
PNNL-14342

Final Report for the Energy Efficient and
Affordable Small Commercial and
Residential Buildings Research Program

Project 3.3 - Smart Load Control and
Grid Friendly Appliances

M. Kintner-Meyer R. Guttromson
D. Oedingen S. Lang

July 2003

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor Battelle
Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC06-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.
(8/00)

Final Report for the Energy Efficient and
Affordable Small Commercial and Residential
Buildings Research Program

Project 3.3 – Smart Load Control and Grid
Friendly Appliances

M. Kintner- Meyer
R. Guttromson
D. Oedingen
S. Lang

July 2003

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

 iii

Executive Summary
This report summarizes the results of research initiated in April 2000 under funding from the
California Energy Commission and co-funding by the U.S. Department of Energy. The objective
of this project was to develop, implement, and test new methods for detecting pre-cursors of
impending problems in the California electric power grid. The approach pursued in the project
utilized information that is measurable at the wall outlet anywhere in the California. The
approach deliberately focused on methods that do not require communication from an outside
source, but rather function fully autonomously by relying on a local frequency sensor that
measures the frequency of the alternating current (AC) power supply at the wall outlet and some
control intelligence that can ultimately be implemented at low cost in commonly used appliances
for homes and businesses.

During the course of the project, two load controller prototypes were developed, built, and tested.
The first load controller prototype responded to under-frequency events and rapid decay in the
grid frequency. The controller was based on a personal computer (PC) platform with an
Microsoft DOS operating system. The second load controller prototype was used for the
statistical and spectral analysis of historic frequency data of known grid events. It was based on a
PC with a Linux operating system that provided real-time controller capability as well as
processing historic data read from a data file.

The first controller was designed to react to a grid event and then trigger a load to trip off line.
We demonstrated the prototype in the laboratory. An under-frequency load shedding scheme
implemented at end-use devices and appliances has great potential value associated with its ability
to displace reserve generation capacity. This reserve capacity is required to be available during
fast responses of unplanned generation and transmission outages. Instead of utilizing generation
to correct a frequency error, control of loads could be used to achieve the same effect. Thus, the
economic value of a frequency responsive load controller would be similar to that of spinning
reserves.

In an attempt to extend the responsive nature of the first controller prototype, precursors of
impending grid problems specific to California were explored on which to base the development
of a more advanced autonomous load controller design. After consultation with transmission
planning engineers of the CAISO, we analyzed the following two grid problems relevant for
California: 1) dynamic stability problems during high power imports into Southern California
from East of the Colorado River based on the SCIT (Southern California Import Transmission)
nomogram, and 2) voltage stability problems in the San Francisco Bay Area during heavy AC/DC
North-to-South power flows based on the T-116B nomogram. For these problems, we explored
pre-contingency detection methods that were intended to trigger a load reduction in advance of an
impending problem. We used detailed dynamic simulations of the Western power grid (WECC)
and a simplified single- input-single-output model for selected locations in California to explore
signatures in the AC frequency signal for high-stress and low-stress cases. We defined the low-
stress case as a grid condition in which standard CAISO operating procedures were observed.
The high-stress case was defined as a hypothetical case, in which the system was operated outside
CAISO safe operation conditions.

 iv

For the dynamic stability (SCIT) cases, the simulation results revealed recognizable differences
between the high- and low-stress cases in the frequency signal and its autospectrum for different
locations throughout California. This finding gave rise to the formulation of a set of hypotheses
that identified distinct differences in the dynamic behavior of the grid frequency as the power
system transitions from a low-stress to a high-stress condition. The hypotheses postulated were:

1. Higher standard deviation in the frequency signal for the high stress case
2. Higher min-max range in the frequency signal for the high stress case
3. Higher amplitude in the autospectrum of the frequency signal for the high-stress case.

Contrary to the dynamic instability cases, the simulation of the voltage stability problems
furnished results that revealed no differences in the dynamic behavior of the power system
between the high- and the low-stress cases. These results led to the conclusion that the dynamic
analysis approach appears not appropriate for voltage stability problems.

To test the hypotheses postulated, historic data representing two distinct grid events were
analyzed. The first data set represented the WECC breakup of August 10, 1996, that caused
wide-spread outages in the western region. The other data set (dated October 8, 2002)
represented a transmission line trip followed by some remedial action and scattered load loss.

The results of the data analysis did not support our hypotheses. Finding some historic data that
are representative of low- and high-stress conditions was difficult. The randomness and
magnitude of constantly changing loads and adjustments by generators to meet the demand,
coupled with the randomness of the unplanned outages, which cause changes in the topology of
the network, makes it very difficult, if not impossible, to definitively declare a state of the power
system as low stress. Even during periods at night, when the load tends to be lower than during
the day, it is not obvious that the system attains a low or lower-stress state. Transmission outages,
planned or unplanned, may pose a difficult burden on transmission engineers to keep the system
in stable and safe condition. Because of the inherent inability to establish a state of low stress as a
reference case, it became difficult during this analysis of historic data to detect the transition from
a safe condition to that of an impending problem.

A necessary requirement for an effective detection technology is to recognize system conditions
as the power system approaches dangerously close the edge of stable and safe operating
conditions. Because of the complexity of the power system, the edge of safe operations is a
moving target and depends on load conditions and network topology and thus may change from
hour to hour.

As a result of this data analysis, it appears questionable whether the chosen approach will be
successful in the long-run. The major obstacle for this approach is the necessity to establish a
reference scenario that would represent safe grid operating conditions. To establish this, a large
series of the conditions needs to be analyzed to become familiar with the spectrum of variability
for each indicator to establish signatures or patterns for impending problems.

An alternative approach, if feasible, could potentially lead to a promising detection of dynamic
instability of the power system. This alternative approach focuses on determining the transfer

 v

function that describes the dynamic behavior of the entire power system, from which the standard
stability analysis methods can be applied. So far, no one has successfully established a power
system transfer function of sufficient accuracy with which to perform a meaningful stability
analysis.

With the insights gained from the simulation and data analysis, the following recommendations
for additional research are made:

1. Under-frequency load control could provide an important grid reliability enhancement.

Although reactive in its response, an under-frequency load control strategy with frequency
responsive appliances and devices could provide reserves that are currently furnished by
generators that are either already spinning or that can be ramped up in their output.

2. To enhance fundamental understanding of the stability characteristics of the power system, it

is recommended that system identification techniques be used to approximate a real-time
transfer function of the entire power system. If a real- time system transfer function of
sufficient accuracy can be established, it would enable the use of standard stability analysis
tools for determining distance to the stability edge.

3. For dealing with voltage stability problems, we recommend the use of under-voltage relays of

induction motors, as found in compressor motors for air-conditioning systems and other
appliances. The under-voltage protection prevents motor stalling caused by decreasing
voltage as a result of a line fault or high system loading. The stalling of induction motors
perpetuates the decreasing voltage to a point, where the voltage may drop sharply and quickly
and propagate through the distribution systems as other electric motors reach the same
conditions.

 vi

 vii

Table of Contents

Executive Summary ... iii

1 Introduction.. 1

2 Definition of Grid Stress.. 3

3 Development of a 1st Generation Load Controller.. 5
3.1 Objective of First Generation Load Controller .. 5

3.1.1 What Electric Grid Events Can Be Detected in the Grid Frequency? 5
3.1.2 Design Considerations for Local Frequency Measurements .. 7

3.2 Design and Implementation of the 1st Generation Load Controller 7
3.2.1 Block Diagram of Simplified Load Controller ... 7
3.2.2 Frequency Sensor and Controller Description.. 8
3.2.3 Prototype of 1st Generation Load Controller ... 9
3.2.4 Software Description... 11

3.3 Load Controller Capabilities .. 12
3.4 Value of 1st Generation Load Controller .. 12

4 Development of Data Analysis Platform.. 13
4.1 Introduction .. 13
4.2 Analysis Tool Platform... 13

4.2.1 Hardware ... 14
4.2.2 Software .. 14

4.3 Reading Real-Time Data .. 14
4.4 Algorithms .. 15

4.4.1 Development of Spectrum of a Signal.. 15
4.4.2 Spectral Bands... 15
4.4.3 Integral .. 16
4.4.4 Maxima ... 16
4.4.5 Sharpness Detection.. 16

5 Analysis of Grid Stress .. 19
5.1 Motivation for Enhanced Load Controller for Detection of Grid Stress 19
5.2 Dynamic Stability Issues .. 19

5.2.1 Establishment of Grid Stress Conditions - Definition .. 21
5.2.2 Analysis of Grid Stress in the Power System... 22
5.2.3 Findings... 29
5.2.4 Conclusions from Analysis of Simulation of Dynamic Stability................................ 30

5.3 Voltage Stability Conditions .. 30
5.3.1 Approach... 31
5.3.2 Findings and Conclusions ... 31

6 Analysis of Grid Events ... 35
6.1 Results for the October 8, 2002, Disturbance... 35

6.1.1 Time Domain .. 35
6.1.2 Magnitude of Maxima in Spectrum .. 36

 viii

6.1.3 Standard Deviation.. 37
6.1.4 Sharpness of Maxima.. 38
6.1.5 Integral .. 39
6.1.6 Histogram of Maxima ... 40

6.2 Results for August 10, 1996 ... 42
6.2.1 Magnitude of Maxima in Spectrum .. 43
6.2.2 Standard Deviation.. 44
6.2.3 Sharpness of Maxima.. 45
6.2.4 Integral .. 47
6.2.5 Histogram of Maxima ... 47

7 Conclusions ... 51

8 Recommendations for Future Work .. 53
8.1 Under-frequency Load Control using Grid-Friendly Appliances 53
8.2 System Identification Approach of the Electric Power System... 56
8.3 Prevention of Stalled Induction Motors ... 57

9 References... 59

Appendix A: Description of Frequency Sensor .. 61

Appendix B: Source Code for Controllers and Analysis Platform Software 63

 ix

List of Figures

Figure 3-1: System Frequency Response to the Loss of a Generator. .. 6
Figure 3-2: Functional Units of a Frequency Sensor Unit .. 8
Figure 3-3: Block Diagram of 1st Generation Load Controller .. 9
Figure 3-4: Front- and back-panel of the 1st Generation Load Controller 10
Figure 3-5: Inside View of 1st Generation Load Controller Prototype.. 11
Figure 4-1: Schematic of Tool for Data Analysis ... 13
Figure 4-2: Definition of Sharpness at the Maximum of a Discrete Signal................................ 17
Figure 4-3: Second Derivative Used for Determining the Sharpness at the Maximum of a

Discrete Signal.. 17
Figure 4-4: Definition of Sharpness at the Maximum of a Discrete Signal by Determining

the Angle .. 18
Figure 5-1: Major Transmission Lines of the Western Electricity Coordinating Council

(WECC).. 20
Figure 5-2: Southern California Import Transmission Nomogram. Locus X inside the

stability boundary is considered low stress. Locus H outside the boundary is
considered the high stress condition. .. 21

Figure 5-3: Linear single input/single output model with (1) noise power p(t) input, (2) low
pass filter with 5 Hz break frequency, (3) transfer function, (4) noise response of
frequency f(t), and (5) Fast Fourier Transform or spectrum of frequency f(t). 23

Figure 5-4: Response at Lugo, California, to Chief Joseph Brake event. 25
Figure 5-5: Autospectrum of System Frequency at Lugo, California. Generated by FFT

with 60 second samples, Hanning squared window, and second-order low-pass
filter breaking at 5 Hz (see Figure 5-3). ... 25

Figure 5-6: Response at Vincent, California, to Chief Joseph Brake event. 26
Figure 5-7: Autospectrum of System Frequency at Vincent, California. Generated by FFT

with 60 second samples, Hanning squared window, and second-order low-pass
filter breaking at 5 Hz. .. 26

Figure 5-8: Response at Devers, California, to Chief Joseph Brake event. 27
Figure 5-9: Autospectrum of System Frequency at Devers, California. Generated by FFT

with 60 second samples, Hanning squared window, and second- order low-pass
filter breaking at 5 Hz. .. 27

Figure 5-10: WECC Breakup of August 10, 1996. Shown is the real power at Malin.
Several events leading to the separation of the interconnected power system are
indicated. .. 28

Figure 5-11: Spectrum of System Frequency Before and After the Keeler-Alstrom Line
Break, Recorded at Dittmer Control Station, WA.. 29

Figure 5-12: Transfer Function Gpf(s) at Table Mountain, California, for High-Stress Case
(North California Hydro=100%) and Low-Stress Case (North California
Hydro=70%). .. 32

Figure 5-13: Spectrum of System Frequency at Table Mountain, California, for High-Stress
(North California Hydro=100%) and Low-Stress (North California
Hydro=70%). These results were generated by FFT with 60 second samples,

 x

Hanning squared window, and 2nd order low-pass filter breaking at 5 Hz (see
Figure 5-3). Note that both spectra are identical. .. 32

Figure 5-14: Transfer Function Gpf(s) at Round Mountain, California, for High-Stress Case
(North California Hydro=100%) and Low-Stress (North California
Hydro=70%). .. 33

Figure 5-15: Spectrum of System Frequency at Round Mountain, California, for High-Stress
(North California Hydro=100%) and Low-Stress (North California
Hydro=70%) cases. Results were generated by FFT with 60 second samples,
Hanning squared window, and 2nd order low-pass filter breaking at 5 Hz (see
Figure 5-3). Note that both spectra are identical. ... 33

Figure 6-1: Grid Frequency Event, October 8, 2002... 36
Figure 6-2: Magnitude of Peaks in Spectrum, October 8, 2002 .. 37
Figure 6-3: Standard Deviation of Magnitude of the Grid Frequency Spectrum, October 8,

2002 .. 38
Figure 6-4: Sharpness as Defined by the Second Derivative of Spectrum for Band 2,

October 8, 2002 .. 38
Figure 6-5: Sharpness as Defined by Angle at Maximum of Spectrum, October 8, 2002 39
Figure 6-6: Value of Integral between -120 dB Reference Line and Spectrum for Band 2,

October 8, 2002 .. 40
Figure 6-7: Histograms of Local Maxima, October 8, 2002 ... 41
Figure 6-8: Grid Frequency during WECC Breakup of August 10, 1996 43
Figure 6-9: Magnitude of Maxima of Spectrum for Five Frequency Bands, August 10, 1996 .. 44
Figure 6-10: Standard Deviation of Local Maxima, August 10, 1996 .. 45
Figure 6-11: Sharpness as Defined by the 2nd Derivative of Spectrum for Band 2, August 10,

1996 .. 46
Figure 6-12: Sharpness as Defined by Angle at Maximum of Spectrum, August 10, 1996 46
Figure 6-13: Value of Integral between -120 dB Reference Line and Spectrum for Band 2,

for the August 10, 1996 Event.. 47
Figure 6-14: Histogram of Maxima, Band 2, Phase 1, August 10, 1996 48
Figure 6-15: Histogram of Maxima, Band 2, Phase 2, August 10, 1996 48
Figure 6-16: Histogram of Maxima, Band 2, Phase 3, August 10, 1996 49
Figure 8-1: Frequency is tightly controlled under normal conditions and coordinated under

all conditions. ... 54
Figure 8-2: Impacts of Frequency-Responsive Loads Using Grid Friendly Appliances 55
Figure 8-3: Information sources in process identification... 56
Figure A-0-1: Printed Circuit Board of Frequency Sensor .. 61

 xi

List of Tables

Table 4-1: Definition of Bands in the Spectrum ... 16
Table 5-1: Comparison of standard deviation and maximum-to-minimum (max-min) range

of frequency in high- and low-stress cases for three California locations. 24
Table A-1: Component List of Frequency Sensor Hardware ... 61

 xii

Acronyms

AC alternating current

AEC Architectural Energy Corporation

AGC Automated generation control

AHU air-handling unit

CAISO California Independent System Operator

COI California Oregon Intertie

dB Decibel

DC direct current

FFT Fast Fourier Transform

FPGA Field programmable gate array

FSU Frequency sensor unit

GFA Grid-friendly appliance

HVAC heating, ventilation, and air-conditioning

Hz Hertz (1/second)

ISO Independent System Operator

kW kilowatts

mHz millihertz (10-3 Hz)

ms millisecond (10-3 second)

MW Megawatt

NERC North American Electric Reliability Council

PCB Printed circuit board

PDCI Pacific Direct Current Intertie

RAS remedial action schemes

RPM Rounds per minute

SMUD Sacramento Municipal Utility District

WECC Western Electricity Coordinating Council (name was changed from
WSCC in 2002)

WSCC Western System Coordinating Council

 1

1 Introduction
This report summarizes the results of research initiated in April 2000 under funding from
the California Energy Commission and co-funding by the U.S. Department of Energy.
The objectives of this project were to develop, implement, and test new methods for
detecting precursors of impending problems in the California electric power grid and to
the extent possible develop autonomous grid-friendly appliance (GFA) controllers based
on those methods. The approach pursued in this project utilized information that is
measurable at the wall outlet anywhere in California. The approach deliberately focused
on methods that do not require communication from an outside source, but rather
function fully autonomous ly by relying on a local frequency sensor that measures the
frequency of the AC power at the wall outlet and some control intelligence that can
ultimately be implemented at low cost in commonly used appliances for homes and
businesses.

During the course of the project, two load control prototypes were developed, built, and
tested. The first load controller prototype responds to under-frequency1 events and rapid
decay in the grid frequency. This controller was designed to react to a grid event and
then trigger a load to trip off line. We demonstrated the prototype in the laboratory. In
an attempt to extend the responsive nature of the first controller prototype, precursors of
impending grid problems specific for California on which to base more advanced
autonomous load controllers were explored.

The proactive feature of a smart load controller was a particularly attractive research goal
during 2000 and 2001, when California faced the significant shortfalls of generation
capacity to meet demand. It became apparent during the early stages of this project that a
control device that measures the grid’s electrical properties at the wall outlet will never
be able to sense the California Independent System Operator’s (CAISO’s) emergency
stages (Stage I, II, and III) because they are determined by the ISO based on market data,
not exclusively by the physics of the electric power system. As a consequence, the main
research effort was re- focused on identifying grid stress as a precursor to power system
outages in California. After consultation with transmission planning engineers of the
CAISO, we focused on two grid problems of concern to the CAISO. For these problems,
we explored pre-contingency detection methods that could trigger a load reduction in
advance of an impending problem.

1 An under-frequency event is an excursion in alternating current frequency below the nomimal value of 60
Hz.

 2

 3

2 Definition of Grid Stress
Throughout this report we refer to conditions in the electric power system that we call
grid stress. Grid stress is a very broad term used to describe conditions where the
regional transmission system is approaching a dynamically unstable condition. Many
forms of grid stress may exist, such as voltage stress or stress which deteriorates small
signal stability, with each type being heavily influenced by different initial conditions.
In this project, we used the proximity of the grid to specific stability limits as expressed
in CAISO nomograms as the definitions of grid stress.

The SCIT (Southern California Import Transmission) nomogram [CAISO 1998]
identifies the safe operation of the Southern California grid as a function of total power
imports into Southern California, Southern California power imports from East of the
Colorado River only, and the Southern California System Inertia (with units of Megawatt
seconds or MWS). Operation within the boundaries of the nomogram is required for safe
operation of the power system. If the system were operated outside of the bounds of the
nomogram, then a worst-case disturbance2 would cause power oscillations ultimately
resulting in a power system breakup and a large-area loss of power.

There are other mechanisms that lead to grid stress as well. Some are known and
accounted for within the design process of power systems, and others are not. Although
the focus of this report is on two mechanisms of grid stress, it is implied that the concept
of stress detection can be applied more broadly.

2 Often referred to as the N-1 event.

 4

 5

3 Development of a 1st Generation Load Controller

3.1 Objective of First Generation Load Controller
The objective of the simplified load controller developed in this project was to provide a
fast-responding control device that sheds load in response to a grid event. The controller
device senses the local grid frequency at the wall outlet and de-energizes the load, based
on two criteria. The criteria are: (1) frequency below a specified threshold (an under-
frequency event) and (2) rate of frequency decay is greater than a user-specified
threshold. The load is re-energized after the load shedding criteria are no longer met,
utilizing a random waiting period between 0 and 1 minute to ensure that individual
appliances re-energize at slightly different times providing a smooth transition for the
grid.

3.1.1 What Electric Grid Events Can Be Detected in the Grid Frequency?
The grid frequency in any power system is automatically controlled at the generator to
maintain the nominal 60 Hz frequency. As a loads are turned on and off, generators
respond to the resulting load changes. Mismatches between generation and load cause
the generator to slow down or speed up. Since generators are synchronized to the grid,
the change in speed of a generator causes changes in system frequency. In order to
maintain a constant frequency of 60 Hz (or any other frequency set point determined by
the power control centers) automatic frequency controls (speed governors) at the
generator are required. Because sharp changes in grid frequency indicate imbalances
between generation and load, the change in frequency is considered to be the sole input
signal needed to detect the following major grid events:

• tripping generation off line
• major load switching (on or off)
• unscheduled tripping of transmission lines (interruption of power flow to loads)
• exhausted ancillary reserves

3.1.1.1 A Tripping Generator
A generator trip of sufficiently large capacity (i.e., several hundred MWs) causes an
immediate imbalance between the generation and the load. Instantaneously, the power
for the new load is supplied by all other generation attached to the grid. This is
accomplished automatically by the laws of conservation of energy. The new power
delivered comes from the rotational kinetic energy of the generators attached to the
electric grid, and results in a decrease of speed (and frequency) until speed governors for
these units are able to increase their mechanical power input and match the new load.

Depending on the amount of generation lost, the amount of inertia on the grid, the
amount of reserve generation available, and frequency response characteristics of all
sped governors, the frequency drop may be small (e.g., a few mHz) and brief (a few
seconds) or severe (~100 mHz) and prolonged (over a minute in duration). Figure 3-1

 6

shows a frequency excursion caused by a generator trip and recovery back to the nominal
60 Hz frequency after 10 seconds.

Figure 3-1: System Frequency Response to the Loss of a Generator.

3.1.1.2 Tripping a Transmission Line
A transmission line trip is generally caused when a line is short circuited because of a
lightning strike, shorting out by trees, or by other relay protective actions. The line break
typically causes a load loss, resulting in a brief over-generation, causing the grid
frequency to increase. The opposite may also occur, in which case, more generation is
removed than load, resulting in an under-generation condition, causing the grid frequency
to decay.

3.1.1.3 Exhausted Ancillary Reserves
Power systems planning engineers design the power system to withstand, at minimum, a
single-point failure (called an N-1 contingency). Although the system is designed to
survive any single-point failure, the dispatch of generation reserves protects the system
from more serious system casualties and provides additional margin for unanticipated
load or lost generation. During situations of strained resources, however, when, for
instance, multiple generation outages occur, the frequency excursion can be particularly
severe (i.e., causing a large frequency drop) and recovery from it, back to normal
conditions, may be prolonged over several minutes.

Frequency (Hz)

Ti
m

e
(s

ec
on

ds
)

 7

3.1.2 Design Considerations for Local Frequency Measurements
The typical dead band of a speed governor’s frequency control of about 0.036 Hz was
used as a guide for determining the needed frequency resolution of our sensor [Kirby
2003, Hirst et al. 2003]. According to the North American Electric Reliability Council
(NERC) policy, generators greater than 10 MW in rating should operate utilizing
frequency responsive governors. These governors should be capable of providing
immediate and sustained response to abnormal frequency excursions, providing a 5%
droop characteristic, and fully responsive to frequency deviations exceeding ± 0.036 Hz
(± 36 mHz). [NERC 2002].

For this analysis, a sampling rate was used that provided a resolution of 0.036 Hz as an
upper bound to meet the accuracy requirements. It is desirable to have a higher sampling
rate to differentiate random fluctuations within the generator’s dead band from those that
are affected by generator control action. Practical considerations determined by the cost
to build and calibrate the sensor limited the resolution. Furthermore, there is a trade-off
between resolution and measurement range given memory constraints of
microprocessors. This limited the resolution of the sensor to about 1 to 2 mHz for a
measurement range of ± 100 mHz about a nominal 60.0 Hz AC grid frequency.

3.2 Design and Implementation of the 1st Generation Load Controller
Commonly deployed standard frequency counters for laboratory use, like the HP 53131A
device from Hewlett Packard [HP 2003] or the HAMEG HM8021 [HAMEG 2003], are
not adequate for a prototype implementation. They use long periods, 1 second or more,
to achieve the required resolution at low frequencies (< 100 Hz). The results presented by
these counters are average values and, therefore, inappropriate for this analysis, since we
need to quickly detect frequency changes (i.e., within two or three 60 Hz-cycles).

Most industrial products that specialize in higher resolution frequency measurements
have a typical accuracy of about 0.1% (0.1% of 60 Hz is 60 mHz). This is insufficient
for measuring the frequency excursions typically observed during grid events. Most of
these frequency sensors cannot measure the frequency within one or two cycles and are
generally designed to measure high-frequency signals (e.g., audio frequencies, rounds per
minute (RPM) of engines, and radio frequency signals).

Utility-grade frequency meters used for under-frequency load shedding at substations are
very expensive (>$10,000) and typically offer extra features that are not applicable. The
costs would be prohibitive for use on appliances.

3.2.1 Block Diagram of Simplified Load Controller
Figure 3-2 shows the most important functional units of a frequency sensor unit (FSU)
attached to a load.

 8

Figure 3-2: Functional Units of a Frequency Sensor Unit

3.2.2 Frequency Sensor and Controller Description
Figure 3-3 illustrates the major functional components of the 1st generation load
controller, including the frequency sensor, PC as controller, the relay, and the load. A
complete and detailed list of the sensor components is provided in Appendix A:
Description of Frequency Sensor.

The features of the frequency sensor are:

• Hardware data acquisition every 16.67 ms (60 samples/second)
• Hardware averaging of last six values.
• Sensor range: 60 Hz ± 100 mHz
• Resolution: 1.5 mHz
• Accuracy: ± 1.5 mHz

Synchronization/Voltage
Divider

 9

Figure 3-3: Block Diagram of 1st Generation Load Controller

• Interface: 8-bit parallel for PC-enhanced parallel ports or any micro-controller
o 7 data lines
o 1-bit hardware used to communicating frequency outside the specification

range (60 Hz ± 100 mHz)
• Required inputs: Grid voltage (line, neutral); ±9 V DC (20 mA each)
• Interrupt signal generation available
• Costs: components about $10 (at sample quantities) plus cost for printed circuit

board of $10 in large volume production.
• Physical dimensions of PCB (length x width x height):

123.5 mm x 56.0 mm x 18.0 mm (4.86 in. x 2.20 in. x 0.71 in.) including
connectors.

