Pacific Northwest
National Laboratory

Operated by Battelle for the
U.S. Department of Energy

PNNL-14342

Final Report for the Energy Efficient and
Affordable Small Commercial and
Residential Buildings Research Program

Project 3.3 - Smart Load Control and
Grid Friendly Appliances

M. Kintner-Meyer R. Guttromson
D. Oedingen S. Lang

July 2003

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor Battelle
Memoria Institute, nor any of their employees, makes any
warranty, expressor implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily congtitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or Battelle Memorid
Institute. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RL01830

Printed intheUnited Statesof America

Availableto DOE andDOE contractorsfrom the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Availableto the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
onlineordering: http://www.ntis.gov/ordering.htm

Oy
%<;9 This document was printed on recycled paper.
(8/00)

Final Report for the Energy Efficient and
Affordable Small Commercial and Residential
Buildings Resear ch Program

Project 3.3—Smart Load Control and Grid
Friendly Appliances

M. Kintner- Meyer
R. Guttromson

D. Oedingen

S. Lang

July 2003

Prepared for
the U.S. Department of Energy
under Contract DE-ACO06-76RL 01830

Pacific Northwest National Laboratory
Richland, Washington 99352

Executive Summary

This report summarizes the results of research initiated in April 2000 under funding from the
Cdifornia Energy Commission and co-funding by the U.S. Department of Energy. The objective
of this project was to develop, implement, and test new methods for detecting pre-cursors of
impending problems in the California electric power grid. The approach pursued in the project
utilized information that is measurable at the wall outlet anywhere in the California. The
approach deliberately focused on methods that do not require communication from an outside
source, but rather function fully autonomously by relying on aloca frequency sensor that
measures the frequency of the alternating current (AC) power supply at the wall outlet and some
control intelligence that can ultimately be implemented at low cost in commonly used appliances
for homes and businesses.

During the course of the project, two load controller prototypes were devel oped, built, and tested.
Thefirst load controller prototype responded to under-frequency events and rapid decay in the
grid frequency. The controller was based on a personal computer (PC) platform with an
Microsoft DOS operating system. The second load controller prototype was used for the
statistical and spectral analysis of historic frequency data of known grid events. It was based on a
PC with a Linux operating system that provided real-time controller capability aswell as
processing historic data read from a data file.

The first controller was designed to react to a grid event and then trigger a load to trip off line.
We demonstrated the prototype in the laboratory. An under-frequency load shedding scheme
implemented at end- use devices and appliances has great potential value associated with its ability
to displace reserve gereration capacity. Thisreserve capacity is required to be available during
fast responses of unplanned generation and transmission outages. Instead of utilizing generation
to correct afrequency error, control of loads could be used to achieve the same effect. Thus, the
economic value of afrequency responsive load controller would be similar to that of spinning
reserves.

In an attempt to extend the responsive nature of the first controller prototype, precursors of
impending grid problems specific to California were explored on which to base the development
of amore advanced autonomous load controller design. After consultation with transmission
planning engineers of the CAISO, we analyzed the following two grid problems relevant for
Cdlifornia: 1) dynamic stability problems during high power imports into Southern California
from East of the Colorado River based on the SCIT (Southern California Import Transmission)
nomogram, and 2) voltage stability problems in the San Francisco Bay Area during heavy AC/DC
North-to- South power flows based on the T-116B nomogram. For these problems, we explored
pre-contingency detection methods that were intended to trigger a load reduction in advance of an
impending problem. We used detailed dynamic simulations of the Western power grid (WECC)
and asimplified single- input-single-output model for selected locations in Californiato explore
signatures in the AC frequency signal for high-stress and lowstress cases. We defined the low
stress case as agrid condition in which standard CAISO operating procedures were observed.

The high-stress case was defined as a hypothetical case, in which the system was operated outside
CAISO safe operation conditions.

For the dynamic stability (SCIT) cases, the simulation results reveal ed recognizable differences
between the high- and low-stress cases in the frequency signal and its autospectrum for different
locations throughout California. This finding gave rise to the formulation of a set of hypotheses
that identified distinct differences in the dynamic behavior of the grid frequency as the power

system transitions from a low-stress to a high-stress condition. The hypotheses postul ated were:

1. Higher standard deviation in the frequency signa for the high stress case
2. Higher min-max range in the frequency signa for the high stress case
3. Higher amplitude in the autospectrum of the frequency signal for the high-stress case.

Contrary to the dynamic instability cases, the smulation of the voltage stability problems
furnished results that revealed no differences in the dynamic behavior of the power system
between the high- and the low-stress cases. These results led to the conclusion that the dynamic
analysis approach appears not appropriate for voltage stability problems.

To test the hypotheses postul ated, historic data representing two distinct grid events were
analyzed. Thefirst data set represented the WECC breakup of August 10, 1996, that caused
wide-spread outages in the western region. The other data set (dated October 8, 2002)
represented a transmission line trip followed by some remedial action and scattered load loss.

The results of the data analysis did not support our hypotheses. Finding some historic data that
are representative of low and high-stress conditions was difficult. The randomness and
magnitude of constantly changing loads and adjustments by generators to meet the demand,
coupled with the randomness of the unplanned outages, which cause changes in the topology of
the network, makes it very difficult, if not impossible, to definitively declare a state of the power
system as low stress. Even during periods at night, when the load tends to be lower than during
the day, it is not obvious that the system attains a low or lower-stress state. Transmission outages,
planned or unplanned, may pose a difficult burden on transmission engineers to keep the system
in stable and safe condition. Because of the inherent inability to establish a state of low stressas a
reference case, it became difficult during this analysis of historic data to detect the transition from
a safe condition to that of an impending problem.

A necessary requirement for an effective detection technology is to recognize system conditions
as the power system approaches dangerously close the edge of stable and safe operating
conditions. Because of the complexity of the power system, the edge of safe operationsis a
moving target and depends on load conditions and network topology and thus may change from
hour to hour.

Asaresult of this data analysis, it appears questionable whether the chosen approach will be
successful in the long-run. The major obstacle for this approach is the necessity to establish a
reference scenario that would represent safe grid operating conditions. To establish this, alarge
series of the conditions needs to be analyzed to become familiar with the spectrum of variability
for each indicator to establish signatures or patterns for impending problems.

An alternative approach, if feasible, could potentially lead to a promising detection of dynamic
instability of the power system. This alternative approach focuses on determining the transfer

function that describes the dynamic behavior of the entire power system, from which the standard
stability analysis methods can be applied. So far, no one has successfully established a power
system transfer function of sufficient accuracy with which to perform a meaningful stability
anaysis.

With the insights gained from the simulation and data analysis, the following recommendations
for additional research are made:

1. Under-frequency load control could provide an important grid reliability enhancement.
Although reactive in its response, an under-frequency load control strategy with frequency
responsive appliances and devices could provide reserves that are currently furnished by
generators that are either already spinning or that can be ramped up in their output.

2. To enhance fundamental understanding of the stability characteristics of the power system, it
is recommended that system identification techniques be used to approximate a real-time
transfer function of the entire power system. If areal-time system transfer function of
sufficient accuracy can be established, it would enable the use of standard stability analysis
tools for determining distance to the stability edge.

3. For dealing with voltage stability problems, we recommend the use of under-voltage relays of
induction motors, as found in compressor motors for air-conditioning systems and other
appliances The under-voltage protection prevents motor stalling caused by decreasing
voltage as aresult of aline fault or high system loading. The stalling of induction motors
perpetuates the decreasing voltage to a point, where the voltage may drop sharply and quickly
and propagate through the distribution systems as other electric motors reach the same
conditions.

vi

Table of Contents

EXECULIVE SUMIMIIY ...ttt sttt b et sb et st e b e et e saeesee e e e i
IR 0 oo [o o o S 1
2 DefiNItioN Of Grid SIFESS...cuiiiiiiiiiiieee ettt bbb nns 3
3 Development of a 1% Generation Load CONtrOHEScovcueeeieceeeeeeeeeeeeese s 5
3.1 Objective of First Generation Load CONLrollercceveeieiieeieeie e 5
3.1.1 What Electric Grid Events Can Be Detected in the Grid Frequency?cccccevevvevuenne. 5
3.1.2 Design Considerations for Local Frequency Measurementsceceeveereneeneerieneneens 7

3.2 Design and Implementation of the 1% Generation Load CONtrollerc.cocveevererveernnenss 7
3.2.1 Block Diagram of Simplified Load Controllercccvevieiiiiiiiiieece e 7
3.2.2 Frequency Sensor and Controller DESCIPLION.........cooveierererenere e 8
3.2.3 Prototype of 1% Generation Load CONtrOlEroveveeveereeeceeeeereeeeeseesesseesessessesenes 9
3.24 SOftWar€ DESCIIPLION.......ccueeieceeitecie ettt s n e e e s reenneenne e 11

3.3 Load Controller CapabilitiEScceeiieiiiiereeesee et 12
3.4 Valueof 1% Generation Load CONIOIENc.cuivcuireeeeeeieeeieeseseseeseeseses s sensssssenens 12

4 Development of Data AnalySiS Platfor Mi........c.ooeeiieiiiieiece e 13
g R 1 g1 0o (U Tox 1 o o RSP SRRPRR 13
4.2 ANAlYSIS TOO! PlatfOrM.... .ot 13
N R o - 10 11V USSRV 14
A.2.2 SOFIWEAIE ...ttt sttt et b et ae e s b e b e et e s bt et e et sre e be e 14

4.3 Reading REal- TIME DAccciriiiieiieeeeeiertere sttt 14
N [0 o 1130 TSRS PT PP 15
4.4.1 Development of Spectrum of aSignal........cooeevieiiiiececece e 15
4.4.2 SPECHA BANGS......coieeiiiiiitiiie ettt et ee s 15
G R 1 01 (= o] = USROS PPN 16
N = (1= USSR 16
445 SharpnesS DELECTION........coiiiiiiiirieeie ettt ae e 16

5 ANAIYSIS Of Gril StEESS....iciiieieiticie ettt e s e et e e e sreesre e s e sneesreeneeeneens 19
5.1 Mativation for Enhanced Load Controller for Detection of Grid Stress..........ccocevervreenne. 19
5.2 DYNaMIC StaDIHITY ISSUES......cccieeiiie ettt sttt e e e s nn e nneeenreens 19
5.2.1 Establishment of Grid Stress Conditions - Definition...........ccccevvevveveeneneneecenene 21
5.2.2 Anaysisof Grid Stressin the POwer SyStem.........cocevvviienincneneeeeseese e 22
oI T 1o o SO 29
5.24 Conclusions from Analysis of Simulation of Dynamic Stability.........c.cccecerieeinnnenne 30

5.3 Voltage Stability CONAITIONScceeiriiiiiirieriesie st 30
TG I R AN o o] (0= o 1SS 31
5.3.2 FINAiNgS and CONCIUSIONSccuiiiiiiiieiieesiee ettt sre e e ne e e snne e 31

6 ANAYSISOf Grid EVENES....c.oiciiceee ettt et st re e ne e be e e e enee e 35
6.1 Resultsfor the October 8, 2002, DiStUrDaNCe..........cevrieierire e 35
L300 It R 0 TS I T = TSR 35
6.1.2 Magnitude of Maximain SPECIIUMcoiiiiriiieeeee e 36

vii

0.1.3 StANAIA DEVIBLION..... et eaeeeeeeeeennees 37

6.1.4 SharpneSS Of MaXiMaL......c.coieiieriieieiie et sb e bt 38
B.1.5 INLEGIAL ...t bbb b e 39
6.1.6 Histogram Of MaXiMaL.........ccceiiueiuieieiieseee et ee e sre s e sne e e eaeenee e 40

6.2 ResUItSTOr AUQUSE 10, 1996ceoveeiiieieiiierieeiesee ettt sre b e e s se b e e 42
6.2.1 Magnitude of Maximain SPECIIUMccoviiiriiieiee e 43
6.2.2 Standard DEVIALION........ccueiirierieieieesie s sa b e 44
6.2.3 SharpneSsS Of MaXIM@AL.....c.eeiieeiiieiieesiee e see et e re st e sre e esae e sseessreesreeeseesreesnreens 45
B.2.4 INTEGIAL ...t bbb r e e ene e 47
6.2.5 Histogram Of MaXiMaL........cccccviueiieieeieieere e ee et te e ae e e ese e e sneeneeeneens 47

A o Tox U o] 1SS 51
8 RecommendationSfor FULUF@WOIKcooiiiiiiiiiiinceeeeee s 53
8.1 Under-frequency Load Control using Grid-Friendly ApplianCescccccevvvenenencnienne. 53
8.2 System ldentification Approach of the Electric Power System.........cccccevveveceececciecenne, 56
8.3 Prevention of Stalled INAUCtION MOLOIScooiiiieiiiie e e 57

O REFEIBNCES. ...ttt ettt b bt s e b e e bt e e e e he e b e et nhe e Re e e ne e be e naee e 59
Appendix A: Description Of FreqUENCY SENSOKcocoviiiiiirieniesee e e s see e 61
Appendix B: Source Codefor Controllersand Analysis Platform Software...........cc.ccoeue.. 63

viii

List of Figures

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1.

Figure 5-2:

Figure 5-3:

Figure 5-4:
Figure 5-5:

Figure 5-6:
Figure 5-7:

Figure 5-8:
Figure 5-9:

Figure 5-10:

Figure 5-11.:

Figure 5-12:

Figure 5-13:

System Frequency Response to the Loss of a Generator.ocevveeereervseeseennnn 6
Functional Units of a Frequency Sensor UNitccoccevveieiee e 8
Block Diagram of 1st Generation Load Controllercccovveveriineniniinesee 9
Front- and back-pane of the 1% Generation Load Controllercocoevvrenenenne, 10
Inside View of 1% Generation Load Controller ProtOtype...........oceeevveeereeseerereenens. 11
Schematic of Tool for Data ANAlYSIScceeevieeiieiiiece e 13
Definition of Sharpness at the Maximum of aDiscrete Signalccocvverereeneee 17
Second Derivative Used for Determining the Sharpness at the Maximum of a

DR s (S o = RS SP 17
Definition of Sharpness at the Maximum of a Discrete Signal by Determining

TNE ANGIE .t 18
Major Transmission Lines of the Western Electricity Coordinating Council

(WECKC) .ottt sttt ettt e b e ne e st e st e e et e ntesbesbenreenenneeneas 20
Southern California Import Transmission Nomogram. Locus X inside the

stability boundary is considered low stress. Locus H outside the boundary is
considered the high stress condition.ccceiiieiie e 21
Linear single input/single output model with (1) noise power p(t) input, (2) low

pass filter with 5 Hz break frequency, (3) transfer function, (4) noise response of
frequency f(t), and (5) Fast Fourier Transform or spectrum of frequency f(t). 23
Response at Lugo, California, to Chief Joseph Brake event.ccccoeeveeieneennens 25
Autospectrum of System Frequency at Lugo, California. Generated by FFT

with 60 second samples, Hanning squared window, and second-order |ow-pass
filter breaking at 5 HZ (SEe FIQUIE@ 5-3). ...eeoiiiiiiieeeeee e 25
Response at Vincent, California, to Chief Joseph Brake event.ccoceveverieneee. 26
Autospectrum of System Frequency at Vincent, California. Generated by FFT

with 60 second samples, Hanning squared window, and second-order |ow-pass
filter breaking @ 5 HZ.oeiiiee s 26
Response at Devers, California, to Chief Joseph Brake event.cccccceveeveeeenene 27
Autospectrum of System Frequency at Devers California. Generated by FFT

with 60 second samples, Hanning squared window, and second- order low-pass
filter breaking @ 5 HZ.coeiiiie s 27

WECC Breakup of August 10, 1996. Shown isthe real power at Malin.

Several events leading to the separation of the interconnected power system are
070 [T 1= o S 28
Spectrum of System Frequency Before and After the Keeler-Alstrom Line

Break, Recorded at Dittmer Control Station, WA.........ccoceeceevie e 29

Transfer Function Gp(s) at Table Mountain, California, for High-Stress Case

(North California Hydro=100%) and L ow-Stress Case (North California

[Y0 (00 RS RS 32
Spectrum of System Frequency at Table Mountain, California, for High-Stress
(North California Hydro=100%) and L ow-Stress (North California

Hydro=70%). These results were generated by FFT with 60 second samples,

Hanning sguared window, and 2nd order low-pass filter breaking at 5 Hz (see

Figure 5-3). Note that both spectraare identical.occoveiiienieicineeeeees 32
Figure 5-14: Transfer Function Gpr(s) at Round Mountain, California, for High-Stress Case

(North California Hydro=100%) and L ow-Stress (North California

HYArO=7090). ..ottt sttt b et sreesaeenteeneenneas 33
Figure 5-15: Spectrum of System Frequency at Round Mountain, California, for High-Stress

(North California Hydro=100%) and L ow-Stress (North California

Hydro=70%) cases. Results were generated by FFT with 60 second samples,

Hanning squared window, and 2nd order low-pass filter breaking at 5 Hz (see

Figure 5-3). Note that both spectraareidentical.ccooveveiceieece e 33
Figure 6-1: Grid Frequency Event, October 8, 2002...........ccveeeiieieiiieieesie e 36
Figure 6-2: Magnitude of Peaksin Spectrum, October 8, 2002..........cccooeeierirnenieneseeseeeee 37
Figure 6-3: Standard Deviation of Magnitude of the Grid Frequency Spectrum, October 8,

2002ttt e At b b h e Rt et et et et R b b ne e nneas 38
Figure 6-4: Sharpness as Defined by the Second Derivative of Spectrum for Band 2,

OCLODEY 8, 2002eecueeeeeeeeeeiestese e st et e e e see s e saestesreeaeeseeseeneensentestessenreeneeneeneas 38
Figure 6-5: Sharpness as Defined by Angle at Maximum of Spectrum, October 8, 2002.......... 39
Figure6-6. Valueof Integral between -120 dB Reference Line and Spectrum for Band 2,

(@ 0i0] 0 1< gt T2 00 2R 40
Figure 6-7: Histograms of Local Maxima, October 8, 2002..........ccceceveeieriesiereeeeeere e 41
Figure 6-8: Grid Freguency during WECC Breakup of August 10, 1996ccccceeeeeveriernnenee. 43
Figure 6-9: Magnitude of Maxima of Spectrum for Five Frequency Bands, August 10, 1996..44
Figure 6-10: Standard Deviation of Local Maxima, August 10, 1996..........ccccceveeevvrieneeresennnes 45
Figure 6-11: Sharpness as Defined by the 2nd Derivative of Spectrum for Band 2, August 10,

LS TSR 46
Figure 6-12: Sharpness as Defined by Angle at Maximum of Spectrum, August 10, 1996 46
Figure 6-13: Vaue of Integral between -120 dB Reference Line and Spectrum for Band 2,

for the August 10, 1996 EVENL.........cccoiiiiiiiieesee e 47
Figure 6-14: Histogram of Maxima, Band 2, Phase 1, August 10, 1996ccccccevvrirreenienenee 48
Figure 6-15: Histogram of Maxima, Band 2, Phase 2, August 10, 1996c.cccceveveiereeriesenne 48
Figure 6-16: Histogram of Maxima, Band 2, Phase 3, August 10, 1996ccccecveieiverieeeenne. 49
Figure 8-1: Frequency is tightly controlled under normal conditions and coordinated under

o o 0] 54
Figure 8-2: Impacts of Frequency-Responsive Loads Using Grid Friendly Appliances............ 55
Figure 8-3: Information sources in process identifiCation............ccocveeereeiennsennesesee e 56
Figure A-O-1: Printed Circuit Board of FrequenCy SENSOTcccoiierireeieiienene e 61

List of Tables

Table4-1: Definition of Bands in the Spectrum

Table5-1: Comparison of standard deviation and maximum-to- minimum (max-min) range
of frequency in high- and low-stress cases for three Californialocations.

Table A-1: Component List of Frequency Sensor Hardware...........c.cveveeeeieenenene e,

Xi

Acronyms

AC
AEC
AGC
AHU
CAISO
Col
dB

DC
FFT
FPGA
FSU
GFA
HVAC
Hz

kW
mHz
ms
MW
NERC
PCB
PDCI

RPM
SMUD
WECC

WSCC

aternating current

Architectural Energy Corporation
Automated generation control
air-handling unit

California Independent System Operator
California Oregon Intertie

Decibel

direct current

Fast Fourier Transform

Field programmable gate array
Frequency sensor unit

Grid-friendly appliance

heating, ventilation, and air-conditioning
Hertz (1/second)

Independent System Operator

kilowatts

millihertz (10 Hz)

millisecond (10°® second)

Megawett

North American Electric Reliability Council
Printed circuit board

Pacific Direct Current Intertie

remedial action schemes

Rounds per minute

Sacramento Municipa Utility District

Western Electricity Coordinating Council (name was changed from
WSCC in 2002)

Western System Coordinating Council

Xii

1 Introduction

This report summarizes the results of research initiated in April 2000 under funding from
the California Energy Commission and co-funding by the U.S. Department of Energy.
The objectives of this project were to develop, implement, and test new methods for
detecting precursors of impending problems in the California electric power grid and to
the extent possible devel op autonomous grid-friendly appliance (GFA) controllers based
on those methods. The approach pursued in this project utilized information that is
measurable at the wall outlet anywhere in California. The approach deliberately focused
on methods that do not require communication from an outside source, but rather
functionfully autonomously by relying on alocal frequency sensor that measures the
frequency of the AC power at the wall outlet and some control intelligence that can
ultimately be implemented at low cost in commonly used appliances for homes and
businesses.

During the course of the project, two load control prototypes were developed, built, and
tested. The first load controller prototype responds to under-frequency* events and rapid
decay in the grid frequency. This controller was designed to react to agrid event and
then trigger aload to trip off line. We demonstrated the prototype in the laboratory. In
an attempt to extend the responsive nature of the first controller prototype, precursors of
impending grid problems specific for California on which to base more advanced
autonomous load controllers were explored.

The proactive feature of a smart load controller was a particularly attractive research goal
during 2000 and 2001, when California faced the significant shortfalls of generation
capacity to meet demand. It became apparent during the early stages of this project that a
control device that measures the grid’s electrical properties at the wall outlet will never
be able to sense the California Independent System Operator’s (CAISO’s) emergency
stages (Stage |, I, and I11) because they are determined by the SO based on market data,
not exclusively by the physics of the electric power system. As a consequence, the main
research effort was re-focused on identifying grid stress as a precursor to power system
outages in California. After consultation with transmission planning engineers of the
CAISO, we focused on two grid problems of concern to the CAISO. For these problems,
we explored pre-contingency detection methods that could trigger aload reduction in
advance of an impending problem.

1 An under-frequency event is an excursion in alternating current frequency below the nomimal value of 60
Hz.

2 Definition of Grid Stress

Throughout this report we refer to conditions in the el ectric power system that we call
grid stress. Grid stress is a very broad term used to describe conditions where the
regional transmission system is approaching a dynamically unstable condition. Many
forms of grid stress may exist, such as voltage stress or stress which deteriorates small
signal stability, with each type being heavily influenced by different initial conditions.
In this project, we used the proximity of the grid to specific stability limits as expressed
in CAISO nomograms as the definitiors of grid stress.

The SCIT (Southern California Import Transmission) nomogram [CAISO 1998]
identifies the safe operation of the Southern Californiagrid as a function of total power
imports into Southern California, Southern California power imports from East of the
Colorado River only, and the Southern California System Inertia (with units of Megawatt
seconds or MWS). Operation within the boundaries of the nomogram is required for safe
operation of the power system. If the system were operated outside of the bounds of the
nomogram, then a worst-case disturbance? would cause power oscillations ultimately
resulting in a power system breakup and alarge-area loss of power.

There are other mechanisms that lead to grid stress aswell. Some are known and
accounted for within the design process of power systems, and others are not. Although
the focus of this report is on two mechanisms of grid stress, it isimplied that the concept
of stress detection can be applied more broadly.

2 Often referred to as the N-1 event.

3 Development of a 1% Generation Load Controller

3.1 Objective of First Generation Load Controller

The objective of the ssimplified load controller developed in this project wasto provide a
fast-responding control device that sheds load in response to a grid event. The controller
device senses the local grid frequency at the wall outlet and de-energizes the load, based
on two criteria. The criteriaare: (1) frequency below a specified threshold (an under-
frequency event) and (2) rate of frequency decay is greater than a user-specified
threshold. The load is re-energized after the load shedding criteria are no longer met,
utilizing a random waiting period between 0 and 1 minute to ensure that individual
appliances re-energize at dightly different times providing a smooth transitionfor the
grid.

3.1.1 What Electric Grid Events Can Be Detected in the Grid Frequency?

The grid frequency in any power system is automatically controlled at the generator to
maintain the nominal 60 Hz frequency. As aloads are turned on and off, generators
respond to the resulting load changes. Mismatches between generation and load cause
the generator to slow down or speed up. Since generators are synchronized to the grid,
the change in speed of a generator causes changes in system frequency. In order to
maintain a constant frequency of 60 Hz (or any other frequency set point determined by
the power control centers) automatic frequency controls (speed governors) at the
generator are required. Because sharp changes in grid frequency indicate imbalances
between generation and load, the change in frequency is considered to be the sole input
signa needed to detect the following major grid events:

tripping generation off line

major load switching (on or off)

unscheduled tripping of transmission lines (interruption of power flow to loads)
exhausted ancillary reserves

3.1.1.1 A Tripping Generator

A generator trip of sufficiently large capacity (i.e., several hundred MWs) causes an
immediate imbalance between the generationand the load. Instantaneoudly, the power
for the new load is supplied by all other generation attached to the grid. Thisis
accomplished automatically by the laws of conservation of energy. The new power
delivered comes from the rotational kinetic energy of the generators attached to the
electric grid, and results in a decrease of speed (and frequency) until speed governors for
these units are able to increase their mechanical power input and match the new load.

Depending on the amount of generation lost, the amount of inertia on the grid, the
amount of reserve generation available, and frequency response characteristicsof al
sped governors, the frequency drop may be smal (e.g., a few mHz) and brief (a few
seconds) or severe (~100 mHz) and prolonged (over a minute in duration). Figure 3-1

shows a frequency excursion caused by a generator trip and recovery back to the nominal
60 Hz frequency after 10 seconds

Frequency (Hz)
59.90 59.95 60.00 60.05 60.10

1120

e

- 5;/ Nominal Frequency Recovered

pRoD Tripping of a Generator

1050

1040

1030

1020

Time (seconds)

1010

1000

0950

Figure 3-1: System Frequency Response to the Loss of a Generator.

3.1.1.2 Tripping a Transmission Line

A transmission line trip is generally caused when aline is short circuited because of a
lightning strike, shorting out by trees, or by other relay protective actions. The line break
typically causes aload loss, resulting in a brief over-generation, causing the grid
frequency to increase. The opposite may also occur, in which case, more generation is
removed than load, resulting in an under- generation condition, causing the grid frequency

to decay.

3.1.1.3 Exhausted Ancillary Reserves

Power systems planning engineers design the power system to withstand, at minimum, a
single-point failure (called an N-1 contingency). Although the system is designed to
survive any single-point failure, the dispatch of generation reserves protects the system
from more serious system casualties and provides additional margin for unanticipated
load or lost generation. During situations of strained resources, however, when, for
instance, multiple generation outages occur, the frequency excursion can be particularly
severe (i.e., causing a large frequency drop) and recovery from it, back to normal
conditions, may be prolonged over several minutes.

3.1.2 Design Considerations for Local Frequency Measurements

The typical dead band of a speed governor’s frequency control of about 0.036 Hz was
used as a guide for determining the needed frequency resolution of our sensor [Kirby
2003, Hirst et a. 2003]. According to the North American Electric Reliability Council
(NERC) policy, generators greater than 10 MW in rating should operate utilizing
frequency responsive governors. These governors should be capable of providing
immediate and sustained response to abnormal frequency excursions, providing a 5%
droop characteristic, and fully responsive to frequency deviations exceeding + 0.036 Hz
(= 36 mH2). [NERC 2002].

For thisanalysis, a sampling rate was used that provided a resolution of 0.036 Hz asan
upper bound to meet the accuracy requirements. It is desirable to have a higher sampling
rate to differentiate random fluctuations within the generator’ s dead band from those that
are affected by generator control action. Practical considerations determined by the cost
to build and calibrate the sensor limited the resolution. Furthermore, there is a trade- of f
between resolution and measurement range given memory constraints of
microprocessors. This limited the resolution of the sensor to about 1 to 2 mHz for a
measurement range of + 100 mHz about a nomina 60.0 Hz AC grid frequency.

