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Executive Summary

The Sensor Fish device is being used at Northwest hydropowerprojects to better understand
the conditions fish experience during passage through hydroturbines and other dam bypass alter-
natives. Since its initial development in 1997, the Sensor Fish has undergone numerous design
changes to improve its function and extend the range of its use. The most recent Sensor Fish de-
sign, the three degree of freedom (3DOF) device, has been used successfully to characterize the
environment fish experience when passing through turbines,in spill, or in engineered fish bypass
facilities at dams.

Pacific Northwest National Laboratory (PNNL) is in the process of redesigning the current
3DOF Sensor Fish device package to improve its field performance. Rate gyros will be added to
the new six degree of freedom (6DOF) device so that it will be possible to observe the six linear
and angular accelerations of the Sensor Fish as it passes thedam. Before the 6DOF Sensor Fish
device can be developed and deployed, governing equations of motion must be developed in order
to understand the design implications of instrument selection and placement within the body of the
device.

In this report, we describe a fairly general formulation forthe coordinate systems, equations of
motion, force and moment relationships necessary to simulate the the 6DOF movement of an un-
derwater body. Some simplifications are made by consideringthe Sensor Fish device to be a rigid,
axisymmetric body. The equations of motion are written in the body-fixed frame of reference.
Transformations between the body-fixed and inertial reference frames are performed using a for-
mulation based on quaternions. Force and moment relationships specific to the Sensor Fish body
are currently not available. However, examples of the trajectory simulations using the 6DOF equa-
tions are presented using existing low and high-Reynolds number force and moment correlations.
Animation files for the test cases are provided in an attachedCD.

The next phase of the work will focus on the refinement and application of the 6DOF simulator
developed in this project. Experimental and computationalstudies are planned to develop a set of
force and moment relationships that are specific to the Sensor Fish body over the range of Reyn-
olds numbers that it experiences. Lab testing of prototype 6DOF Sensor Fish will also allow for
refinement of the trajectory simulations through comparison with observations in test flumes. The
6DOF simulator will also be an essential component in tools to analyze field data measured using
the next generation Sensor Fish. The 6DOF simulator will be embedded in a moving-machinery
computational fluid dynamics (CFD) model for hydroturbines to numerically simulate the 6DOF
Sensor Fish.
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1.0 Introduction

Hydropower is a major producer of renewable, non-carbon based, “green” electrical power.
However, hydropower production impacts fish that live in or migrate through impounded river
systems. In the Pacific Northwest and elsewhere, improvement in the survival and reduction in
the injury rate for fish passing through turbines is being sought through changes in hydroturbine
design and in hydroturbine operation. An additional goal isproduction of more electrical power at
higher efficiency. Evidence to date indicates these goals are complementary.

The Sensor Fish device (Sensor Fish) is an autonomous devicebeing used to better understand
the physical conditions fish experience during passage through hydroturbines and other dam bypass
alternatives. Sensor Fish development was initiated at Pacific Northwest National Laboratory in
1997 as an internal development initiative. The product of the initiative was a functional prototype
that was field tested in spring 1999 and extensively used during winter 1999-2000 as part of an
evaluation of the first minimum gap runner installed at Bonneville Dam’s first powerhouse on the
Columbia River. The purpose of these field tests was to assess physical damage caused by turbine
passage and develop retrieval methods for the Sensor Fish from the tailrace. Since this initial use,
the Sensor Fish has undergone numerous design changes to improve its function and extend the
range of its use (Carlson et al. 2003; Carlson and Duncan 2003).

The most recent and ambitious extension of function of the Sensor Fish is the current project
to add rate gyros to the linear accelerometers which always have been an element of the Sensor
Fish package. Adding the rate gyros will permit all six possible motions of the Sensor Fish (three
components of linear acceleration plus pitch, roll, and yawangles) to be observed.

In actual use, the Sensor Fish is only one part of a “system” necessary to acquire data on
hydraulic forces. There are other requirements related to deploying and retrieving the Sensor Fish,
downloading acquired data, and analyzing and interpretingdata. The new Sensor Fish will greatly
extend the capabilities of this “system” in many ways. The new sensor package will make it
possible for all six degrees of freedom (6DOF) required to describe the motion of a rigid body to
be obtained for the Sensor Fish during transit through a hydroturbine or other dam passage route.

The goals of the 6DOF Sensor Fish system project are to:

1. Redesign the 3DOF Sensor Fish to incrementally improve overall Sensor Fish field per-
formance and add rate gyros to provide full 6DOF measurementcapability. Some more
important design changes include the following:

• increased analog to digital sampling frequency

• more non-volatile internal memory for data storage

• linear accelerometers with increased dynamic range

• software access to turn the battery on and off and to initiatea charging cycle

1



• rigid mounting of sensor packages on printed circuit cards

• pressure sensor with smaller external opening and greater sensitivity.

2. Implement a numerical model of the 6DOF Sensor Fish withina particle-tracking module
for use with Computational Fluid Dynamics (CFD), moving machinery simulation of hydro-
turbines.

3. Analyze Sensor Fish data sets and movement simulation software.

In order to achieve these goals, it is first necessary to develop governing equations for the
6DOF motion for a rigid body. The 6DOF equations of motion (6DOF-EOM) described in this
report will be used to achieve several critical steps in the design and implementation of the 6DOF
Sensor Fish. First, the 6DOF-EOM will be used to evaluate elements of the 6DOF Sensor Fish
design. It is essential that the impact on the device motion caused by basic mechanical features
of the 6DOF Sensor Fish, particularly the sensor’s mass distribution and buoyancy characteristics,
are taken into account in the design process.

Second, the 6DOF-EOM will be incorporated into particle-tracking software to numerically
simulate the 6DOF Sensor Fish. This approach already has been used. The current 3DOF particle-
tracking capability has been used byRichmond et al.(2004) to help analyze and understand 3DOF
Sensor Fish data sets and extend analysis of live fish data acquired to assess the biological perfor-
mance of spill for fish passage at The Dalles Dam.

Third, the 6DOF-EOM will serve as the base of software developed to analyze 6DOF Sen-
sor Fish data sets. Using the 6DOF-EOM in this way will optimize extraction of information for
characterizing fish passage conditions from Sensor Fish data sets. In particular, improved data-
analysis methods are needed to detect and describe Sensor Fish response to exposure conditions,
such as strike, scraping, and shear, events which are the primary injury mechanisms for fish passing
through turbines. These developments will permit better use of Sensor Fish data sets and provide
improved understanding of the location and dynamics of conditions deleterious to fish during tur-
bine, spill, and bypass passage.

In Section 2 of this report, the equations of motion for an underwater body are written in
the body-fixed frame of reference. Section 3 presents force and moment relationships that, while
not specifc to the Sensor Fish body, are useful approximations that are used in Section 4 to show
examples of the trajectory simulations using the 6DOF equations. Animation files for the test cases
are provided in an attached CD.
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2.0 Governing Equations of Rigid Body Motion

This chapter defines the coordinate systems and governing equations related to the motion of
Sensor Fish. To simplify the derivation of the equations, itis assumed that Sensor Fish are rigid and
cylindrical. Therefore, the terms “Sensor Fish” and “rigidbody” are interchangeable throughout
the report, even though the formulation is general and can beapplied to other body shapes such as
sphere and ellipsoids.

2.1 Coordinate Systems and Transformations

“Body-fixed coordinate system (frame)” and “inertial coordinate system (frame)” are terms
used in this report. The origin of the body-fixed coordinate system is located at the center of
buoyancy (center of geometry). Figure2.1 illustrates the definition of the two systems. There are
various ways to describe the general motion of a rigid body in6DOF. Conventional aerodynamics
definitions are used in the current investigation.

Suppose(x, y, z) and(φ, θ, ψ) are the position and orientation of Sensor Fish with respectto the
inertial coordinate system. In aerodynamics, the Euler anglesφ, θ andψ are usually labeled as yaw,
pitch, and roll angles, respectively, which can be determined by the following steps: (1) roll angle
ψ is obtained by rotating inertial system about its z-axis until its y-axis becomes perpendicular to
the plane of the inertial z-axis and the body-fixed x-axis; (2) pitch angleθ is obtained by rotating
the new inertial system (created by step 1) about its new y-axis until its x-axis overlaps with the
body-fixed x-axis; (3) yaw angleφ is finally obtained by continuing to rotate the new inertial system
(now created by step

2) about its new x-axis until its y-axis lines up with the body-fixed y-axis. The corresponding
homogeneous transformationA is defined as

A = R(z,ψ)R(y,θ)R(x,φ)

=





cosθcosψ sinψcosθ −sinθ
cosψsinθsinφ−sinψcosφ sinψsinθsinφ+cosψcosφ cosθsinφ
cosψsinθcosφ+sinψsinφ sinψsinθcosφ−cosψsinφ cosθcosφ



 , (2.1)

which is orthogonal and transforms translational velocities between the inertial and body-fixed
coordinate systems by





ẋ
ẏ
ż



= A−1





u
v
w



= AT





u
v
w



 , (2.2)

where(u, v, w)T and(ẋ, ẏ, ż)T are the translational velocity of Sensor Fish with respect to the
body-fixed coordinate system and the inertial system, respectively.
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Figure 2.1. Sensor Fish body-fixed and inertial coordinate systems

Components of the angular velocity in the body-fixed system can be expressed in terms of the
orientation angles and their derivatives





p
q
r



 =





φ̇− ψ̇sinθ
θ̇cosφ+ ψ̇sinφcosθ
ψ̇cosφcosθ− θ̇sinφ





=





1 0 −sinθ
0 cosφ sinφcosθ
0 −sinφ cosφcosθ









φ̇
θ̇
ψ̇



 , (2.3)

where(p, q, r)T and(φ̇, θ̇, ψ̇)T are the rotational velocities of Sensor Fish with respect tothe
body-fixed coordinate system and the inertial system, respectively. Therefore, by computing the
inverse of the transformation matrix in Equation (2.3), we can define the transformation matrix of
angular velocity,J,





φ̇
θ̇
ψ̇



= J





p
q
r



 , (2.4)
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where

J =





1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
0 sinφ/cosθ cosφ/cosθ



 . (2.5)

For the second transformation matrixJ, there are singularities at cosθ = 0, that is, when the
Sensor Fish has a pitch angleθ = ±90◦, the coordinate transform based on roll, pitch, and yaw
angles doesn’t work anymore. This singlarity associated with the use of Euler angles is sometimes
referred to as “gimbal-lock”. To overcome this deficiency, the quaternion representation for rigid
body rotation is introduced.

