Evaluation and Testing of Noble Metals Surrogates

S. K. Sundaram Brett C. MacIsaac
Alan R. Cooper Candice H. Trader
Jeremy J. Holbrook
Pacific Northwest National Laboratory, Richland, WA 99352

September 2002

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.

Pacific Northwest National Laboratory
Richland, Washington 99352
Abstract

This report summarizes the results of testing and evaluation of noble metal surrogates that will support testing of noble metals in melters. The candidate system, potential surrogates, model glass systems, and test conditions have been chosen based on the existing reported data in literature as well as expertise existing at various sites, thermodynamics, physical properties, and cost of materials. The methodology involves testing interaction of RuO$_2$ and WO$_3$ and other surrogates in the test melt followed by characterization of the bulk glass and oxide-glass melt interfaces. The report explains different techniques used for studying settling, crystallization, rheology, and partitioning of noble metals or surrogates or spinel phases in the selected systems. The report presents and discusses how these results support the selection of the suitable surrogate for RuO$_2$. Finally the report concludes with identification of the best-suited surrogate (solubility and redox surrogate WO$_3$ and conductivity surrogate Cr$_2$O$_3$) proposed and makes suitable recommendations for the follow up melter test activities.
Summary

The formation and settling of noble metals in high-level waste (HLW) glass melts poses a major challenge to the vitrification technology. Precipitation of noble metals in these joule-heated melters can lead to operational difficulties and premature failure of the melter through electrical shorting and enhanced corrosion of the electrodes. Additionally, the noble metals are known to act as nucleation sites for the precipitation and growth of spinel (crystalline) phases, which in turn will settle to the bottom of the melter and cause the viscosity of the melt to increase in that region. Use of actual noble metals and compounds for melter testing is not cost effective. Pacific Northwest National Laboratory (PNNL) and Savannah River Technology Center (SRTC) have undertaken efforts to identify suitable surrogates for noble metals to facilitate extensive melter testing that will provide key processing data. This report summarizes the results of the experimental testing evaluation of noble metal surrogates performed at PNNL.

Initial selection of model glass test systems, noble metals, potential surrogates, and test conditions was done based on the existing data and expertise at DOE various sites (West Valley, Savannah River, and Hanford), thermodynamics, physical properties, and cost of materials. A simplified version of HLW glass (MS-7) and a modified neutralized caustic acid waste (NCAW) glass compositions were used in this study. Overview of existing literature on noble metals in waste melts and melter testing indicated that RuO₂ was the most commonly detected phase present. Hence, the present testing was focused at RuO₂ and its potential suitable surrogates. The potential surrogates considered and studied were WO₃, Cr₂O₃, NiCr₂O₄, and Inconel 600. From chemical stability and density perspectives, the W-O system showed the promise of serving as a surrogate for Ru as well as RuO₂. WO₃ (12.11 g/cm³) could act as a surrogate for Ru (12.30 g/cm³) under reducing conditions. Alternatively, WO₃ (7.20 g/cm³) could act as a surrogate for RuO₂ (6.97 g/cm³) under oxidizing conditions. Therefore, the surrogate testing was focused at WO₃. The testing included: 1) double-crucible settling study, 2) viscosity and rheology, 3) crystallization study, 4) high temperature optical microscopy, and 5) partition study.

Double crucible settling studies indicated more spinel crystals formed at 950°C and started settling at 1000°C, with RuO₂ as well as WO₃ in MS-7 glass. Figure S.1 compares the thin section of the inner crucibles with RuO₂ and WO₃ heat-treated at 900-1000°C for 19-13h. SEM, EDS, and XRD data have supported this observation. XRD data confirmed formation of Trevorite (NiFe₂O₄) phase. No other major phase was detected. Ru was found to partition readily in the spinel phase, as compared to W.

![Figure S.1. RuO₂ vs. WO₃ – Temperature Effect (0.5 wt.% in MS-7)](image-url)
Crystallization study (heat-treatment followed by XRD measurements) showed that addition (0.5 wt.%) of RuO₂ or WO₃ to MS-7 resulted in formation of Trevorite. Residual undissolved RuO₂ was detected in the glass containing RuO₂. No WO₃ was detected by XRD in the glass containing WO₃. The difference was attributed to higher solubility of WO₃ in the glass, as compared to RuO₂.