3.2 Design and Implementation of the 1°' Generation Load Controller

Commonly deployed standard frequency counters for laboratory use, like the HP 53131A
device from Hewlett Packard [HP 2003] or the HAMEG HM 8021 [HAMEG 2003], are
not adequate for a prototype implementation. They use long periods, 1 second or more,
to achieve the required resolution at low frequencies (< 100 Hz). The results presented by
these counters are average values and, therefore, inappropriate for this analysis, since we
need to quickly detect frequency changes (i.e., within two or three 60 Hzcycles).

Most industrial products that specialize in higher resolution frequency measurements
have atypical accuracy of about 0.1% (0.1% of 60 Hz is 60 mHz). Thisis insufficient
for measuring the frequency excursions typically observed during grid events Most of
these frequency sensors cannot measure the frequency within one or two cycles and are
gererally designed to measure high-frequency signals (e.g., audio frequencies, rounds per
minute (RPM) of engines, and radio frequency signals).

Utility- grade frequency meters used for under-frequency load shedding at substations are
very expensive (>$10,000) and typically offer extra features that are not applicable. The
costs would be prohibitive for use on appliances.

3.2.1 Block Diagram of Simplified Load Controller

Figure 3-2 shows the most important functional units of a frequency sensor unit (FSU)
attached to a load.

48152 Mz (T=203n2) ||
Crystal 7 17-Stage Binary
Oscillator RESET Counter
Power A
Qutlet +
i) Zero- - C - s £
Voltage Synchronization/
L H=— Crossing- & f
oy Divider Detector Pulse Generation '
Loan 8-Bit- Range Hit /
Latch -Miss-Logic
Ly
To e.g. PC-Enhanced Parallel Port
Load) .
E \ Software | < User Override Option
Approx. Resolution & Accuracy: 1.5 mHz £ 1 Digit PRl Horhues Naonal sbertory SRR
Frequency Sensor for Grid-Friendly
Appliances
Rewizion: 1.0 May 31, 2001 Page 1af 1

Figure 3-2: Functiona Unitsof a Frequency Sensor Unit

3.2.2 Frequency Sensor and Controller Description

Figure 3-3 illustrates the major functional components of the 1% generation load
controller, including the frequency sensor, PC as controller, the relay, and the load. A
complete and detailed list of the sensor components is provided in Appendix A:
Descriptionof Frequency Sensor.

The features of the frequency sensor are:

Hardware data acquisition every 16.67 ms (60 samples/second)
Hardware averaging of last six values.

Sensor range: 60 Hz + 100 mHz

Resolution: 1.5 mHz

Accuracy: = 1.5 mHz

parallel
/ port
PC Relay

Wall

outlet

S+
120V
AC Frequency
sensor

Figure 3-3: Block Diagram of 1st Generation Load Controller

Interface: 8-bit parallel for PC-enhanced parallel ports or any micro-controller
0 7 datalines
0 1-bit hardware used to communicating frequency outside the specification
range (60 Hz + 100 mH2)
Required inputs: Grid voltage (line, neutral); 9 V DC (20 mA each)
Interrupt signal generation available
Costs: components about $10 (at sample quantities) plus cost for printed circuit
board of $10 in large volume production.
Physical dimensions of PCB (length x width x height):
123.5 mm x 56.0 mm x 18.0 mm (4.86 in. x 2.20 in. x 0.71 in.) including
connectors.

3.2.3 Prototype of 1°' Generation Load Controller

The prototype is a standalone load controller combined with a frequency sensor. A
sngle- board PC made by Advantech (Advantech BiscuitPC processor board)
[Advantech 2003] monitors frequency and performs the load control action utilizing a
solid-state relay that supports loads up to 1.5 kW. There are two power receptacles at the
back of the prototype (see Figure 3-4).

The PC runs on an MS-DOS operating system and boots up automatically when power is
turned on. A small, 20 x 8 character LC-display® shows system status. Three
programming buttons allow the user limited resetting of l1oad shedding threshold values.

3 Eight-line serial LC-display (SEETRON G12864 V2.0, see http://www.seetron.com/slcds.htm for
details).

Figure 3-4: Front- and back-panel of the 1% Generation Load Controller

The three pushbuttons have the following functions:

Button 1: Toggle Mode; toggles between the automatic and override modes. In
automatic mode, the load controller monitors the grid frequency and opens the
relay if the user-definable frequency threshold criteria are met. In the override
mode, the user closestherelay to override aload curtailment.

Button 2: Toggle Settings; push to display the load shedding criteria (i.e., over-
and under-frequency criteria and rate of frequency decay criterion)

Button 3: Enter/ESC; confirms messages and exits the program.

For programming, a PC-keyboard connector is provided.

A photograph showing the major components inside the prototype is shown in Figure 3-5.

10

2 Power TestSignal Power 154 Power
Outlets Input Relay Fusze Input

Input Select Switch
("OH" = Grid,
"OFF" = Test Input)

Frequency Sensor
Unit (FSU)

Power Supply

8 MB FlashDisk

Advantech CPU-Board
(CPC-2245H)

Advantech Base Board
(CPC-2420)

Reset-Button

Power Power AT-Keyboard 20x8 Character
Switch Indicators Connector 3 Push-Buttons LC-Display

Figure 3-5: Inside View of 1% Generation Load Controller Prototype

3.2.4 Software Description

The software to evaluate the grid frequency signal has been written completely in
Borland Turbo C v. 2.01 for MS-DOS and can be executed on an ordinary PC or
compatible running one of the following operating systems [Groll et a. 1998]:

MS-DOS 5.0 or higher
Microsoft Windows 3.x
Microsoft Windows 95/98/ME.

The software (current version is 1.0.1.3) provides two basic modes of operation:

GFA Load Control Logic Mode
Data Logger Modes for Data Acquisition Purposes.

Both versions can currently take advantage of the LPT1 parallel port of any PC or the
Advantech BiscuitPC processor board, as shown in Figure 3-5. The software code is
given in Appendix B of this report.

11

3.3 Load Controller Capabilities

Control software was developed to retrieve frequency data from the sensor at arate of 10
samples per second. The frequency data are compared to the following user-definable
load curtailment criteria

1. Under-frequency criterion: grid frequency < 59.95 Hz, the default set point.
2. Rapid frequency-decay criterion: rate of frequency change < -0.125 Hz/sec, the
default set point

The criteria above were independently tested. If one of the above criteria is met, the load
is de-energized. If triggered by an under- frequency event, two conditions must be met
before the load is turned on again. First, the frequency must recover by a user-definable
value above the under-frequency set point (default is 10 mHz) and after atime lag of
random duration between 0 and 30 seconds, the load is reconnected. The random time
lag prevents all loads from turning back on all at the very same time after a frequency
event, which could cause a rebound effect, potentially tripping other overload relays on
transmission or generation equipment.

If rapid frequency decay triggers a load curtailment, the load is reconnected after a
random time lag following the time when the frequency-decay criterion is no longer met.

Detailed information on the controls software can be found in Appendix B.

3.4 Value of 1%' Generation Load Controller

The 1% generation load controller is responsive to imbalances between generation and
load that manifest themselvesin reductionsin grid frequency as the turbines and
generators are slowed down. This condition can occur if very large loads (e.g., arc
furnaces) are rapidly turned on or if generation or transmission capacity is tripped off
line. In most cases with sufficient generation reserves, the frequency will recover to its
normal set point as generation is redistributed across a large interconnected power
system, meeting the load. An under-frequency load shedding scheme implemented at
end-use devices and appliances has great potential value associated with its ability to
displace reserve generation capacity. This reserve capacity isrequired to be available
during fast responses of unplanned generation and transmission outages [Kirby 2003].
Instead of utilizing generation to correct a frequency error, control of loads could be used
to achieve the same effect. Thus, the economic value of a frequency responsive load
controller would be similar to that of spinning reserves.

12

4 Development of Data Analysis Platform

4.1 Introduction

Two types of data were analyzed in this study, data from simulation of the electric power
grid and empirical data collected from the actual grid during operation (including during
well-known grid events). In support of analyses of field data, hardware and software
tools were developed that enabled us to develop and test detection methods and new load
shedding algorithms. We specified that the tools be versatile to be used for real-time
analyses as well as for analyses of historic data. Two data input streams were
implemented to process: (1) real-time data measured at the wall outlet and (2) historic
data of known grid events stored in data files.

4.2 Analysis Tool Platform

The analysis tool platform consists of apersonal computer with a specia purpose ISA
card. TheISA card contains afrequercy sensor system and a solid state relay for load
shedding. The analysis tools are implemented in ANSI C programs executed on a Linux
operating system [ANSI 1988]. Datafor the analysis can be provided either by the
frequency sensor in 100 ms intervals in real time or by reading from adatafile. The
functional blocks of both hardware and software are shown in Figure 4-1.

PC with Linux Operating System

Analysis tools
« signal processing
« control

Frequency
Data File

Load |~/ mwy | oL —

(I Wall Outlet

Figure4-1: Schematic of Tool for Data Analysis

13

421 Hardware

The hardware used for this project is a personal computer with a multi-tasking Linux
operating system that provides data acquisition of grid frequency signals and real-time
signal processing capabilities.

The computer is a Dell with a 400 MHz Pentium processor and 64 MB of internal
memory, running a Redhat Linux* operating system. The computer has a special-purpose
ISA card that accommodates a frequency sensor for measurements of the AC power-
supply frequency and a solid state relay that opens and closes a contact to a small load.
The solid state relay can be accessed by software for load shedding purposes. The
specifications of the frequency sensor are identical to those discussed in Section 3.2.2.
The logic and hardware implementation was optimized to fit into a field programmable
gate array (FPGA) architecture that reduced the size to a 2 by 3 inch section on the board.
We used the MAX 7000A model designed by the Altera Corporation for the FPGA
[Altera 2003].

4.2.2 Software

All necessary Linux drivers to perform real-time data acquisition were developed (see
Appendix B). Linux drivers are executable software modules that are loaded into the
Linux kernel during PC start-up and, thus, become part of the operating system functions.
The signal processing software was devel oped as an application program and as such
needed to be called by the user after the operating system was loaded. Both Linux
drivers and signal processing routines were written in ANSI C programming language,
utilizing the C compiler resident in the Linux operating system [ANS| 1988]. Detailed
information on the controls software of the data analysis platform can be found in
Appendix B.

4.3 Reading Real-Time Data

In the real- time mode, data are read from the frequency sensor. The Linux driver reads
256 frequency data points each time it requests data from the sensor. With a sampling
frequency of 10 samples per second (read at 100 ms time intervals), 256 samples
comprise atime period of 25.6 seconds. A dliding time window of 25.6 seconds length
was implemented that advanced in time every 100 ms, receiving 10 new data points and
discarding the 10 oldest data points.

The real- time data acquisition and the synchronization with analysis programs were
tested to assure that the analysis is completed before the next updated data set is
processed. Execution of the analysis routines was found sufficiently fast to finish before

4 Version 6.1 released on October 07, 2000.

14

the next batch of dataisread. An alarm messaging wasimplemented to alert the user to
potential time conflicts in case the analysis took too much time and prematurely aborted
because the next data retrieval started.

4.4 Algorithms

Severa software routines were developed for analysis of the grid frequency signal. The
selection of routines was guided by the findings of the simulation results in Section 4.
We hypothesized that impending problems of high-stress conditions are potentially
detectable by: (a) greater absolute maxima in the gain of the spectrum, (b) overall greater
absolute gain values of the spectrum in the relevant frequency range between 0 and 2 Hz,
and (c) sharper maxima, compared to |ow-stress conditions.

To capture these characteristics in the spectrum, we established analytical tools consisting
of software routines that would perform the following rudimentary functions:

Generation of the spectrum

Determining the maxima in the spectrum

Determining area under the spectrum by frequency bands

Determining sharpness or pointedness of the spectrum at the locations of the maxima.

Sections 5.4.1 through 5.4.5 provide brief overviews of the analytical tools.

4.4.1 Development of Spectrum of a Signal

The discrete Fast Fourier Transform (FFT) algorithm as described in [Press et al. 1993]
was used to compute the spectrum of the grid frequency signal. Of interest was only the
magnitude of the spectrum to indicate oscillatory content of the signal, not the phase
angle of the signal. The magnitude of the spectrum was computed in terms of commonly
used decibel (db) notation.

4.4.2 Spectral Bands

The interesting range of the spectrum is between 0 Hz and 2 Hz. Frequencies above 2 Hz
are likely to contain less information on the system’s oscillatory behavior and are more
likely to contain higher random noise contributions. Because the 0 to 2 Hz bandwidth is
relatively large for detecting changes as a function of time, we segmented this frequency
range to isolate frequency regions of interest. Table 4-1 shows the five bands into which
it was segmented. The frequency range within each band was represented by 10 discrete
data points with an equal distance of 0.04 Hz between them.

15

Table 4-1: Definition of Bands in the Spectrum

Band Frequency range
Band 1 00Hz-0.4Hz
Band 2 04Hz-0.8Hz
Band 3 08Hz-12Hz
Band 4 12Hz-1.6Hz
Band 5 1.6Hz—-2.0Hz

4.4.3 Integral

The first characteristic of the frequency signa is the integral of the spectrum. It can be
interpreted as a general indicator of the oscillatory content in a frequency band. A

routine that determines the area under the spectrum in each frequency band was
established.

444 Maxima

A function was implemented that locates local maximain any function and determines
the absolute value of each maximum. The local maximum is found if the first derivative
is zero and the second derivative is negative.

4.45 Sharpness Detection

4.45.1 Definition of Sharpness

The measure of sharpness of a curve at its maximum or multiple maxima was defined in
terms of a change in the slope of a curve at its maximum. The magnitude of the second
derivative at the maximum of a curve is directly related to the curve' s sharpness and was
used as a sharpness index. Another, perhaps more intuitive definition, was used that
defines an angle spanned by the peak. Both definitions were used and implemented.

Figure 4-2 schematically shows three variants of how the peak inadiscrete signal can
occur. We investigated the importance of considering a five-point peak ensemble (see
Figure 4-2b) versus a three-point ensemble (Figure 4-2aand c). According to our
analysis of the spectra from historical grid frequency data, the scenario in Figure 4-2b
rarely occurs. Most common peaks are similar to that shown in Figure 4-2-c. Asaresult,
we established athree-point peak- finding routine for determining the sharpness of peaks.

16

+

a)

- _

__°__________

———e e —

____‘._______

——

—_—_————

——— e —————

—_——————

c)

____‘._______

Figure 4-2: Definition of Sharpness at the Maximum of a Discrete Signal

4.4.5.2 Definition of Sharpness Using Second Derivative

Figure 4-3 displays the discrete signal, and its first and second derivatives. We chose a

forward-differencing strategy that assigns the difference of two nodes to the first node.

Adopting this approach, the second derivative is then assigned to the first node of the

three-point peak ensemble as shown in

Figure 4-3.

f (n)

f (n)

f* (n)

ny n, Ny
| ?
'
I //// \\
I | & N\
I Y
| T
' >
Aq
AN
\
< -
\
\
\
% |
|
ol
A\

Figure 4-3: Second Derivative Used for Determining the Sharpness at the Maximum of a

Discrete Signal

17

4.4.5.3 Definition of Sharpness By Angle

Another method of measuring sharpness is by calculating the angle at the peak, as shown
in Figure 4-4.

y A

X2,¥2

X1,Y1
X3,Y3

>
X

Figure 4-4: Definition of Sharpness at the Maximum of a Discrete Signal by
Determining the Angle

The angle is determined by calculating the angle spanned by the slopes to the right and
left from the peak using the following triangular relationship:

0 - 0
Yig Y3- Yo g

a(z =
a= arctang
Yo -

18

5 Analysis of Grid Stress

This section presents the analysis of grid behavior and development of grid-stress
detection methods based on simulations of the electric power grid.

5.1 Motivation for Enhanced Load Controller for Detection of Grid Stress

The frequercy-based load controller respords to declining grid frequency. This condition
is generally encountered when generation capacity or major bulk power transmission
lines are disrupted. Other grid-stress conditions, however, exist that potentially can lead
to overload conditions on the transmission system. Detection of precursors to these
conditions so that grid-stress events could be anticipated or even prevented would be
quite valuable, but detection of impending events is very difficult and little is known
about thistoday. These are the conditions that |ead to a generation or transmission
outage rather than those that are caused by an outage. Examples are oscillatory behavior
of bulk power flows or voltage collapse.

Because of the recognition that oscillatory power flow and voltage collapse conditions
are of high importance to the California power system, these conditions were investigated
further to learn more about how they manifest themselves at wall outlets throughout
California. The goal was to design signature detection algorithms for identifying these
conditions. To this end, a smulation study of the Western Electricity Coordinating
Council (WECC) of which Californiais a part (see Figure 5-1), was undertaken to
analyze the power system under various conditions. In particular, dynamic stability
conditions, which limit the imports from the Southwest into Southern California, were
analyzed. These conditions are well known to the California Independent Systems
Operator (CAISO) and regional transmission system operators. Transmission planning
engineers developed operating nomograms that specify safe operating ranges for the
California power grid under various load conditions. These nomograms are utilized to
define two very different operating conditions that represent: 1) avery low stress
operating point and 2) a very high stress condition A sequence of simulations was used
for the low and high stress conditions and data at various nodes in the California power
system were analyzed. The results were then compared for significant differences, which
were used to find a power system signature for identifying an impending operational
issue.

5.2 Dynamic Stability Issues

The following section describes the low and high stress conditions that were analyzed to
determineif the onset of a violation of the Southern California Import Transmission or
SCIT nomogram [CAISO 1998] could be detected using a system signature.

19

BRITISH COLUMBIA

PRINCE RUPERT

P KEMANG

Round
Mountain

BAN FRANCISCO
AREA

4

VANCOUVER ‘
AREA

[IMLEDUW

ALBERTA
i | 500 km |
, PEACE CANYON | 1
WILLISTON
SUNDANCE
MICA
LANGDON .
(.‘mNannK l '
. -
i ‘ CANADA
USA
FI.PECK
FT. PECK

COLSTRIP

SALT LAKE
ITY AREA
) DENVER
] AREA
men

Vincent ks r—
(not marked [MANDING d o ——
/]
on map) | ?’ 7Y [\
LOS ANGEL TG, /‘" I
AREA ih‘-‘ CORONADOY 1:[]‘::‘_'1017"—“0["’-
Lugo '\,,w , J
Dever - Ay
T VERDE
[@ HVDC Terminal WA
"-I MEXICO)rﬂ;

Figure5-1: Major Transmission Lines of the Western Electricity Coordinating Council

(WECC)

5.2.1 Establishment of Grid Stress Conditions - Definition

Grid stress is a very broad term used to describe a condition where the regional
transmission system is approaching a dynamically unstable condition. Many forms of
grid stress may exist, and each may be heavily influenced by different initial conditions.

In this project, the nearness to one specific stability limit was used as an indicator of grid
stress.

One of the specific stability limits is defined by the SCIT (Southern California Import
Transmission) nomogram [CAISO, 1998]. This nomogram identifies the safe operation
of the Southern California grid as a function of total power imports into Southern
California, Southern California power imports from East of the Colorado River only, and
the Southern California System Inertia (in units of Megawatt seconds or MWS).
Operation within the boundaries of the nomogram is required for safe operation of the
power system. If the system is operated outside of the bounds of the nomogram, then a
worst-case (N-1) disturbance would cause power oscillations ultimately resulting in
power-system breakup and a large-area loss of power.

The two scenarios shown in Figure 5-2 were ssimulated. The low stress case isinside and
the high stress case outside the stable envelope for operation. A system breakup would
occur for the case outside the envelope (point H) if and only if a worst case N-1
disturbance were to occur, whereas the case operating inside the SCIT curves would
remain stable under such a worst case system disturbance. For analysis of these cases,
only avery small disturbance was initiated, not enough to cause instability, but enough to
capture the system ringdown response for the two cases shown. The results could then be
used to quantify the damping of the model for both cases.

Southern California
Import Tramsmission
Stability Limits

stability boundary

high stress locus

SCIT Imports [MW]

low stress locus

Power Imports from East of Colorado River [MW]

Figure 5-2: Southern California Import Transmission Nomogram. Locus
X inside the stability boundary is considered low stress. Locus H outside
the boundary is considered the high stress condition

21

5.2.2 Analysis of Grid Stress in the Power System

We explored how the different degrees of grid stress could manifest themselvesin the
transmission system throughout the entire Western power system. To do this a set of
power system stability simulations of the Western power system for high and low grid
stress cases was performed. The results from these simulations were analyzed with
respect to their dynamic behaviors and compared.

5.2.2.1 Simulation

The dynamic stability simulation was performed for the WECC transmission grid. The
simulation used a full model of the western North American power system developed by
WECC member utilities| GE 2001]. Stability studies are typically performed by inducing
an event such as a power demand spike in the system, which triggers a significant system
response. The response is then analyzed. For the power system of the WECC, this has
traditionally been done by inducing an instantaneous power demand of 1400 MW for 0.5
seconds followed by an instantaneous drop of the same magnitude at the Chief Joseph
power station in the State of Washington (generally referred to as a Chief Joseph Brake
Insertion). The system impulse response represents the system itself, and is then

analyzed for both the low and high stress conditions.

The following steps detail our simulation approach:

1. Construct two dynamic models of the WECC system, representing high and low grid
stress cases. The simulation was performed using General Electric’'s Positive
Sequence Load Flow (psif) simulation environment [GE 2001].

2. Quantify the level of grid stress in each model by modeling the Chief Joseph Brake
and analyzing the damping of the oscillatory modes of the power system. The modes
and damping of the power system for the two cases were determined using a Prony
analysis technique.

3. Convert the frequency versus time response into a single input/single output linear
model, Gy(s) transfer function with power as input and frequency as output (see
Figure 5-3). The transfer function is valid only for power inputs arnd frequency
responses at their original locations.

4. Create apower (Gaussian white noise with constant power density/frequency) vs.
time signal to represent and simulate system noise attributable to random phenomena,
such as generators and loads being turned on and off-line.

5. Input the power (noise) signal into the single input/single output linear model and
obtain the resulting frequency versus time signal from the model output. This signa
is now assumed to represent the local "wall outlet” frequency we might directly
measure at aresidence's 120 V wall outlet. While the single input/single output
mode! with the transfer function Gy(s) strictly simulates the system frequency as a

22

function of power at a specific substation in the transmission grid, we assume that the
frequency changes across transformers downstream into the distribution systemsto
the end-use devices are negligible. Under this assumption the frequency at the point
of analysisisidentical to the frequency seen at the wall outlet.

6. Characterize the frequency signal using:
a. Min-to-Max amplitude band
b. Standard deviation of amplitude
c. Minimum or maximum rates of change in frequency amplitude
d. Peaksin the Fourier Transform of the frequency response.

7. Compare the results from characterization of the frequency signals to the known
system stress and devel op correlations regarding system stress and various frequency
characteristics.

The linear single input/single output isillustrated in Figure 5-3.

@ 2 3) 4) ©)

Gaussian Low pass filter transfer noise response fast Fourier
white noise for 5 Hz break function of frequency f(t) transform of f(t)
power p(t) frequency

' V“ " “ kwww FFT(f(t))

— [\ +—— G,9 FFT ¢——

A 4

Figure 5-3: Linear single input/single output model with (1) noise power p(t) input, (2)
low pass filter with 5 Hz break frequency, (3) transfer function, (4) noise response of
frequency f(t), and (5) Fast Fourier Transform or spectrum of frequency f(t).

5.2.2.2 Simulation Results

The simulation results are shown in Table 5-1 and Figures Figure 5-4 through Figure 5-9.
They indicate clear differences between the high and low stress cases in the system
frequency response to the Chief Joseph Brake for different locations throughout
California. The differences were all consistent. They showed the following
characteristics:

23

Higher standard deviation in the frequency signal for the high stress case (see Table

5-1).

Higher min-max range in the frequency signa for the high stress case (see Table 5-1).

Higher and for some peaks sharper maxima in the system transfer function Gy(s) for
the high-stress case (see Figure 5-4, Figure 5-6, and Figure 5-8).

Higher magnitude in the autospectrum of the frequency signal for the high-stress case
(see Figure 5-5, Figure 5-7, and Figure 5-9).

Table 5-1: Comparison of standard deviation and maximum-to- minimum (max- min)
range of frequency in high- and low-stress cases for three California locations.

L ocations High Stress Low Stress
Standard Max-Min Standard Max-Min
Deviation Deviation

Lugo, CA 10.1 x 10° 7.7 x 10° 7.3 x 10° 5.4 x 10°

Vincent, CA 9.8 x 10° 7.8 x 107 6.9 x 10° 5.3 x 107

Devers, CA 10.4 x 10° 7.8 x 10% 7.6 x 10° 5.7 x 10%

24

Comparison of Lugo High and Low SCIT Cases
_60 1 1 1 1 1 1 1 1 1
. high stress case
-651 sharp maximum i
~70 low stress case -
smooth maximum
Q -75- -
@
2
o -80- 3
Q.
(2]
2
85 L
-90 L
-95 L
-100 : : 5 :
00 02 04 06 08 10 12 14 16 18 20
Frequency, Hz

Figure 5-4: Response at Lugo, Cdifornia, to Chief Joseph Brake event.

-100 T T T T T T T T T
Lugo High SCIT (60 sec sampling interval)
120 — — — Lugo Low SCIT (60 sec sampling interval)
high stress case
-140 / .
) low stress case
S
o -160 | | .
©
=2
=
2 -180 .
p=
-200 -
-220 .
/
-240 1 1 1 1 1 1 1 1 1

00 02 04 06 08 10 12 14 16 18 20

Frequency [HZz]

Figure 5-5: Autospectrum of System Frequency at Lugo, California.
Generated by FFT with 60 second samples, Hanning squared window, and
second-order low-pass filter breaking at 5 Hz (see Figure 5-3).

Comparison of Vincent High and Low SCIT Cases
‘60 1 1 1 1 1 1 1 1 1

High stress case

-807

Response, dB

-1007

/
:’

Py

-1107 I

'120 T T) T T T T T T
00 0.2 04 06 08 10 12 14 16 18 2.0

Frequency, Hz

Figure 5-6: Response at Vincent, California, to Chief Joseph Brake event.

'100 T T I I T I T T
Vincent High SCIT (60 sec sampling interval)
——— Vincent Low SCIT (60 sec sampling interval)
-120 1
high stress case
-140¢ low stress case i
o |
2. -160} .
()
o
2
S -180} 1
a
=
-200+ 1
-220¢t 1
/
-240 1 1 1 1 1 1 1 1 1

00 02 04 06 08 10 12 14 16 18 20
Frequency [Hz]

Figure 5-7: Autospectrum of System Frequency at Vincent, California.
Generated by FFT with 60 second samples, Hanning squared window, and
second-order low-pass filter breaking at 5 Hz.

Comparison of Devers High and Low SCIT Cases
_55 L 1 1 1 1 1 1 1 1

High stress case

1 1
(o] ~
o a1

L N

Response, dB
I
o1

-95 7

-100 1 i

-105 \ - - - - -
00 02 04 06 08 1.0 12 14 16 18 20

Frequency, Hz

Figure 5-8: Response at Devers, California, to Chief Joseph Brake event.

_100 T T T T T T T T T
Devers High SCIT (60 sec sampling interval)
— — — Devers Low SCIT (60 sec sampling interval)

high stress case
/ low stress case i

-120

-140

-160

-180

Magnitude (db)

-200 |

-220

_240 1 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Frequency [Hz]

Figure 5-9: Autospectrum of System Frequency at Devers, California.
Generated by FFT with 60 second samples, Hanning squared window, and
second- order low-pass filter breaking at 5 Hz.

5.2.2.3 Real Data from the WECC Breakup of August 10, 1996

On August 10, 1996, the WECC experienced a system-wide breakup with major regional
power outages. Figure 5-10 shows the autospectrum for the real power transient leading
up to the separation of the interconnected system. The first of a series of events was the
Keeler-Allston line trip. (See Figure 5-10 at about 400 seconds on the time axis). Figure
5-11 shows the autospectrum of the system frequency at the Dittmer Control Center in
Vancouver, WA, before and after the line trip. The autospectrain Figure 5-11 have very
similar characteristics to the smulated results shown in Figure 5-5, Figure 5-7, and
Figure 5-9. A conparison between the low and high stress conditions and the before- and
after-line-break conditions indicates that the spectrum of the high stress condition
correlates with that of the after-the- line-break condition and, similarly, the spectrum of
the low stress condition with that of the before-the-line break condition. Thisisavery
intuitive result. The grid stress after the line break was likely significantly increased,
having led 5 minutes later to a cascading effect, which ultimately caused a system

break up.

