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Summary 
 

A new method of processing multivariate response data to extract chemical information has been 
developed.  Sensor array response patterns are transformed into a vector containing values for solvation 
parameter descriptors of the detected vapor’s properties.  These results can be obtained by using a method 
similar to classical least squares, and equations have been derived for mass-transducing sensors or 
volume-transducing sensors.  Polymer-coated acoustic wave devices are an example of mass-transducing 
sensors.  However, some acoustic wave sensors, such as polymer-coated surface acoustic wave (SAW) 
devices give responses resulting from both mass-loading and decreases in modulus.  The latter effect can 
be modeled as a volume effect.  In this paper we derive solutions for obtaining descriptor values from 
arrays of mass-plus-volume-transducing sensors.  Simulations were performed to investigate the 
effectiveness of these solutions and to compare them with solutions for purely mass-transducing sensor 
arrays.  It is concluded that this new method of processing sensor array data can be applied to SAW 
sensor arrays even when the modulus changes contribute to the responses. The simulations show that 
good estimations of vapor descriptors can be obtained by using a closed form estimation approach that is 
similar to the closed form solution for purely mass-transducing sensor arrays, Estimations can be 
improved using a nonlinear least squares optimization method. The results also suggest ways to design 
SAW arrays to obtain the best results, either by minimizing the volume sensitivity or matching the 
volume sensitivities in the array. 
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1.1 

 

1.0 Introduction 
 
Multivariate analytical data can be handled in a variety of ways.  In the simplest case, the multivariate 
instrument provides sufficiently resolved data that the issue is reduced to a univariate calibration.  For 
example, the peak height of a chromatographic peak that is fully resolved from other analytes and 
interferences provides detection and quantification.  Similarly, in mass spectrometry, a peak with a unique 
mass-to-charge ratio is sought to detect a given species without interference from other species. 
 
Alternatively, the entire response vector from a multivariate instrument can be processed as a multivariate 
pattern-recognition and/or calibration problem.  This approach is especially appropriate for response 
systems that are not perfectly selective.  Thus, spectra from multicomponent mixtures can be processed to 
quantify each species in the mixture.  Classical least squares (CLS) approaches are well-known methods 
for this analytical task.  They require that the spectra for the individual species be known in advance and 
that spectral intensities combine in a linear fashion.   
 
The patterns from sensor arrays represent another multivariate analysis problem that is addressed by 
processing the entire response vector.  Pattern recognition is typically carried out using statistical pattern 
recognition or neural network methods.[1–3]  These approaches generally require training, i.e., measuring 
the response patterns of known calibration samples that represent the classes of interest, i.e. analytes and 
potential interferences, and developing models to match future samples with calibration samples.  When 
confronted with a compound that does not belong to a class in the training, an array instrument cannot be 
relied upon to classify that compound correctly.  
 
Over the last few years, we have developed a new approach for extracting chemical information from 
multivariate sensor-array data.[4–8]  The multivariate pattern vector is transformed into values of 
descriptors for the detected compound.  In principle, this method can be used to obtain descriptors for an 
unknown compound that was not in the training, providing chemical information about that unknown for 
characterization, classification, and possibly identification. 
 
Other multivariate techniques, such as infra-red spectra and mass spectra, provide data that can be 
interpreted to learn something about an analyte even if no training data or reference spectra are available.  
Sensor-array responses encode information about the interactions of analytes with the sensing films, and 
therefore the array data encode information about the analyte properties that participate in those 
interactions.  We have developed methods to extract that information.  Descriptors can be determined 
from the pattern vectors of detected single compounds by either inverse least squares (ILS) methods in 
which a model is determined by training for each descriptor or by a novel variant of classical least squares 
(CLS) methods to be described below in which the pattern vector is transformed into values for all the 
descriptors simultaneously. 
 
Figure 1.1 illustrates this alternative concept for handling sensor-array data.  In conventional pattern 
recognition, response vectors are compared to response vectors (or models of them) from the training.  In 
the new approach, the response vector is converted to descriptor values.  Though these methods have been 
derived for sensor arrays, the mathematics is not restricted to sensor arrays.  The approach is suitable for 
any multivariate instrument wherein the response of each channel can be modeled by a suitable linear 
relationship, such that the new method transforms the multivariate response into values for the descriptors 
in the linear relationship.   
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Figure 1.1. Illustration of the Goal of Converting an Array Response Vector, Shown as a Bar 

Graph, into Descriptors of the Detected Vapor, Where the Descriptors Are the 
Solvation Parameters from a Linear Solvation Energy Relationship for Vapor Sorption 

 
In this paper, we have set out the mathematics for obtaining descriptors from sensor-array data, where the 
individual sensors provide signals that are related to the amount of vapor sorbed by the selective coatings 
on each of the sensors’ surfaces.  We have specifically considered sensors where the analyte is absorbed 
into the thin polymer film with which it interacts by solubility interactions.  The absorption aspect of such 
chemical sensors is shown in Figure 1.2.  The amount of vapor sorbed may be expressed as a mass or a 
volume or a combination of the two.  The mass-plus-volume transduction case is of particular interest 
because some polymer-coated surface acoustic wave (SAW) devices respond by this mechanism.[9]  
Modulus change contributes to the otherwise gravimetric response transduction of the increase in volume 
of the film on vapor sorption.  There is no closed-form CLS solution for obtaining the vapor descriptors 
for the mass-plus-volume transduction case. However, such a solution does exist for a special case, an 
estimated solution can be derived for the more general case, and optimization methods can be used to 
improve values from the estimation approach.  Simulations are performed to investigate the various 
approaches for the mass-plus-volume transduction case and to determine if SAW sensor array data can be 
processed by this method.  It is found that descriptor values can be obtained from SAW sensor-array data 
by these approaches. 
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Figure 1.2. Schematic Illustration of the Absorption of Vapor Molecules from the Gas Phase into 
the Bulk of a Thin Film on a Chemical Sensor, Where the Equilibrium Distribution Is 
Given by K, the Partition Coefficient 
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2.0 Linear Solvation Energy Relationships 
 
The chemometric methods to be described apply only if the channels of the multivariate instrument give 
responses that can be modeled with suitable linear relationships containing analyte descriptors.  For 
sensor arrays, the sorption of a vapor into a polymer on a sensor channel can be modeled with Linear 
Solvation Energy Relationships (LSERs), and the descriptors are solvation parameters.  LSERs are a form 
of linear free-energy relationship.  This approach has been developed for acoustic -wave sensors where the 
responses are proportional to the mass of the vapor sorbed by a polymer thin film.  It has been shown that 
the responses of such a sensor can be modeled with LSERs.[6,10–15]  Thus, the array of polymer-coated 
sensors can be regarded as a multivariate sorption detector where the responses of each channel can be 
modeled with an LSER.[4]  
 
The absorption of vapors into selective thin films, such as polymers, is governed by solubility 
interactions.  The amount of vapor sorbed at equilibrium is given by the partition coefficient, K, which 
relates the concentration of the vapor in the sorbent film, Cs, to the concentration of the vapor in the gas 
phase, Cv (see Figure 1.2). 
 