An order of magnitude increase in viscosity values was observed as addition of NiCr₂O₄ (one of potential surrogates studied in this project) increased from 1 wt.% to 10 wt.% in modified NCAW glass melts, as shown in Figure S.2. This also resulted in an increase in shear stress of rotating spindle in rheology testing. This data clearly established the consequences of increased spinel formation and accumulation in this system.

![Figure S.2. Effect of Addition of NiCr₂O₄ on Viscosity of the Modified-NCAW Melt](image)

High temperature optical microscopy results showed floating nodular aggregates of RuO₂ at higher temperature (> 900°C) due to its insolubility in the MS-7 melt (Figure S.3 (a)). On the contrary, NiCr₂O₄ dissolved completely in the test melt (Figure S.3 (b)).

![Figure S.3. High Temperature Optical Microscopy of (a) RuO₂ and (b) NiCr₂O₄ in MS-7 Melt](image)
Partitioning study of noble metal species (Ru and RuO₂) and the surrogate species (W and WO₃) between spinel (nonstoichiometric MgAl₂O₄) and model glass melt (MS-7) indicated striking similarity between RuO₂ and WO₃, as shown in Figure S.4 (a) and (b), respectively. The sequence of the events was:

1) The glass melt reacted with the spinel forming a reaction layer at the spinel-glass interfacial region. Some Ru or W partitioned in spinel in this reaction layer.
2) Excess Ru or W remained near the interfacial region and in bulk glass.
3) Spinel segments began to dislodge from the bulk spinel, drifted into the melt and eventually dissolved into the glass melt.
4) Some Ru-containing and W-rich regions remained in the glass side of the interfacial region.
5) Spinel (either MgAl₂O₄ or Trevorite or a combination of these two) recrystallized in the glass melt.

Figure S.4. SEM-EDS of (a) RuO₂ and (b) WO₃ in MS-7 Melt (0.5 wt.%, 1000°C, 23h)
Top: Back-scattered SEM image with line EDS superimposed, Bottom: Line EDS scan
AC conductivity data clearly indicated that Cr$_2$O$_3$ showed conductivity data closely matched that of RuO$_2$, as shown in Figure S.5. Cr$_2$O$_3$ was recommended as a conductivity surrogate.

![Figure S.5. AC conductivity of Cr$_2$O$_3$ (left) and RuO$_2$ (right)](image)

From the thermodynamic stability and density perspectives, RuO$_2$ and WO$_3$, showed a good match. Based on our results on these aspects, WO$_3$ was recommended as a chemical surrogate for RuO$_2$. A research-scale melter (RSM) test was also recommended before testing the surrogate in an engineering scale melter.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>viscosity</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DWPF</td>
<td>Defense Waste Processing Facility</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EDS</td>
<td>energy dispersive spectroscopy</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>HAW</td>
<td>high-activity waste</td>
</tr>
<tr>
<td>HLW</td>
<td>high-level waste</td>
</tr>
<tr>
<td>NCAW</td>
<td>neutralized caustic acid waste</td>
</tr>
<tr>
<td>OES</td>
<td>optical emission spectroscopy</td>
</tr>
<tr>
<td>RSM</td>
<td>research-scale melter</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>TFA</td>
<td>Tanks Focus Area</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
Acknowledgments

The authors would like to acknowledge Denny Bickford for technical guidance, Joe Perez and Pavel Hrma for useful discussion, Michael Schweiger and Jarrod Crum for helping the students Candice Trader, Alan Cooper, and Jeremy Holbrook, Craig Habeger for particle size measurements, Jim Coleman for SEM-EDS work, and Nat Canfield and Dave McCready for XRD work. The authors would also like to acknowledge Ron Goles for technical review, Nancy Foote for prompt editing, and William Holtzscheiter for management and guidance. This study was funded by the Department of Energy’s Office of Science and Technology through the Tanks Focus Area. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RLO 1830.
Figures