008 Malin-Round Mountain #1 MW
caselD=Augl0E5loadPF casetime=04/16/98 14:41:48
\P/PSM at Dltw:r Control Center 15:48:51
1500 1 Vancouver, Out-of-Step separation —
{ [1542:03 _ _ 15:47:36
Keeler-Allston line trips Ross-Lexington line trips/

1400 - ! McNary generation drops off
2 I
= 4
. /
2 1300 T
e 0.276 Hz
© 4 0.252 Hz
a4 0.264 Hz,

1200 T 3.46% damping

(see detail)
Reference time = 15:35:30 PDT
1100 T T T T T 1
200 300 400 500 600 700 800
Time in Seconds

Figure 5-10: WECC Breakup of August 10, 1996. Shown isthe real power at Malin.
Severa events leading to the separation of the interconnected power system are indicated.

28

-20

-40

=
-

-60

After Keeler-Alstrom line trip
‘ /
Before Keeler-Alstrom line trip

==
“mg
-

m -80 1 &
© H 2 Il A X} ‘- [}
£ ’l 1\ "\' i~ n
) ~ \ A [A]
S100 v YA MY
° [‘a - "I
5} v/ ‘,’ [N L]
3 v * Ay W,
2120 SR LR Y
5 \) P
< N (H 14
I

2140 4 ‘|' - |', ‘{ L
-160

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Frequency in Hertz

Figure 5-11: Spectrum of System Frequency Before and After the Keeler-
Alstrom Line Break, Recorded at Dittmer Control Station, WA

5.2.3 Findings

The results of this analysis reveal the following:

The simulation results indicated recognizable differences between the high and low
stress cases in the frequency response of the system to the Chief Joseph Brake for
different locations throughout California. The differences were all consistent.
Recorded data from the WECC breakup of August 10, 1996, indicate similar
characteristics before and after the Keeler-Allston line trip compared to the low and
high stress cases in the smulation. 1t was shown that the oscillatory content in the
real power after the Keeler-Alston line break increased, which then precipitated other
contingencies, which led ultimately to the system breakup [Hauer 2001] (see Figure
5-10). It can be argued that grid stress after the Keeler-Alston line trip increased to a
degree potentially detectable by an agorithm that would be implemented in the load
controller. The Keeler-Alston line trip and its impact onthe stability of the grid could
be considered as an early warning sign, which the load controller will need to be able
to detect.

The simulation results and the analysis of the recorded data for August 10, 1996, support
our notion that in the high voltage transmission system, the system frequency signal
contains important information as the power system changes from alow stress to a high
stress state that could be exploited in a detection algorithm. While our analysis to date
has only investigated frequency signals of three California locations, we expect that these
results can be replicated for other locations in California and throughout the WECC area.

29

It should also be mentioned that the particular definition of grid stress used in this project
is not arigorous definition, but serves well to define impending grid related problems.
There are potentially an infinite number of stress conditions that may be locationally
dependent, however, most are low probability events.

5.2.4 Conclusions from Analysis of Simulation of Dynamic Stability

The results of the analysis to date support our basic hypothesis that local detection of
global system problems is feasible. While we have demonstrated this concept for three
locations in California, we feel optimistic that these results apply more generaly for other
locations in Californiaand in other states of the WECC. Validating the hypothesis can be
done by analyzing simulation outputs at different locations.

We also need to address the applicability of the results to the wall outlets in homes and
businesses throughout California where ultimately the grid stress detection will need to
occur. An important test would be to verify that the coherence of the frequency signals
on each side of the substation transformer is unity. In the absence of sufficient dynamic
data for the distribution feeder, we argue that there are no apparent reasons why the
dynamic content of the frequency signal should significantly change downstream of the
substation in the distribution feeder leading to homes and other buildings. With no
generation capacity or electric storage capability, it is unlikely that loads will induce
oscillatory behaviors into the distribution system. Frequency, however, is by definition
the time derivative of the voltage phase angle, therefore, the instantaneous frequency
measurement is influenced by sharp changes in voltage, which can occur within
distributions systems. Further signal processing could be used to account for these errors.

In summary, we have generated encouraging results that warrant and suggest following
the next steps toward the design of a detection algorithm. With the observed geographic
diversity in the frequency spectraresults, it is likely that a successful detection algorithm
would need to be adaptive to adjust to regiona differences. The agorithm would need to
continuously establish a spectral baseline that is specific for a particular location, similar
to Kahlman filtering methods. The detection of significant changes from that baseline
could then be used as atrigger for load control.

5.3 Voltage Stability Conditions

In discussion with CAISO transmission planning engineers, CAISO engineers indicated
that the voltage instability in the Bay Area during heavy AC/DC North-to-South power
flows isof great concern to CAISO and suggested that this particular case be analyzed
using the simulation approach described in the previous section.

CAISO staff provided the necessary input data sets for the PSLF simulation program and
consulted with us on the definition of low- and high-stress conditions using the T-116B
nomogram [CAISO 2002]. This nomogram indicates safe operation of the grid asa
function of PDCI (Pacific Direct Current Intertie) flow, COI (California Oregon Intertie)
flow, and Northern California hydroelectric generation dispatched. The nhomogram

30

protects against voltage instability at the Table Mountain Substation for specific
transmission outages described in CASIO operating procedure T-116 (see Figure 5-1).

5.3.1 Approach

The same analytic approach as for dynamic instability conditions was applied. The steps
are:

1. Using the PSLF simulation program we varied the Northern California hydroelectric
dispatch between 100% and 70%. We defined the 100% hydroelectric dispatch as the
high-stress case and 70% dispatch as the low-stress case. We consulted with CAISO
engineers for specific plant dispatches for both simulations.

2. For steady-state cases of Northern California Hydro = 100% and 70%, dynamic
simulations were performed using a 0.5 second Chief Joseph brake ringdown.
Voltage signals at the high voltage bus for Table Mountain, Round Mountain, and
Vaca Dixon, were captured during the ringdown, and converted to transfer functions
using Prony analysis, thus providing a transfer function for each site Gpu(s). Gpy(S) is
atransfer function with real power as input and voltage as outpui.

3. Gaussian white-noise inputs were filtered (breakpoint at 5 Hz), then input into each
transfer function (see Figure 5-3) . An FFT was performed on the output, and
differences among signal's between 100% and 70% hydro dispatch levels were
scrutinized for signatures indicating stress of impending voltage instability.

5.3.2 Findings and Conclusions

The transfer functions Gp(s) of the entire power system at Table Mountain indicated
virtually no differences between the low- and high-stress cases for frequencies below 0.8
Hz and some differencesfor frequencies above 0.8 Hz (see Figure 5-12). The spectra of
these transfer functiors, when imposed with a noise signal, are identical for the two stress
cases (see Figure 5-13). Similar results were obtained for the Round Mountain
Substation (see Figure 5-14 and Figure 5-15). This leads to the conclusion that an
impending voltage instability problem may not be detectible with dynamic analysis
techniques as we postulated in the previous section. The fundamental principals of a
voltage instability problem in a complex power network are therefore, not associated with
the dynamic systems behavior. While our simulation validated this notion, there is still a
debate within the power system engineering community regarding whether evidence
exists for impending voltage instability in a dynamic simulation that reveals ocillatory
behavior. Oscillations in the WECC, which generally occur in the O to 2 Hz region are
primarily of electro-mechanical nature, thus they are typically not directly associated with
voltage instability, although sometimes they are observed.

We conclude from our simulation results that the proposed grid- stress detection approach
appeared inappropriate for detecting voltage instability problems; however, the approach
is likely to have merits for dynamic instability problems, as shown in Section 5.2.

31

-20

-5 -

.3 - M. Cal Hydro = 100%

_35 -

Armplitude (dB)

40 4 /

M. Cal Hydro =70%

Systemn Conditions: CORA000WY, PDCI=3100 MW

-50

0 02 04 0B 08 1 12 14 16 1.8 2
Frequency (Hz)

Figure 5-12: Transfer Function Gp(S) at Table Mountain, California, for High-Stress Case
(North California Hydro=100%) and L ow-Stress Case (North California Hydro=70%).

5 L 1 L 1 L 1 L L L

—— Table Mt; M. Cal Hyhdro=100%
------ Table kt; M. Cal Hyhdro=70%

104 K

Moize Response (dB)

15 4 L

20 4 L

-25 v . v . v . v v v
0 02 04 0B 08 1 12 14 1B 18 2
Fregquency (Hz)
Figure 5-13: Spectrum of System Frequency at Table Mountain, California, for High
Stress (North California Hydro=100%) and L ow-Stress (North California Hydro=70%).
These results were generated by FFT with 60 second samples, Hanning squared window,
and 2nd order low-pass filter breaking at 5 Hz (see Figure 5-3). Note that both spectra
are identical.

32

_15 1 1 1 1 1 1 1 1 1

20

25

M. Cal. Hydro=100%

J

-30

-35

||

45 R

Amplitude [dB)

e

M. Cal. Hydro=70%

System Conditions: COR4800 WMWY, PDCI=Z3100 MWW
'ED L] 1 L] 1 L] 1 L] 1 L]

n 0z 04 a6 D08 1 12 1.4 16 1.8 2
Frequency (Hz)

Figure 5-14: Transfer Function Gp(S) at Round Mountain, California, for High-Stress
Case (North California Hydro=100%) and L ow-Stress (North California Hydro=70%).

5 L 1 L 1 L 1 L L L

—— Raund Mit: N. Cal Hyhdro=100%
------ Round Mt: B, Cal Hyhdro=70%

104 K

Moise Response (dBE)

215 4 R

20 4 L

-25 ' . ' . ' . ' ' '
0 02 04 0B 08 1 12 14 16 18 2
Freguency (Hz)

Figure 5-15: Spectrum of System Frequency at Round Mountain, California, for High-
Stress (North California Hydro=100%) and L owStress (North California Hydro=70%)
cases. Results were generated by FFT with 60 second samples, Hanning squared
window, and 2nd order low-pass filter breaking at 5 Hz (see Figure 5-3). Note that both
spectra are identical.

6 Analysis of Grid Events

Using the analysis tools described in Section5, we analyzed historic data of known grid
events to test the hypothesis established in Section 4. Two grid events were analyzed:
(1) the August 10, 1996, breakup of the WECC system that caused major outages in the
Western power system and (2) aless severe event that was caused by tripping of a major
transmission line in the Northwest with cascading effects in Southern California.

Simulation results suggested that some evidence exists for the maxima of the spectrum of
the grid frequency signal tending to be higher in the 0 to 2 Hz range for the high-stress
condition compared to a low-stress condition. Furthermore, we found that there is also
evidence that the maxima are sharper (spanning a small angle) in the high-stress case
versus the low-stress case. There appears to be sufficiently significant differencesin the
spectra of gid frequercy signals between the two cases to potentially establish detection
algorithms based on them. The differences are expected to be found in the sharpness of
the spectrum and in the absolute magnitude of the spectrum. We tested these two
characteristics by analyzing the spectra using following characteristics:

Integral of spectrum in each band
Number of occurrences of peaks in specific frequency bands
Standard deviation of the spectrum.

6.1 Results for the October 8, 2002, Disturbance

On October 8, 2002, at 22:30:52 Pacific Daylight Saving Time, aline trip in southern
Oregon near Summer Lake caused Bonneville Power Administration to execute remedial
action schemes (RAS) to trip 2908 MW of generation in the Northwest. Additionally, the
1400 MW Chief Joseph Brake was immediately inserted. Load losses occurred at
scattered locations, and various local control actions may have aso occurred.

6.1.1 Time Domain

As aresult of the line trip, the grid frequency decreased significantly and very fast (see
Figure 6-1). The recovery time to anormal grid frequency of 60 Hz was about 1000
seconds (17 minutes). The lowest frequency measured occurred at 22:30:57 and 57 ms
and was 59.593 Hz. Thisis far outside the tolerance range of £0.05 Hz (about 8 times
more) and occurred only for avery short time. The average frequency after the trip was
about 59.78 Hz for about 3 minutes. The frequency then started to increase with a slope
of about 0.22 mHz/sec. Finally, after approximately 1000 sec, the nominal frequency of
60 Hz was reached again.

35

Frequency Signal, Event on October 08 2002 (Start at 22:25 PDT)

50,200

60,100
60,000 17 v L W W‘F
59,900 l,

59,300 hw W

grid frequency {Hzj

59,700

59,600

59,500

100
200
300 4
400

= = = = =
=} = =1 = =1
[re) 7=} [[==} =)

1000
1100
1200
1300 A
1400
1500

fims fsac]

Figure 6-1: Grid Frequency Event, October 8, 2002.

6.1.2 Magnitude of Maximain Spectrum

Thefirst part of the ardlysisis based on the magnitude of the highest peaksin the
frequency spectrum. Thisis an indication for high frequency components and lets us
determine oscillatory modes in the power system.

Figure 6-2 shows the magnitude of the maxima for each band over a 10- minute time
period. The line break isindicated in Figure 6-2 in the center of the graph by a vertical
line. We noticed that the magnitude of the maxima in bands 1, 2 and 3 increased after the
trip for about 1 minute. In band 4 and 5, no rise or other distinct characteristics in the
trgjectory of the peaks was detectable. This suggests that only lower frequency
oscillations (up to 1.2 Hz) emanated from this line trip.

36

Peaks in FFT, Event on October 08 2002 (Start 22:25 PDT)

time (580}
-0 T

80 120 180 240 300 360 420 480 540 600

line trip
-50

-60

neak [dB]

=1 | ——Band 1
——Band 2

Band 3
Band 4

—Band 5
-100

Figure 6-2: Magnitude of Peaks in Spectrum, October 8, 2002

6.1.3 Standard Deviation

Figure 6-3 shows how the standard deviation of the magnitude of the spectrum varies
over time before, during, and after the event. The standard deviations are computed over
the compl ete bandwidth between 0 and 2 Hz of the spectrum. After the trip, an increase
in standard deviation is detectable for a short time, compared to the recovery time of the
grid frequency to 60 Hz.

A high standard deviation in the magnitude of the gpectrum is indicative of awide spread
between dominating and nortdominating frequencies during the first 1 minute after the
line break.

37

Event on October 08, 2002 - Standard Deviation (Start 21:50)
16
line trip

15

14

13

12
o
=
3 n
311 I 1 | | { N I
Q
=]
“ 10 4

9

8 1 !

7

6 T T T T T T

0 600 1200 1800 2400 3000 3600
fime/ sec

Figure 6-3: Standard Deviation of Magnitude of the Grid Frequency Spectrum,
October 8, 2002

6.1.4 Sharpness of Maxima

Figure 6-4 illustrates an example of the trgjectory of the second derivative for Band 2.
Trajectories of the second derivative for other bands were very similar to that shown in
Figure 6-4 with no characteristic feature at the time of the line trip or thereafter.

Sharpness of peaks in band 2 (2nd derivative) , Event on October 08 2002 (Start 21:50 PDT)

time [seci

0 600 1200 1800 2400 3000 3600

-20
I

-25

line trip
-30

-35

.40

45

-50

Figure 6-4: Sharpness as Defined by the Second Derivative of Spectrum for
Band 2, October 8, 2002

The alternative method for determining sharpness, utilizing an angle measurement,
provides the results shown in Figure 6-5. Results shown in Figure 6-5 are valid for Band
2only. They arein strong agreement with the results using the second derivative
approach.

Sharpness of peaks in band 2 {Angle), Event on October 08 2002 (Start 21:50 PDT)

line trip

0 600 1200 1800 2400 3000 2600
time [sec}

Figure 6-5: Sharpness as Defined by Angle at Maximum of Spectrum,
October 8, 2002

6.1.5 Integral

The integral is separately calculated for each band. It represents the surface area between
an arbitrary reference line of —120 dB and the line representing the spectrum. Figure 6-6
shows results for the integral for the Band 2 spectrum. Thereis a markedly high risein
the value of the integral directly after the line trip, which persists for only a short duration
of 8 seconds. Similar results were obtained for Bands 1 and 3, which indicates that the
oscillatory content of the frequency signal as a consequence of this grid event is limited
to frequencies up to 1.2 Hz. Oscillatiors a higher frequencies beyond 1.2 Hz were not
observed. Thisobservation isin strong agreement with known oscillatory modes,
ranging from the low Canada California mode at 0.33 Hz to the higher frequency Grand
Coulee mode near 1.03 Hz [Hauer and Dagle 1999]. The system’ s damping ability was
sufficiently large to arrest persistent oscillations within avery brief period.

39

Integral Band 2, Event on October 08 2002 (Start 21:50 PDT)
70

60

line trip

50

40 | i

" I_J1| I“JI.‘“‘ N \h Rl ull m.i‘AL W) il
T ALY n Ml

M
T lr

Ill"l‘ “J‘"l Tl lrr‘rl‘l W, 'rj,h'”

20

0 800 1200 1800 2400 3000 3600
time [sec]

Figure 6-6: Value of Integral between -120 dB Reference Line and Spectrum for
Band 2, October 8, 2002

6.1.6 Histogram of Maxima

The frequency of occurrence of loca maxima before and after the line trip was explored
to investigate any modal changes in the oscillation prior to and after the line break. If
there was a change in the mode of oscillation because of the line trip then we could
expect achange in the distribution of the local maxima before and after the event. The
histogram was normalized such that al distributions summed to 100%. Thirty- minute
periods prior to and after the event were analyzed and the results compared.

Figure 6-7 shows histograms for each band before and after the line trip. The frequencies
at which the spectrapeak before and after this event differ only very dightly. This means
that there has not been any shift in the dominant oscillatory behavior from before to after
the event. Sometime during major grid events the grid topology changes as aresult of the
line break and significant load shedding. This affects the oscillatory behavior of the
entire western interconnected system. Figure 6-7, however, suggests that thisis not the
case. There does not appear to be major topological changes resulting from the line break
causing a shift in the oscillation modes of the system.

40

Peak occurence in Band 1 for Event on October 8, 2002 (before trip)

Peak occurence in Band 1 for Event on October 8, 2002 (after trip)

0.40 0.41
0.35 0.35
0.30 0.3
< L
§O. 5 §0. 5
s et
€0.20 So0.2
2 S
80.15 So0.15
w [
0.10 0.1
0.05 0.0!
0.00 0.0
0 004 008 012 016 020 024 028 032 036 0 004 008 012 016 020 024 028 032 0.36
[HZz] [Hz]
Peak occurence in Band 2 for Event on October 8, 2002 (before trip) Peak occurence in Band 2 for Event on October 8, 2002 (after trip)
0.40 0.4
0.35 0.3
0.30 0.30
° L
T 025 $ 0.25
& a
5:0.20 20.20
=
S 2
g‘o.ls @ 0.15
[[
0.10 0.10
0.05 0.05
0.00 0.00
040 044 048 052 056 060 064 068 072 0.86 040 044 048 052 056 060 064 068 072 0.86
[HZ] [Hz]
Peak occurence in Band 3 for Event on October 8, 2002 (before trip) Peak occurence in Band 3 for Event on October 8, 2002 (after trip)
0.40 0.40
0.35 0.35
0.30 0.30
§ v
$o So2s
£ 0.25 go.
s o
2 0.20 2020
2 S
S 0.15 Ho1s
[[
0.10 0.10
0.05 0.05
0.00 0.00
08 084 08 092 096 ~ 100 104 108 112 116 080 084 08 092 09 100 104 108 112 116
[Hz] [HZ]
Peak occurence in Band 4 for Event on October 8, 2002 (before trip) Peak occurence in Band 4 for Event on October 8, 2002 (after trip)
0.40 0.40
0.35 0.35
0.30 0.30
))
% 0.25 T0.25
[} fol
a a
5 0.20 50.20
c <
So1s 2
g 0.1 §0.15
[[
0.10- 0.10
0.05. 0.05
0.00- 0.00
120 124 128 132 136 140 144 148 152 156 120 124 128 132 136 140 144 148 152 156
[Hz] [Hz]
Peak occurence in Band 5 for Event on October 8, 2002 (before trip) Peak occurence in Band 5 for Event on October 8, 2002 (after trip)
0.40 0.40y
0.35 0.35]
0.30 0.30]

o
N
a

o
3

Fraction of Peaks
o
N
o

Fraction of Peaks
o
N
(=]

0.15 0.15
0.10 0.10y
0.05 0.05;
0.00 0.00!
1.60 164 1.68 172 1.76 1.80 184 1.88 1.92 1.96 1.60 1.64 1.68 1.72 1.76 1.80 1.84 1.88 1.92 1.96
[Hz] [Hz]

Figure 6-7: Histograms of Local Maxima, October 8, 2002

41

6.2 Results for August 10, 1996

On August 10, 1996, the interconnected western grid separated into islands and caused
wide spread outages throughout the western US and Canada [Hauer and Dagle 1999].
The grid separation occurred in a succession of several events over a period of less than
10 minutes. First, the Keeler-Allston transmission line tripped, followed by the Ross-
Lexington transmissionline trip and, aimost concurrently, the tripping of the McNary
generator, located on the Columbia River. The system separation occurred after the
McNary generator trip, causing widespread outages throughout the western US for
several hours.

In comparison to the previously discussed October 8, 2002, event, this event is divided
into three different phases:

Phase 1. Before the Keeler-Allston line trips
Phase 2: Between the Keeler-Allston line trips and Ross-Lexington line trips
Phase 3: After the Ross-Lexington line trips.

The focus of this analysisis to detect significant changes in the set of five criteria
between Phases 1 and 2. Phase 1 is presumed to be an example for low stress, and Phase
2 is presumed to be characteristic of high stress. Phase 3 finally represents the case of
instability.

Figure 6-8 illustrates the power transfer from the Northwest to California through the
Malin-Round Mountain transmission line (see Figure 5-1) around the time of the critical
events. The instability of the system after the second event can be recognized by the
undamped oscillation of the power output.

Similar oscillations, however not as pronounced, are shown in the grid frequency as
illustrated in Figure 6-8.

42

Frequency Signal, Event on August 10 1996 (Start 22:36 PDT)

615

61

605

Keeler-Allston Ross-Lexington

IR S o~ — T AT wmmw

gnd frequency [Hz]

59

0 100 200 300 400 500 500 700 800 900 1000

fime (seci

Figure 6-8: Grid Frequency during WECC Breakup of August 10, 1996

A minor increase in the frequency to 60.045 Hz over a 1-second period was recorded by
the Kedler-Allston line trip. The Ross-Lexington line trip (second event) caused grid
frequency to drop to about 59.88 Hz with ensuing undamped oscillations, which
ultimately led to the breakup of the interconnected system into numerous islands.

6.2.1 Magnitude of Maximain Spectrum

Figure 6-9 shows the magnitude of maxima in the spectrum for each of the 5 bands. The
results for Band 1 indicate the largest increase after the first event (Keeler-Allston line

trip).

Band 1 shows the highest increase after the Keeler-Allston line trips with some
persistence during the second phase. Other bands provide no marked differences
between before and after the Keeler-Allston line break.

During the third phase (after the Ross-Lexington line trip), the magnitude of maximain
al bands indicate high oscillatory content in the grid frequency. A detection of
impending grid problems at that stage, however, would most likely be too late to avoid
catastrophic system failure It would be desirable to detect the impending problem at an
earlier stage, for instance after the Keeler-Allston line trip to prevent ensuing cascading
effects.

43

Event on Aug 10, 1996 - Max. peak (Start 22:36)

lime / sec

60 120 180 240 300 38 420 480 540 600 660 [F20 Y80 840 600 960 1020
-10
] R L]
-30 L ‘

N

40

peak/dB

-7

=80

——Band1
——Band2

il
60 uf\f\ . o e
f (*{W YR
"“\M% | ‘MV“%”‘U

100 ——Bands

-90

Figure 6-9: Magnitude of Maxima of Spectrum for Five Frequency Bands, August 10,
1996

6.2.2 Standard Deviation

The standard deviation of local maxima of the spectrum, as shown in Figure 6-10, does
not reveal any significant characteristics transitioning from Phase 1 into Phase 2. Similar
to the trgjectory of the magnitude of maxima, significant changes in the characteristics
emerge after the Ross-Lexington line break on the way to the total system collapse.

As aconsequence, the standard deviation does not reveal any more information than that
already obtained from the trajectory of the magnitude of maxima.

Event on August 10, 1996 - Standard Deviation (Start 22:35)

Sid Dev. /dB

0 60 1200 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
lime / sec

Figure 6-10: Standard Deviation of Local Maxima, August 10, 1996

6.2.3 Sharpness of Maxima

The sharpness indicators either computed by the second derivative of the magnitude of
the spectrum or by the angle at local maxima of the spectrum showed no significant
changes across all 5 frequency bands. In fact, comparing the sharpness indicators of
Phase 1 with those of Phase 2, showed a behavior opposite to the behavior postulated in
our hypothesis. Figure 6-11 illustrates that the second derivative increases. Likewise,
Figure 6-12 suggests the angle grows during transitioning from Phase 1 to Phase 2.

45

Sharpness of peaks in band 2 (2nd derivative), Event on August 10 1996 (Start 22:36 PDT)
{ime [sec]

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020
0o —

| b,
JWMNW ,w Iy

-20

-25

Figure 6-11: Sharpness as Defined by the 2nd Derivative of Spectrum for Band 2,
August 10, 1996

Sharpness of peaks in band 2 (Angle), Event on August 10 1996 (Start 22:36 PDT)
180

160

140

120

100

. b oL
|

JULT R T
) (ol) I

20

angie [/}

0

0 80 120 180 240 300 3B0 420 480 540 BOO GBO 720 T80 840 900 960 1020
{ime fsec)

Figure 6-12: Sharpness as Defined by Angle at Maximum of Spectrum, August 10,
1996

6.2.4 Integral

There are two characteristics that are detectable in al fivebands: 1) a small increase
directly after the Keller-Allston line trips and 2) two large peaks after the Ross-Lexington
line trips. This consistency is somewhat unique compared to the previoudy discussed
indicators. It is till questionable whether the first rise in the indicator would be
sufficiently unique to be utilized as a load-shredding signal.

Integral Band 2, Event on August 10 1996 (Start 22:36 PDT)
100

a0

- (PRI

70

60

50 L‘
40 dpin, n.wm!\!"\nflv"'\ﬂm!\;n M /\\!\{\!\ m'\\n_'m N il nf_ Al LT /J l\/’m’\j\q MJ\A‘M
A% L W "WVW"\JWVV" "'1‘\/ LA L

30

20

0 60 120 180 240 300 360 420 480 540 600 660 720 T80 840 900 960 1020

time fsec}

Figure 6-13: Value of Integral between -120 dB Reference Line and Spectrum
for Band 2, for the August 10, 1996 Event

6.2.5 Histogram of Maxima

For al bands, noticeable changes in the histograms of the maxima were observed. They
are indicative of significant changes in the oscillatory modes of the western power system
and have been researched and reported in other work [Hauer and Dagle 1999]. One
example is shown in Figure 6-14, Figure 6-15, and Figure 6-16, in which significant
shifts in the major oscillation modes are noticeable. In Phase 1 (before the Keeler-
Allston line break), a dominant oscillation of 0.45 HZ>, generally referred to as the
Alberta mode, was observed. After the Keeler-Allston line break, the primary
oscillations were redistributed to higher and lower frequencies to reach a new dominant
mode near 0.52 Hz in Phase 3.

® Figure 6-14 shows bins for the histogram in equidistant steps of 0.04 Hz. Because of the discrete binning
method, all of the 0.45 Hz oscillation modes are accounted for in the 0.44 Hz bin.

a7

Aug 10 - Phase 1, Band 2
0500

0.700

0.600

0.500

0400

occurence

0.200

0.200 4

0.100 ~

0.000

04 0.44 048 052 0.56 06 0.64 068 072 076

frequency / Hz

Figure 6-14: Histogram of Maxima, Band 2, Phase 1, August 10, 1996

It is difficult to interpret the results in isolation without other indicators. It was hoped
that there were other confirming indicators, which were originally conceived when we
postulated our hypothesis. In the absence of these results, we provide recommendations
for alternative approaches, using the insights resulting from this research effort.