 K  = Cs / Cv (2.1) 
 
The LSER equation expresses log K as a linear combination of terms that represent particular solubility 
interactions.[11,14,16]  
 

 log K  =  c  +  r R2  +  s πH
2    +  a  ΣαH

2    +  b ΣβH
2    +  l log L16 (2.2) 

 

In this relationship, R2, πH
2  , ΣαH

2   ,  ΣβH
2   , and log L16 are solvation parameters that characterize the 

solubility properties of the vapor,[16] and which serve as descriptors of the vapor properties.  The 
parameter R2 is a calculated excess molar refraction parameter that provides a quantitative indication of 

polarizable n and p electrons; πH
2   measures the capability of a molecule to stabilize a neighboring charge 

or dipole;  ΣαH
2   and ΣβH

2   measure effective hydrogen-bond acidity and basicity, respectively; and log 

L16 is the liquid/gas partition coefficient of the solute on hexadecane at 298K (determined by gas-liquid 
chromatography).  The log L16 parameter is a combined measure of exoergic dispersion interactions that 
increase log L16 and the endoergic cost of creating a cavity in hexadecane leading to a decrease in log L16.   
 
These parameters, except for R2, are related to free energies and were determined from experimental data 
on partitioning or complexation equilibria.[17–21]  The R2 parameter is different, since it is calculated 
from molar-refraction values for liquids and extended by a group contribution scheme.[22]  
 
The LSER equation for a particular polymer is determined by regressing measured partition coefficients 
for a diverse set of vapors on the polymer against the solvation parameters of the test vapors, using the 
method of multiple linear regression.[23]  The regression method yields the coefficients (s, r, a, b, and l ) 
and the constant (c).  In this treatment, we will refer to the polymer LSER coefficients as the polymer 
parameters.  LSER coefficients for the polymers are generally obtained by regression of partition 
coefficients determined by gas chromatographic measurements, but they may also be determined from the 
responses of a mass-sensitive acoustic -wave device with a thin film of the polymer.[6,10,23]  
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In matrix algebra, a collection of LSER relationships can be expressed as  
 
  L = VoPo + 1c (2.3a) 
 
Matrix L, containing log K values, is related to matrix Vo (number of vapors by five), containing the 
vapor solvation parameters, and matrix Po (5 by number of polymers), containing the polymer parameters.  
The constants of the LSER equations are given by the vector c (1 by number of polymers), and 1 is a 
vector of ones (number of vapors by 1).  The subscript of o is arbitrarily chosen to distinguish the V and P 
matrices from those in the next equation. 
 
If matrix V is defined so that each vector contains the five vapor-solvation parameters and a vector of 
ones (number of vapors by six), and similarly P is defined to contain the polymer parameters, including 
the constants (six by number of polymers), then the LSER relationship can be more simply expressed as  
 
  L = VP  (2.3b) 
 
This latter convention in Equation 2.3b will be followed in the remainder of the paper (although the 
convention in Equation 2.3a has been followed in our original papers[4–7] on this method).  The contents 
of the V and P matrices used in this paper are summarized in Table 2.1. 
 

Table 2.1. Contents of the Matrices Containing the Vapor Descriptors and Polymer Parameters of 
the LSER Relationship 

Vo  R2 πH
2   Σα

H
2    

  ΣβH
2    log L16   

V  R2 πH
2   Σα

H
2    

  ΣβH
2    log L16 1  

Va  R2 πH
2   Σα

H
2    

  ΣβH
2    log L16 1 Log C 

Vb  R2 πH
2   Σα

H
2    

  ΣβH
2    log L16 1 Log Y C 

Vc  R2 πH
2   Σα

H
2    

  ΣβH
2    log L16 1 Log ( I +m Y ) C 

Po r s a b la   
P r s a b la c  
Pa r s a b la c 1 

(a) This is the letter “l,” which is the LSER coefficient associated with log L16, not the 
number 1. 

 
The solvation parameters in the V matrices are the descriptors to be determined from sensor-array 
response patterns.  The solvation parameters are known for some 2000 compounds and can be estimated 
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for many more.[16,24]  Values of these descriptors serve to characterize and classify unknown vapors, 
and comparisons with the descriptors for known compounds can potentially be used for identification. 



 

3.1 

 

3.0 Classical Least Squares Approach 
 
The conventional CLS approach used in absorbance spectroscopy[25] models the response-matrix R 
(samples by channels) containing the responses of the spectrometer, as 
 
 R = CS (3.1) 
 
where C is a matrix of concentrations (samples by analytes), and S is a matrix of pure component spectra 
(analytes by channels).  If S is known, the concentrations C can be determined from R.  
 
 C = R ST(SST)-1 (3.2) 
 
The superscript T denotes the transpose of a matrix.  
 
We have developed a variant of CLS that can be used to obtain descriptors from multivariate instruments 
where the responses follow the general form of the following equation.[16,24] 

 

 R =   SV C 10
(V*P*)

 SP  (3.3) 
 
The matrix R (analytes by channels) contains the responses of the multivariate instrument to tests against 
compounds presented as single -component samples.  The matrix SV is a diagonal matrix containing 
analyte-specific parameters that influence the response independent of the specific interactions of the 
analyte with each channel.  Specific interactions of the analyte with detector channel properties are 
modeled in the general linear relationship V*P*(not necessarily an LSER), where V* contains analyte 
descriptors, and P* contains parameters specific to the properties of detector channels.  (The * superscript 
is an arbitrary choice to denote this general case and distinguish it from specific cases below where the V 
and P matrices refer to vapor descriptors and polymer parameters, respectively.)  The matrix SP contains 
channel-specific sensitivity parameters that are independent of the analyte interactions.  The matrix C 
contains the analyte concentrations as usual.  Thus, this response function contains vapor-specific 
parameters, followed by the interaction model, and completed with the channel-specific terms after the 
exponential. 
 
A solution containing the descriptors in V* can be found by augmentation of V* and P* and solving for 
the augmented V* , designated V*a.   

