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Executive Summary

The Sensor Fish device is being used at Northwest hydroppregects to better understand
the conditions fish experience during passage through hydhioes and other dam bypass alter-
natives. Since its initial development in 1997, the Senssih Ras undergone numerous design
changes to improve its function and extend the range of #s Tike most recent Sensor Fish de-
sign, the three degree of freedom (3DOF) device, has beehsuseessfully to characterize the
environment fish experience when passing through turbinesill, or in engineered fish bypass
facilities at dams.

Pacific Northwest National Laboratory (PNNL) is in the presef redesigning the current
3DOF Sensor Fish device package to improve its field perfoomaRate gyros will be added to
the new six degree of freedom (6DOF) device so that it will begible to observe the six linear
and angular accelerations of the Sensor Fish as it passdatmeBefore the 6DOF Sensor Fish
device can be developed and deployed, governing equationstmn must be developed in order
to understand the design implications of instrument siele@nd placement within the body of the
device.

In this report, we describe a fairly general formulationtfee coordinate systems, equations of
motion, force and moment relationships necessary to simti@& the 6DOF movement of an un-
derwater body. Some simplifications are made by considén@&ensor Fish device to be arigid,
axisymmetric body. The equations of motion are written ie body-fixed frame of reference.
Transformations between the body-fixed and inertial refeedrames are performed using a for-
mulation based on quaternions. Force and moment relatmsspecific to the Sensor Fish body
are currently not available. However, examples of the ¢tajy simulations using the 6DOF equa-
tions are presented using existing low and high-Reynoldsbeurforce and moment correlations.
Animation files for the test cases are provided in an atta€tied

The next phase of the work will focus on the refinement andiegibn of the 6DOF simulator
developed in this project. Experimental and computatistadies are planned to develop a set of
force and moment relationships that are specific to the $dtisb body over the range of Reyn-
olds numbers that it experiences. Lab testing of prototyp@®®B Sensor Fish will also allow for
refinement of the trajectory simulations through comparisdh observations in test flumes. The
6DOF simulator will also be an essential component in tamkralyze field data measured using
the next generation Sensor Fish. The 6DOF simulator willrnbexlded in a moving-machinery
computational fluid dynamics (CFD) model for hydroturbinesiumerically simulate the 6DOF
Sensor Fish.
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1.0 Introduction

Hydropower is a major producer of renewable, non-carbomrdya&reen” electrical power.
However, hydropower production impacts fish that live in agmate through impounded river
systems. In the Pacific Northwest and elsewhere, improvemehe survival and reduction in
the injury rate for fish passing through turbines is beinggbduhrough changes in hydroturbine
design and in hydroturbine operation. An additional go@raduction of more electrical power at
higher efficiency. Evidence to date indicates these goals@mplementary.

The Sensor Fish device (Sensor Fish) is an autonomous dmsiicg used to better understand
the physical conditions fish experience during passagedghrbydroturbines and other dam bypass
alternatives. Sensor Fish development was initiated afi€&orthwest National Laboratory in
1997 as an internal development initiative. The produchefibitiative was a functional prototype
that was field tested in spring 1999 and extensively usedguwinter 1999-2000 as part of an
evaluation of the first minimum gap runner installed at Bornlieelbam’s first powerhouse on the
Columbia River. The purpose of these field tests was to assgskphdamage caused by turbine
passage and develop retrieval methods for the Sensor Bishtifre tailrace. Since this initial use,
the Sensor Fish has undergone numerous design changesravénits function and extend the
range of its useGarlson et al. 2003Carlson and Duncan 20D3

The most recent and ambitious extension of function of thes&eFish is the current project
to add rate gyros to the linear accelerometers which alwaye been an element of the Sensor
Fish package. Adding the rate gyros will permit all six pb&simotions of the Sensor Fish (three
components of linear acceleration plus pitch, roll, and pagles) to be observed.

In actual use, the Sensor Fish is only one part of a “systemmésgary to acquire data on
hydraulic forces. There are other requirements relate@pdogting and retrieving the Sensor Fish,
downloading acquired data, and analyzing and interpretaig. The new Sensor Fish will greatly
extend the capabilities of this “system” in many ways. The rsensor package will make it
possible for all six degrees of freedom (6DOF) required tscdbe the motion of a rigid body to
be obtained for the Sensor Fish during transit through adtydoine or other dam passage route.

The goals of the 6DOF Sensor Fish system project are to:

1. Redesign the 3DOF Sensor Fish to incrementally improveativBensor Fish field per-
formance and add rate gyros to provide full 6DOF measuremmapability. Some more
important design changes include the following:

e increased analog to digital sampling frequency

e more non-volatile internal memory for data storage

e linear accelerometers with increased dynamic range

e software access to turn the battery on and off and to inifiatearging cycle

1



¢ rigid mounting of sensor packages on printed circuit cards
e pressure sensor with smaller external opening and greatsitivity.

2. Implement a numerical model of the 6DOF Sensor Fish wighparticle-tracking module
for use with Computational Fluid Dynamics (CFD), moving maehy simulation of hydro-
turbines.

3. Analyze Sensor Fish data sets and movement simulatitneset

In order to achieve these goals, it is first necessary to dpvgbverning equations for the
6DOF motion for a rigid body. The 6DOF equations of motion (FBEOM) described in this
report will be used to achieve several critical steps in tag@gh and implementation of the 6DOF
Sensor Fish. First, the 6DOF-EOM will be used to evaluatenelds of the 6DOF Sensor Fish
design. It is essential that the impact on the device motarsed by basic mechanical features
of the 6DOF Sensor Fish, particularly the sensor’s massllision and buoyancy characteristics,
are taken into account in the design process.

Second, the 6DOF-EOM will be incorporated into particleeking software to numerically
simulate the 6DOF Sensor Fish. This approach already hasuseel. The current 3DOF particle-
tracking capability has been usedRichmond et al(2004) to help analyze and understand 3DOF
Sensor Fish data sets and extend analysis of live fish datéraddo assess the biological perfor-
mance of spill for fish passage at The Dalles Dam.

Third, the 6DOF-EOM will serve as the base of software deyeibto analyze 6DOF Sen-
sor Fish data sets. Using the 6DOF-EOM in this way will optienextraction of information for
characterizing fish passage conditions from Sensor Fishsks. In particular, improved data-
analysis methods are needed to detect and describe SeskaeBponse to exposure conditions,
such as strike, scraping, and shear, events which are thagyrinjury mechanisms for fish passing
through turbines. These developments will permit betterafsSensor Fish data sets and provide
improved understanding of the location and dynamics of tmmd deleterious to fish during tur-
bine, spill, and bypass passage.

In Section 2 of this report, the equations of motion for anemgter body are written in
the body-fixed frame of reference. Section 3 presents fardar@oment relationships that, while
not specifc to the Sensor Fish body, are useful approximatioat are used in Section 4 to show
examples of the trajectory simulations using the 6DOF agust Animation files for the test cases
are provided in an attached CD.



2.0 Governing Equations of Rigid Body Motion

This chapter defines the coordinate systems and governumgtiegs related to the motion of
Sensor Fish. To simplify the derivation of the equationis, assumed that Sensor Fish are rigid and
cylindrical. Therefore, the terms “Sensor Fish” and “rigpddy” are interchangeable throughout
the report, even though the formulation is general and cappbed to other body shapes such as
sphere and ellipsoids.

2.1 Coordinate Systems and Transformations

“Body-fixed coordinate system (frame)” and “inertial cooralie system (frame)” are terms
used in this report. The origin of the body-fixed coordinatstem is located at the center of
buoyancy (center of geometry). Figuzel illustrates the definition of the two systems. There are
various ways to describe the general motion of a rigid boddDOF. Conventional aerodynamics
definitions are used in the current investigation.

Supposéx, Y, z) and(@, 6, ) are the position and orientation of Sensor Fish with resjpdtie
inertial coordinate system. In aerodynamics, the Eulelesygy 6 andy are usually labeled as yaw,
pitch, and roll angles, respectively, which can be deteechioy the following steps: (1) roll angle
U is obtained by rotating inertial system about its z-axislutsty-axis becomes perpendicular to
the plane of the inertial z-axis and the body-fixed x-axi$;pifch angle is obtained by rotating
the new inertial system (created by step 1) about its newiyaxil its x-axis overlaps with the
body-fixed x-axis; (3) yaw angkgis finally obtained by continuing to rotate the new inertistem
(now created by step

2) about its new x-axis until its y-axis lines up with the befthed y-axis. The corresponding
homogeneous transformatiénis defined as

A = R(27 Ll")R(ya e) R(X7 (P)

cosBcosy sinycosB —sin@
cosysin@sing— singcosp sinysinBsing+ cosPcosp cosBsing |, (2.1)
cosysinBcosp+ sinysing sinsinBcosp— cosPsing cosBcosp

which is orthogonal and transforms translational velesitbetween the inertial and body-fixed

coordinate systems by
X u u
y|=A1[v]=AT|V], (2.2)
z w w

where(u, v, w)" and(x, y, )T are the translational velocity of Sensor Fish with respedhe
body-fixed coordinate system and the inertial system, sy .