Aug 10 - Phase 2, Band 2

0.800

0700

0.600

0500 +—

0400 +—

occurence

0300 +—

0.200 +—

0100 +—

0,000 . . !_|’—‘ . B m

04 0.44 0.48 052 056 06 0.64 06s 072 0.76

frequency / Hz

Figure 6-15: Histogram of Maxima, Band 2, Phase 2, August 10, 1996

48

occurence

0.800

0700

0.600

0500

0400

0.300

0.200

0100

0.000

Aug 10 - Phase 3, Band 2

052 0.56 0.8

frequency / Hz

Figure 6-16: Histogram of Maxima, Band 2, Phase 3, August 10, 1996

49

50

7 Conclusions

The results of the data analysis did not support our hypothesis of detecting impending
dynamic instability problems by a set of indicators or features of the grid frequency,
which are based on the symptoms of oscillatory behavior in large interconnected power
systems. Finding some historic data that are representative of low and high-stress
conditions was difficult. It isamost impossible to determine with any certainty a
condition on alarge and complex electric power system when the system is under low
stress. The randomness and magnitude of constantly changing loads and adjustments by
generators to meet the demand, coupled with the randomness of the unplanned outages,
which cause changes in the topology of the network, makes it very difficult, if not
impossible, to definitively declare a state of the power system aslow stress. Even during
periods at night, when the load tends to be lower than during the day, it is not obvious
that the system attains alow or lower-stress state. Transmission outage, planned or
unplanned, may pose a difficult burden ontransmission engineersto keep the systemin
stable and safe condition. Because of the inherent inability to establish a state of low
stress as a reference case, it became difficult during this analysis of historic data to detect
the transition from a safe condition to that of an impending problem. Even in the anaysis
of the data representing the August 10, 1996, breakup, it is not entirely clear what the
overall system condition was prior to the Keeler-Allston line break, which appeared to
have initiated a sequence of everts that led to the system breakup. Much research has
been done on the event of August 10, 1996, whichprovided valuable insights into the
systems ability to dampen electro- magnetic oscillations in the system. Researchers were
able to determine the damping characteristics of the system after the first event (Keeler-
Allston line break). Thisline break triggered a sufficiently large perturbation to the
power flows and excitationto the system, from which the damping coefficient was
determined. What is not clear is what the damping characteristics were prior to Keeler-
Allston line break. On August 10, 1996, the recorded data clearly indicated that there
was a sequence of events that progressively deteriorated the system’ s ability to recover
from the prior system events. Observed was a diding slope in the “health” of the power
system that ultimately resulted in atotal system collapse.

A necessary requirement for an effective detection technology isto recognize system
conditions as the power system approaches dangerously close the edge of stable and safe
operating conditions. Because of the complexity of the power system, the edge of safe
operations is a moving target and depends on load conditions and network topology and
thus may change from hour to hour. Asaresult of this data analysis, it appears
guestionable whether the chosen approach will be successful in the long-run. The major
obstacle for this approach is the necessity to establish a reference scenario that would
represent safe grid operating conditions. To establish this, alarge series of the conditions
needs to be analyzed to become familiar with the spectrum of variability for each
indicator to establish signatures or patterns for impending problems. The scope of such
extended analysis will probably be large and may potentially not be the most effective
solution path to the overall objective.

An aternative approach, if feasible, could potentially lead to a promising detection of
dynamic instability of the power system. This alternative approach focuses on

51

determining the transfer function that describes the dynamic behavior of the entire power
system, from which the standard stability analysis methods can be applied. So far, no one
has successfully established a power system transfer function of sufficient accuracy with
which to perform a meaningful stability analysis. We discuss the major elements and
benefits of this approach in the Section 8.

52

8 Recommendations for Future Work

This research provided valuable insights into the complexity and difficulty of identifying
impending grid problems. We focused on dynamic instability problems after learning
that voltage instability problems may not be identifiable with spectral analysis methods.
Several recommerdations are offered as part of the lessons learned from this project.
They are listed and summarized below and discussed further in Sections 8.1 — 8.3.

4. Under-frequency load control could provide an important grid reliability
enhancement. Although reactive in its response, an under-frequency load control
strategy with frequency responsive appliances and devices could provide import
reserves that are currently furnisned by generators that are either already spinning or
that can be ramped up in their output. Thiswork and its benefit are discussed further
in Section 8.1.

5. The dataanaysis results did not confirm our hypothesis for detecting grid stressin
advance of an event. However, it remains unclear as to whether the primary cause for
this result is the approach we used for spectral analysis or the specific data we
analyzed. Even for the August 10, 1996, event, it is not clear whether the power
system was under high stress prior to the Keeler-Allston line break. To explore the
system state further with respect to the stress condition, we recommend an analysis of
system conditions several hours, perhaps 1 or 2 days, prior to the Keeler-Allston line
break to capture more diversity in the grid condition that may include conditions
more characteristic of what we defined as low stress.

6. Enhance fundamenta understanding of the stability characteristics of the power
system by utilizing system identification techniques that result in a real-time transfer
function approximation of the entire power system. If area-time system transfer
function of sufficient accuracy can be established, it would enable the use of standard
stability analysis tools for determining distance to the stability edge.

7. For dealing with voltage stability problems —a concern that the CAISO raised —we
recommend the use of under-voltage relays for induction motors, as found in
compressor motors for air-conditioning systems. We describe some of the underlying
mechanism and systems benefits that can be derived from the use of under-voltage

relaying.

8.1 Under-frequency Load Control using Grid-Friendly Appliances

The electric power grid relies on the rotationa (inertial) kinetic energy of the connected
synchronous generators to help balance e ectricity production and consumption.
Contained within this inertiais enough energy storage to sustain the grid for cycles to
seconds (depending on the amount of imbalance). If there istoo much generation, the
system frequency increases, too little and the system frequency decreases. Small
mismatches between generation and load result in small frequency deviations. These

53

small shifts do not degrade reliability or market efficiency, although large shifts can
ultimately lead to system collapse.

Likewise, system frequency provides an indication of the interconnection’s
generation/load balance. Frequency can be measured instantly anywhere in the
interconnected grid without the need for additional communications. This facilitates
dispersed, autonomous response to system casualties by generators and loads. Assuming
that all control systems such as automatic generation control (AGC) and speed governors
are working correctly, alow system frequency is indicative of alow generation reserve.
If frequency deviates from the standard 60 Hz, arange of system reactions takes place as
seenin Figure 8-1.

“ 6005
W Governor Response | 60.04
63 7 '
T 60.03
62 A
Overfrequency Generation Trip 60.02
Time Correction
. 617 - 60.01 s,
I Governor Response : - Normal Frequency | Q
g Nominal Frequeney D nd AG [}
2 60 60.00 g
o I o
o : Range o
| Underfrequency Load Sheddin - - 59.
59 - 9 Normal Conditions 59.99
Underfrequency Generation Trip Time Correction 5908
58 Contingency Response
T 59.97
57 _ - 59.96
| Equipment Damage Governor Response
56 - 59.95

Figure 8-1: Frequency is tightly controlled under normal conditions and
coordinated under all conditions.

Notice that far outside the “Normal” frequency range is an under- frequency load-
shedding strategy isdeployed. Thisisthefirst level of system protective response (see
Figure 8-1). Itisconsidered a drastic measure because it is invoked at the utility
substation level. This type of application accomplishes its objective of maintaining
system integrity, but at the cost of cutting off all power to some customers. The load that
isdropped at the substation level is not been selected based on significance or
convenience. Thistype of under-frequency load shedding is ‘al or nothing;’ either the
feeder is de-energized, dropping al loads on it, or it remains energized, keeping all loads
running.

60.020

Four Corners Unit 5 Tripped with 710 MW on May 8, 2002, at 13:38 PDT
60.000 // ‘ ‘
a
| | : . H -
59.980 - With GFA: Frequency Excursion _ ==
— a Arrests at 59.950 Hz _ -
N / within 0.7 sec. -
T | | L~
N—r . —
2> 59.960 - i ——=
c u -
g [\\'— -
T 59.940 - i M“’MM
£ T e
n f//f"”
||
59.920 =
||
| |
||
59900 u Without GFA: Frequency Drops to
u 59.886 Hz within 5.8 sec.
| |
59.880 »
| |
||
| |
59860 TR I TSN TN SN TN SN SN NN TN N TN Y SN NN TN SN N NN TN TN TN SN SN TN TN SN N AN N TN TN S N TN Y TN TN (NN TN TN TN SN TN SN SN T |
00 10.0 20.0 30.0 40.0 50.0

Seconds (from 13:38:20 PDT)

Figure 8-2: Impacts of Frequency-Responsive Loads Using Grid Friendly Appliances

A unique implementation of this idea implements under-frequency load shedding at
individual appliances. This type of system load response has already been developed in
part by PNNL staff, and has shown exceptional results for minimal economic investment.
Instead of the traditioral ‘all or nothing’ approach to load shedding, this method
automatically curtails non-essential loads (such as residential appliances) before acrisis
develops. Figure 8-2 displays the actual system response to a sudden loss of generation.
On the same figure, the simulated

system reaction is plotted for grid-friendly under-frequency protectionimplemented in
large quantities. Notice that the system frequency falls much less than it would have
without grid-friendly-appliance (GFA) technology.

Grid-friendly appliances provide arapid and automatic response to grid crises.
Implementation of under-frequency load shedding at the appliance level provides
increased power system reliability and security by acting as reserve margin, while going
unnoticed by the consumer.

55

8.2 System Identification Approach of the Electric Power System

Techniques used to evaluate the results or ‘ symptoms’ of high-stress conditions in the
power system have been presented in this paper; however, a degper analysis can provide
information about the condition itself, without relying on the evaluation of its symptoms.
Such methods require analysis to convert the noise response of a system, obtained at the
wall outlet, into atransfer function, which providesin pole locations for the power
system. By measuring the distance of the system poles to the right- hand s-plane (locus of
system instability), and by tracking the rate at which those poles move toward the right-
hand s-plane, a smart chip can provide adirect indication of actual or probable system
instability.

Load switching and other random phenomenain aloosely connected power system
produce ambient process noise that contains much useful information about oscillatory
dynamics. The extraction of qualitative information about system behavior has been a
fairly routine matter for many years. The extraction of quantitative dynamic information
from ambient noise has been less successful. There are a number of reasons for this.

s point changes
probing signal r(t) —» output y(t)
: : POWER +
input nase u(t) SYSTEM >
disturbanced(t)
topology ehenges measuremeant
noise nit)

Figure 8-3: Information sources in process identification

Figure 8-3 presents a schematic view of the environment in which such analysisis
performed. Input noise n(t) is colored by system dynamics and produces a process noise
component in the output y(t). The output also contains a some measurement noise, which
may necessitate the use of filtering or better instrumentation. Disturbances, set point
changes, and changes in network topology are more serious matters. These often produce
important changes in power system dynamics and, even if they do not, they may disrupt
the signal analysis process. The object of ambient analysis may be to detect and classify
such changes (plus the causal events) when they are not directly observable by other
means. Whether or not thisis the case, it may still be necessary to detect such changes to
properly interpret signal analysis results and perhaps to re-initialize the signal processing.
The problem of "hidden inputs’ to the system is a harmful one.

56

Theideain this assessment is that signal processing methods that extract quantitative
dynamic information from ambient process noise must, directly or indirectly, derive that
information from a numerically estimated autocovariance function [Bendat and Piersol
1993]. To the extent that this conjecture is true, the key issues to examine are the error
properties of autocovariance estimates, and the degree to which estimation errors affect
the accuracy of estimated oscillatory parameters.

The general finding is that the complexity of power system dynamics can easily
"deceive" parametric methods that are based upon autocovariance estimates. Leading
problems are undetected exogenous inputs to the system ("hidden inputs"), the large
number of closely- spaced oscillatory modes, and the oscillatory reture of estimation
errors in forming the autocovariance function. This finding is consistent with results that
have been obtained with actual system data over many years. Improved results might be
obtainable through the use of multiple signals, through "adaptive" logic that
simultaneoudly adjusts the order of a"parsimonious’ model and the fitting window for
model construction, and possibly through selective filtering. If such heuristic tuning is
carried too far, however, the resulting "ModeMeter” will increasingly reflect built-in
tuning assumptions rather than actual system behavior.

8.3 Prevention of Stalled Induction Motors

In May 1995, the Sacramento Municipal Utility District (SMUD) issued a report
summarizing transmission line outages that resulted in delayed voltage recovery followed
by aloss of load. This“local blackout” occurred in August 1994, when four transmission
lines in a common corridor went out of service simultaneoudly, initiating a delayed
voltage recovery. The sustained low voltages on the system were caused by the stalling
of low-inertiarotating machines (such as air conditioners) during a system disturbance.
Conclusions of the preliminary study acknowledged that delayed voltage recovery could
indeed occur in the SMUD system. Investigation of measures to prevent motor stalling
and delayed voltage recovery was recommended.

When system voltage beginsto fall as aresult of aline fault or high system loading, the
drop in voltage causes induction motors to draw more current to maintain their power
output; however, drawing more current perpetuates the drop in voltage. The cycle dowly
continues until the voltage level at the terminals of the induction motor can no longer
support the operation of the motor, and it stalls. This condition renders the motor
essentialy useless, with its output power near zero; however, it draws up to six to ten
timesitsrated current, all of which is at an extremely lagging power factor, draining
capacitive reactance from the power system. At his point, the system voltage drops
sharply and quickly. Other induction motors in near proximity to the voltage collapse,
start to stall, and the voltage collapse propagates through the system rapidly.

Large industria style induction motors typically utilize under-voltage relays for motor
protection. Although the primary purpose of these relays is to protect the induction

57

motor itself against the effects of low system voltage, they also protect the power system
by tripping the machine off service before a system under- voltage can propagate into a
voltage collapse. The protection that these under-voltage relays provide to the power
system is a serendipitous benefit, and is not the purpose of the relays.

In the residential setting, there is amajor violator with regards to power system voltage
instability, the stalling of induction motors associated with home heating, ventilation and
air conditioning (HVAC) units. These inexpensive induction motors rarely, if ever,
include under-voltage or stalled- motor protection. The lack of such protection is justified
based on the risk of losing the operability of the induction motor versus the cost of
integrating the protective device. In fact, asarule, protection devices are designed and
installed only to protect the equipment they serve. Because these small residential
induction motors pose little financial consequence if they fail, they are fitted with thermal
over-current protection only. This inexpensive protective device relies on over-
temperature sensors to identify a faulty or malfunctioning condition and responds by
disconnecting the motor from the electric power system. Thermal protection serves the
motor adequately; however, it does too little, too late to benefit the power system during
avoltage collapse. Because the thermal devices take 10 seconds or more before they trip
a stalling induction motor off line, these devices do not sufficiently mitigate power
system voltage collapse or a delayed voltage recovery.

Severa inexpensive methods of stall detection can be implemented into residential
HVAC induction motor units. One such method utilizes phase delay between the source
and winding of the induction motor. This phase delay occurs during normal operation
but does not occur during stalled conditions. Such a detector could be easily integrated
into inexpensive induction motors, and in large quantities, would have profound impact
by mitigating delayed voltage recovery and loss of loads as a result of these effects.

58

9 References

Advantech. 2003. Datasheet on the 486 Mini Biscuit Single Board Computer CPC-
2245N. Advantech Company. Irvine, California. Available on the
Internet at http://partner.advantech.com.tw/epartner/Files/Temp/1- 10R4R-

2.pdf.

Altera. 2003. Datasheet on MAX 700B Programmable Logic Device. Altera
Corporation. San Jose, Cdifornia. Available on the Internet at
http://www.altera.com/literature/ds/m7000b.pdf.

ANSI. 1988. Draft Proposed American National Standard for Information Systems --
Programming Language C. Technical Report X3J11/88-158, Accredited
Standards Committee, X3 Information Processing Systems, American
National Stardards Institute, December.

Bendat, J. and A. Piersol. 1993. Engineering Applications of Correlation and Spectral
Analysis. John Wiley & Sons, New Y ork.

Borland. 1989. Borland Turbo C. Version 2.01. Borland Software Corporation. Scotts
Valley, California. May 1989.

CAISO. 1998. 1998 Cadlifornia Operating Studies Subcommittee (OSS) Handbook.
Prepared by Chuck-yan Wu. Revision 2.0.0. California Independent
System Operator, Folsom, CA. March 1998.

CAISO. 2002. AC/DC Nomogram for North-to-South Flow and COlI Nomogram for
South-to-North flows. Procedure No. T-116. Version 4.5. Effective Date
June 5, 2002. California Independent System Operator.

CEC. 1997. “Survey of the Implications to California of the August 10, 1996, Western
States Power Outage.” Report of the California Energy Commission, June
1997. Available on the Internet at
http://www.energy.ca.gov/el ectricity/index.htmi#reliability.

GE. 2001. GE Power Systems Energy Consulting. Commands Reference Manual,
Version 12.0. GE Power Systems Energy Consulting, Schenectady, NY,
March, 2001.

Grall, J., U. Gruner, and H. Wiese. 1998. C as erste Programmiersprache (1SO-
Standard), B. G. Teubner Verlag, Stuttgart, Germany.

HAMEG. 2003. Datasheet on Universal Counter 8021-3. HAMEG GmbH. Frankfurt,
Germany. Available on the Internet at
http://www.hameqg.de/de/index.htm

Hauer. 2001. Enhanced Information Resources for Managing Reliability and
Performance of the Western Power System. Presentation by John Hauer,
Pacific Northwest National Laboratory, Fall 2001.

Hauer, J. and J. Dagle. 1999. Review of Recent Reliability Issues and System Events.
PNNL Technical report PNNL-13150, prepared for the U.S. Department

59

of Energy Transmission Reliability Program by the Consortium for
Electric Reliability Solutions (CERTS). Pacific Northwest National
Laboratory, Richland, Washington.

Hirgt, E. and B. Kirby. 2003. Technical Issues Related to Retail-Load Provision of
Ancillary Services, New England Demand Response Initiative, February
2003. Available at
http://www.ehirst.com/PDF/NEDRI ReservesBackground.pdf.

HP. 2003. Datasheet on 53131A Universa Frequency Counter. Agilent Technologies
(formerly Hewlett-Packard Company), Palo Alto, California. Available
on the Internet at http://cp.literature.agilent.com/litweb/pdf/5967-
6039EN.pdf.

Kirby, B. 2003. Spinning Reserve From Responsive Loads. ORNL/TM-2003/19. Oak
Ridge National Laboratory, Oak Ridge, Tennessee.

Kirby, B. and M. Alley. 2002. Spinning Reserves from Controllable Packaged Through
the Wall Air Conditioner (PTAC) Units. ORNL/TM-2002/xx. Oak Ridge
National Laboratory, Oak Ridge, Tennessee.

NERC. 2002. Policy 1 — Generation Control Performance, Section C. Frequency
Response and Bias NERC Guides, North American Electric Reliability
Council, Princeton, New Jersey.

Press, P.W. B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1993. Numerical
Recipesin C. Cambridge University Press, Cambridge.

VanZandt, V. R., M.J. Landauer, W.A. Mittelstadt and D.S. Watkins. 1997. "A
Prospective Look at Reliability with Lessons From the August 10, 1996,
Western System Disturbance,” Proceedings of the International Electric
Research Exchange Workshop on Future Directions in Power System
Reliability, Palo Alto, CA, May 1-2, 1997.

WSCC. 1996. “Western Systems Coordinating Council Disturbance Report for the
Power System Outage that Occurred on the Western Interconnection
August 10, 1996, 1548 PAST.” Approved by the WSCC Operations
Committee on October 18, 1996. Available on the Internet at
http://www.wscc.com/outages.htm.

60

Appendix A: Description of Frequency Sensor

PC-Connector
DB-25 (male)

Table A-1: Component List of Frequency Sensor Hardware

af{afie s o

(m]

+9V In
GND
-9V In

Relay (+)

GND

FSU Power Control
GND

+5V Out

Button 1

Button 2

Button 3

GND

Line

Neutral

FSU Test Signal Input

Figure A-1: Printed Circuit Board of Frequency Sensor

Item | Qty | Reference Part
1 2 C1, C5 47u 1 16V
2 2 C2,C4 4.7uF
3 19 | C3, C6, C8, C9, 100nF
C12, C13, C15,
C16, C17, C18,
C19, C20, C21,
C22, C23, C24,
C25, C26, C27
4 2 C28, C7 47pF
5 2 C10, C11 33pF
6 1 Cl4 10pF
7 4 D1, D2, D3, D5 1N4004
8 3 D4, D6, D8 1N4148
9 1 D7 GREEN LED
10 16 | D9, D10, D11, HS1001
D12, D13,D14,
D15, D16, D17,
D18, D19, D20,
D21, D22, D23,
D24
11 1 D25 SA6.0CA
12 1 J .1 x 3 Single Row
Header
13 1 .1 x 9 Single Row
Header
14 1 2 pin screw terminal
15 2 K2, K1 Aromat DR-6V
16 1 P1 CONNECTOR DB25

61

Item | Qty | Reference Part
17 1 Q1 2N3904
18 1 Q2 2N3906
19 1 RP1 10K
20 1 RP2 100K
21 1 R1 180K
22 1 R2 56K
23 3 R3, R5, R26 4.7K
24 8 R4, R7, R8, R9, 470

R10, R11, R15,

R16
25 2 R25, R6 2.2K
26 1 R12 6.8K
27 1 R13 3.3K
28 2 R17, R14 1K
29 1 R18 1.2K
30 4 R19, R20, R21, 11.3K

R22
31 2 R23, R28 10K
32 1 R24 4.7M
33 1 R27 100K
A 2 U4, Ul CD74AC04
35 4 U2, U4, U5, U7 CD74AC161
36 1 U3 78L05 SOT89
37 1 U6 79L05 SOT89
33 1 us SN74HC4538
39 1 U9 SN74HCO4
40 1 u10 SN74HCO00
1 1 Uil SN74HC11
42 1 Uiz CD74AC109
43 1 uUi13 CD74HC573
44 1 uis SN74HC32
45 1 ui6 LT1394
46 1 ui7 LM6261
47 1 Y1 49152 MHz

62

Appendix B: Source Code for Controllers and Analysis Platform

Software

Code for Controls Software

This appendix contains the source code for the first and second generation controllers.

First Generation Controls Software

The controls software consists of the following modules in Borland Turbo C language®:
- FSU.C

FSU-DEF.C

FSU-LCD.C

FSU-VAR.C

FSU-SUB.C

Each moduleis listed below. The function of each module is described in its header.

/**/

/* */
/* File "fsu.c", created on 04/28/2001 by Daniel L. Cedingen, PNNL */
/* */
/* __ */
/* */
/* Current programversion : See "#define PROG VERSION' in "fsu-def.c". */
/* */
/* Last updated : 07/27/2001 by DLO */
/* */
/* Compile with : "tcc -B-G-1-a -f87 fsu.c" (Borland Turbo C */
/* Conpil er Version 2.01 or higher); see also */
/* further documentation for conpile options for */
/* configuring this software for data | ogger */
/* nodes etc. */
/* */
/* The TCC options mean D -Bo.... Conpil e via assenbly (TASM */
/* -G.... Generate for optimzed speed */
/* -1, Use 8086/80186 instruction set */
/* -a. ... CGenerate word al i gned object code */
/* -f87... enable 8087 floating point support */
/* */
/* Supported platforns : - M5-DCS 5.0 or higher, Wn 3.x */
/* - Mcrosoft Wndows 95/98/ ME (all OSRs) */
/* */
/* Pl ease note that the NT-based platforns of */
/* the W ndows operating system (W ndows NT, */
/* W ndows 2000) are NOT supported, because they */
/* bl ock direct hardware access which is needed */
/* to control the FSU/ printer port hardware. */

6 Borland, 1989. Borland Turbo C. Version 2.01. Borland Software Corporation, Scotts Valley,
Cdlifornia, May 1989.

63

Functionality

Features inplenmented yet

This program perforns test data readings from

the Frequency Sensing Unit devel oped for the
"Gid-Friendly Appliances" via an ECP/ EPP-
conpati bl e parallel port of an

Speci al

ordi nary PC

file versions for data | ogging are

al so available (just enable the ' DATA LOGGER

label in "fsu-def.c"

and re-conpile "fsu.c").

If you want to activate the event-driven data

| ogger
Support for a serial

node,

enabl e the ' EVENT_
SEETRON LC- Di spl ay and

DRI VEN | abel .

three push-buttons is also available in order
to operate the GFA i ndependently froma CRT,
a keyboard etc.

ECP/ EPP port conpliance test
for installation and renpval of

Rout i nes

the interrupt service handler

Power rel

ay control (/INIT-Ii

routine
on | RQ7
ne)

Automati c- and nanual node controls (over-
ri des autonmatic | oad control)
Mai n | oop syncronization with Interrupt
Servi ce Routine
Washout filter for spike elimnation

Sl ope detection to sense frequency bounces
within the band defined by the software

t hreshol ds
randomi zed switching delay to turn

Fi xed- /
off the |

oad for a certain ti

sl ope has been detected.

A rotating nenory to decrease the data

| ogger output (event-driven nmode). This

nmechani sm can al so be used as the data

input for a Fast Fourier Transform

OPERATI ON MODE CONTROL: Adj ust the ' Conpi -

ngs' section in "fsu-def.c" to

configure the software for one of the

foll owi ng nodes of operation:
- '"Normal' GFA Control Logi

ler Setti

- Event
- Conti

program exit

-Driven Data Logger

nme after a

c Mode (g. bat)
Mode (e. bat)

nuous Data Logger Mode (c. bat).
Built-in LCD screen output functionality.
Sinply define the "LCD' | abel
"FSU-DEF. C' to enabl e LCD nessages (the
stdout device, i.e. Video Car
di splay no nmessages in this node except
froma notice that the LCD is enabl ed).
FSU har dware power is now tur
the software is started and turned off on

infile

d/ CRT will

ned on when

(necessary to avoid probl ens

occuring while the programis started,
especially in a Wndows 9x DOS Box which
tends not to work properly in sone cases if
the FSU hardware power is alr
the software is | oaded).
Added 3 push-buttons to control the GFA in
LCD node when no PC keyboard is avail abl e.