Let four parametersε1, ε2, ε3, andε4 form the components of the quaternionε, as follows:

ε =









ε1
ε2
ε3
ε4









. (2.6)

The general rotation of a rigid body has only three degrees offreedom, so the four components
are not independent and satisfy the constraint equation

ε2
1 + ε2

2 + ε2
3 + ε2

4 = 1. (2.7)

The related transformation matrixQ in terms of quaternion components is given by

Q(ε) =





ε2
1− ε2

2− ε2
3 + ε2

4 2(ε1ε2 + ε3ε4) 2(ε1ε3− ε2ε4)
2(ε1ε2− ε3ε4) −ε2

1 + ε2
2− ε2

3 + ε2
4 2(ε2ε3 + ε1ε4)

2(ε1ε3 + ε2ε4) 2(ε2ε3− ε1ε4) −ε2
1− ε2

2 + ε2
3 + ε2

4





=





1−2(ε2
2 + ε2

3) 2(ε1ε2 + ε3ε4) 2(ε1ε3− ε2ε4)
2(ε1ε2− ε3ε4) 1−2(ε2

1 + ε2
3) 2(ε2ε3 + ε1ε4)

2(ε1ε3 + ε2ε4) 2(ε2ε3− ε1ε4) 1−2(ε2
1 + ε2

2)



 . (2.8)

For a given homogeneous transformation matrixA as defined in Equation (2.1), quaternionε
can be computed from

A = Q(ε1, ε2, ε3, ε4) (2.9)

ε4 = ±1
2

√

1+A1,1 +A2,2 +A3,3, (2.10)

if ε4 6= 0, then

ε1 =
1

4ε4
(A2,3−A3,2)

ε2 =
1

4ε4
(A3,1−A1,3) (2.11)

ε3 =
1

4ε4
(A1,2−A2,1);
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if ε4 = 0, then

ε1 =
1
2

√

1+A1,1−A2,2−A3,3

ε2 =
1
2

√

1−A3,3−2ε2
1 (2.12)

ε3 =
1
2

√

1−A2,2−2ε2
1.

Note there is a sign ambiguity in the calculation of these components. As a result, there are at
least two sets of quaternion parameters. However, the equivalent transformation matrixQ(ε) is the
same becauseQ(ε) (see Equation [2.8]) is not affected by the simultaneous change of signs of the
four components.

The time derivative of the quaternion is related to the rotational velocities in the body-fixed
frame,









ε̇1
ε̇2
ε̇3
ε̇4









=









dε1/dt
dε2/dt
dε3/dt
dε4/dt









=
1
2









0 r −q p
−r 0 p q
q −p 0 r
−p −q −r 0

















ε1
ε2
ε3
ε4









(2.13)

wheret is the time. Refer toHughes(1986) or Maxey and Riley(1983) for more details of quater-
nion representation.

On the other hand, for a given quaternionε, the transformation matrixQ(ε) is computed from
Equation (2.8), and the related orientation angles can be obtained from

θ = arcsin(−Q1,3)

φ = arctan
Q2,3

Q3,3
(2.14)

ψ = arctan
Q1,2

Q1,1

2.2 Rigid-Body Dynamics

Because most of the external forces and moments exerted on theSensor Fish are represented
in the body-fixed system, all the governing equations of motion will be written in the body-fixed
system as well.

Define

v =





u
v
w



 , a =
dv
dt

=





u̇
v̇
ẇ



 , Ω =





p
q
r



 ,
dΩ
dt

=





ṗ
q̇
ṙ



 , (2.15)

rg =





xg
yg
zg



 , ∑F =





∑FX

∑FY

∑FZ



 , ∑M =





∑MX

∑MY

∑MZ



 , (2.16)
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where(xg,yg,zg) is the center of mass in the body-fixed frame, that is, the offset of the center of
mass with respect to the center of buoyancy because the origin of the body-fixed frame is defined
at the center of buoyancy;∑F and∑M are the total force and moment exerted on the body, and all
the components and operations are with respect to the body-fixed frame.

Use vector operation to compute the velocityvg and accelerationag at the center of mass in the
body-fixed frame, and note that the origin of body-fixed frameis defined at the center of buoyancy,

vg =
drg

dt
= v+Ω× rg, (2.17)

then,

ag =
dvg

dt
=

d
dt

(v+Ω× rg)

=
dv
dt

+
d
dt

(Ω× rg)

=
dv
dt

+
dΩ
dt

× rg +Ω× drg

dt

=
dv
dt

+
dΩ
dt

× rg +Ω× (v+Ω× rg). (2.18)

Use Newton’s second law to relate the external forces to linear acceleration,

∑F = mag = m

(

dv
dt

+
dΩ
dt

× rg +Ω×v+Ω× (Ω× rg)

)

. (2.19)

Similarly, use Euler’s equation to relate the external moments to rotational motion of the rigid
body,

∑M = mrg× (
dv
dt

+Ω×v)+ I · dΩ
dt

+Ω× (I ·Ω), (2.20)

wherem is the mass of the rigid body, and

I =





Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz



 (2.21)

is the inertial tensor, in which(Ixx, Iyy, Izz) are the moments of inertia and the other components are
usually referred to as the products of inertia.

Expand Equations (2.19) and (2.20), and obtain the general governing equations of a rigid body
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in the body-fixed frame with its origin located at the center of buoyancy:

∑FX = m
[

u̇−vr +wq−xg(q
2 + r2)+yg(pq− ṙ)+zg(pr + q̇)

]

∑FY = m
[

v̇−wp+ur−yg(p2 + r2)+zg(qr− ṗ)+xg(pq+ ṙ)
]

∑Fz = m
[

ẇ−uq+vp−zg(p2 +q2)+xg(pr− q̇)+yg(qr + ṗ)
]

∑MX = Ixxṗ+(Izz− Iyy)qr− Ixz(ṙ + pq)+ Iyz(r
2−q2)+ Ixy(pr− q̇)

+m[yg(ẇ−uq+vp)−zg(v̇−wp+ur)] (2.22)

∑MY = Iyyq̇+(Ixx− Izz)pr− Ixy(ṗ+qr)+ Izx(p2− r2)+ Iyz(pq− ṙ)

+m[zg(u̇−vr +wq)−xg(ẇ−uq+vp)]

∑MZ = Izzṙ +(Iyy− Ixx)pq− Iyz(q̇+ pr)+ Ixy(q
2− p2)+ Ixz(rq− ṗ)

+m[xg(v̇−wp+ur)−yg(u̇−vr +wq)]

The governing equations can be re-written in a matrix form,

















∑FX

∑FY

∑FZ

∑MX

∑MY

∑MZ

















=

















m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0
0 −mzg myg Ixx −Ixy −Ixz

mzg 0 −mxg −Ixy Iyy −Iyz

−myg mxg 0 −Ixz −Iyz Izz

















·

















u̇
v̇
ẇ
ṗ
q̇
ṙ

















+

















0 0 0 m(zgr +ygq) m(w−xgq) −m(v+xgr)
0 0 0 m(w−ygp) m(zgr −ygq) m(u−ygr)
0 0 0 −m(v+xgr) m(ygr −u) −m(xgp+ygq)

−m(ygq+zgr) m(w+ygp) m(zgp−v) 0 Izzr − Iyzq− Ixzp Iyzr + Ixxp− Iyyq
m(xgq−w) −m(zgr +xgp) m(zgq+u) Iyzq+ Ixzp+ Izzr 0 Ixxp− Ixzr − Ixyq
m(xgr +v) m(ygr −u) −m(xgp+ygq) Iyyq− Ixyp− Iyzr Ixyq+ Ixzr − Ixxp 0

















·

















u
v
w
p
q
r

















Normalize the equations with the mass of the rigid body, get

















∑F ′
X

∑F ′
Y

∑F ′
Z

∑M′
X

∑M′
Y

∑M′
Z

















=

















1 0 0 0 zg −yg

0 1 0 −zg 0 xg

0 0 1 yg −xg 0
0 −zg yg I ′xx −I ′xy −I ′xz

zg 0 −xg −I ′xy I ′yy −I ′yz

−yg xg 0 −I ′xz −I ′yz I ′zz

















·

















u̇
v̇
ẇ
ṗ
q̇
ṙ

















+

















0 0 0 (zgr +ygq) (w−xgq) −(v+xgr)
0 0 0 (w−ygp) (zgr −ygq) (u−ygr)
0 0 0 −(v+xgr) (ygr −u) −(xgp+ygq)

−(ygq+zgr) (w+ygp) (zgp−v) 0 I ′zzr − I ′yzq− I ′xzp I′yzr + I ′xxp− I ′yyq
(xgq−w) −(zgr +xgp) (zgq+u) I ′yzq+ I ′xzp+ I ′zzr 0 I ′xxp− I ′xzr − I ′xyq
(xgr +v) (ygr −u) −(xgp+ygq) I ′yyq− I ′xyp− I ′yzr I ′xyq+ I ′xzr − I ′xxp 0

















·

















u
v
w
p
q
r
















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where
















∑F ′
X

∑F ′
Y

∑F ′
Z

∑M′
X

∑M′
Y

∑M′
Z

















=

















∑FX/m
∑FY/m
∑FZ/m
∑MX/m
∑MY/m
∑MZ/m

















(2.23)

and

I ′ =





I ′xx −I ′xy −I ′xz
−I ′xy I ′yy −I ′yz
−I ′xz −I ′yz I ′zz



= I/m=





Ixx/m −Ixy/m −Ixz/m
−Ixy/m Iyy/m −Iyz/m
−Ixz/m −Iyz/m Izz/m



 (2.24)
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3.0 Forces and Coefficients Evaluation

For the equations of a rigid-body motion in a water flow field, the total forces and moments are

∑F = FHS +FL +FD +FA +FP

∑M = MHS +ML +MD +MA +MP (3.1)

whereFHS andMHS are hydrostatic forces and moments,FL andML are body lift forces and
moments,FD and MD are body hydrodynamic drag forces and moments,FA and MA are the
corresponding forces and moments of added mass, andFP and MP are propulsion forces and
moments.

