tip 100N Berm	7	Q	Exposure, Surface contamination	BICRON, GM
100 N Trench Spring	8	Q	Exposure, Surface contamination	BICRON, GM
100-D Island	10	Q	Exposure, Surface contamination	BICRON, GM
Lo End Locke Isl	12	Q	Exposure, Surface contamination	BICRON, GM
White Bluffs Fy Lnd.	13	Q	Exposure, Surface contamination	BICRON, GM
Below 100 F	15	Q	Exposure, Surface contamination	BICRON, GM
Hanf Powerline Xing	18	Q	Exposure, Surface contamination	BICRON, GM
Hanford RR Track	19	Q	Exposure, Surface contamination	BICRON, GM
Ringold Island	21	Q	Exposure, Surface contamination	BICRON, GM
Powerline Crossing	22	Q	Exposure, Surface contamination	BICRON, GM
Islnd Above 300 Area	24	Q	Exposure, Surface contamination	BICRON, GM

(a) Refer to Figure 6.3, 2005 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Reach of the Columbia River.

Figure 6.3. 2005 Thermoluminescent Dosimeter (TLD) and Radiation Survey Locations on the Hanford Reach of the Columbia River

DISTRIBUTION

No. of <u>Copies</u>

2

OFFSITE (24)

 L. Albin Division of Radiation Protection Washington State Dept. of Health P.O. Box 47827 Olympia, WA 98504-7827

> R. Buck, Jr. Wanapum P.O. Box 878 Ephrata, WA 98823

N. Ceto U.S. Environmental Protection Agency, Hanford Project Office 712 Swift Boulevard, Suite 5, MS B5-01 Richland, WA 99352

S. HarrisConfederated Tribes of the Umatilla Indian ReservationP.O. Box 638Pendleton, OR 97801

G. Hughes U.S. Fish and Wildlife Service 3250 Port of Benton Boulevard Richland, WA 99352-1670

R.E. Jaquish Washington State Department of Health 1232 Vintage Avenue Richland, WA 99352

R. Jim, Manager
Environmental Restoration and Waste Management Program
The Confederated Tribes and Bands of the Yakama Nation
P.O. Box 151
Toppenish, WA 98948

No. of Copies

D. Landeen Hanford Natural Resources Trustee Council Nez Perce Tribe P.O. Box 365 Lapwai, ID 83540

S. Langford Division of Radiation Protection Washington State Dept. of Health P.O. Box 47827 Olympia, WA 98504-7827

D. McBaugh Division of Radiation Protection Washington State Department of Health P.O. Box 47827 Olympia, WA 98504-7827

Office of Environmental Cleanup Director - Hanford Project Office 1200 6th Avenue Seattle, WA 98101

C. Palmer
The Confederated Tribes and Bands of the Yakama Nation
Department of Natural Resources
P.O. Box 151
Toppenish, WA 98948

C. Pleasants Confederated Tribes of the Colville Reservation P.O. Box 150 Nespelem, WA 99155

M. Priddy Washington State Department of Health 309 Bradley, Suite 201 Richland, WA 99352

M. Ritter U.S. Fish and Wildlife Service 3250 Port of Benton Boulevard Richland, WA 99354

No. of Cop

Copies			<u>Co</u>	Copies		
	B. Ruben Washington State Department of Health 309 Bradley, Suite 201 Richland, WA 99352			J. Zeisloft DOE Public Reading Room (2)	A3-04 H2-53	
				DOE Office of River Protection		
	L. Seelatsee			J.E. Rasmussen	H6-60	
	Wanapum P.O. Box 878					
				Bechtel Hanford, Inc.		
	Ephrata, WA 98823			K.A. Gano	H0-23	
	P. Sobotta				110 25	
	Environmental Restoration and Waste Management Program			CH2M HILL Hanford Group, Inc.		
	Nez Perce Tribe			R.W. Ovink	H9-01	
	P.O. Box 365					
	Lapwai, ID 83540			Duratek Federal Services of Hanford		
	T. Southworth			L.P. Diediker	H8-13	
	Energy Northwest					
	P.O. Box 968		4	Duratek Federal Services Northwest		
	Richland, WA 99352				TT1 11	
	E. Stonggon			J.J. Dorian	H1-11 H1-11	
	E. Stensgar Coeur d'Alene Tribal Council			S.M. McKinney R.M. Mitchell	H1-11 H1-11	
	P.O. Box 408			C.J. Perkins	H1-11 H1-11	
	Plummer, ID 83851-9704			C.J. I CIXIIIS	111-11	
	1 fulliner, 1D 03031 7704		3	Fluor Hanford		
	S.P. Van Verst		U	<u></u>		
Division of Radiation Protection			D.L. Dyekman	H8-13		
Washington State Department of Health			A.R. Johnson	H5-26		
	P.O. Box 47827			L.M. Kelly	S4-21	
	Olympia, WA 98504-7827 U.S. Environmental Protection Agency,					
			46	Pacific Northwest National Laboratory		
				E L Antonio	V2 51	
	Hanford Project Office 712 Swift Blvd, Suite 5 MS B	5 01		E.J. Antonio L.E. Bisping (30)	K3-54 K6-75	
	Richland WA 99352			A.T. Cooper	K0-75 K6-75	
Richand WA 77552				R.L. Dirkes	K6-75	
				P.E. Dresel	K6-96	
ONSITE (71)				B.G. Fritz	K6-75	
				R.W. Fulton	K6-75	
14	DOE Richland Operations			R.W. Hanf, Jr.	K6-75	
				M.J. Hartman	K6-96	
	L. Erickson	A3-04		E.A. Lepel	P8-01	
	J.B. Hall	A3-04		B.E. Opitz	K6-75	
	K.A. Klein	A7-50		G.W. Patton	K6-75	
	M. Thompson	A6-38		R.E. Peterson	K6-96	
	A.C. Tortoso	A6-38		T.M. Poston	K6-75	
	D.C. Ward (5)	A2-17		Historical File—T.M. Poston	K6-75	
	S.H. Wisness	A3-04		Hanford Technical Library (2)	P8-55	

No. of