Button 1:

Button 2:

Toggl es between aut

manual node (substitutes

"m keys).

eady on when

omati c- and

a"- and

Di spl ays the software settings

menu (no actions w
during this tinme);

64

Il be taken
press the same

*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* button again to return to pre- */

/* Vi ous screen. */
/* Button 3: Exits the programor confirns */
/* nmessages (e.g. if EPP port com */
/* pliance test is activated). */
/* */
/* Special Programversions : - For grid frequency sensing and graphi cal */
/* spectral output use the file "fsuspect.c". */
/* This version is conpletely independent from */
/* any ot her FSU source code (no *.c-includes */
/* and stuff) and is understood as a not offi- */
/* cially supported version which has just */
/* been created for test purposes (provided */
/* "as is"). Because this software uses the */
/* BG (Borland G aphics Interface), you will */
/* have to | oad the source file into the TC */
/* editor (e.g. by typing '"tc fsuspect' at the */
/* DCOS pronpt) and conpile it by pressing F9. */
/* Be al so sure to have a copy of the Borland */
/* graphics driver ("EGAVGA.BA ") in the same */
/* directory as the executable file. */
/* */
/* Related files . - See file "fsu-sub.c" for inplenentation */
/* of the subroutines used in this software. */
/* - Any synbolic constant, including user */
/* program settings, can be found in file */
/* "fsu-def.c" (except fromall this LCD */
/* related stuff). */
/* - The declaration of the global variables is */
/* located in file "fsu-var.c". */
/* - Any LCD-related code, synbolic constant and */
/* variable is located in file "fsu-lcd.c". */
/* */

/**/

/*-- Definition of synbolic constants -------------------------------- */
#i ncl ude "fsu-def.c"

/*-- Include C language header files ---------------m - */
#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#i ncl ude <nat h. h>

#i ncl ude <tine. h>

#i ncl ude <dos. h>

/*-- Declaration of global variables ----------------------------------- - */

#i ncl ude "fsu-var.c"

/*-- Include source code file for subroutines / LCD-support ---------------- */
#i fdef LCD

#i ncl ude "fsu-Ilcd.c"
#endi f

#i ncl ude "fsu-sub.c"

/**/

[*- - MAIN Program - ----- - oo e oo e oo aoaaoome */

65

int main (void)

#i f def DEBUG
#i f ndef LCD
system ("cl s");
H deCursor ();

#el se

printf ("\n Generating screen output for SEETRON LG Display (type Gl2864
V2.0)...");

printf ("\n\n Press <ESC> (i.e. push-button #3) to abort program");
Init_LCD COML ();
LCD Snul | _Font _Mde ();

#endi f

#endi f

#i f def DATA LOGGER
#i f ndef EVENT_DRI VEN

/* Save time stanmp of the nonent the program has been started */
startup_tstamp = tinme (NULL);
#endi f
#endi f
buf _ptr = buffer; /* Set pointer to 0. element of buffer [BUF_SIZE] */
srand (NULL); /* Initialize C random nunber generator */

/* Enable GFA control logic on programstartup (i.e. the load is turned */
/* off and user override node is disabled). The data | ogger versions do */
/* not provide any relay control functions beyond this point. */

outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & LOAD OFF);
[*-- Display programinformati on --------------mmmm */

#i f ndef SKI PI NTRO
Di splayStartuplnfo ();

#el se
fprintf (stderr, "\n");
#endi f
/[*-- Test if parallel port is ECP/EPP conpliant --------------c-coooo */
#i f ndef SKI PTEST
Test Port Conpliance (); /* If SKIPTEST is not defined, the ECP/EPP */
/* hardware conpliance test is perforned. */
#el se

/* Otherwise just configure port for data input */

outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | ENABLE_TRI STATE_MODE) ;
#endi f

/*-- If test was successful, install Interrupt Service Routine (ISR) ----- */
Install _ISR ();
/* Turn FSU hardware power on */

del ay (500);
outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & FSU ON);

[*-- Start reading data fromLPTL -----------mmmmmmmm - */

66

#i f def DEBUG
#i f ndef LCD
printf ("\N\N ----omo oo
printf (1\n USER | NFO : Please connect FSU to your conputer's paralle
port now. ");
printf ("\'n\n AUTOMATIC MODE : Valid keys are <a>uto node, <nmranual nopde or
<ESC> to quit.");

printf ("\n\n RESULT : <Maiting for valid input frequency (9%.3f ...
9%.3f Hz)>.", LONER_FREQ THRESHOLD + FREQ HYSTERESIS, UPPER FREQ THRESHOLD -
FREQ HYSTERESI S) ;
Printf (AN o m o m oo
----------- ")
del ay (1000);
#el se
Init_GFA Screen ();
#endi f
#endi f
/*-- Data reading / processing SeCtion ----------ommmmmm */
do
if (data_avail != 0)

#i f def PROCESS CHANGES ONLY
if (data !'= ol d_data)

#endi f
#i f def FSU_DETECTI ON
if (data == 255) /* Every data bit = 1 for a longer tinme */
/* means that the FSU is nost likely not */
/* connected at the nonent */
{
got oxy (RESULT_OUTPUT_X, RESULT_OUTPUT_Y)
printf ("<ERROR : FSU not detected>. ");
}
el se
#endi f
if (data < 128) /* Bit 7=0: Hardware range m ss detected */
{
range_m ss++
if (range_mi ss >= MAX_ RANGE M SS NO) /* How nany in a row? */
| oad_state = | oad_state & OxFD, /* Prepare | oad state OFF */

#i f ndef DATA_LOGCGER
#i f def DEBUG

#i f ndef LCD
got oxy (RESULT_OUTPUT_X, RESULT_QUTPUT_Y);
printf (" <ERROR Range m ss det ect ed>
")
#el se
if (message_state != 1)

LCD Printf ("??.?2??", 11, 5);

LCD Printf ("RANCE M SS det ect ed. ",1,07);
message_state = 1;
}
#endi f

67

#endi f
#el se

#i f def EVENT_DRI VEN

gettine (&);

fprintf (stderr, " <ERROR : Range m ss detected> at
. 2d: %R.2d: 9%R2.2d,%®.2d ", t.ti_hour, t.ti_mn, t.ti_sec, t.ti_hund);

getdate (&d);

fprintf (stderr, "on 9%R.2d/9%R.2d/%.4d % %2.1d\n", d.da_non,
d. da_day, d.da_year, LOGGER MODE, event_count);

printf ("<ERROR : Range miss detected>. \n");

#el se
gettine (&t);
fprintf (stderr, " <ERROR : Range m ss detected> at

%WR.2d: 9R.2d: %2.2d,9%2.2d ", t.ti_hour, t.ti_mn, t.ti_sec, t.ti_hund);

getdate (&d);

fprintf (stderr, "on 9%.2d/9%.2d/%.4d %\n", d.da_non, d.da_day,
d. da_year, LOGGER_MODE);

printf ("<ERROR : Range niss detected>. \n");

#endi f
#endi f
}
}
el se
{ _ _
range_mss = 0; /* Any valid frequency val ue resets the range */
/* mss counter; this prevents mal functions */
/* on just a few range mi ss nessages reported */
/* by the hardware due to crosstalk, grid */
/* noi se and ot her disturbances, especially */
/* on the crappy hand-w red FSU pr ot otype. */
if ((data & 0x40) == 0) /* Bit 6=0? Consequence: f <= 60.000 Hz */
{
/* Now it gets tricky: Bit 7 of 'data' contains no infor- */
/* mation about the frequency value read, thus it is set to */
/* zero by the '& Ox7F conmmand. Because DO-D6 of 'data’ */
/* represent QL-Q7 of the FSU counter (Q0 is skipped), 'data' */
/* has to be multiplied by 2 (corresponds a binary shift- */
/* left-operation). The 'OFFSET' is added in order to recon- */
/* struct the whole divisor stored in the counter during the */
/* current read-out process. */
di visor = OFFSET + (data & Ox7F) * 2;
}
el se /* Bit 6 =1 means f is > 60.000 Hz */
{

/* Same procedure, but first convert 2-conplenment to unsigned */
/* char- and separate sign representation. Setting Bit 7 to */
[* zero is inplied in this conversion. */

di visor = OFFSET - ((unsigned char) (~data + 1)) * 2;
}

frequency = (doubl e) REF_FREQUENCY / divisor;

/* Cal cul ate average value if this feature is activated (i.e. */
/* "AVG VALUE_ NO is > 1) and skip the follow ng code; other- */
/* wise proceed with storing the new value in the buffer array. */

if (avg_count < AVG VALUE NO
{

avg_count ++;
freq_sum += frequency;

68

7

}

if (avg_count >= AVG VALUE_NO) goto result_output;

el se

result_out put:

frequency = freq_sum/ AVG VALUE_ NG,

freg_sum= 0.0; /* Reset variables for next average */

avg_count = 0; /* cal cul ati on | oop

*/

/* Store frequency value and timestanp in 'buffer [BUF_SIZE]' */

if (buf _ptr == buffer + BUF_SIZE) buf _ptr = buffer;

sanple_time = tinme (NULL);
gettinme (&t);

(*buf _ptr). dataset _frequency = frequency;

(*buf _ptr).dataset _tinmestanp_sec = sanple_tine;
(*buf _ptr).dataset _tinestanp_hund = t.ti_hund,
buf _ptr++;

/* Display the result and a nessage which action is taken */
#i f ndef DATA _LOGGER
#i f def DEBUG
if (time (NULL) >= slope_time + tineout)
#i f ndef LCD
got oxy (RESULT_OUTPUT_X, RESULT_QUTPUT_Y);
printf (" Readi ng frequency val ue 9%6. 4f Hz.

frequency);

timeout);

#el se
sprintf (frequency_dumy, "9%.3f", frequency);
LCD Printf (frequency_dumy, 11, 5);

if ((frequency >= LOWER FREQ THRESHOLD + FREQ HYSTERESI S) &8\
(frequency <= UPPER FREQ THRESHOLD - FREQ HYSTERESI S) &8&\

(load_state !'= 0))

{
if (nmessage_state != 2)
LCD Printf ("Nothing to report...
message_state = 2;
}
}
#endi f
}
el se
#i f ndef LCD
gotoxy (RESULT_OUTPUT_X, RESULT_QUTPUT_Y);
printf ("<Slope cetected : Turning load off for
#el se

sprintf (frequency_dumy, "9%.3f", frequency);
LCD Printf (frequency_dummy, 11, 5);
if (message_state != 3)

LCD Printf ("SLOPE: Turning load off for ", 1, 7);

sprintf (timeout_dumy, "93.3d", timeout);
LCD Printf (tineout_dummy, 9, 8);

69

% seconds>.

LCD Printf (" seconds.", 12, 8);
nmessage_state = 3;

}

el se
if (slope_time != slope_old)

sprintf (timeout_dumy, "9%3.3d", tineout);
LCD Printf (tineout_dunmy, 9, 8);
sl ope_old = sl ope_ti ne;
}
I
#endi f
}
#endi f
#el se

#i f def EVENT_DRI VEN
/* The following will be displayed on the screen just for */

/* monitoring the data | oggi ng process */
fprintf (stderr, " f=96. 4f Hz [940. 10l d92. 2d] at
0. 2d: %R2. 2d: 9. 2d, 2. 2d ", frequency, sanple_tine, t.ti_hund, t.ti_hour, t.ti_mn,

t.ti_sec, t.ti_hund);
getdate (&d);

fprintf (stderr, "on 9%R.2d/%®.2d/%.4d % 9%R2. 1d\n", d. da_non,
d. da_day, d.da_year, LOGGER MODE, event_count);
#el se
fprintf (stderr, " f=96. 4f Hz [940. 10l d92. 2d] at
. 2d: %R2. 2d: /2. 2d, %2. 2d ", frequency, sanple_time, t.ti_hund, t.ti_hour, t.ti_mn,

t.ti_sec, t.ti_hund);
getdate (&d);
fprintf (stderr, "on 9%.2d/9%.2d/%.4d %\n", d.da_non, d.da_day,

d. da_year, LOGGER _MODE);

/* This generates the frequency- and time stanp log file */
/* output nmentioned above if you use the MS-DOS conmand */
/* for redirecting the stdout-streaminto a log file by */
/* typing e.g."fsu > data000. fsu" at the NMS- DOS-Pronpt. */

printf ("9%.0f 9d0.101d%.2d\n", frequency * 10000, sanple_tine,
t.ti_hund);
#endi f
#endi f
#i f ndef DATA LOGCGER

/* Just a little washout filter to suppress snaller junps */
/* in the grid frequency signal */

if (fabs (frequency - old _freq0) < (double) WASHOUT FI LTER THRES)

/* Check if frequency is within user-defined boundaries */

/* (see specification of software thresholds in file */
/* "fsu-def.c"). */
i f ((frequency < LONER_FREQ THRESHOLD) | (frequency >
UPPER_FREQ THRESHOLD))
| oad_state = | oad_state & OxFD; /* Load state OFF */
#i f def LCD
if (frequency < LONER_FREQ THRESHOLD)
{

70

timeout))

7);

timeout))

7);

tineout))

7

tineout))

7

/*
/*
/*
/*

if

if ((nmessage_state != 4) && (time (NULL) >= slope_tinme +

{
LCD Printf ("Under-frequency |oadshedding active... R
nmessage_state = 4;
}
}
el se
{
if ((nmessage_state != 5) && (tinme (NULL) >= slope_tine +
{
LCD Printf ("Over-frequency |oad shedding active... "1,
nmessage_state = 5;
}
}
#endi f
}
el se
if ((frequency > LONER FREQ THRESHOLD + FREQ HYSTERESI S) &&
(frequency < UPPER FREQ THRESHOLD - FREQ HYSTERESI S))
| oad_state = | oad_state | 0x02; /* Load state ON */
}
#i f def LCD
el se
{
if (frequency < 60.0)
{
if ((nmessage_state != 6) && (tinme (NULL) >= slope_tine +
{
LCD Printf ("Under-frequency hysteresis range... ", 1,
nmessage_state = 6;
}
}
el se
{
if ((nmessage_state != 7) && (time (NULL) >= slope_tine +
{
LCD Printf ("Over-frequency hysteresis range... ", 1,
message_state = 7;
}
}
I
#endi f
}
Wait until 3 values in a row are in the nomi nal range. */
This is only necessary for normal nbde (to prevent the */
Il ogic fromdetecting a slope during programstartup */
whi ch woul d cause the timeout to trigger immediately). */

((startup == 1) &&\

(frequency > LOWER FREQ THRESHOLD + FREQ HYSTERESI S) &&)
(frequency < UPPER_FREQ THRESHOLD - FREQ HYSTERESI S) &&\
(old _freq0 > LOANER FREQ THRESHOLD + FREQ HYSTERESI S) &&\

71

(ol d_freqd < UPPER FREQ THRESHOLD - FREQ HYSTERESI S) &8&
(ol d_freql > LOAER FREQ THRESHOLD + FREQ HYSTERESI S) &8\
(ol d_freql < UPPER FREQ THRESHOLD - FREQ HYSTERESI S)) startup = O;

#el se

startup = 0;

#endi f

#i f ndef DATA_LOGGER

}

#endi f

/* Detection of slopes in the frequency signal which are */
/* larger in size (e.g. in case of a tripping generator or */
/* transmission line and all this stuff), but still within */
/* the band between the software threshol ds. */

if ((startup == 0) && ((frequency > LONER FREQ THRESHOLD) &&
(frequency < UPPER_FREQ THRESHOLD)) &&\

((old_freq0O > LONER_FREQ THRESHOLD) && (ol d_freqO
UPPER_FREQ THRESHOLD)) &&)\
((old_freql > LOVNER_FREQ THRESHOLD) && (old_freql

UPPER_FREQ THRESHOLD)) &&
(fabs (old freql - frequency) >= SLOPE _DETECTI ON_THRES) &&\
(((old_freq0 > frequency) && (old_freq0 < old_freql)) ||\
((old_freq0 < frequency) && (old_freq0 > old_freql))))

|l oad_state = | oad_state & OxFD; /* Load state OFF */
after_slope = 1; [* Turn on "after slope"-machinery */

/* Save the present time (when tineout begins) and generate */
/* a variable tinmeout */

#i f ndef DATA_LOGGER
slope_time = tinme (NULL);
timeout = FI XED TIMEQUT + rand () % MAX_RANDOM TI MEOUT;

#endi f
}

#i f ndef DATA_LOGCGER
/* Keep load off during tinmeout after a slope occured */
if ('(time (NULL) >= slope_tine + tineout) && (startup == 0))

| oad_state = | oad_state & OxFD;, /* Prepare |oad state OFF */
#}endif
/* Read the other half of the buffer's size after an event */

/* occured, otherw se do nothing. Purpose: Creating a record */
/* which contains the event (in the nmiddle) and half of the */

/* buffered data on both sides). */

if (after_slope > 0)

{

if (after_slope <= (unsigned int) (BUF_SIZE/ 2 - 1)) after_sl ope++;
el se

#i f def EVENT_DRI VEN
event _count ++; /* Increase event counter by one */

/* Create log file output (wites a record only after */
/* an event has been recogni zed and processed */

72

for (after_slope = 0; after_slope < BUF_SIZE;, after_slope++)

if (buf_ptr == buffer + BUF_SIZE) buf_ptr = buffer;

printf ("9%.0f 90. 10l d%2.2d\n", (*buf_ptr).dataset_frequency *

10000, (*buf_ptr).dataset_timestanp_sec, (*buf_ptr).dataset _timestanp_hund);
buf ptr++;

}
printf ("\n");
#endi f

after_sl ope = 0; /* Record processed and | ogged: Reset */
buf _ptr = buffer; /* this whole piece of crap and wait */
/* for new slope to trigger the |ogger */

}
}
/* Update frequency val ues of previous |oops */
old_freql = old_freqQ;
old_freq0 = frequency;
}
}
#i f def FSU_DETECTI ON
}
#endi f
#i f def PROCESS_CHANCGES_ONLY
ol d_data = data; /* Save old data for next read process */
}
#endi f
data_avail = 0; /* Data processed: Reset 'data_ avail' */
}
[*-- Process user's |load control input (overrides automatic control) ---%*/
#i f ndef LCD
if (kbhit ()) /* Keyboard buffer not enpty? */
kb_i nput = getch (); /* Read key */
#i f ndef DATA_LOGGER
if (kb_input =="'m) [* Turn | oad ON unconditionally */
{ /* (user override node is active) */
| oad_state = | oad_state | 0xO01

#i f def DEBUG
gotoxy (3, RESULT_QUTPUT_Y - 2)
printf ("MANUAL MODE ");

#endi f
}
else if ((kb_input =="a')) [/* Turn load ONif grid frequency is */
/* OK (GFA control logic activated) */
| oad_state = | oad_state & OxFE

#i f def DEBUG
gotoxy (3, RESULT_QUTPUT_Y - 2);
printf ("AUTOVATI C MODE");
#endi f

#endi f

73

#el se

if (Push_Button_1 () == BUTTON_PRESSED) /* Eval uate push-button */
{ /* instead of keyboard */
while (Push_Button_1 () == BUTTON_PRESSED); /* in LCD node */
if ((load_state == 0) || (load_state == 2))
| oad_state = |l oad_state | 0x01
LCD Printf ("Manual Mode "1, 4);
}
el se
{
| oad_state = | oad_state & OxFE
LCD Printf ("Automatic Mde", 1, 4);
}
#endi f
[*-- Apply the manual - and autonmatic load settings --------------------- */

#i f ndef DATA LOGGER
if (load_state !'= old_Istate) /* Just do sonmething on a state change */

if (load_state == 0) /* Load is turned off */

outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & LOAD_OFF);

#i fdef LCD
LCD Printf ("Load State is OFF*, 1, 3);
#endi f
}
el se /* Load is turned on */
{
outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | LOAD _ON)
#i fdef LCD
LCD Printf ("Load State is ON ", 1, 3);
#endi f
}
old_Istate = | oad_state; /* Save old |l oad state */
#endi f
/*-- Display the settings screen if running in LCD support node -------- */
#i f def LCD
if (Push_Button_2 () == BUTTON PRESSED) Show_Sof tware_Settings ()
#endi f
/*-- Different abortion conditions, dependant on node of operation --------- */

#i f ndef DATA_LOGGER

#i f ndef LCD

} while (kb_input '= 27); /* Wait for user to press ESC key */
#el se

} while (Push_Button_3 () == BUTTON_RELEASED); /* Button 3 = ESC */
#endi f

#el se

#i f def EVENT_DRI VEN

} while (kb_input = 27); /* Wait for user to press ESC key */
#el se

/* Wait for user to press ESC key or until automatic program abortion */
/* is activated. This is done by comparing the current systemtine with */
/* a time stanp recorded at programstartup. DO NOT USE the "clock ()"- */

74

function for this purpose, which
because this will
systemdate will

/* time stanps are significant.
} while ((kb_input '= 27) && (TIMEETORUN > difftime (tine
startup_tstanp)));
#endi f
#endi f
[*-- Normal programabortion -----------mmmm
[* Turn FSU Hardware power off on programexit */
outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | FSU OFF);
del ay (500);
[*-- Renobve FSU-ISR before exit -------------------“-- oo
Rermove | SR ();
/[*Turn |l oad off on programexit */
outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) & LOAD OFF)
/* Reset printer port to conpatibility node (reconfigures the eight data

Be careful with
and PC printer

/* lines as outputs).
/* avoid FSU har dwar e-

/* to enable this command if the printer

/* hardware than the FSU

/*outp (LPT1_CONTROL_PORT,

counts the 55ns- PC-tinmer-ticks

mysterically create problenms on date changes (the
remain on the date the software has been started
This is especially inconvenient for data | ogging,

where the correct

enabling this code in order to
port damage. It is NOT recomended
port is not used with other

/* Some screen outputs on programexit */
#i f ndef LCD

#i f ndef DATA_LOGCGER

printf ("\n\n");

#endi f

ShowCur sor ();
#el se

printf ("\n");

del ay (DI SPLAY_DELAY);

LCD Printf (" Program aborted

", 1, 3);

del ?sly (DI SPLAY_DELAY) ;

#endi f

return (0);

/*--This is the end of the file "fsu.c"

*/
*/
*/
*/

(NULL),

*/

*/

*/
*/
*/
*/
*/

inp (LPT1_CONTROL_PORT) & DI SABLE_TRI STATE_MODE) ; */

successful ly.

/****'k***************************************'k*******************************/

75

/****'k********************'k********************'k*****************************/

/*

/* File "fsu-def.c", created on 04/28/2001 by DLO

/*

/* Symbolic constants used in source file "fsu.c"

/
/* File last updated on 08/13/2001
/*

/* Copyright (C) 2001 by Daniel L. Cedingen, PNNL
*

/* NOTE: Any restrictions nentioned in "fsu.c" apply as well for usage of

/* this file.
/*

/***

/*-- User- and application-specific defined Frequency Thresholds -----------
/* NOTE: The thresholds are the outer boundaries (device is turned off);
/* the inner boundaries are LONER _FREQ THRESHOLD + FREQ HYSTERESI S
/* and UPPER_FREQ THRESHOLD - FREQ HYSTERESI S, respectively.
#defi ne UPPER_FREQ THRESHOLD 60.050 /* The load is turned off at once
#defi ne LONER_FREQ THRESHOLD 59. 950 /* if one of this thresholds is
/* exceeded
#defi ne FREQ HYSTERESI S 0. 010 /* hysteresis for turning the | oad
/* back on after switching it off
#define WASHOUT_FI LTER_THRES 0. 010 /* Defines the nmaxi mum al | owed

#define SLOPE_DETECTI ON_THRES 0.025

#define FI XED TI MEQUT 5
#defi ne MAX_RANDOM Tl MEOUT 10
#define MAX_RANGE_M SS_NO 5
#define AVG VALUE_NO 6

/* frequency junp between two read
/* values in a row on which the
/* relay driver output will react.

/* This value has to be exceeded by
/* the frequency deviation of three
/* measurements in a row (i.e.

/* within 33 ns) if a slope is

/* supposed to be detected. NOTE:
[* Turn off average val ue cal cul a-
/* for faster response.

* Specifies the fixed (i.e. the
*

mnimun) time for which the | oad

*will be turned off after a slope
/* has been detect ed.

/* Specifies the variable tine com
/* ponent for the load to be turned
/* off; the total timeout is the
/* sum of ' FIXED TI MEQUT' and a

/* random nunber between 0 and

/* ' MAX_RANDOM TI MEQUT' . This hel ps
/* preventing the GFAs fromturning
/* back on all at the same nonent.

/* Specifies the nunber of range
/* msses in a row which have to be
/* detected before the load is tur-
/* ned off.

/* 1 = no average cal cul ation

76

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* Reasonabl e values are < 60 in
/* most cases (1 value / second).

#define TI ME_TO_RUN 3600 /* Please note that this option is
/* available in | ogger node only.
/* Specifies the progranmis "tinme to
/* live" in seconds until it exits
[* automatically. This paraneter
/* does not affect program abortion
/* by pressing the <ESC> key. Use
/* batchfiles for 'continuous' |og-

/* ging.

/***

/*-- Screen Settings for displaying the result ------------------oon
#def i ne RESULT_OUTPUT_X 20 /* Screen colum in 80x25 text node
#define RESULT _OUTPUT_Y 24 /* Screen row in 80x25 text node
/****~k**
[*-- FSU Hardware Parameters -------------mmm oo
#def i ne BOARD_NUMBER 1 /* Apply the followi ng settings for
/* the correspondi ng PCB:
| * el el
/* -1 = Prototype board (GFA-Box)
/* 0 = FSU_PCB#00
/* 1 = FSU_PCB#01
/* 2 = FSU_PCB#02
/* NOTE: This systemis designed for a crystal oscillator producing a
/* frequency of exactly 4915200 Hz (i.e. OFFSET is 81920 @60.0 Hz).
/* As you can see, one of these paranmeters has to be corrected to
/* adj ust the software, because the crystal oscillator does not pro-
/* duce exactly the frequency it is supposed to.

/* The following lines configure the software for each of the PCBs or the
/* prototype (the software needs the exact crystal oscillator "reference"
/* frequency in Hz used on the corresponding hardware). This is at the

/* moment the only hardware parameter to adjust the software.
#if (BOARD NUMBER == -1) I F e o
#def i ne REF_FREQUENCY 4916995 /* Hardware-dependant settings are:
#endi f A e
/* FSU Prototype............ 4916995
#i f (BOARD_NUMBER == 0) /* FSU PCB #00.............. 4916948
#defi ne REF_FREQUENCY 4916948 /* FSU PCB #01.............. 4916948
#endi f /* FSU_PCB #02.............. 4916948
| * e e eaeaeaeaaaas
#i f (BOARD_NUMBER == 1) /* Even though all 3 PCBs use the
#def i ne REF_FREQUENCY 4916948 /* sane settings, they should be
#endi f /* selected by each card nunber.

#i f (BOARD NUMBER == 2)

#def i ne REF_FREQUENCY 4916948
#endi f
#def i ne OFFSET 81920 /* Offset of the 17-Bit-Divisor

/* (evaluated by the range hit /
/* range miss hardware) to the

7

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

/* value at 60.000 Hz */

/**/

[*-- Conpiler Settings --------mmmm e oo */
#defi ne DATA LOGCER /* Enables the built-in data |ogger of this */
/* software if defined, otherw se the pro- */
/* gramis in "normal" GFA control node. */
#defi ne EVENT_DRI VEN_ /* Selects the data | ogger node. |f defined, */
/* event-driven |logging is active, otherw se */
/* the frequency is |ogged continuously. */
/* OF course the DATA LOGGER | abel nust be */
/* defined as well. */
#def i ne DEBUG /* If the |abel DEBUG i s defined, the debug */
/* code of this program (several control */
/* outputs) is enabl ed. */
#define LCD_ /* 1f defined, this causes the software to */
/* generate ONLY screen outputs for the */

/* SEETRON serial LCD; otherw se the screen */
/* output is sent to the standard EGA VGA */
/* adapter (i.e. Video Card / CRT), and no */
/* serial LCD screen output is generated. */
/* Please note that full LCD support is only */
/* available in GFA Control Logic Mde, but */
/* NOT in any of the data | ogger npdes. */

#defi ne SKI PI NTRO_ [* If this label is defined, some useful */
/* information |ike the software threshol d */

/* settings and stuff will not be displayed. */

#defi ne SKI PTEST /* |If this |label is defined, the ECP/ EPP */
/* port conpliance test is disabled. Don't */
/* forget to activate the high i npedance */
/* node of the output drivers nmanually if */
/* you are sure your port is at |east EPP */
* conpliant. */
#define FSU DETECTI ON_ /* 1If this label is defined, an error */

/* message is displayed if the data read is */
/* OxFF (i.e. FSU is probably disconnected). */
/* Undefine it for proper nmeasurenments, as */
/* OxFF corresponds the count ' COFFSET-1' in */
/* the 2-conpl ement code used (60.000 Hz + */
/* one step). */

#defi ne PROCESS CHANGES ONLY_ /* Sets the software to process input data */
/* only if 'data' has changed. This option */
/* prevents you fromreading the same value */
/* for nore than one time in a row, be care- */
/* ful with this if you use the averaging */
/* functions (i.e. AVG VALUE NOis > 1). */
/* Note that this has nothing to do with the */
/* 1SR/ nmain | oop syncroni zation using the */
/* '"data_avail' -variable. */

/**/

[*-- Other Definitions -----cccmmommmmm e */

78

#defi ne PROG_VERSI ON "1.0.1.3 - [DEBUG"

#defi ne ASM asm

#define byte unsi gned char

#defi ne word unsi gned int

#define | _int unsi gned | ong int

/*-- Special Settings for Data Logger Myde --------------------------------- */

#i f def DATA_LOGGER

#i f def DEBUG /* Avoid any other screen output except from*/
#undef DEBUG /* frequency and tine stanp data sets */

#endi f

#i f ndef SKI PI NTRO /* Do not perform ECP/ EPP port conpliance */
#defi ne SKI Pl NTRO /* test in data | ogger node */

#endi f

#i f ndef SKI PTEST /* Do not perform ECP/ EPP port conpliance */
#define SKI PTEST /* test in data | ogger node */

#endi f

#undef PROG_VERSI ON /* Modify program versi on nessage */

#def i ne PROG VERSI ON "Data Logger V1.5"

#i f def EVENT_DRI VEN /* LOGGER_MXDE is just used to display node */
#defi ne LOGGER _MODE " [EVENT- DRI VEN "

#el se
#def i ne LOGGER_MODE " [CONTI NUQUS] "

#endi f

#el se

#i f def EVENT_DRI VEN /* Ensure the event-driven nmode is off if */
#undef EVENT_DRI VEN /* the data | ogger activator is not defined. */

#endi f

#i f def TI ME_TO_RUN /* Ensure that the normal GFA control logic */
#undef Tl ME_TO_RUN /* version cannot quit automatically. */

#endi f

#endi f

/**/

/*-- Hardware-1/0 Addresses and Commands ----------------------------------- */
#defi ne LPT1_DATA PORT 0x378 /* RR'Wport for data I/0O */
#defi ne LPT1_STATUS_PORT 0x379 /* READ ONLY; shows device status */
#define LPT1 _CONTROL_PORT Ox37A /* RIWport for ECP/EPP control */
#defi ne | NT_MASK_REG 0x21 /* 8259A interrupt mask register */
#define | NT_CVMD_REG 0x20 /* Interrupt conmmand register */
#define LPT1_I NT_NO OxOF /* I RQ7 for LPT1 corresponds to */

/* internal type code #15 (OFH) */
/* NOTE: Use the OR operator (|) for enabling a bit (set bit Hi gh), the AND */
/* operator (& for disabling a bit (set bit Low). Setting the 8259A */
/* interrupt nmask register requires the inverse operations described */
/* above (all bits active lowin this register). */
#define FSU_OFF 0x08 /* Used to manipulate Bit 3 in LPT */
#defi ne FSU ON OxF7 /* control register */

79

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i

#def i

ne
ne

ne
ne

ne

ne

ne
ne
ne

ne

ne

LOAD_ON
LOAD OFF

ENABLE TRI STATE_MCDE
DI SABLE_TRI STATE_MODE

ENABLE_LPT1_I NT
DI SABLE_LPT1_| NT

ENABLE_8259A | RQ7
DI SABLE_8259A | RQ7
RESET_8259A

TEST_BI T_PATTERN

BUF_SI ZE

0x04
OxFB

0x20
OxDF

0x10
OxEF

Ox7F
0x80
0x20

0x55

256

/* Used to manipulate Bit 2 in LPT
/* control register

/* Used to manipulate Bit 5 in LPT
/* control register

/* Used to manipulate Bit 4 in LPT
/* control port

/* Used to manipulate Bit 7 in the
/* 8259A interrupt mask register
/* Clears interrupt controller

/* some people call it rather 'EQ"
/* (End OF Interrupt)

/* Bit pattern for test purposes

/* Size of several rotating buffers

/* PLEASE NOTE that any synbolic constant used in driver code for the LC
di splay (which may optionally be included) can be found in
the correspondi ng source file "fsu-1lcd.c"

/*
/*

/*--This is the end of the file "fsu-def.c"

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/

*/

/*********************'k**********************'k*******************************/

80

/****'k***************************************'k*******************************/

/*

/* File "fsu-lcd.c",

/*

created on 07/11/2001 by DLO

/* Inplenentation of subroutines used in source file "fsu.c" for displaying
/* messages on a SEETRON serial LC Display (nodel G12864 V2.0)

/* Copyright (C 2001 by Daniel L. Qedingen, PNNL

/* File last updated on 07/23/2001

/* NOTE: Any restrictions nentioned in "fsu.c" apply as well for usage of

/*

/***

/*-- Synbolic Constants for Serial Port Handling ---------------------------

this file.