Figure 1-1. Solubility Limits of Oxides .. 1.1
Figure 2-1. Thermodynamic Stability .. 2.7
Figure 2-2. The Henry’s Law Limit for W in Silicate Melt at 1400°C (Ertel et al., 1996) 2.8
Figure 3-1. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of RuO₂ Powder 3.1
Figure 3-2. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of WO₃ Powder 3.2
Figure 3-3. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of Cr₂O₃ Powder 3.3
Figure 3-4. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of NiCr₂O₄ Powder ... 3.4
Figure 3-5. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of Inconel 600 Powder ... 3.5
Figure 3-6. Double Crucible Test (Klouzek et al. 2001) .. 3.7
Figure 3-7. Hot Optical Microscopy Stage .. 3.8
Figure 3-8. Capsule and Sample Preparation for Partition Study ... 3.9
Figure 4-1. RuO₂ vs. WO₃ – Time Effect (0.5 wt.% in MS-7) ... 4.2
Figure 4-2. RuO₂ vs. WO₃ – Temperature Effect (0.5 wt.% in MS-7) .. 4.3
Figure 4-3. SEM – EDS of RuO₂ in MS-7 (0.5 wt.%, 950°C/23h) ... 4.4
Figure 4-4. SEM – EDS of RuO₂ in MS-7 (0.5 wt.%, 950°C/23h) ... 4.5
Figure 4-5. SEM – EDS of WO₃ in MS-7 (0.5 wt.%, 950°C/23h) ... 4.6
Figure 4-6. SEM – EDS of RuO₂ in MS-7 .. 4.7
Figure 4-7. 0.1% NiCr₂O₄ in Modified NCAW .. 4.8
Figure 4-8. 0.5% NiCr₂O₄ in Modified NCAW .. 4.9
Figure 4-9. 1% NiCr₂O₄ in Modified NCAW ... 4.10
Figure 4-10. 0.5% NiCr₂O₄ in Modified NCAW (950°C/23h) .. 4.11
Figure 4-11. 0.5% NiCr₂O₄ in Modified NCAW (950°C/23h) – Different Region 4.12
Figure 4-12. 0.5% NiCr₂O₄ in Modified NCAW (950°C/23h) – Different Region 4.13
Figure 4-13. XRD of RuO₂ in MS-7 (0.5 wt.%, 1000°C) ... 4.14
Figure 4-14. XRD of WO₃ in MS-7 (0.5 wt.%, 1000°C) ... 4.15
Figure 4-15. XRD of a) RuO₂ and b) WO₃ (MS-7, 0.5 wt.%, 950°C) .. 4.16
Figure 4-16. Temperature Dependence of Viscosity of Modified NCAW ... 4.17
Figure 4-17. Temperature Dependence of Viscosity of Modified NCAW with 1 wt.% NiCr₂O₄ 4.18
Figure 4-18. Temperature Dependence of Viscosity of Modified NCAW with 10 wt.% NiCr₂O₄ 4.18
Figure 4-19. (a) Shear Stress and (b) Viscosity of Modified NCAW with 10 wt.% NiCr₂O₄ 4.19
Figure 4-20. High Temperature Optical Micrographs (1 wt.% RuO₂ in MS-7) 4.20
Figure 4-21. High Temperature Optical Micrographs (1 wt.% NiCr₂O₄ in MS-7) 4.21
Figure 4-22. SEM (Left) – Line EDS (Right) of Ru in MS-7 (900°C/7h) ... 4.22
Figure 4-23. SEM (Left) – Line EDS (Right) of RuO₂ in MS-7 (900°C/7h) ... 4.24
Figure 4-24. SEM (Left) – Line EDS (Right) of W in MS-7 (900°C/7h) .. 4.25
Figure 4-25. SEM (Left) – Line EDS (Right) of WO₃ in MS-7 (900°C/7h) ... 4.25
Figure 4-26. SEM (Left) – Line EDS (Right) of RuO₂ in MS-7 (900°C/7h) ... 4.26
Figure 4-27. SEM (Left) – Line EDS (Right) of RuO₂ in MS-7 (1000°C/7h) 4.26
Figure 4-28. SEM (Left) – Line EDS (Right) of WO₃ in MS-7 (900°C/7h) ... 4.27
Figure 4-29. SEM (Left) – Line EDS (Right) of WO₃ in MS-7 (1000°C/7h) 4.27
Figure 4-30. SEM (Top) – Line EDS (Bottom) of RuO₂ in MS-7 (1000°C) for (a) 7h, (b) 15h, (c) 19h, and (d) 23h .. 4.28
Figure 4-31. SEM (Top) – Line EDS (Bottom) of WO₃ in MS-7 (1000°C) for (a) 7h, (b) 15h, (c) 19h, and (d) 23h .. 4.29
Figure 4-32. AC conductivity of DWPF frit containing Inconel 600 .. 4.30
Figure 4-33. AC conductivity of DWPF frit containing Cr₂O₃ .. 4.31
Figure 4-34. AC conductivity of DWPF frit containing NiCr₂O₄ .. 4.31
Figure 4-35. AC conductivity of DWPF frit containing RuO₂ .. 4.32
Figure 4-36. AC conductivity of DWPF frit containing WO₃ ... 4.32
Tables