 
 {log ( R SP

-1 ) } P*aT(P*aP*aT)-1= V*a  (3.4) 
 
The solution, V*a, contains the analyte descriptors in V* as well as the log of the product of analyte-
specific sensitivity factor times the analyte concentration, SVC.  
 
Specific cases for sensor arrays described below provide examples of this general response model and its 
solution. 
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4.0 Arrays of Mass-Transducing Sensors 
 
The gravimetric response of a polymer-coated acoustic wave sensor to the absorption of a vapor into the 
sensing layer is related to the partition coefficient as shown in Equation 2.2.[26–32]  
 
 R = ∆fv  =  n ∆fs Cv K / ρs  (4.1) 
 
The sensor's response, R, to the mass of vapor absorbed, a frequency shift denoted by ∆fv , is related to 
the amount of sorbent polymer on the sensor as indicated by ∆fs, the frequency shift due to the deposition 
of the film material onto the bare sensor.  It further depends on the concentration of the vapor in the film 
as given by the product of the vapor concentration in the gas phase and the partition coefficient, Cv K.  
The density of the sorbent phase is given by ρs.  The product of the frequency shift due to application of 
the polymer, ∆fs, and the inverse of the polymer density, ρs, represents a sensitivity factor.  (It is a factor 
in the proportionality of the response to the vapor concentration.) 
 
If the observed response is entirely due to mass-loading, then n = 1.  Purely gravimetric sensing is 
observed if the acoustic wave sensor is a thickness shear mode (TSM) device with an acoustically thin 
film[33–35] or a surface acoustic wave (SAW) device with an acoustically thin film of a polymer with a 
low initial modulus.[34–36] 
 
If the polymer-coated SAW device has a response related to both the mass of the vapor sorbed and a 
decrease in the polymer modulus, then n will be a number greater than one.[9,34,35,37]  This case will be 
considered separately below as a mass-plus-volume transducing sensor. 
 
The responses of a set of gravimetric acoustic wave sensors in matrix algebra is given by  

 

   R =  C 10
(VP)

 D-1 F  (4.2) 
 
Matrix R (vapors by polymers) contains the response values as frequency shifts for polymer-coated 
sensors in response to vapor samples.  In this relationship, C (number of vapors by number of vapors) is a 
diagonal matrix of the concentrations of the vapors, and F (number of sensors by number of sensors, or 
number of polymers by number of polymers) is a diagonal matrix of the ∆fs values of the sensors.  
Similarly, D (number of polymers by number of polymers) is a diagonal matrix of the sorbent polymer 
densities.  The superscript of -1 denotes the inverse of the matrix. 
 
It is possible to solve for the vapor descriptors in V given the responses, R, the polymer parameters, P, 
and the sensitivity factors, D-1 F, but the solution requires knowledge of C.[4]  Since the concentration of 
an unknown vapor is not normally known, it is more useful to rearrange the response model so that one 
solves for the log of the concentration simultaneously with determining the descriptor values.  
Augmentation of the V matrix (to Va) to contain the log of the vapor concentration in addition to the 
descriptors for each vapor and augmentation of the P matrix (to Pa) with a vector of ones (see Table 2.1) 
allows rearrangement of the response model.   

 

  R =  10
(Va Pa)

 D-1 F  (4.3) 
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Solutions for obtaining descriptors from array pattern vectors are then given as follows.[4]  
 
  {log ( R D F-1 )} PaT(PaPaT)-1= Va  (4.4a) 
 
  {log ( r D F-1 )} PaT(PaPaT)-1= va  (4.4b) 
 
This solution in Equation 4.4a is shown for an entire matrix of responses, R, where Va gives the values of 

the descriptors R2, πH
2  , ΣαH

2   , Σβ 2
H , and log L16, as well as the log of the concentration.  Alternatively, 

if the solution is expressed for a single  sample as in Equation 4.4b, the vector of descriptors within va is 
obtained from a single response vector, r. 
 
Note that the response function in Equation 4.2 is similar to that in the more general Equation 3.3, where 
SP is D-1 F, and there are no analyte-specific sensitivity factors (SV).  The solution in Equation 4.4 is 
similar to the general solution in Equation 3.4. 
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5.0 Arrays of Volume-Transducing Sensors 
 
If the sensors in an array respond to the amount of vapor sorbed by the sensing film, where the amount 
that determines the signal is a volume rather than a mass, the response function can be expressed as 

 
  R = vv Cv K S (5.1) 
 
This function relates the response, R, to the vapor-specific volume, vv, and the vapor concentration in the 
film, Cs = Cv K .  These are related to the volume fraction of vapor in the polymer/vapor solution, φv  = vv 
Cv K.[5]  The sensitivity is given by S.   
 
This response function can apply to chemiresistor sensors coated with composite films of carbon black in 
a polymer matrix[2,38–44] where vapor sorption causes an increase in the volume of the film.  The signal 
is a change in resistance, and detailed studies have shown[44] that sensor-resistance changes are related to 
the extent of volume increase regardless of the identity of the vapor producing the volume increase.  
Hence, they respond to the amount of vapor as a volume. 
 
In matrix algebra, the responses can be expressed according to  
 

 R =   Y C 10
(VP)

 S  (5.2) 
 
The matrix Y is a diagonal matrix (number of vapors by number of vapors) containing the specific 
volumes of the vapors, and S is the sensitivity matrix.  To solve for vapor descriptors without knowledge 
of the concentration or vapor-specific volumes, one can again augment matrices.  We define matrix Vb as 
matrix V augmented to contain the log of the product of the vapor concentration times the vapor-specific 
volume.  The P matrix must be augmented with a vector of ones as usual (giving Pa).  Then the response 
function and solutions are as follows.[5] 
 

 R =  10
(Vb Pa )

  S  (5.3) 
 
 {log ( R S-1 )} PaT(PaPaT)-1= Vb  (5.4a) 
 
 {log ( r S-1 )} PaT(PaPaT)-1= vb  (5.4b) 

 
Thus, an array of sorption-based sensors with signals proportional to volume increases represent a 
multivariate sensor system where it is possible, in principle, to solve for the descriptors of sorbed vapors.  
The value of the log of the product of the vapor concentration times the vapor-specific volume is also 
obtained, but it is of little value for classification.  
 
Note that the response function in Equation 5.2 is similar to that in the more general Equation 3.3, where 
Y contains the analyte-specific sensitivity factors (SV), and S corresponds to SP.  Then the solution in 
Equation 5.3 is similar to the general solution in Equation 3.4.  
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6.0 Mass-Plus-Volume-Transducing Sensors 
 
If the individual sensors in the array respond to both the mass and volume of the vapor sorbed in the 
sensing film, then these are mass-plus-volume-transducing sensors.  This case is significantly more 
complicated than mass- or volume-transducing sensors alone, but solutions, estimation, and optimization 
approaches can be found. 
 