/* Port addresses */

#defi ne COML_DATA PORT_REG 0x3F8
#defi ne COML_BAUDRATE_LSB_REG 0x3F8
#defi ne COML_BAUDRATE_NMSB_REG 0x3F9
#defi ne COML_LI NE_CTRL_REG 0x3FB
#defi ne COML_MODEM CTRL_REG 0x3FC
#define COML_LI NE_STATUS_REG 0x3FD
/* 9600 bps */

#def i ne BAUDRATE_LSB 0x0C
#def i ne BAUDRATE_MSB 0x00
#def i ne SET_BIT7_LCR 0x80
#def i ne RESET_BI T7_LCR Ox7F
/* No parity, 1 stop bit, 8 data bits */
#def i ne LCD_SETTI NGS 0x03
#defi ne GFA_VERSI ON "GFA Version 1.0.1.3 \0"
#def i ne DI SPLAY_DELAY 10000
#defi ne BUTTON_PRESSED 1

#defi ne BUTTON_RELEASED 0

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

/**/

/*-- Variabl es used only in LCD-Mde

char timeout_dummy [4] = "\0"; /* Dummy for screen output conversions
char frequency_dumy [7] = "\0"; /* Dummy for screen output conversions
int nessage_state = 0; /* Used to prevent the software fromwiting the

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

sanme nessage to the LCD again and again in
case of no state change occured. This is
necessary because it takes the program about
42 ms to transmt a 40-byte string, which in
turn causes a |oss of at |east 2 data acqui-
sition cycles.

The foll owi ng table shows the possible val ues
of "message_status" and the correspondi ng
nmessages to be just witten once:

0 = No nessage i s being displayed.

81

*/

/* 1 = Range M ss detected. */

/* 2 = Nothing to report... */

/* 3 = SLOPE: Turning Load off for xxx seconds. */

/* 4 = Under-frequency | oad sheddi ng. */

/* 5 = Over-frequency | oad sheddi ng. */

/* 6 = Under-frequency with hysteresis. */

/* 7 = Over-frequency with hysteresis. */

time_t slope_old = 0; /* Used for updating the display in case that */
* sl ope detection algorithmis retriggered. */

/**/

/*-- unsigned int Push_Button_1 (void) ------------------------------------- */

/* Checks if the push-button no. 1 is pressed or not; this function returns */
/* either BUTTON_PRESSED or BUTTON RELEASED, according to the present state */
/* of the button. * [

/* It evaluates the "Select In"-signal coming in on pin 13 of the DB-25 LPT */
/* connector. This line corresponds to Bit 4 in the LPT1 status register. */

unsi gned int Push_Button_1 (void)
if ((inp (LPT1_STATUS PORT) & 0x0010) == 0x0010)

return BUTTON_RELEASED;
}

el se

{

}
}

/**/

return BUTTON_PRESSED;

[*-- unsigned int Push_Button_2 (void) -------------------------------- - */

/* Eval uates the "Paper Enpty"-signal coming in on pin 12 of the DB-25 LPT */
/* connector. This line corresponds to Bit 5 in the LPT1 status register. */

unsigned int Push_Button_2 (void)
if ((inp (LPT1_STATUS_PORT) & 0x0020) == 0x0020)
{

return BUTTON_RELEASED;

}
el se
return BUTTON_PRESSED;

}
}
/**/
/*-- unsigned int Push_Button_3 (void) -------------------“--------------~-~--- */
/* Evaluates the "Error"-signal coming in on pin 15 of the DB-25 LPT */
/* connector. This line corresponds to Bit 3 in the LPT1 status register. */

unsi gned int Push_Button_3 (void)

if ((inp (LPT1_STATUS_PORT) & 0x0008) == 0x0008)

82

{
}

el se

{

}
}

return BUTTON_RELEASED;

return BUTTON_PRESSED,

/**/

[*-- void INitLCD COML (VOI) =-----mmmmmm oo o e e o o

/* Initializes the serial port COML for conmunication with the used LCD.
/* It configures the the parity-, stop bit-,

/* settings.

void Init_LCD COML (voi d)
{

outp (COML_LINE_CTRL_REG, LCD SETTINGS);

/* Apply port settings (no parity, 1 stop bit,

/* Prepare to set baudrate */

outp (COML_LINE_CTRL_REG, (inp (COML_LINE_CTRL_REG)

outp (COML_BAUDRATE LSB REG BAUDRATE LSB);
outp (COML_BAUDRATE MSB REG BAUDRATE_MNBB);

/* Prepare to transmt data */

outp (COML_LINE_CTRL_REG (inp (COML_LINE_CTRL_REG) & RESET BIT7_LCR));
outp (COML_MODEM CTRL_REG, (inp (COML_MODEM CTRL_REG)

/* Backlight on */

outp (COML_DATA PORT_REG 14);

while ((inp (COML_LI NE_STATUS REG & 0x20)
}

== 0),

data bit- and baud rate

8 data bhits) */

SET_BI T7_LCR));

*/
*/
*/

LSB */
MSB */

/**/

[*-- void LCD CrScr (void) -------mmmmmmm e e oo

/* Fills the screen with bl anks and sets the cursor to the upper |eft
nodes (4- and 8-1ine node).

/* corner of the screen. Works in both text
void LCD CrScr (void)
outp (COML_DATA PORT_REG 12);

while ((inp (COML_LINE_STATUS REG & 0x20)
}

== 0);

*/
*/

Screen */

/**/

/*-- void LCD_Snal |l _Font_Mdde (void) ------------------omm oo

/* As the LC-display enters the 4-1ine node after

/* tion has to be called to enter the 8-1ine node.

voi d LCD_Snal | _Font _Mbde (voi d)
{ /* Enter small font node */
outp (COML_DATA PORT_REG, 26);
while ((inp (COML_LINE_STATUS REG & 0x20)
outp (COML_DATA PORT_REG 'F');
while ((inp (COML_LINE_STATUS REG & 0x20)

83

== O),

== 0)’

this func-

*/
*/

outp (COML_DATA PORT REG '1');
while ((inp (COML_LINE_STATUS REG) & 0x20) == 0);

/**/

/*-- void LCD Printf (const char *, unsigned char, unsigned char) ---------- */
/* Conbi nes the Turbo C fuctions "gotoxy ()" and "printf ()" for use */
/* with LC-Displays. Paraneters are the string to be displayed as well */
/* as the desired x- and y-position values. The upper |left corner of */
/* the screen has the coordinates (1, 1). */

void LCD Printf (const char * string, unsigned char x_position, unsigned char
y_posi tion)
{

unsi gned char i

unsi gned char position

0;
0;

position = 20 * (y_position - 1) + x_position - 1;

outp (COML_DATA PORT_REG, 16);
while ((inp (COML_LINE_STATUS REG & 0x20) == 0);

out p (COML_DATA PORT_REG position + 64);
while ((inp (COML_LI NE_STATUS REG & 0x20) == 0);

for (i =0; i <strlen (string); i++)

outp (COML_DATA PORT_REG, string [i]);
while ((inp (COML_LINE_STATUS REG) & 0x20) == 0);

}

/**/
[*-- void Init_GFA Screen (void) -----------mmmmmm oo */
/* Draws the common parts of the grid-friendly appliance's LCD screen */
/* output. Later on, only the changed parts have to be redrawn using the */
/* "LCD_Prinf ()" function, the rest may remain the sane. */

void Init_GFA Screen (void)
{
unsi gned char |inel [21]
unsi gned char |ine2 [21]
unsi gned char line3 [21]

GFA_VERSI ON; /* Default GFA */
" /* out put screen */

I
'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'
—
<

"Load State is OFF \0";

unsi gned char lined4 [21] = "Automatic Mde \0";
unsi gned char line5 [21] = "Reading f=??.2?? Hz \ 0";
unsigned char line6 [21] = "-------------------~ \ 0",
unsi gned char line7 [21] = "Waiting for valid \0";
unsi gned char line8 [21] = "frequency value... \0";
LCD drsScr ();

LCD Printf (linel, 1, 1);

LCD Printf (line2, 1, 2);

LCD Printf (line3, 1, 3);

LCD Printf (line4, 1, 4);

LCD Printf (line5, 1, 5);

LCD Printf (line6, 1, 6);

LCD Printf (line7, 1, 7);

LCD Printf (line8, 1, 8);

}

/***

/*-- void Show Software_Settings (void) ---------mmmmmmmm oo

/* Views the software threshold settings etc. and waits for the user to
/* press the PushButton 2 to return to the main screen.

voi d Show_Sof tware_Settings (void)

{

unsi gned char dunmmy [4] = "\0";

unsi gned char linel [21] = "Software Settings \ 0", /* GFA settings
unsigned char line2 [21] = "-------------omm---- \ 0", /* output screen
unsi gned char line3 [21] = "Lower tres.__- nHz\ 0";

unsi gned char line4 [21] = "Upper tres.__+ mHz\ 0" ;

unsigned char line5 [21] = "Hysteresis____ nHz\ 0";

unsi gned char line6 [21] = "Washout f.___ nHz\ 0";

unsi gned char line7 [21] = "Slewrate__ mHz/ T\ 0";

unsi gned char line8 [21] = "Sanpl es/val ue \ 0",

LCD drscr ();

LCD Printf (linel, 1,
LCD Printf (line2, 1,
LCD Printf (line3, 1,
LCD Printf (line4, 1, ;
LCD Printf (line5, 1, 5);
LCD Printf (line6, 1,
LCD Printf (line7, 1,
LCD Printf (line8, 1,

sprintf (dummy, "9%.0f", (60.0 - LONER FREQ THRESHOLD) * 1000);
LCD Printf (dumy, 15, 3);

sprintf (dummy, "9%.0f", (UPPER_FREQ THRESHOLD - 60.0) * 1000);
LCD Printf (dummy, 15, 4);

sprintf (dummy, "9%.0f", FREQ HYSTERESI S * 1000);

LCD Printf (dummy, 15, 5);

sprintf (dummy, "9%2.0f", WASHOUT FILTER THRES * 1000);

LCD Printf (dumy, 15, 6);

sprintf (dummy, "93.1f", SLOPE_DETECTI ON_THRES * 500 / AVG VALUE_NO);
LCD Printf (dummy, 12, 7);

sprintf (dummy, "9%.2d", AVG VALUE NO);

LCD Printf (dunmmy, 19, 8);

while (Push_Button_2 () == BUTTON_PRESSED);
while (Push_Button_2 () == BUTTON _RELEASED);
while (Push_Button_2 () == BUTTON_PRESSED);

LCD drScr ();
LCD Printf (GFA_VERSION, 1, 1);
LCD Printf ("-------cmmmmmmmaaa ", 1, 2);
if (load_state == 0)
{

LCD Printf ("Load State is OFF ", 1, 3);
}
el se

LCD Printf ("Load State is ON ", 1, 3);
}

if ((load_state == 1) || (load_state == 3))

85

*/
*/

*/
*/

*/
*/

LCD Printf ("Manual Mode "1, 4);

}
el se
LCD Printf ("Automatic Mde ", 1, 4);
}
LCD Printf ("Reading f= Hz ", 1, 5);
LCD Printf ("-------------------- ", 1, 6);
if (message_state == 1) LCD Printf ("RANGE M SS detect ed.
7);
if (message_state == 2) LCD Printf ("Nothing to report...
7);
if (message_state == 3)
{
LCD Printf ("SLOPE: Turning load off for ", 1, 7);
sprintf (timeout_dumy, "93.3d", tineout);
LCD Printf (tinmeout_dumy, 9, 8);
LCD Printf (" seconds.", 12, 8);
if (nmessage_state == 4) LCD Printf ("Under-frequency |oadsheddi ng active...
7);
if (message_state == 5) LCD Printf ("Over-frequency |oad shedding active...
7);
if (message_state == 6) LCD Printf ("Under-frequency hyst eresi s range. ..
7);
if (message_state == 7) LCD Printf ("Over-frequency hysteresi s range...
7);
}
/*--This is the end of the file "fsu-lcd.c" ----------------“------ */

/**/

86

/****'k***************************************'k*******************************/

/* */
/* File "fsu-sub.c", created on 04/28/2001 by DLO */
/* */
/* Inplenentati on of subroutines used in source file "fsu.c" */
/* */
/* __ */
/* */
/* Copyright (C) 2001 by Daniel L. Qedingen, PNNL */
/* */
/* File last updated on 08/13/2001 */
/* */
/* NOTE: Any restrictions nentioned in "fsu.c" apply as well for usage of */
/* this file. */
/* */

/*** *******/

/*-- forward declaration of interrupt service routine / interrupt vector ---*/
void interrupt (*oldvect) (void); /* Adinterrupt vector */
void interrupt FSU_I SR (void); /* Interrupt prototype */

/**/

[*-- void H deCursor (VOid) -------mmmmmm o */
voi d Hi deCursor (void)

ASM MOV AX, 0100H
ASM MOV CX, 2607H
ASM | NT 10H

}
/**/
[*-- void ShowCursor (void) ------------mmmmmm oo */
voi d ShowCursor (void)

ASM MOV AX, 0100H

ASM MOV CX, 0506H
ASM I NT 10H

}

/**/

/*-- void DisplayStartuplnfo (void) --------------------i - */
/* This function displays just all these 'useful' information |ike date */
/* and tinme of conpilation, programversion, copyrights and the "do and */
/* don't list" of this software. */

voi d DisplayStartuplnfo (void)

#i f ndef LCD
[T I 1 A (I T
------- ")
#if (BOARD NUMBER == - 1)
printf ("\n FSU EXE Test-Software for GFA Frequency Sensor Unit:
Prot otype");
#endi f

87

#i f (BOARD_NUVBER == 0)

printf ("\n FSU EXE Test-Software for GFA Frequency Sensor Unit:
FSU_PCB #00");
#endi f
#i f (BOARD_NUMBER == 1)
printf ("\n FSU EXE Test-Software for GFA Frequency Sensor Unit:
FSU_PCB #01");
#endi f
#i f (BOARD_NUMBER == 2)
printf ("\n FSU EXE Test-Software for GFA Frequency Sensor Unit:
FSU_PCB #02");
#endi f
printf ("\n Program Version : %", PROG_VERSI ON);
printf ("\n Created on D%, %", _DATE _, _TIME_);
Printf (NN c oo m o oo
printf ("\n USER SETTINGS : Lower software turn-off threshold...... 9%. 3f Hz",
LOVNER_FREQ THRESHOLD) ;
printf ("\n Upper software turn-off threshold...... 9. 3f Hz",
UPPER_FREQ THRESHOLD) ;
printf ("\n Hysteresis for turning |oad back on.... 9%b. 1f
nmHz", FREQ HYSTERESI S * 1000);
printf ("\n Washout filter threshold............... %6. 1f
mHz", WASHOUT FI LTER THRES * 1000);
printf ("\n Sl ope detection slew rate.............. %. 1f

nmHz/ T", SLOPE_DETECTI ON_THRES * 500 / AVG VALUE_NO);

#if AVG VALUE_NO ==

printf ("\n Aver age value calculation is deactivated.");
t#el se
printf ("\n Cal cul ating average val ues using % sanples per
val ue.", AVG VALUE NO);
#endi f
Printf (NN oo oo oo
--------- ")
#el se

LCD drsScr ();
LCD Printf (GFA_VERSION, 1, 1);

LCD Printf ("-------------------- "1, 2);
#endi f
}
/**/
/*-- void TestPortConpliance (void) --------------mmmmmmi - */
/* This function performs a test of the LPT1 parallel port of your PC */

/* consi dering ECP/ EPP conpliance. This is necessary if you want to use */
/* the 8 data lines as bidirectional I/Opins. If the test failed, the */

/* entire programis aborted after informng the user. If the test has */
/* been perfornmed successful, the user is informed and the PORT REMAI NS */
/* IN INPUT MODE (i.e. the output driver remains in tristate node). */

voi d Test Port Conpl i ance (void)

#i f ndef LCD
printf ("\N\N ---omci e

-----------)

88

printf ("\n ECP/EPP TEST : Please DI SCONNECT FSU for Read/Wite Test on LPT1.
Your");

printf ("\n paral l el port and FSU m ght be damaged if not
di sconnected.");
printf ("\n\n USER | NFO : Press <ENTER> if you are ready to test port

conpl i ance.");
do

kb_input = getch ();

} while (kb_input !'= 13); /* Wait for user to press RETURN key */

kb_i nput = 65;
#el se

LCD Printf ("D SCONNECT FSU now to perform EPP port conpliance test, t hen

press <ENTER>. ", 1, 3);

whil e (Push_Button_3 () == BUTTON_RELEASED);

while (Push_Button_3 () == BUTTON_PRESSED);
#endi f
/* Test approach: 1. Try to enable tristate outputs by performng the */
/* corresponding bit manipulations in the control */
/* register (first line). */
/* 2. Wite specific bit pattern to the data port. */
/* 3. Read bit pattern fromthe data port. If the data */
/* read is not the sane as the witten one, the test */
/* failed (tristate node could not be initiated). */

outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | ENABLE TRI STATE MODE);

outp (LPT1_DATA PORT, TEST BIT_PATTERN);

if (inp (LPT1_DATA PORT) == TEST_BIT_PATTERN) /* Test was NOT successful */
{

#i f ndef LCD
printf ("\'n\n TEST RESULT : Your LPT1 parallel printer port is NOT ECP/ EPP
COWPLI ANT. ") ;
printf ("\n Thus, you cannot use an FSU in conbination with
this PC.");
printf ("\n\n USER | NFO : Press <ESC> to quit program");
Printf (" AN e m o m oo
----------- ")
el se
LCD Printf ("TEST RESULT: Your LPT1 parallel printer port is NOT EPP

conpl i ant. Press <ESC> to exit.", 1, 3);
#endi f

#i f ndef LCD
do

if (kbhit ()) kb_input = getch ();

} while (kb_input I'= 27); /* Wit for user to press ESC key */
system ("cls");
#el se
whil e (Push_Button_3 () == BUTTON_RELEASED);
printf ("\n");
LCD drScr ();
LCD Printf (GFA_VERSION, 1, 1);
LCD Printf ("--------mmmmmmaaa - - ", 1, 2);
LCD Printf ("Program aborted successfully.", 1, 3);

89

#endi f
exit (0);

el se

#i f ndef LCD
printf ("\n\n
conpliant.");
printf ("\n
----------- ")
#el se
LCD Printf ("TEST RESULT:
conpli ant. ", 1, 3);

LCD Printf ("Press <ENTER>.",
BUTTON_RELEASED) ;
BUTTON_PRESSED) ;

while (Push_Button_3 () ==
while (Push_Button_3 () ==
#endi f
}
}

TEST RESULT

1, 8);

/* Test successful
Your LPT1 parallel port is
Your LPT1 parallel printer port

*/

ECP/ EPP

is EPP

/******************************'k***/

/*-- void Install _I SR (void)

/* This function installs the FSU interrupt service handler (function
/* "Fsu_lsr") on IRQ7 after saving the old interrupt vector table entry.

/* Then, the Intel
/* equivalent) is set
/* printer port 1 (LPT1).
void Install _I SR (void)

#i f def DEBUG

Final ly,

8259A standard programmabl e interrupt controller (or
properly to enable hardware interrupts on the line
it enables the interrupt on LPT1 by

/* setting the corresponding Bit 4 in the port control

register to 1.

*/

*/
*/
*/
*/
*/

*/

#i f ndef LCD
printf ("\n\n -----mcmi et e e e e
------------- ")
printf ("\'n USER | NFO Installing FSU- 1SR on | RQ7 (LPT1)......
#el se
LCD Printf ("Installing FSU-ISR on LPT1....... ", 1, 3);
#endi f
#endi f
di sable (); /* Disabl e maskabl e interrupts
ol dvect = getvect (LPT1_INT_NO; /* Save old interrupt vector

setvect (LPT1_INT_NO FSU ISR);
enable ();

#i f def DEBUG
#i f ndef LCD
printf ("done.");
printf ("\'n USER | NFO
t#el se
LCD Printf ("done.",

#endi f
#endi f

/[* Set Bit 7 in interrupt

16, 4);
LCD Printf ("----------------
LCD Printf ("Enabling interrupt

nmask register of the Intel

/* Install FSU interrupt handl er
/* Enabl e maskabl e interrupts

Enabl i ng hardware interrupt on LPT1....

1, 5);
on LPT1....... "1,

8259A i nterrupt

/* controller to O (enables hardware interrupt on PIC)

disable ();

90

*/
*/
*/

");

*/

outp (INT_MASK REG, inp (INT_MASK REG) & ENABLE 8259A | RQ7);

/* Read byte from LPT1 control port, set Bit 4 =1 and wite it to */
/* control port again (this enables the hardware interrupt on the port) */

outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PORT) | ENABLE_LPT1_INT);
enabl e ();

#i f def DEBUG

#i f ndef LCD
printf ("done.");
[N G ¢ B e e

----------- ")

#el se
LCD Printf ("done. ", 16, 7);
del ay (DI SPLAY_DELAY);

#endi f

#endi f

}

/****'k********************'k**/

[*-- void RenDve_I SR (VOid) --------mmmmmmm oo oo */

/* At first, this function renoves the address of the FSU interrupt service */
/* handler fromthe interrupt vector table entry corresponding to | RQ7 */
/* (LPT1) and restores the previously used interrupt handler. Then, the PIC */
/* is set to disable IRQ7. Finally, the interrupt input (/ackn-line) of the */
/* parrallel port is disabled in the control register of the parallel port */
/* by setting Bit 4 to 0. */

voi d Renove_| SR (voi d)

#i f def DEBUG
#i f ndef LCD
gotoxy (1, RESULT_QUTPUT_Y + 1);
Printf ("AN\N mm o m oo

-------------);
printf ("\n USER | NFO : Removing FSU-ISR on IRQ7 (LPT1)........ ");
#el se
LCD Printf ("Renoving FSU-1SR on LPT1....... ", 1, 3);
#endi f
#endi f
di sable (); /* Disable naskable interrupts */
setvect (LPT1_INT_NO ol dvect); /* Restore old interrupt vector */
enable (); /* Enabl e maskable interrupts */

#i f def DEBUG
#i f ndef LCD
printf ("done.");
printf ("\n USER | NFO : Disabling hardware interrupt on LPT1... ");
t#el se
LCD Printf ("done.", 16, 4);
LCD Printf ("------mmmmmmmmaaa o ", 1, 5);
LCD Printf ("Disabling interrupt on LPT1....... ", 1, 6);
#endi f
#endi f

/* Set Bit 7 in interrupt mask register of the Intel 8259A interrupt */
/* controller to 1 (disables hardware interrupt on PIC) */

disable ();

91

outp (INT_MASK REG, inp (INT_MASK REG) | DI SABLE 8259A | RQ7);

/* Read byte from LPT1 control port, set Bit 4 = 0 and wite it to */
/* control port again (this disables the hardware interrupt) */

outp (LPT1_CONTROL_PORT, inp (LPT1_CONTROL_PCRT) & DI SABLE _LPT1_INT);
enabl e ();

#i f def DEBUG

#i f ndef LCD
printf ("done.");
Printf (AN o m o m oo
----------- ")
#el se
LCD Printf ("done. ", 16, 7);
#endi f
#endi f
}
/**/
[*-- void interrupt FSU ISR (void) --------------mmmmmmm oo */
/* This function is the hardware interrupt handler itself. It just reads */
/* the data byte, wites it to the correspondi ng gl obal variable and resets */
/* the 8259A PIC to enable further interrupts. */
void interrupt FSU_I SR (void)
{
data = inp (LPT1_DATA PORT); /* Read data fromparallel port */
data_avail = 1; /* Triggers the main programto */
/* update the frequency val ue */
outp (I NT_CVMD REG RESET_8259A); /* Reset 8259A after interrupt */
}
/*--This is the end of the file "fsu-sub.¢c" -------------------------------- */

/***'k********************************/

92

/****'k***************************************'k*******************************/

/*

/* File "fsu-var.c",

/*

created on 04/28/2001 by DLO

/* d obal variables used in source file "fsu.c"

/*

/

/* Copyright (C) 2001 by Daniel L. Qedingen, PNNL
*

/* File last updated on 07/25/2001

/*

/* NOTE: Any restrictions nentioned in "fsu.c" apply as well for usage of
/* this file.

/*

/***

/*-- User-defined type definitions

/* One data set consists of the frequency in float format, the standard C
/* time stanp in seconds since 01/01/1970 and, for better accuracy, the
/* "hundredth" of a second (i.e. the 55 ns intervals fromthe systemti mer

/* tick are counted).

/* hardware / OS, evaluating this part of the tinestanp is only reasonabl e
/* for averaged val ues ('AVG VALUE_NO should be at |least >= 4...6).

struct dataset { float dataset_frequency;
| _int dataset_ti nestanp_sec;

b

/*-- Declaration of global variables ---------------------

byte kb_input

byte |oad_state

byt e old Istate
byt e dat a
byte data_avail

byt e startup

byt e range_m ss

= 0;

~ — — o~ ~— ¥
*F F X X

n
e

= 0;

= 0;

byte dataset_ti mestanp_hund,

/* Contains characters read fromthe keyboard

/[* If O0or 2, the GFAlogic is enabled to control
the load (0 = OFF). State 1 or 3 neans that */
the user overrides the GFA control logic (de- */
vice is permanently ON). Bit O represents the */
user's settings, Bit 1 settings are applied */
automatically by the GFA control |ogic. */

/* Contains |oad status of |ast |oop cycle
/* Contains data byte read from parallel port
/* Synchroni zes nain programloop with | SR

/* Helps initializing the GFA control |ogic

(prevents problens during programstartup and */
FSU hardware power-on). It is set to zero when */
the first valid frequency val ue has bee read */
(i.e. avalue within the software thresholds). */

/* Counts the nunber of range misses in a row

/* This variable is used to prevent the software
/* fromturning off the load briefly if a single
/* (or just a few) range mi ss-nessages are read.