In the current investigation, no propulsion is assumed, i.e., MP = 0, FP = 0, so Equation (3.1)
becomes

∑F = FHS +FL +FD +FA

∑M = MHS +ML +MD +MA (3.2)

3.1 Flow Field

Suppose the ambient flow field has velocity (Vx, Vy, Vz) in the inertial frame; then the angular
velocity is defined as

ωx = 1
2

(

∂Vz
∂y − ∂Vy

∂z

)

ωy = 1
2

(

∂Vx
∂z − ∂Vz

∂x

)

(3.3)

ωz = 1
2

(

∂Vy
∂x − ∂Vx

∂y

)

In the body-fixed frame they are transformed to




V1(ε)
V2(ε)
V3(ε)



 = Q(ε) ·





Vx

Vy

Vz





=





VxQ1,1(ε)+VyQ1,2(ε)+VzQ1,3(ε)
VxQ2,1(ε)+VyQ2,2(ε)+VzQ2,3(ε)
VxQ3,1(ε)+VyQ3,2(ε)+VzQ3,3(ε)



 (3.4)





ω1(ε)
ω2(ε)
ω3(ε)



 = Q(ε) ·





ωx

ωy

ωz





=





ωxQ1,1(ε)+ωyQ1,2(ε)+ωzQ1,3(ε)
ωxQ2,1(ε)+ωyQ2,2(ε)+ωzQ2,3(ε)
ωxQ3,1(ε)+ωyQ3,2(ε)+ωzQ3,3(ε)



 (3.5)
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where





V1(ε)
V2(ε)
V3(ε)



 and





ω1(ε)
ω2(ε)
ω3(ε)



 are the translational velocity and angular velocity of the ambient

flow field in the body-fixed frame.

Define gradient tensor of the ambient velocity in the inertial frame,

∇Ve =







∂Vx
∂x

∂Vx
∂y

∂Vx
∂z

∂Vy
∂x

∂Vy
∂y

∂Vy
∂z

∂Vz
∂x

∂Vz
∂y

∂Vz
∂z






(3.6)

and in the body-fixed frame, it becomes

∇Vb = Q · (∇Ve) ·Q−1 (3.7)

where the subscripts b and e relate to the body-fixed frame andthe earth-fixed (inertial) frame,
respectively.

The time derivative of the transformation matrixQ is

Q̇i, j =
∂Qi, j

∂ε1
ε̇1 +

∂Qi, j

∂ε2
ε̇2 +

∂Qi, j

∂ε3
ε̇3 +

∂Qi, j

∂ε4
ε̇4, i, j = 1,2,3 (3.8)

where








ε̇1

ε̇2

ε̇3

ε̇4









=
1
2









0 r −q p
−r 0 p q
q −p 0 r
−p −q −r 0

















ε1

ε2

ε3

ε4









(3.9)

Now evaluate the acceleration of the flow velocity in the body-fixed frame,




V̇1

V̇2

V̇3



 = Q ·





V̇x

V̇y

V̇z



+ Q̇ ·





Vx

Vy

Vz





= Q ·



∇Ve ·





ẋ
ẏ
ż



+
∂
∂t





Vx

Vy

Vz







+ Q̇ ·





Vx

Vy

Vz





= Q · (∇Ve) ·Q−1 ·





u
v
w



+Q · ∂
∂t





Vx

Vy

Vz



+ Q̇ ·





Vx

Vy

Vz



 (3.10)

= ∇Vb ·





u
v
w



+Q · ∂
∂t





Vx

Vy

Vz



+ Q̇ ·





Vx

Vy

Vz



 (3.11)

Computing the rate of change of the flow angular velocity in thebody-fixed frame requires
differentiating∇Vb with respect to time. This will also require introducing second order spatial
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partial derivatives of the flow velocity in the inertial frame. The time derivative is

d∇Vb

dt
= Q̇ ·∇Ve ·Q−1 +Q · d∇Ve

dt
·Q−1 +Q ·∇Ve · (Q̇)−1 (3.12)

where

d∇Ve

dt
=

(

∂∇Ve

∂x
,
∂∇Ve

∂y
,
∂∇Ve

∂z

)

·





ẋ
ẏ
ż



+
∂∇Ve

∂t
(3.13)

Finally, the rate of change of the ambient angular velocity in the body-fixed frame is obtained
as follows:

ω̇1 =
1
2

(

d(∇Vb)r,q

dt
− d(∇Vb)q,r

dt

)

ω̇2 =
1
2

(

d(∇Vb)p,r

dt
− d(∇Vb)r,p

dt

)

(3.14)

ω̇3 =
1
2

(

d(∇Vb)q,p

dt
− d(∇Vb)p,q

dt

)

3.2 Hydrostatics

Hydrostatic forces include body weight(W) and buoyancy(B). In the inertial frame,

W =





0
0
W



 , B =





0
0
B



 (3.15)

Note the governing equations are with respect to body-fixed coordinate system and by applying
the quaternion transformation matrix defined in Equation (2.8), express the hydrostatic forces and
moments in the body-fixed frame as

W(ε) = Q(ε) ·





0
0
W



 , B(ε) = Q(ε) ·





0
0
B



 (3.16)

FHS(ε) =





XHS(ε)
YHS(ε)
ZHS(ε)



= W(ε)−B(ε) =





(W−B)Q1,3(ε)
(W−B)Q2,3(ε)
(W−B)Q3,3(ε)



 (3.17)

MHS(ε) =





KHS(ε)
MHS(ε)
NHS(ε)



=





xg

yg

zg



× W(ε)−





xb

yb

zb



× B(ε)

=





(ygW−ybB)Q3,3(ε)− (zgW−zbB)Q2,3(ε)
(zgW−zbB)Q1,3(ε)− (xgW−xbB)Q3,3(ε)
(xgW−xbB)Q2,3(ε)− (ygW−ybB)Q1,3(ε)



 (3.18)

13



where(xb,yb,zb) is the center of buoyancy in the body-fixed frame.

As defined earlier, the origin of body-fixed coordinate system is at the center of buoyancy, that
is, xb = yb = zb = 0, so the final expressions for hydrostatic forces and moments are

(

FHS(ε)
MHS(ε)

)

=

















XHS(ε)
YHS(ε)
ZHS(ε)
KHS(ε)
MHS(ε)
NHS(ε)

















=

















(W−B)Q1,3(ε)
(W−B)Q2,3(ε)
(W−B)Q3,3(ε)

ygWQ3,3(ε)−zgWQ2,3(ε)
zgWQ1,3(ε)−xgWQ3,3(ε)
xgWQ2,3(ε)−ygWQ1,3(ε)

















(3.19)

3.3 Added Mass

When a rigid body accelerates within a fluid field, some amount of surrounding fluid moves
with the body. Added mass is a measure of this moving fluid and relates the linear and angular
acceleration to the hydrodynamics forces exerted by the moving fluid. As noted byMougin and
Magnaudet(2002) added-mass effects are independent of Reynolds number and whether the flow
is steady or unsteady.Newman(1977) derived the forces and moments for ideal fluid due to the
added mass in a stationary flow field,

(FA) j = − ˙̃vimji − ε jkl ṽiΩkmli

(MA) j = − ˙̃vimj+3,i − ε jkl ṽiΩkml+3,i − ε jkl ṽkṽimli (3.20)

i = 1,2,3,4,5,6

j,k, l = 1,2,3

whereε jkl is the alternating tensor which is equal to 1 when the indicesform an even permutation
of (123), −1 when the indices form an odd permutation of (123), and zero if any two of the
indices are equal;j, k, andl are the dummy indices as defined in summation convention (Einstein
Convention);mi j is the 6×6 added mass coefficients tensor;Ωk is the angular velocity vector
of Sensor Fish with respect to the body-fixed frame; ˜vi is the redundant notation of six velocity
components, defined as

ṽ =

(

v
Ω

)

=

















u
v
w
p
q
r

















and ˙̃v =
dṽ
dt

=

















u̇
v̇
ẇ
ṗ
q̇
ṙ

















(3.21)

For a cylinder or ellipsoid, due to its symmetry, the added mass coefficients tensormi j becomes

mi j =

















m1,1 0 0 0 0 0
0 m2,2 0 0 0 m2,6

0 0 m3,3 0 m3,5 0
0 0 0 m4,4 0 0
0 0 m5,3 0 m5,5 0
0 m6,2 0 0 0 m6,6

















(3.22)
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wherem2,2 = m3,3; m5,5 = m6,6; m2,6 = m6,2; m3,5 = m5,3; m2,6 = −m5,3.

Re-define the the nontrivial components in order to better relate to the forces and moments due
to the added mass,

mi j = −

















XAu̇ 0 0 0 0 0
0 YAv̇ 0 0 0 NAv̇

0 0 ZAẇ 0 MAẇ 0
0 0 0 KAṗ 0 0
0 0 ZAq̇ 0 MAq̇ 0
0 YAṙ 0 0 0 NAṙ

















(3.23)

Substituting Equation (3.23) into Equation (3.20) results in simplified expressions for forces
and moments induced by the added mass.

(

FA
MA

)

=

















XA

YA

ZA

KA

MA

NA

















=

















XAu̇u̇+ZAẇwq+ZAq̇q2−YAv̇vr−YAṙr2

YAv̇v̇+YAṙ ṙ +XAu̇ur−ZAẇwp−ZAq̇pq
ZAẇẇ+ZAq̇q̇−XAu̇uq+YAv̇vp+YAṙrp

KAṗṗ
MAẇẇ+MAq̇q̇− (ZAẇ−XAu̇)uw−YAṙvp+(KAṗ−NAṙ)rp−ZAq̇uq
NAv̇v̇+NAṙ ṙ − (XAu̇−YAv̇)uv+ZAq̇wp− (KAṗ−MAq̇)pq+YAṙur

















(3.24)

The axial added mass can be estimated by approximating the rigid body as an ellipsoid. An
empirical formula was given byBlevins(1993),

XAu̇ = −4αρπ
3

(

L
2

)2(d
2

)2

(3.25)

whereα is an empirical parameter based on the ratio of the body length and diameter.

Newman(1977) computed the added mass on a rigid-body using strip theory and defined the
added mass per unit length of a single cylindrical slice

ma(x) = πρR(x)2, (3.26)

whereR(x) is the radius along body-fixed axial position.