For this case, the response functions for mass- and volume-transducing cases can be added. 
 

    R =  C 10
(VP)

 D-1 F + Y C 10
(VP)

 S (6.1a) 
 

    R = 10
(Va Pa)

 D-1 F + Y 10
(Va Pa)

 S (6.1b) 
 
This case is of interest because polymer-coated SAW devices[3,31,32] can be examples of mass-plus-
volume-transducing sensors.  In addition to detecting the mass of a sorbed vapor, the SAW sensor 
response may be amplified by a response to the decrease in polymer modulus as the sorbed vapor 
plasticizes the film.  The plasticizing effect is related to increases in polymer free volume, and hence the 
modulus response can be modeled as a volume response (i.e., a swelling-induced modulus change).  
Polymer modulus changes are proportional to increases in polymer free volume[9,36,37,45,46] brought 
about by vapor sorption.  (We are assuming acoustically thin films for this analysis.) 
 
The response model for a SAW sensor incorporating a modulus amplification can be expressed as[9]  

 
 ∆fv  =  ( ∆fs Cv K / ρs  )  +   fL ( vv Cv K )  ( ∆fs ΑSAW / α ) (6.2) 
 
which simplifies to  

 
 ∆fv  =  ( ∆fs Cv K / ρs  )  +    vv Cv K Ssw (6.3) 
 
when the sensitivity factors for the modulus response are grouped into Ssw., where the “sw” subscript 
refers to the swelling-induced modulus change, i.e., the volume sensitivity. 
 
A closed-form solution can be obtained for the special case of Equation 6.1 where the volume sensitivity 
is a multiple, m, of the overall mass sensitivity, i.e., S = D-1 F m.  In this case, the response model is 
 

 R =  C 10
(VP)

 D-1 F + Y C 10
(VP)

 D-1 F m (6.4) 
 
which can be rearranged to look like 
 

 R =  ( I +m Y ) C 10
(VP)

 D-1 F   (6.5) 
 
where I is the identity matrix. 
 
This case is similar to the case where the SAW sensor response conforms to Equation 4.1 with n greater 
than one.   
 



 

6.2 

The solution for this specific case is obtained by augmenting V to contain the log of ( I +m Y ) C , giving 
Vc(see Table 2.1), and augmenting P with a vector of ones as usual to get Pa.   
 
Then the response model and solution are 
 

  R =  10
(Vc Pa)

 D-1 F  (6.6) 
 
  {log ( R D F-1 )} PaT(PaPaT)-1= Vc  (6.7a) 
 
  {log ( r D F-1 )} PaT(PaPaT)-1= vc  (6.7b) 
 
Thus one solves for the vapor descriptors and the log of the concentration-containing term.  The fact that 
there is a volume sensitivity and it is dependent on varying vapor-specific volumes does not prevent 
independent determination of the vapor descriptors for this case. 
 
Equations 6.5 and 6.7 match the forms of the general Equations 3.3 and 3.4. 
 
If this special case does not pertain, then there is no exact closed-form solution for the mass-plus-volume-
transducing case in Equation 6.1.  A SAW sensor array where some sensors have a greater modulus 
contribution than others, as is likely, would not fit the special case.  However, it is possible to assume that 
the specific volumes of the vapors as liquids are unity so that Y is taken as the identify matrix.  Given this 
assumption, estimates can be determined for the vapor descriptors using following closed-form solu tion 

 
    {log ( R (D-1 F + S) -1)} PaT(PaPaT)-1= Va  (6.8a) 

 
     {log ( r (D-1 F + S) -1)} PaT(PaPaT)-1= va  (6.8b) 
 
where Va is defined as before.  As we shall show below, this approach generally gives satisfactory values 
for the vapor descriptors if the measurement noise is low.  Descriptor values can be obtained that are 
within the precision with which they were originally determined for vapors. 
 
Assuming that the overall sensitivity is a combination of the mass and volume sensitivities without 
consideration of vapor-specific parameters like the vapor-specific volume is similar to the SAW response 
in Equation 4.1 where the mass response is amplified by n without assuming that the value of n is the 
same for all the sensors in an array.  The solution in Equation 6.8 is similar to the general solution in 
Equation 3.4 and the mass-transducing solution in Equation 4.4. 
 
If desired, this initial estimation can be refined by using direct fitting of the sensor responses to the model 
with a non-linear least-squares optimization procedure to determine Va and Y.  The use of this 
optimization will be demonstrated below.  It can improve the determination of vapor descriptor values 
when the volume sensitivity is quite variable from one sensor to another in the array, and the 
measurement noise is low.  However, if the volume sensitivity across the array is a single scalar multiple 
of the mass sensitivity, i.e., S = D-1 F m, there is no need or point to doing such an optimization, even if 
the descriptors have been found using Equation 6.2 rather than Equation 6.7.  



 

7.1 

 

7.0 Simulations of Mass-Plus-Volume-Transducing Sensors 
 
7.1 Simulation Approach 
 
Simulations were performed to investigate the determination of descriptor values from arrays of mass-
plus-volume-transducing sensors.  The primary objectives of these simulations were to determine if these 
methods can be applied to SAW array responses in a similar manner to their application to purely mass-
transducing sensor arrays and to demonstrate the use of nonlinear least-squares optimization to improve 
upon vapor-descriptor estimations. 
 
A method of generating synthetic data sets that perfectly fit the LSER model was set up according to 
Equation 6.1.  Estimated descriptors were found using the solution in Equation 6.8.  This solution is 
calculated assuming that the vapor specific volumes in V are equal to 1.  This assumption is relevant if 
there is a volume sensitivity, and it varies from sensor to sensor; this assumption has no consequences if 
there is no volume sensitivity, or if the volume sensitivity is a scalar multiple of the mass sensitivity and 
this scalar multiple is constant across the entire array. 
 
The synthetic data set consisted of 102 vapors for which the solvation parameters and densities as liquids 
were tabulated.  Liquid densities range from 0.6 to 3.3 g/mL, a wider range than is typically encountered 
and hence a rigorous test set.  Twelve polymers for which the LSER relationships had been determined 
previously defined the array.  These were the same 12 polymers and LSER relationships used in our 
original simulations for mass-transducing sensors.[4]  
 
In the simulations, the mass sensitivities in D-1 F were defined as 1 (i.e., the identity matrix), and volume 
sensitivities were set to zero or some positive integer value.  In this way, the relationship between volume 
sensitivity and mass sensitivity of each sensor was clear.  A number of cases were considered for volume 
sensitivities.  
 