#i f def PROCESS_CHANGES ONLY

byte ol d_data
#endi f

:O,

/* Contains data of |ast read process

93

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/

As a better time stanp is not easy to get fromthe PC */

*/
*/

*/

*/

*/

*/

*/

*/

*/
*/
*/
*/

*/

#i f def EVENT_DRI VEN
word event _count = O; /* Counts the nunber of detected events */
#el se
#i f def DATA LOGGER
time_t startup_tstanmp = O;
/* Contains tine stanp at which the program has */

/* been started; used for automatic program */
/* abortion in continuous data | ogger node. */
#endi f
#endi f
wor d ti meout = 0; /* Represents the fixed + the randomi zed tinmeouts */
tine_t sanple_time = 0; /* Contains the tine in seconds for a sanple */
time_t slope_time = 0; /* Time in seconds since 01/01/1970 at the nonent */
/* a sl ope has been detected */
wor d avg_count = 0; /* Just a counter variable for display purposes */
wor d after_slope = O; /* Controls data reading process after an event */
/* (e.g. a slope) occured; 0 = FALSE, otherw se = */
/* TRUE ('after_slope' is also used as a | oop */
/* counter for output purposes etc.) */
| _int divisor = 1, /* Divisor to determine grid frequency */
float frequency =0.0; /* Gid frequency read in float format ("loop n") */
float old _freq0 = 1.0; /* Contains frequency in loop n-1 */
float old_freql = 2.0; /* Contains frequency in |loop n-2 */
doubl e freq_sum = 0.0; /* Contains sum of frequency val ues read since */
/* last clear if average val ues are used */

struct dataset buffer [BUF_SIZE]; /* Rotating menory for event-driven data */
/* logging and Fast Fourier Transform */

/* contains the | ast <BUF_SI ZE> pro- */

/* cessed frequency val ues and tine */

[* stanps */
struct dataset * buf _ptr = NULL; /* This pointer is used for any 1/0O */

/* operation of the 'buffer [BUF_SIZE]' */
/* rotating menory */

struct tinme t; /* Necessary to get the hundredth of a second */
struct date d; /* Contains the present date */
/* PLEASE NOTE that any variable used in driver code for the LC-display */
/* (which may optionally be included) can be found in the */
/* correspondi ng source file "fsu-1lcd.c". */
/*--This is the end of the file "fsu-var.c" ------------mommmo */

/**/

94

Analysis and Controls Software for the Data Analysis Platform

The controls software consists of the following modules in ANSI-C language”.
- gfac

gfa dsp.c

gfa fft.c

ofa if.c

gfa server.c

Each module is listed below.

" ANSI, 1988. Draft Proposed American National Standard for Information Systems-- Programming Language
C. Technical Report X3J11/88-158, ANSI Accredited Standards Committee, X3 Information Processing
Systems, December.

95

/'k*************************************

File : gfa.c
Project : Gid Friendly Appliance
Aut hor : Steffen Lang, PNNL

*
*
*
*
* control and anal yse on the signal
*

*

*************************************/

/* include files */

#i ncl ude "gfa. h"

#i ncl ude <tine. h>

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <mat h. h>

#i ncl ude <term os. h>
#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <sys/tine. h>
#i nclude <fcntl. h>

#i nclude <sys/stat.h> /* for node definitions */

/* glob vars */
unsigned int arr[60];
FILE * hfp = NULL;

static int histogram = O;
static int page_select = 1;
static int peek = -1

static struct termos orig_term new_term
static unsigned char |oad_state = 0x00;
#i f def PROTOCCOL

static FILE *fp_protocol = NULL;

#endi f

int new _data_avail = 0;
int end_of _file = 0;

i nt anal ysis_running = 0;
int operation_node = 0;
int | ogfile_type;

char | og_time[100];
server_state state = NO_SOCKET;

doubl e sanpl es [NUM_OF_SAMPLES] ;

doubl e spect run{ NUM_OF_SAMPLES] ;

doubl e di ff1[NUM OF_SAMPLES] ;

doubl e di f f2[NUM_OF_SAMPLES] ;

doubl e i mOut [NUM_OF_SAMPLES] ;

doubl e reQut [NUM O _SAMPLES] ;

doubl e stddevfft;

int zero_crossi ngs1l[NUM OF SAMPLES] ;
int zero_crossi ngs2[NUM OF _SAMPLES] ;

doubl e threshold[5] = {-120.0, -120.0, -120.0, -120.0, -120.0};
doubl e thres_integral [5];

#def i ne MAX_BUF 40

doubl e i buf [MAX_BUF] [5] ;

i nt i buf pos
int i bufinit

0;

PEAK peaks[NUM OF SAVPLES/ 2] ;

96

/* function prototypes */
voi d hel p(voi d);

i ti me_anal yse(doubl e samples[]);
fft_anal ysi s(void);
consol e_di spl ay();

nt
nt
nt
nt
nt
nt
nt
nt

readch()
kbhit();
init(int

argc, char *argv[])

hi st ogr am _handl er (voi d) ;
set_relay(int relay, int state);

1

/**

*

*

*

mai n()

**/

int main (int argc, char *argv[])

{

int ch;

#i f def
char *

}
#endi f

PROTOCCL

protocol file = "protocol.txt";
i f((fp_protocol =fopen(protocol file,"w'))==NULL)

printf("ERROR : Can
exit(0);

init(argc,argv);

whi | e(1)

{

}

not open '%'\n", protocol _file);

/Il checking if keyboard was hit

i f(kbhit())

gh = readch();
if(ch=="q")
{

br eak;

/1quit the program

}
else if(ch>="0" && ch<='9")

{
if(ch=="0")
set _relay(0,0); /1 AUS
else if(ch=="1")
set _relay(0, -1); /1 AN
page_sel ect =ch-' 0" ;
}

if(end_of _file)

{

int i
printf("\nEnd of fil

/1if reading fromlogfile and end of file reached

e reached\n");

/* this is for occurence

for(i=0;i<50;i++)
{

}
*/
fcl ose(hfp);

fprintf(hfp,"

%l % \n",i,arr[i]);

97

br eak;

}
i f(histogram /lcall explicit get_sanples - otherwise it is
call ed
{ /by the tiner
get _sanpl es(SI GALRM ;
}
i f(new data_avail)
{

anal ysis_running = 1; /1flag

[*+++++++++++ anal ysis in tinme domai n +++++++tttttt bbb+
//tinme_anal yse(sanpl es);
#i f def PROTOCCL

{ _
int t;
fprintf(fp_protocol,"\n\ntine signal \n")
fprintf(fp_protocol,"----------- \n");
for(t=0;t<=255;t++)
{

fprintf(fp_protocol,"%.4f ", sanples[t])

}

}

#endi f

[* ++++++++++4+ anal ysi s in frequency domai n

B o o B o e o |
power _fft(sanples, spectrum;
fft_anal ysis();
#i f def PROTOCOL

{
char cbuffer[100];
fprintf(fp_protocol,"\n\nfrequency signal\n")
fprintf(fp_protocol,"---------------- \n");
for(t=0;t<=255;t++)
{
sprintf(cbuffer,"\n%3d %9.5f",t,spectrun{t]);
*(strchr(cbuffer,'."))=","; /1if exce
f or mat
fprintf(fp_protocol, cbuffer);
#i fdef FFT_I N DB
fprintf(fp_protocol,"\tdb");
#endi f
}
}
#endi f
anal ysis_running = 0;
new data_avail = 0;
i f(histogram
{
hi st ogram handl er () ;
}
el se
{
server_handl er();
/1 consol e_di spl ay() ;
}
}
}

98

#i f def PROTOCCL
fcl ose(fp_protocol);

#endi f
tcsetattr (0, TCSANOW &orig_term;
return 1;
}
/** *k k%
* init()

K e o o o e e e o e

*
**/

int init(int argc, char *argv[])

{
set _relay(0, -1); //turn | oad on
init_interface(argc, argv);
init_fft();
if(argc==4 && (strcnp(argv[3],"-r")==0))
{
hi st ogram = 1,
}
/lclear the screen
clrscr();
/linit kbhit
tcgetattr(0, &orig_term;
new term= orig_term
new termc_|flag & ~I CANON,
new termc_|flag & ~ECHO
newtermc_|lflag & ~ISIG
newtermc_cc[VMN = 1;
new termc_cc[VTI ME] = O;
tcsetattr(0, TCSANOW &new term;
return O;
}
/**
* fft_anal ysis()

**/
int fft_anal ysi s(void)

int i;

int n;

//standard deviation fft
stddevfft = stddev(spectrumt3, NUM OF SAVPLES-4);

//differentation
di ff(spectrumdiffl, zero_crossingsl, 50);
diff(diffl,diff2,zero_crossings2,50);

/1integral
for(i=0;i<5;i++)
{

t _integral (spectrum+(i*10),threshold[i], & hres_integral[i], 10);
ibuf[ibufpos][i] = thres_integral[i]; // updat e i buf
[1if(i==1)

[lprintf("% % %\n",ibufpos,i,ibuf[ibufpos][i]);

99

}

[/ position ptr
i buf pos = (i buf pos+1) %vAX_BUF;
if(!ibufinit && !ibufpos)

{

ibufinit = 1;
if(ibufinit) /I enough integrals have been cal cul ated
#defi ne BAND_X 2 //Band 1-5
int i;
double av = 0.0;
double std = 0.0; //stddev of integral in BAND

static double avx = 0.0;
static double stdx = 0.0;

int out_of _range = 0;

for(i=0;i<MAX BUF-10;i++) //get average val ue

{ av+=i buf [(i buf pos+i) %VAX_BUF] [BAND_X- 1] ;

.}av/ =NMAX_BUF- 10;

for(i=0;i<MAX BUF-10;i++) //get standard deviation
st d+=pow((i buf [(i buf pos+i) %vAX_BUF] [BAND_X- 1] - av), 2);

};t d = sqrt(std/ (MAX_BUF-10-1));

[lprintf("std : %\n",std);

for(;i<MAX_BUF; i ++)

{ i f(ibuf[(ibufpos+i)%vAX BUF][1] > av+(2.0*std))
{ out _of _range++;

}

i f(load_state==0x01)

/12 criteria for turning the | oad again on

i f(std<=stdx || av<=avx)
{
set_relay(0, -1); //turn on
| oad_st at e=0x00;
}
}
i f (out_of _range>=10)
{
i f(l oad_stat e==0x00) /lis on
{
set _relay(0,0); [/turn off
avx = av;
stdx = std;
| oad_st at e=0x01;
}
}
printf("out: %, stddev: %, av: %", out_of _range, std, av);
printf("--- % ---\n",log_tine);

100

/* /lintegral calculation with different defintion of band 1 and 2

#defi ne THRESHOLD -120.0

#defi ne BANDL_START 02

#def i ne BAND1_END 13

#def i ne BAND2_START 13

#def i ne BAND2_END 24

t _integral (spectrumtBANDL_START, THRESHOLD, & hres_integral [0],
BAND1_END- BAND1_START+1) ;

t _integral (spectrum+BAND2_START, THRESHOLD, & hres_integral[1],

BAND2_END- BAND2_START+1) ;
thres_integral [2] =0. O;
thres_integral [3] =0. 0O;
thres_integral [4] =0. 0;

pel

/I peak detection

i =0;

n=0;

whil e(zero_crossingsi[i] != -1)

if(diff2[zero_crossingsl[i]-1]<0.0)

{
doubl e angl e, angl el, angl e2;
[/ cal cul ation
angl el = (at an(DI AGRAM RELATI ON/ di f f 1[zero_crossi ngs1[i]-
1]1)/Pl)*180;
angl e2 =
(atan(DI AGRAM RELATI ON/ di ff 1[zero_crossings1[i]])/Pl)*180;
angl e = angl el-angl e2;
peaks[n]. pos = zero_crossingsi[i];
peaks[n].val ue = spectrunfzero_crossingsl[i]];
peaks[n].angle = angl e;
peaks[n].sharp = diff2[zero_crossingsl[i]-1];
n++;
}
i ++;
peaks[n].pos = -1; //mark the end
return O;

}

/**

set _relay()

par anet er :
rel ay 0...5
state -1,0,1

return :

0 X
1 ERROR

*
*
*
*
*
*
*
*
*
**/

int set_relay(int relay, int state)

FILE * fp;

101

char file[100]= "/proc/dx2/control/"
char *files[] = {"fanr","clgr”,"htgr","revc","defr", "l ckr"};

if(relay<O || relay>5 || state<-1 || state>1)

[lprintf("Error2 in set_relay\n");
return 1,

wn -

trcat(file,files[relay]);
if((fp=fopen(file,"wt"))==NULL)

~——

[lprintf("Error3 in set_relay (opening %)\n",file);
return 1,

}

[lprintf("%\n", state);
if(fprintf(fp,"%l\n", state)<0)
{

return 1;

}
fclose(fp);
return O

/**

* hel p()

*

**/

voi d hel p(voi d)

{ prl ntf("***\ n") .
printf("* Call with : gfa [file date [-r]] \n")
printf("* No optional paraneters -> receive current frequency fromthe grid
\n");
printf("* Optional paraneters -> receive frequency from the log file
\n");
Printf (", o m oo e \n");
printf("* file : path of log file (*.conv, *.fsu)\n")
printf("* date : date and time of start of processing\n")
printf("* format mm dd/yy/ hh/miss \n");
printf("* -r : hi st ogram node")
printf("* \n");
prl ntf("***\ n");
return
}

/**

* consol e_di spl ay()

K e e e o e e e e e e e e e e e e e e e e = -
* di spl aying infornation on the current
* anal ysi s

* di spl ay node is determ ned by gl oba

* vari abl e page_sel ect

*

* par anet er

* none

*

* return :

* al ways 0

*

*

**/

int consol e_display()

102

int i;
char str_server[2];

str_server[0] = ;
str_server[1l] = 0;
if(state == CLI ENT)
{

str_server[0] ="'C;

}
el se if(stat e==REQUEST)

{

str_server[0] ="'T";
}
clrscr();

i f (page_sel ect ==1)

printf("(1) Gid Frequency - Tinmer Interval: % sec, Network:
%\ n", TI MER_| NTERVAL, str_server);
i f (operation_npde==REALTI ME)

[T R e
-------------------- \n");
}
el se
{
printf("----- % ----- \n",log_tine);
}
for(i=0;i<20;i++)
{
int vy;
f or (y=0; y<120; y+=20)
printf("993d ",i+y+l);
printf("\033[1;34n);
printf("%.4f ", sanples[i+y]);
printf("\033[0nt);
}
printf("\n");
}

el se if(page_sel ect ==2)

printf("(2) Gid Frequency - Tiner Interval: % sec, Network:
9%\ n", TI MER | NTERVAL, str_server);
i f (operation_npde==REALTI ME)

YT 1 (G
------------------ \n");
}
el se
{
printf("----- % ----- \n",log_tine);
}
for(i=0;i<20;i++)
{
int vy;

for(y=120; y<240; y+=20)

103

printf("%93d ",i+y+l);
printf("\033[1;34ni);
printf("%.4f ", sanples[i+y]);
printf("\033[0n');

}
printf("\n");
}

el se if(page_sel ect ==3)
printf("(3) FFT Spectrum - Timer Interval: %l sec, Network:

9%\ n", TI MER_| NTERVAL, str_server);
i f (operati on_npde==REALTI ME)

{ .

[T A R
-------------------- \n");

}

el se

{
printf("----- % ----- \n",log_tine)

}

for(i=0;i<=20;i++)

{
printf(" 9%.3f Hz ",(float)i*0.039);
printf("\033[1;31nf);
printf("98.4f db\t ", spectrunfi]);
printf("\033[0nt);
printf(" |\t 9%.3f Hz ", (float)(i+21)*0.039);
printf("\033[1;31ni);
printf("98.4f db \n",spectrunii+21]);
printf("\033[0n);

}

el se if(page_sel ect ==4)
int u;
printf("(4) Analysis - Timer Interval: %l sec, Network:

9%\ n", TI MER | NTERVAL, str_server);

i f (operation_nopde==REALTI ME)

P i ML (M = = mm e e m m e e
--------------- \n");
}
el se
{
printf(”----- % ----- \n",log_tine);

i)rintf(" Band Threshol d Integral\t\tStandard Deviation : ");
printf("\033[1;35nl);

printf("%.4f\n", stddevfft);

printf("\033[0nt);

#i f def PROTOCCL

fprintf(fp_protocol,"” Band\t Threshold \'t Integral\n");
#endi f

for(i=0;i<5;i++)

{

printf(" 992d o®8. 3f ",i+1,threshold[i]);
printf("\033[1;35n);

printf(" %08.5f\n",thres_integral[i]);
printf("\033[0nt);

104

#i f def PROTOCOL
fprintf(fp_protocol, "% band: %08.3f ",i+1,threshold[i]);
fprintf(fp_protocol,"\t %98.5f\n", thres_integral[i]);

#endi f
}
printf("\n Peak\t Value\t\tAngle\t Sharpness (2.dev)\n");
i = 0;
u = 0;

mhilekpeaks[i].pos >=0)

[lprintf(" 9%92d\ t 905. 2f db\ t 9. 2f °\ t
9. 2f\n", zero_crossingsl[i], spectrunfzero_crossingsl[i]], anglel-
angl e2, di ff2[zero_crossingsl[i]-1]);

printf(" %02d\ t ¥95. 2f db\ t %. 2f °\ t
9. 2f\ n", peaks[i]. pos, peaks[i].val ue, peaks[i].angl e, peaks[i].sharp);

#i f def PROTOCOL

[Ifprintf(fp_protocol,"peak at 9%2d \t value % sharpness
%\n",zero_crossingsl[i],spectrunfzero_crossingsl[i]],diff2[zero_crossingsl[i]-1]);

#endi f

i ++;

}
#i f def PROTOCCOL
fprintf(fp_protocol,"\n")

#endi f
}
el se
{ . .
printf(" (%) no valid node\n", page_sel ect);
(R B S St e S
---------- \n");
}
return O

}

/**

hi st ogr am_handl er ()

par anet er
none

return :
0 X
1 ERROR

*
*
*
*
*
*
*
*
*
*
*

******'k*************************************/

i nt histogram handl er (voi d)

{
static int is_init = 1;
//static FILE * hfp = NULL;
static unsigned int count = 1;
int i;
int n;
int max[3];

/lopen file if first cal
if(is_init)

i f ((hfp=fopen("histogramtxt","w"))==NULL)
{

printf("Error in open histogramtxt\n");

105

return 1;

}

printf("Gid Friendly Appliance - Hi stogram node\n");
Printf (M- m e \n");
printf("\033[4;3H"); //set cursor to (1,1)
printf("Sanpl es Dat e+Ti me") ;

fprintf(hfp,"d5 thres integrals\n\n");
fprintf(hfp," bandl band2 band3 band4 band5\ n");
fprintf(hfp, ---cm o
is_init = 0;

[lprint to file

[lfprintf(hfp,"%.4f ", stddevfft)

for(i=0;i<5;i++)

{
char str[50];
sprintf(str,"” 995.3f", thres_integral[i]);
*(strchr(str,"."))=","; /l excel format
fprintf(hfp,str)
fprintf(hfp," | ");
}
/*
f or (n=1; n<=5; n++)
{
char str[50];
get _band_max(n, nmax) ;
i =0;
if(max[0]!=-1)
{
[lprintf(" band%l - increase pos %",n ,max[i]);
/Il getchar();
arr[peaks[max[i]]. pos] ++
}
pel
/*
f or (n=1; n<=5; n++)
{

char str[50];
get _band_max(n, max) ;
i =0;
whi | e(i <1)
{
if(max[i]!=-1)

i f (peaks[max[i]].angl e<100. 00)
sprintf(str,"995.3f ", peaks[max[i]].angle)
[lsprintf(str,"%05.1f ", peaks[max[i]].sharp);

el se
sprintf(str,"9%05.2f ", peaks[nmax[i]].angle);
[lsprintf(str,"%05.2f ", peaks[max[i]].sharp);
*(strchr(str,"."))=","; /l excel format
fprintf(hfp,str);
}
el se
{

106

fprintf(hfp,"xxxxxx ");
[l fprintf(hfp,"%2d ", 0);

}
i ++;
}
fprintf(hfp," | ");
pel
{
char string[20];
strncpy(string,log_tine+ll, 8);
string[8] = '\0";
fprintf(hfp,"%\n", string); /lprint tine to histogramfile
}
/lprint tine on screen
printf("\033[5;3H"); //set cursor to (1,1)
printf("%05d % \n",count++, log_time);
return O;
}
/*********** kbhlt erml atlon *****************/
int kbhit()
{
char ch;
int nread;
if(peek I'=-1)
{
return 1,
}

new termc_cc[VM N] =0;
tcsetattr(0, TCSANOW &new_terny;
nread = read(O0, &h, 1);
new_ termc_cc[VM N| =1;
tcsetattr(0, TCSANOW &new term;

if(nread == 1)

{
peek = ch;
return 1;

}

return O;

}

int readch()
{

char ch;

if(peek I'=-1)

{
ch = peek;
peek = -1;
return ch;

}
read(O, &ch, 1) ;
return ch;

107

/**************************************

*
*
*
*
*
*
*

#i
#i
#i
#i
#i
#i
#i

File : gfa_dsp.c
Project : Gid Friendly Appliance
Aut hor : Steffen Lang, PNNL

math. functions for 'Digital Signal Processing

*************************************/

ncl ude "gfa. h"

ncl ude <tine. h>
ncl ude <stdlib. h>
ncl ude <stdio. h>
ncl ude <string. h>
ncl ude <mat h. h>
ncl ude <tinme. h>

extern PEAK peaks[NUM _OF_SAMPLES/ 2] ;

/**

EIEE I I S T I N N N

get _band_max()
detects the 3 maxi num val ues val ues in one
band

par anet er
band - indicates the concerned band (1..5)
i ndex - array where the results are stored

return :
0 =&
1 = ERROR

***/

int get_band_max(int band, int index[])

{

int i = 0;
int upper = 9 + (band-1)*10;
int lower = 0 + (band-1)*10;

i ndex[0] =i ndex|[1] =i ndex[2] = 1;

whi | e(peaks[i]. pos!=-1)

i f(peaks[i].pos>=l ower && peaks[i].pos<=upper) /1if peak in band
{

int n=0;

int enpty =0

f or (n=0; n<3; n++)
i f(index[n]==1)
{

empty = 1;
br eak;

el se if(peaks[i].val ue > peaks[index[n]].val ue)

{
}

br eak;

}

i f(enpty)

108

index[n] =1i;
el se i f(n<3)
swi tch(n)

case 2:
i ndex[2]
br eak;
case 1:
i ndex] 2]
i ndex[1]
br eak;
case O:
i ndex[2]
i ndex[1]
i ndex[0]
br eak;

i

i. ndex|[1] ;
[

i ndex[1];
i_ ndex[0] ;
I3

i ++:

}

return O;

}

/**

* det ect _extrenmum()
K e o o o e e e o e
* detects extrenmum val ues (max and m n)
* in the signal
*
* par anet er
sig - signal to be analyzed
* max - 1 = max detection
* 0 = min detection
* start - start index in signal
* end - end index in signal
*
* return :
* the index of the max value in
* the data array
*
*

**/

int detect_extremum(double sig[], int max, const int start, const int end)
{ - .

int i;

doubl e extrem val ue;

int extremposition;

extremval ue
extremposition

sig[start];
start;

for(i=start;i<end;i++)
{
i f(max) /] max detection
if(sig[i]>extremval ue)

extremval ue =sig[i];
extremposition = i;

109

}
el se /1 mn detection
if(sig[i]<extremval ue)
extremval ue =sig[i];
extremposition = i;
}
}

}

return extremposition;

}

/**

* stddev() - proved with Matlab (std function)
K e e e e o e e e e e e e e e e e e e e e e e .= -
* cal cul ates the standard devi ation

*

* par anet er

* sig - sanples of the signal

* num - |length of signal

*

* return :

*

st andard devi ation
*

***/
doubl e stddev(double sig[], const int |en)
{ o

int i;

doubl e aver age=0. 0;

doubl e temp =0. 0;

for(i=0;i<len;i++)

{
}

aver age/ =l en;
for(i=0;ic<len;i++)

average+=sig[i];

{
t emp+=pow((sig[i] -average), 2);

}

return sqrt(tenp/(len-1));
}
/**
* diff() - proved with Mtlab
K e o e o e -
* derivation of a signal and cal cul ation
* of the positions of the zero-crossings
*
* par anet er
* sig - original signal f(x) n
* ddt - derived signal df (x)/ dt n-1
* zc - zero crossings in ddt n
* len - lenght of ori. signal
*
* return :
* al ways 0O

*

'k/

#defi ne POS 1
#define ZERO O

110

(1 ength)

#define NEG -1

int

{

}

di ff (double sig[], double ddt[], int zc[],

int i;
int current_sign;
int previous_sign = ZERQ,
int index = 0;
for(i=0;i<len-1;i++)
{
ddt[i] = (sig[i+1]-sig[i]);

i f(ddt[i]!=0.00)

const int

/1 di

| en)

ff

//zero crossings

current_sign = (ddt[i] > 0.0) ? PGS :

i f (previous_sign! =ZERO &&

current _sign!=previ ous_sign)

{
}

zc[index++] = i;
}
el se
current _sign = ZERQ,

previ ous_sign = current_sign;

/* save 2.

zc[index]= -1; //mark the end

return O;

/**

*
*
*
*
*
*
*
*
*
*
*
*
*
*

integration()

perfornms the integration on the given
si gnal

par anet er

sig - original signal n
integr - integration

I en - length of ori. sig.

return :
al ways 0

**/

void integration(double sig[], double integr[]

}

int i;
doubl e tenp;
integr[0] = O;
for(i=0;i<(len-1);i++)
temp = (sig[i]+sig[i+1]/2)*0.1;
integr[i+1l] = integr[i] + tenp;
}

return;

/**

*

t_integral ()

(1 engt h)

const

int

NEG,

i ndex of zerocrossing */

| en)

* performs the integration on the given
* si gha

*

* par anet er

* sig - original signa

* thres - threshold

* integr - integration

* len - length of original signa
*

* return :

* al ways 0

*

*

**l

void t_integral (double sig[], double thres, double * integral, const int |en)

{ . .
int i
doubl e tenp;
doubl e di, d2

*integral = 0;

for(i=0;i<(len-1);i++)

dl = sig[i]-thres;

d2 = sig[i+1]-thres;

if(d1>=0.0 && d2>=0.0)

{

temp = ((d1+d2)/2)*0.1
(*integral)+= tenp;
}
return

}
/**
* xcorr() - proved with Matlab
K e = -
* perforns the crosscorrelation of two
* signals. The result is witten into array
* xcorr
*
* paraneter : (1 ength)
* sigl - signal 1 n
* sig2 - signal 2 n
* xcorr - cross correlation 2*n-1
*
* return :
* al ways 0
*
*

**/

int xcorr(double sigl[], double sig2[], double xcorr[], const int |en)

int i; //index outer |oop

int ii; //index inner |oop
int index_sigl;

int index_sig2;

doubl e tenp;
for(i=-len+l;i<len;i++) //outer |oop
{

temp = 0;

i f(i<=0)

{

112

i ndex_sigl = 0;
i ndex_sig2 = abs(i);
}
el se
{
index_sigl =i;
i ndex_sig2 = 0;
}
for(ii=0;ii<(len-abs(i));ii++) /linner |oop
{
t emp+=si g1[i ndex_si gl++] *si g2[i ndex_si g2++] ;
}
xcorr[i -1+l en]= tenp;
}
return O;

113

/**************************************

*
*
*
*
*
*
*
*

File : gfa_fft.c
Project : Gid Friendly Appliance
Aut hor : Steffen Lang, PNNL

perforns the fft on the frequency
si gnal

*************************************/

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>
#i ncl ude "gfa. h"

doubl e wi ndowf NUM O _SAMPLES] ;
unsi gned char bit_reverse[NUM OF_SAMPLES];

/**

*
*
*
*
*
*
*
*
*
*
*
*

init _fft()
initialisation for fourier transfornmation
bi treverse ordering and w ndow ng

par amet er
none

return :
voi d

***/

void init fft()

{

unsi gned char i =0;
unsi gned char bit;

int vy,

unsi gned char reverse;

for (y=0; y<NUM_OF_SAMPLES; y++)
{
/* bit reverses order */

reverse = 0x00;
for(bit=1;bit;bit<<=1)

{
reverse<<=l;
if(bit&)
rever se| =0x01;
}
bit_reverse[i++] = reverse;

/* create wi ndow function */

wi ndowWy] = 1; //default : no wi ndow ng
#i fdef HANNI NQ&2 / /' hanni ng wi ndow
wi ndow y] = (1-cos(2*Pl*y/ NUM OF_SAMPLES))/ 2;
#endi f
#i f def HANNI N&SQRT /1 hanni ng wi ndow sqrt
wi ndow[y] = (1-cos(2*Pl*y/ NUM OF_SAMPLES))/ 2;
wi ndow[y] = wi ndow y] *w ndow y] ;
#endi f

#i f def HANNI N&ZSQRTHALF //hal f hanni ng wi ndow sqrt
wi ndow y] = (1-cos(Pl*y/ NUM OF SAMPLES))/ 2;

114

wi ndow y]

wi ndow y] *wi ndow y] ;

#endi f

}
}
/**
* power _fft()
K e o e o e
* - performs the fft (only magnitude) on
* the tinme signa
* - the result is also saved in this array
* (overwitten)
*
* par anet er
* sanples - time signal, array of 256 val ues
* spectrum - output for power spectrum
*
* return :
* al ways 0
*