3
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Figure 2.1 Sensor Fish body-fixed and inertial coordinate systems

Components of the angular velocity in the body-fixed systembeaexpressed in terms of the
orientation angles and their derivatives

p ~ @—Ysing
q| = |6cosp+ Psinpcosd
r ) cospcosh — Bsing
1 0 —sind 0
= |0 cosp sinpcosd | | O], (2.3)
(O —sing cosrpcose) (Lp)

where(p, g, r)T and (o, 0, W)T are the rotational velocities of Sensor Fish with respechéo
body-fixed coordinate system and the inertial system, cdsedy. Therefore, by computing the
inverse of the transformation matrix in Equatidh3d), we can define the transformation matrix of

angular velocity,],
¢ p
0l=J(a], (2.4)
Ul r



where
1 singtan® cosptand
J=10 cosp —sing ) (2.5)
0 sing/cosB cosyp/cos

For the second transformation matdxthere are singularities at c@s-= 0, that is, when the
Sensor Fish has a pitch andle= +£90°, the coordinate transform based on roll, pitch, and yaw
angles doesn’'t work anymore. This singlarity associatet thie use of Euler angles is sometimes
referred to as “gimbal-lock”. To overcome this deficiendye gjuaternion representation for rigid
body rotation is introduced.

Let four parameters;, €2, €3, ande4 form the components of the quaternigras follows:

€1
_ | €2
€= £s |- (2.6)

€4

The general rotation of a rigid body has only three degreé®etiom, so the four components
are not independent and satisfy the constraint equation

e24e4+e34+e2=1 (2.7)

The related transformation matr@x in terms of quaternion components is given by

€25 —e2+eF  2(e1€p+€3€a) 2(£183 — €2€4)
Q(s) = 2(e162 —€3€4) —€3+€5—€5+€3  2(ex€3+€1€4)
2(g1€3 + £2€4) 2(€x€3—€1€4)  —€2— €5+ €5+ €2
1- 2(8% + 8%) 2(e182+€384) 2(€183 —€2€4)
= | 2(e1&2—€384) 1—2(e2+€3) 2(ex€3+€1€4) |- (2.8)
2(e163+€2€4) 2(e2€3—€184) 1—2(e34€3)

For a given homogeneous transformation mafias defined in Equatior2(1), quaterniore
can be computed from

A =Q(&y, &, €3, €4) (2.9)
1
€4 = :Eé\/1+A1,1+A2,2+%,3, (2.10)
if €40, then
€1 = 1(A Az?2)
1= e, o3 As
1
€& = —(A31—A 2.11
2 454( 31—A13) (2.11)
1
= (A2 — A1)
€3 434( 12—A21);
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if €4 =0, then

1

€1 = é\/1+A1,1—A2,2—A3,3
1

& = 3 1—Ag3—2€2 (2.12)
1 2

€3 = > 1-Agp—2¢f

Note there is a sign ambiguity in the calculation of these poments. As a result, there are at
least two sets of quaternion parameters. However, the &lguaivtransformation matriQ(¢) is the

same becaud®(¢g) (see EquationZ.8]) is not affected by the simultaneous change of signs of the

four components.

The time derivative of the quaternion is related to the rotet velocities in the body-fixed
frame,

él dSl/dt 0 r —q p €1
g2| [dep/dt| 1| -r 0O p q €
€3] |deg/dt| 2| g —-p O €3 (2.13)
€4 deg/dt -p —g —r O €4

wheret is the time. Refer ttlugheg1986 or Maxey and Riley(1983 for more details of quater-
nion representation.

On the other hand, for a given quaterngrhe transformation matri®Q(g) is computed from
Equation 2.8), and the related orientation angles can be obtained from

8 = arcsin—Q3)

Qo = arctan% (2.14)
Qa3

U o= arctant2
11

2.2 Rigid-Body Dynamics

Because most of the external forces and moments exerted @etisor Fish are represented
in the body-fixed system, all the governing equations of arowill be written in the body-fixed
system as well.

u u p p
v=|V ,a:%: v], Q=1q ,EQ: ql, (2.15)
w W r r

Xg > Fx ¥ Mx
rg=1{Yg ], YF=[3XK |, YM=| My [, (2.16)
Zy >Rz > Mz

6
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where(Xg,Yg, Zg) is the center of mass in the body-fixed frame, that is, thesbti§ the center of
mass with respect to the center of buoyancy because the ofighe body-fixed frame is defined

at the center of buoyancy,F andy M are the total force and moment exerted on the body, and alll
the components and operations are with respect to the brely{fiiame.

Use vector operation to compute the velogifyand accelerationg at the center of mass in the
body-fixed frame, and note that the origin of body-fixed frasgefined at the center of buoyancy,

drg

vg:E:VJerrg, (2.17)

then,

d
=g = gVTQxrg)

dav d
E —+ a(Q X rg)
dv dQ drg

= %qt%lxrgqtfzx(wr(zxrg). (2.18)

Use Newton’s second law to relate the external forces t@atineceleration,

ZF:mag:m(%—kc%erg%—va—ka(erg)). (2.19)

Similarly, use Euler’'s equation to relate the external mots¢o rotational motion of the rigid
body,
Q
ZM:mrgx(%+§2xv)+l-dathx(l-Q), (2.20)

wheremis the mass of the rigid body, and

Ixx —lxy —lxz
—lxz —|yz 2z
is the inertial tensor, in whicfix, lyy, |7;) are the moments of inertia and the other components are

usually referred to as the products of inertia.

Expand Equation2(19 and .20, and obtain the general governing equations of a rigid body

7



in the body-fixed frame

Sh -
>F
SF -
5 M -

= m[V—wp+ur—yg(p?+r?)

with its origin located at the centelbwoyancy:

M0 —vr +wg— Xg(q? +12) +Yg(pg— 1) + zg(pr +g)]
Zy(ar — ) +xg(Pg-+1)]
MW — ug+vp—Zg(p* + o) + Xg(Pr — &) +yg(ar + p)]

P+ (122 lyy)Ar — I(F 4 pa) + ly2(r? — ) + lxy(pr — @)
(

+
_|_

+myg(W—uq+vp) — zg(V—wp+ur)] (2.22)
S My = Iyt (=122 Pr = Ixy(P+r) + Ix(P* = 1%) + lyz(pg— )
+m{Zg(U— vr +waq) — Xg(W—ug+vp)]
Z Mz = I8+ ('yy— lx) PO — |yz(Q+ pr) + |xy(q2 - p2> + Ixz(rq —p)
+Mm[Xg(V—wp+ur) — yg(U—vr+wag)]
The governing equations can be re-written in a matrix form,
S Fx m 0 0 0 mz —my u
> F 0 m 0 —-mzkz O mXxg v
S| 0 0 m my -—myg O W n
ZMX o 0 _m% myg IXX _Ixy _IXZ p
ZMY mz 0 —MXy —Ixy Iyy —lyz q
ZMZ _myg ng O _IXZ _Iyz IZZ r
0 0 0 Mzl +yg0)  MW—Xg0)  —M(V+Xgr)
0 0 0 m(w—YygPp) M(zg" — Yg0) m(u —Ygr )
0 0 0 —M(V+ Xgr') m(ygr — u) —M(XgP+ Yg0)
—m(ygq+2zyr) mw+ygp) m(zyp—V) 0 Iz — Iy Q—lxzPp  lyzr + IxxP—lyyQ
M(Xgq—w)  —m(zgr +XgP) m(zgq+u) lyQ+ lxzp+ 124 0 lxxP — Iyt — IxyQ]
m(xgr +V) Mygr —u)  —MgP+Yg0) lyyd—byP—lya LG+ Ixal —lxxp 0
Normalize the equations with the mass of the rigid body, get
5 F 1 0 0 0 z -y u
K 0 1 0 -z 0 X v
S0 0 1 yg X O | fwf
ZM% 0 —Zg Y I)/<x _|>/<y _|>/(z p
ZM\/( 4 0 —Xg I>/<y I)//y I)//z q
EM/Z Yo X 0 _|>/(z I)//z Iéz r
0 0 0 (Zg" +Yg0) (W—xg0) —(V4Xgr)
0 0 0 (W—ygp) (Zgr —Yga) (U—ygr)
0 0 0 —(V+Xgr) (Ygr —u) —(XgP+Yg0)
—(Yga+2zr)  (W+Ygp) (Zgp—V) 0 120 =1y a—1p  1r +1p—15,4
(Xgd—W)  —(Zr +%gp)  (Zga+u)  IgA+1p+Izf 0 P — i — 15,0
(Xgr +V) (Yor —u)  —(XgPp+Ygd) lyyd—lyp—Igr L@+ 1r —Lp 0

8
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where

> Fx > Fx/m
ZE\? Zg?m
SF2 | _ | SFz/m
2'\/@ = | sMy/m (2.23)
> My > My/m
> Mz > Mz/m

and
|y _I)/(y —lys /M —lyy/M —lxz/m

=1y, —I)’,Z 12, —lyxz/m —lyz;/m  lz/m



3.0 Forces and Coefficients Evaluation

For the equations of a rigid-body motion in a water flow fieke total forces and moments are
ZF = Fpus+FL+Fp+Fa+Fp
ZM = Mpys+ML+Mp+Ma+Mp (3.2)

whereFus and Mys are hydrostatic forces and momenks, and M are body lift forces and
moments,Fp and Mp are body hydrodynamic drag forces and momehis,and M, are the
corresponding forces and moments of added mass,Fanahd Mp are propulsion forces and
moments.