The cross-flow added mass terms can be obtained by integrating Equation (3.26) from forward
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position (xf ) to tail position (xt) of the rigid body:

YAv̇ = −m2,2 = −
∫ xf

xt

ma(x)dx

ZAẇ = −m3,3 = −m2,2 = YAv̇

MAẇ = −m3,5 =
∫ xf

xt

xma(x)dx

NAv̇ = −m2,6 = m3,5 = −MAẇ (3.27)

YAṙ = −m6,2 = −m2,6 = NAv̇

ZAq̇ = −m5,3 = −m3,5 = MAẇ

MAq̇ = −m5,5 = −
∫ xf

xt

x2ma(x)dx

NAṙ = −m6,6 = −m5,5 = MAq̇

In the current investigation, Sensor Fish is assumed to be cylindrical, and

ma(x) = d/2, xf = −L/2, xt = L/2, (3.28)

from Equation (3.27), we have

m2,6 = m6,2 = m3,5 = m5,3 = 0, (3.29)

andmi j is reduced into a diagonal matrix. Equation (3.29) also holds for an ellipsoid because
ma(x) = ma(−x) andxt = −xf .

Rolling added mass is acquired empirically. FromBlevins(1993),

KAṗ = −
∫ xf

xt

2ρ
π

(

d
2

)4

dx. (3.30)

Define cross-terms,

XAwq = ZAẇ, XAqq = ZAq̇, XAvr = −YAv̇, XArr = −YAṙ

YAur = XAu̇, YAwp = −ZAẇ, YApq = −ZAq̇

ZAuq = −XAu̇, ZAvp = YAv̇, ZArp = YAṙ

MAuw = −(ZAẇ−XAu̇), MAvp = −YAṙ , MArp = (KAṗ−NAṙ), MAuq = −ZAq̇

NAuv = −(XAu̇−YAv̇), NAwp = ZAq̇, NApq = −(KAṗ−MAq̇), NAur = YAṙ

(3.31)

whereMAuw andNAuv represent the pure moment exerted on the body in an inviscid flow at an
attach angle and are usually known as Munk Moment in marine hydrodynamics.

Substitute Equation (3.31) into Equation (3.24), and get the equation of the added mass for a
rigid body in a stationary flow field:

(

FA
MA

)

=

















XA

YA

ZA

KA

MA

NAA

















=

















XAu̇u̇+XAwqwq+XAqqq2 +XAvrvr +XArrr2

YAv̇v̇+YAṙ ṙ +YAurur +YAwpwp+YApqpq
ZAẇẇ+ZAq̇q̇+ZAuquq+ZAvpvp+ZArprp

KAṗṗ
MAẇẇ+MAq̇q̇+MAuwuw+MAvpvp+MArprp+MAuquq

NAv̇v̇+NAṙ ṙ +NAuvuv+NAwpwp+NApqpq+NAurur

















(3.32)
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Take the ambient flow field into account, and obtain the final expressions for added mass:

(

FA
MA

)

=
(

XA YA ZA KA MA NA
)T

XA = XAu̇(u̇−V̇1)+XAwq(w−V3)(q−ω2)+XAqq(q−ω2)
2 +XAvr(v−V2)(r −ω3)+XArr(r −ω3)

2

YA = YAv̇(v̇−V̇2)+YAṙ(ṙ − ω̇3)+YAur(u−V1)(r −ω3)+YAwp(w−V3)(p−ω1)+YApq(p−ω1)(q−ω2)

ZA = ZAẇ(ẇ−V̇3)+ZAq̇(q̇− ω̇2)+ZAuq(u−V1)(q−ω2)+ZAvp(v−V2)(p−ω1)+ZArp(r −ω3)(p−ω1)

KA = KAṗ(ṗ− ω̇1)

MA = MAẇ(ẇ−V̇3)+MAq̇(q̇− ω̇2)+MAuw(u−V1)(w−V3)+ (3.33)

MAvp(v−V2)(p−ω1)+MArp(r −ω3)(p−ω1)+MAuq(u−V1)(q−ω2)

NA = NAv̇(v̇−V̇2)+NAṙ(ṙ − ω̇3)+NAuv(u−V1)(v−V2)+NAwp(w−V3)(p−ω1)+

NApq(p−ω1)(q−ω2)+NAur(u−V1)(r −ω3)

3.4 Drag Forces and Moments

In general, the hydrodynamics damping forces and moments acting on an underwater moving
rigid body are highly nonlinear and coupled (Fossen 1994). Because the principal component is
skin friction due to the existence of the boundary layer on the body surface (Conte and Serrani
1996), only viscous drag is taken into account. In addition, due to the highly non-linear nature of
hydrodynamics damping, only linear viscous effects are considered, and all damping terms higher
than second-order are neglected.

Reynolds number Re is defined as

Re=
UslipL

ν
(3.34)

whereUslip is the slip velocity of the rigid body, L is the length, andν is kinematic viscosity of
water. For a typical case of Sensor Fish, letL = 10 cm, Uslip = 10 m/s, andν = 1.004× 10−6

m2/s, then Re= 106, which falls in the turbulent regime.

Unless pointed out specifically, the following formulationfor drag and lift coefficients applies
to high Reynolds numbers, i.e., turbulent regime. Low Reynolds number hydrodynamics was
examined byHappel and Brenner(1983) and the corresponding motion of equations of an ellipsoid
is derived separately in Section4.3.2and AppendixA. In addition, because there are no analytical
solutions for turbulent flows, empirical formulae are generally used.

3.4.1 Axial Drag Coefficients

For axial drag, fromHoerner(1965),

XDuu = −(
1
2

ρCDAf ) (3.35)
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L/d CD

0.5 1.1
1.0 0.93
2.0 0.83
4.0 0.85

Table 3.1. Typical drag coefficients for cylinder parallel to
flow at Re> 105

XD = XDuu(u−V1)|u−V1| = −(
1
2

ρCDAf )(u−V1)|u−V1| (3.36)

whereAf is the front area of the rigid body,ρ is the density of water, andCD is the axial drag
coefficient.CD is obtained by either direct experimental measurement or empirical estimation,

CD =
cssπAp

Af
(1+60(

d
L
)3 +0.0025(

L
d
)2)) (3.37)

wherecss is the Schoenherr’s value,Ap is the projected area of the rigid body, andd is the diameter.

Prestero(2001) found that the empirical formula (Equation [3.37]) underestimates the magni-
tude of drag coefficient compared with experimental results. In his simulation of an underwater
vehicle,CD was doubled to be comparable with direct experimental measurement.

In this study, a straightforward approach is taken due to therelatively simplicity of the shape
of Sensor Fish and availability of empirical data. Table 3.1is adapted fromMunson et al.(1999)
and lists the axial drag coefficient of a cylinder with different configurations for Re> 105.

3.4.2 Cross-Flow Drag Coefficients

Apply slender body theory used for calculating added mass toestimate cross-flow drag coeffi-
cients,

YDvv = ZDww = −1
2

ρcdc

∫ xf

xt

2R(x)dx

MDww = −NDvv =
1
2

ρcdc

∫ xf

xt

2xR(x)dx

YDrr = −ZDqq = −1
2

ρcdc

∫ xf

xt

2x|x|R(x)dx (3.38)

MDqq = NDrr = −1
2

ρcdc

∫ xf

xt

2x2|x|R(x)dx

KDpp = 0

whereR(x) is the radius along body-fixed axial direction,xf is the axial forward position in the
body-fixed frame,xt is the axial tail position in the body-fixed frame,cdc is the drag coefficient
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Figure 3.1. Drag coefficients as a function of Reynolds number for a smooth cylinder and sphere:
(a) plotted in log scale; (b) plotted in linear scale

of a cylinder which is equal to 1.1 according to the approximation by Hoerner(1965). In current
study, the rigid body is a cylinder, soR(x) = d/2.

Note that Equation (3.38) is based on the assumption that Reynolds number is larger than 105

and the flow is turbulent. For Re<< 1, i.e., creeping or Stokes flows, the flow field can be solved
analytically (Batchelor 1967), and the correspond drag coefficient can be expressed as

CD =
8π

Re ln(7.4/Re)
. (3.39)

To bridge the drag coefficients in different regimes, a general formula is developed based on
Equation (3.38) for high Reynolds numbers, the empirical drag coefficient data for moderate Reyn-
olds numbers (Munson et al. 1999), and the theoretical analysis for low Reynolds numbers (Equa-
tion [3.39]). Figure3.1 shows the comparison of the simulated drag coefficients obtained via the
general formula to the empirical drag coefficient data.

3.4.3 Total Drag Forces and Moments

By combining the axial and cross-flow drag coefficients, we canexpress the hydrodynamic
drag forces and moments as

(

FD
MD

)

=

















XD

YD

ZD

KD

MD

ND

















=

















XDuu(u−V1)|u−V1|
YDvv(v−V2)|v−V2|+YDrr (r −ω3)|r −ω3|

ZDww(w−V3)|w−V3|+ZDqq(q−ω2)|q−ω2|
KDpp(p−ω1)|p−ω1|

MDww(w−V3)|w−V3|+MDqq(q−ω2)|q−ω2|
NDvv(v−V2)|v−V2|+NDrr (r −ω3)|r −ω3|

















(3.40)
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3.5 Lift Forces and Moments

When a rigid body immersed in a fluid moves, an interaction between the fluid and the body
occurs, and the body experiences a resultant force. The component normal to the upstream ve-
locity is termed the “lift.” Theoretically, it can be expressed in terms of “pressure” and “shear
stresses” and obtained by integrating pressure and shear-stress distributions on the surface of the
body. However, it is usually extremely difficult to evaluatepressure and shear-stress distributions,
especially shear-stress distribution. In cases where the contribution from the shear stress is rela-
tively small compared with that from pressure, i.e., the resultant force mainly depends on pressure
distribution, lift can be obtained experimentally by measuring pressure distribution along the body
surface directly. For this investigation, before reliableexperimental measurements are available,
an empirical method is applied.

FromHoerner(1985), define Hoerner lift slope coefficient

cydβ = cyβ

(

L
d

)(

180
π

)

(3.41)

where coefficientcyβ is determined empirically by the ratio of the length over diameter,L/d.