Table 2-1 Properties of Noble Metals .. 2.3
Table 2-2. Summary of Melter Tests .. 2.4
Table 2-3. Potential Surrogates For RuO₂ Based On Density (6.97 g/cm³ ± 10%) 2.5
Table 2-4. Potential Surrogates For Ru Based On Density (12.30 g/cm³ ± 10%) 2.6
Table 2-5. Summary of Platinum-Group Element Spinel/Melt Partition Coefficients, Run Conditions, and
Phase Concentrations (in ppm) ... 2.9
Table 2-6. Cost of RuO₂ and WO₃ .. 2.10
Table 3-1. Target Glass Compositions ... 3.6
Table 3-2. Test Parameters ... 3.7
1.0 Introduction

The noble metals rhodium (Rh), ruthenium (Ru), and palladium (Pd) are fission products that partition to the waste sludges after the acid wastes from the processing of spent fuel are made alkaline. In some cases these metals can approach concentrations on the order of 0.1 mass % in the waste sludges, while the solubilities of the metal or metal oxide in glass melts are reported to be about 0.01 mass %. The actual solubility in the melt depends on the glass composition, redox, and temperature of the melt. The densities of the metal and oxides are substantially higher than the glass melt [\(\sim 10^{-3} \text{ kg/m}^3\) vs. \(2.5 \times 10^3 \text{ kg/m}^3\)] and tend to settle to the bottom of the melter. If the accumulation of these metals becomes great enough, a low resistance path for electrical current is established and an electrical short results in premature failure of the melter if no method is present to remove the accumulated metals. This early failure has been a concern at the Savannah River Site, West Valley, and Hanford. In the case of West Valley operations, the power fluctuations observed have been attributed to noble metals accumulation in the melter. A sludge sampler was designed and deployed by Pacific Northwest National Laboratory (PNNL) team.

Actual failure of a glass melter at Dessel, Belgium was attributed to noble metal accumulation and subsequent shorting of the electrodes. Additionally, these noble metals and metal oxides usually precipitate as very fine particles, which serve as excellent nucleation sites for other species in the glass melt that are at their solubility limits, e.g. spinels. Solubility limits of oxides are presented in Figure 1.1. It is known the solubility of noble metals in the glass melts is small (shown as 0 in Figure 1.1). But, solubility studies of noble metals in waste glass melts are limited.

![Figure 1-1. Solubility Limits of Oxides](image)

While fundamental understanding of dissolution and structural incorporation of noble metals is still mostly qualitative in nature, significant level of testing has been done in melters in the USA and other countries. The melter data are valuable in the sense they emulate conditions that are close to the actual melter processing conditions and they also provide guidelines for design and scale-up studies. Therefore, it is worthwhile to conduct melter tests to collect necessary processing data.

Use of actual expensive noble metals in melter tests will result in significant impact on cost of tests. Additionally, the noble metals may not be available in a timely manner for testing. Therefore, one
needs to use inexpensive surrogates for noble metals. In response to this need, the Tanks Focus Area (TFA) supports the present effort. The main objectives of the present task are: 1) Identify potential noble metals surrogates, 2) Evaluate their performances in representative waste glass melts in the laboratory, and 3) Recommend suitable surrogates for testing in melters. This report summarizes the results of the task.
2.0 Identification and Evaluation of Surrogates

A suitable noble metals surrogate needs to meet stringent requirements. Table 2.1 shows a summary of the properties of the noble metals. In identifying and evaluating a surrogate, attempt will be taken to meet as many requirements as possible. We have listed the basic requirements of a suitable noble metals surrogate here:

1. Density of the surrogate
2. Thermodynamic stability of the surrogate
3. Solubility of the surrogate in glass melts
4. Partitioning of the surrogate between glass and crystalline phases
5. Chemical interaction of the surrogate with other waste constituents
6. Interaction of the surrogate with other crystalline phases (e.g., spinels)
7. Availability
8. Cost

Given the above list of requirements, it is less likely there exists a surrogate that meets all these requirements. Our identification and evaluation processes are described in the following sections. The requirement 4 is briefly addressed. The requirements 5 and 6 have not been considered for simplicity and budget considerations.