In the current investigation, no propulsion is assumed,Me = 0, Fp = 0, so Equation3.1)
becomes

YF = Fus+FL+Fp+Fa
ZM = Mps+ML+Mp+Mp (3.2)

3.1 Flow Field

Suppose the ambient flow field has veloci, (Vy, V) in the inertial frame; then the angular
velocity is defined as

10V, M

W =3 <6_y B a_zy)
10V 0V

Wy =3 <E - W) (3.3)
1 (W 0Vx

In the body-fixed frame they are transformed to

Vl(E) VX
(Vz(e)) = Q(S)-(W)
VS(E) V;

VeQ1,1(€) +WQ1.2(8) +V-Q1.3(€)
= | WQ21(g) +WQ222(€) +V-Q23(¢) (3.4)
ViQ3,1(€) +WQ32(€) +V2Q33(€)

(3

wxQ1,1(€) + WyQ1,2(€) + w,Q13(€)
((DxQz,l(?—) + wyQ22(€) + (OzQz,s(E))
wxQ31(€) + wWyQ32(€) + w,Q33(€)

&L

(3.5)

11



Vi(e) wy ()

where | Vo(g) | and | wp(€) | are the translational velocity and angular velocity of thebaent
Va(€) w3(€)

flow field in the body-fixed frame.

Define gradient tensor of the ambient velocity in the inéfteme,

oVx odVx odVx

Ny Ny Ny
[Ve= a_xy 6_yy a—zy (3.6)
vz oVz 0Vz
0X oy 0z
and in the body-fixed frame, it becomes
OVp=Q-(OVe)-Q 1 (3.7)

where the subscripts b and e relate to the body-fixed frametendarth-fixed (inertial) frame,
respectively.

The time derivative of the transformation mat€xis

- 0Qij. ,0Q. 0Q;. 0Qi. ..
i = : : : =12 .
Qij ) €1+ 7 €2+ dea €3+ dea €, 1,] ,2,3 (3.8)
where _
€1 O r —qp €1
&2 _1|-r 0 p q €2
&) 2 q —-p 0 r €3 (3.9)
€4 -p —qg —r O €4

Now evaluate the acceleration of the flow velocity in the béiggd frame,
Vi AN AL
Vaf = QW] +Q- (VW
V3 VZ VZ
I X\ 5 [ A
= Q- [OVe (V] 45 (W[ +Q W
| Z Vz VZ
u a VX . VX
= Q-(OVe)-Q L |v +Q-E Vy | +Q- | W (3.10)
W Vz VZ

u 9 Vx . VX
= OVh- [ V] +Q o W] +Q (W (3.11)
W Vz VZ

Computing the rate of change of the flow angular velocity inlibey-fixed frame requires
differentiating[0V, with respect to time. This will also require introducing sed order spatial

12



partial derivatives of the flow velocity in the inertial framThe time derivative is

dVy de -
&= Q Ve Q QT QT Q DVe () (3.12)
where _
dVe (90Ve 00Ve 00Ve\ (X} 90Ve
it (ax’ay’az)'()+ o (3.13)

Finally, the rate of change of the ambient angular velocitthe body-fixed frame is obtained

as follows:
o 1. d(EVp)rq B d(0OVyp)qyr
2 dt dt
1 d(OVp)pr  d(OVb)rp
-2 ( e S (3.14)
i — L (4OVolap _ d(OVo)pg
2 dt dt

3.2 Hydrostatics

Hydrostatic forces include body weigfW/) and buoyancyB). In the inertial frame,

0 0
w=([0]|,B={0 (3.15)
W B

Note the governing equations are with respect to body-fisetdinate system and by applying
the quaternion transformation matrix defined in Equat@8)( express the hydrostatic forces and

moments in the body-fixed frame as

0 0
W(e) =Q(e)- (0) , B(g)=Q(e)- (0> (3.16)
wW B
Xus(€) (W—-B)Qu3(€)
Fus(e) = (YHS(S)) =W(e)—B(g) = ((W — B)Q273(s)) (3.17)
Zhs(€) (W—-B)Qs3(¢)
Kns(€)
e 55
N s(€
YoW — ¥pB)Q33(€) — (ZgW — 2,B)Q2,3(€)
((ZgW 2,B)Q1.3(€) — (XgW — XbB)Qs,s(E)) (3.18)
(XgW —%,B)Q2,3(€) — (YgW — YbB)Q1,3(€)

13



where(Xy, Yo, Zp) is the center of buoyancy in the body-fixed frame.

As defined earlier, the origin of body-fixed coordinate sysie at the center of buoyancy, that
IS, Xp = Y = Z, = 0, so the final expressions for hydrostatic forces and mosraget

Xus(€) (W—-B)Qu3(¢)

Yhs(€) (W—-B)Q23(¢)

< Frs(€) > _ | Zus(e) | _ (W —B)Qs3(¢)
Ms(€) Khs(€) YoW Qz3(€) — 2gW Q 3(€)
Mus(€) ZgW Q1.3(€) — %W Q33(€)
NHs(€) XgW Q.3(€) — YgW Q1 3(€)

(3.19)

3.3 Added Mass

When a rigid body accelerates within a fluid field, some amotfisucrounding fluid moves
with the body. Added mass is a measure of this moving fluid ahates the linear and angular
acceleration to the hydrodynamics forces exerted by thamgdiuid. As noted byMougin and
Magnaude({2002 added-mass effects are independent of Reynolds number lzettiev the flow
is steady or unsteadyWewman(1977) derived the forces and moments for ideal fluid due to the
added mass in a stationary flow field,

(Fa)j = —Gimj — g%
(Ma)j = —Vimjyai — €% QM3 — €jia Uilimy; (3.20)
i— 123456
L, kl= 123

wheregjy is the alternating tensor which is equal to 1 when the indices an even permutation
of (123), —1 when the indices form an odd permutation of (123), and zeemy two of the
indices are equalj, k, andl are the dummy indices as defined in summation conventiors{&m
Convention);m;j is the 6x6 added mass coefficients tens@ is the angular velocity vector
of Sensor Fish with respect to the body-fixed frameis the redundant notation of six velocity
components, defined as

(3.21)

&S

and V=

<t
Il
VRS
0 <
N——
Il
— 00T s < Cc

For a cylinder or ellipsoid, due to its symmetry, the addedsrefficients tenson; becomes

mi; 0 O O 0 0
0 me 0 0 0 mge
0 0 mgz 0 mgs O
M=l o 0 0 ms 0 O (322)
0 0O m3 0 mgs O
0 Mg 2 0 0 0 Me 6

14



wheremp o = Mg 3; Ms 5 = Mg 6; Mg = M 2; M5 = M5 3; Mp g = —Me 3.

Re-define the the nontrivial components in order to betteteeb the forces and moments due
to the added mass,

a O 0 0 0 0
Yoy O 0 0 Nay

0 Zaw O Mpay O

0 0 Kap O 0

0 Zng O Mpg O
Yy O 0 0  Nas

mj = - (3.23)

OOOOO)2<

Substituting Equation3;23 into Equation 8.20 results in simplified expressions for forces
and moments induced by the added mass.

Xa XnaU+ ZaiWd+ Zagd? — Yar — Yair?
Ya YAV + YaiF 4 Xagur — ZagWp — ZagpQ
< Fa ) |z ZaiM + Zpgl — Xaaug+ YaiV P+ Yai T
Ma Ka KapP
Ma MaiW + MagQ — (Zaw — Xau)UW— YarVP+ (Kap — Nag )rp — Zaguq
Na NagV+ Nagf — (Xag — Yav) uv+Zagwp— (Kap — Mag) IOCHYAfUF(3 20

The axial added mass can be estimated by approximatinggitebody as an ellipsoid. An
empirical formula was given bBlevins (1993,

2 2
(LY () .

wherea is an empirical parameter based on the ratio of the body hesugdtl diameter.