The corresponding lift coefficients are

YLuv = ZLuw = −1
2

ρd2cydβ (3.42)

and the resultant lift forces are

YL = YLuvuv
ZL = ZLuwuw

(3.43)

For lift moments,Hoerner(1965) found that the location of the resultant force is between 0.6
and 0.7 of the body length away from the forward position. Define

xcp = −0.65L−xf (3.44)

wherexcp is the point of the resultant force, and the related lift moment coefficients and moments
are

MLuw = −NLuv = YLuvxcp = −1
2

ρd2cydβxcp (3.45)

ML = MLuwuw
NL = NLuvuv

(3.46)
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Include the flow field and rewrite the lift forces and moments in matrix form,

(

FL
ML

)

=

















XL

YL

ZL

KL

ML

NL

















=

















0
YLuv(u−V1)(v−V2)
ZLuw(u−V1)(w−V3)

0
MLuw(u−V1)(w−V3)
NLuv(u−V1)(v−V2)

















(3.47)

3.6 Resultant Forces and Moments

Substitute the final expressions for hydrostatics (Equation [3.19]), drag (Equation [3.40]),
added mass (Equation [3.33]), and lift (Equation [3.47]) into Equation (3.2), and normalize it
with the object mass, then get

















∑F ′
X

∑F ′
Y

∑F ′
Z

∑M′
X

∑M′
Y

∑M′
Z

















=

















∑FX/m
∑FY/m
∑FZ/m
∑MX/m
∑MY/m
∑MZ/m

















=
1
m

















XHS+XD +XL +XA

YHS+YD +YL +YA

ZHS+ZD +ZL +ZA

KHS+KD +KL +KA

MHS+MD +ML +MA

NHS+ND +NL +NA

















(3.48)
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4.0 Simulation

This section provides simulation data and a test example describing five cases in which 6DOF
motion of Sensor Fish are simulated for condition and flow.

4.1 Complete Equations of 6DOF Motion

Combine the equations for all the forces and moments, substitute them into the normalized
equation of 6DOF motion for a rigid body (Equation [2.23]), and move acceleration terms of the
added mass to the left side of the equations,

















1−XAu̇/m 0 0 0 zg −yg

0 1−YAv̇/m 0 −zg 0 xg−YAṙ/m
0 0 1−ZAẇ/m yg −xg−ZAq̇/m 0
0 −zg yg I ′xx−KAṗ/m −I ′xy −I ′xz
zg 0 −xg−MAẇ/m −I ′xy I ′yy−MAq̇/m −I ′yz
−yg xg−NAv̇/m 0 −I ′xz −I ′yz I ′zz−NAṙ/m

































u̇
v̇
ẇ
ṗ
q̇
ṙ

















=

1
m

















XHS+XD +XL +XA−XAu̇u̇
YHS+YD +YL +YA−YAv̇v̇−YAṙ ṙ

ZHS+ZD +ZL +ZA−ZAẇẇ−ZAq̇q̇
KHS+KD +KL +KA−KAṗṗ

MHS+MD +ML +MA−MAq̇q̇−MAẇẇ
NHS+ND +NL +NA−NAṙ ṙ −NAv̇v̇

















−

















f1
f2
f3
T1

T2

T3

















=

















∑F ′
x −XAu̇u̇/m− f1

∑F ′
y − (YAv̇v̇+YAṙ ṙ)/m− f2

∑F ′
z − (ZAẇẇ+ZAq̇q̇)/m− f3
∑M′

x−KAṗṗ/m−T1

∑M′
y− (MAq̇q̇+MAẇẇ)/m−T2

∑M′
z− (NAṙ ṙ +NAv̇v̇)/m−T3

















(4.1)
where

f1 = −vr +wq−xg(q
2 + r2)+ygpq+zgpr

f2 = −wq+ur−yg(p2 + r2)+zgqr +xgpq

f3 = −uq+vp−zg(p2 +q2)+xgpr +ygqr (4.2)

T1 = (I ′zz− I ′yy)qr− I ′xzpq+ I ′yz(r
2−q2)+ I ′xypr +yg(−uq+vp)−zg(−wp+ur))

T2 = (I ′xx− I ′zz)pr− I ′xyqr + I ′zx(p2− r2)+ I ′yzpq+zg(−vr +wq)−xg(−uq+vp))

T3 = (I ′yy− I ′xx)pq− I ′yzpr + I ′xy(q
2− p2)+ I ′zxrq+xg(−wp+ur)−yg(−vr +wq))
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Define

C =

















1−XAu̇/m 0 0 0 zg −yg

0 1−YAv̇/m 0 −zg 0 xg−YAṙ/m
0 0 1−ZAẇ/m yg −xg−ZAq̇/m 0
0 −zg yg I ′xx−KAṗ/m −I ′xy −I ′xz
zg 0 −xg−MAẇ/m −I ′xy I ′yy−MAq̇/m −I ′yz
−yg xg−NAv̇/m 0 −I ′xz −I ′yz I ′zz−NAṙ/m

















(4.3)

and Equation (4.2) becomes

C

















u̇
v̇
ẇ
ṗ
q̇
ṙ

















=

















∑F ′
x −XAu̇u̇/m− f1

∑F ′
y − (YAv̇v̇+YAṙ ṙ)/m− f2

∑F ′
z − (ZAẇẇ+ZAq̇q̇)/m− f3
∑M′

x−KAṗṗ/m−T1

∑M′
y− (MAq̇q̇+MAẇẇ)/m−T2

∑M′
z− (NAṙ ṙ +NAv̇v̇)/m−T3

















. (4.4)

Let H = C−1 and include the properties of quaternion and transformation, then obtain the final
equations for simulation in matrix form:









ε̇1

ε̇2

ε̇3

ε̇4









=
1
2









0 r −q p
−r 0 p q
q −p 0 r
−p −q −r 0

















ε1

ε2

ε3

ε4









(4.5)

















u̇
v̇
ẇ
ṗ
q̇
ṙ

















= H

















∑F ′
x −XAu̇u̇/m− f1

∑F ′
y − (YAv̇v̇+YAṙ ṙ)/m− f2

∑F ′
z − (ZAẇẇ+ZAq̇q̇)/m− f3
∑M′

x−KAṗṗ/m−T1

∑M′
y− (MAq̇q̇+MAẇẇ)/m−T2

∑M′
z− (NAṙ ṙ +NAv̇v̇)/m−T3

















(4.6)





ẋ
ẏ
ż



= QT





u
v
w



 . (4.7)

Note that in Equation (4.6) the acceleration terms on the right side of the equation arecancelled by
the corresponding terms of the added mass (see Equation [3.33]), that is, all the acceleration terms
appear only on the left side of the equation.

4.2 Numerical Simulation

The final equation of 6DOF motion is a set of 13 first-order nonlinear different equations. As
noted earlier, the acceleration terms on the right side of the differential equations for the veloci-
ties are cancelled by the corresponding terms of the added mass, and all the forces and moments
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coefficients are defined explicitly. Given initial values att = 0,

x(0) = x0 y(0) = y0 z(0) = z0

φ(0) = φ0 θ(0) = θ0 ψ(0) = ψ0

u(0) = u0 v(0) = v0 w(0) = w0

p(0) = p0 q(0) = q0 r(0) = r0

(4.8)

initial values for the quaternion componentsε(0) = (ε1(0),ε2(0),ε3(0),ε4(0))T are obtained via
Equations (2.1) and (2.10). Finally, the equation of motion is solved by an explicit Runge-Kutta
(4,5) formula, the Dormand-Prince pair.

4.3 Test Examples

4.3.1 Terminal Settling Velocity of a Falling Sphere in a Viscous Fluid

The solver is validated by Stokes flow around a sphere. When a sphere reaches terminal veloc-
ity,

W−B+FD = 0 (4.9)

W−B = (ρo−ρ)g(
π
6

d3) (4.10)

FD =
1
2

ρU2ACD =
1
2

ρU2(
π
4

d2)CD (4.11)

where W is the weight of sphere, B is buoyancy,FD is drag,CD is drag coefficient,ρo is the density
of the sphere,ρ is the density of water,U is the terminal velocity,A is the reference area, andd is
the diameter of the sphere.

For Stokes flow around a sphere, Re= UDρ
µ << 1 andCD = 24

Re, whereµ is the dynamic
viscosity of water,

FD = 3πµUd (4.12)

then

U =
(ρo−ρ)gd2

18µ
(4.13)

Example:d = 0.1 mm,ρo = 1600kg/m3, ρ = 1000kg/m3, µ = 1.12×10−3N · s/m2. From
Equation (4.13), U is 2.917×10−3 m/s. For comparison, from simulation, the terminal velocity is
also 2.917×10−3 m/s, as shown in Figure4.1.

4.3.2 Motion of an Ellipsoid at Low Reynolds Numbers

Zhang et al. (2001) derived equations of motion for an ellipsoidal particle entrained by a
turbulent flow velocity field. They used classical analytical expressions describing the forces and
torques acting on the body for low Reynolds number, as determined by the magnitude of the
relative velocity between the flow field and the body. For these dynamic equations of motion, the
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Figure 4.1. Terminal velocity of a sphere at Re<< 1

slip velocity is assumed sufficiently small so the entrainment takes place in the so called “creeping
flow regime.” In particular, for this regime of flow, the hydrodynamic drag and shear-induced lift
tend to be directly proportional (linearly) to the velocitydifference between the flow and body
motion.

In their investigation of ellipsoidal particles transport, Newton’s second law was solved in the
inertial frame, while Euler’s motion equation of angular velocities was solved in the body-fixed
frame. However, in our study, it was more convenient and efficient to write all the equations of
motion in only the body-fixed frame. The details of derivation are included in AppendixA.

As a test example, a 5:1 ellipsoid, 5cm long by 1cm diameter, is simulated. The ellipsoid
densityρo is taken as 1,200kg/m3 compared with 1,000kg/m3 for water, so that it sinks. The
ellipsoid’s geometric center coincides with the center of mass.