2.1 Summary of Past Melter Data

A summary of past melter testing data is presented in this section to establish the state of knowledge in this area as well as to determine the technical scope of the present task. Three major melter test campaigns testing noble metals have been completed in the past: 1) PNNL test, 2) German melter test, and 3) Integrated DWPF (Defense Waste Processing Facility) Melter System (IDMS). Noble metals have been included in glass development studies since some of the earliest waste solidification and vitrification work at PNNL (Sundaram and Perez, 2000). The insolubility of noble metals in glasses was observed at those early stages and was also known from the literature; however, the effect this insolubility could have on melter operation was not known. Early works in 1970s included crucible and laboratory-scale tests. Since then, five major studies, gradient furnace testing (GFT), research scale melter (RSM) testing, engineering scale melter (ESM) testing, modeling, and engineering analysis, were completed at PNNL. German melter tests (1980s and 1990s) showed that the accumulation of noble metals could be greatly decreased by increasing the slope of the melter floor. When using a flat-bottom melter with a bottom drain, approximately 65 percent of the noble metals fed were retained in the melter. However, with a 75º/60º sloped melter floor, net deposits of noble metals were not detected by measuring changes in electrical resistance at the end of each pour through the bottom drain. After comparing two systems for glass pouring, the bottom drain was found to be more efficient than the overflow system in discharging noble metals. For Ru, retention was 10.3 percent using the bottom drain and 41.4 percent with the overflow system. Air sparging was also tested to determine its effects on noble metals accumulation. With a melter having 45º-sloped floor, agitating the molten glass resulted in a decrease of Ru retention from 38 percent to 24 percent, and a decrease of Pd retention from 45 percent to 3 percent. However, in tests with a 75º/60º sloped floor, it was found that air sparging was not effective enough at suspending noble metal particles to allow discharge through the overflow system. A thorough investigation of the behavior of noble metal deposits and a complete analysis of the individual particles was also performed. It was concluded that the removal of Rh from the simulant waste stream had no effect on the size and sedimentation of other noble metals.
The IDMS was designed as a pilot-scale test facility for the DWPF. Before testing with the IDMS, two short-term noble metals campaigns with a 1/100th scale mini-melter revealed a need for extended noble metals testing. Numerous test runs with the IDMS melter addressed the designs of the DWPF feed preparation system, offgas system, and the melter itself. The IDMS engineering-scale melter is prototypic of the DWPF melter. It was designed with a melt surface area of 0.29 m² (approximately 1/9th of the DWPF surface area), and a melt volume of 0.20 m³. The IDMS has conducted a total of 16 noble metal-related runs with four different types of wastes sludges (Blend, HM, PUREX, and NCAW) containing various amounts of noble metals. Some of the sludge compositions were modified in order to judge the effects of components such as mercury and nitrite (Hutson et al. 1991; Hutson 1992; Hutson 1993).

Table 2.2 summarizes the noble metals found in various melter runs. The summary clearly indicates that the most commonly found species is RuO₂ in the melter. Ru has always been found in association with RuO₂ and other noble metals. Therefore, Ru-RuO₂ system was studied for surrogate evaluation and testing.

2.2 Density

As the settling is a physical phenomenon, density criterion is first considered. In order to closely simulate and study the suspension and settling characteristics, the surrogate must have density values comparable to that of the noble metal or oxide. The density of RuO₂ is 6.97 g/cm³ and Ru, 12.30 g/cm³.