Newman(1977 computed the added mass on a rigid-body using strip thewtydafined the
added mass per unit length of a single cylindrical slice

My (X) = TPR(X)?, (3.26)

whereR(x) is the radius along body-fixed axial position.

The cross-flow added mass terms can be obtained by integEdnation 8.26) from forward
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position ) to tail position &) of the rigid body:
Xt
Yay =—Npo= —/ Mg (X)dx
X
Zay =—Mg3z= —Mp2="Yay
Xf
May =-—Mgs= / X my(x)dx

X
Nay =—Mpg= Mgs=—May (3.27)
Yar =-—-Mg2= —NMpe=Nay

Zpg =-—-Mg3= —Mgs= May
X
Mag = —Mgs5= —/ X% mg(x)dx

%
Nay = -—Mgg= —Mg5=Mpg
In the current investigation, Sensor Fish is assumed to loedeical, and
ma(x) =d/2, x¢=-L/2, x=L/2, (3.28)

from Equation 8.27), we have

Mpe=Mg2=Mg5=mMs3=0, (3.29)

andmjj is reduced into a diagonal matrix. Equatidhd9 also holds for an ellipsoid because
Ma(X) = Ma(—X) andx = —X.

Rolling added mass is acquired empirically. FrBievins (1993,

Xt 2p [ d 4
Kap = — — | =] dx 3.30
w=["2(3) (3.30)
Define cross-terms,
waq = Zp, xAqq = ZAq, Xavr = —Yav, Xarr = —Yar
Yaur = XAU, YAwp = —Zaw, Yqu = —ZAq
ZAuq = —Xau, ZAvp = Yav, ZArp = Yai (3-31)

Mauw = —(ZAW - XAU)7 I\/IAvp = —Yai, IVlArp = (KAp - NAr'); MAuq = —ZAq

Naw = —(Xau—Yav),  Nawp=7Zag, Napg= —(Kap—Mag);  Naur = Ya;
whereMauw and Nayy represent the pure moment exerted on the body in an invismiddt an
attach angle and are usually known as Munk Moment in maridedadynamics.

Substitute Equation3(31) into Equation 8.24), and get the equation of the added mass for a
rigid body in a stationary flow field:

Xa Xaul-+ XawaW0 4 XagqQ? + Xav VT + Xarr2
Ya YAV + Yai F 4 Yaurur + YawpW P+ YapgPd
< Fa ) | 2| ZpiN+ ZpgQ + ZaugUd+ ZavpV P+ Zarpl P (3.32)
Ma Ka Kapp '
Ma MaiW + Magd + MaudW+ Maypv P+ Marpr P 4 Maygud
Naa NayV+ Nag I + NaguV+ NawpW P+ NapgPd -+ Nagrur
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Take the ambient flow field into account, and obtain the finptessions for added mass:

F
(M‘;)Z(XA Ya Za Ka Ma Na)'

Xa = Xaa(0—V1) + Xawg(W—V3) (0 — W2) + Xaqq(d — 002)% + Xavr (V— V2) (I — wg) + Xar (r — 03)?
Ya = Yau(V—Va) 4 Yar (F — ) + Yaur(u— Vi) (r — ) + Yawp(W—V3) (p— 1) + Yapg(P — 001) (4 — &)
Zn = ZailW—V3) + Zag(G— ) + Zaug(U— V1) (0 — 02) + Zavp(V — Vo) (P — w1) + Zarp(r — wg) (P — 1)
Ka = Kap(p—an)
Ma = Mai(W—V3)+Mag(q— @) +Magw(u—Vi)(W—V3) + (3.33)
Mavp(V—V2) (P — 1) +Marp(r — w3) (P — 1) + Maug(U— V1) (0 — w2)
Na = NAv(V—Vz) + Nag (F — 3) + Naw(u—Vi) (V—V2) + NAWp(W—V3)(p —wy)+
Napg(P— 1) (0 — w2) + Naur(U—V1)(r — w3)

3.4 Drag Forces and Moments

In general, the hydrodynamics damping forces and mometitggamn an underwater moving
rigid body are highly nonlinear and coupleldossen 1994 Because the principal component is
skin friction due to the existence of the boundary layer anlibdy surface@onte and Serrani
1996, only viscous drag is taken into account. In addition, duthe highly non-linear nature of
hydrodynamics damping, only linear viscous effects aresictared, and all damping terms higher
than second-order are neglected.

Reynolds number Re is defined as

_ Uslipl-

Re (3.34)

whereUg)ip is the slip velocity of the rigid body, L is the length, ands kinematic viscosity of
water. For a typical case of Sensor Fish, llet 10 cm, Ugjip = 10 m/s, andv = 1.004 x 106
n?/s, then Re= 10°, which falls in the turbulent regime.

Unless pointed out specifically, the following formulatifum drag and lift coefficients applies
to high Reynolds numbers, i.e., turbulent regime. Low Reymeoldmber hydrodynamics was
examined byHappel and Brennéd 983 and the corresponding motion of equations of an ellipsoid

is derived separately in Sectidn3.2and AppendiXA. In addition, because there are no analytical
solutions for turbulent flows, empirical formulae are geatigrused.

3.4.1 Axial Drag Coefficients
For axial drag, fronHoerner(1965,
1
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L/d| Cp

05| 1.1
1.0 | 0.93
2.0 0.83
4.0 | 0.85

Table 3.1 Typical drag coefficients for cylinder parallel to
flow at Re> 10°

1
Xp = Xpuu(U—V1)[u—Vy| = —(EPCDAf)(U—Vl)\U—Vll (3.36)

whereAs is the front area of the rigid body is the density of water, an@p is the axial drag
coefficient.Cp is obtained by either direct experimental measurement @irgzal estimation,

_ CsdMAp
Af

Co (1+6o<9)3+o.ooz5(5>2)) (3.37)

L
wherecssis the Schoenherr’s valudy is the projected area of the rigid body, ahi$ the diameter.
Presterd200]) found that the empirical formula (EquatioB.B7])) underestimates the magni-
tude of drag coefficient compared with experimental resuhishis simulation of an underwater
vehicle,Cp was doubled to be comparable with direct experimental nreasent.
In this study, a straightforward approach is taken due taekeively simplicity of the shape

of Sensor Fish and availability of empirical data. Tablei8.&dapted fronMunson et al(1999
and lists the axial drag coefficient of a cylinder with diffat configurations for Re 10°.

3.4.2 Cross-Flow Drag Coefficients

Apply slender body theory used for calculating added masstimate cross-flow drag coeffi-
cients,

1 Xt
Yow =Zpw = —Epcdc 2R(x)dx
Xt

1 X
Mpww = —Npw = Epcdc/ 2XR(X)dx
Xt

1 Xt
Xt
1 Xt_ o
I\/quq = Nprr = _épcdc/ 2x ]X]R(X)dX
Xt
Kopp =0

whereR(x) is the radius along body-fixed axial directiog, is the axial forward position in the
body-fixed framey; is the axial tail position in the body-fixed framey. is the drag coefficient
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Figure 3.1 Drag coefficients as a function of Reynolds number for a smoglinder and sphere:
(a) plotted in log scale; (b) plotted in linear scale

of a cylinder which is equal to 1.1 according to the approxioraby Hoerner(1965. In current
study, the rigid body is a cylinder, $&x) = d/2.

Note that Equation3.38) is based on the assumption that Reynolds number is largerlia
and the flow is turbulent. For Re< 1, i.e., creeping or Stokes flows, the flow field can be solved
analytically Batchelor 196Y, and the correspond drag coefficient can be expressed as

811

o = Re74/Re)

(3.39)

To bridge the drag coefficients in different regimes, a gelnrmula is developed based on
Equation 8.38 for high Reynolds numbers, the empirical drag coefficietd fiar moderate Reyn-
olds numbersNlunson et al. 1999 and the theoretical analysis for low Reynolds numbers §£qu
tion [3.39). Figure3.1shows the comparison of the simulated drag coefficientsreddavia the
general formula to the empirical drag coefficient data.