3.2.3 Prototype of 1st Generation Load Controller
The prototype is a standalone load controller combined with a frequency sensor. A
single- board PC made by Advantech (Advantech BiscuitPC processor board)
[Advantech 2003] monitors frequency and performs the load control action utilizing a
solid-state relay that supports loads up to 1.5 kW. There are two power receptacles at the
back of the prototype (see Figure 3-4).

The PC runs on an MS-DOS operating system and boots up automatically when power is
turned on. A small, 20 x 8 character LC-display3 shows system status. Three
programming buttons allow the user limited resetting of load shedding threshold values.

3 Eight-line serial LC-display (SEETRON G12864 V2.0, see http://www.seetron.com/slcds.htm for
details).

Frequency
sensor

PC Relay

Load

Wall
outlet

120 V
AC

parallel
port

 10

Figure 3-4: Front- and back-panel of the 1st Generation Load Controller

The three push-buttons have the following functions:

• Button 1: Toggle Mode; toggles between the automatic and override modes. In
automatic mode, the load controller monitors the grid frequency and opens the
relay if the user-definable frequency threshold criteria are met. In the override
mode, the user closes the relay to override a load curtailment.

• Button 2: Toggle Settings; push to display the load shedding criteria (i.e., over-
and under-frequency criteria and rate of frequency decay criterion)

• Button 3: Enter/ESC; confirms messages and exits the program.

For programming, a PC-keyboard connector is provided.

A photograph showing the major components inside the prototype is shown in Figure 3-5.

 11

Figure 3-5: Inside View of 1st Generation Load Controller Prototype

3.2.4 Software Description
The software to evaluate the grid frequency signal has been written completely in
Borland Turbo C v. 2.01 for MS-DOS and can be executed on an ordinary PC or
compatible running one of the following operating systems [Groll et al. 1998]:

• MS-DOS 5.0 or higher
• Microsoft Windows 3.x
• Microsoft Windows 95/98/ME.

The software (current version is 1.0.1.3) provides two basic modes of operation:

• GFA Load Control Logic Mode
• Data Logger Modes for Data Acquis ition Purposes.

Both versions can currently take advantage of the LPT1 parallel port of any PC or the
Advantech BiscuitPC processor board, as shown in Figure 3-5. The software code is
given in Appendix B of this report.

 12

3.3 Load Controller Capabilities
Control software was developed to retrieve frequency data from the sensor at a rate of 10
samples per second. The frequency data are compared to the following user-definable
load curtailment criteria:

1. Under-frequency criterion: grid frequency < 59.95 Hz, the default set point.
2. Rapid frequency-decay criterion: rate of frequency change < -0.125 Hz/sec, the

default set point

The criteria above were independently tested. If one of the above criteria is met, the load
is de-energized. If triggered by an under-frequency event, two conditions must be met
before the load is turned on again. First, the frequency must recover by a user-definable
value above the under-frequency set point (default is 10 mHz) and after a time lag of
random duration between 0 and 30 seconds, the load is reconnected. The random time
lag prevents all loads from turning back on all at the very same time after a frequency
event, which could cause a rebound effect, potentially tripping other overload relays on
transmission or generation equipment.

If rapid frequency decay triggers a load curtailment, the load is reconnected after a
random time lag following the time when the frequency-decay criterion is no longer met.

Detailed information on the controls software can be found in Appendix B.

3.4 Value of 1st Generation Load Controller
The 1st generation load controller is responsive to imbalances between generation and
load that manifest themselves in reductions in grid frequency as the turbines and
generators are slowed down. This condition can occur if very large loads (e.g., arc
furnaces) are rapidly turned on or if generation or transmission capacity is tripped off
line. In most cases with sufficient generation reserves, the frequency will recover to its
normal set point as generation is redistributed across a large interconnected power
system, meeting the load. An under-frequency load shedding scheme implemented at
end-use devices and appliances has great potential value associated with its ability to
displace reserve generation capacity. This reserve capacity is required to be available
during fast responses of unplanned generation and transmission outages [Kirby 2003].
Instead of utilizing generation to correct a frequency error, control of loads could be used
to achieve the same effect. Thus, the economic value of a frequency responsive load
controller would be similar to that of spinning reserves.

 13

4 Development of Data Analysis Platform

4.1 Introduction
Two types of data were analyzed in this study, data from simulation of the electric power
grid and empirical data collected from the actual grid during operation (including during
well-known grid events). In support of analyses of field data, hardware and software
tools were developed that enabled us to develop and test detection methods and new load
shedding algorithms. We specified that the tools be versatile to be used for real- time
analyses as well as for analyses of historic data. Two data input streams were
implemented to process: (1) real-time data measured at the wall outlet and (2) historic
data of known grid events stored in data files.

4.2 Analysis Tool Platform
The analysis tool platform consists of a personal computer with a special purpose ISA
card. The ISA card contains a frequency sensor system and a solid state relay for load
shedding. The analysis tools are implemented in ANSI C programs executed on a Linux
operating system [ANSI 1988]. Data for the analysis can be provided either by the
frequency sensor in 100 ms intervals in real time or by reading from a data file. The
functional blocks of both hardware and software are shown in Figure 4-1.

Wall Outlet

Load

Frequency
Data File

Frequency
sensor

Relay

ISA Card

Frequency
sensor

Relay

ISA Card

PC with Linux Operating System

Analysis tools
• signal processing
• control

Analysis tools
• signal processing
• control

Figure 4-1: Schematic of Tool for Data Analysis

 14

4.2.1 Hardware
The hardware used for this project is a personal computer with a multi- tasking Linux
operating system that provides data acquisition of grid frequency signals and real-time
signal processing capabilities.

The computer is a Dell with a 400 MHz Pentium processor and 64 MB of internal
memory, running a Redhat Linux4 operating system. The computer has a special-purpose
ISA card that accommodates a frequency sensor for measurements of the AC power-
supply frequency and a solid state relay that opens and closes a contact to a small load.
The solid state relay can be accessed by software for load shedding purposes. The
specifications of the frequency sensor are identical to those discussed in Section 3.2.2.
The logic and hardware implementation was optimized to fit into a field programmable
gate array (FPGA) architecture that reduced the size to a 2 by 3 inch section on the board.
We used the MAX 7000A model designed by the Altera Corporation for the FPGA
[Altera 2003].

4.2.2 Software
All necessary Linux drivers to perform real-time data acquisition were developed (see
Appendix B). Linux drivers are executable software modules that are loaded into the
Linux kernel during PC start-up and, thus, become part of the operating system functions.
The signal processing software was developed as an application program and as such
needed to be called by the user after the operating system was loaded. Both Linux
drivers and signal processing routines were written in ANSI C programming language,
utilizing the C compiler resident in the Linux operating system [ANSI 1988]. Detailed
information on the controls software of the data analysis platform can be found in
Appendix B.

4.3 Reading Real-Time Data
In the real- time mode, data are read from the frequency sensor. The Linux driver reads
256 frequency data points each time it requests data from the sensor. With a sampling
frequency of 10 samples per second (read at 100 ms time intervals), 256 samples
comprise a time period of 25.6 seconds. A sliding time window of 25.6 seconds length
was implemented that advanced in time every 100 ms, receiving 10 new data points and
discarding the 10 oldest data points.

The real- time data acquisition and the synchronization with analysis programs were
tested to assure that the analysis is completed before the next updated data set is
processed. Execution of the analysis routines was found sufficiently fast to finish before

4 Version 6.1 released on October 07, 2000.

 15

the next batch of data is read. An alarm messaging was implemented to alert the user to
potential time conflicts in case the analysis took too much time and prematurely aborted
because the next data retrieval started.

4.4 Algorithms
Several software routines were developed for analysis of the grid frequency signal. The
selection of routines was guided by the findings of the simulation results in Section 4.
We hypothesized that impending problems of high-stress conditions are potentially
detectable by: (a) greater absolute maxima in the gain of the spectrum, (b) overall greater
absolute gain values of the spectrum in the relevant frequency range between 0 and 2 Hz,
and (c) sharper maxima, compared to low-stress conditions.

To capture these characteristics in the spectrum, we established analytical tools consisting
of software routines that would perform the following rudimentary functions:

• Generation of the spectrum
• Determining the maxima in the spectrum
• Determining area under the spectrum by frequency bands
• Determining sharpness or pointedness of the spectrum at the locations of the maxima.

Sections 5.4.1 through 5.4.5 provide brief overviews of the analytical tools.

4.4.1 Development of Spectrum of a Signal
The discrete Fast Fourier Transform (FFT) algorithm as described in [Press et al. 1993]
was used to compute the spectrum of the grid frequency signal. Of interest was only the
magnitude of the spectrum to indicate oscillatory content of the signal, not the phase
angle of the signal. The magnitude of the spectrum was computed in terms of commonly
used decibel (db) notation.

4.4.2 Spectral Bands
The interesting range of the spectrum is between 0 Hz and 2 Hz. Frequencies above 2 Hz
are likely to contain less information on the system’s oscillatory behavior and are more
likely to contain higher random noise contributions. Because the 0 to 2 Hz bandwidth is
relatively large for detecting changes as a function of time, we segmented this frequency
range to isolate frequency regions of interest. Table 4-1 shows the five bands into which
it was segmented. The frequency range within each band was represented by 10 discrete
data points with an equal distance of 0.04 Hz between them.

 16

Table 4-1: Definition of Bands in the Spectrum

Band Frequency range

Band 1 0.0 Hz – 0.4 Hz

Band 2 0.4 Hz – 0.8 Hz

Band 3 0.8 Hz – 1.2 Hz

Band 4 1.2 Hz – 1.6 Hz

Band 5 1.6 Hz – 2.0 Hz

4.4.3 Integral
The first characteristic of the frequency signal is the integral of the spectrum. It can be
interpreted as a general indicator of the oscillatory content in a frequency band. A
routine that determines the area under the spectrum in each frequency band was
established.

4.4.4 Maxima
A function was implemented that locates local maxima in any function and determines
the absolute value of each maximum. The local maximum is found if the first derivative
is zero and the second derivative is negative.

4.4.5 Sharpness Detection

4.4.5.1 Definition of Sharpness
The measure of sharpness of a curve at its maximum or multiple maxima was defined in
terms of a change in the slope of a curve at its maximum. The magnitude of the second
derivative at the maximum of a curve is directly related to the curve’s sharpness and was
used as a sharpness index. Another, perhaps more intuitive definition, was used that
defines an angle spanned by the peak. Both definitions were used and implemented.

Figure 4-2 schematically shows three variants of how the peak in a discrete signal can
occur. We investigated the importance of considering a five-point peak ensemble (see
Figure 4-2b) versus a three-point ensemble (Figure 4-2a and c). According to our
analysis of the spectra from historical grid frequency data, the scenario in Figure 4-2b
rarely occurs. Most common peaks are similar to that shown in Figure 4-2-c. As a result,
we established a three-point peak-finding routine for determining the sharpness of peaks.

 17

Figure 4-2: Definition of Sharpness at the Maximum of a Discrete Signal

4.4.5.2 Definition of Sharpness Using Second Derivative

Figure 4-3 displays the discrete signal, and its first and second derivatives. We chose a
forward-differencing strategy that assigns the difference of two nodes to the first node.
Adopting this approach, the second derivative is then assigned to the first node of the
three-point peak ensemble as shown in
Figure 4-3.

Figure 4-3: Second Derivative Used for Determining the Sharpness at the Maximum of a
Discrete Signal

a) b) c)

f (n)

f' (n)

f'' (n)

n 1 n2 n3

 18

4.4.5.3 Definition of Sharpness By Angle
Another method of measuring sharpness is by calculating the angle at the peak, as shown
in Figure 4-4.

Figure 4-4: Definition of Sharpness at the Maximum of a Discrete Signal by
Determining the Angle

The angle is determined by calculating the angle spanned by the slopes to the right and
left from the peak using the following triangular relationship:









−
−

+







−
−

=
23

23

12

12 arctanarctan
yy
xx

yy
xx

α .

x1,y1

x2,y2

x3,y3

f (n)

α

 Y

X

 19

5 Analysis of Grid Stress

This section presents the analysis of grid behavior and development of grid-stress
detection methods based on simulations of the electric power grid.

5.1 Motivation for Enhanced Load Controller for Detection of Grid Stress
The frequency-based load controller responds to declining grid frequency. This condition
is generally encountered when generation capacity or major bulk power transmission
lines are disrupted. Other grid-stress conditions, however, exist that potentially can lead
to overload conditions on the transmission system. Detection of precursors to these
conditions so that grid-stress events could be anticipated or even prevented would be
quite valuable, but detection of impending events is very difficult and little is known
about this today. These are the conditions that lead to a generation or transmission
outage rather than those that are caused by an outage. Examples are oscillatory behavior
of bulk power flows or voltage collapse.

Because of the recognition that oscillatory power flow and voltage collapse conditions
are of high importance to the California power system, these conditions were investigated
further to learn more about how they manifest themselves at wall outlets throughout
California. The goal was to design signature detection algorithms for identifying these
conditions. To this end, a simulation study of the Western Electricity Coordinating
Council (WECC) of which California is a part (see Figure 5-1), was undertaken to
analyze the power system under various conditions. In particular, dynamic stability
conditions, which limit the imports from the Southwest into Southern California, were
analyzed. These conditions are well known to the California Independent Systems
Operator (CAISO) and regional transmission system operators. Transmission planning
engineers developed operating nomograms that specify safe operating ranges for the
California power grid under various load conditions. These nomograms are utilized to
define two very different operating conditions that represent : 1) a very low stress
operating point and 2) a very high stress condition. A sequence of simulations was used
for the low and high stress conditions and data at various nodes in the California power
system were analyzed. The results were then compared for significant differences, which
were used to find a power system signature for identifying an impending operational
issue.

5.2 Dynamic Stability Issues
The following section describes the low and high stress conditions that were analyzed to
determine if the onset of a violation of the Southern California Import Transmission or
SCIT nomogram [CAISO 1998] could be detected using a system signature.

 20

Figure 5-1: Major Transmission Lines of the Western Electricity Coordinating Council
(WECC)

Round
Mountain

Table
Mountain

Vincent
(not marked

on map)

Lugo
Dever

s

 21

5.2.1 Establishment of Grid Stress Conditions - Definition

Grid stress is a very broad term used to describe a condition where the regional
transmission system is approaching a dynamically unstable condition. Many forms of
grid stress may exist, and each may be heavily influenced by different initial conditions.

In this project, the nearness to one specific stability limit was used as an indicator of grid
stress.

One of the specific stability limits is defined by the SCIT (Southern California Import
Transmission) nomogram [CAISO, 1998]. This nomogram identifies the safe operation
of the Southern California grid as a function of total power imports into Southern
California, Southern California power imports from East of the Colorado River only, and
the Southern California System Inertia (in units of Megawatt seconds or MWS).
Operation within the boundaries of the nomogram is required for safe operation of the
power system. If the system is operated outside of the bounds of the nomogram, then a
worst-case (N-1) disturbance would cause power oscillations ultimately resulting in
power-system breakup and a large-area loss of power.

The two scenarios shown in Figure 5-2 were simulated. The low stress case is inside and
the high stress case outside the stable envelope for operation. A system breakup would
occur for the case outside the envelope (point H) if and only if a worst case N-1
disturbance were to occur, whereas the case operating inside the SCIT curves would
remain stable under such a worst case system disturbance. For analysis of these cases,
only a very small disturbance was initiated, not enough to cause instability, but enough to
capture the system ringdown response for the two cases shown. The results could then be
used to quantify the damping of the model for both cases.

Power Imports from East of Colorado River [MW]

S
C

IT
 Im

po
rts

 [M
W

]

stability boundary

Southern California
Import Tramsmission

Stability Limits

lev
el o

f gr
id s

tres
s

X

H

high stress locus

low stress locus

Figure 5-2: Southern California Import Transmission Nomogram. Locus
X inside the stability boundary is considered low stress. Locus H outside
the boundary is considered the high stress condition.

 22

5.2.2 Analysis of Grid Stress in the Power System
We explored how the different degrees of grid stress could manifest themselves in the
transmission system throughout the entire Western power system. To do this a set of
power system stability simulations of the Western power system for high and low grid
stress cases was performed. The results from these simulations were analyzed with
respect to their dynamic behaviors and compared.

5.2.2.1 Simulation
The dynamic stability simulation was performed for the WECC transmission grid. The
simulation used a full model of the western North American power system developed by
WECC member utilities [GE 2001]. Stability studies are typically performed by inducing
an event such as a power demand spike in the system, which triggers a significant system
response. The response is then analyzed. For the power system of the WECC, this has
traditionally been done by inducing an instantaneous power demand of 1400 MW for 0.5
seconds followed by an instantaneous drop of the same magnitude at the Chief Joseph
power station in the State of Washington (generally referred to as a Chief Joseph Brake
Insertion). The system impulse response represents the system itself, and is then
analyzed for both the low and high stress conditions.

The following steps detail our simulation approach:

1. Construct two dynamic models of the WECC system, representing high and low grid

stress cases. The simulation was performed using General Electric’s Positive
Sequence Load Flow (pslf) simulation environment [GE 2001].

2. Quantify the level of grid stress in each model by modeling the Chief Joseph Brake

and analyzing the damping of the oscillatory modes of the power system. The modes
and damping of the power system for the two cases were determined using a Prony
analysis technique.

3. Convert the frequency versus time response into a single input/single output linear

model, Gpf(s) transfer function, with power as input and frequency as output (see
Figure 5-3). The transfer function is valid only for power inputs and frequency
responses at their original locations.

4. Create a power (Gaussian white noise with constant power density/frequency) vs.

time signal to represent and simulate system noise attributable to random phenomena,
such as generators and loads being turned on and off- line.

5. Input the power (noise) signal into the single input/single output linear model and

obtain the resulting frequency versus time signal from the model output. This signal
is now assumed to represent the local "wall outlet" frequency we might directly
measure at a residence's 120 V wall outlet. While the single input/single output
model with the transfer function Gpf(s) strictly simulates the system frequency as a

 23

function of power at a specific substation in the transmission grid, we assume that the
frequency changes across transformers downstream into the distribution systems to
the end-use devices are negligible. Under this assumption the frequency at the point
of analysis is identical to the frequency seen at the wall outlet.

6. Characterize the frequency signal using:

a. Min–to-Max amplitude band
b. Standard deviation of amplitude
c. Minimum or maximum rates of change in frequency amplitude
d. Peaks in the Fourier Transform of the frequency response.

7. Compare the results from characterization of the frequency signals to the known
system stress and develop correlations regarding system stress and various frequency
characteristics.

The linear single input/single output is illustrated in Figure 5-3.

Gpf(s) FFT

Low pass filter
5 Hz break
frequency

Gaussian
white noise for
power p(t)

transfer
function

fast Fourier
transform of f(t)

noise response
of frequency f(t)

(1) (2) (3) (4) (5)

FFT(f(t))

Figure 5-3: Linear single input/single output model with (1) noise power p(t) input, (2)
low pass filter with 5 Hz break frequency, (3) transfer function, (4) noise response of
frequency f(t), and (5) Fast Fourier Transform or spectrum of frequency f(t).

5.2.2.2 Simulation Results

The simulation results are shown in Table 5-1 and Figures Figure 5-4 through Figure 5-9.
They indicate clear differences between the high and low stress cases in the system
frequency response to the Chief Joseph Brake for different locations throughout
California. The differences were all consistent. They showed the following
characteristics:

 24

• Higher standard deviation in the frequency signal for the high stress case (see Table
5-1).

• Higher min-max range in the frequency signal for the high stress case (see Table 5-1).

• Higher and for some peaks sharper maxima in the system transfer function Gpf(s) for

the high-stress case (see Figure 5-4, Figure 5-6, and Figure 5-8).

• Higher magnitude in the autospectrum of the frequency signal for the high-stress case

(see Figure 5-5, Figure 5-7, and Figure 5-9).

Table 5-1: Comparison of standard deviation and maximum-to-minimum (max-min)
range of frequency in high- and low-stress cases for three California locations.

Locations High Stress Low Stress
 Standard

Deviation
Max-Min Standard

Deviation
Max-Min

Lugo, CA 10.1 x 105 7.7 x 104 7.3 x 105 5.4 x 104
Vincent, CA 9.8 x 105 7.8 x 104 6.9 x 105 5.3 x 104
Devers, CA 10.4 x 105 7.8 x 104 7.6 x 105 5.7 x 104

 25

Figure 5-4: Response at Lugo, California, to Chief Joseph Brake event.

Figure 5-5: Autospectrum of System Frequency at Lugo, California.
Generated by FFT with 60 second samples, Hanning squared window, and
second-order low-pass filter breaking at 5 Hz (see Figure 5-3).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Lugo High SCIT (60 sec sampling interval)
Lugo Low SCIT (60 sec sampling interval)

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

high stress case

low stress case

-240

-220

-200

-180

-160

-140

-120

-100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Comparison of Lugo High and Low SCIT Cases

Frequency, Hz

high stress case
sharp maximum

low stress case
smooth maximum

-100

-95

-90

-85

-80

-75

-70

-65

-60

 R
es

po
ns

e,
 d

B

 26

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-120

-110

-100

 -90

 -80

 -70

 -60
Comparison of Vincent High and Low SCIT Cases

Frequency, Hz

 R
es

po
ns

e,
 d

B

High stress case

Low stress case

Figure 5-6: Response at Vincent, California, to Chief Joseph Brake event.

-200

-240

-220

-160

-140

-120

-100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Frequency [Hz]

high stress case

low stress case

Vincent High SCIT (60 sec sampling interval)
Vincent Low SCIT (60 sec sampling interval)

M
ag

ni
tu

de
 [d

B
]

-180

Figure 5-7: Autospectrum of System Frequency at Vincent, California.
Generated by FFT with 60 second samples, Hanning squared window, and
second-order low-pass filter breaking at 5 Hz.

 27

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-105

-100

-95

-90

-85

-80

-75

-70

-65

-60

-55
Comparison of Devers High and Low SCIT Cases

Frequency, Hz

 R
es

po
ns

e,
 d

B

High stress case

Low stress case

Figure 5-8: Response at Devers, California, to Chief Joseph Brake event.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Frequency [Hz]

M
ag

n
it

u
d

e
(d

b
)

high stress case

low stress case

-240

-220

-200

-180

-160

-140

-120

-100
Devers High SCIT (60 sec sampling interval)
Devers Low SCIT (60 sec sampling interval)

Figure 5-9: Autospectrum of System Frequency at Devers, California.
Generated by FFT with 60 second samples, Hanning squared window, and
second- order low-pass filter breaking at 5 Hz.

 28

5.2.2.3 Real Data from the WECC Breakup of August 10, 1996
On August 10, 1996, the WECC experienced a system-wide breakup with major regional
power outages. Figure 5-10 shows the autospectrum for the real power transient leading
up to the separation of the interconnected system. The first of a series of events was the
Keeler-Allston line trip. (See Figure 5-10 at about 400 seconds on the time axis). Figure
5-11 shows the autospectrum of the system frequency at the Dittmer Control Center in
Vancouver, WA, before and after the line trip. The autospectra in Figure 5-11 have very
similar characteristics to the simulated results shown in Figure 5-5, Figure 5-7, and
Figure 5-9. A comparison between the low and high stress conditions and the before- and
after- line-break conditions indicates that the spectrum of the high stress condition
correlates with that of the after-the- line-break condition and, similarly, the spectrum of
the low stress condition with that of the before-the- line break condition. This is a very
intuitive result. The grid stress after the line break was likely significantly increased,
having led 5 minutes later to a cascading effect, which ultimately caused a system
breakup.

Figure 5-10: WECC Breakup of August 10, 1996. Shown is the real power at Malin.
Several events leading to the separation of the interconnected power system are indicated.

[bitmap version
200 300 400 500 600 700 800

1100

1200

1300

1400

1500

008 Malin-Round Mountain #1 MW
caseID=Aug10E5loadPF casetime=04/16/98_14:41:48

Time in Seconds

PPSM at Dittmer Control Center
Vancouver, WA

(see detail)

0.264 Hz,
3.46% damping

0.252 Hz
0.276 Hz

15:42:03
Keeler-Allston line trips

15:48:51
Out-of-Step separation

15:47:36
Ross-Lexington line trips/
McNary generation drops off

Reference time = 15:35:30 PDT

R
ea

l P
o

w
er

, M
W

 29

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-160

-140

-120

-100

-80

-60

-40

-20

Frequency in Hertz

A
ut

os
pe

ct
ru

m
 in

 d
B

After Keeler-Alstrom line trip

Before Keeler-Alstrom line trip

Figure 5-11: Spectrum of System Frequency Before and After the Keeler-
Alstrom Line Break, Recorded at Dittmer Control Station, WA

5.2.3 Findings

The results of this analysis reveal the following:

• The simulation results indicated recognizable differences between the high and low

stress cases in the frequency response of the system to the Chief Joseph Brake for
different locations throughout California. The differences were all consistent.

• Recorded data from the WECC breakup of August 10, 1996, indicate similar
characteristics before and after the Keeler-Allston line trip compared to the low and
high stress cases in the simulation. It was shown that the oscillatory content in the
real power after the Keeler-Alston line break increased, which then precipitated other
contingencies, which led ultimately to the system breakup [Hauer 2001] (see Figure
5-10). It can be argued that grid stress after the Keeler-Alston line trip increased to a
degree potentially detectable by an algorithm that would be implemented in the load
controller. The Keeler-Alston line trip and its impact on the stability of the grid could
be considered as an early warning sign, which the load controller will need to be able
to detect.

The simulation results and the analysis of the recorded data for August 10, 1996, support
our notion that in the high voltage transmission system, the system frequency signal
contains important information as the power system changes from a low stress to a high
stress state that could be exploited in a detection algorithm. While our analysis to date
has only investigated frequency signals of three California locations, we expect that these
results can be replicated for other locations in California and throughout the WECC area.

 30

It should also be mentioned that the particular definition of grid stress used in this project
is not a rigorous definition, but serves well to define impending grid related problems.
There are potentially an infinite number of stress conditions that may be locationally
dependent, however, most are low probability events.

5.2.4 Conclusions from Analysis of Simulation of Dynamic Stability
The results of the analysis to date support our basic hypothesis that local detection of
global system problems is feasible. While we have demonstrated this concept for three
locations in California, we feel optimistic that these results apply more generally for other
locations in California and in other states of the WECC. Validating the hypothesis can be
done by analyzing simulation outputs at different locations.