The parabolic velocity varies in the x direction, with the flow pointing negatively along the
y-axis. Thus, shear gradient is along the x direction. A constant velocity component acts along the
z-axis as well, pointing in the negative direction. The acceleration of gravity is applied along the
y-axis for this example, in a positive direction in opposition to the parabolic velocity field, while
gravity is usually applied in positive inertial z-direction elsewhere in this report. The velocity field
is specifically given as

Vx = 0

Vy = − 20
Wf

x (1− x
Wf

) for 0 < x < W (4.14)

Vz = −1

whereWf is the width of the parabolic flow field and taken to be 1 and 10 m for two test cases.
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Figure 4.2. Trajectory of an ellipsoid in a 1-m-wide parabolic velocity field

A typical trajectory for the 1-m-wide velocity field is shownin Figure4.2. The ellipsoid major
axis is aligned with the flow initially, and turns very littleduring the simulation period of 15
seconds. During this period, drag force overcomes gravity,and the ellipsoid moves with the flow
in the negative y-direction. The ellipsoid is started atx = 0.25 and oscillates back and forth across
the velocity center line.

The motion is described in more detail by display of each component below (Figure4.3). In
this case, the ellipsoid has an initial angle of 45 degrees with the flow direction. Its rotation rate
about its body-fixed Y-axis, which points parallel to the inertial z-axis is shown also, with the
clockwise rotation being the positive direction. Its rotation indicates turning and then a reversal.
The drag with flow in the negative y-direction overcomes the gravity in the opposite direction.
Nevertheless, this still causes the velocity of the ellipsoid to be less than if fully entrained without
gravity opposing. Note the ellipsoid initially turns inward toward the center of the flow, 45 degrees,
is first turned outward passing over the centered direction.It continues past the center and returns
again. Its direction appears to approach being parallel to the flow. Also, there is no turning out of
the inertial x-y plane since the velocity component in the z-axis direction is uniform everywhere.

The case with velocity shear width of 10 m is plotted in Figure4.4. The period is increased to
30 seconds to let the trajectory develop more. Clearly, the frequency of oscillation back and forth
across the shear is reduced substantially. In this case, thevertical excursions against gravity have
greater amplitude than for the 1 m shear. The pull of gravity is beginning to reverse the direction
of movement in opposition to the flow drag. In fact, the ellipsoid path has reversed direction of
travel.

In both cases, the rotation begins so that the ellipsoid turns outward from the flow field center.
This reduces the initial angle and turns the ellipsoid initially back into alignment with the flow
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Figure 4.3. Ellipsoid Trajectory Components in 1-m-wide parabolic shear flow. Ellipsoid is ini-
tially turned 45 degrees to the flow direction, toward the flowcenter. Rotation is about the inertial
Z-axis.
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Figure 4.4. Ellipsoid Trajectory Components in 10-m-wide parabolic shear flow. Ellipsoid is
initially turned 45 degrees into flow direction, toward the flow center. Rotation is about the inertial
Z-axis.
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Figure 4.5. Ellipsoid Trajectory Components in 10-m-wide parabolic shear flow. Ellipsoid is
initially turned 45 degrees into flow direction, toward the flow center. Rotation is about the inertial
Z-axis. With the direction of gravity points in the same direction of flow.

direction. It overshoots alignment, and then turns back again.

It is noteworthy that when the ellipsoid starts at the centerof the shear field, it does not oscillate
across. Then, ideally, it remains at the center as it eventually travels in the positive y-direction,
sinking down with gravity against the flow.

If instead, the direction of gravity points in the same direction of flow, negative y-direction, then
the ellipsoid will not oscillate about the center line, but progresses toward the nearest boundary.
For instance, as shown in Figure4.5, if started atx = 4 m for the 10-m-wide parabolic field, it will
reachx = 0 in about 4 seconds. Starting with a 45 degree tilt as before,it turns back outward by
about 16 degrees in this period.

These figures and predicted behavior in a parabolic velocityfield tend to correspond to the
similar trajectory behavior reported bySaffman(1965) and Feng and Josepth(1995). Similar
complex motions have also been discussed byBroday et al.(1998). An issue, however, is whether
the examples given here apply a velocity magnitude that causes the shear-lift formula to go outside
the accepted range of Reynolds number. In any case, the predicted ellipsoid motion is at least
representative.

4.3.3 Six Degree of Freedom Motion of Sensor Fish

Six degree of freedom motion of Sensor Fish were simulated for seven sets of initial conditions
and ambient flows, which are defined as cases 1 to 7. Note that the forces and moments are high-
Reynolds number approximations based on available information. Additional experimental and
computational work is planned to develop relationships that are specific to the Sensor Fish body
and range of Reynolds numbers it experiences during field deployment.
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Test cases 1 through 5 are in uniform flows and have the same initial conditions:

x(0) = 0 y(0) = 0 z(0) = 0
φ(0) = 40◦ θ(0) = 30◦ ψ(0) = 20◦

u(0) = 0 v(0) = 0 w(0) = 0
p(0) = 0 q(0) = 0 r(0) = 0.

(4.15)

Cases 6 and 7 are in parabolic flow field, and the initial position has been changed to

x(0) = 0 y(0) = 1 m z(0) = 0. (4.16)

For all the seven cases, the corresponding initial quaternion values are

ε1(0) = 0.2831 ε2(0) = 0.2969 ε3(0) = 0.07044 ε4(0) = 0.9093 (4.17)

In addition, supposeL = 10cm, d = 2 cm, and Sensor Fish is neutrally buoyant. Other parameters
and animation movie files are listed in Table4.1. The movie files are included in the attached CD.

(xg,yg,zg),cm Vx,m/s Vy,m/s Vz,m/s Animation filename
Case 1 (2,0,0) 0 0 0 Case1.avi
Case 2 (2,0,0) 2 0 0 Case2.avi
Case 3 (0,0,0) 2 0 0 Case3.avi
Case 4 (2,0,0) 2 1 0 Case4.avi
Case 5 (0,0,0) 2 1 0 Case5.avi
Case 6 (2,0,0) 4−y2 0 0.5 Case6.avi
Case 7 (0,0,0) 4−y2 0 0.5 Case7.avi

Table 4.1. Simulation Parameters and animation movie files for the seven test cases

For case 1, there is no ambient flow, but due to initial angles and the offset of center of mass
from the geometric center, the resultant moment leads to therotation of Sensor Fish. As shown in
Figure4.6, the rotation will die down due to the work of resistant drag,and there is slight motion
on the z-direction due to the transition of rotational energy to translation energy. A snapshot of
6DOF motion of Sensor Fish is shown in Figure4.7.

For cases 2 and 3, the ambient flow is an one-dimensional uniform flow field. As illustrated
in Figures4.8and4.9, an offset of center of mass (case 2) increases rotation of Sensor Fish in the
first two seconds. A side-by-side comparison animation movie (Case2-3side.avi) is included in
the enclosed animation CD.

When the ambient flow field changes to a two-dimensional uniform flow, as in cases 4 and 5
shown in Figures4.10and4.11, and the side-by-side comparison movie (Case4-5side.avi), the
Sensor Fish displays similar behavior as in cases 2 and 3; an offset of the center of mass leads to
an increase in Sensor Fish rotation.
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Figure 4.6. Trajectory of Sensor Fish for case 1, (a) x(t), y(t), and z(t); (b) θ(t)

Figure 4.7. A snapshot of 6DOF motion of Sensor Fish

31



t (s)
θ

(o )

0 0.5 1 1.5 2
-150

-100

-50

0

50

100

150

(b)

t (s)

x,
y,

z
(m

)

0 0.5 1 1.5 2

0

1

2

3

4

x
y
z

(a)

Figure 4.8. Trajectory of Sensor Fish for case 2 in one-dimensional uniform flow with an offset
between mass center and geometric center of Sensor Fish, (a)x(t), y(t), and z(t); (b)θ(t)
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Figure 4.9. Trajectory of Sensor Fish for case 3 in one-dimensional uniform flow with mass center
and geometric center of Sensor Fish overlapped, (a) x(t), y(t), and z(t); (b)θ(t)
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Figure 4.10. Trajectory of Sensor Fish for case 4 in two-dimensional uniform flow with an offset
between mass center and geometric center of Sensor Fish, (a)x(t), y(t), and z(t); (b)θ(t)
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Figure 4.11. Trajectory of Sensor Fish for case 5 in two-dimensional uniform flow with mass
center and geometric center of Sensor Fish overlapped, (a) x(t), y(t), and z(t); (b)θ(t)
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Figure 4.12. Trajectory and angular velocity of Sensor Fish for case 6 inparabolic flow field with
an offset between mass center and geometric center of SensorFish, (a) x(t), y(t), and z(t); (b) y(t);
(c) θ(t); (d) p(t), q(t), r(t)

For Sensor Fish in a parabolic flow field as in cases 6 and 7, besides the oscillating effect of
deviation of the mass center as shown in Figures4.12(c)(d) and4.13(c)(d), there is a drift in y-
direction (Figures4.12b and4.13b) due to the shear effect in that direction. A comparison movie
(Case6-7side.avi) for these two cases is also included in the CD.

However, it is important to point out that for all the examples tested, the oscillation effect due
to the offset between the geometric center and mass center generally tends to diminish, and the
Sensor Fish begins to align to the flow direction after several seconds, while the low-frequency
oscillation of the cases without the offset continues to exist.
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Figure 4.13. Trajectory and angular velocity of Sensor Fish for case 7 inparabolic flow field with
mass center and geometric center of Sensor Fish overlapped,(a) x(t), y(t), and z(t); (b) y(t); (c)
θ(t); (d) p(t), q(t), r(t)
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5.0 Summary

As part of the process of redesigning the current 3DOF SensorFish device rate gyros will be
added to the new six degree of freedom (6DOF) device to measure each of the six linear and angular
accelerations. However, before the 6DOF Sensor Fish devicecan be developed and deployed,
governing equations of motion must be developed in order to understand the design implications
of instrument selection and placement within the body of thedevice.

As part of the initial steps in the design process, this report developed a fairly general formu-
lation for the coordinate systems, equations of motion, force and moment relationships necessary
to simulate the the 6DOF movement of an underwater body. Somesimplifications are made by
considering the Sensor Fish device to be a rigid, axisymmetric body. The equations of motion are
written in the body-fixed frame of reference. Transformations between the body-fixed and iner-
tial reference frames are performed using a formulation based on quaternions. Force and moment
relationships specific to the Sensor Fish body are currentlynot available. However, examples of
the trajectory simulations using the 6DOF equations are presented using existing low and high-
Reynolds number force and moment correlations. Animation files for the test cases are provided
in an attached CD.