3.4.3 Total Drag Forces and Moments

By combining the axial and cross-flow drag coefficients, we egoress the hydrodynamic
drag forces and moments as

XD XDUU(U—V;L)‘U—V1|
Yb Yow(V—V2)|V—Va| 4+ Yprr (F — w3) |r — wyg|
( FD ) — ZD — ZDWW(W_V3)|W_V3| +ZDQQ(q - (*)2)|q_ (*)2| (3 40)
Mp Kp Kppp(p—w1)|p— | '
Mb Moww(W —V3)|W — V3| + Mpgq(q — w2)|q — 0|
Np Now(V —V2) |V —Va2| +Nprr (I — wz)|r — wg|
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3.5 Lift Forces and Moments

When a rigid body immersed in a fluid moves, an interaction betwthe fluid and the body
occurs, and the body experiences a resultant force. The @muenp normal to the upstream ve-
locity is termed the “lift.” Theoretically, it can be expresd in terms of “pressure” and “shear
stresses” and obtained by integrating pressure and strieas-slistributions on the surface of the
body. However, it is usually extremely difficult to evalugiessure and shear-stress distributions,
especially shear-stress distribution. In cases wheredhgibution from the shear stress is rela-
tively small compared with that from pressure, i.e., theiltast force mainly depends on pressure
distribution, lift can be obtained experimentally by me&sg pressure distribution along the body
surface directly. For this investigation, before reliabl@erimental measurements are available,
an empirical method is applied.

FromHoerner(1985, define Hoerner lift slope coefficient

Cydp = Oy (E) (1—,8TO> (3.41)

where coefficient,g is determined empirically by the ratio of the length ovemaier,L /d.

The corresponding lift coefficients are

1
Yiw = ZLuw = — édeCydB (3.42)
and the resultant lift forces are
YL = YLwuv
Z| = Z ywuw (3.43)

For lift moments Hoerner(1965 found that the location of the resultant force is betweén 0.
and 0.7 of the body length away from the forward position. Deefi

Xep = —0.65L — Xg (3.44)
wherexcp is the point of the resultant force, and the related lift motefficients and moments

are

1
MLuw = —NLuv = YeuwXep = — épdzcydﬁxcp (3.45)

ML = Mpywuw

NL = N wuv (3.46)
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Include the flow field and rewrite the lift forces and momentsiatrix form,

XL 0
' YLuv(U —V]_) (V—Vz)
F|_ . Z|_ . ZLUW(U — Vl) (W — V3)
(m) - & |- ! (3.47)
ML MLuw(U —V]_) (W—V3)
NL NLuv(U —Vl) (V—Vz)

3.6 Resultant Forces and Moments

Substitute the final expressions for hydrostatics (Eqnaf®19), drag (Equation 3.4Q),

added mass (Equatiod.B3), and lift (Equation B.47) into Equation 8.2), and normalize it
with the object mass, then get

> Fx > Fx/m Xrs+Xp + XL+ Xa

PR S F/m Yhs+ Yo+ YL +Ya

SFE2 | | SF/m | _ 1| Zys+Zp+2Z+2Za (3.48)
SM{L | | SMx/m|  m| Kus+Kp+KL+Ka '

> M S My/m Mys—+ Mp + ML + Ma

s MS S Mz/m Nrs+ Np + N+ Na
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4.0 Simulation

This section provides simulation data and a test exampleridésy five cases in which 6DOF
motion of Sensor Fish are simulated for condition and flow.

4.1 Complete Equations of 6DOF Motion

Combine the equations for all the forces and moments, sutsstihem into the normalized
equation of 6DOF motion for a rigid body (Equatich23), and move acceleration terms of the
added mass to the left side of the equations,

1— Xag/m 0 0 0 Zg ~Yg u
0 1—Yay/m 0 —Z4 0 Xg — Yar/m v
0 0 1— Zay/m Yo —Xg—Z/_\q/m 0 Wl
0 4 Yo |>/(x_ KAP/m _|>/<y _|>/<z pl
Zg 0 —Xg — May/m —I{(y I)’,y—MAq/m —I{,Z g
—Yg Xg— Nay/m 0 _|>/<z _I)//z éz_ Nas /m r
Xus—+ Xp + XL + Xa — Xagu f1 ZF;—XAuU/m— f1
Yus+ Yo + YL+ Ya— YagV — Yaif fo ZF;—(YA\',\'/—I—YAfI;)/m— fo
1 Zus+Zo+Z +Za—ZaiW—Zpeq | | f3| _ | 2R —(ZaW+Zag@)/m—f3
m Kns+ Kp + KL +Ka —Kapp T1 S M} — Kapp/m—T;
Mus+Mp + M +Ma — Magd — MagW To ZM§—(MAqq+ MaiW) /m—To
NHs—+ Np + NL + Na — Nagf — NayVv T3 ZMQ—(NAr'I-’-i-NA\'/\./)/m—T;g
(4.1)
where
fi = —vr+wo—xg(q®+r%) +Ygpa+2Zgpr
f2 = —wg-+ur—yg(p*+r?)+250r+xgpg
fs = —ug+vp—Zg(p®+ ) +Xgpr+ ygqr (4.2)

Ti = (13— 1iy)ar — L+ 1,(r® — &) + Ly, pr + yg(—ug-+vp) — zg(—wp+ur))
To = (=13 Pr =l ar + 15(p* — r%) +1y,00+ Z5(—Vr +wa) — Xg(—ug-+vp))
Ta = (IJy— ) PA— 10 + 1 (0 — P?) + 15,00 + Xg(—Wp-+ Ur) — yg(—Vvr 4+ wa))
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Define

1—Xaa/m 0 0 0 A —Yg
0 1—YA\~,/m 0 —Zy 0 xg—YAr-/m
C_ 0 0 1— Zaw/m Yo —Xg—ZAq/m 0
B 0 —Z Yo lx — Kap/m _|>/<y —liz
Zg 0 —Xg — May/m —lgy gy —Mag/m —1y;
—Yg Xg— Nay/m 0 ~ly, _I)//z 17,— Nai /m

and Equation4.2) becomes

ZF)é—XAul:l/m— f1
> Fy— (Yaw+ Yaf ) /m—
> F, — (ZaiW+ Zagq) /m— f3 (4.4)
> My —Kapp/m—T ' '
> My — (MagQ -+ MapW) /m— T,
S M, — (Nagf + NagV) /m— T3

LetH = C~! and include the properties of quaternion and transformatieen obtain the final
equations for simulation in matrix form:

€1 O r —-qgp €1
&2 _1l-r 0 p q €
&s] 2l g —-p 0 r €3 (45)
€4 -p —q —r O €4

> F)é — Xagu/m— fq
ZF; - (YA\-,\'/+YA,-f)/m— fo
> Py — (ZaiW+ Zag) /m— f3 (4.6)
> Ml —Kapp/m—Ty '
> M&— (MAqq+ MaiW)/m—To
> M;— (NAff’ + NA\-,\'/)/m— T3

X u
y|=Q"|v]. (4.7)
z W

Note that in Equation4.6) the acceleration terms on the right side of the equatiocaneelled by
the corresponding terms of the added mass (see Equati®d)[ that is, all the acceleration terms
appear only on the left side of the equation.

=H

- O 5 E < Cc-

4.2 Numerical Simulation

The final equation of 6DOF motion is a set of 13 first-order megdr different equations. As
noted earlier, the acceleration terms on the right side efdifferential equations for the veloci-
ties are cancelled by the corresponding terms of the added,raad all the forces and moments
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coefficients are defined explicitly. Given initial valueg at O,

X(0)=x Y(0)=yo 2z0)=2
00— @ 8080 0(0) — o ws)
u(0)=up Vv(0)=vo w(0)=wp '
P(0)=po a(0)=ao r(0)=ro

initial values for the quaternion componeist®) = (£1(0),£2(0),£3(0),£4(0))" are obtained via
Equations 2.1) and @.10. Finally, the equation of motion is solved by an explicit RerKutta
(4,5) formula, the Dormand-Prince pair.

4.3 Test Examples
4.3.1 Terminal Settling Velocity of a Falling Sphere in a Visous Fluid

The solver is validated by Stokes flow around a sphere. Whehexspeaches terminal veloc-

ity,
W-B+Fp=0 (4.9)
Tt
W —B = (po—p)g(4°) (4.10)
10 1 oo T
o= 2pU ACH = 2pU (4d )Cb (4.12)

where W is the weight of sphere, B is buoyarigy,is drag,Cp is drag coefficientp, is the density
of the spherep is the density of watet) is the terminal velocityA is the reference area, adds
the diameter of the sphere.

For Stokes flow around a sphere, Re=—*F UDp e— << 1landCp = Re, wherep is the dynamic
viscosity of water,

Fo = 3T[|1Ud (4-12)
then ( ) P
Po—P)9
U= 181 (4.13)

Example:d = 0.1 mm, po = 1600kg/m?, p = 1000kg/m?, p= 1.12x 103N -s/m?. From
Equation 4.13, U is 2.917x 103 m/s. For comparison, from simulation, the terminal velocity is
also 2917x 103 m/s, as shown in Figurd.1

4.3.2 Motion of an Ellipsoid at Low Reynolds Numbers

Zhang et al. (2001) derived equations of motion for an edligal particle entrained by a
turbulent flow velocity field. They used classical anahitiegpressions describing the forces and
torques acting on the body for low Reynolds number, as detexinby the magnitude of the
relative velocity between the flow field and the body. For ¢hégnamic equations of motion, the
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Figure 4.1 Terminal velocity of a sphere at Re< 1

slip velocity is assumed sufficiently small so the entraintiakes place in the so called “creeping
flow regime.” In particular, for this regime of flow, the hydiynamic drag and shear-induced lift
tend to be directly proportional (linearly) to the velociifference between the flow and body
motion.