We also need to address the applicability of the results to the wall outlets in homes and
businesses throughout California where ultimately the grid stress detection will need to
occur. An important test would be to verify that the coherence of the frequency signals
on each side of the substation transformer is unity. In the absence of sufficient dynamic
data for the distribution feeder, we argue that there are no apparent reasons why the
dynamic content of the frequency signal should significantly change downstream of the
substation in the distribution feeder leading to homes and other buildings. With no
generation capacity or electric storage capability, it is unlikely that loads will induce
oscillatory behaviors into the distribution system. Frequency, however, is by definition
the time derivative of the voltage phase angle, therefore, the instantaneous frequency
measurement is influenced by sharp changes in voltage, which can occur within
distributions systems. Further signal processing could be used to account for these errors.

In summary, we have generated encouraging results that warrant and suggest following
the next steps toward the design of a detection algorithm. With the observed geographic
diversity in the frequency spectra results, it is likely that a successful detection algorithm
would need to be adaptive to adjust to regional differences. The algorithm would need to
continuous ly establish a spectral baseline that is specific for a particular location, similar
to Kahlman filtering methods. The detection of significant changes from that baseline
could then be used as a trigger for load control.

5.3 Voltage Stability Conditions
In discussion with CAISO transmission planning engineers, CAISO engineers indicated
that the voltage instability in the Bay Area during heavy AC/DC North-to-South power
flows is of great concern to CAISO and suggested that this particular case be analyzed
using the simulation approach described in the previous section.

CAISO staff provided the necessary input data sets for the PSLF simulation program and
consulted with us on the definition of low- and high-stress conditions using the T-116B
nomogram [CAISO 2002]. This nomogram indicates safe operation of the grid as a
function of PDCI (Pacific Direct Current Intertie) flow, COI (California Oregon Intertie)
flow, and Northern California hydroelectric generation dispatched. The nomogram

 31

protects against voltage instability at the Table Mountain Substation for specific
transmission outages described in CASIO operating procedure T-116 (see Figure 5-1).

5.3.1 Approach
The same analytic approach as for dynamic instability conditions was applied. The steps
are:

1. Using the PSLF simulation program, we varied the Northern California hydroelectric

dispatch between 100% and 70%. We defined the 100% hydroelectric dispatch as the
high-stress case and 70% dispatch as the low-stress case. We consulted with CAISO
engineers for specific plant dispatches for both simulations.

2. For steady-state cases of Northern California Hydro = 100% and 70%, dynamic

simulations were performed using a 0.5 second Chief Joseph brake ringdown.
Voltage signals at the high voltage bus for Table Mountain, Round Mountain, and
Vaca Dixon, were captured during the ringdown, and converted to transfer functions
using Prony analysis, thus providing a transfer function for each site Gpv(s). Gpv(s) is
a transfer function with real power as input and voltage as output.

3. Gaussian white-noise inputs were filtered (breakpoint at 5 Hz), then input into each

transfer function (see Figure 5-3) . An FFT was performed on the output, and
differences among signals between 100% and 70% hydro dispatch levels were
scrutinized for signatures indicating stress of impending voltage instability.

5.3.2 Findings and Conclusions
The transfer functions Gpf(s) of the entire power system at Table Mountain indicated
virtually no differences between the low- and high-stress cases for frequencies below 0.8
Hz, and some differences for frequencies above 0.8 Hz (see Figure 5-12). The spectra of
these transfer functions, when imposed with a noise signal, are identical for the two stress
cases (see Figure 5-13). Similar results were obtained for the Round Mountain
Substation (see Figure 5-14 and Figure 5-15). This leads to the conclusion that an
impending voltage instability problem may not be detectible with dynamic analysis
techniques as we postulated in the previous section. The fundamental principals of a
voltage instability problem in a complex power network are therefore, not associated with
the dynamic systems behavior. While our simulation validated this notion, there is still a
debate within the power system engineering community regarding whether evidence
exists for impending voltage instability in a dynamic simulation that reveals oscillatory
behavior. Oscillations in the WECC, which generally occur in the 0 to 2 Hz region, are
primarily of electro-mechanical nature, thus they are typically not directly associated with
voltage instability, although sometimes they are observed.
We conclude from our simulation results that the proposed grid-stress detection approach
appeared inappropriate for detecting voltage instability problems; however, the approach
is likely to have merits for dynamic instability problems, as shown in Section 5.2.

 32

Figure 5-12: Transfer Function Gpf(s) at Table Mountain, California, for High-Stress Case
(North California Hydro=100%) and Low-Stress Case (North California Hydro=70%).

Figure 5-13: Spectrum of System Frequency at Table Mountain, California, for High-
Stress (North California Hydro=100%) and Low-Stress (North California Hydro=70%).
These results were generated by FFT with 60 second samples, Hanning squared window,
and 2nd order low-pass filter breaking at 5 Hz (see Figure 5-3). Note that both spectra
are identical.

 33

Figure 5-14: Transfer Function Gpf(s) at Round Mountain, California, for High-Stress
Case (North California Hydro=100%) and Low-Stress (North California Hydro=70%).

Figure 5-15: Spectrum of System Frequency at Round Mountain, California, for High-
Stress (North California Hydro=100%) and Low-Stress (North California Hydro=70%)
cases. Results were generated by FFT with 60 second samples, Hanning squared
window, and 2nd order low-pass filter breaking at 5 Hz (see Figure 5-3). Note that both
spectra are identical.

 34

 35

6 Analysis of Grid Events
Using the analysis tools described in Section 5, we analyzed historic data of known grid
events to test the hypothesis established in Section 4. Two grid events were analyzed:
(1) the August 10, 1996, breakup of the WECC system that caused major outages in the
Western power system and (2) a less severe event that was caused by tripping of a major
transmission line in the Northwest with cascading effects in Southern California.

Simulation results suggested that some evidence exists for the maxima of the spectrum of
the grid frequency signal tending to be higher in the 0 to 2 Hz range for the high-stress
condition compared to a low-stress condition. Furthermore, we found that there is also
evidence that the maxima are sharper (spanning a small angle) in the high-stress case
versus the low-stress case. There appears to be sufficiently significant differences in the
spectra of grid frequency signals between the two cases to potentially establish detection
algorithms based on them. The differences are expected to be found in the sharpness of
the spectrum and in the absolute magnitude of the spectrum. We tested these two
characteristics by analyzing the spectra using following characteristics:

• Integral of spectrum in each band
• Number of occurrences of peaks in specific frequency bands
• Standard deviation of the spectrum.

6.1 Results for the October 8, 2002, Disturbance
On October 8, 2002, at 22:30:52 Pacific Daylight Saving Time, a line trip in southern
Oregon near Summer Lake caused Bonneville Power Administration to execute remedial
action schemes (RAS) to trip 2908 MW of generation in the Northwest. Additionally, the
1400 MW Chief Joseph Brake was immediately inserted. Load losses occurred at
scattered locations, and various local control actions may have also occurred.

6.1.1 Time Domain
As a result of the line trip, the grid frequency decreased significantly and very fast (see
Figure 6-1). The recovery time to a normal grid frequency of 60 Hz was about 1000
seconds (17 minutes). The lowest frequency measured occurred at 22:30:57 and 57 ms
and was 59.593 Hz. This is far outside the tolerance range of ±0.05 Hz (about 8 times
more) and occurred only for a very short time. The average frequency after the trip was
about 59.78 Hz for about 3 minutes. The frequency then started to increase with a slope
of about 0.22 mHz/sec. Finally, after approximately 1000 sec, the nominal frequency of
60 Hz was reached again.

 36

Figure 6-1: Grid Frequency Event, October 8, 2002.

6.1.2 Magnitude of Maxima in Spectrum
The first part of the analysis is based on the magnitude of the highest peaks in the
frequency spectrum. This is an indication for high frequency components and lets us
determine oscillatory modes in the power system.

Figure 6-2 shows the magnitude of the maxima for each band over a 10-minute time
period. The line break is indicated in Figure 6-2 in the center of the graph by a vertical
line. We noticed that the magnitude of the maxima in bands 1, 2 and 3 increased after the
trip for about 1 minute. In band 4 and 5, no rise or other distinct characteristics in the
trajectory of the peaks was detectable. This suggests that only lower frequency
oscillations (up to 1.2 Hz) emanated from this line trip.

 37

line trip

Figure 6-2: Magnitude of Peaks in Spectrum, October 8, 2002

6.1.3 Standard Deviation
Figure 6-3 shows how the standard deviation of the magnitude of the spectrum varies
over time before, during, and after the event. The standard deviations are computed over
the complete bandwidth between 0 and 2 Hz of the spectrum. After the trip, an increase
in standard deviation is detectable for a short time, compared to the recovery time of the
grid frequency to 60 Hz.

A high standard deviation in the magnitude of the spectrum is indicative of a wide spread
between dominating and non-dominating frequencies during the first 1 minute after the
line break.

 38

line trip

Figure 6-3: Standard Deviation of Magnitude of the Grid Frequency Spectrum,
October 8, 2002

6.1.4 Sharpness of Maxima
Figure 6-4 illustrates an example of the trajectory of the second derivative for Band 2.
Trajectories of the second derivative for other bands were very similar to that shown in
Figure 6-4 with no characteristic feature at the time of the line trip or thereafter.

line trip

Figure 6-4: Sharpness as Defined by the Second Derivative of Spectrum for
Band 2, October 8, 2002

 39

The alternative method for determining sharpness, utilizing an angle measurement,
provides the results shown in Figure 6-5. Results shown in Figure 6-5 are valid for Band
2 only. They are in strong agreement with the results using the second derivative
approach.

line trip

Figure 6-5: Sharpness as Defined by Angle at Maximum of Spectrum,
October 8, 2002

6.1.5 Integral
The integral is separately calculated for each band. It represents the surface area between
an arbitrary reference line of –120 dB and the line representing the spectrum. Figure 6-6
shows results for the integral for the Band 2 spectrum. There is a markedly high rise in
the value of the integral directly after the line trip, which persists for only a short duration
of 8 seconds. Similar results were obtained for Bands 1 and 3, which indicates that the
oscillatory content of the frequency signal as a consequence of this grid event is limited
to frequencies up to 1.2 Hz. Oscillations at higher frequencies beyond 1.2 Hz were not
observed. This observation is in strong agreement with known oscillatory modes,
ranging from the low Canada-California mode at 0.33 Hz to the higher frequency Grand
Coulee mode near 1.03 Hz [Hauer and Dagle 1999]. The system’s damping ability was
sufficient ly large to arrest persistent oscillations within a very brief period.

 40

line trip

Figure 6-6: Value of Integral between -120 dB Reference Line and Spectrum for
Band 2, October 8, 2002

6.1.6 Histogram of Maxima
The frequency of occurrence of local maxima before and after the line trip was explored
to investigate any modal changes in the oscillation prior to and after the line break. If
there was a change in the mode of oscillation because of the line trip then we could
expect a change in the distribution of the local maxima before and after the event. The
histogram was normalized such that all distributions summed to 100%. Thirty-minute
periods prior to and after the event were analyzed and the results compared.

Figure 6-7 shows histograms for each band before and after the line trip. The frequencies
at which the spectra peak before and after this event differ only very slightly. This means
that there has not been any shift in the dominant oscillatory behavior from before to after
the event. Sometime during major grid events the grid topology changes as a result of the
line break and significant load shedding. This affects the oscillatory behavior of the
entire western interconnected system. Figure 6-7, however, suggests that this is not the
case. There does not appear to be major topological changes resulting from the line break
causing a shift in the oscillation modes of the system.

 41

Figure 6-7: Histograms of Local Maxima, October 8, 2002

[Hz]

[Hz]

[Hz]

[Hz]

[Hz]

[Hz]

[Hz]

[Hz]

[Hz]

[Hz]

Peak occurence in Band 1 for Event on October 8, 2002 (before trip)

Peak occurence in Band 2 for Event on October 8, 2002 (before trip)

Peak occurence in Band 3 for Event on October 8, 2002 (before trip)

Peak occurence in Band 4 for Event on October 8, 2002 (before trip)

Peak occurence in Band 5 for Event on October 8, 2002 (before trip)

Peak occurence in Band 1 for Event on October 8, 2002 (after trip)

Peak occurence in Band 2 for Event on October 8, 2002 (after trip)

Peak occurence in Band 3 for Event on October 8, 2002 (after trip)

Peak occurence in Band 4 for Event on October 8, 2002 (after trip)

Peak occurence in Band 5 for Event on October 8, 2002 (after trip)

F
ra

ct
io

n
of

 P
ea

ks
Fr

ac
tio

n
of

 P
ea

ks
F

ra
ct

io
n

of
 P

ea
ks

F
ra

ct
io

n
of

 P
ea

ks
Fr

ac
tio

n
of

 P
ea

ks

F
ra

ct
io

n
of

 P
ea

ks
F

ra
ct

io
n

of
 P

ea
ks

F
ra

ct
io

n
of

 P
ea

ks
F

ra
ct

io
n

of
 P

ea
ks

F
ra

ct
io

n
of

 P
ea

ks

 0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36

[Hz]

[Hz][Hz]

[Hz][Hz]

[Hz][Hz]

[Hz][Hz]

[Hz]

 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.86 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.86

 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16

 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48 1.52 1.56 1.20 1.24 1.28 1.32 1.36 1.40 1.44 1.48 1.52 1.56

 1.60 1.64 1.68 1.72 1.76 1.80 1.84 1.88 1.92 1.96 1.60 1.64 1.68 1.72 1.76 1.80 1.84 1.88 1.92 1.96

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

 42

6.2 Results for August 10, 1996
On August 10, 1996, the interconnected western grid separated into islands and caused
wide spread outages throughout the western US and Canada [Hauer and Dagle 1999].
The grid separation occurred in a succession of several events over a period of less than
10 minutes. First, the Keeler-Allston transmission line tripped, followed by the Ross-
Lexington transmission- line trip and, almost concurrently, the tripping of the McNary
generator, located on the Columbia River. The system separation occurred after the
McNary generator trip, causing widespread outages throughout the western US for
several hours.

In comparison to the previous ly discussed October 8, 2002, event, this event is divided
into three different phases:

• Phase 1: Before the Keeler-Allston line trips
• Phase 2: Between the Keeler-Allston line trips and Ross-Lexington line trips
• Phase 3: After the Ross-Lexington line trips.

The focus of this analysis is to detect significant changes in the set of five crit eria
between Phases 1 and 2. Phase 1 is presumed to be an example for low stress, and Phase
2 is presumed to be characteristic of high stress. Phase 3 finally represents the case of
instability.

Figure 6-8 illustrates the power transfer from the Northwest to California through the
Malin-Round Mountain transmission line (see Figure 5-1) around the time of the critical
events. The instability of the system after the second event can be recognized by the
undamped oscillation of the power output.

Similar oscillations, however not as pronounced, are shown in the grid frequency as
illustrated in Figure 6-8.

 43

Keeler-Allston Ross-Lexington

Figure 6-8: Grid Frequency during WECC Breakup of August 10, 1996

A minor increase in the frequency to 60.045 Hz over a 1-second period was recorded by
the Keeler-Allston line trip. The Ross-Lexington line trip (second event) caused grid
frequency to drop to about 59.88 Hz with ensuing undamped oscillations, which
ultimately led to the breakup of the interconnected system into numerous islands.

6.2.1 Magnitude of Maxima in Spectrum
Figure 6-9 shows the magnitude of maxima in the spectrum for each of the 5 bands. The
results for Band 1 indicate the largest increase after the first event (Keeler-Allston line
trip).

Band 1 shows the highest increase after the Keeler-Allston line trips, with some
persistence during the second phase. Other bands provide no marked differences
between before and after the Keeler-Allston line break.

During the third phase (after the Ross-Lexington line trip), the magnitude of maxima in
all bands indicate high oscillatory content in the grid frequency. A detection of
impending grid problems at that stage, however, would most likely be too late to avoid
catastrophic system failure. It would be desirable to detect the impend ing problem at an
earlier stage, for instance after the Keeler-Allston line trip to prevent ensuing cascading
effects.

 44

Figure 6-9: Magnitude of Maxima of Spectrum for Five Frequency Bands, August 10,
1996

6.2.2 Standard Deviation
The standard deviation of local maxima of the spectrum, as shown in Figure 6-10, does
not reveal any significant cha racteristics transitioning from Phase 1 into Phase 2. Similar
to the trajectory of the magnitude of maxima, significant changes in the characteristics
emerge after the Ross-Lexington line break on the way to the total system collapse.

As a consequence, the standard deviation does not reveal any more information than that
already obtained from the trajectory of the magnitude of maxima.

 45

Figure 6-10: Standard Deviation of Local Maxima, August 10, 1996

6.2.3 Sharpness of Maxima
The sharpness indicators either computed by the second derivative of the magnitude of
the spectrum or by the angle at local maxima of the spectrum showed no significant
changes across all 5 frequency bands. In fact, comparing the sharpness indicators of
Phase 1 with those of Phase 2, showed a behavior opposite to the behavior postulated in
our hypothesis. Figure 6-11 illustrates that the second derivative increases. Likewise,
Figure 6-12 suggests the angle grows during transitioning from Phase 1 to Phase 2.

 46

Figure 6-11: Sharpness as Defined by the 2nd Derivative of Spectrum for Band 2,
August 10, 1996

Figure 6-12: Sharpness as Defined by Angle at Maximum of Spectrum, August 10,
1996

 47

6.2.4 Integral
There are two characteristics that are detectable in all five bands: 1) a small increase
directly after the Keller-Allston line trips and 2) two large peaks after the Ross-Lexington
line trips. This consistency is somewhat unique compared to the previously discussed
indicators. It is still questionable whether the first rise in the indicator would be
sufficiently unique to be utilized as a load-shredding signal.

Figure 6-13: Value of Integral between -120 dB Reference Line and Spectrum
for Band 2, for the August 10, 1996 Event

6.2.5 Histogram of Maxima
For all bands, noticeable changes in the histograms of the maxima were observed. They
are indicative of significant changes in the oscillatory modes of the western power system
and have been researched and reported in other work [Hauer and Dagle 1999]. One
example is shown in Figure 6-14, Figure 6-15, and Figure 6-16, in which significant
shifts in the major oscillation modes are noticeable. In Phase 1 (before the Keeler-
Allston line break), a dominant oscillation of 0.45 Hz5, generally referred to as the
Alberta mode, was observed. After the Keeler-Allston line break, the primary
oscillations were redistributed to higher and lower frequencies to reach a new dominant
mode near 0.52 Hz in Phase 3.

5 Figure 6-14 shows bins for the histogram in equidistant steps of 0.04 Hz. Because of the discrete binning
method, all of the 0.45 Hz oscillation modes are accounted for in the 0.44 Hz bin.

 48

Figure 6-14: Histogram of Maxima, Band 2, Phase 1, August 10, 1996

It is difficult to interpret the results in isolation without other indicators. It was hoped
that there were other confirming indicators, which were originally conceived when we
postulated our hypothesis. In the absence of these results, we provide recommendations
for alternative approaches, using the insights resulting from this research effort.

Figure 6-15: Histogram of Maxima, Band 2, Phase 2, August 10, 1996

 49

Figure 6-16: Histogram of Maxima, Band 2, Phase 3, August 10, 1996

 50

 51

7 Conclusions
The results of the data analysis did not support our hypothesis of detecting impending
dynamic instability problems by a set of indicators or features of the grid frequency,
which are based on the symptoms of oscillatory behavior in large interconnected power
systems. Finding some historic data that are representative of low- and high-stress
conditions was difficult. It is almost impossible to determine with any certainty a
condition on a large and complex electric power system when the system is under low
stress. The randomness and magnitude of constantly changing loads and adjustments by
generators to meet the demand, coupled with the randomness of the unplanned outages,
which cause changes in the topology of the network, makes it very difficult, if not
impossible, to definitively declare a state of the power system as low stress. Even during
periods at night, when the load tends to be lower than during the day, it is not obvious
that the system attains a low or lower-stress state. Transmission outage, planned or
unplanned, may pose a difficult burden on transmission engineers to keep the system in
stable and safe condition. Because of the inherent inability to establish a state of low-
stress as a reference case, it became difficult during this analysis of historic data to detect
the transition from a safe condition to that of an impending problem. Even in the analysis
of the data representing the August 10, 1996, breakup, it is not entirely clear what the
overall system condition was prior to the Keeler-Allston line break, which appeared to
have initiated a sequence of events that led to the system breakup. Much research has
been done on the event of August 10, 1996, which provided valuable insights into the
systems ability to dampen electro-magnetic oscillations in the system. Researchers were
able to determine the damping characteristics of the system after the first event (Keeler-
Allston line break). This line break triggered a sufficiently large perturbation to the
power flows and excitation to the system, from which the damping coefficient was
determined. What is not clear is what the damping characteristics were prior to Keeler-
Allston line break. On August 10, 1996, the recorded data clearly indicated that there
was a sequence of events that progressively deteriorated the system’s ability to recover
from the prior system events. Observed was a sliding slope in the “health” of the power
system that ultimately resulted in a total system collapse.

A necessary requirement for an effective detection technology is to recognize system
conditions as the power system approaches dangerously close the edge of stable and safe
operating conditions. Because of the complexity of the power system, the edge of safe
operations is a moving target and depends on load conditions and network topology and
thus may change from hour to hour. As a result of this data analysis, it appears
questionable whether the chosen approach will be successful in the long-run. The major
obstacle for this approach is the necessity to establish a reference scenario that would
represent safe grid operating conditions. To establish this, a large series of the conditions
needs to be analyzed to become familiar with the spectrum of variability for each
indicator to establish signatures or patterns for impending problems. The scope of such
extended analysis will probably be large and may potentially not be the most effective
solution path to the overall objective.

An alternative approach, if feasible, could potentially lead to a promising detection of
dynamic instability of the power system. This alternative approach focuses on

 52

determining the transfer function that describes the dynamic behavior of the entire power
system, from which the standard stability analysis methods can be applied. So far, no one
has successfully established a power system transfer function of sufficient accuracy with
which to perform a meaningful stability analysis. We discuss the major elements and
benefits of this approach in the Section 8.

 53

8 Recommendations for Future Work
This research provided valuable insights into the complexity and difficulty of identifying
impending grid problems. We focused on dynamic instability problems after learning
that voltage instability problems may not be identifiable with spectral analysis methods.
Several recommendations are offered as part of the lessons learned from this project.
They are listed and summarized below and discussed further in Sections 8.1 – 8.3.

4. Under-frequency load control could provide an important grid reliability

enhancement. Although reactive in its response, an under-frequency load control
strategy with frequency responsive appliances and devices could provide import
reserves that are currently furnished by generators that are either already spinning or
that can be ramped up in their output. This work and its benefit are discussed further
in Section 8.1.

5. The data analysis results did not confirm our hypothesis for detecting grid stress in

advance of an event. However, it remains unclear as to whether the primary cause for
this result is the approach we used for spectral analysis or the specific data we
analyzed. Even for the August 10, 1996, event, it is not clear whether the power
system was under high stress prior to the Keeler-Allston line break. To explore the
system state further with respect to the stress condition, we recommend an analysis of
system conditions several hours, perhaps 1 or 2 days, prior to the Keeler-Allston line
break to capture more diversity in the grid condition that may include conditions
more characteristic of what we defined as low stress.

6. Enhance fundamental understanding of the stability characteristics of the power

system by utilizing system identification techniques that result in a real-time transfer
function approximation of the entire power system. If a real-time system transfer
function of sufficient accuracy can be established, it would enable the use of standard
stability analysis tools for determining distance to the stability edge.

7. For dealing with voltage stability problems – a concern that the CAISO raised – we

recommend the use of under-voltage relays for induction motors, as found in
compressor motors for air-conditioning systems. We describe some of the underlying
mechanism and systems benefits that can be derived from the use of under-voltage
relaying.

8.1 Under-frequency Load Control using Grid-Friendly Appliances
The electric power grid relies on the rotational (inertial) kinetic energy of the connected
synchronous generators to help balance electricity production and consumption.
Contained within this inertia is enough energy storage to sustain the grid for cycles to
seconds (depending on the amount of imbalance). If there is too much generation, the
system frequency increases, too little and the system frequency decreases. Small
mismatches between generation and load result in small frequency deviations. These

 54

small shifts do not degrade reliability or market efficiency, although large shifts can
ultimately lead to system collapse.

Likewise, system frequency provides an indication of the interconnection’s
generation/load balance. Frequency can be measured instantly anywhere in the
interconnected grid without the need for additional communications. This facilitates
dispersed, autonomous response to system casualties by generators and loads. Assuming
that all control systems such as automatic generation control (AGC) and speed governors
are working correctly, a low system frequency is indicative of a low generation reserve.
If frequency deviates from the standard 60 Hz, a range of system reactions takes place as
seen in Figure 8-1 .

56

57

58

59

60

61

62

63

64

F
re

q
u

en
cy

59.95

59.96

59.97

59.98

59.99

60.00

60.01

60.02

60.03

60.04

60.05

F
re

q
u

en
cy

Equipment Damage

Equipment Damage

Underfrequency Generation Trip

Overfrequency Generation Trip

Nominal Frequency

Underfrequency Load Shedding

Governor Response

Time Correction

Time Correction

Governor Response

Governor Response

Contingency Response

Normal Conditions

Normal Frequency
Deviation and AGC
Corrective Action

Range

Figure 8-1: Frequency is tightly controlled under normal conditions and
coordinated under all conditions.

Notice that far outside the “Normal” frequency range is an under-frequency load-
shedding strategy is deployed. This is the first level of system protective response (see
Figure 8-1). It is considered a drastic measure because it is invoked at the utility
substation level. This type of application accomplishes its objective of maintaining
system integrity, but at the cost of cutting off all power to some customers. The load that
is dropped at the substation level is not been selected based on significance or
convenience. This type of under-frequency load shedding is ‘all or nothing;’ either the
feeder is de-energized, dropping all loads on it, or it remains energized, keeping all loads
running.

 55

Figure 8-2: Impacts of Frequency-Responsive Loads Using Grid Friendly Appliances

A unique implementation of this idea implements under-frequency load shedding at
individual appliances. This type of system load response has already been developed in
part by PNNL staff, and has shown exceptional results for minimal economic investment.
Instead of the traditional ‘all or nothing’ approach to load shedding, this method
automatically curtails non-essential loads (such as residential appliances) before a crisis
develops. Figure 8-2 displays the actual system response to a sudden loss of generation.
On the same figure, the simulated

system reaction is plotted for grid-friendly under-frequency protection implemented in
large quantities. Notice that the system frequency falls much less than it would have
without grid-friendly-appliance (GFA) technology.

Grid-friendly appliances provide a rapid and automatic response to grid crises.
Implementation of under-frequency load shedding at the appliance level provides
increased power system reliability and security by acting as reserve margin, while going
unnoticed by the consumer.

59.860

59.880

59.900

59.920

59.940

59.960

59.980

60.000

60.020

0.0 10.0 20.0 30.0 40.0 50.0

59.860

59.880

59.900

59.920

59.940

59.960

59.980

60.000

60.020

0.0 10.0 20.0 30.0 40.0 50.0

With GFA: Frequency Excursion
 Arrests at 59.950 Hz
 within 0.7 sec.