***l

int power_fft(double* sanples,

unsigned i, j, k, n;

unsi gned mmax,
doubl e tenmp

doubl e twoPl = 2.0 * PI;

doubl e tenp_real, tenp_iny; [* temp r
doubl e i m out [NUM_OF_SAMPLES] ;
doubl e re_i n[NUM_OF_SAMPLES] ;

doubl e* spectrum)

eal, tenp imaginary */

//copy sanples into re_in and perfrom hanni ng wi ndow

for (
{

}

//order bitreverse
for (1i=0; i < NUM OF_SAMPLES
{

i=0; i < NUM OF_SAMPLES; i++)

re_in[i]=sanples[i]*w ndowi];

i++)

if(i<bit_reverse[i])

{
tenp = re_in[i];
re_in[i]
re_in[bit_reverse[i]]

imout[i] 0.0;

}

/lperformfft
m=1
max 2;
while (muax <= NUM OF SAMPLES)
{

theta = twoPI
sin_2theta
sin_theta

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

(

[(doubl e) mrax;
sin (-2 * theta);
sin (-theta);
cos_2theta = cos (-2 * theta);
cos_theta = cos (-theta);
w=2* cos_theta
real _buf[3], inmg_buf[3];

< NUM OF_SAMPLES; i

for i=0; i

115

re_in[bit_reverse[i]];
= tenp;

112,4,8,16, 32, 64, 128

+= mmax)

real _buf[1] = cos_theta;
real _buf[2] = cos_2theta;

i mg_buf[1] = sin_theta;
img_buf[2] = sin_2theta;
for (j=i, n=0; n < m j++, n++)
real _buf[0] = wreal _buf[1] - real_buf[2];
real _buf[2] = real _buf[1];
real _buf[1] = real _buf[O0];
img_buf[0] = wving_buf[1] - ing_buf[2];
i mg_buf[2] = ing_buf[1];
img_buf[1] = inmg_buf[0];
k =j +m
tenp_real = real _buf[0]*re_in[k] - ing_buf[O]*imout[k];
temp_img = real _buf[0]*imout[k] + inmg_buf[0]*re_in[K];
re_in[k] =re_in[j] - tenp_real;
imout[k] = imout[j] - tenp_ing;

re_in[j] += tenp_real;
imout[j]+= tenp_iny;
}
}
m = max;
mmax <<= 1;

/1 get the power spectrum
for (i=0; i < NUM OF_SAMPLES; i++)

{

re_in[i] /=NUM OF_SAMPLES;
imout[i] /=NUM OF_SAMPLES,;
spectrunfi] = sqrt(re_in[i]*re_in[i] + imout[i]*imout[i]);
#i fdef FFT_IN_DB
spectrunfi] = 20 * | o0glO(spectrunfi]);

#endi f

}

return O;

116

/**************************************

File gfa_if.c
Project : Gid Friendly Appliance
Aut hor : Steffen Lang, PNNL

*
*
*
*
* interface channel to the data
*

*

*************************************/

/* include files */

#i ncl ude "gfa. h"

#i ncl ude <tine.h>

#i ncl ude <ctype. h>

#i nclude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <nat h. h>

#i ncl ude <tine. h>

#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <sys/time. h>
#i nclude <fcntl. h>

#i ncl ude <sys/stat.h> /* for node definitions */

/* inmported variable */
extern double sanples [];
extern int analysis_running
extern int new data avail;
extern int end_of file
extern char log_time[];
extern int operation_node;
extern int logfile_type

/* static variables */

static FILE * fp;

static int (*get_sanples_func)(void);
static int char_per_line;

static struct tm* tmlogstart;
static struct tm* tmrequest;

char buf [4096] ;

/ * prot ot ypes*/
static int get_sanples_realtime(void);

static int get_sanples_|ogfil e(void);

static int position_filepointer(char* argv2);
static int str2datel(char *s, struct tnr t);
static int str2date2(char *s, struct tnr t);
static int str2date3(char *s, struct tnr t);
static int nonth_convert(char *s);

/**

* init_interface()

K e = -
* par anet er

* argc - sanme as in comand |ine

* argv

*

* return : 0 =X

* 1 = ERRCR

*

***/

void init_interface(int argc, char *argv[])

117

char freqg_file[100];
struct itimerval itiner;

//find out the node
if(argc==1)
{

operati on_node = REALTI ME;
get _sanpl es_func = get_sanples_realtineg;
strcpy(freqg_fil e, PROCFI LE_DX2);

}
el se
{
char *ptr;
if(argc!=3 && argc!=4)
{
printf("Illegal number of comand |ine paraneter (%l)\n",argc);
hel p() ;
exit(0);
}
//check file extension
if((ptr=strchr(argv[1],'."))==0)
printf("Error in paranmeter\n");
hel p() ;
exit(0);
}
if(strenp(ptr,".conv")==0)
logfile_type = TYPE_CO\V,
char_per _line = 29;
}
else if(strcmp(ptr,".fsu")==0)
{
logfile_type = TYPE_FSU,
char_per_line = 31;
}
el se if(strcmp(ptr,". psnm')==0)
logfile_type = TYPE_PSM
}
el se
{
printf("Extension of <¥%> is illegal\n",argv[1]);
hel p() ;
exit(0);
}
operati on_node = LOGFI LE;
get _sanpl es_func = get_sanples_l ogfile;
strcpy(freq_file,argv[1]);
}

/lopen the file that contains the grid frequency
/leither the /proc file or the log file
if((fp=fopen(freq_file,"r"))==NULL)

{

printf("ERROR : Can not open '%'\n",freq_file);

exit(0);
}

//position in logged data file

118

i f (operati on_nmode==LOGFI LE)

if(position_filepointer(argv[2]))
{

}

exit(0);
}
i f(argc<4) /I no histogram- setup tiner
//setup alarm

itimer.it_value.tv_sec = TI MER_| NTERVAL,; /[1tinme unti |
first occurance

itimer.it_value.tv_usec = 00;
itimer.it_interval.tv_sec = TIMER | NTERVAL; //timer interval
itinmer.it _interval.tv_usec = 00;

si gnal (SI GALRV get _sanpl es);
setitimer(lTIMER REAL, &itiner, NULL);

}

return;

}

/***

* get _sanpl es()

K e e e e e e e e e e e e m e e e e e e e e e .
* This function is invoked by the

* signal SIGALRM in certain tine intervals.
* (defined by TIMER INTERVAL in gfa.h)
*

* par anet er

* sig val - type of alarm

*

*

*

**/

voi d get_sanpl es(int sig_val)

//gettineofday(&start, (struct timezone *)0);
if(sig_val!=Sl GALRM
return;

(*get _sanpl es_func) ();
new data_avail = 1;

/Il gettineof day(&end, (struct timezone *)0);
[lprintf("Start sec: % , usec: %\n",start.tv_sec,start.tv_usec);
[lprintf("End sec: % , usec: %l\n",end.tv_sec, end.tv_usec);

}

/****************'k**************************

get _sanples_real tinme()

reads NUM OF_SAMPLES sanples fromthe /proc
file 54 and saves themto global array

' sanpl es'

par anet er
none

return

none

*
*
*
*
*
*
*
*
*
*
*
'k************************************/

119

static int get_sanples_realtime(void)

{
#defi ne BYTES_PER LI NE 8
#define LINES_ IN_FILE NUM_OF_SAMPLES
#define BYTES_ IN_FILE (BYTES_PER _LI NE*LI NES_I N_FI LE)
int len;
int i=0;
char * ptr;
char sfreq[10];
doubl e freq;
i f (anal ysi s_runni ng)
printf("ERROR : Time problem fft is running while read new data \n")
rew nd(fp);
fflush(fp); Ilreset file
/* read all data */
i f((len=fread(buf, 1, 4096, f p)) <=0)
{
printf("ERROR in fread fromproc file. Can nor read\n")
return 1,
}
if(len!=BYTES_| N_FI LE)
{
printf("ERROR : too less data : only %l byte\n",len);
return 1;
}
for(i=0;i <NUM OF_SAMPLES; i ++)
{
ptr = buf + (i *BYTES_PER LI NE); //set pointer to start
val ue
strncpy(sfreq, ptr, 7); //format : '60.1234"

characters
sfreq[7]="\0";
freq = atof (sfreq);
i f(freq<=0.0)
{

printf("ERROR in format. string is % freq is %\n",sfreq,freq);

}
el se
{
samples[i] = freq;
[lprintf("f[%]: 9%.4f \n",i, data[i])
}
}
return 0

}
/1 #define CHAR PER LI NE 29

/***

* get _sanpl es_l ogfil e()

K e e e e o e e e e e e e e e e e e e ==
* reads new sanples fromlogfile and

* rearranges the global array 'sanples
*

* par anet er

* none

*

120

* return :

* none
***/

static int get_sanples_logfile(void)

{
int i;
char buf[100];
char sfreq[10];
char * ptr;
static int first_time = 1;
if(first_tine) //just read on line to make sure that
f get s(buf, 50, f p); //filepointer points to beginning of a line
for(i=0;i<NUM OF_SAMPLES; i ++)
{
i f (i <NUM_OF_SAMPLES- (TI MER | NTERVAL*10) && !first_tine)
{
/lrearrange the array
sanpl es[i] = sanpl es[i+TlI MER_| NTERVAL*10] ;
}
el se
{
//get new sanples fromlogfile
i f(fgets(buf, 50, fp)==NULL)
end_of file = 1;
return O
}
//process data formfile
if(logfile_type==TYPE_FSU
{
ptr = &buf[23]; //ptr points to the frequency (*.fsu
file)
strncpy(sfreq, ptr, 6);
sfreq[6]="\0";
}
else if(logfile_type==TYPE_CONV)
{
ptr = &buf[21]; //ptr points to the frequency (*.conv
file)
strncpy(sfreq, ptr, 6);
sfreq[6]="\0";
}
else if(logfile_type==TYPE_PSM
{
if((ptr=strrchr(buf,'."))==NULL)
printf("Error in format in logfile\n");
exit(0);
}
ptr-=2; /lptr points to the frequency
(*.psmfile)

strncpy(sfreq, ptr, 7);
sfreq[7]="\0"

}
i f(i==NUM_COF_SAMPLES- 1) /1if the |ast one
{
//update string that represents current tine
if(logfile_type==TYPE_FSU)
{

121

}
} .
first_tine = O;

return O;

}

strncpy(l og_ t| ma buf 20);
log_tine[13] ;
log tine[16]

}
else if(logfile_type==TYPE_CONV)

{

strncpy(log_tine, buf 18);
log_tine[11] =":";
log tine[14] = "':";

}
else if(logfile_type==TYPE_PSM

{

}

sanpl es[i]

char stine[10];
struct tm*tmtenp;
tine_t tine_tenp;

sscanf (buf, " %", sti ne);

tine_tenp = nktine(tm.logstart) + atof(stine);
tmtenp = localtinme(&ime_tenp);
sprintf(log_time,"%",asctinme(tmtenp));

log tine[strlen(log_tinme)-1] = "\0";

atof (sfreq);

/**

E I B R R

return : 0 =
*

{

char buf[100];

doubl e diff;

time_t time_r,

tmlogstart
t m request

opens the logfile,
line, set filepointer to start

position_filepointer()

searchs for the start

(0.4

1 = ERROR

**/

static int position_filepointer(char* argv2)

time_|;

mal | oc(si zeof (struct tm);
mal | oc(si zeof (struct tm);

if((logfile_type==TYPE_CONV) || (logfile_type==TYPE_CO\V))
{

char search_dat e[30];
unsigned long tenp_line = 0;
unsi gned | ong of f set;
int date_len;

/1 get date from command |ine paraneter
if(str2datel(argv2,

{

tmrequest))

printf("Illegal date format : %\n", argv2);

fclose(fp);

122

return 1;

}

/1 get first date in log file
i f(fseek(fp, 0, SEEK_SET))

printf("Error in logfile - fseek\n");
fclose(fp);
return 1;

}
if(logfile_type == TYPE_FSU)

f get s(buf, 40, fp); /lskip first line
f get s(buf, 40, fp);

buf [19] ="\0";

i f(str2date2(buf, tmlogstart))

{

printf("Error in file format of logfile. <<%>> is
illegal 1\n", buf);

fclose(fp);
return 1;
}
[lprintf("first dat e : %l % %l ",tmlogstart.tmnon,
tmlogstart.tmnday, tmlogstart.tmyear);
}
el se
{
f get s(buf, 40, f p);
buf[17] = "\ 0";
if(str2datel(buf, tmlogstart))
{
printf("Error in file format of logfile. <<%>> is
illegal\n", buf);
fclose(fp);
return 1;
}
}

//cal cul ate approx. position

time_r = nktinme(tmrequest);

time_r-= (int) NUM OF_SAMPLES/ 10; //subtract time to position to
begi nni ng

free(tmrequest);

tmrequest = localtime(&ime_r);

time_| = nmktime(tmlogstart);

diff = difftine(tinme_r,tinme_l);

if(diff<1.00)
{
[lprintf("difference is : %\n",diff);
fclose(fp);
printf("* An error causes the programto exit\n");
printf("* Date/time '%' is not available in filel.\n",argv2);
return 1;
}
tenp_line = (unsigned long)(diff * 7.0);

/* now start parsing */
if(fseek(fp,tenp_line*char_per_I|ine, SEEK SET))

fclose(fp);
printf("* An error causes the programto exit\n");

123

printf("* Date/time '%' is not available in file2.\n",argv2);
return 1;

}
if(logfile_type == TYPE_FSU)

date_len = 19;

sprintf(search_date, "%l 9%2d %2d %2d 9%92d 9%92d", (t mrequest-
>t m year) +1900, (t m request - >t m non) +1, t m r equest - >t m_nday, t m r equest -
>tm_hour,tmrequest->tmmn,tmrequest->tmsec);

}
el se
{
date_len = 17;
sprintf(search_date, " %02d/ ¥92d/ %92d %®2d %©2d 9%©2d", (t m request -
>t m non) +1, t m request - >t m nday, (tmrequest->tmyear)-100,tmrequest-
>tm_hour,tmrequest->tmmn,tmrequest->tmsec);
}
do
i f(fgets(buf, 30, fp)==NULL) /lread a line
fclose(fp);
printf("* An error causes the programto exit\n");
printf("* Date/tine ' U8’ is not avail abl e in
file3.\n",argv2);
return 1;

;/buf[date_l en] = '\0";
[lprintf("%", buf);
/1 getchar();

}whi |l e(strncnp(buf, search_date, date_| en));

offset = ftell(fp) - char_per_line - 10;
fseek(fp, of f set, SEEK_SET) ;

free(tml ogstart);
return O;

}
else if(logfile_type==TYPE_PSM
{

char * ret;

char tenp[60];

doubl e search;

int u;

/'l get date from command |ine paraneter -> store in tmrequest
if(str2datel(argv2, tmrequest))

{
printf("lIllegal date format : %s\n", argv2);
fclose(fp);
return 1;

}

/1 get first date in log file -> store in tmlogstart
whi | e((ret=fgets(buf, 60, fp))!=NULL)

#idefine FIND_IT "reference tine"
i f(strncnmp(buf, FIND_I T, strlen(FIND_IT))==0)
{

br eak;

124

}

}
if('ret)
{

printf("file f or mat is i ncorrect - no string ' Us'

found\n", FIND_IT);

exit(0);

}
f get s(buf, 60, f p); /lread reference tine
i f(str2date3(buf, tmlogstart))

{

printf("Error in file f or mat of | ogfile. <<Ys>> is

illegal 1\n", buf);

fclose(fp);
return 1;

}

/1 get difference
time_r = nktime(tmrequest);
time_r-= (int)NUM OF_SAMPLES/ 10; //subtract time (25 sec) to

position to begi nning

free(tmrequest);

tmrequest = localtinme(&ime_r);
tinme_| = nktime(tmlogstart);
diff = difftinme(time_r,tine_|l);

if(diff<1.00)

{
fclose(fp);
printf("* An error causes the programto exit\n");
printf("* Date/time '%' is not available in filel.\n",argv2);
return 1;
}
f or (u=0; u<10; u++) f get s(buf, 60, fp); /Iskip some lines

//position the file pointer - sequential search
do

{
f get s(buf, 60, fp); /lread line per line
sscanf (buf, " %", temp);
search = atof (tenp);

}whi | e(search<diff);

return O

/11 ogfile_type not selected
return 1,

/**

str2datel() - format in *.conv files

E I B

S

anf command |ine

conversion of string into struct tm

par anet er
- char array with the date string

125

* format is 'nmm dd/yy/hh/ miss'
* t - struct tm represents time and date
*

* return :

* 0 - OK

* 1 - ERRCR

**l
static int str2datel(char *s, struct tnr t)
{
if(strlen(s)!=17)
return 1;

t->t m non=10* (s[0] - 0x30) ;
t->t m non+=s[1] - 0x30;

t->t m nday=10*(s[3] - 0x30) ;
t - >t m nday+=s[4] - 0x30;
t->t m year=10*(s[6] - 0x30);
t->t myear +=s[7] - 0x30;
t->t m hour =10*(s[9] - 0x30) ;
t - >t m_hour +=s[10] - 0x30;
t->tmm n=10*(s[12] - 0x30);
t->t m m n+=s[13] - 0x30;
t->tmsec=10*(s[15] - 0x30);
t->t m sec+=s[16] - 0x30;
t->tmisdst = O;

/* check if everything is in the range */

if(((t->tmunon)<l || (t->tmnon)>12) ||
((t->tmnmday)<1 || (t->tmnday)>31) ||
((t->tmyear)>5 && (t->tmyear)<95) ||
((t->tmyear)<0) |
((t->tmhour)<0 || (t->tmhour)>24) ||
((t->tmmn)<0 || (t->tmmn)>59))

{
return 1;

}

//convert to tm formt

t->tmnon-=1; /* nonth : 0 - 11 */

t->t m hour-=1; /* hour : 0 - 23 */

if(t->tmyear > 0 & t->tmyear <=20)
t->tmyear +=100;

return O;

}

/**

str2date2() - format in *.fsu files

conversion of string into struct tm

par anet er
s - char array with the date string
format is yyyy/ mm dd/ hh/ mm
t - struct tm represents time and date

return :

0 - OK

1 - ERROR
**l
static int str2date2(char *s, struct tnr t)
{

EBE I N R R I .

if(strlen(s)!=19)

126

[lprintf("too | ess");
return 1,

}

t->t m non=10* (s[5] - 0x30) ;
t->t m non+=s[6] - 0x30;

t->t m nday=10*(s[8] - 0x30) ;
t - >t m nday+=s[9] - 0x30;

t->t m year=1000*(s[0] - 0x30);
t->t m year +=100*(s[1] - 0x30) ;
t->t m year +=10*(s[2] - 0x30);
t->t m year +=s[3] - 0x30;

t->tm hour=10*(s[11] - 0x30);
t - >t m hour +=s[12] - 0x30;

t->tmm n=10*(s[14] - 0x30) ;
t->t m m n+=s[15] - 0x30;

t->tmsec = 0;

t->tmisdst = O;

[lprintf("% % % % %\ n",t->tmnon, t->tmnday,

>Stmmn);

}

/* check if everything is in the range */

if(((t->tmnon)<l || (t->tmnon)>12) ||
((t->tmnday)<l || (t->tmnday)>31) ||
((t->tmyear)>2005 && (t->tmyear)<1995) ||
((t->tmhour)<0 || (t->tmhour)>24) ||

((t->tmmn)<0 || (t->tmmnin)>59))
{

return 1,
}
//convert to tm format
t->t m non-=1; /* nonth : 0 - 11 */
t->tm hour-=1; /* hour : O - 23 */

t->t myear-=1900; /* years since 1900 */

return O;

/**

E A S I . B N N .

str2date3() - format in *.psmfiles

conversion of string into struct tm

par anet er
s - char array with the reference tine
format exanmple : '10-Aug- 1996 22:35: 30. 000

t - struct tm represents time and date
return :

0 - OK
1 - ERROR

**/

static int str2date3(char *s, struct tnt t)

127

t->tmyear,

t->tm hour,

t-

char nont h[4];

strncpy(nonth, s+3, 3);
month[3] = "\0';

i f (nonth_convert (nmonth))

{
}

t->t m non=10* (mont h[0] - 0x30) ;
t - >t m_non+=nont h[1] - 0x30;

return 1;

t - >t m nday=10*(s[0] - 0x30) ;
t->t m nday+=s[1] - 0x30;

t->t m year=1000*(s[7] - 0x30);
t->t myear +=100* (s[8] - 0x30) ;
t->t myear +=10*(s[9] - 0x30);
t->t m year +=s[10] - 0x30;

t->t m hour =10*(s[12] - 0x30);
t->t m hour +=s[13] - 0x30;

t->tm m n=10*(s[15] - 0x30);
t->t m m n+=s[16] - 0x30;

t->tmsec=10*(s[18] - 0x30);
t->t m sec+=s[19] - 0x30;

t->tmisdst = O;

if(((t->tmnon)<l || (t->tmnon)>12) ||
((t->tmnday)<l || (t->tmnmday)>31) ||
((t->tmyear)>2005 && (t->tmyear)<1995) ||
((t->tmhour)<0 || (t->tmhour)>24) ||
((t->tmmnmn)<0 || (t->tmmn)>59))

{
return 1;

}

//convert to tmformat

t->t m non-=1; /* nonth : 0 - 11 */

t->t m hour-=1; /* hour : O - 23 */

t->t myear-=1900; /* years since 1900 */

return O;

}

/*********** kkkkhkkkhkhkkhhkhkkhkkhkkhhkhkhkhdhhxhrhhrhkdxkkx

* nont h_convert ()

K e e e e e e e e e m e e e e e e e e e e e e e — = -

* overwittes the given string (e.g "jan") by the
* correspondi ng nunber ("01")

*

* par anet er

* s - char array that contains the nonth

* it will be overwitten by the nunber
* of that nonth

*

* return :

* 0 - OK

128

* 1 - ERRCR
**/
static int nmonth_convert(char *s)
{ N
int i=0;
char *nont h[]
{"JAN', "FEB", "MAR', "APR", " MAY", "JUN"', "JUL", "AUG', " SEP", " OCT", " NOV", "DEC'};
] = toupper ((int)s[0]);
s[1] = toupper((int)s[1]);
] = toupper ((int)s[2]);
whi | e(i <12)

if(strcenp(s, monthl[i])==0)
{

br eak;
}
i ++;
}
if(i>=12)
return 1,
}
el se
{
sprintf(s,"%®2d",i+1);
return O;

129

/**************************************

File : gfa_server.c
Project : Gid Friendly Appliance
Aut hor : Steffen Lang, PNNL

tcp/ip handling

*
*
*
*
*
*
)\'**'k****************************/

/* include files */

#i ncl ude "gfa. h"

#i ncl ude<sys/ socket . h>
#i ncl ude<sys/ types. h>
#i ncl ude<ar pa/ i net. h>
#i ncl ude<uni st d. h>

#i ncl ude<fcnt! . h>

#i ncl ude<st di 0. h>

#i ncl ude<string. h>

#i ncl ude<stdl i b. h>

/* extern variables */

extern doubl e spectruni NUM OF_SAMPLES] ;
extern doubl e sanpl es [NUM OF_SAMPLES] ;
extern PEAK peaks[NUM OF_SAMPLES/ 2] ;
extern doubl e threshol d[5];

extern double thres_integral [5];

extern doubl e stddevfft;

extern server_state state;

extern char log_time[];

extern int operation_node;

/* gl obal variables */

static int sock_desc_server;
static int sock_desc_client ;
static struct sockaddr_in server
static struct sockaddr_in client;
static int first_package = 0;

/* prototypes */
static int server_setup();
static int server_get_transm ssion_string(char *s)

/**

* server_handl er ()

K e = -
* handl es the server functionality
*

* par anet er

* none

*

* return :

* voi d

*

*

***/

voi d server_handl er ()

[lprintf("sm*%l*\n", state);
if(state == NO_SOCKET)

i f(!server_setup())

{
}

state = SOCKET;

130

el se if(state==SOCKET)

{
int client_size;
client_size = sizeof(client);
sock_desc_client = accept(sock_desc_server, &client, &client_size);
i f(sock_desc_client==-1)
{
return
}
el se
{
state = CLI ENT;
fentl (sock_desc_client, F_SETFL, O NONBLOCK) ; //set client non-
bl ocki ng
printf("client from% port : %\n", inet_ntoa(client.sin_addr),
client.sin_port);
}
}
el se if(state==CLIENT || state==REQUEST)
{
int bytes;

char in[1024];
char out[4096] = "";

bytes = recv(sock_desc_client, in, 256, 0);
if (bytes <= 0)

{
[lprintf("not read\n");
}
el se
{

in[bytes] = "\0';

[lprintf("dient sent <%>\n", in);
i f(strcnp(in,"request”)==0)
{

state = REQUEST;
first_package = 1;

else if(strcmp(in, "stop")==0)
{
state = CLI ENT;

return;

else if(strcnp(in,"close")==0)

{
cl ose(sock_desc_client);
printf("socket closed\n");
state = SOCKET;
return
}
}
i f (state==REQUEST)
{
server _get _transm ssion_string(out);
first_package = O;
i f(send(sock_desc_client,out,strlen(out), 0)==-1)
{

printf("Can not send\n");
cl ose(sock_desc_client);
state = SOCKET;

131

}

el se

[lprintf("send OK \n");

}

/**

* server_get _transm ssion_string()

K e = -
* assenbles the string that will be

* transmitted to the client

*

* par anet er

* s - string where information is stored
*

* return :

* al ways 0

*

**/

static int server_get transm ssion_string(char *s)

{
char tenp[150];

int i
int first_sanple = 246; /!l we only transmt 10 sanples of the tinme
si gnal

//Spectl'um kkkkkkhkkhkhkkkkhk%x

strcpy(s, "<spectrune");

for(i=0;i<52;i++)

{
sprintf(temp,"%. 3f", spectrun{i]);
i f(i<51)
{

}
strcat(s,tenp);

strcat(temp,",");
}
strcat (s, "</spectrum");
//Sarml ES ER R R IR O S
strcat(s," <sanples>");
if(first_package) /lin first package : transmt 11 sanples (0 - 10
first_sanple = 245;

for(i=first_sanple;i <NUM OF_SAMPLES; i ++)

{ sprintf(tenmp,"9%. 3f", (sanples[i]+sanples[i-1])/2);
i f(i!=NUM OF SAVPLES- 1)
t strcat(tenp,",");
itrcat(s,tenp)

itrcat(s," </ sanmpl es>");

//peaks Xk kkkhkkkhkkk*
strcat(s,"” <peaks>");

i =0;

whi | e(peaks[i]. pos>=0)

132

sprintf(tenp," %", peaks[i]. pos);
i f (peaks[i +1]. pos>=0)
{

strcat(tenmp,",");

}
strcat(s,tenp);
i ++;

strcat(s," </peaks>");

//detai|s dkhkhkhkkkkkkkkkk
strcat(s,” <details>");
strcat (s, "<peak>");

i =0;

whi | e(peaks[i]. pos>=0)

sprintf(tenmp, " %. 3f Hz 9%. 3f dB 9%. 3f °
9. 3f\n", peaks[i].pos*0. 0039
peaks[i].val ue, peaks[i]. angl e, peaks[i]. sharp)
strcat(s,tenp);
i ++;
}
strcat (s, "</peak> <integral >")
for(i=0;i<5;i++)
{ sprintf(tenmp,"%. 3f 9%.3f\n",threshold[i],thres_integral[i]);
strcat(s,tenp);

strcat (s, "</integral ><stddev>");
sprintf(tenp, "%. 3f", stddevfft);
strcat(s,tenp)
strcat (s, "</stddev>")

strcat(s," </details>");

/1time

strcat(s," <tine>");

i f (operation_node==LOGFI| LE)
{

}

el se

{

strcat(s,log_time);

strcat(s," ")
strcat(s," </tinme>");

return O

}

/**

server _set up()

creating socket and listen to it

par anet er
none
t

r r

e
0
1

Innc
BR>

ROR

*
*
*
*
*
*
*
*
*
*
*
*

***/

133

static int server_setup()

{
/'l create socket
i f((sock_desc_server=socket (AF_I NET, SOCK_STREAM 0)) ==-1)
printf("Error in socket() !'\n");

return 1,
}
server.sin_fam | y=AF_I| NET;

server. si n_addr.s_addr =] NADDR_ANY;

server.sin_port=htons(3552); //we are using

/] set server as non-bl ocking

fentl (sock_desc_server, F_SETFL, O NONBLOCK) ;
// bi nd

i f(bi nd(sock_desc_server, (struct sockaddr *)&server, sizeof (server))==-1)
printf("Error in bind() !'\n")
return 1,
}
/1listen
if(listen(sock_desc_server,1l)==-1)
printf("Error in listen() !'\n");
return 1;
}
return O

}

134