In their investigation of ellipsoidal particles transpdsewton’s second law was solved in the
inertial frame, while Euler's motion equation of angulatogties was solved in the body-fixed
frame. However, in our study, it was more convenient andiefficto write all the equations of
motion in only the body-fixed frame. The details of derivatare included in AppendiR.

As a test example, a 5:1 ellipsoid,cnlong by 1cmdiameter, is simulated. The ellipsoid
densityp, is taken as 1,20@g/m* compared with 1,00&g/m? for water, so that it sinks. The
ellipsoid’s geometric center coincides with the center abm

The parabolic velocity varies in the x direction, with thewlpointing negatively along the
y-axis. Thus, shear gradient is along the x direction. A tamtsvelocity component acts along the
z-axis as well, pointing in the negative direction. The d&@dion of gravity is applied along the
y-axis for this example, in a positive direction in oppasitito the parabolic velocity field, while
gravity is usually applied in positive inertial z-direatielsewhere in this report. The velocity field
is specifically given as

VX — 0

20 X
vy = —Vfo(l—va) for 0<x<W (4.14)
VZ — —1

whereW; is the width of the parabolic flow field and taken to be 1 and 1@mwo test cases.

26



/ \ Starting point

I
- 0

P

z (m)

Figure 4.2 Trajectory of an ellipsoid in a 1-m-wide parabolic velgdield

A typical trajectory for the 1-m-wide velocity field is shoumFigure4.2 The ellipsoid major
axis is aligned with the flow initially, and turns very littiduring the simulation period of 15
seconds. During this period, drag force overcomes graaitg, the ellipsoid moves with the flow
in the negative y-direction. The ellipsoid is startec at 0.25 and oscillates back and forth across
the velocity center line.

The motion is described in more detail by display of each caomept below (Figuré.3). In
this case, the ellipsoid has an initial angle of 45 degred!s thie flow direction. Its rotation rate
about its body-fixed Y-axis, which points parallel to thertred z-axis is shown also, with the
clockwise rotation being the positive direction. Its ratatindicates turning and then a reversal.
The drag with flow in the negative y-direction overcomes thavigy in the opposite direction.
Nevertheless, this still causes the velocity of the ellipso be less than if fully entrained without
gravity opposing. Note the ellipsoid initially turns invaetioward the center of the flow, 45 degrees,
is first turned outward passing over the centered directiarontinues past the center and returns
again. Its direction appears to approach being paralldig¢dlow. Also, there is no turning out of
the inertial x-y plane since the velocity component in thexis direction is uniform everywhere.

The case with velocity shear width of 10 m is plotted in Figdir# The period is increased to
30 seconds to let the trajectory develop more. Clearly, thguency of oscillation back and forth
across the shear is reduced substantially. In this cas&gttieal excursions against gravity have
greater amplitude than for the 1 m shear. The pull of gragtydaginning to reverse the direction
of movement in opposition to the flow drag. In fact, the elbigspath has reversed direction of
travel.

In both cases, the rotation begins so that the ellipsoidstatward from the flow field center.
This reduces the initial angle and turns the ellipsoid atligi back into alignment with the flow
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direction. It overshoots alignment, and then turns backnaga

It is noteworthy that when the ellipsoid starts at the ceoténe shear field, it does not oscillate
across. Then, ideally, it remains at the center as it evéntiravels in the positive y-direction,
sinking down with gravity against the flow.

If instead, the direction of gravity points in the same dii@tof flow, negative y-direction, then
the ellipsoid will not oscillate about the center line, bubgresses toward the nearest boundary.
For instance, as shown in Figu4eb, if started atx = 4 m for the 10-m-wide parabolic field, it will
reachx = 0 in about 4 seconds. Starting with a 45 degree tilt as befonerns back outward by
about 16 degrees in this period.

These figures and predicted behavior in a parabolic veldtgl tend to correspond to the
similar trajectory behavior reported [§affman(1965 and Feng and Joseptfl995. Similar
complex motions have also been discusse8inday et al(1998. An issue, however, is whether
the examples given here apply a velocity magnitude thatesatiie shear-lift formula to go outside
the accepted range of Reynolds number. In any case, the f@editlipsoid motion is at least
representative.

4.3.3 Six Degree of Freedom Motion of Sensor Fish

Six degree of freedom motion of Sensor Fish were simulatesieen sets of initial conditions
and ambient flows, which are defined as cases 1 to 7. Note th&bittes and moments are high-
Reynolds number approximations based on available infeomatAdditional experimental and
computational work is planned to develop relationships #na specific to the Sensor Fish body
and range of Reynolds numbers it experiences during fielcbglep@nt.
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Test cases 1 through 5 are in uniform flows and have the satra gonditions:

(4.15)

Cases 6 and 7 are in parabolic flow field, and the initial pasitias been changed to
X(0)=0 y(0)=1m 2Z0)=0. (4.16)
For all the seven cases, the corresponding initial quaiewalues are
£1(0) = 0.2831 £5(0) =0.2969 £3(0) = 0.07044 £4(0) = 0.9093 (4.17)

In addition, supposk = 10cm, d = 2 cm and Sensor Fish is neutrally buoyant. Other parameters
and animation movie files are listed in Taldld. The movie files are included in the attached CD.

(Xg,Yg,Zg),cm | Vy,m/s | Vy,m/s | V;,m/s | Animation filename
Casel (2,0,0) 0 0 0 Casel.avi
Case 2 (2,0,0) 2 0 0 Case2.avi
Case 3 (0,0,0) 2 0 0 Case3.avi
Case4| (2,0,0) 2 1 0 Case4.avi
Case 5 (0,0,0) 2 1 0 Caseb.avi
Case6| (2,0,0) 4—y? 0 0.5 Caseb6.avi
Case7 (0,0,0) 4—y? 0 0.5 Case7.avi

Table 4.1 Simulation Parameters and animation movie files for therséest cases

For case 1, there is no ambient flow, but due to initial anghesthe offset of center of mass
from the geometric center, the resultant moment leads tootlation of Sensor Fish. As shown in
Figure4.6, the rotation will die down due to the work of resistant dragg there is slight motion
on the z-direction due to the transition of rotational egamtranslation energy. A snapshot of
6DOF motion of Sensor Fish is shown in Figuré&.

For cases 2 and 3, the ambient flow is an one-dimensionalromifiow field. As illustrated
in Figures4.8and4.9, an offset of center of mass (case 2) increases rotationrdd8é-ish in the
first two seconds. A side-by-side comparison animation m@@iase2-3Jide.avi) is included in
the enclosed animation CD.

When the ambient flow field changes to a two-dimensional umiftbow, as in cases 4 and 5
shown in Figuregt.10and4.11 and the side-by-side comparison movie (Casesdd®.avi), the
Sensor Fish displays similar behavior as in cases 2 and 3fset of the center of mass leads to
an increase in Sensor Fish rotation.
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For Sensor Fish in a parabolic flow field as in cases 6 and 7dé=she oscillating effect of
deviation of the mass center as shown in Figwtd®(c)(d) and4.13c)(d), there is a drift in y-
direction (Figure<gt.12 and4.13) due to the shear effect in that direction. A comparisonimov
(Case6-7side.avi) for these two cases is also included in the CD.

However, it is important to point out that for all the exangptested, the oscillation effect due
to the offset between the geometric center and mass cemerally tends to diminish, and the
Sensor Fish begins to align to the flow direction after sdwsraonds, while the low-frequency
oscillation of the cases without the offset continues teEexi
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5.0 Summary

As part of the process of redesigning the current 3DOF Sdfisbrdevice rate gyros will be
added to the new six degree of freedom (6DOF) device to measwh of the six linear and angular
accelerations. However, before the 6DOF Sensor Fish dednebe developed and deployed,
governing equations of motion must be developed in ordenttetstand the design implications
of instrument selection and placement within the body ofdééce.

As part of the initial steps in the design process, this regeveloped a fairly general formu-
lation for the coordinate systems, equations of motiorgd@nd moment relationships necessary
to simulate the the 6DOF movement of an underwater body. Simglifications are made by
considering the Sensor Fish device to be a rigid, axisymmietdy. The equations of motion are
written in the body-fixed frame of reference. Transformagi®etween the body-fixed and iner-
tial reference frames are performed using a formulatioetb@s quaternions. Force and moment
relationships specific to the Sensor Fish body are curremtyavailable. However, examples of
the trajectory simulations using the 6DOF equations arsgmed using existing low and high-
Reynolds number force and moment correlations. Animaties fibr the test cases are provided
in an attached CD.