Without GFA: Frequency Drops to
59.886 Hz within 5.8 sec.

Four Corners Unit 5 Tripped with 710 MW on May 8, 2002, at 13:38 PDT
F

re
qu

en
cy

 (H
z)

Seconds (from 13:38:20 PDT)

 56

8.2 System Identification Approach of the Electric Power System
Techniques used to evaluate the results or ‘symptoms’ of high-stress conditions in the
power system have been presented in this paper; however, a deeper analysis can provide
information about the condition itself, without relying on the evaluation of its symptoms.
Such methods require analysis to convert the noise response of a system, obtained at the
wall outlet, into a transfer function, which provides in pole locations for the power
system. By measuring the distance of the system poles to the right-hand s-plane (locus of
system instability), and by tracking the rate at which those poles move toward the right-
hand s-plane, a smart chip can provide a direct indication of actual or probable system
instability.

Load switching and other random phenomena in a loosely connected power system
produce ambient process noise that contains much useful information about oscillatory
dynamics. The extraction of qualitative information about system behavior has been a
fairly routine matter for many years. The extraction of quantitative dynamic information
from ambient noise has been less successful. There are a number of reasons for this.

Figure 8-3: Information sources in process identification

Figure 8-3 presents a schematic view of the environment in which such analysis is
performed. Input noise ν(t) is colored by system dynamics and produces a process noise
component in the output y(t). The output also contains a some measurement noise, which
may necessitate the use of filtering or better instrumentation. Disturbances, set point
changes, and changes in network topology are more serious matters. These often produce
important changes in power system dynamics and, even if they do not, they may disrupt
the signal analysis process. The object of ambient analysis may be to detect and classify
such changes (plus the causal events) when they are not directly observable by other
means. Whether or not this is the case, it may still be necessary to detect such changes to
properly interpret signal analysis results and perhaps to re- initialize the signal processing.
The problem of "hidden inputs" to the system is a harmful one.

output y(t)
POWER
SYSTEMinput noise υ(t)

disturbance d(t)

probing signal r(t)

measurement
noise µ(t)

+

+

topology changes

setpoint changes

 57

The idea in this assessment is that signal processing methods that extract quantitative
dynamic information from ambient process noise must, directly or indirectly, derive that
information from a numerically estimated autocovariance function [Bendat and Piersol
1993]. To the extent that this conjecture is true, the key issues to examine are the error
properties of autocovariance estimates, and the degree to which estimation errors affect
the accuracy of estimated oscillatory parameters.

The general finding is that the complexity of power system dynamics can easily
"deceive" parametric methods that are based upon autocovariance estimates. Leading
problems are undetected exogenous inputs to the system ("hidden inputs"), the large
number of closely- spaced oscillatory modes, and the oscillatory nature of estimation
errors in forming the autocovariance function. This finding is consistent with results that
have been obtained with actual system data over many years. Improved results might be
obtainable through the use of multiple signals, through "adaptive" logic that
simultaneously adjusts the order of a "parsimonious" model and the fitting window for
model construction, and possibly through selective filtering. If such heuristic tuning is
carried too far, however, the resulting "ModeMeter" will increasingly reflect built- in
tuning assumptions rather than actual system behavior.

8.3 Prevention of Stalled Induction Motors
In May 1995, the Sacramento Municipal Utility District (SMUD) issued a report
summarizing transmission line outages that resulted in delayed voltage recovery followed
by a loss of load. This “local blackout” occurred in August 1994, when four transmission
lines in a common corridor went out of service simultaneously, initiating a delayed
voltage recovery. The sustained low voltages on the system were caused by the stalling
of low-inertia rotating machines (such as air conditioners) during a system disturbance.
Conclusions of the preliminary study acknowledged that delayed voltage recovery could
indeed occur in the SMUD system. Investigation of measures to prevent motor stalling
and delayed voltage recovery was recommended.

When system voltage begins to fall as a result of a line fault or high system loading, the
drop in voltage causes induction motors to draw more current to maintain their power
output; however, drawing more current perpetuates the drop in voltage. The cycle slowly
continues until the voltage level at the terminals of the induction motor can no longer
support the operation of the motor, and it stalls. This condition renders the motor
essentially useless, with its output power near zero; however, it draws up to six to ten
times its rated current, all of which is at an extremely lagging power factor, draining
capacitive reactance from the power system. At his point, the system voltage drops
sharply and quickly. Other induction motors in near proximity to the voltage collapse,
start to stall, and the voltage collapse propagates through the system rapidly.

Large industrial style induction motors typically utilize under-voltage relays for motor
protection. Although the primary purpose of these relays is to protect the induction

 58

motor itself against the effects of low system voltage, they also protect the power system
by tripping the machine off service before a system under-voltage can propagate into a
voltage collapse. The protection that these under-voltage relays provide to the power
system is a serendipitous benefit, and is not the purpose of the relays.

In the residential setting, there is a major violator with regards to power system voltage
instability, the stalling of induction motors associated with home heating, ventilation and
air conditioning (HVAC) units. These inexpensive induction motors rarely, if ever,
include under-voltage or stalled-motor protection. The lack of such protection is justified
based on the risk of losing the operability of the induction motor versus the cost of
integrating the protective device. In fact, as a rule, protection devices are designed and
installed only to protect the equipment they serve. Because these small residential
induction motors pose little financial consequence if they fail, they are fitted with thermal
over-current protection only. This inexpensive protective device relies on over-
temperature sensors to identify a faulty or malfunctioning condition and responds by
disconnecting the motor from the electric power system. Thermal protection serves the
motor adequately; however, it does too little, too late to benefit the power system during
a voltage collapse. Because the thermal devices take 10 seconds or more before they trip
a stalling induction motor off line, these devices do not sufficiently mitigate power
system voltage collapse or a delayed voltage recovery.

Several inexpensive methods of stall detection can be implemented into residential
HVAC induction motor units. One such method utilizes phase delay between the source
and winding of the induction motor. This phase delay occurs during normal operation
but does not occur during stalled conditions. Such a detector could be easily integrated
into inexpensive induction motors, and in large quantities, would have profound impact
by mitigating delayed voltage recovery and loss of loads as a result of these effects.

 59

9 References

Advantech. 2003. Datasheet on the 486 Mini Biscuit Single Board Computer CPC-
2245N. Advantech Company. Irvine, California. Available on the
Internet at http://partner.advantech.com.tw/epartner/Files/Temp/1-1OR4R-
2.pdf.

Altera. 2003. Datasheet on MAX 700B Programmable Logic Device. Altera
Corporation. San Jose, California. Available on the Internet at
http://www.altera.com/literature/ds/m7000b.pdf.

ANSI. 1988. Draft Proposed American National Standard for Information Systems --
Programming Language C. Technical Report X3J11/88-158, Accredited
Standards Committee, X3 Information Processing Systems, American
National Standards Institute, December.

Bendat, J. and A. Piersol. 1993. Engineering Applications of Correlation and Spectral
Analysis. John Wiley & Sons, New York.

Borland. 1989. Borland Turbo C. Version 2.01. Borland Software Corporation. Scotts
Valley, California. May 1989.

CAISO. 1998. 1998 California Operating Studies Subcommittee (OSS) Handbook.
Prepared by Chuck-yan Wu. Revision 2.0.0. California Independent
System Operator, Folsom, CA. March 1998.

CAISO. 2002. AC/DC Nomogram for North-to-South Flow and COI Nomogram for
South-to-North flows. Procedure No. T-116. Version 4.5. Effective Date
June 5, 2002. California Independent System Operator.

CEC. 1997. “Survey of the Implications to California of the August 10, 1996, Western
States Power Outage.” Report of the California Energy Commission, June
1997. Available on the Internet at
http://www.energy.ca.gov/electricity/index.html#reliability.

GE. 2001. GE Power Systems Energy Consulting. Commands Reference Manual,
Version 12.0. GE Power Systems Energy Consulting, Schenectady, NY,
March, 2001.

Groll, J., U. Grüner, and H. Wiese. 1998. C als erste Programmiersprache (ISO-
Standard), B. G. Teubner Verlag, Stuttgart, Germany.

HAMEG. 2003. Datasheet on Universal Counter 8021-3. HAMEG GmbH. Frankfurt,
Germany. Available on the Internet at
http://www.hameg.de/de/index.htm.

Hauer. 2001. Enhanced Information Resources for Managing Reliability and
Performance of the Western Power System. Presentation by John Hauer,
Pacific Northwest National Laboratory, Fall 2001.

Hauer, J. and J. Dagle. 1999. Review of Recent Reliability Issues and System Events.
PNNL Technical report PNNL-13150, prepared for the U.S. Department

 60

of Energy Transmission Reliability Program by the Consortium for
Electric Reliability Solutions (CERTS). Pacific Northwest National
Laboratory, Richland, Washington.

Hirst, E. and B. Kirby. 2003. Technical Issues Related to Retail-Load Provision of
Ancillary Services, New England Demand Response Initiative, February
2003. Available at
http://www.ehirst.com/PDF/NEDRIReservesBackground.pdf.

HP. 2003. Datasheet on 53131A Universal Frequency Counter. Agilent Technologies
(formerly Hewlett-Packard Company), Palo Alto, California. Available
on the Internet at http://cp.literature.agilent.com/litweb/pdf/5967-
6039EN.pdf.

Kirby, B. 2003. Spinning Reserve From Responsive Loads. ORNL/TM-2003/19. Oak
Ridge National Laboratory, Oak Ridge, Tennessee.

Kirby, B. and M. Alley. 2002. Spinning Reserves from Controllable Packaged Through
the Wall Air Conditioner (PTAC) Units. ORNL/TM-2002/xx. Oak Ridge
National Laboratory, Oak Ridge, Tennessee.

NERC. 2002. Policy 1 – Generation Control Performance, Section C. Frequency
Response and Bias NERC Guides, North American Electric Reliability
Council, Princeton, New Jersey.

Press, P.W. B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1993. Numerical
Recipes in C. Cambridge University Press, Cambridge.

VanZandt, V. R., M.J. Landauer, W.A. Mittelstadt and D.S. Watkins. 1997. "A
Prospective Look at Reliability with Lessons From the August 10, 1996,
Western System Disturbance,” Proceedings of the International Electric
Research Exchange Workshop on Future Directions in Power System
Reliability, Palo Alto, CA, May 1-2, 1997.

WSCC. 1996. “Western Systems Coordinating Council Disturbance Report for the
Power System Outage that Occurred on the Western Interconnection
August 10, 1996, 1548 PAST.” Approved by the WSCC Operations
Committee on October 18, 1996. Available on the Internet at
http://www.wscc.com/outages.htm.

 61

Appendix A: Description of Frequency Sensor

Figure A-1: Printed Circuit Board of Frequency Sensor

Table A-1: Component List of Frequency Sensor Hardware

Item Qty Reference Part
1 2 C1, C5 47µ / 16V
2 2 C2, C4 4.7µF
3 19 C3, C6, C8, C9,

C12, C13, C15,
C16, C17, C18,
C19, C20, C21,
C22, C23, C24,
C25, C26, C27

100nF

4 2 C28, C7 47pF
5 2 C10, C11 33pF
6 1 C14 10pF
7 4 D1, D2, D3, D5 1N4004
8 3 D4, D6, D8 1N4148
9 1 D7 GREEN LED
10 16 D9, D10, D11,

D12, D13,D14,
D15, D16, D17,
D18, D19, D20,
D21, D22, D23,
D24

HS1001

11 1 D25 SA6.0CA
12 1 J1 .1 x 3 Single Row

Header
13 1 J2 .1 x 9 Single Row

Header
14 1 J3 2 pin screw terminal
15 2 K2, K1 Aromat DR-6V
16 1 P1 CONNECTOR DB25

 62

Item Qty Reference Part
17 1 Q1 2N3904
18 1 Q2 2N3906
19 1 RP1 10K
20 1 RP2 100K
21 1 R1 180K
22 1 R2 56K
23 3 R3, R5, R26 4.7K
24 8 R4, R7, R8, R9,

R10, R11, R15,
R16

470

25 2 R25, R6 2.2K
26 1 R12 6.8K
27 1 R13 3.3K
28 2 R17, R14 1K
29 1 R18 1.2K
30 4 R19, R20, R21,

R22
11.3K

31 2 R23, R28 10K
32 1 R24 4.7M
33 1 R27 100K
34 2 U14, U1 CD74AC04
35 4 U2, U4, U5, U7 CD74AC161
36 1 U3 78L05 SOT89
37 1 U6 79L05 SOT89
38 1 U8 SN74HC4538
39 1 U9 SN74HC04
40 1 U10 SN74HC00
41 1 U11 SN74HC11
42 1 U12 CD74AC109
43 1 U13 CD74HC573
44 1 U15 SN74HC32
45 1 U16 LT1394
46 1 U17 LM6261
47 1 Y1 4.9152 MHz

 63

Appendix B: Source Code for Controllers and Analysis Platform
Software

Code for Controls Software

This appendix contains the source code for the first and second generation controllers.

First Generation Controls Software

The controls software consists of the following modules in Borland Turbo C language 6:
• FSU.C
• FSU-DEF.C
• FSU-LCD.C
• FSU-VAR.C
• FSU-SUB.C

Each module is listed below. The function of each module is described in its header.

6 Borland, 1989. Borland Turbo C. Version 2.01. Borland Software Corporation, Scotts Valley,
California, May 1989.

/**/
/* */
/* File "fsu.c", created on 04/28/2001 by Daniel L. Oedingen, PNNL */
/* */
/* -- */
/* */
/* Current program version : See "#define PROG_VERSION" in "fsu-def.c". */
/* */
/* Last updated : 07/27/2001 by DLO */
/* */
/* Compile with : "tcc -B -G -1 -a -f87 fsu.c" (Borland Turbo C */
/* Compiler Version 2.01 or higher); see also */
/* further documentation for compile options for */
/* configuring this software for data logger */
/* modes etc. */
/* */
/* The TCC options mean : -B..... Compile via assembly (TASM) */
/* -G..... Generate for optimized speed */
/* -1..... Use 8086/80186 instruction set */
/* -a..... Generate word aligned object code */
/* -f87... enable 8087 floating point support */
/* */
/* Supported platforms : - MS-DOS 5.0 or higher, Win 3.x */
/* - Microsoft Windows 95/98/ME (all OSRs) */
/* */
/* Please note that the NT-based platforms of */
/* the Windows operating system (Windows NT, */
/* Windows 2000) are NOT supported, because they */
/* block direct hardware access which is needed */
/* to control the FSU / printer port hardware. */

64

/* */
/* Functionality : This program performs test data readings from */
/* the Frequency Sensing Unit developed for the */
/* "Grid-Friendly Appliances" via an ECP/EPP- */
/* compatible parallel port of an ordinary PC. */
/* Special file versions for data logging are */
/* also available (just enable the 'DATA_LOGGER' */
/* label in "fsu-def.c" and re-compile "fsu.c"). */
/* If you want to activate the event-driven data */
/* logger mode, enable the 'EVENT_DRIVEN' label. */
/* Support for a serial SEETRON LC-Display and */
/* three push-buttons is also available in order */
/* to operate the GFA independently from a CRT, */
/* a keyboard etc. */
/* */
/* Features implemented yet : - ECP/EPP port compliance test routine */
/* - Routines for installation and removal of */
/* the interrupt service handler on IRQ7 */
/* - Power relay control (/INIT-line) */
/* - Automatic- and manual mode controls (over- */
/* rides automatic load control) */
/* - Main loop syncronization with Interrupt */
/* Service Routine */
/* - Washout filter for spike elimination */
/* - Slope detection to sense frequency bounces */
/* within the band defined by the software */
/* thresholds */
/* - Fixed- / randomized switching delay to turn */
/* off the load for a certain time after a */
/* slope has been detected. */
/* - A rotating memory to decrease the data */
/* logger output (event-driven mode). This */
/* mechanism can also be used as the data */
/* input for a Fast Fourier Transform. */
/* - OPERATION MODE CONTROL: Adjust the 'Compi- */
/* ler Settings' section in "fsu-def.c" to */
/* configure the software for one of the */
/* following modes of operation: */
/* - 'Normal' GFA Control Logic Mode (g.bat) */
/* - Event-Driven Data Logger Mode (e.bat) */
/* - Continuous Data Logger Mode (c.bat). */
/* - Built-in LCD screen output functionality. */
/* Simply define the "LCD" label in file */
/* "FSU-DEF.C" to enable LCD messages (the */
/* stdout device, i.e. Video Card / CRT will */
/* display no messages in this mode except */
/* from a notice that the LCD is enabled). */
/* - FSU hardware power is now turned on when */
/* the software is started and turned off on */
/* program exit (necessary to avoid problems */
/* occuring while the program is started, */
/* especially in a Windows 9x DOS-Box which */
/* tends not to work properly in some cases if */
/* the FSU hardware power is already on when */
/* the software is loaded). */
/* - Added 3 push-buttons to control the GFA in */
/* LCD mode when no PC keyboard is available. */
/* Button 1: Toggles between automatic- and */
/* manual mode (substitutes "a"- and */
/* "m" keys). */
/* Button 2: Displays the software settings */
/* menu (no actions will be taken */
/* during this time); press the same */

65

/* button again to return to pre- */
/* vious screen. */
/* Button 3: Exits the program or confirms */
/* messages (e.g. if EPP port com- */
/* pliance test is activated). */
/* */
/* Special Program versions : - For grid frequency sensing and graphical */
/* spectral output use the file "fsuspect.c". */
/* This version is completely independent from */
/* any other FSU source code (no *.c-includes */
/* and stuff) and is understood as a not offi- */
/* cially supported version which has just */
/* been created for test purposes (provided */
/* "as is"). Because this software uses the */
/* BGI (Borland Graphics Interface), you will */
/* have to load the source file into the TC */
/* editor (e.g. by typing 'tc fsuspect' at the */
/* DOS prompt) and compile it by pressing F9. */
/* Be also sure to have a copy of the Borland */
/* graphics driver ("EGAVGA.BGI") in the same */
/* directory as the executable file. */
/* */
/* Related files : - See file "fsu-sub.c" for implementation */
/* of the subroutines used in this software. */
/* - Any symbolic constant, including user */
/* program settings, can be found in file */
/* "fsu-def.c" (except from all this LCD- */
/* related stuff). */
/* - The declaration of the global variables is */
/* located in file "fsu-var.c". */
/* - Any LCD-related code, symbolic constant and */
/* variable is located in file "fsu-lcd.c". */
/* */
/**/

/*-- Definition of symbolic constants --------------------------------------*/

#include "fsu-def.c"

/*-- Include C language header files ---------------------------------------*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <dos.h>

/*-- Declaration of global variables ---------------------------------------*/

#include "fsu-var.c"

/*-- Include source code file for subroutines / LCD-support ----------------*/

#ifdef LCD
 #include "fsu-lcd.c"
#endif

#include "fsu-sub.c"

/**/

/*-- Main program --*/

66

int main (void)
{
 #ifdef DEBUG
 #ifndef LCD
 system ("cls");
 HideCursor ();

 #else
 printf ("\n Generating screen output for SEETRON LC-Display (type G12864
V2.0)...");
 printf ("\n\n Press <ESC> (i.e. push-button #3) to abort program.");
 Init_LCD_COM1 ();
 LCD_Small_Font_Mode ();
 #endif
 #endif

 #ifdef DATA_LOGGER
 #ifndef EVENT_DRIVEN
 /* Save time stamp of the moment the program has been started */
 startup_tstamp = time (NULL);
 #endif
 #endif

 buf_ptr = buffer; /* Set pointer to 0. element of buffer [BUF_SIZE] */
 srand (NULL); /* Initialize C random number generator */

 /* Enable GFA control logic on program startup (i.e. the load is turned */
 /* off and user override mode is disabled). The data logger versions do */
 /* not provide any relay control functions beyond this point. */

 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & LOAD_OFF);

 /*-- Display program information ---*/

 #ifndef SKIPINTRO
 DisplayStartupInfo ();
 #else
 fprintf (stderr, "\n");
 #endif

 /*-- Test if parallel port is ECP/EPP compliant --------------------------*/

 #ifndef SKIPTEST
 TestPortCompliance (); /* If SKIPTEST is not defined, the ECP/EPP */
 /* hardware compliance test is performed. */
 #else

 /* Otherwise just configure port for data input */

 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | ENABLE_TRISTATE_MODE);
 #endif

 /*-- If test was successful, install Interrupt Service Routine (ISR) -----*/

 Install_ISR ();

 /* Turn FSU hardware power on */

 delay (500);
 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & FSU_ON);

 /*-- Start reading data from LPT1 --*/

67

 #ifdef DEBUG
 #ifndef LCD
 printf ("\n\n ---
-------------");
 printf ("\n USER INFO : Please connect FSU to your computer's parallel
port now.");
 printf ("\n\n AUTOMATIC MODE : Valid keys are <a>uto mode, <m>anual mode or
<ESC> to quit.");
 printf ("\n\n RESULT : <Waiting for valid input frequency (%5.3f ...
%5.3f Hz)>.", LOWER_FREQ_THRESHOLD + FREQ_HYSTERESIS, UPPER_FREQ_THRESHOLD -
FREQ_HYSTERESIS);
 printf ("\n ---
-----------");
 delay (1000);
 #else
 Init_GFA_Screen ();
 #endif
 #endif

 /*-- Data reading / processing section -----------------------------------*/

 do
 {
 if (data_avail != 0)
 {
 #ifdef PROCESS_CHANGES_ONLY
 if (data != old_data)
 {
 #endif

 #ifdef FSU_DETECTION
 if (data == 255) /* Every data bit = 1 for a longer time */
 /* means that the FSU is most likely not */
 /* connected at the moment */
 {
 gotoxy (RESULT_OUTPUT_X, RESULT_OUTPUT_Y);
 printf ("<ERROR : FSU not detected>. ");
 }
 else
 {
 #endif

 if (data < 128) /* Bit 7=0: Hardware range miss detected */
 {
 range_miss++;
 if (range_miss >= MAX_RANGE_MISS_NO) /* How many in a row? */
 {
 load_state = load_state & 0xFD; /* Prepare load state OFF */

 #ifndef DATA_LOGGER
 #ifdef DEBUG
 #ifndef LCD
 gotoxy (RESULT_OUTPUT_X, RESULT_OUTPUT_Y);
 printf ("<ERROR : Range miss detected>.
");
 #else
 if (message_state != 1)
 {
 LCD_Printf ("??.???", 11, 5);
 LCD_Printf ("RANGE MISS detected. ", 1, 7);
 message_state = 1;
 }
 #endif

68

 #endif
 #else
 #ifdef EVENT_DRIVEN
 gettime (&t);
 fprintf (stderr, " <ERROR : Range miss detected> at
%2.2d:%2.2d:%2.2d,%2.2d ", t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund);
 getdate (&d);
 fprintf (stderr, "on %2.2d/%2.2d/%4.4d %s %2.1d\n", d.da_mon,
d.da_day, d.da_year, LOGGER_MODE, event_count);
 printf ("<ERROR : Range miss detected>.\n");
 #else
 gettime (&t);
 fprintf (stderr, " <ERROR : Range miss detected> at
%2.2d:%2.2d:%2.2d,%2.2d ", t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund);
 getdate (&d);
 fprintf (stderr, "on %2.2d/%2.2d/%4.4d %s\n", d.da_mon, d.da_day,
d.da_year, LOGGER_MODE);
 printf ("<ERROR : Range miss detected>.\n");
 #endif
 #endif
 }
 }
 else
 {
 range_miss = 0; /* Any valid frequency value resets the range */
 /* miss counter; this prevents malfunctions */
 /* on just a few range miss messages reported */
 /* by the hardware due to crosstalk, grid */
 /* noise and other disturbances, especially */
 /* on the crappy hand-wired FSU prototype. */

 if ((data & 0x40) == 0) /* Bit 6=0? Consequence: f <= 60.000 Hz */
 {
 /* Now it gets tricky: Bit 7 of 'data' contains no infor- */
 /* mation about the frequency value read, thus it is set to */
 /* zero by the '& 0x7F' command. Because D0-D6 of 'data' */
 /* represent Q1-Q7 of the FSU counter (Q0 is skipped), 'data' */
 /* has to be multiplied by 2 (corresponds a binary shift- */
 /* left-operation). The 'OFFSET' is added in order to recon- */
 /* struct the whole divisor stored in the counter during the */
 /* current read-out process. */

 divisor = OFFSET + (data & 0x7F) * 2;
 }
 else /* Bit 6 = 1 means f is > 60.000 Hz */
 {
 /* Same procedure, but first convert 2-complement to unsigned */
 /* char- and separate sign representation. Setting Bit 7 to */
 /* zero is implied in this conversion. */

 divisor = OFFSET - ((unsigned char) (~data + 1)) * 2;
 }

 frequency = (double) REF_FREQUENCY / divisor;

 /* Calculate average value if this feature is activated (i.e. */
 /* 'AVG_VALUE_NO' is > 1) and skip the following code; other- */
 /* wise proceed with storing the new value in the buffer array. */

 if (avg_count < AVG_VALUE_NO)
 {
 avg_count++;
 freq_sum += frequency;

69

 if (avg_count >= AVG_VALUE_NO) goto result_output;
 }
 else
 {
 result_output:
 frequency = freq_sum / AVG_VALUE_NO;

 freq_sum = 0.0; /* Reset variables for next average */
 avg_count = 0; /* calculation loop */

 /* Store frequency value and timestamp in 'buffer [BUF_SIZE]' */

 if (buf_ptr == buffer + BUF_SIZE) buf_ptr = buffer;

 sample_time = time (NULL);
 gettime (&t);

 (*buf_ptr).dataset_frequency = frequency;
 (*buf_ptr).dataset_timestamp_sec = sample_time;
 (*buf_ptr).dataset_timestamp_hund = t.ti_hund;
 buf_ptr++;

 /* Display the result and a message which action is taken */

 #ifndef DATA_LOGGER
 #ifdef DEBUG
 if (time (NULL) >= slope_time + timeout)
 {
 #ifndef LCD
 gotoxy (RESULT_OUTPUT_X, RESULT_OUTPUT_Y);
 printf ("Reading frequency value %6.4f Hz.
", frequency);
 #else
 sprintf (frequency_dummy, "%6.3f", frequency);
 LCD_Printf (frequency_dummy, 11, 5);

 if ((frequency >= LOWER_FREQ_THRESHOLD + FREQ_HYSTERESIS) &&\
 (frequency <= UPPER_FREQ_THRESHOLD - FREQ_HYSTERESIS) &&\
 (load_state != 0))
 {
 if (message_state != 2)
 {
 LCD_Printf ("Nothing to report... ", 1,
7);
 message_state = 2;
 }
 }
 #endif
 }
 else
 {
 #ifndef LCD
 gotoxy (RESULT_OUTPUT_X, RESULT_OUTPUT_Y);
 printf ("<Slope detected : Turning load off for %d seconds>.
", timeout);
 #else
 sprintf (frequency_dummy, "%6.3f", frequency);
 LCD_Printf (frequency_dummy, 11, 5);
 if (message_state != 3)
 {
 LCD_Printf ("SLOPE: Turning load off for ", 1, 7);
 sprintf (timeout_dummy, "%3.3d", timeout);
 LCD_Printf (timeout_dummy, 9, 8);