The next phase of the work will focus on the refinement and application of the 6DOF simulator
developed in this project. Experimental and computationalstudies are planned to develop a set of
force and moment relationships that are specific to the Sensor Fish body over the range of Reyn-
olds numbers that it experiences. Lab testing of prototype 6DOF Sensor Fish will also allow for
refinement of the trajectory simulations through comparison with observations in test flumes. The
6DOF simulator will also be an essential component in tools to analyze field data measured using
the next generation Sensor Fish. The 6DOF simulator will be embedded in a moving-machinery
computational fluid dynamics (CFD) model for hydroturbines to numerically simulate the 6DOF
Sensor Fish.
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Appendix A: Ellipsoid Motion Equations for Low Reynolds
Numbers

Zhang et al. (2001) derived equations of motion for an ellipsoidal particle entrained in turbu-
lent channel flows. The slip velocity is assumed sufficientlysmall so that the forces and torques
(moments) acting on the body are obtained from the expressions for the low-Reynolds number or
creeping flow regime. In this flow regime, the hydrodynamic drag and shear-induced lift tend to
be directly proportional (linearly) to the slip velocity. They wrote the translational equations of
motion, i.e., Newton’s law ofF = ma, in the inertial reference frame. However, the equations for
rotational motion were given in terms of the body-fixed framewith angular velocity components
around this frame.

In the formulation of the motion equations presented in thisreport, all the forces and moments
are expressed in the body-fixed frame. To be consistent, we adapt the formulation of Zhang et al.
(2001) accordingly. In addition, in this Appendix, the semi-major axis is Z-axis instead of X-axis
as in the main report.

Recall that the flow field has (Vx, Vy, Vz) in the inertial frame and (V1, V2, V3) in the body-fixed
frame as discussed in Chapter3.1(Page11), then in the body-fixed frame, the drag force becomes

FD = µπaK ·





V1−u
V2−v
V3−w



 (A.1)

where a is the semi-minor axis of the ellipsoid of revolutionand

K =





kx 0 0
0 ky 0
0 0 kz



 (A.2)

is called the translation dyadic. For the ellipsoid rotatedaround the Z-axis, it is determined by
β = b/a (ratio of semi-major axis to semi-minor axis)

kx = ky =
16(β2−1)

(2β2−3)
ln(β+

√
(β2−1))√

(β2−1)
+β

(A.3)

kz =
8(β2−1)

(2β2−1)
ln(β+

√
(β2−1))√

(β2−1)
−β

(A.4)

Note that the semi-major axis is aligned along the body-fixedZ-axis and

Q−1 ·K ·Q

A.1



is the dyadic in the inertial frame.

The shear-induced lift force for an arbitrary-shaped particle was obtained by Harper and Chang
(1968) and the equation for it was re-stated by Zhang et al. (2001).

In the body-fixed frame, the lift force is

FL =
µπ2a2
√

ν
·
√

∣

∣

∣

∣

∂Vx

∂y

∣

∣

∣

∣

·S′
x · (K ·D′

x ·K) ·





V1−u
V2−v
V3−w



 (A.5)

where
D′

x = Q ·Dx ·Q−1 (A.6)

with

Dx =





0.0501 0.0329 0
0.0182 0.0173 0

0 0 0.0373



 (A.7)

being a special matrix that remains fixed, and

S′
x = Q ·Sx ·Q−1 (A.8)

with

Sx =







1 0 0

0 sign
(

∂Vx
∂y

)

0

0 0 1






(A.9)

This force applies only for a flow field in the x-direction withshear in only the orthogonal
y-direction. For flow in the y-direction as well, with shear in the x-direction, a similar additional
force would likely need to be superimposed. Then arrangement of elements inSx would need to
be changed to describe the orthogonal shear direction.

In particular, to find shear-lift in the orthogonal direction replaceDx by Dy given below and
replace the x-component flow velocity gradient with respectto y by the y-component velocity
gradient with respect to x

D′
y = Q ·Dy ·Q−1 (A.10)

and

Dy =





0.0173 0.0182 0
0.0329 0.0501 0

0 0 0.0373



 (A.11)

Thus the orthogonal lift is

FL =
µπ2a2
√

ν
·
√

∣

∣

∣

∣

∂Vy

∂x

∣

∣

∣

∣

·S′
y · (K ·D′

y ·K) ·





V1−u
V2−v
V3−w



 (A.12)
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where
S′

y = Q ·Sy ·Q−1 (A.13)

and

Sy =







sign
(

∂Vy
∂x

)

0 0

0 1 0
0 0 1






(A.14)

In general, the two force expressions for shear-lift are added together when flow is neither en-
tirely in the x or y directions. In this trajectory model, shear in the vertical z-direction is presumed
not to occur, or is presumed minor.

Zhang et al. (2001) pointed out that Jeffery (1922) originally derived the torque on an ellip-
soid in a flow field having deformation and angular velocity (vorticity). To express the torque
components, it is necessary to calculate the flow velocity gradients in the body-fixed frame,

∇Vb = Q · (∇Ve) ·Q−1 and ∇Ve =







∂Vx
∂x

∂Vx
∂y

∂Vx
∂z

∂Vy
∂x

∂Vy
∂y

∂Vy
∂z

∂Vz
∂x

∂Vz
∂y

∂Vz
∂z






(A.15)

where the subscripts b and e relate to the body-fixed frame andthe earth-fixed (inertial) frame,
respectively.

The deformation rate and vorticity are

γ32 =
1
2

[(∇Vb)3,2 +(∇Vb)2,3)] , γ13 = 1
2 [(∇Vb)1,3 +(∇Vb)3,1)] , (A.16)

ω1 =
1
2

[(∇Vb)3,2− (∇Vb)2,3)] , ω2 = 1
2 [(∇Vb)1,3− (∇Vb)3,1)] , ω3 =

1
2

[(∇Vb)2,1− (∇Vb)1,2)] .

Notice that the vorticity in the body-fixed frame is the transformation of the same quantity in the
inertial frame, as described in equation3.5(Page11).

The torque components are now given in the body-fixed frame by

∑MX =
16πµa3β

3(βo +β2γo)

[

(1−β2)γ32+(1+β2)(ω1− p)
]

∑MY =
16πµa3β

3(βo +β2γo)

[

(β2−1)γ13+(1+β2)(ω2−q)
]

(A.17)

∑MZ =
32πµa3β
3(βo +αo)

(ω3− r)

where

αo = βo =
β2

β2−1
+

β
2(β2−1)3/2

ln

(

β−
√

β2−1

β+
√

β2−1

)

(A.18)

γo =
−2

β2−1
− β

2(β2−1)3/2
ln

(

β−
√

β2−1

β+
√

β2−1

)

(A.19)
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The trajectory equations for rotation assumed by Zhang et al. (2001) require the ellipsoid
center of buoyancy and center of mass to coincide. In terms ofthe angular velocities, the equations
of rotational velocities are

Ixxṗ+(Izz− Iyy)qr = ∑MX

Iyyq̇+(Ixx− Izz)pr = ∑MY (A.20)

Izzṙ +(Iyy− Ixx)pq= ∑MZ

where moments of inertia are given for an ellipsoid as

m=
4
3

πa3βρo, Ixx = Iyy =
(1+β2)a2

5
m, Izz=

2a2

5
m (A.21)

In the context of the more general situation when center of mass is not located at the center of
the ellipsoid. Let(0, 0, zg) indicate the location of center of mass relative to the ellipsoid center,
the rotation would be expressed by the following

Ixxṗ+(Izz− Iyy)qr−mzg(v̇−wq+ur) = ∑MX −zgWQ2,3

Iyyq̇+(Ixx− Izz)pr +mzg(u̇−vr +wq) = ∑MY +zgWQ1,3 (A.22)

Izzṙ +(Iyy− Ixx)pq = ∑MZ

whereW is the weight of the particle. Note that moment of inertial need to be re-calculated due to
the offset of geometric center and mass center.

The final equations for simulation of an ellipsoidal particle are obtained by substituting equa-
tions A.2, A.5, andA.12 into the equations of translational motion, and including the equations
of rotational motion (equationA.22 and the properties of quaternion representation (equations 4.5
and4.7).
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Appendix B: Nomenclature

The following is a list of the symbols and their definitions used in this document. As a common
practice, symbols in bold face are defined as vectors or tensors, and symbols dotted above are time
derivative in their own coordinate systems.

A Homogeneous transform matrix given a
set of roll, pitch, and yaw angles

Ai, j components of transform matrixA,
i, j = 1,2,3

Af Frontal area of Sensor Fish,π(d/2)2

Ap Projected area of Sensor Fish,πdL

B Magnitude of buoyancy

C 6×6 matrix of coefficient on the left side
of 6DOF motion equations

CD axial drag coefficient

FA Resultant of forces due to added mass in
body-fixed frame

FD Resultant of drag forces in body-fixed
frame

FHS Resultant of hydrostatic forces in
body-fixed frame

FL Resultant of lift forces in body-fixed
frame

H Inverse of coefficient matrix C,C−1

I Inertial tensor of a rigid body

Ii j Components of inertial tensor in
body-fixed frame,i, j = x,y,z

I ′ Normalized inertial tensor of a rigid
body,I/m

I ′i j Components of normalized inertial tensor
in body-fixed frame,
I ′i j = Ii j /m, i, j = x,y,z

J Transform matrix for rotational velocities
given a set of roll, pitch, and yaw angles

KA Resultant of moments due to added mass
along body-fixed X-axis

KAṗ Coefficients of moments due to added
mass in body-fixed frame

KD Resultant of drag moments along
body-fixed X-axis

KDww Drag moment coefficient in body-fixed
frame

KHS Resultant of hydrostatic moments along
body-fixed X-axis

KL Resultant of lift moments along
body-fixed X-axis

L Length of Sensor Fish

MA Resultant of moments due to added mass
in body-fixed frame

MA Resultant of moments due to added mass
along body-fixed Y-axis

MAi Coefficients of moments due to added
mass in body-fixed frame,
i = ẇ, q̇,uw,vp, rp,uq

MD Resultant of drag moments in body-fixed
frame

MD Resultant of drag moments along
body-fixed Y-axis

MDww Drag moment coefficient in body-fixed
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frame