The next phase of the work will focus on the refinement andiegibn of the 6DOF simulator
developed in this project. Experimental and computatishadies are planned to develop a set of
force and moment relationships that are specific to the $dtisb body over the range of Reyn-
olds numbers that it experiences. Lab testing of prototyip@®B Sensor Fish will also allow for
refinement of the trajectory simulations through comparisgh observations in test flumes. The
6DOF simulator will also be an essential component in tamknalyze field data measured using
the next generation Sensor Fish. The 6DOF simulator willrobexlded in a moving-machinery
computational fluid dynamics (CFD) model for hydroturbinesiumerically simulate the 6DOF
Sensor Fish.
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Appendix A: Ellipsoid Motion Equations for Low Reynolds
Numbers

Zhang et al. (2001) derived equations of motion for an alligal particle entrained in turbu-
lent channel flows. The slip velocity is assumed sufficiestiyall so that the forces and torques
(moments) acting on the body are obtained from the expnes$ar the low-Reynolds number or
creeping flow regime. In this flow regime, the hydrodynamiagdand shear-induced lift tend to
be directly proportional (linearly) to the slip velocity.h&y wrote the translational equations of
motion, i.e., Newton'’s law oF = ma, in the inertial reference frame. However, the equations fo
rotational motion were given in terms of the body-fixed frawith angular velocity components
around this frame.

In the formulation of the motion equations presented intdpsort, all the forces and moments
are expressed in the body-fixed frame. To be consistent, et dlde formulation of Zhang et al.
(2001) accordingly. In addition, in this Appendix, the semajor axis is Z-axis instead of X-axis
as in the main report.

Recall that the flow field has/, Vi, V) in the inertial frame andvy, Vz, V3) in the body-fixed
frame as discussed in Chapgl (Pagell), then in the body-fixed frame, the drag force becomes

Vi—u
Fp=pumaK- | Vo—vVv (A.1)
V3 —wW

where a is the semi-minor axis of the ellipsoid of revoluteomd

k« 0 O
K=[0 k 0 (A.2)
0 0 k

is called the translation dyadic. For the ellipsoid rotaéedund the Z-axis, it is determined by
B = b/a (ratio of semi-major axis to semi-minor axis)

16(B° 1)
EELIERVATE)
(P2 -3)= o= +P
8(B*—1)

| /(32—
(2[32_1)”('”(8—2(2)1)) ~B

k, = (A.4)

Note that the semi-major axis is aligned along the body-fi&exis and
Q1K-Q
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is the dyadic in the inertial frame.

The shear-induced lift force for an arbitrary-shaped pkrtvas obtained by Harper and Chang
(1968) and the equation for it was re-stated by Zhang et @DXp

In the body-fixed frame, the lift force is

2 Vi—u
FLZUtha . ’% S - (K-D-K)- | Vo—V (A.5)
VV y Vs W
where
Dy =Q-Dyx-Q ' (A.6)
with
0.0501 00329 0
Dyx =1 0.0182 Q0173 0 (A.7)
0 0 00373
being a special matrix that remains fixed, and
§=Q-5-Q* (A.8)
with
1 0 0
Sc=1|0 sign(%) 0 (A.9)
0 0 1

This force applies only for a flow field in the x-direction wighear in only the orthogonal
y-direction. For flow in the y-direction as well, with shearthe x-direction, a similar additional
force would likely need to be superimposed. Then arrangéofegiements irnS, would need to
be changed to describe the orthogonal shear direction.

In particular, to find shear-lift in the orthogonal directiceplaceDy by Dy given below and
replace the x-component flow velocity gradient with resgecy by the y-component velocity
gradient with respect to x

D, =Q-Dy-Q°* (A.10)
and
0.0173 00182 0
Dy = | 0.0329 00501 0 (A.11)
0 0 00373
Thus the orthogonal lift is
Vi—u
ure a? ‘avy ,

FL= o |22 ~S§,~(K~Dy~K)~ Vo —v (A.12)

\/\_) OX V3 —W
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where

§,=Q-5-Q (A.13)
and
sign(%2) 0 0
Sy = 0 10 (A.14)
0 01

In general, the two force expressions for shear-lift areedddgether when flow is neither en-
tirely in the x or y directions. In this trajectory model, sinén the vertical z-direction is presumed
not to occur, or is presumed minor.

Zhang et al. (2001) pointed out that Jeffery (1922) oridinderived the torque on an ellip-
soid in a flow field having deformation and angular velocitgrficity). To express the torque
components, it is necessary to calculate the flow velocigigints in the body-fixed frame,

Nx x Vx
0X ay 0z

(Vp=Q:-(0Ve) Q! and OVe=| %Y Y 2 (A.15)

vz dVz 0Vz
ox ay 0z

where the subscripts b and e relate to the body-fixed framelandarth-fixed (inertial) frame,
respectively.

The deformation rate and vorticity are

[(OVb)z2+ (OVb)23)], Yiz= 3 [(OVb)13+ (OVp)z1)], (A.16)

w1 2[(DVb)32—(DVb)23)] w2 = 3[(OVp)1,3— (OVp)31)], QBZ%[(DVb)z,l—(DVb)Lz)]-

Notice that the vorticity in the body-fixed frame is the trimmmation of the same quantity in the
inertial frame, as described in equati®® (Pagell).

The torque components are now given in the body-fixed frame by
16Tpap

> Mx = m[(l—ﬁz)ysz+(l+ﬁz)(wl—p)}
My = SR (@ Dyt (14 B en - a) (A17)
_ 32muap
YMz = m(%—r)
where
. P B B—P?
Oo = BO_BZ—1+2(BZ 137 <B+\/Bzi> (A.18)

2 B B— VP2
Vo= po1 @12 <B+W> (A.19)
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The trajectory equations for rotation assumed by Zhang.et(2001) require the ellipsoid
center of buoyancy and center of mass to coincide. In terrtteecdngular velocities, the equations
of rotational velocities are

kP4 (Izz— lyy)ar = z Mx
l2A4 + (lyy — Ix) pa = z Mz

where moments of inertia are given for an ellipsoid as

(1+p?) & 2a°

5 m, IZZ: ?m (A21)

4
m= §Ha3[3po, lxx = lyy =

In the context of the more general situation when center afsngnot located at the center of
the ellipsoid. Let(0, 0, zy) indicate the location of center of mass relative to the stlig center,
the rotation would be expressed by the following

lyd+ (= lzz)pr+mz(u—vr+wg) = % My+zgWQi3 (A.22)
l24 + (lyy—Ix)pgq = ZMZ

whereW is the weight of the particle. Note that moment of inertiadd¢o be re-calculated due to
the offset of geometric center and mass center.

The final equations for simulation of an ellipsoidal pagieke obtained by substituting equa-
tionsA.2, A.5, andA.12 into the equations of translational motion, and includihg equations
of rotational motion (equatioA.22 and the properties of quaternion representation (equsadién
and4.7).
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Appendix B: Nomenclature

The following is a list of the symbols and their definitiongdsn this document. As a common

practice, symbols in bold face are defined as vectors or tey@od symbols dotted above are time
derivative in their own coordinate systems.

A

Aij

Co

Fb

Fhs

/

Homogeneous transform matrix given aJ
set of roll, pitch, and yaw angles

components of transform matri, Ka
i,j=1,2,3
Frontal area of Sensor Fish(d/2)? Kap
Projected area of Sensor FistgL

Kb

Magnitude of buoyancy

6 x 6 matrix of coefficient on the left sidekD
WW

of 6DOF motion equations
axial drag coefficient

Resultant of forces due to added mass in

body-fixed frame KL
Resultant of drag forces in body-fixed
frame L
Resultant of hydrostatic forces in M
body-fixed frame A
Resultant of lift forces in body-fixed M
frame A
Inverse of coefficient matrix GG —1 Ma
Ai
Inertial tensor of a rigid body
Components of inertial tensor in
body-fixed framei, j = x,y,z Mp
Normalized inertial tensor of a rigid
body,| /m Mb

Components of normalized inertial tensor
in body-fixed frame,
II/JZIU/m’ ivjzxvyvz

B.1

Khs

Transform matrix for rotational velocities
given a set of roll, pitch, and yaw angles

Resultant of moments due to added mass
along body-fixed X-axis

Coefficients of moments due to added
mass in body-fixed frame

Resultant of drag moments along
body-fixed X-axis

Drag moment coefficient in body-fixed
frame

Resultant of hydrostatic moments along
body-fixed X-axis

Resultant of lift moments along
body-fixed X-axis

Length of Sensor Fish

Resultant of moments due to added mass
in body-fixed frame

Resultant of moments due to added mass
along body-fixed Y-axis

Coefficients of moments due to added
mass in body-fixed frame,
I =W,q,uw vp,rp,uq