Gaussian measurement noise proportional to the response[47] with a standard deviation of 1, 2, 5, 10, or 
20% was added to the synthetic responses.  For each case, 20 replicates were produced for each of the 102 
vapors by 12 polymers.  Thus, each reported root-mean-square error of prediction for a particular vapor 
descriptor at a particular imposed noise level was determined from 20 × 102 = 2040 simulated 
determinations. 
 
The simulations investigated the effects of the added measurement noise on the errors in the found 
descriptor values using various methods of obtaining descriptors from mass-plus-volume transducing 
sensor arrays.  The errors are compared with the intrinsic uncertainties in the values of the vapor 
descriptors.  In addition, the results were compared with those for purely mass-transducing sensor arrays 
as the base case. 
 
In this simulation approach, the LSER models are assumed to be perfect and then measurement noise—up 
to 20%—is added to calculated sensor responses.  For reference, measurement noise of 1% or less for 
actual polymer-coated SAW vapor sensors has been demonstrated for repeated exposures to the same 
vapor.[48]  In reality, the LSER models will not perfectly match vapor sorption by polymers.  To the 
extent that the models are not a perfect match to reality, the amount of tolerable measurement noise, i.e., 
the noise required to obtain a given precision in the found vapor descriptors, will be reduced.  However, 
beginning with perfect models and adding measurement noise is a common way to do simulations, and 
this approach is often used in process-control simulations.  
 



 

7.2 

7.2 Mass-Transducing Sensor Array 
 
In the first case considered, all values in the S matrix were set to zero, i.e., there is no volume sensitivity, 
and the sensors are simply mass-transducing sensors.  Prediction errors for each of the vapor descriptors 
at each of the simulated noise values are shown in Figure 7.1; the results for log L16 are plotted relative to 
the scale on the right y-axis while the remaining are plotted against the scale on the left y-axis.   
 
These results can be compared with the uncertainties with which the values of the vapor solvation 

parameters were originally determined.  The uncertainties in the π
H
2    ,  Σα

H
2    , and Σβ

H
2    parameters can 

be taken 0.03 units[4], and a dashed line has been added to the columns for these parameters in Figure 7.1 
for reference.  The log L16 values have estimated errors of about 0.1 units, and a dashed line is placed at 
this level for the log L16 results in Figure 7.1.  In contrast, R2 is a calculated parameter without an  
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Figure 7.1. Simulation Results Giving the Root-Mean-Square Error of Prediction for each Vapor 
Descriptor at each Imposed Noise Level for the First Case Where There is no Volume 
Sensitivity, i.e., for a Mass-Transducing Array.  The results for log L16 are plotted 
relative to the scale on the right y-axis while the results for the remaining vapor 
descriptors are plotted against the scale on the left y-axis.  The same results are 
obtained if the array contains mass-plus -volume transducing sensors were the volume 
sensitivity is the same scalar multiple of the mass sensitivities across the entire array, 
i.e., simulation case 2 (see text). 



 

7.3 

associated uncertainty.  In addition, the errors can be compared with the sizes of the descriptor values.  
The range of descriptor values and approximate uncertainties in the descriptors are listed in Table  7.1.  It 
can be seen that at low imposed noise levels, these simulations on synthetic data return the vapor 
descriptors to a precision that exceeds the known precision of the actual parameter values.  Thus, at up 5 
to 10% noise levels, the estimated solutions are quite satisfactory. 
  

Table 7.1. Minimum and Maximum Values of the Descriptors for the 102 Test Vapors With the 
Approximate Uncertainty for Each Solvation Parameter 

Solvation 
Parameter 

Minimum 
Value 

Maximum 
Value 

Approximate 
Uncertainty 

R2 -0.24 1.45  

πH
2   0 1.33 0.03 

ΣαH
2    0 0.77 0.03 

ΣβH
2    0 1.06 0.03 

log L16 1.224 4.95 0.1 
 
 

7.3 Volume Sensitivities that Are a Scalar Multiple of the Mass Sensitivities 
 
The second case considered was for mass-plus-volume-transducing sensors where the volume sensitivity 
values were a scalar multiple of the mass sensitivities across the entire array, i.e., S = D-1 F m and m is a 
constant for all sensors.  In the first test of this second case, the scalar multiplier m was set equal to 1, 
such that the volume sensitivity is equal to the mass sensitivity, and the total response is twice the mass 
response.  The results for this case were the same as the first case above (see Figure 7.1) for simple mass-
tranducing sensors.  The same results were obtained again from a second test where the scalar multiplier 
m was equal to 5 (an unrealistically large value).  Thus, if the volume sensitivities across the array are all 
the same scalar multiple of each sensor’s mass sensitivity, then the solution in Equation 6.8 is as good as 
the closed-form solution for mass-tranducing sensors when determining the vapor descriptors.  Figure 7.1 
represents results for all these cases.  There is no reason to use nonlinear least-squares optimization 
procedures to try to improve the estimates for the vapor descriptors.  However, the concentration 
estimates that are contained in Va become worse as the volume sensitivity, S, increases.   
 
7.4 Varying Volume Sensitivities Across the Array 
 
The third and final case considered was where the sensors in the array have variable volume sensitivity 
across the array.  Thus the nonzero elements of S vary, where some are smaller than the mass sensitivities 
and others are equal to or larger than the mass sensitivities.  This is the most realistic case for an SAW 
array where some or all of the sensors respond as mass-plus-volume transducing sensors.  A number of S 
matrices were considered as given in Table 7.2.   
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Table 7.2.  Values for the Volume Sensitivities for the “Third Case” Simulations  

Identifier S matrixa  
S3 S = diag([1 1 0 0 0 0 1 0 0 1 1 1]) 
S4 S = diag([2 2 1 1 0 0 1 1 0 0 2 2]) 
S5 S = diag([2 0 2 0 2 0 2 0 0 2 2 0]) 
(a) The volume sensitivity matrices, S, are diagonal matrices with values for the following 
polymers, respectively:  PIB, PECH, OV25, OV202, PVPR, PVTD, PEM, SXCN, PEI, SXPYR, 
FPOL, SXFA.  See reference [4] for more on these polymers. 