70

 LCD_Printf (" seconds.", 12, 8);
 message_state = 3;
 }
 else
 {
 if (slope_time != slope_old)
 {
 sprintf (timeout_dummy, "%3.3d", timeout);
 LCD_Printf (timeout_dummy, 9, 8);
 slope_old = slope_time;
 }
 }
 #endif
 }
 #endif
 #else
 #ifdef EVENT_DRIVEN
 /* The following will be displayed on the screen just for */
 /* monitoring the data logging process */

 fprintf (stderr, " f=%6.4f Hz [%10.10ld%2.2d] at
%2.2d:%2.2d:%2.2d,%2.2d ", frequency, sample_time, t.ti_hund, t.ti_hour, t.ti_min,
t.ti_sec, t.ti_hund);
 getdate (&d);
 fprintf (stderr, "on %2.2d/%2.2d/%4.4d %s %2.1d\n", d.da_mon,
d.da_day, d.da_year, LOGGER_MODE, event_count);
 #else
 fprintf (stderr, " f=%6.4f Hz [%10.10ld%2.2d] at
%2.2d:%2.2d:%2.2d,%2.2d ", frequency, sample_time, t.ti_hund, t.ti_hour, t.ti_min,
t.ti_sec, t.ti_hund);
 getdate (&d);
 fprintf (stderr, "on %2.2d/%2.2d/%4.4d %s\n", d.da_mon, d.da_day,
d.da_year, LOGGER_MODE);

 /* This generates the frequency- and time stamp log file */
 /* output mentioned above if you use the MS-DOS command */
 /* for redirecting the stdout-stream into a log file by */
 /* typing e.g."fsu > data000.fsu" at the MS-DOS-Prompt. */

 printf ("%6.0f %10.10ld%2.2d\n", frequency * 10000, sample_time,
t.ti_hund);
 #endif
 #endif

 #ifndef DATA_LOGGER

 /* Just a little washout filter to suppress smaller jumps */
 /* in the grid frequency signal */

 if (fabs (frequency - old_freq0) < (double) WASHOUT_FILTER_THRES)
 {
 /* Check if frequency is within user-defined boundaries */
 /* (see specification of software thresholds in file */
 /* "fsu-def.c"). */

 if ((frequency < LOWER_FREQ_THRESHOLD) || (frequency >
UPPER_FREQ_THRESHOLD))
 {
 load_state = load_state & 0xFD; /* Load state OFF */

 #ifdef LCD
 if (frequency < LOWER_FREQ_THRESHOLD)
 {

71

 if ((message_state != 4) && (time (NULL) >= slope_time +
timeout))
 {
 LCD_Printf ("Under-frequency loadshedding active... ", 1,
7);
 message_state = 4;
 }
 }
 else
 {
 if ((message_state != 5) && (time (NULL) >= slope_time +
timeout))
 {
 LCD_Printf ("Over-frequency load shedding active... ", 1,
7);
 message_state = 5;
 }
 }
 #endif
 }
 else
 {
 if ((frequency > LOWER_FREQ_THRESHOLD + FREQ_HYSTERESIS) &&\
 (frequency < UPPER_FREQ_THRESHOLD - FREQ_HYSTERESIS))
 {
 load_state = load_state | 0x02; /* Load state ON */
 }
 #ifdef LCD
 else
 {
 if (frequency < 60.0)
 {
 if ((message_state != 6) && (time (NULL) >= slope_time +
timeout))
 {
 LCD_Printf ("Under-frequency hysteresis range... ", 1,
7);
 message_state = 6;
 }
 }
 else
 {
 if ((message_state != 7) && (time (NULL) >= slope_time +
timeout))
 {
 LCD_Printf ("Over-frequency hysteresis range... ", 1,
7);
 message_state = 7;
 }
 }
 }
 #endif
 }

 /* Wait until 3 values in a row are in the nominal range. */
 /* This is only necessary for normal mode (to prevent the */
 /* logic from detecting a slope during program startup */
 /* which would cause the timeout to trigger immediately). */

 if ((startup == 1) &&\
 (frequency > LOWER_FREQ_THRESHOLD + FREQ_HYSTERESIS) &&\
 (frequency < UPPER_FREQ_THRESHOLD - FREQ_HYSTERESIS) &&\
 (old_freq0 > LOWER_FREQ_THRESHOLD + FREQ_HYSTERESIS) &&\

72

 (old_freq0 < UPPER_FREQ_THRESHOLD - FREQ_HYSTERESIS) &&\
 (old_freq1 > LOWER_FREQ_THRESHOLD + FREQ_HYSTERESIS) &&\
 (old_freq1 < UPPER_FREQ_THRESHOLD - FREQ_HYSTERESIS)) startup = 0;
 #else
 startup = 0;
 #endif

 #ifndef DATA_LOGGER
 }
 #endif

 /* Detection of slopes in the frequency signal which are */
 /* larger in size (e.g. in case of a tripping generator or */
 /* transmission line and all this stuff), but still within */
 /* the band between the software thresholds. */

 if ((startup == 0) && ((frequency > LOWER_FREQ_THRESHOLD) &&\
 (frequency < UPPER_FREQ_THRESHOLD)) &&\
 ((old_freq0 > LOWER_FREQ_THRESHOLD) && (old_freq0 <
UPPER_FREQ_THRESHOLD)) &&\
 ((old_freq1 > LOWER_FREQ_THRESHOLD) && (old_freq1 <
UPPER_FREQ_THRESHOLD)) &&\
 (fabs (old_freq1 - frequency) >= SLOPE_DETECTION_THRES) &&\
 (((old_freq0 > frequency) && (old_freq0 < old_freq1)) ||\
 ((old_freq0 < frequency) && (old_freq0 > old_freq1))))
 {
 load_state = load_state & 0xFD; /* Load state OFF */
 after_slope = 1; /* Turn on "after slope"-machinery */

 /* Save the present time (when timeout begins) and generate */
 /* a variable timeout */

 #ifndef DATA_LOGGER
 slope_time = time (NULL);
 timeout = FIXED_TIMEOUT + rand () % MAX_RANDOM_TIMEOUT;
 #endif
 }

 #ifndef DATA_LOGGER

 /* Keep load off during timeout after a slope occured */

 if (!(time (NULL) >= slope_time + timeout) && (startup == 0))
 {
 load_state = load_state & 0xFD; /* Prepare load state OFF */
 }
 #endif

 /* Read the other half of the buffer's size after an event */
 /* occured, otherwise do nothing. Purpose: Creating a record */
 /* which contains the event (in the middle) and half of the */
 /* buffered data on both sides). */

 if (after_slope > 0)
 {
 if (after_slope <= (unsigned int) (BUF_SIZE / 2 - 1)) after_slope++;
 else
 {
 #ifdef EVENT_DRIVEN
 event_count++; /* Increase event counter by one */

 /* Create log file output (writes a record only after */
 /* an event has been recognized and processed */

73

 for (after_slope = 0; after_slope < BUF_SIZE; after_slope++)
 {
 if (buf_ptr == buffer + BUF_SIZE) buf_ptr = buffer;
 printf ("%6.0f %10.10ld%2.2d\n", (*buf_ptr).dataset_frequency *
10000, (*buf_ptr).dataset_timestamp_sec, (*buf_ptr).dataset_timestamp_hund);
 buf_ptr++;
 }
 printf ("\n");
 #endif

 after_slope = 0; /* Record processed and logged: Reset */
 buf_ptr = buffer; /* this whole piece of crap and wait */
 /* for new slope to trigger the logger */
 }
 }

 /* Update frequency values of previous loops */

 old_freq1 = old_freq0;
 old_freq0 = frequency;
 }
 }
 #ifdef FSU_DETECTION
 }
 #endif

 #ifdef PROCESS_CHANGES_ONLY
 old_data = data; /* Save old data for next read process */
 }
 #endif

 data_avail = 0; /* Data processed: Reset 'data_avail' */
 }

 /*-- Process user's load control input (overrides automatic control) ---*/

 #ifndef LCD
 if (kbhit ()) /* Keyboard buffer not empty? */
 {
 kb_input = getch (); /* Read key */

 #ifndef DATA_LOGGER
 if (kb_input == 'm') /* Turn load ON unconditionally */
 { /* (user override mode is active) */
 load_state = load_state | 0x01;

 #ifdef DEBUG
 gotoxy (3, RESULT_OUTPUT_Y - 2);
 printf ("MANUAL MODE ");
 #endif
 }
 else if ((kb_input == 'a')) /* Turn load ON if grid frequency is */
 { /* OK (GFA control logic activated) */
 load_state = load_state & 0xFE;

 #ifdef DEBUG
 gotoxy (3, RESULT_OUTPUT_Y - 2);
 printf ("AUTOMATIC MODE");
 #endif
 }
 #endif
 }

74

 #else
 if (Push_Button_1 () == BUTTON_PRESSED) /* Evaluate push-button */
 { /* instead of keyboard */
 while (Push_Button_1 () == BUTTON_PRESSED); /* in LCD mode */
 if ((load_state == 0) || (load_state == 2))
 {
 load_state = load_state | 0x01;
 LCD_Printf ("Manual Mode ", 1, 4);
 }
 else
 {
 load_state = load_state & 0xFE;
 LCD_Printf ("Automatic Mode", 1, 4);
 }
 }
 #endif

 /*-- Apply the manual- and automatic load settings ---------------------*/

 #ifndef DATA_LOGGER
 if (load_state != old_lstate) /* Just do something on a state change */
 {
 if (load_state == 0) /* Load is turned off */
 {
 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & LOAD_OFF);

 #ifdef LCD
 LCD_Printf ("Load State is OFF", 1, 3);
 #endif
 }
 else /* Load is turned on */
 {
 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | LOAD_ON);

 #ifdef LCD
 LCD_Printf ("Load State is ON ", 1, 3);
 #endif
 }
 }
 old_lstate = load_state; /* Save old load state */
 #endif

 /*-- Display the settings screen if running in LCD support mode --------*/

 #ifdef LCD
 if (Push_Button_2 () == BUTTON_PRESSED) Show_Software_Settings ();
 #endif

/*-- Different abortion conditions, dependant on mode of operation ---------*/

#ifndef DATA_LOGGER
 #ifndef LCD
 } while (kb_input != 27); /* Wait for user to press ESC key */
 #else
 } while (Push_Button_3 () == BUTTON_RELEASED); /* Button 3 = ESC */
 #endif
#else
 #ifdef EVENT_DRIVEN
 } while (kb_input != 27); /* Wait for user to press ESC key */
 #else
 /* Wait for user to press ESC key or until automatic program abortion */
 /* is activated. This is done by comparing the current system time with */
 /* a time stamp recorded at program startup. DO NOT USE the "clock ()"- */

75

 /* function for this purpose, which counts the 55ms-PC-timer-ticks, */
 /* because this will mysterically create problems on date changes (the */
 /* system date will remain on the date the software has been started. */
 /* This is especially inconvenient for data logging, where the correct */
 /* time stamps are significant. */

 } while ((kb_input != 27) && (TIME_TO_RUN > difftime (time (NULL),
startup_tstamp)));
 #endif
#endif

 /*-- Normal program abortion ---*/

 /* Turn FSU Hardware power off on program exit */

 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | FSU_OFF);
 delay (500);

 /*-- Remove FSU-ISR before exit --*/

 Remove_ISR ();

 /*Turn load off on program exit */

 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & LOAD_OFF);

 /* Reset printer port to compatibility mode (reconfigures the eight data */
 /* lines as outputs). Be careful with enabling this code in order to */
 /* avoid FSU hardware- and PC printer port damage. It is NOT recommended */
 /* to enable this command if the printer port is not used with other */
 /* hardware than the FSU. */

 /*outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & DISABLE_TRISTATE_MODE);*/

 /* Some screen outputs on program exit */

 #ifndef LCD
 #ifndef DATA_LOGGER
 printf ("\n\n");
 #endif
 ShowCursor ();
 #else
 printf ("\n");
 delay (DISPLAY_DELAY);
 LCD_Printf ("Program aborted successfully.
", 1, 3);
 delay (DISPLAY_DELAY);
 #endif
 return (0);
}

/*--This is the end of the file "fsu.c" ------------------------------------*/

/**/

76

/**/
/* */
/* File "fsu-def.c", created on 04/28/2001 by DLO */
/* */
/* Symbolic constants used in source file "fsu.c" */
/* */
/* -- */
/* */
/* Copyright (C) 2001 by Daniel L. Oedingen, PNNL */
/* */
/* File last updated on 08/13/2001 */
/* */
/* NOTE: Any restrictions mentioned in "fsu.c" apply as well for usage of */
/* this file. */
/* */
/**/

/*-- User- and application-specific defined Frequency Thresholds -----------*/

/* NOTE: The thresholds are the outer boundaries (device is turned off); */
/* the inner boundaries are LOWER_FREQ_THRESHOLD + FREQ_HYSTERESIS */
/* and UPPER_FREQ_THRESHOLD - FREQ_HYSTERESIS, respectively. */

#define UPPER_FREQ_THRESHOLD 60.050 /* The load is turned off at once */
#define LOWER_FREQ_THRESHOLD 59.950 /* if one of this thresholds is */
 /* exceeded */

#define FREQ_HYSTERESIS 0.010 /* hysteresis for turning the load */
 /* back on after switching it off */

#define WASHOUT_FILTER_THRES 0.010 /* Defines the maximum allowed */
 /* frequency jump between two read */
 /* values in a row on which the */
 /* relay driver output will react. */

#define SLOPE_DETECTION_THRES 0.025 /* This value has to be exceeded by */
 /* the frequency deviation of three */
 /* measurements in a row (i.e. */
 /* within 33 ms) if a slope is */
 /* supposed to be detected. NOTE: */
 /* Turn off average value calcula- */
 /* for faster response. */

#define FIXED_TIMEOUT 5 /* Specifies the fixed (i.e. the */
 /* minimum) time for which the load */
 /* will be turned off after a slope */
 /* has been detected. */

#define MAX_RANDOM_TIMEOUT 10 /* Specifies the variable time com- */
 /* ponent for the load to be turned */
 /* off; the total timeout is the */
 /* sum of 'FIXED_TIMEOUT' and a */
 /* random number between 0 and */
 /* 'MAX_RANDOM_TIMEOUT'. This helps */
 /* preventing the GFAs from turning */
 /* back on all at the same moment. */

#define MAX_RANGE_MISS_NO 5 /* Specifies the number of range */
 /* misses in a row which have to be */
 /* detected before the load is tur- */
 /* ned off. */

#define AVG_VALUE_NO 6 /* 1 = no average calculation */

77

 /* Reasonable values are < 60 in */
 /* most cases (1 value / second). */

#define TIME_TO_RUN 3600 /* Please note that this option is */
 /* available in logger mode only. */
 /* Specifies the program's "time to */
 /* live" in seconds until it exits */
 /* automatically. This parameter */
 /* does not affect program abortion */
 /* by pressing the <ESC> key. Use */
 /* batchfiles for 'continuous' log- */
 /* ging. */

/**/

/*-- Screen Settings for displaying the result -----------------------------*/

#define RESULT_OUTPUT_X 20 /* Screen column in 80x25 text mode */
#define RESULT_OUTPUT_Y 24 /* Screen row in 80x25 text mode */

/**/

/*-- FSU-Hardware Parameters ---*/

#define BOARD_NUMBER 1 /* Apply the following settings for */
 /* the corresponding PCB: */
 /* -------------------------------- */
 /* -1 = Prototype board (GFA-Box) */
 /* 0 = FSU_PCB#00 */
 /* 1 = FSU_PCB#01 */
 /* 2 = FSU_PCB#02 */

/* NOTE: This system is designed for a crystal oscillator producing a */
/* frequency of exactly 4915200 Hz (i.e. OFFSET is 81920 @ 60.0 Hz). */
/* As you can see, one of these parameters has to be corrected to */
/* adjust the software, because the crystal oscillator does not pro- */
/* duce exactly the frequency it is supposed to. */

/* The following lines configure the software for each of the PCBs or the */
/* prototype (the software needs the exact crystal oscillator "reference" */
/* frequency in Hz used on the corresponding hardware). This is at the */
/* moment the only hardware parameter to adjust the software. */

#if (BOARD_NUMBER == -1) /* -------------------------------- */
 #define REF_FREQUENCY 4916995 /* Hardware-dependant settings are: */
#endif /* -------------------------------- */
 /* FSU_Prototype............4916995 */
#if (BOARD_NUMBER == 0) /* FSU_PCB #00..............4916948 */
 #define REF_FREQUENCY 4916948 /* FSU_PCB #01..............4916948 */
#endif /* FSU_PCB #02..............4916948 */
 /* -------------------------------- */
#if (BOARD_NUMBER == 1) /* Even though all 3 PCBs use the */
 #define REF_FREQUENCY 4916948 /* same settings, they should be */
#endif /* selected by each card number. */

#if (BOARD_NUMBER == 2)
 #define REF_FREQUENCY 4916948
#endif

#define OFFSET 81920 /* Offset of the 17-Bit-Divisor */
 /* (evaluated by the range hit / */
 /* range miss hardware) to the */

78

 /* value at 60.000 Hz */

/**/

/*-- Compiler Settings ---*/

#define DATA_LOGGER_ /* Enables the built-in data logger of this */
 /* software if defined, otherwise the pro- */
 /* gram is in "normal" GFA control mode. */

#define EVENT_DRIVEN_ /* Selects the data logger mode. If defined, */
 /* event-driven logging is active, otherwise */
 /* the frequency is logged continuously. */
 /* Of course the DATA_LOGGER label must be */
 /* defined as well. */

#define DEBUG /* If the label DEBUG is defined, the debug */
 /* code of this program (several control */
 /* outputs) is enabled. */

#define LCD_ /* If defined, this causes the software to */
 /* generate ONLY screen outputs for the */
 /* SEETRON serial LCD; otherwise the screen */
 /* output is sent to the standard EGA/VGA */
 /* adapter (i.e. Video Card / CRT), and no */
 /* serial LCD screen output is generated. */
 /* Please note that full LCD support is only */
 /* available in GFA Control Logic Mode, but */
 /* NOT in any of the data logger modes. */

#define SKIPINTRO_ /* If this label is defined, some useful */
 /* information like the software threshold */
 /* settings and stuff will not be displayed. */

#define SKIPTEST /* If this label is defined, the ECP/EPP */
 /* port compliance test is disabled. Don't */
 /* forget to activate the high impedance */
 /* mode of the output drivers manually if */
 /* you are sure your port is at least EPP */
 /* compliant. */

#define FSU_DETECTION_ /* If this label is defined, an error */
 /* message is displayed if the data read is */
 /* 0xFF (i.e. FSU is probably disconnected). */
 /* Undefine it for proper measurements, as */
 /* 0xFF corresponds the count 'OFFSET-1' in */
 /* the 2-complement code used (60.000 Hz + */
 /* one step). */

#define PROCESS_CHANGES_ONLY_ /* Sets the software to process input data */
 /* only if 'data' has changed. This option */
 /* prevents you from reading the same value */
 /* for more than one time in a row; be care- */
 /* ful with this if you use the averaging */
 /* functions (i.e. AVG_VALUE_NO is > 1). */
 /* Note that this has nothing to do with the */
 /* ISR / main loop syncronization using the */
 /* 'data_avail'-variable. */

/**/

/*-- Other Definitions ---*/

79

#define PROG_VERSION "1.0.1.3 - [DEBUG]"

#define ASM asm
#define byte unsigned char
#define word unsigned int
#define l_int unsigned long int

/*-- Special Settings for Data Logger Mode ---------------------------------*/

#ifdef DATA_LOGGER

 #ifdef DEBUG /* Avoid any other screen output except from */
 #undef DEBUG /* frequency and time stamp data sets */
 #endif

 #ifndef SKIPINTRO /* Do not perform ECP/EPP port compliance */
 #define SKIPINTRO /* test in data logger mode */
 #endif

 #ifndef SKIPTEST /* Do not perform ECP/EPP port compliance */
 #define SKIPTEST /* test in data logger mode */
 #endif

 #undef PROG_VERSION /* Modify program version message */
 #define PROG_VERSION "Data Logger V1.5"

 #ifdef EVENT_DRIVEN /* LOGGER_MODE is just used to display mode */
 #define LOGGER_MODE "[EVENT-DRIVEN]"
 #else
 #define LOGGER_MODE "[CONTINUOUS]"
 #endif
#else

 #ifdef EVENT_DRIVEN /* Ensure the event-driven mode is off if */
 #undef EVENT_DRIVEN /* the data logger activator is not defined. */
 #endif
 #ifdef TIME_TO_RUN /* Ensure that the normal GFA control logic */
 #undef TIME_TO_RUN /* version cannot quit automatically. */
 #endif
#endif

/**/

/*-- Hardware-I/O Addresses and Commands -----------------------------------*/

#define LPT1_DATA_PORT 0x378 /* R/W port for data I/O */
#define LPT1_STATUS_PORT 0x379 /* READ ONLY; shows device status */
#define LPT1_CONTROL_PORT 0x37A /* R/W port for ECP/EPP control */

#define INT_MASK_REG 0x21 /* 8259A interrupt mask register */
#define INT_CMD_REG 0x20 /* Interrupt command register */

#define LPT1_INT_NO 0x0F /* IRQ7 for LPT1 corresponds to */
 /* internal type code #15 (0FH) */

/* NOTE: Use the OR operator (|) for enabling a bit (set bit High), the AND */
/* operator (&) for disabling a bit (set bit Low). Setting the 8259A */
/* interrupt mask register requires the inverse operations described */
/* above (all bits active low in this register). */

#define FSU_OFF 0x08 /* Used to manipulate Bit 3 in LPT */
#define FSU_ON 0xF7 /* control register */

80

#define LOAD_ON 0x04 /* Used to manipulate Bit 2 in LPT */
#define LOAD_OFF 0xFB /* control register */

#define ENABLE_TRISTATE_MODE 0x20 /* Used to manipulate Bit 5 in LPT */
#define DISABLE_TRISTATE_MODE 0xDF /* control register */

#define ENABLE_LPT1_INT 0x10 /* Used to manipulate Bit 4 in LPT */
#define DISABLE_LPT1_INT 0xEF /* control port */

#define ENABLE_8259A_IRQ7 0x7F /* Used to manipulate Bit 7 in the */
#define DISABLE_8259A_IRQ7 0x80 /* 8259A interrupt mask register */
#define RESET_8259A 0x20 /* Clears interrupt controller; */
 /* some people call it rather 'EOI' */
 /* (End Of Interrupt) */

#define TEST_BIT_PATTERN 0x55 /* Bit pattern for test purposes */

#define BUF_SIZE 256 /* Size of several rotating buffers */

/* PLEASE NOTE that any symbolic constant used in driver code for the LC- */
/* display (which may optionally be included) can be found in */
/* the corresponding source file "fsu-lcd.c". */

/*--This is the end of the file "fsu-def.c" --------------------------------*/

/**/

81

/**/
/* */
/* File "fsu-lcd.c", created on 07/11/2001 by DLO */
/* */
/* Implementation of subroutines used in source file "fsu.c" for displaying */
/* messages on a SEETRON serial LC-Display (model G12864 V2.0) */
/* */
/* -- */
/* */
/* Copyright (C) 2001 by Daniel L. Oedingen, PNNL */
/* */
/* File last updated on 07/23/2001 */
/* */
/* NOTE: Any restrictions mentioned in "fsu.c" apply as well for usage of */
/* this file. */
/* */
/**/

/*-- Symbolic Constants for Serial Port Handling ---------------------------*/

/* Port addresses */
#define COM1_DATA_PORT_REG 0x3F8
#define COM1_BAUDRATE_LSB_REG 0x3F8
#define COM1_BAUDRATE_MSB_REG 0x3F9
#define COM1_LINE_CTRL_REG 0x3FB
#define COM1_MODEM_CTRL_REG 0x3FC
#define COM1_LINE_STATUS_REG 0x3FD

/* 9600 bps */
#define BAUDRATE_LSB 0x0C
#define BAUDRATE_MSB 0x00
#define SET_BIT7_LCR 0x80
#define RESET_BIT7_LCR 0x7F

/* No parity, 1 stop bit, 8 data bits */
#define LCD_SETTINGS 0x03

#define GFA_VERSION "GFA Version 1.0.1.3 \0"
#define DISPLAY_DELAY 10000

#define BUTTON_PRESSED 1
#define BUTTON_RELEASED 0

/**/

/*-- Variables used only in LCD-Mode ---------------------------------------*/

char timeout_dummy [4] = "\0"; /* Dummy for screen output conversions */
char frequency_dummy [7] = "\0"; /* Dummy for screen output conversions */

int message_state = 0; /* Used to prevent the software from writing the */
 /* same message to the LCD again and again in */
 /* case of no state change occured. This is */
 /* necessary because it takes the program about */
 /* 42 ms to transmit a 40-byte string, which in */
 /* turn causes a loss of at least 2 data acqui- */
 /* sition cycles. */

 /* The following table shows the possible values */
 /* of "message_status" and the corresponding */
 /* messages to be just written once: */

 /* 0 = No message is being displayed. */

82

 /* 1 = Range Miss detected. */
 /* 2 = Nothing to report... */
 /* 3 = SLOPE: Turning Load off for xxx seconds. */
 /* 4 = Under-frequency load shedding. */
 /* 5 = Over-frequency load shedding. */
 /* 6 = Under-frequency with hysteresis. */
 /* 7 = Over-frequency with hysteresis. */

time_t slope_old = 0; /* Used for updating the display in case that */
 /* slope detection algorithm is retriggered. */

/**/

/*-- unsigned int Push_Button_1 (void) -------------------------------------*/

/* Checks if the push-button no. 1 is pressed or not; this function returns */
/* either BUTTON_PRESSED or BUTTON_RELEASED, according to the present state */
/* of the button. */

/* It evaluates the "Select In"-signal coming in on pin 13 of the DB-25 LPT */
/* connector. This line corresponds to Bit 4 in the LPT1 status register. */

unsigned int Push_Button_1 (void)
{
 if ((inp (LPT1_STATUS_PORT) & 0x0010) == 0x0010)
 {
 return BUTTON_RELEASED;
 }
 else
 {
 return BUTTON_PRESSED;
 }
}