Resultant of drag moments in body-fixed
frame

Resultant of drag moments along
body-fixed Y-axis

Mpww Drag moment coefficient in body-fixed



Mbqq

Mus

Mus

Nai

Np

I\lev

NDrr

Nhs

O\

I\lLuv

Qij

Re

frame

Drag moment coefficient in body-fixed T;
frame

Resultant of hydrostatic moments in
body-fixed frame

Uslip

Vi
Resultant of hydrostatic moments along
body-fixed Y-axis :
Vi
Resultant of lift moments in body-fixed

frame
Vo

Resultant of lift moments along
body-fixed Y-axis :
Va2
Lift moment coefficient along body-fixed
Y-axis

Resultant of moments due to added ma¥%s
along body-fixed Z-axis

Coefficients of moments due to added Vs
mass in body-fixed frame,

| =V,r,uywp, pg, ur
Vx

Resultant of drag moments along
body-fixed Z-axis :
Vx
Drag moment coefficient in body-fixed

frame

Vy
Drag moment coefficient in body-fixed
frame :
Vy
Resultant of hydrostatic moments along
body-fixed Z-axis v
Resultant of lift moments along ’
body-fixed Z-axis v
Lift moment coefficient along body-fixed ’
Z-axis

w
Transformation matrix in terms of
guaternion components Xa
Components of transform matrég,
i7 J = 17 27 3 XAI

Reynolds number based on slip velocity

B.2

of Sensor FishJgipL /v

Non-acceleration terms defined in
Equation4.2,i=1,2,3

Slip velocity of Sensor Fish

Axial velocity (X-axis) of ambient flow
field in body-fixed frame

Axial acceleration (X-axis) of ambient

flow field in body-fixed framef’dlt1

Spanwise velocity (Y-axis) of ambient
flow field in body-fixed frame

Spanwise acceleration (Y-axis) of

3mbient flow field in body-fixed frame,
V;

ar

Vertical velocity (Z-axis) of ambient flow
field in body-fixed frame

Vertical acceleration (Z-axis) of ambient
flow field in body-fixed frameZ%

Axial velocity (x-axis) of ambient flow
field in inertial frame

Axial acceleration (x-axis) of ambient

flow field in inertial frame Z%

Spanwise velocity (y-axis) of ambient
flow field in inertial frame

Spanwise acceleration (y-axis) of
ambient flow field in inertial framect'j—\:y

Vertical velocity (z-axis) of ambient flow
field in inertial frame

Vertical acceleration (z-axis) of ambient
flow field in inertial frame,%

Weight of Sensor Fish

Resultant of forces due to added mass
along body-fixed X-axis

Coefficients of forces due to added mass
in body-fixed framei = u,waq, qq, vr, rr



YHs

ZDWW
Zpqq

Zus

Z

ZLuw

Resultant of drag forces along body-fixed,q3 Hoerner lift slope coefficient

X-axis

O

Drag coefficient in body-fixed frame

Resultant of hydrostatic forces along d
body-fixed X-axis ;
[

Resultant of lift forces along body-fixed
X-axis

m

Resultant of forces due to added mass
along body-fixed Y-axis

Coefficients of forces due to added mass
in body-fixed framei = v, ,ur,wp, pq

Resultant of drag forces along body-fixed
Y-axis q

Drag coefficient in body-fixed frame
Drag coefficient in body-fixed frame

Resultant of hydrostatic forces along r
body-fixed Y-axis

Resultant of lift forces along body-fixed r
Y-axis

Lift coefficient along body-fixed Y-axis t

Resultant of forces due to added mass u
along body-fixed Z-axis

Coefficients of forces due to added masa
in body-fixed framei = w, q,uq,vp,rp

Resultant of drag forces along body-fixed
Z-axis

Drag coefficient in body-fixed frame v
Drag coefficient in body-fixed frame

Resultant of hydrostatic forces along
body-fixed Z-axis

w
Resultant of lift forces along body-fixed

Z-axis

Lift coefficient along body-fixed Y-axis

B.3

An empirical coefficient for evaluation of
Cyap

Diameter of Sensor Fish

Non-acceleration terms defined in
Equation4.2,i=1,2,3

Mass of Sensor Fish

Angular velocity of Sensor Fish with
respect to body-fixed X-axis

Rate of change of angular velocity with
respect to body-fixed X-axi%’

Angular velocity of Sensor Fish with
respect to body-fixed Y-axis

Rate of change of angular velocity with
respect to body-fixed Y-axi%t"1

Angular velocity of Sensor Fish with
respect to body-fixed Z-axis

Rate of change of angular velocity with
respect to body-fixed Z-axi%{

Time

Axial velocity of Sensor Fish in
body-fixed frame

Axial acceleration of Sensor Fish in
body-fixed framegdt

Spanwise velocity of Sensor Fish in
body-fixed frame

Spanwise acceleration of Sensor Fish in

body-fixed framegdY

Redundant notation of six velocity
components(u, v, w, p, g, r)"

Vertical velocity of Sensor Fish in
body-fixed frame

Vertical acceleration of Sensor Fish in
body-fixed frame ¥



Yb

Yo

&1
&2
€3

€4

Axial position of Sensor Fish with
respect to inertial frame

Axial velocity of Sensor Fish in inertial
dx

frame, 5
Axial position of center of buoyancy in Po
body-fixed frame

Location of resultant lift in body-fixed ¢
frame

Axial position of center of mass in ¢
body-fixed frame

Spanwise position of Sensor Fish with W
respect to inertial frame

Spanwise velocity of Sensor Fish in W
inertial frame%’

Spanwise position of center of buoyanc;$2
in body-fixed frame

Spanwise position of center of mass in
body-fixed frame w1

Vertical position of Sensor Fish with _
respect to inertial frame Wy

Vertical velocity of Sensor Fish in inertial

dz
frame,m

Vertical position of center of buoyancy in
body-fixed frame

Vertical position of center of mass in "2
body-fixed frame

Quaternion|gy,€,€3,€4)" 03
First component of quaternian

Second component of quaternion w3
Third component of quaternian

Fourth component of quaterni@n Wx

Pitch angle of Sensor Fish with respect to
inertial frame (W

Angular velocity of Sensor Fish with

B.4

respect to inertial y-axisy
Kinematic viscosity of water
Density of water

Density of Sensor Fish or the underwater
rigid-body

Roll angle of Sensor Fish with respect to
inertial frame

Angular velocity of Sensor Fish with
respect to inertial x-axis‘é',—‘tp

Yaw angle of Sensor Fish with respect to
inertial frame

Angular velocity of Sensor Fish with
respect to inertial z-axis"iﬂ—‘{’

Angular velocity vector of Sensor Fish
with respect to body-fixed frame,

(p, g, )"

Angular velocity of ambient flow with
respect to body-fixed X-axis

Rate of change of ambient flow angular
velocity with respect to body-fixed
X-axis, %—‘*t’l

Angular velocity of ambient flow with
respect to body-fixed Y-axis

Rate of change of ambient flow angular
velocity with respect to body-fixed
Y-axis, %—‘*t’z

Angular velocity of ambient flow with
respect to body-fixed Z-axis

Rate of change of ambient flow angular
velocity with respect to body-fixed

Z-axis, at

Angular velocity of ambient flow with
respect to inertial x-axis

Rate of change of ambient flow angular
velocity with respect to inertial x-axis,



OVp

UVe

SF

> Fx

> Fx

> F

d

ot SR
Angular velocity of ambient flow with
respect to inertial y-axis S F7

Rate of change of ambient flow angular

velocity with respect to inertial y-axis, Y F,
day
dt
Angular velocity of ambient flow with Y M

respect to inertial z-axis

Rate of change of ambient flow angular Y Mx

\éelocity with respect to inertial z-axis,
Wy

a > M
Gradient tensor of ambient flow velocity

in body-fixed frame

Gradient tensor of ambient flow velocity > My
in inertial frame

Resultant of external forces in body-fixed M5
frame

Resultant of external forces along

body-fixed X-axis > Mz

Normalized resultant of external forces

along body-fixed X-axisy Fx,/m > Mz

Resultant of external forces along
body-fixed Y-axis

B.5

Normalized resultant of external forces
along body-fixed Y-axisy Fy/m

Resultant of external forces along
body-fixed Z-axis

Normalized resultant of external forces
along body-fixed Z-axisy Fz/m

Resultant of external moments in
body-fixed frame

Resultant of external forces with respect
to body-fixed X-axis

Normalized resultant of external
moments with respect to body-fixed
X-axis, ¥ Mx,/m

Resultant of external forces with respect
to body-fixed Y-axis

Normalized resultant of external
moments with respect to body-fixed
Y-axis, S My/m

Resultant of external forces with respect
to body-fixed Z-axis

Normalized resultant of external
moments with respect to body-fixed
Z-axis,y Mz/m
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