 
The volume sensitivities in S3 were set up so that half the sensors have no volume sensitivity, and the 
remaining half have S values = 1, which means the mass and volume sensitivities are equal.  This is a 
reasonably realistic case for an SAW array where some sensors give observed responses that are twice the 
mass-only response.[9,34,36] Simulation results are shown in Figure 7.2.  Aside from somewhat greater 

errors at low noise levels for R2 and ΣβH
2   , there is little difference between this mass-plus-volume 

transducing array example and the first case of purely mass-transducing sensors.  There is essentially no 
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Figure 7.2. Simulation Results Giving the Root-Mean-Square Error of Prediction for each Vapor 

Descriptor at each Imposed Noise Level Plotted Relative to the Left and Right y-axes as 
Noted in the Figure 7.1 Caption.  These results are obtained from the third case where 
there is variable volume sensitivity across a mass-plus -volume transducing array, and 
the simulations were performed using the volume -sensitivity matrix designated S3 in 
Table 7.2. 
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difference with regard to which noise levels yield results exceeding the reference lines on the plot.  The 
conclusion for this test example is that response pattern vectors from mass-plus-volume transducing 
arrays, such as SAW sensor arrays, can be transformed into vapor descriptors just as effectively as purely 
mass-transducing arrays. 
 
The volume sensitivities in S4 and S5 were set up so that the maximum volume sensitivity was increased 
to 2 (compared to a maximum value of 1 in S3).  Then the total response for sensors with a volume 
sensitivity of 2 would be 3 times the mass response.  This represents the most volume sensitivity that 
might be expected for realistic SAW arrays and may exaggerate it.  For both of these simulations (S4 and 
S5), the total of the volume sensitivities was 12, but the values were distributed differently among the 
sensors.  For S4, we deliberately tried to make the volume sensitivities for polymers with similar 
interaction properties similar to one another.  Similarity was determined from the authors’ knowledge of 
the polymer properties and from hierarchical cluster analysis.  Simulation results for S4 are shown in 

Figure 7.3.  These results are very similar to those for S3, although the errors in R2 and ΣβH
2   at low 

noise are actually less than those in S3, even though some of the volume sensitivities are greater.  
Relative to the reference lines on the plot, the results for S4 are like S3 and like the mass-transducing first 
case (Figure 7.1).  From such results, one again concludes that the transformation of sensor-array patterns 
into vapor descriptors can be as effective for the mass-plus-volume transducing case (e.g., for SAW 
sensor arrays) as for purely mass-transducing arrays. 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

R2 pi alpha beta log L16

S4Estimated

1% noise
2% noise
5% noise
10% noise
20% noise

R
oo

t M
ea

n 
S

qu
ar

e 
E

rr
or

 o
f P

re
di

ct
io

n

Solvation Parameter Descriptor

0.5

0.1

0.2

0.4

0.3

0.6

0

 
Figure 7.3. Simulation Results Giving the Root-Mean-Square Error of Prediction for each Vapor 

Descriptor at each Imposed Noise Level Plotted Relative to the Left and Right y-axes as 
Noted in the Figure 7.1 Caption.   These results are obtained from the third case where 
there is variable volume sensitivity across a mass-plus -volume transducing array, and 
the simulations were performed using the volume -sensitivity matrix designated S4 in 
Table 7.2. 
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For S5, we deliberately made volume sensitivities for similar polymers as different as we could within the 
bounds of the simulation.  Therefore, for each pair of similar polymers, one had a value of 0 and the other 
a value of 2.  These results for this simulation are shown in Figure 7.4.  It can be seen that this case gives 
the greatest errors of any simulation considered thus far.  The errors at low noise levels are significantly 

increased for all the parameters, especially for πH
2   and log L16.  Errors at all noise levels for these 

parameters exceed the reference lines.  On the other hand, they are at most about twice the reference lines 
at 5 to 10% measurement noise and still much less than the overall values of the descriptors (see 
Table 7.1 for descriptor ranges).  Thus, even for the challenging conditions of S5, it appears that 
determining reasonable estimates for descriptor values is feasible. 
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Figure 7.4. Simulation Results Giving the Root-Mean-Square Error of Prediction for each Vapor 

Descriptor at each Imposed Noise Level Plotted Relative to the Left and Right y-axes as 
Noted in the Figure 7.1 Caption.  These results are obtained from the third case where 
there is variable volume sensitivity across a mass-plus -volume transducing array, and 
the simulations were performed using the volume -sensitivity matrix designated S5 in 
Table 7.2. 

 
The descriptor-estimation results from S5 obtained using the method in Equation 6.8 were used as initial 
values for a nonlinear least-squares optimization to obtain better values for the descriptors.  These results 
are shown in Figure 7.5.  The optimization gives a rather minor improvement at 20% noise levels, but it 
provides dramatic improvement in descriptor estimations at low noise levels.  Indeed, the results are that 
the lower noise levels are nearly as good as those for the mass-transducing only case and well below the 
reference lines on the plot.  Thus, optimization can be beneficial at low noise levels but is of little value at 
high-measurement noise levels.   



 

7.7 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

R2 pi alpha beta log L16

S5Optimized

1% noise
2% noise
5% noise
10% noise
20% noise

R
oo

t M
ea

n 
S

qu
ar

e 
E

rr
or

 o
f P

re
di

ct
io

n

Solvation Parameter Descriptor

0.5

0.1

0.2

0.4

0.3

0.6

0

 
Figure 7.5. Simulation Results Giving the Root-Mean-Square Error of Prediction for each Vapor 

Descriptor at each Imposed Noise Level Plotted Relative to the Left and Right y-axes as 
Noted in the Figure 7.1 Caption.  These results are obtained from the third case where 
there is variable volume sensitivity across a mass-plus -volume transducing array, the 
simulations were performed using the volume -sensitivity matrix designated S5 in 
Table  7.2, and optimization was performed. 