/**/

/*-- unsigned int Push_Button_2 (void) -------------------------------------*/

/* Evaluates the "Paper Empty"-signal coming in on pin 12 of the DB-25 LPT */
/* connector. This line corresponds to Bit 5 in the LPT1 status register. */

unsigned int Push_Button_2 (void)
{
 if ((inp (LPT1_STATUS_PORT) & 0x0020) == 0x0020)
 {
 return BUTTON_RELEASED;
 }
 else
 {
 return BUTTON_PRESSED;
 }
}

/**/

/*-- unsigned int Push_Button_3 (void) -------------------------------------*/

/* Evaluates the "Error"-signal coming in on pin 15 of the DB-25 LPT */
/* connector. This line corresponds to Bit 3 in the LPT1 status register. */

unsigned int Push_Button_3 (void)
{
 if ((inp (LPT1_STATUS_PORT) & 0x0008) == 0x0008)

83

 {
 return BUTTON_RELEASED;
 }
 else
 {
 return BUTTON_PRESSED;
 }
}

/**/

/*-- void InitLCD_COM1 (void) --*/

/* Initializes the serial port COM1 for communication with the used LCD. */
/* It configures the the parity-, stop bit-, data bit- and baud rate */
/* settings. */

void Init_LCD_COM1 (void)
{
 /* Apply port settings (no parity, 1 stop bit, 8 data bits) */
 outp (COM1_LINE_CTRL_REG, LCD_SETTINGS);

 /* Prepare to set baudrate */
 outp (COM1_LINE_CTRL_REG, (inp (COM1_LINE_CTRL_REG) | SET_BIT7_LCR));
 outp (COM1_BAUDRATE_LSB_REG, BAUDRATE_LSB); /* LSB */
 outp (COM1_BAUDRATE_MSB_REG, BAUDRATE_MSB); /* MSB */

 /* Prepare to transmit data */
 outp (COM1_LINE_CTRL_REG, (inp (COM1_LINE_CTRL_REG) & RESET_BIT7_LCR));
 outp (COM1_MODEM_CTRL_REG, (inp (COM1_MODEM_CTRL_REG) | 0x03));

 /* Backlight on */
 outp (COM1_DATA_PORT_REG, 14);
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);
}

/**/

/*-- void LCD_ClrScr (void) --*/

/* Fills the screen with blanks and sets the cursor to the upper left */
/* corner of the screen. Works in both text modes (4- and 8-line mode). */

void LCD_ClrScr (void)
{
 outp (COM1_DATA_PORT_REG, 12); /* Clear Screen */
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);
}

/**/

/*-- void LCD_Small_Font_Mode (void) ---------------------------------------*/

/* As the LC-display enters the 4-line mode after power-on, this func- */
/* tion has to be called to enter the 8-line mode. */

void LCD_Small_Font_Mode (void)
{
 /* Enter small font mode */
 outp (COM1_DATA_PORT_REG, 26);
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);
 outp (COM1_DATA_PORT_REG, 'F');
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);

84

 outp (COM1_DATA_PORT_REG, '1');
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);
}

/**/

/*-- void LCD_Printf (const char *, unsigned char, unsigned char) ----------*/

/* Combines the Turbo C fuctions "gotoxy ()" and "printf ()" for use */
/* with LC-Displays. Parameters are the string to be displayed as well */
/* as the desired x- and y-position values. The upper left corner of */
/* the screen has the coordinates (1, 1). */

void LCD_Printf (const char * string, unsigned char x_position, unsigned char
y_position)
{
 unsigned char i = 0;
 unsigned char position = 0;

 position = 20 * (y_position - 1) + x_position - 1;

 outp (COM1_DATA_PORT_REG, 16);
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);

 outp (COM1_DATA_PORT_REG, position + 64);
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);

 for (i = 0; i < strlen (string); i++)
 {
 outp (COM1_DATA_PORT_REG, string [i]);
 while ((inp (COM1_LINE_STATUS_REG) & 0x20) == 0);
 }
}

/**/

/*-- void Init_GFA_Screen (void) ---*/

/* Draws the common parts of the grid-friendly appliance's LCD screen */
/* output. Later on, only the changed parts have to be redrawn using the */
/* "LCD_Prinf ()" function, the rest may remain the same. */

void Init_GFA_Screen (void)
{
 unsigned char line1 [21] = GFA_VERSION; /* Default GFA */
 unsigned char line2 [21] = "--------------------\0"; /* output screen */
 unsigned char line3 [21] = "Load State is OFF \0";
 unsigned char line4 [21] = "Automatic Mode \0";
 unsigned char line5 [21] = "Reading f=??.??? Hz \0";
 unsigned char line6 [21] = "--------------------\0";
 unsigned char line7 [21] = "Waiting for valid \0";
 unsigned char line8 [21] = "frequency value... \0";

 LCD_ClrScr ();

 LCD_Printf (line1, 1, 1);
 LCD_Printf (line2, 1, 2);
 LCD_Printf (line3, 1, 3);
 LCD_Printf (line4, 1, 4);
 LCD_Printf (line5, 1, 5);
 LCD_Printf (line6, 1, 6);
 LCD_Printf (line7, 1, 7);
 LCD_Printf (line8, 1, 8);

85

}

/**/

/*-- void Show_Software_Settings (void) ------------------------------------*/

/* Views the software threshold settings etc. and waits for the user to */
/* press the PushButton 2 to return to the main screen. */

void Show_Software_Settings (void)
{
 unsigned char dummy [4] = "\0";
 unsigned char line1 [21] = "Software Settings \0"; /* GFA settings */
 unsigned char line2 [21] = "--------------------\0"; /* output screen */
 unsigned char line3 [21] = "Lower tres.__- mHz\0";
 unsigned char line4 [21] = "Upper tres.__+ mHz\0";
 unsigned char line5 [21] = "Hysteresis____ mHz\0";
 unsigned char line6 [21] = "Washout f.____ mHz\0";
 unsigned char line7 [21] = "Slew rate__ mHz/T\0";
 unsigned char line8 [21] = "Samples/value_____ \0";

 LCD_ClrScr ();

 LCD_Printf (line1, 1, 1);
 LCD_Printf (line2, 1, 2);
 LCD_Printf (line3, 1, 3);
 LCD_Printf (line4, 1, 4);
 LCD_Printf (line5, 1, 5);
 LCD_Printf (line6, 1, 6);
 LCD_Printf (line7, 1, 7);
 LCD_Printf (line8, 1, 8);

 sprintf (dummy, "%2.0f", (60.0 - LOWER_FREQ_THRESHOLD) * 1000);
 LCD_Printf (dummy, 15, 3);
 sprintf (dummy, "%2.0f", (UPPER_FREQ_THRESHOLD - 60.0) * 1000);
 LCD_Printf (dummy, 15, 4);
 sprintf (dummy, "%2.0f", FREQ_HYSTERESIS * 1000);
 LCD_Printf (dummy, 15, 5);
 sprintf (dummy, "%2.0f", WASHOUT_FILTER_THRES * 1000);
 LCD_Printf (dummy, 15, 6);
 sprintf (dummy, "%3.1f", SLOPE_DETECTION_THRES * 500 / AVG_VALUE_NO);
 LCD_Printf (dummy, 12, 7);
 sprintf (dummy, "%2.2d", AVG_VALUE_NO);
 LCD_Printf (dummy, 19, 8);

 while (Push_Button_2 () == BUTTON_PRESSED);
 while (Push_Button_2 () == BUTTON_RELEASED);
 while (Push_Button_2 () == BUTTON_PRESSED);

 LCD_ClrScr ();
 LCD_Printf (GFA_VERSION, 1, 1);
 LCD_Printf ("--------------------", 1, 2);

 if (load_state == 0)
 {
 LCD_Printf ("Load State is OFF ", 1, 3);
 }
 else
 {
 LCD_Printf ("Load State is ON ", 1, 3);
 }

 if ((load_state == 1) || (load_state == 3))

86

 {
 LCD_Printf ("Manual Mode ", 1, 4);
 }
 else
 {
 LCD_Printf ("Automatic Mode ", 1, 4);
 }

 LCD_Printf ("Reading f= Hz ", 1, 5);
 LCD_Printf ("--------------------", 1, 6);

 if (message_state == 1) LCD_Printf ("RANGE MISS detected. ", 1,
7);
 if (message_state == 2) LCD_Printf ("Nothing to report... ", 1,
7);
 if (message_state == 3)
 {
 LCD_Printf ("SLOPE: Turning load off for ", 1, 7);
 sprintf (timeout_dummy, "%3.3d", timeout);
 LCD_Printf (timeout_dummy, 9, 8);
 LCD_Printf (" seconds.", 12, 8);
 }
 if (message_state == 4) LCD_Printf ("Under-frequency loadshedding active... ", 1,
7);
 if (message_state == 5) LCD_Printf ("Over-frequency load shedding active... ", 1,
7);
 if (message_state == 6) LCD_Printf ("Under-frequency hysteresis range... ", 1,
7);
 if (message_state == 7) LCD_Printf ("Over-frequency hysteresis range... ", 1,
7);
}

/*--This is the end of the file "fsu-lcd.c" --------------------------------*/

/**/

87

/**/
/* */
/* File "fsu-sub.c", created on 04/28/2001 by DLO */
/* */
/* Implementation of subroutines used in source file "fsu.c" */
/* */
/* -- */
/* */
/* Copyright (C) 2001 by Daniel L. Oedingen, PNNL */
/* */
/* File last updated on 08/13/2001 */
/* */
/* NOTE: Any restrictions mentioned in "fsu.c" apply as well for usage of */
/* this file. */
/* */
/**/

/*-- forward declaration of interrupt service routine / interrupt vector ---*/

void interrupt (*oldvect) (void); /* Old interrupt vector */
void interrupt FSU_ISR (void); /* Interrupt prototype */

/**/

/*-- void HideCursor (void) --*/

void HideCursor (void)
{
 ASM MOV AX, 0100H
 ASM MOV CX, 2607H
 ASM INT 10H
}

/**/

/*-- void ShowCursor (void) --*/

void ShowCursor (void)
{
 ASM MOV AX, 0100H
 ASM MOV CX, 0506H
 ASM INT 10H
}

/**/

/*-- void DisplayStartupInfo (void) --*/

/* This function displays just all these 'useful' information like date */
/* and time of compilation, program version, copyrights and the "do and */
/* don't list" of this software. */

void DisplayStartupInfo (void)
{
 #ifndef LCD
 printf (" ---
-------");

 #if (BOARD_NUMBER == -1)
 printf ("\n FSU.EXE Test-Software for GFA Frequency Sensor Unit:
Prototype");
 #endif

88

 #if (BOARD_NUMBER == 0)
 printf ("\n FSU.EXE Test-Software for GFA Frequency Sensor Unit:
FSU_PCB #00");
 #endif

 #if (BOARD_NUMBER == 1)
 printf ("\n FSU.EXE Test-Software for GFA Frequency Sensor Unit:
FSU_PCB #01");
 #endif

 #if (BOARD_NUMBER == 2)
 printf ("\n FSU.EXE Test-Software for GFA Frequency Sensor Unit:
FSU_PCB #02");
 #endif

 printf ("\n Program Version : %s", PROG_VERSION);
 printf ("\n Created on : %s, %s", __DATE__, __TIME__);
 printf ("\n ---
---------");
 printf ("\n USER SETTINGS : Lower software turn-off threshold...... %5.3f Hz",
LOWER_FREQ_THRESHOLD);
 printf ("\n Upper software turn-off threshold...... %5.3f Hz",
UPPER_FREQ_THRESHOLD);
 printf ("\n Hysteresis for turning load back on.... %6.1f
mHz", FREQ_HYSTERESIS * 1000);
 printf ("\n Washout filter threshold............... %6.1f
mHz", WASHOUT_FILTER_THRES * 1000);
 printf ("\n Slope detection slew rate.............. %6.1f
mHz/T", SLOPE_DETECTION_THRES * 500 / AVG_VALUE_NO);

 #if AVG_VALUE_NO == 1
 printf ("\n Average value calculation is deactivated.");
 #else
 printf ("\n Calculating average values using %d samples per
value.", AVG_VALUE_NO);
 #endif

 printf ("\n ---
---------");

 #else
 LCD_ClrScr ();
 LCD_Printf (GFA_VERSION, 1, 1);
 LCD_Printf ("--------------------", 1, 2);
 #endif
}

/**/

/*-- void TestPortCompliance (void) --*/

/* This function performs a test of the LPT1 parallel port of your PC */
/* considering ECP/EPP compliance. This is necessary if you want to use */
/* the 8 data lines as bidirectional I/O pins. If the test failed, the */
/* entire program is aborted after informing the user. If the test has */
/* been performed successful, the user is informed and the PORT REMAINS */
/* IN INPUT MODE (i.e. the output driver remains in tristate mode). */

void TestPortCompliance (void)
{
 #ifndef LCD
 printf ("\n\n ---
-----------");

89

 printf ("\n ECP/EPP TEST : Please DISCONNECT FSU for Read/Write Test on LPT1.
Your");
 printf ("\n parallel port and FSU might be damaged if not
disconnected.");
 printf ("\n\n USER INFO : Press <ENTER> if you are ready to test port
compliance.");

 do
 {
 kb_input = getch ();

 } while (kb_input != 13); /* Wait for user to press RETURN key */

 kb_input = 65;
 #else
 LCD_Printf ("DISCONNECT FSU now to perform EPP port compliance test, then
press <ENTER>. ", 1, 3);
 while (Push_Button_3 () == BUTTON_RELEASED);
 while (Push_Button_3 () == BUTTON_PRESSED);
 #endif

 /* Test approach: 1. Try to enable tristate outputs by performing the */
 /* corresponding bit manipulations in the control */
 /* register (first line). */
 /* 2. Write specific bit pattern to the data port. */
 /* 3. Read bit pattern from the data port. If the data */
 /* read is not the same as the written one, the test */
 /* failed (tristate mode could not be initiated). */

 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | ENABLE_TRISTATE_MODE);

 outp (LPT1_DATA_PORT, TEST_BIT_PATTERN);

 if (inp (LPT1_DATA_PORT) == TEST_BIT_PATTERN) /* Test was NOT successful */
 {
 #ifndef LCD
 printf ("\n\n TEST RESULT : Your LPT1 parallel printer port is NOT ECP/EPP
COMPLIANT.");
 printf ("\n Thus, you cannot use an FSU in combination with
this PC.");
 printf ("\n\n USER INFO : Press <ESC> to quit program.");
 printf ("\n ---
-----------");
 #else
 LCD_Printf ("TEST RESULT: Your LPT1 parallel printer port is NOT EPP
compliant. Press <ESC> to exit.", 1, 3);
 #endif

 #ifndef LCD
 do
 {
 if (kbhit ()) kb_input = getch ();

 } while (kb_input != 27); /* Wait for user to press ESC key */

 system ("cls");
 #else
 while (Push_Button_3 () == BUTTON_RELEASED);
 printf ("\n");
 LCD_ClrScr ();
 LCD_Printf (GFA_VERSION, 1, 1);
 LCD_Printf ("--------------------", 1, 2);
 LCD_Printf ("Program aborted successfully.", 1, 3);

90

 #endif
 exit (0);
 }
 else
 { /* Test successful */
 #ifndef LCD
 printf ("\n\n TEST RESULT : Your LPT1 parallel port is ECP/EPP
compliant.");
 printf ("\n ---
-----------");
 #else
 LCD_Printf ("TEST RESULT: Your LPT1 parallel printer port is EPP
compliant. ", 1, 3);
 LCD_Printf ("Press <ENTER>.", 1, 8);
 while (Push_Button_3 () == BUTTON_RELEASED);
 while (Push_Button_3 () == BUTTON_PRESSED);
 #endif
 }
}

/**/

/*-- void Install_ISR (void) ---*/

/* This function installs the FSU interrupt service handler (function */
/* "Fsu_Isr") on IRQ7 after saving the old interrupt vector table entry. */
/* Then, the Intel 8259A standard programmable interrupt controller (or */
/* equivalent) is set properly to enable hardware interrupts on the line */
/* printer port 1 (LPT1). Finally, it enables the interrupt on LPT1 by */
/* setting the corresponding Bit 4 in the port control register to 1. */

void Install_ISR (void)
{
 #ifdef DEBUG
 #ifndef LCD
 printf ("\n\n ---
-------------");
 printf ("\n USER INFO : Installing FSU-ISR on IRQ7 (LPT1)...... ");
 #else
 LCD_Printf ("Installing FSU-ISR on LPT1....... ", 1, 3);
 #endif
 #endif

 disable (); /* Disable maskable interrupts */
 oldvect = getvect (LPT1_INT_NO); /* Save old interrupt vector */
 setvect (LPT1_INT_NO, FSU_ISR); /* Install FSU interrupt handler */
 enable (); /* Enable maskable interrupts */

 #ifdef DEBUG
 #ifndef LCD
 printf ("done.");
 printf ("\n USER INFO : Enabling hardware interrupt on LPT1.... ");
 #else
 LCD_Printf ("done.", 16, 4);
 LCD_Printf ("--------------------", 1, 5);
 LCD_Printf ("Enabling interrupt on LPT1....... ", 1, 6);
 #endif
 #endif

 /* Set Bit 7 in interrupt mask register of the Intel 8259A interrupt */
 /* controller to 0 (enables hardware interrupt on PIC) */

 disable ();

91

 outp (INT_MASK_REG, inp (INT_MASK_REG) & ENABLE_8259A_IRQ7);

 /* Read byte from LPT1 control port, set Bit 4 = 1 and write it to */
 /* control port again (this enables the hardware interrupt on the port) */

 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | ENABLE_LPT1_INT);
 enable ();

 #ifdef DEBUG
 #ifndef LCD
 printf ("done.");
 printf ("\n ---
-----------");
 #else
 LCD_Printf ("done. ", 16, 7);
 delay (DISPLAY_DELAY);
 #endif
 #endif
}

/**/

/*-- void Remove_ISR (void) --*/

/* At first, this function removes the address of the FSU interrupt service */
/* handler from the interrupt vector table entry corresponding to IRQ7 */
/* (LPT1) and restores the previously used interrupt handler. Then, the PIC */
/* is set to disable IRQ7. Finally, the interrupt input (/ackn-line) of the */
/* parrallel port is disabled in the control register of the parallel port */
/* by setting Bit 4 to 0. */

void Remove_ISR (void)
{
 #ifdef DEBUG
 #ifndef LCD
 gotoxy (1, RESULT_OUTPUT_Y + 1);
 printf ("\n\n ---
-------------");
 printf ("\n USER INFO : Removing FSU-ISR on IRQ7 (LPT1)........ ");
 #else
 LCD_Printf ("Removing FSU-ISR on LPT1....... ", 1, 3);
 #endif
 #endif

 disable (); /* Disable maskable interrupts */
 setvect (LPT1_INT_NO, oldvect); /* Restore old interrupt vector */
 enable (); /* Enable maskable interrupts */

 #ifdef DEBUG
 #ifndef LCD
 printf ("done.");
 printf ("\n USER INFO : Disabling hardware interrupt on LPT1... ");
 #else
 LCD_Printf ("done.", 16, 4);
 LCD_Printf ("--------------------", 1, 5);
 LCD_Printf ("Disabling interrupt on LPT1....... ", 1, 6);
 #endif
 #endif

 /* Set Bit 7 in interrupt mask register of the Intel 8259A interrupt */
 /* controller to 1 (disables hardware interrupt on PIC) */

 disable ();

92

 outp (INT_MASK_REG, inp (INT_MASK_REG) | DISABLE_8259A_IRQ7);

 /* Read byte from LPT1 control port, set Bit 4 = 0 and write it to */
 /* control port again (this disables the hardware interrupt) */

 outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & DISABLE_LPT1_INT);
 enable ();

 #ifdef DEBUG
 #ifndef LCD
 printf ("done.");
 printf ("\n ---
-----------");
 #else
 LCD_Printf ("done. ", 16, 7);
 #endif
 #endif
}

/**/

/*-- void interrupt FSU_ISR (void) ---*/

/* This function is the hardware interrupt handler itself. It just reads */
/* the data byte, writes it to the corresponding global variable and resets */
/* the 8259A PIC to enable further interrupts. */

void interrupt FSU_ISR (void)
{
 data = inp (LPT1_DATA_PORT); /* Read data from parallel port */
 data_avail = 1; /* Triggers the main program to */
 /* update the frequency value */
 outp (INT_CMD_REG, RESET_8259A); /* Reset 8259A after interrupt */
}

/*--This is the end of the file "fsu-sub.c" --------------------------------*/

/**/

93

/**/
/* */
/* File "fsu-var.c", created on 04/28/2001 by DLO */
/* */
/* Global variables used in source file "fsu.c" */
/* */
/* -- */
/* */
/* Copyright (C) 2001 by Daniel L. Oedingen, PNNL */
/* */
/* File last updated on 07/25/2001 */
/* */
/* NOTE: Any restrictions mentioned in "fsu.c" apply as well for usage of */
/* this file. */
/* */
/**/

/*-- User-defined type definitions ---*/

/* One data set consists of the frequency in float format, the standard C */
/* time stamp in seconds since 01/01/1970 and, for better accuracy, the */
/* "hundredth" of a second (i.e. the 55 ms intervals from the system timer */
/* tick are counted). As a better time stamp is not easy to get from the PC */
/* hardware / OS, evaluating this part of the timestamp is only reasonable */
/* for averaged values ('AVG_VALUE_NO' should be at least >= 4...6). */

struct dataset { float dataset_frequency;
 l_int dataset_timestamp_sec;
 byte dataset_timestamp_hund;
 };

/*-- Declaration of global variables ---------------------------------------*/

byte kb_input = 0; /* Contains characters read from the keyboard */

byte load_state = 0; /* If 0 or 2, the GFA logic is enabled to control */
 /* the load (0 = OFF). State 1 or 3 means that */
 /* the user overrides the GFA control logic (de- */
 /* vice is permanently ON). Bit 0 represents the */
 /* user's settings, Bit 1 settings are applied */
 /* automatically by the GFA control logic. */

byte old_lstate = 0; /* Contains load status of last loop cycle */

byte data = 0; /* Contains data byte read from parallel port */

byte data_avail = 0; /* Synchronizes main program loop with ISR */

byte startup = 1; /* Helps initializing the GFA control logic */
 /* (prevents problems during program startup and */
 /* FSU hardware power-on). It is set to zero when */
 /* the first valid frequency value has bee read */
 /* (i.e. a value within the software thresholds). */

byte range_miss = 0; /* Counts the number of range misses in a row. */
 /* This variable is used to prevent the software */
 /* from turning off the load briefly if a single */
 /* (or just a few) range miss-messages are read. */

#ifdef PROCESS_CHANGES_ONLY
 byte old_data = 0; /* Contains data of last read process */
#endif

94

#ifdef EVENT_DRIVEN
 word event_count = 0; /* Counts the number of detected events */
#else
 #ifdef DATA_LOGGER
 time_t startup_tstamp = 0;
 /* Contains time stamp at which the program has */
 /* been started; used for automatic program */
 /* abortion in continuous data logger mode. */
 #endif
#endif

word timeout = 0; /* Represents the fixed + the randomized timeouts */

time_t sample_time = 0; /* Contains the time in seconds for a sample */

time_t slope_time = 0; /* Time in seconds since 01/01/1970 at the moment */
 /* a slope has been detected */

word avg_count = 0; /* Just a counter variable for display purposes */

word after_slope = 0; /* Controls data reading process after an event */
 /* (e.g. a slope) occured; 0 = FALSE, otherwise = */
 /* TRUE ('after_slope' is also used as a loop */
 /* counter for output purposes etc.) */

l_int divisor = 1; /* Divisor to determine grid frequency */

float frequency = 0.0; /* Grid frequency read in float format ("loop n") */

float old_freq0 = 1.0; /* Contains frequency in loop n-1 */

float old_freq1 = 2.0; /* Contains frequency in loop n-2 */

double freq_sum = 0.0; /* Contains sum of frequency values read since */
 /* last clear if average values are used */

struct dataset buffer [BUF_SIZE]; /* Rotating memory for event-driven data */
 /* logging and Fast Fourier Transform; */
 /* contains the last <BUF_SIZE> pro- */
 /* cessed frequency values and time */
 /* stamps */

struct dataset * buf_ptr = NULL; /* This pointer is used for any I/O */
 /* operation of the 'buffer [BUF_SIZE]' */
 /* rotating memory */

struct time t; /* Necessary to get the hundredth of a second */
struct date d; /* Contains the present date */

/* PLEASE NOTE that any variable used in driver code for the LC-display */
/* (which may optionally be included) can be found in the */
/* corresponding source file "fsu-lcd.c". */

/*--This is the end of the file "fsu-var.c" --------------------------------*/

/**/

95

Analysis and Controls Software for the Data Analysis Platform

The controls software consists of the following modules in ANSI-C language 7.
• gfa.c
• gfa_dsp.c
• gfa_fft.c
• gfa_if.c
• gfa_server.c

Each module is listed below.

7 ANSI, 1988. Draft Proposed American National Standard for Information Systems -- Programming Language
C. Technical Report X3J11/88-158, ANSI Accredited Standards Committee, X3 Information Processing
Systems, December.