MDqq Drag moment coefficient in body-fixed
frame

MHS Resultant of hydrostatic moments in
body-fixed frame

MHS Resultant of hydrostatic moments along
body-fixed Y-axis

ML Resultant of lift moments in body-fixed
frame

ML Resultant of lift moments along
body-fixed Y-axis

MLuw Lift moment coefficient along body-fixed
Y-axis

NA Resultant of moments due to added mass
along body-fixed Z-axis

NAi Coefficients of moments due to added
mass in body-fixed frame,
i = v̇, ṙ,uv,wp, pq,ur

ND Resultant of drag moments along
body-fixed Z-axis

NDvv Drag moment coefficient in body-fixed
frame

NDrr Drag moment coefficient in body-fixed
frame

NHS Resultant of hydrostatic moments along
body-fixed Z-axis

NL Resultant of lift moments along
body-fixed Z-axis

NLuv Lift moment coefficient along body-fixed
Z-axis

Q Transformation matrix in terms of
quaternion components

Qi, j Components of transform matrixQ,
i, j = 1,2,3

Re Reynolds number based on slip velocity

of Sensor Fish,UslipL/ν

Ti Non-acceleration terms defined in
Equation4.2, i = 1,2,3

Uslip Slip velocity of Sensor Fish

V1 Axial velocity (X-axis) of ambient flow
field in body-fixed frame

V̇1 Axial acceleration (X-axis) of ambient
flow field in body-fixed frame,dV1

dt

V2 Spanwise velocity (Y-axis) of ambient
flow field in body-fixed frame

V̇2 Spanwise acceleration (Y-axis) of
ambient flow field in body-fixed frame,
dV2
dt

V3 Vertical velocity (Z-axis) of ambient flow
field in body-fixed frame

V̇3 Vertical acceleration (Z-axis) of ambient
flow field in body-fixed frame,dV3

dt

Vx Axial velocity (x-axis) of ambient flow
field in inertial frame

V̇x Axial acceleration (x-axis) of ambient
flow field in inertial frame,dVx

dt

Vy Spanwise velocity (y-axis) of ambient
flow field in inertial frame

V̇y Spanwise acceleration (y-axis) of

ambient flow field in inertial frame,dVy
dt

Vz Vertical velocity (z-axis) of ambient flow
field in inertial frame

V̇z Vertical acceleration (z-axis) of ambient
flow field in inertial frame,dVz

dt

W Weight of Sensor Fish

XA Resultant of forces due to added mass
along body-fixed X-axis

XAi Coefficients of forces due to added mass
in body-fixed frame,i = u̇,wq,qq,vr, rr
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XD Resultant of drag forces along body-fixed
X-axis

XDuu Drag coefficient in body-fixed frame

XHS Resultant of hydrostatic forces along
body-fixed X-axis

XL Resultant of lift forces along body-fixed
X-axis

YA Resultant of forces due to added mass
along body-fixed Y-axis

YAi Coefficients of forces due to added mass
in body-fixed frame,i = v̇, ṙ,ur,wp, pq

YD Resultant of drag forces along body-fixed
Y-axis

YDvv Drag coefficient in body-fixed frame

YDrr Drag coefficient in body-fixed frame

YHS Resultant of hydrostatic forces along
body-fixed Y-axis

YL Resultant of lift forces along body-fixed
Y-axis

YLuv Lift coefficient along body-fixed Y-axis

ZA Resultant of forces due to added mass
along body-fixed Z-axis

ZAi Coefficients of forces due to added mass
in body-fixed frame,i = ẇ, q̇,uq,vp, rp

ZD Resultant of drag forces along body-fixed
Z-axis

ZDww Drag coefficient in body-fixed frame

ZDqq Drag coefficient in body-fixed frame

ZHS Resultant of hydrostatic forces along
body-fixed Z-axis

ZL Resultant of lift forces along body-fixed
Z-axis

ZLuw Lift coefficient along body-fixed Y-axis

cydβ Hoerner lift slope coefficient

cyβ An empirical coefficient for evaluation of
cydβ

d Diameter of Sensor Fish

fi Non-acceleration terms defined in
Equation4.2, i = 1,2,3

m Mass of Sensor Fish

p Angular velocity of Sensor Fish with
respect to body-fixed X-axis

ṗ Rate of change of angular velocity with
respect to body-fixed X-axis,dp

dt

q Angular velocity of Sensor Fish with
respect to body-fixed Y-axis

q̇ Rate of change of angular velocity with
respect to body-fixed Y-axis,dq

dt

r Angular velocity of Sensor Fish with
respect to body-fixed Z-axis

ṙ Rate of change of angular velocity with
respect to body-fixed Z-axis,dr

dt

t Time

u Axial velocity of Sensor Fish in
body-fixed frame

u̇ Axial acceleration of Sensor Fish in
body-fixed frame,du

dt

v Spanwise velocity of Sensor Fish in
body-fixed frame

v̇ Spanwise acceleration of Sensor Fish in
body-fixed frame,dv

dt

ṽi Redundant notation of six velocity
components,(u, v, w, p, q, r)T

w Vertical velocity of Sensor Fish in
body-fixed frame

ẇ Vertical acceleration of Sensor Fish in
body-fixed frame,dw

dt
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x Axial position of Sensor Fish with
respect to inertial frame

ẋ Axial velocity of Sensor Fish in inertial
frame,dx

dt

xb Axial position of center of buoyancy in
body-fixed frame

xcp Location of resultant lift in body-fixed
frame

xg Axial position of center of mass in
body-fixed frame

y Spanwise position of Sensor Fish with
respect to inertial frame

ẏ Spanwise velocity of Sensor Fish in
inertial frame,dy

dt

yb Spanwise position of center of buoyancy
in body-fixed frame

yg Spanwise position of center of mass in
body-fixed frame

z Vertical position of Sensor Fish with
respect to inertial frame

ż Vertical velocity of Sensor Fish in inertial
frame,dz

dt

zb Vertical position of center of buoyancy in
body-fixed frame

zg Vertical position of center of mass in
body-fixed frame

ε Quaternion,(ε1,ε2,ε3,ε4)
T

ε1 First component of quaternionε

ε2 Second component of quaternionε

ε3 Third component of quaternionε

ε4 Fourth component of quaternionε

θ Pitch angle of Sensor Fish with respect to
inertial frame

θ̇ Angular velocity of Sensor Fish with

respect to inertial y-axis,dθ
dt

ν Kinematic viscosity of water

ρ Density of water

ρo Density of Sensor Fish or the underwater
rigid-body

φ Roll angle of Sensor Fish with respect to
inertial frame

φ̇ Angular velocity of Sensor Fish with
respect to inertial x-axis,dφ

dt

ψ Yaw angle of Sensor Fish with respect to
inertial frame

ψ̇ Angular velocity of Sensor Fish with
respect to inertial z-axis,dψ

dt

Ω Angular velocity vector of Sensor Fish
with respect to body-fixed frame,
(p, q, r)T

ω1 Angular velocity of ambient flow with
respect to body-fixed X-axis

ω̇1 Rate of change of ambient flow angular
velocity with respect to body-fixed
X-axis, dω1

dt

ω2 Angular velocity of ambient flow with
respect to body-fixed Y-axis

ω̇2 Rate of change of ambient flow angular
velocity with respect to body-fixed
Y-axis, dω2

dt

ω3 Angular velocity of ambient flow with
respect to body-fixed Z-axis

ω̇3 Rate of change of ambient flow angular
velocity with respect to body-fixed
Z-axis, dω3

dt

ωx Angular velocity of ambient flow with
respect to inertial x-axis

ω̇x Rate of change of ambient flow angular
velocity with respect to inertial x-axis,
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dωx
dt

ωy Angular velocity of ambient flow with
respect to inertial y-axis

ω̇y Rate of change of ambient flow angular
velocity with respect to inertial y-axis,
dωy
dt

ωz Angular velocity of ambient flow with
respect to inertial z-axis

ω̇z Rate of change of ambient flow angular
velocity with respect to inertial z-axis,
dωz
dt

∇Vb Gradient tensor of ambient flow velocity
in body-fixed frame

∇Ve Gradient tensor of ambient flow velocity
in inertial frame

∑F Resultant of external forces in body-fixed
frame

∑FX Resultant of external forces along
body-fixed X-axis

∑F ′
X Normalized resultant of external forces

along body-fixed X-axis,∑FX/m

∑FY Resultant of external forces along
body-fixed Y-axis

∑F ′
Y Normalized resultant of external forces

along body-fixed Y-axis,∑FY/m

∑FZ Resultant of external forces along
body-fixed Z-axis

∑F ′
Z Normalized resultant of external forces

along body-fixed Z-axis,∑FZ/m

∑M Resultant of external moments in
body-fixed frame

∑MX Resultant of external forces with respect
to body-fixed X-axis

∑M′
X Normalized resultant of external

moments with respect to body-fixed
X-axis,∑MX/m

∑MY Resultant of external forces with respect
to body-fixed Y-axis

∑M′
X Normalized resultant of external

moments with respect to body-fixed
Y-axis,∑MY/m

∑MZ Resultant of external forces with respect
to body-fixed Z-axis

∑M′
Z Normalized resultant of external

moments with respect to body-fixed
Z-axis,∑MZ/m

B.5


	Executive Summary
	Acknowledgments
	1.0 Introduction
	2.0 Governing Equations of Rigid Body Motion
	2.1 Coordinate Systems and Transformations
	2.2 Rigid-Body Dynamics

	3.0 Forces and Coefficients Evaluation
	3.1 Flow Field
	3.2 Hydrostatics
	3.3 Added Mass
	3.4 Drag Forces and Moments
	3.4.1 Axial Drag Coefficients
	3.4.2 Cross-Flow Drag Coefficients
	3.4.3 Total Drag Forces and Moments

	3.5 Lift Forces and Moments
	3.6 Resultant Forces and Moments

	4.0 Simulation
	4.1 Complete Equations of 6DOF Motion
	4.2 Numerical Simulation
	4.3 Test Examples
	4.3.1 Terminal Settling Velocity of a Falling Sphere in a Viscous Fluid
	4.3.2 Motion of an Ellipsoid at Low Reynolds Numbers
	4.3.3 Six Degree of Freedom Motion of Sensor Fish


	5.0 Summary
	6.0 References
	Appendix A: Ellipsoid Motion Equations for Low Reynolds Numbers
	Appendix B: Nomenclature