 
The results reported so far are averaged over all vapors in the simulation.  However, the estimated 
solution using Equation 6.8 assumes all vapors have a specific volume as a liquid with a value of one, and 
hence the density as a liquid is also one.  It stands to reason that the closer the actual liquid density is to 
one, the better the estimates should be.  This was confirmed in the simulation using the S5 set of volume 
sensitivities.  Figure 7.6 shows the root-mean-square error of prediction for all the vapors plotted as a 
function of the density.  A clear minimum appears at a density of one, with much larger errors at extreme 
densities, such as those large values for brominated and iodinated compounds.  The effect of density is 
prominent at 1% and 5% noise; estimates at 5% noise show that estimates at a density of one are ten times 
better than those at high densities.  At the 20% noise level, the density effect is less significant. 
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Figure 7.6. Root-Mean-Square Error of Prediction for each Vapor as a Function of the Vapor’s 

Density as a Liquid, from the same Simulation as in Figure 7.4, i.e., Using the Volume 
Sensitivity Matrix Designated S5 in Table 7.2 

 
7.5 Array Size 
 
Smaller arrays were also considered.  Principal-components analysis of large and small polymer-coated 
SAW arrays with very diverse polymers have shown that there are at most six principal components.[6]  
Hence, the responses of well-designed small arrays of six sensors can, in principle, contain chemical 
information on all the vapor/polymer interactions.  However, six sensors is the minimum number with 
which one can attempt to solve for the five descriptors and log of concentration (i.e., solving for six 
unknowns with six equations).  If there were only five sensors, the PaPaT term would be rank deficient 
and could not be inverted (without using some form of pseudoinverse).  One of the requirements for this 
approach is that the sensor array must be sufficiently diverse to cover all the chemical interactions, and P 
must be full rank so that the set of sensors display independent variations in all five polymer 
parameters.[4]  In general, larger numbers of diverse sensors result in Pa matrices that are better 
conditioned numerically.  Furthermore, combined mass-plus-volume sensitivity complicates the situation 
considerably for small arrays.  
 
Even in the purely mass-transducing case, simulations with only six sensors gave poor results.  Adding 
more sensors significantly improves the results if one starts with only six.  For example, when using nine 
diverse sensors (leaving out PVPR, OV202, and SXPYR) for the mass-transducing case, the results 
obtained are much closer to the results originally obtained for twelve mass-transducing sensors 
(Figure 7.1).  Solutions to systems that are just determined (number of equations equals number of 
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unknowns) are much more sensitive to changes in the data, such as measurement noise, than 
overdetermined systems.  Thus, while having more sensors does not necessarily add new kinds of 
chemical information, the signal-to-noise is much better. 
 
Simulation (using the estimation method of Equation 6.8) with six diverse polymers with volume 
sensitivities of either zero or two (i.e., similar to S5 but with fewer sensors) returned very poor results, as 
expected.  Indeed, errors were at least a factor of 10 worse at all noise levels compared to the same 
simulation with 12 sensors.  Optimization does not work in this case to improve results because the 
problem is solved exactly via Equation 6.8 with no residuals because of the minimum number of sensors 
in the system.  Even with no noise, the solution is perturbed considerably by variation in vapor-specific 
volume.  The volume-sensitivity effect is illustrated in Figure 7.7, which shows the errors of the solutions 
for a set of hypothetical single vapors, all with the same fixed solvation parameters but varying in vapor-
specific volume.  The solution is essentially perfect if the vapor-specific volume is one, but errors 
increase as specific volumes are different from one.  If the sensor array were purely mass-transducing, the 
solution in this no-noise simulation would be perfect at all vapor-specific volumes.    
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Figure 7.7. Error in the Determination of the Five Vapor Descriptors as a Function of the Vapor-

Specific Volume (mL/g) for a Six-Sensor Array with Variable Volume Sensitivity and 
no Imposed Noise.  The specific volume range plotted corresponds to liquid densities 
from 0.71 to 1.43 g/mL.  The horizontal reference line at 0.03 units corresponds to the 

reference line for the uncertainties in the  π
H
2    ,   Σα

H
2    , and  Σβ

H
2    parameters  as in 

Figures 3-7. 
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8.0 Discussion  
 
In general, the results of the derivations and simulations in this paper indicate that these methods can be 
applied to mass-plus-volume transducing arrays, such as polymer-coated SAW vapor-sensor arrays in the 
same way the approach is applied to purely mass-transducing sensor arrays.  The prediction errors from 
the estimated solutions depend to some extent on the amount of variation in the volume sensitivities 
across the array.  Thus, some arrays of polymer-coated SAW devices may be better suited for this 
approach than others.  Either minimizing the volume sensitivities (i.e., the polymer modulus change 
contribution) or matching the volume sensitivities across the array will likely lead to good results.  For the 
case where the volume sensitivities are sufficiently well-matched that the volume sensitivity is a scalar 
multiple of the mass sensitivities, the method is as good as can be obtained for purely mass-transducing 
arrays. 
 
Once the descriptors are obtained, they can be compared with descriptors of known compounds as a 
means of classification and identification.  We have previously explored this method using simulations of 
mass-transducing sensor arrays.[4] 
 
More recently, we used ILS methods to model actual SAW vapor-sensor-array data.[6]  In the ILS 
methods, regression models are developed from training data, where a separate model is developed for 
each descriptor of interest.  Any time a classical least-squares solution exists, inverse least-squares 
methods should also work.  The SAW sensor-array data were correlated very well with each vapor 
descriptor.  At the time the ILS modeling was performed on real data, it was not known to what degree 
modulus contributions to the observed SAW responses might confound the method.  Nevertheless, we 
found empirically that good ILS models could be developed, and reasonable predictions were obtained in 
cross-validation experiments.   
 
The derivation and simulation results for classical least-squares methods in this paper indicate that 
modulus effects should not be a major impediment to estimating vapor descriptors from SAW array data.  
The results from the simulations demonstrate that solutions, estimations, and/or optimizations exist to 
obtain results that are as effective as those from purely mass-transducing sensor arrays.  The estimation 
approach (assuming vapor-specific volumes are equal to one) used for obtaining descriptor values has the 
same form as the closed-form solution for mass-transducing arrays, except that the sensitivity is the total 
sensitivity rather than strictly the mass-transducing sensitivity.  If the estimation method is not precise 
enough, an optimization approach has been developed to improve the descriptor values obtained.     



 

9.1 

 

9.0 References 
 
[1] PC Jurs, GA Bakken, and HE McClelland.  2000.  Chem. Rev. 100:2649-2678. 
 
[2] KJ Albert, NS Lewis, CL Schauer, GA Sotzing, SE Stitzel, TP Vaid, and DR Walt.  2000.  Chem. 

Rev. 100:2595-2626. 
 
[3] JW Grate.  2000.  Chem. Rev. 100:2627-2648. 
 
[4] JW Grate, BM Wise, and MH Abraham.  1999.  Anal. Chem. 71:4544-4553. 
 
[5] JW Grate, and BM Wise.  2001.  Anal. Chem. 73:2239-2244. 
 
[6] JW Grate, SJ Patrash, SN Kaganove, MH Abraham, BM Wise, and NB Gallagher.  2001.  Anal. 

Chem. 73:5247-5259. 
 
[7] BM Wise, NB Gallagher, and JW Grate.  2002.  J. Chemometrics, submitted. 
 