96

/**************************************
* File : gfa.c
* Project : Grid Friendly Appliance
* Author : Steffen Lang, PNNL
*
* control and analyse on the signal
*
**************************************/

/* include files */
#include "gfa.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <termios.h>
#include <signal.h>
#include <unistd.h>
#include <sys/time.h>
#include <fcntl.h>
#include <sys/stat.h> /* for mode definitions */

/* glob vars */
unsigned int arr[60];
FILE * hfp = NULL;

static int histogram = 0;
static int page_select = 1;
static int peek = -1;
static struct termios orig_term, new_term;
static unsigned char load_state = 0x00;
#ifdef PROTOCOL
static FILE *fp_protocol = NULL;
#endif

int new_data_avail = 0;
int end_of_file = 0;
int analysis_running = 0;
int operation_mode = 0;
int logfile_type;
char log_time[100];
server_state state = NO_SOCKET;

double samples [NUM_OF_SAMPLES];
double spectrum[NUM_OF_SAMPLES];
double diff1[NUM_OF_SAMPLES];
double diff2[NUM_OF_SAMPLES];
double imOut[NUM_OF_SAMPLES];
double reOut[NUM_OF_SAMPLES];
double stddevfft;
int zero_crossings1[NUM_OF_SAMPLES];
int zero_crossings2[NUM_OF_SAMPLES];

double threshold[5] = {-120.0, -120.0, -120.0, -120.0, -120.0};
double thres_integral[5];
#define MAX_BUF 40
double ibuf[MAX_BUF][5];
int ibufpos = 0;
int ibufinit = 0;

PEAK peaks[NUM_OF_SAMPLES/2];

97

/* function prototypes */
void help(void);
int time_analyse(double samples[]);
int fft_analysis(void);
int console_display();
int readch();
int kbhit();
int init(int argc, char *argv[]);
int histogram_handler(void);
int set_relay(int relay, int state);

/**
* main()
* ---
*
**/
int main (int argc, char *argv[])
{
 int ch;

 #ifdef PROTOCOL
 char * protocol_file = "protocol.txt";
 if((fp_protocol=fopen(protocol_file,"w"))==NULL)
 {
 printf("ERROR : Can not open '%s'\n",protocol_file);
 exit(0);
 }
 #endif

 init(argc,argv);

 while(1)
 {
 //checking if keyboard was hit
 if(kbhit())
 {
 ch = readch();
 if(ch=='q') //quit the program
 {
 break;
 }
 else if(ch>='0' && ch<='9')
 {
 if(ch=='0')
 set_relay(0,0); //AUS
 else if(ch=='1')
 set_relay(0,-1); //AN
 page_select=ch-'0';
 }
 }

 if(end_of_file) //if reading from logfile and end of file reached
 {
 int i;
 printf("\nEnd of file reached\n");

 /* this is for occurence
 for(i=0;i<50;i++)
 {
 fprintf(hfp," %d %d \n",i,arr[i]);
 }
 */
 fclose(hfp);

98

 break;
 }

 if(histogram) //call explicit get_samples - otherwise it is
called
 { //by the timer
 get_samples(SIGALRM);
 }

 if(new_data_avail)
 {
 analysis_running = 1; //flag

 /*+++++++++++ analysis in time domain +++++++++++++++++++++*/
 //time_analyse(samples);
 #ifdef PROTOCOL
 {
 int t;
 fprintf(fp_protocol,"\n\ntime signal\n");
 fprintf(fp_protocol,"-----------\n");
 for(t=0;t<=255;t++)
 {
 fprintf(fp_protocol,"%7.4f ",samples[t]);
 }
 }
 #endif

 /*+++++++++++ analysis in frequency domain
+++++++++++++++++++++*/
 power_fft(samples,spectrum);
 fft_analysis();
 #ifdef PROTOCOL
 {
 char cbuffer[100];
 fprintf(fp_protocol,"\n\nfrequency signal\n");
 fprintf(fp_protocol,"----------------\n");
 for(t=0;t<=255;t++)
 {
 sprintf(cbuffer,"\n%03d %09.5f",t,spectrum[t]);
 *(strchr(cbuffer,'.'))=','; //if excel
format
 fprintf(fp_protocol,cbuffer);
 #ifdef FFT_IN_DB
 fprintf(fp_protocol,"\tdb");
 #endif
 }
 }
 #endif

 analysis_running = 0;
 new_data_avail = 0;

 if(histogram)
 {
 histogram_handler();
 }
 else
 {
 server_handler();
 //console_display();
 }
 }
 }

99

 #ifdef PROTOCOL
 fclose(fp_protocol);
 #endif

 tcsetattr(0,TCSANOW, &orig_term);
 return 1;
}

/**
* init()
* ---
*
**/
int init(int argc, char *argv[])
{
 set_relay(0,-1); //turn load on
 init_interface(argc, argv);
 init_fft();

 if(argc==4 && (strcmp(argv[3],"-r")==0))
 {
 histogram = 1;
 }

 //clear the screen
 clrscr();
 //init kbhit
 tcgetattr(0, &orig_term);
 new_term = orig_term;
 new_term.c_lflag &= ~ICANON;
 new_term.c_lflag &= ~ECHO;
 new_term.c_lflag &= ~ISIG;
 new_term.c_cc[VMIN] = 1;
 new_term.c_cc[VTIME] = 0;
 tcsetattr(0, TCSANOW, &new_term);

 return 0;
}

/**
* fft_analysis()
* ---
*
**/
int fft_analysis(void)
{
 int i;
 int n;

 //standard deviation fft
 stddevfft = stddev(spectrum+3,NUM_OF_SAMPLES-4);

 //differentation
 diff(spectrum,diff1,zero_crossings1,50);
 diff(diff1,diff2,zero_crossings2,50);

 //integral
 for(i=0;i<5;i++)
 {
 t_integral(spectrum+(i*10),threshold[i],&thres_integral[i],10);
 ibuf[ibufpos][i] = thres_integral[i]; //update ibuf
 //if(i==1)
 //printf("%d %d %f\n",ibufpos,i,ibuf[ibufpos][i]);

100

 }

 //position ptr
 ibufpos = (ibufpos+1)%MAX_BUF;
 if(!ibufinit && !ibufpos)
 ibufinit = 1;

 if(ibufinit) //enough integrals have been calculated
 {
 #define BAND_X 2 //Band 1-5
 int i;
 double av = 0.0;
 double std = 0.0; //stddev of integral in BAND
 static double avx = 0.0;
 static double stdx = 0.0;

 int out_of_range = 0;

 for(i=0;i<MAX_BUF-10;i++) //get average value
 {
 av+=ibuf[(ibufpos+i)%MAX_BUF][BAND_X-1];
 }
 av/=MAX_BUF-10;

 for(i=0;i<MAX_BUF-10;i++) //get standard deviation
 {
 std+=pow((ibuf[(ibufpos+i)%MAX_BUF][BAND_X-1]-av),2);
 }
 std = sqrt(std/(MAX_BUF-10-1));
 //printf("std : %f\n",std);

 for(;i<MAX_BUF;i++)
 {
 if(ibuf[(ibufpos+i)%MAX_BUF][1] > av+(2.0*std))
 {
 out_of_range++;
 }
 }

 if(load_state==0x01)
 {
 //2 criteria for turning the load again on
 if(std<=stdx || av<=avx)
 {
 set_relay(0,-1); //turn on
 load_state=0x00;
 }
 }

 if(out_of_range>=10)
 {
 if(load_state==0x00) //is on
 {
 set_relay(0,0); //turn off
 avx = av;
 stdx = std;
 load_state=0x01;
 }
 }

 printf("out: %d, stddev: %f, av: %f",out_of_range,std,av);
 printf("--- %s ---\n",log_time);
 }

101

 /* //integral calculation with different defintion of band 1 and 2
 {
 #define THRESHOLD -120.0
 #define BAND1_START 02
 #define BAND1_END 13
 #define BAND2_START 13
 #define BAND2_END 24

 t_integral(spectrum+BAND1_START,THRESHOLD, &thres_integral[0],
BAND1_END-BAND1_START+1);
 t_integral(spectrum+BAND2_START,THRESHOLD, &thres_integral[1],
BAND2_END-BAND2_START+1);
 thres_integral[2]=0.0;
 thres_integral[3]=0.0;
 thres_integral[4]=0.0;
 }*/

 //peak detection
 i=0;
 n=0;
 while(zero_crossings1[i] != -1)
 {
 if(diff2[zero_crossings1[i]-1]<0.0)
 {
 double angle,angle1,angle2;

 //calculation
 angle1 = (atan(DIAGRAM_RELATION/diff1[zero_crossings1[i]-
1])/PI)*180;
 angle2 =
(atan(DIAGRAM_RELATION/diff1[zero_crossings1[i]])/PI)*180;
 angle = angle1-angle2;

 peaks[n].pos = zero_crossings1[i];
 peaks[n].value = spectrum[zero_crossings1[i]];
 peaks[n].angle = angle;
 peaks[n].sharp = diff2[zero_crossings1[i]-1];
 n++;
 }
 i++;
 }
 peaks[n].pos = -1; //mark the end

 return 0;
}

/**
* set_relay()
* ---
* parameter:
* relay 0 ... 5
* state -1,0,1
*
* return :
* 0 OK
* 1 ERROR
**/
int set_relay(int relay, int state)
{
 FILE * fp;

102

 char file[100]= "/proc/dx2/control/";
 char *files[] = {"fanr","clgr","htgr","revc","defr","lckr"};

 if(relay<0 || relay>5 || state<-1 || state>1)
 {
 //printf("Error2 in set_relay\n");
 return 1;
 }
 strcat(file,files[relay]);
 if((fp=fopen(file,"wt"))==NULL)
 {
 //printf("Error3 in set_relay (opening %s)\n",file);
 return 1;
 }
 //printf("%d\n",state);
 if(fprintf(fp,"%d\n",state)<0)
 {
 return 1;
 }
 fclose(fp);
 return 0;
}

/**
* help()
* ---
*
**/
void help(void)
{
 printf("***\n");
 printf("* Call with : gfa [file date [-r]] \n");
 printf("* No optional parameters -> receive current frequency from the grid
\n");
 printf("* Optional parameters -> receive frequency from the log file
\n");
 printf("* ---\n");
 printf("* file : path of log file (*.conv, *.fsu)\n");
 printf("* date : date and time of start of processing\n");
 printf("* format mm/dd/yy/hh/mm/ss \n");
 printf("* -r : histogram mode");
 printf("* \n");
 printf("***\n");
 return;
}

/**
* console_display()
* ---
* displaying information on the current
* analysis
* display mode is determined by global
* variable page_select
*
* parameter :
* none
*
* return :
* always 0
*
***/
int console_display()

103

{
 int i;
 char str_server[2];

 str_server[0] = '-';
 str_server[1] = 0;

 if(state == CLIENT)
 {
 str_server[0] = 'C';
 }
 else if(state==REQUEST)
 {
 str_server[0] = 'T';
 }

 clrscr();
 if(page_select==1)
 {
 printf("(1) Grid Frequency - Timer Interval: %d sec, Network:
%s\n",TIMER_INTERVAL, str_server);
 if(operation_mode==REALTIME)
 {
 printf("--
--------------------\n");
 }
 else
 {
 printf("----- %s -----\n",log_time);
 }

 for(i=0;i<20;i++)
 {
 int y;
 for(y=0;y<120;y+=20)
 {
 printf("%03d ",i+y+1);
 printf("\033[1;34m");
 printf("%7.4f ",samples[i+y]);
 printf("\033[0m");
 }
 printf("\n");
 }
 }
 else if(page_select==2)
 {
 printf("(2) Grid Frequency - Timer Interval: %d sec, Network:
%s\n",TIMER_INTERVAL, str_server);
 if(operation_mode==REALTIME)
 {
 printf("--
--------------------\n");
 }
 else
 {
 printf("----- %s -----\n",log_time);
 }

 for(i=0;i<20;i++)
 {
 int y;
 for(y=120;y<240;y+=20)
 {

104

 printf("%03d ",i+y+1);
 printf("\033[1;34m");
 printf("%7.4f ",samples[i+y]);
 printf("\033[0m");
 }
 printf("\n");
 }
 }
 else if(page_select==3)
 {
 printf("(3) FFT Spectrum - Timer Interval: %d sec, Network:
%s\n",TIMER_INTERVAL, str_server);
 if(operation_mode==REALTIME)
 {
 printf("--
--------------------\n");
 }
 else
 {
 printf("----- %s -----\n",log_time);
 }

 for(i=0;i<=20;i++)
 {
 printf(" %5.3f Hz ",(float)i*0.039);
 printf("\033[1;31m");
 printf("%8.4f db\t ",spectrum[i]);
 printf("\033[0m");
 printf(" |\t %5.3f Hz ",(float)(i+21)*0.039);
 printf("\033[1;31m");
 printf("%8.4f db \n",spectrum[i+21]);
 printf("\033[0m");
 }
 }
 else if(page_select==4)
 {
 int u;
 printf("(4) Analysis - Timer Interval: %d sec, Network:
%s\n",TIMER_INTERVAL, str_server);

 if(operation_mode==REALTIME)
 {
 printf("--
--------------------\n");
 }
 else
 {
 printf("----- %s -----\n",log_time);
 }
 printf(" Band Threshold Integral\t\tStandard Deviation : ");
 printf("\033[1;35m");
 printf("%7.4f\n",stddevfft);
 printf("\033[0m");

 #ifdef PROTOCOL
 fprintf(fp_protocol," Band\t Threshold \t Integral\n");
 #endif
 for(i=0;i<5;i++)
 {
 printf(" %02d %08.3f ",i+1,threshold[i]);
 printf("\033[1;35m");
 printf(" %08.5f\n",thres_integral[i]);
 printf("\033[0m");

105

 #ifdef PROTOCOL
 fprintf(fp_protocol,"%d band: %08.3f ",i+1,threshold[i]);
 fprintf(fp_protocol,"\t %08.5f\n",thres_integral[i]);
 #endif
 }

 printf("\n Peak\t Value\t\tAngle\t Sharpness (2.dev)\n");
 i = 0;
 u = 0;
 while(peaks[i].pos >=0)
 {
 //printf(" %02d\t%05.2f db\t%4.2f°\t
%5.2f\n",zero_crossings1[i],spectrum[zero_crossings1[i]],angle1-
angle2,diff2[zero_crossings1[i]-1]);
 printf(" %02d\t%05.2f db\t%4.2f°\t
%5.2f\n",peaks[i].pos,peaks[i].value,peaks[i].angle,peaks[i].sharp);
 #ifdef PROTOCOL
 //fprintf(fp_protocol,"peak at %02d \t value %f sharpness
%f\n",zero_crossings1[i],spectrum[zero_crossings1[i]],diff2[zero_crossings1[i]-1]);
 #endif
 i++;
 }
 #ifdef PROTOCOL
 fprintf(fp_protocol,"\n");
 #endif
 }
 else
 {
 printf("(%d) no valid mode\n",page_select);
 printf("--
--------------\n");
 }
 return 0;
}

/**
* histogram_handler()
* ---
*
* parameter :
* none
*
* return :
* 0 OK
* 1 ERROR
*
***/
int histogram_handler(void)
{
 static int is_init = 1;
 //static FILE * hfp = NULL;
 static unsigned int count = 1;
 int i;
 int n;
 int max[3];

 //open file if first call
 if(is_init)
 {
 if((hfp=fopen("histogram.txt","w"))==NULL)
 {
 printf("Error in open histogram.txt\n");

106

 return 1;
 }
 printf("Grid Friendly Appliance - Histogram mode\n");
 printf("--\n");
 printf("\033[4;3H"); //set cursor to (1,1)
 printf("Samples Date+Time");

 fprintf(hfp,"d5 thres integrals\n\n");
 fprintf(hfp," band1 band2 band3 band4 band5\n");
 fprintf(hfp,"---
-------------------------------\n");
 is_init = 0;
 }

 //print to file
 //fprintf(hfp,"%7.4f ",stddevfft);

 for(i=0;i<5;i++)
 {
 char str[50];
 sprintf(str," %05.3f",thres_integral[i]);
 *(strchr(str,'.'))=','; //excel format
 fprintf(hfp,str);
 fprintf(hfp," | ");
 }

 /*
 for(n=1;n<=5;n++)
 {
 char str[50];
 get_band_max(n,max);
 i=0;

 if(max[0]!=-1)
 {
 //printf(" band%d - increase pos %d",n ,max[i]);
 //getchar();
 arr[peaks[max[i]].pos]++;
 }
 }*/

 /*
 for(n=1;n<=5;n++)
 {
 char str[50];
 get_band_max(n,max);
 i=0;
 while(i<1)
 {
 if(max[i]!=-1)
 {
 if(peaks[max[i]].angle<100.00)
 sprintf(str,"%05.3f ",peaks[max[i]].angle);
 //sprintf(str,"%05.1f ",peaks[max[i]].sharp);
 else
 sprintf(str,"%05.2f ",peaks[max[i]].angle);
 //sprintf(str,"%05.2f ",peaks[max[i]].sharp);

 *(strchr(str,'.'))=','; //excel format
 fprintf(hfp,str);
 }
 else
 {

107

 fprintf(hfp,"xxxxxx ");
 //fprintf(hfp,"%02d ",0);
 }
 i++;
 }
 fprintf(hfp," | ");
 }*/

 {
 char string[20];
 strncpy(string,log_time+11,8);
 string[8] = '\0';
 fprintf(hfp,"%s\n",string); //print time to histogram file
 }

 //print time on screen
 printf("\033[5;3H"); //set cursor to (1,1)
 printf("%05d %s \n",count++, log_time);

 return 0;
}

/*********** kbhit emulation *****************/
int kbhit()
{
 char ch;
 int nread;

 if(peek != -1)
 {
 return 1;
 }

 new_term.c_cc[VMIN]=0;
 tcsetattr(0, TCSANOW, &new_term);
 nread = read(0,&ch,1);
 new_term.c_cc[VMIN]=1;
 tcsetattr(0, TCSANOW, &new_term);

 if(nread == 1)
 {
 peek = ch;
 return 1;
 }
 return 0;
}

int readch()
{
 char ch;

 if(peek != -1)
 {
 ch = peek;
 peek = -1;
 return ch;
 }
 read(0,&ch,1);
 return ch;
}

108

/**************************************
* File : gfa_dsp.c
* Project : Grid Friendly Appliance
* Author : Steffen Lang, PNNL
*
* math. functions for 'Digital Signal Processing'
*
**************************************/

#include "gfa.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>

extern PEAK peaks[NUM_OF_SAMPLES/2];

/**
* get_band_max()
* ---
* detects the 3 maximum values values in one
* band
*
* parameter :
* band - indicates the concerned band (1..5)
* index - array where the results are stored
*
* return :
* 0 = OK
* 1 = ERROR
*
***/
int get_band_max(int band, int index[])
{
 int i = 0;
 int upper = 9 + (band-1)*10;
 int lower = 0 + (band-1)*10;

 index[0]=index[1]=index[2]=-1;

 while(peaks[i].pos!=-1)
 {
 if(peaks[i].pos>=lower && peaks[i].pos<=upper) //if peak in band
 {
 int n = 0;
 int empty = 0;

 for(n=0;n<3;n++)
 {
 if(index[n]==-1)
 {
 empty = 1;
 break;
 }
 else if(peaks[i].value > peaks[index[n]].value)
 {
 break;
 }
 }

 if(empty)

109

 {
 index[n] = i;
 }
 else if(n<3)
 {
 switch(n)
 {
 case 2:
 index[2] = i;
 break;
 case 1:
 index[2] = index[1];
 index[1] = i;
 break;
 case 0:
 index[2] = index[1];
 index[1] = index[0];
 index[0] = i;
 break;
 }
 }
 }
 i++;
 }

 return 0;
}

/**
* detect_extremum()
* ---
* detects extremum values (max and min)
* in the signal
*
* parameter :
 sig - signal to be analyzed
* max - 1 = max detection
* 0 = min detection
* start - start index in signal
* end - end index in signal
*
* return :
* the index of the max value in
* the data array
*
***/
int detect_extremum(double sig[], int max, const int start, const int end)
{
 int i;
 double extrem_value;
 int extrem_position;

 extrem_value = sig[start];
 extrem_position = start;

 for(i=start;i<end;i++)
 {
 if(max) // max detection
 {
 if(sig[i]>extrem_value)
 {
 extrem_value = sig[i];
 extrem_position = i;

110

 }
 }
 else // min detection
 {
 if(sig[i]<extrem_value)
 {
 extrem_value = sig[i];
 extrem_position = i;
 }
 }
 }
 return extrem_position;
}

/**
* stddev() - proved with Matlab (std function)
* ---
* calculates the standard deviation
*
* parameter :
* sig - samples of the signal
* num - length of signal
*
* return :
* standard deviation
*
***/
double stddev(double sig[], const int len)
{
 int i;
 double average=0.0;
 double temp =0.0;

 for(i=0;i<len;i++)
 {
 average+=sig[i];
 }
 average/=len;
 for(i=0;i<len;i++)
 {
 temp+=pow((sig[i]-average),2);
 }
 return sqrt(temp/(len-1));
}

/**
* diff() - proved with Matlab
* ---
* derivation of a signal and calculation
* of the positions of the zero-crossings
*
* parameter : (length)
* sig - original signal f(x) n
* ddt - derived signal df(x)/dt n-1
* zc - zero crossings in ddt n
* len - lenght of ori. signal
*
* return :
* always 0
*
***/
#define POS 1
#define ZERO 0

111

#define NEG -1
int diff(double sig[], double ddt[], int zc[], const int len)
{
 int i;
 int current_sign;
 int previous_sign = ZERO;
 int index = 0;

 for(i=0;i<len-1;i++)
 {
 ddt[i] = (sig[i+1]-sig[i]); //diff

 if(ddt[i]!=0.00) //zero crossings
 {
 current_sign = (ddt[i] > 0.0) ? POS : NEG;
 if(previous_sign!=ZERO &&
 current_sign!=previous_sign)
 {
 zc[index++] = i; /* save 2. index of zerocrossing */
 }
 }
 else
 current_sign = ZERO;

 previous_sign = current_sign;
 }
 zc[index]= -1; //mark the end
 return 0;
}

/**
* integration()
* ---
* performs the integration on the given
* signal
*
* parameter : (length)
* sig - original signal n
* integr - integration
* len - length of ori. sig.
*
* return :
* always 0
*
***/
void integration(double sig[], double integr[], const int len)
{
 int i;
 double temp;

 integr[0] = 0;

 for(i=0;i<(len-1);i++)
 {
 temp = (sig[i]+sig[i+1]/2)*0.1;
 integr[i+1] = integr[i] + temp;
 }
 return;
}

/**
* t_integral()
* ---

112

* performs the integration on the given
* signal
*
* parameter
* sig - original signal
* thres - threshold
* integr - integration
* len - length of original signal
*
* return :
* always 0
*
***/
void t_integral(double sig[], double thres, double * integral, const int len)
{
 int i;
 double temp;
 double d1,d2;

 *integral = 0;

 for(i=0;i<(len-1);i++)
 {
 d1 = sig[i]-thres;
 d2 = sig[i+1]-thres;
 if(d1>=0.0 && d2>=0.0)
 {
 temp = ((d1+d2)/2)*0.1;
 (*integral)+= temp;
 }
 }
 return;
}

/**
* xcorr() - proved with Matlab
* ---
* performs the crosscorrelation of two
* signals. The result is written into array
* xcorr
*
* parameter : (length)
* sig1 - signal 1 n
* sig2 - signal 2 n
* xcorr - cross correlation 2*n-1
*
* return :
* always 0
*
***/
int xcorr(double sig1[], double sig2[], double xcorr[], const int len)
{
 int i; //index outer loop
 int ii; //index inner loop
 int index_sig1;
 int index_sig2;
 double temp;

 for(i=-len+1;i<len;i++) //outer loop
 {
 temp = 0;
 if(i<=0)
 {

113

 index_sig1 = 0;
 index_sig2 = abs(i);
 }
 else
 {
 index_sig1 = i;
 index_sig2 = 0;
 }

 for(ii=0;ii<(len-abs(i));ii++) //inner loop
 {
 temp+=sig1[index_sig1++]*sig2[index_sig2++];
 }
 xcorr[i-1+len]= temp;
 }
 return 0;
}

114

/**************************************
* File : gfa_fft.c
* Project : Grid Friendly Appliance
* Author : Steffen Lang, PNNL
*
* performs the fft on the frequency
* signal
*
**************************************/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "gfa.h"

double window[NUM_OF_SAMPLES];
unsigned char bit_reverse[NUM_OF_SAMPLES];

/**
* init_fft()
* ---
* initialisation for fourier transformation
* bitreverse ordering and windowing
*
* parameter :
* none
*
* return :
* void
*
**/
void init_fft()
{
 unsigned char i=0;
 unsigned char bit;
 int y;
 unsigned char reverse;

 for(y=0;y<NUM_OF_SAMPLES;y++)
 {
 /* bit reverses order */
 reverse = 0x00;
 for(bit=1;bit;bit<<=1)
 {
 reverse<<=1;
 if(bit&i)
 reverse|=0x01;
 }
 bit_reverse[i++] = reverse;

 /* create window function */
 window[y] = 1; //default : no windowing

 #ifdef HANNING2 //hanning window
 window[y] = (1-cos(2*PI*y/NUM_OF_SAMPLES))/2;
 #endif
 #ifdef HANNING2SQRT //hanning window sqrt
 window[y] = (1-cos(2*PI*y/NUM_OF_SAMPLES))/2;
 window[y] = window[y]*window[y];
 #endif

 #ifdef HANNING2SQRTHALF //half hanning window sqrt
 window[y] = (1-cos(PI*y/NUM_OF_SAMPLES))/2;

115

 window[y] = window[y]*window[y];
 #endif
 }
}

/**
* power_fft()
* ---
* - performs the fft (only magnitude) on
* the time signal
* - the result is also saved in this array
* (overwritten)
*
* parameter :
* samples - time signal, array of 256 values
* spectrum - output for power spectrum
*
* return :
* always 0
**/
int power_fft(double* samples, double* spectrum)
{
 unsigned i, j, k, n;
 unsigned mmax, m;
 double temp;
 double twoPI = 2.0 * PI;
 double temp_real, temp_img; /* temp real, temp imaginary */

 double im_out[NUM_OF_SAMPLES];
 double re_in[NUM_OF_SAMPLES];

 //copy samples into re_in and perfrom hanning window
 for (i=0; i < NUM_OF_SAMPLES; i++)
 {
 re_in[i]=samples[i]*window[i];
 }

 //order bitreverse
 for (i=0; i < NUM_OF_SAMPLES; i++)
 {
 if(i<bit_reverse[i])
 {
 temp = re_in[i];
 re_in[i] = re_in[bit_reverse[i]];
 re_in[bit_reverse[i]] = temp;
 }
 im_out[i] = 0.0;
 }

 //perform fft
 m = 1;
 mmax = 2;
 while (mmax <= NUM_OF_SAMPLES) //2,4,8,16,32,64,128
 {
 double theta = twoPI / (double)mmax;
 double sin_2theta = sin (-2 * theta);
 double sin_theta = sin (-theta);
 double cos_2theta = cos (-2 * theta);
 double cos_theta = cos (-theta);
 double w = 2 * cos_theta;
 double real_buf[3], img_buf[3];

 for (i=0; i < NUM_OF_SAMPLES; i += mmax)

116

 {
 real_buf[1] = cos_theta;
 real_buf[2] = cos_2theta;
 img_buf[1] = sin_theta;
 img_buf[2] = sin_2theta;

 for (j=i, n=0; n < m; j++, n++)
 {
 real_buf[0] = w*real_buf[1] - real_buf[2];
 real_buf[2] = real_buf[1];
 real_buf[1] = real_buf[0];

 img_buf[0] = w*img_buf[1] - img_buf[2];
 img_buf[2] = img_buf[1];
 img_buf[1] = img_buf[0];

 k = j + m;
 temp_real = real_buf[0]*re_in[k] - img_buf[0]*im_out[k];
 temp_img = real_buf[0]*im_out[k] + img_buf[0]*re_in[k];

 re_in[k] = re_in[j] - temp_real;
 im_out[k] = im_out[j] - temp_img;

 re_in[j] += temp_real;
 im_out[j]+= temp_img;
 }
 }
 m = mmax;
 mmax <<= 1;
 }

 //get the power spectrum
 for (i=0; i < NUM_OF_SAMPLES; i++)
 {
 re_in[i] /=NUM_OF_SAMPLES;
 im_out[i] /=NUM_OF_SAMPLES;
 spectrum[i] = sqrt(re_in[i]*re_in[i] + im_out[i]*im_out[i]);
 #ifdef FFT_IN_DB
 spectrum[i] = 20 * log10(spectrum[i]);
 #endif
 }

 return 0;
}

117

/**************************************
* File : gfa_if.c
* Project : Grid Friendly Appliance
* Author : Steffen Lang, PNNL
*
* interface channel to the data
*
**************************************/

/* include files */
#include "gfa.h"
#include <time.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <signal.h>
#include <unistd.h>
#include <sys/time.h>
#include <fcntl.h>
#include <sys/stat.h> /* for mode definitions */

/* imported variable */
extern double samples [];
extern int analysis_running;
extern int new_data_avail;
extern int end_of_file;
extern char log_time[];
extern int operation_mode;
extern int logfile_type;

/* static variables */
static FILE * fp;
static int (*get_samples_func)(void);
static int char_per_line;
static struct tm * tm_logstart;
static struct tm * tm_request;

char buf[4096];

/*prototypes*/
static int get_samples_realtime(void);
static int get_samples_logfile(void);
static int position_filepointer(char* argv2);
static int str2date1(char *s, struct tm* t);
static int str2date2(char *s, struct tm* t);
static int str2date3(char *s, struct tm* t);
static int month_convert(char *s);

/**
* init_interface()
* ---
* parameter :
* argc - same as in command line
* argv
*
* return : 0 = OK
* 1 = ERROR
**/
void init_interface(int argc, char *argv[])

118

{
 char freq_file[100];
 struct itimerval itimer;

 //find out the mode
 if(argc==1)
 {
 operation_mode = REALTIME;
 get_samples_func = get_samples_realtime;
 strcpy(freq_file,PROCFILE_DX2);
 }
 else
 {
 char *ptr;
 if(argc!=3 && argc!=4)
 {
 printf("Illegal number of comand line parameter (%d)\n",argc);
 help();
 exit(0);
 }

 //check file extension
 if((ptr=strchr(argv[1],'.'))==0)
 {
 printf("Error in parameter\n");
 help();
 exit(0);
 }

 if(strcmp(ptr,".conv")==0)
 {
 logfile_type = TYPE_CONV;
 char_per_line = 29;
 }
 else if(strcmp(ptr,".fsu")==0)
 {
 logfile_type = TYPE_FSU;
 char_per_line = 31;
 }
 else if(strcmp(ptr,".psm")==0)
 {
 logfile_type = TYPE_PSM;
 }
 else
 {
 printf("Extension of <%s> is illegal\n",argv[1]);
 help();
 exit(0);
 }
 operation_mode = LOGFILE;
 get_samples_func = get_samples_logfile;
 strcpy(freq_file,argv[1]);
 }

 //open the file that contains the grid frequency
 //either the /proc file or the log file
 if((fp=fopen(freq_file,"r"))==NULL)
 {
 printf("ERROR : Can not open '%s'\n",freq_file);
 exit(0);
 }

 //position in logged data file

119

 if(operation_mode==LOGFILE)
 {
 if(position_filepointer(argv[2]))
 {
 exit(0);
 }
 }

 if(argc<4) //no histogram - setup timer
 {
 //setup alarm
 itimer.it_value.tv_sec = TIMER_INTERVAL; //time until
first occurance
 itimer.it_value.tv_usec = 00;
 itimer.it_interval.tv_sec = TIMER_INTERVAL; //timer interval
 itimer.it_interval.tv_usec = 00;
 signal(SIGALRM,get_samples);
 setitimer(ITIMER_REAL, &itimer, NULL);
 }

 return;
}

/***
* get_samples()
* --
* This function is invoked by the
* signal SIGALRM in certain time intervals.
* (defined by TIMER_INTERVAL in gfa.h)
*
* parameter :
* sig_val - type of alarm
*
*
***/
void get_samples(int sig_val)
{
 //gettimeofday(&start,(struct timezone *)0);
 if(sig_val!=SIGALRM)
 return;

 (*get_samples_func)();

 new_data_avail = 1;

 //gettimeofday(&end,(struct timezone *)0);
 //printf("Start sec: %d , usec: %d\n",start.tv_sec,start.tv_usec);
 //printf("End sec: %d , usec: %d\n",end.tv_sec,end.tv_usec);
}

/***
* get_samples_realtime()
* --
* reads NUM_OF_SAMPLES samples from the /proc
* file 54 and saves them to global array
* 'samples'
*
* parameter :
* none
*
* return :
* none
***/

120

static int get_samples_realtime(void)
{
 #define BYTES_PER_LINE 8
 #define LINES_IN_FILE NUM_OF_SAMPLES
 #define BYTES_IN_FILE (BYTES_PER_LINE*LINES_IN_FILE)

 int len;
 int i=0;
 char * ptr;
 char sfreq[10];
 double freq;

 if(analysis_running)
 printf("ERROR : Time problem. fft is running while read new data \n");

 rewind(fp);
 fflush(fp); //reset file

 /* read all data */
 if((len=fread(buf,1,4096,fp))<=0)
 {
 printf("ERROR in fread from proc file. Can nor read\n");
 return 1;
 }

 if(len!=BYTES_IN_FILE)
 {
 printf("ERROR : too less data : only %d byte\n",len);
 return 1;
 }

 for(i=0;i<NUM_OF_SAMPLES;i++)
 {
 ptr = buf + (i*BYTES_PER_LINE); //set pointer to start of next
value
 strncpy(sfreq,ptr,7); //format : '60.1234' = 7
characters
 sfreq[7]='\0';
 freq = atof(sfreq);
 if(freq<=0.0)
 {
 printf("ERROR in format. string is %s freq is %f\n",sfreq,freq);
 }
 else
 {
 samples[i] = freq;
 //printf("f[%d]: %6.4f \n",i, data[i]);
 }
 }
 return 0;
}

//#define CHAR_PER_LINE 29

/***
* get_samples_logfile()
* --
* reads new samples from logfile and
* rearranges the global array 'samples'
*
* parameter :
* none
*

121

* return :
* none
***/
static int get_samples_logfile(void)
{
 int i;
 char buf[100];
 char sfreq[10];
 char * ptr;
 static int first_time = 1;

 if(first_time) //just read on line to make sure that
 fgets(buf,50,fp); //filepointer points to beginning of a line

 for(i=0;i<NUM_OF_SAMPLES;i++)
 {
 if(i<NUM_OF_SAMPLES-(TIMER_INTERVAL*10) && !first_time)
 {
 //rearrange the array
 samples[i] = samples[i+TIMER_INTERVAL*10];
 }
 else
 {
 //get new samples from logfile
 if(fgets(buf,50,fp)==NULL)
 {
 end_of_file = 1;
 return 0;
 }

 //process data form file
 if(logfile_type==TYPE_FSU)
 {
 ptr = &buf[23]; //ptr points to the frequency (*.fsu
file)
 strncpy(sfreq,ptr,6);
 sfreq[6]='\0';
 }
 else if(logfile_type==TYPE_CONV)
 {
 ptr = &buf[21]; //ptr points to the frequency (*.conv
file)
 strncpy(sfreq,ptr,6);
 sfreq[6]='\0';
 }
 else if(logfile_type==TYPE_PSM)
 {
 if((ptr=strrchr(buf,'.'))==NULL)
 {
 printf("Error in format in logfile\n");
 exit(0);
 }
 ptr-=2; //ptr points to the frequency
(*.psm file)
 strncpy(sfreq,ptr,7);
 sfreq[7]='\0';
 }

 if(i==NUM_OF_SAMPLES-1) //if the last one
 {
 //update string that represents current time
 if(logfile_type==TYPE_FSU)
 {

122

 strncpy(log_time,buf,20);
 log_time[13] = ':';
 log_time[16] = ':';
 }
 else if(logfile_type==TYPE_CONV)
 {
 strncpy(log_time,buf,18);
 log_time[11] = ':';
 log_time[14] = ':';
 }
 else if(logfile_type==TYPE_PSM)
 {
 char stime[10];
 struct tm *tm_temp;
 time_t time_temp;

 sscanf(buf,"%s",stime);
 time_temp = mktime(tm_logstart) + atof(stime);
 tm_temp = localtime(&time_temp);
 sprintf(log_time,"%s",asctime(tm_temp));
 log_time[strlen(log_time)-1] = '\0';
 }
 }
 samples[i] = atof(sfreq);
 }
 }
 first_time = 0;

 return 0;
}

/**
* position_filepointer()
* ---
* opens the logfile, searchs for the start
* line, set filepointer to start
*
*
* return : 0 = OK
* 1 = ERROR
**/
static int position_filepointer(char* argv2)
{
 char buf[100];

 double diff;
 time_t time_r, time_l;

 tm_logstart = malloc(sizeof(struct tm));
 tm_request = malloc(sizeof(struct tm));

 if((logfile_type==TYPE_CONV) || (logfile_type==TYPE_CONV))
 {
 char search_date[30];
 unsigned long temp_line = 0;
 unsigned long offset;
 int date_len;

 // get date from command line parameter
 if(str2date1(argv2, tm_request))
 {
 printf("Illegal date format : %s\n",argv2);
 fclose(fp);

123

 return 1;
 }

 // get first date in log file
 if(fseek(fp,0,SEEK_SET))
 {
 printf("Error in logfile - fseek\n");
 fclose(fp);
 return 1;
 }
 if(logfile_type == TYPE_FSU)
 {
 fgets(buf,40,fp); //skip first line
 fgets(buf,40,fp);
 buf[19]='\0';
 if(str2date2(buf, tm_logstart))
 {
 printf("Error in file format of logfile. <<%s>> is
illegal1\n",buf);
 fclose(fp);
 return 1;
 }

 //printf("first date : %d %d %d ",tm_logstart.tm_mon,
tm_logstart.tm_mday, tm_logstart.tm_year);
 }
 else
 {
 fgets(buf,40,fp);
 buf[17] = '\0';
 if(str2date1(buf, tm_logstart))
 {
 printf("Error in file format of logfile. <<%s>> is
illegal\n",buf);
 fclose(fp);
 return 1;
 }
 }

 //calculate approx. position
 time_r = mktime(tm_request);
 time_r-= (int)NUM_OF_SAMPLES/10; //subtract time to position to
beginning
 free(tm_request);
 tm_request = localtime(&time_r);
 time_l = mktime(tm_logstart);
 diff = difftime(time_r,time_l);

 if(diff<1.00)
 {
 //printf("difference is : %f\n",diff);
 fclose(fp);
 printf("* An error causes the program to exit\n");
 printf("* Date/time '%s' is not available in file1.\n",argv2);
 return 1;
 }
 temp_line = (unsigned long)(diff * 7.0);

 /* now start parsing */
 if(fseek(fp,temp_line*char_per_line,SEEK_SET))
 {
 fclose(fp);
 printf("* An error causes the program to exit\n");

124

 printf("* Date/time '%s' is not available in file2.\n",argv2);
 return 1;
 }

 if(logfile_type == TYPE_FSU)
 {
 date_len = 19;
 sprintf(search_date,"%d %02d %02d %02d %02d %02d",(tm_request-
>tm_year)+1900,(tm_request->tm_mon)+1,tm_request->tm_mday,tm_request-
>tm_hour,tm_request->tm_min,tm_request->tm_sec);
 }
 else
 {
 date_len = 17;
 sprintf(search_date,"%02d/%02d/%02d %02d %02d %02d",(tm_request-
>tm_mon)+1, tm_request->tm_mday, (tm_request->tm_year)-100,tm_request-
>tm_hour,tm_request->tm_min,tm_request->tm_sec);
 }

 do
 {
 if(fgets(buf,30,fp)==NULL) //read a line
 {
 fclose(fp);
 printf("* An error causes the program to exit\n");
 printf("* Date/time '%s' is not available in
file3.\n",argv2);
 return 1;
 }
 //buf[date_len] = '\0';
 //printf("%s",buf);
 //getchar();
 }while(strncmp(buf,search_date,date_len));

 offset = ftell(fp) - char_per_line - 10;
 fseek(fp,offset,SEEK_SET);

 free(tm_logstart);
 return 0;
 }
 else if(logfile_type==TYPE_PSM)
 {
 char * ret;
 char temp[60];
 double search;
 int u;

 // get date from command line parameter -> store in tm_request
 if(str2date1(argv2, tm_request))
 {
 printf("Illegal date format : %s\n",argv2);
 fclose(fp);
 return 1;
 }

 // get first date in log file -> store in tm_logstart
 while((ret=fgets(buf,60,fp))!=NULL)
 {
 #define FIND_IT "reference time"
 if(strncmp(buf,FIND_IT,strlen(FIND_IT))==0)
 {
 break;

125

 }
 }
 if(!ret)
 {
 printf("file format is incorrect - no string '%s'
found\n",FIND_IT);
 exit(0);
 }
 fgets(buf,60,fp); //read reference time
 if(str2date3(buf, tm_logstart))
 {
 printf("Error in file format of logfile. <<%s>> is
illegal1\n",buf);
 fclose(fp);
 return 1;
 }

 //get difference
 time_r = mktime(tm_request);
 time_r-= (int)NUM_OF_SAMPLES/10; //subtract time (25 sec) to
position to beginning
 free(tm_request);
 tm_request = localtime(&time_r);
 time_l = mktime(tm_logstart);
 diff = difftime(time_r,time_l);

 if(diff<1.00)
 {
 fclose(fp);
 printf("* An error causes the program to exit\n");
 printf("* Date/time '%s' is not available in file1.\n",argv2);
 return 1;
 }

 for(u=0;u<10;u++) fgets(buf,60,fp); //skip some lines

 //position the file pointer - sequential search
 do
 {
 fgets(buf,60,fp); //read line per line
 sscanf(buf,"%s",temp);
 search = atof(temp);

 }while(search<diff);

 return 0;
 }
 else
 {
 //logfile_type not selected
 return 1;
 }
}

/**
* str2date1() - format in *.conv files
* anf command line
* ---
* conversion of string into struct tm
*
* parameter :
* s - char array with the date string

126

* format is 'mm/dd/yy/hh/mm/ss'
* t - struct tm; represents time and date
*
* return :
* 0 - OK
* 1 - ERROR
**/
static int str2date1(char *s, struct tm* t)
{
 if(strlen(s)!=17)
 return 1;

 t->tm_mon=10*(s[0]-0x30);
 t->tm_mon+=s[1]-0x30;
 t->tm_mday=10*(s[3]-0x30);
 t->tm_mday+=s[4]-0x30;
 t->tm_year=10*(s[6]-0x30);
 t->tm_year+=s[7]-0x30;
 t->tm_hour=10*(s[9]-0x30);
 t->tm_hour+=s[10]-0x30;
 t->tm_min=10*(s[12]-0x30);
 t->tm_min+=s[13]-0x30;
 t->tm_sec=10*(s[15]-0x30);
 t->tm_sec+=s[16]-0x30;
 t->tm_isdst = 0;

 /* check if everything is in the range */
 if(((t->tm_mon)<1 || (t->tm_mon)>12) ||
 ((t->tm_mday)<1 || (t->tm_mday)>31) ||
 ((t->tm_year)>5 && (t->tm_year)<95) ||
 ((t->tm_year)<0) ||
 ((t->tm_hour)<0 || (t->tm_hour)>24) ||
 ((t->tm_min)<0 || (t->tm_min)>59))
 {
 return 1;
 }

 //convert to tm format
 t->tm_mon-=1; /* month : 0 - 11 */
 t->tm_hour-=1; /* hour : 0 - 23 */
 if(t->tm_year > 0 && t->tm_year <=20)
 t->tm_year+=100;

 return 0;
}

/**
* str2date2() - format in *.fsu files
* ---
* conversion of string into struct tm
*
* parameter :
* s - char array with the date string
* format is yyyy/mm/dd/hh/mm
* t - struct tm; represents time and date
*
* return :
* 0 - OK
* 1 - ERROR
**/
static int str2date2(char *s, struct tm* t)
{
 if(strlen(s)!=19)

127

 {
 //printf("too less");
 return 1;
 }

 t->tm_mon=10*(s[5]-0x30);
 t->tm_mon+=s[6]-0x30;

 t->tm_mday=10*(s[8]-0x30);
 t->tm_mday+=s[9]-0x30;

 t->tm_year=1000*(s[0]-0x30);
 t->tm_year+=100*(s[1]-0x30);
 t->tm_year+=10*(s[2]-0x30);
 t->tm_year+=s[3]-0x30;

 t->tm_hour=10*(s[11]-0x30);
 t->tm_hour+=s[12]-0x30;

 t->tm_min=10*(s[14]-0x30);
 t->tm_min+=s[15]-0x30;

 t->tm_sec = 0;

 t->tm_isdst = 0;

 //printf("%d %d %d %d %d\n",t->tm_mon, t->tm_mday, t->tm_year, t->tm_hour, t-
>tm_min);
 /* check if everything is in the range */
 if(((t->tm_mon)<1 || (t->tm_mon)>12) ||
 ((t->tm_mday)<1 || (t->tm_mday)>31) ||
 ((t->tm_year)>2005 && (t->tm_year)<1995) ||
 ((t->tm_hour)<0 || (t->tm_hour)>24) ||
 ((t->tm_min)<0 || (t->tm_min)>59))
 {
 return 1;
 }

 //convert to tm format
 t->tm_mon-=1; /* month : 0 - 11 */
 t->tm_hour-=1; /* hour : 0 - 23 */
 t->tm_year-=1900; /* years since 1900 */

 return 0;
}

/**
* str2date3() - format in *.psm files
* ---
* conversion of string into struct tm
*
* parameter :
* s - char array with the reference time
* format example : '10-Aug-1996 22:35:30.000'
*
* t - struct tm; represents time and date
*
* return :
* 0 - OK
* 1 - ERROR
**/
static int str2date3(char *s, struct tm* t)

128

{
 char month[4];

 strncpy(month,s+3,3);
 month[3] = '\0';

 if(month_convert(month))
 {
 return 1;
 }

 t->tm_mon=10*(month[0]-0x30);
 t->tm_mon+=month[1]-0x30;

 t->tm_mday=10*(s[0]-0x30);
 t->tm_mday+=s[1]-0x30;

 t->tm_year=1000*(s[7]-0x30);
 t->tm_year+=100*(s[8]-0x30);
 t->tm_year+=10*(s[9]-0x30);
 t->tm_year+=s[10]-0x30;

 t->tm_hour=10*(s[12]-0x30);
 t->tm_hour+=s[13]-0x30;

 t->tm_min=10*(s[15]-0x30);
 t->tm_min+=s[16]-0x30;

 t->tm_sec=10*(s[18]-0x30);
 t->tm_sec+=s[19]-0x30;

 t->tm_isdst = 0;

 if(((t->tm_mon)<1 || (t->tm_mon)>12) ||
 ((t->tm_mday)<1 || (t->tm_mday)>31) ||
 ((t->tm_year)>2005 && (t->tm_year)<1995) ||
 ((t->tm_hour)<0 || (t->tm_hour)>24) ||
 ((t->tm_min)<0 || (t->tm_min)>59))
 {
 return 1;
 }

 //convert to tm format
 t->tm_mon-=1; /* month : 0 - 11 */
 t->tm_hour-=1; /* hour : 0 - 23 */
 t->tm_year-=1900; /* years since 1900 */

 return 0;
}

/**
* month_convert()
* ---
* overwrittes the given string (e.g "jan") by the
* corresponding number ("01")
*
* parameter :
* s - char array that contains the month
* it will be overwritten by the number
* of that month
*
* return :
* 0 - OK

129

* 1 - ERROR
**/
static int month_convert(char *s)
{
 int i=0;
 char *month[] =
{"JAN","FEB","MAR","APR","MAY","JUN","JUL","AUG","SEP","OCT","NOV","DEC"};

 s[0] = toupper((int)s[0]);
 s[1] = toupper((int)s[1]);
 s[2] = toupper((int)s[2]);

 while(i<12)
 {
 if(strcmp(s,month[i])==0)
 {
 break;
 }
 i++;
 }

 if(i>=12)
 {
 return 1;
 }
 else
 {
 sprintf(s,"%02d",i+1);
 }
 return 0;
}

130

/**************************************
* File : gfa_server.c
* Project : Grid Friendly Appliance
* Author : Steffen Lang, PNNL
*
* tcp/ip handling
*
**************************************/

/* include files */
#include "gfa.h"
#include<sys/socket.h>
#include<sys/types.h>
#include<arpa/inet.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

/* extern variables */
extern double spectrum[NUM_OF_SAMPLES];
extern double samples [NUM_OF_SAMPLES];
extern PEAK peaks[NUM_OF_SAMPLES/2];
extern double threshold[5];
extern double thres_integral[5];
extern double stddevfft;
extern server_state state;
extern char log_time[];
extern int operation_mode;

/* global variables */
static int sock_desc_server;
static int sock_desc_client ;
static struct sockaddr_in server;
static struct sockaddr_in client;
static int first_package = 0;

/* prototypes */
static int server_setup();
static int server_get_transmission_string(char *s);

/**
* server_handler()
* ---
* handles the server functionality
*
* parameter :
* none
*
* return :
* void
*
**/
void server_handler()
{
 //printf("sm *%d*\n",state);
 if(state == NO_SOCKET)
 {
 if(!server_setup())
 {
 state = SOCKET;
 }

131

 }
 else if(state==SOCKET)
 {
 int client_size;

 client_size = sizeof(client);
 sock_desc_client = accept(sock_desc_server, &client, &client_size);
 if(sock_desc_client==-1)
 {
 return;
 }
 else
 {
 state = CLIENT;
 fcntl(sock_desc_client,F_SETFL,O_NONBLOCK); //set client non-
blocking
 printf("client from %s port : %d\n", inet_ntoa(client.sin_addr),
client.sin_port);
 }
 }
 else if(state==CLIENT || state==REQUEST)
 {
 int bytes;
 char in[1024];
 char out[4096] = "";

 bytes = recv(sock_desc_client, in, 256, 0);
 if (bytes <= 0)
 {
 //printf("not read\n");
 }
 else
 {
 in[bytes] = '\0';
 //printf("Client sent <%s>\n", in);
 if(strcmp(in,"request")==0)
 {
 state = REQUEST;
 first_package = 1;
 }
 else if(strcmp(in,"stop")==0)
 {
 state = CLIENT;
 return;
 }
 else if(strcmp(in,"close")==0)
 {
 close(sock_desc_client);
 printf("socket closed\n");
 state = SOCKET;
 return;
 }
 }

 if(state==REQUEST)
 {
 server_get_transmission_string(out);
 first_package = 0;
 if(send(sock_desc_client,out,strlen(out),0)==-1)
 {
 printf("Can not send\n");
 close(sock_desc_client);
 state = SOCKET;

132

 }
 else
 {
 //printf("send OK \n");
 }
 }
 }
}

/**
* server_get_transmission_string()
* ---
* assembles the string that will be
* transmitted to the client
*
* parameter :
* s - string where information is stored
*
* return :
* always 0
*
**/
static int server_get_transmission_string(char *s)
{
 char temp[150];
 int i;
 int first_sample = 246; // we only transmit 10 samples of the time
signal

 //spectrum *************
 strcpy(s,"<spectrum>");
 for(i=0;i<52;i++)
 {
 sprintf(temp,"%5.3f",spectrum[i]);
 if(i<51)
 {
 strcat(temp,",");
 }
 strcat(s,temp);
 }
 strcat(s,"</spectrum>");

 //samples *************
 strcat(s," <samples>");
 if(first_package) //in first package : transmit 11 samples (0 - 10
)
 first_sample = 245;

 for(i=first_sample;i<NUM_OF_SAMPLES;i++)
 {
 sprintf(temp,"%5.3f",(samples[i]+samples[i-1])/2);
 if(i!=NUM_OF_SAMPLES-1)
 {
 strcat(temp,",");
 }
 strcat(s,temp);
 }
 strcat(s," </samples>");

 //peaks *************
 strcat(s," <peaks>");
 i=0;
 while(peaks[i].pos>=0)

133

 {
 sprintf(temp,"%d",peaks[i].pos);
 if(peaks[i+1].pos>=0)
 {
 strcat(temp,",");
 }
 strcat(s,temp);
 i++;
 }
 strcat(s," </peaks>");

 //details *************
 strcat(s," <details>");
 strcat(s,"<peak>");
 i=0;
 while(peaks[i].pos>=0)
 {
 sprintf(temp,"%5.3f Hz %5.3f dB %5.3f°
%5.3f\n",peaks[i].pos*0.0039,
 peaks[i].value,peaks[i].angle,peaks[i].sharp);
 strcat(s,temp);
 i++;
 }
 strcat(s,"</peak> <integral>");
 for(i=0;i<5;i++)
 {
 sprintf(temp,"%5.3f %5.3f\n",threshold[i],thres_integral[i]);
 strcat(s,temp);
 }
 strcat(s,"</integral><stddev>");
 sprintf(temp,"%6.3f",stddevfft);
 strcat(s,temp);
 strcat(s,"</stddev>");
 strcat(s," </details>");

 //time
 strcat(s," <time>");
 if(operation_mode==LOGFILE)
 {
 strcat(s,log_time);
 }
 else
 {
 strcat(s," ");
 }
 strcat(s," </time>");

 return 0;
}

/**
* server_setup()
* ---
* creating socket and listen to it
*
* parameter :
* none
*
* return :
* 0 = OK
* 1 = ERROR
*
**/

134

static int server_setup()
{
 //create socket
 if((sock_desc_server=socket(AF_INET,SOCK_STREAM,0))==-1)
 {
 printf("Error in socket() !\n");
 return 1;
 }
 server.sin_family=AF_INET;
 server.sin_addr.s_addr=INADDR_ANY;
 server.sin_port=htons(3552); //we are using

 //set server as non-blocking
 fcntl(sock_desc_server,F_SETFL,O_NONBLOCK);

 //bind
 if(bind(sock_desc_server,(struct sockaddr *)&server,sizeof(server))==-1)
 {
 printf("Error in bind() !\n");
 return 1;
 }

 //listen
 if(listen(sock_desc_server,1)==-1)
 {
 printf("Error in listen() !\n");
 return 1;
 }
 return 0;
}