[8] JW Grate, and BM Wise.  2002.  Methods for Characterizing, Classifying, and Identifying 

Unknowns in Samples, U. S. Patent 6,408,250, June 18, 2002. 
 
[9] JW Grate, and ET Zellers.  2000.  Anal. Chem. 72:2861-2868. 
 
[10] SJ Patrash, and ET Zellers.  1993.  Anal. Chem. 65:2055-2066. 
 
[11] JW Grate, and MH Abraham.  1991.  Sens. Actuators B 3:85-111. 
 
[12] RA McGill, MH Abraham, and JW Grate.  1994.  CHEMTECH 24(9):27-37. 
 
[13] JW Grate, SJ Patrash, and MH Abraham.  1995.  Anal. Chem. 67:2162-2169. 
 
[14] JW Grate, MH Abraham, and RA McGill.  1996.  In: Handbook of Biosensors:  Medicine, Food, 

and the Environment.  (Eds) E Kress-Rogers, and S Nicklin, CRC Press, Boca Raton, FL, USA, pp. 
593-612. 

 
[15] JW Grate, and GC Frye.  1996.  In: Sensors Update.  (Eds.) H Baltes, W Goepel, and J Hesse, VSH, 

Weinheim, Vol. 2, pp. 37-83. 
 
[16] MH Abraham.  1993.  Chemical Society Reviews 22:73-83. 
 
[17] MH Abraham, PL Grellier, DV Prior, PP Duce, JJ Morris, and PJ Taylor.  1989.  J. Chem. Soc. 

Perkin Trans. II:699-711. 
 
[18] MH Abraham, PL Grellier, DV Prior, JJ Morris, and PJ Taylor.  1990.  J. Chem. Soc. Perkin Trans. 

2:521-529. 



 

9.2 

 
[19] MH Abraham, GS Whiting, RM Doherty, and WJ Shuely.  1991.  J. Chromatogr. 587:213-228. 
 
[20] MH Abraham, and R Fuchs.  1988.  J. Chem. Soc. Perkin Trans. II:523-527. 
 
[21] MH Abraham, PL Grellier, and RA McGill.  1987.  J. Chem. Soc. Perkin Trans. II:797-803. 
 
[22] MH Abraham, GS Whiting, RM Doherty, and WJ Shuely.  1990.  J. Chem. Soc. Perkin Trans. 

2:1451-1460. 
 
[23] MH Abraham, J Andonian-Haftvan, CM Du, V Diart, G Whiting, JW Grate, and RA McGill.  1995.  

J Chem. Soc. Perkin Trans. 2:369-378. 
 
[24] MH Abraham, J Andonian-Haftvan, G Whiting, A Leo, and RW Taft.  1994.  J. Chem. Soc. Perkin 

Trans. 2:1777-1791. 
 
[25] KR Beebe, RJ Pell, and MB Seasholtz.  1998.  Chemometrics: A Practical Guide.  John Wiley and 

Sons, Inc., NY. 
 
[26] M Janghorbani, and H Freund.  1973.  Anal. Chem. 45:325-332. 
 
[27] TE Edmunds, and TS West.  1980.  Anal. Chim. Acta 117:147-157. 
 
[28] JJ McCallum, PR Fielden, M Volkan, and JF Alder.  1984.  Anal. Chim. Acta 162:75-83. 
 
[29] H Wohltjen.  1984.  Sens. Actuators 5:307-325. 
 
[30] JW Grate, SW Wenzel, and RM White.  1991.  Anal. Chem. 63:1552-1561. 
 
[31] JW Grate, SJ Martin, and RM White.  1993.  Anal. Chem. 65:940A-948A. 
 
[32] JW Grate, SJ Martin, and RM White.  1993.  Anal. Chem. 65:987A-996A. 
 
[33] SJ Martin, and GC Frye.  1991.  Proc. IEEE Ultrason. Symp. 393-398. 
 
[34] JW Grate, SN Kaganove, and VR Bhethanabotla .  1997.  Faraday Discuss. 107:259-283. 
 
[35] JW Grate, SN Kaganove, and VR Bhethanabotla .  1998.  Anal. Chem. 70:199-203. 
 
[36] SJ Martin, GC Frye, and SD Senturia .  1994.  Anal. Chem. 66:2201-2219. 
 
[37] JW Grate, M Klusty, RA McGill, MH Abraham, G Whiting, and J Andonian-Haftvan.  1992.  Anal. 

Chem. 64:610-624. 
 
[38] GR Ruschau, RE Newnham, J Runt, and BE Smith.  1989.  Sens. Actuators 20:269-275. 
 



 

9.3 

[39] B Lundberg, and B Sundqvist.  1986.  J. Appl. Phys. 60:1074-1079. 
 
[40] P Talik, M Zabkowska-Waclawek, and W Waclawek.  1992.  J. Mater. Sci. 27:6807-6810. 
 
[41] MC Lonergan, EJ Severin, BJ Doleman, SA Beaber, RH Grubbs, and NS Lewis.  1996.  Chem. 

Mater. 8:2298-2312. 
 
[42] BJ Doleman, MC Lonergan, EJ Severin, TP Vaid, and NS Lewis.  1998.  Anal. Chem. 70:4177-

4190. 
 
[43] EJ Severin, BJ Doleman, and NS Lewis.  2000.  Anal. Chem. 72:658-668. 
 
[44] EJ Severin, and NS Lewis.  2000.  Anal. Chem. 72:2008-2015. 
 
[45] SJ Martin, and GC Frye.  1990.  Appl. Phys. Lett. 57:1867-1869. 
 
[46] JD Ferry.  1980.  Viscoelastic Properties of Polymers.  John Wiley and Sons, Inc., NY. 
 
[47] WP Carey, and BR Kowalski.  1986.  Anal. Chem. 58:3077-3084. 
 
[48] GC Frye, DW Gilbert, C Colburn, RW Cernosek, and TD Steinfort.  1995.  Field Screening 

Methods Hazard. Wastes Toxic Chem., Proc. Int. Symp. 2:715-726. 
 



PNNL-14169 

Distr. 1 

 

Distribution 
 
 
No. of  
Copies 
 
OFFSITE 
 

No. of 
Copies 
 
ONSITE 
 

2 U.S. Department of Energy 
1000 Independence Avenue SW 
Washington D.C. 20585 

 Attn: M. O’Connell 
  L. Pitts 
 

17 Pacific Northwest National Laboratory 
 G. B. Dudder (5) K6-48 
 R. Clemmer (5) K8-29 
 J. W. Grate (5) K8-93 
 Technical Report Files (2) 
 

 