The down-selection was done in two or three steps. First the elements and compounds with density values within ± 10% of the density values of Ru and RuO₂ were listed. The candidates were evaluated for hazards and stability. The next stage was to narrow the range down to ± 5% and the evaluation was repeated. In the case of Ru, third stage narrowed the range down to ± 3%. The results are summarized in Tables 2.3 (RuO₂) and 2.4 for Ru. WO₃ (7.20 g/cm³) and WO₂ (12.11 g/cm³) were selected as surrogates for RuO₂ and Ru, respectively.
<table>
<thead>
<tr>
<th>Property</th>
<th>Iron</th>
<th>Cobalt</th>
<th>Nickel</th>
<th>Ruthenium</th>
<th>Rhodium</th>
<th>Palladium</th>
<th>Osmium</th>
<th>Iridium</th>
<th>Platinum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Weight</td>
<td>55.845</td>
<td>58.9332</td>
<td>58.6934</td>
<td>101.07</td>
<td>102.9055</td>
<td>106.42</td>
<td>190.23</td>
<td>192.217</td>
<td>195.087</td>
</tr>
<tr>
<td>mp (°C)</td>
<td>1538</td>
<td>1495</td>
<td>1455</td>
<td>2334</td>
<td>1964</td>
<td>1554.9</td>
<td>3033</td>
<td>2446</td>
<td>1768.4</td>
</tr>
<tr>
<td>bp (°C)</td>
<td>2861</td>
<td>2927</td>
<td>2913</td>
<td>4150</td>
<td>3695</td>
<td>2963</td>
<td>5012</td>
<td>4428</td>
<td>3825</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>7.87</td>
<td>8.86</td>
<td>8.9</td>
<td>12.1</td>
<td>12.4</td>
<td>12</td>
<td>22.59</td>
<td>22.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Density (g/cm³) @ mp</td>
<td>6.98</td>
<td>7.75</td>
<td>7.81</td>
<td>10.65</td>
<td>10.7</td>
<td>10.38</td>
<td>20</td>
<td>19</td>
<td>19.77</td>
</tr>
<tr>
<td>Heat Capacity (J/g K) @ 25°C</td>
<td>0.449</td>
<td>0.421</td>
<td>0.444</td>
<td>0.328</td>
<td>0.243</td>
<td>0.246</td>
<td>0.13</td>
<td>0.131</td>
<td>0.133</td>
</tr>
<tr>
<td>Thermal Conductivity (cal/s.cm.°C)</td>
<td>0.19</td>
<td>0.1653</td>
<td>0.198</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spec. Heat (J/g K)</td>
<td>0.449</td>
<td>0.421</td>
<td>0.444</td>
<td>0.238</td>
<td>0.243</td>
<td>0.246</td>
<td>0.13</td>
<td>0.131</td>
<td>0.133</td>
</tr>
<tr>
<td>Enthalpy of Fusion (kJ/mol)</td>
<td>13.81</td>
<td>16.2</td>
<td>17.48</td>
<td>38.59</td>
<td>26.59</td>
<td>16.74</td>
<td>57.85</td>
<td>41.12</td>
<td>22.17</td>
</tr>
<tr>
<td>Heat of Vaporization (kcal/g-atom)</td>
<td>84.6</td>
<td>1500</td>
<td>91</td>
<td>148</td>
<td>127</td>
<td>90</td>
<td>162</td>
<td>152</td>
<td>122</td>
</tr>
<tr>
<td>Electrical Resistivity (10⁸Ω) @273K</td>
<td>8.57</td>
<td>5.6</td>
<td>6.16</td>
<td>7.1</td>
<td>4.3</td>
<td>9.78</td>
<td>8.1</td>
<td>4.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Electronegativity (Paulings)</td>
<td>1.83</td>
<td>1.88</td>
<td>1.91</td>
<td>2.2</td>
<td>2.28</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Covalent Radius (Angstroms)</td>
<td>1.17</td>
<td>1.16</td>
<td>1.15</td>
<td>1.25</td>
<td>1.25</td>
<td>1.28</td>
<td>1.26</td>
<td>1.27</td>
<td>1.3</td>
</tr>
<tr>
<td>Linear Coefficient of Expansion (k¹)</td>
<td>11.8x10⁻⁶</td>
<td>13.0x10⁻⁶</td>
<td>13.4x10⁻⁶</td>
<td>6.4x10⁻⁶</td>
<td>8.2x10⁻⁶</td>
<td>11.8x10⁻⁶</td>
<td>5.1x10⁻⁶</td>
<td>6.4x10⁻⁶</td>
<td>8.8x10⁻⁶</td>
</tr>
<tr>
<td>Electrical Resistivity (µΩ-cm)</td>
<td>9.71</td>
<td>6.34</td>
<td>6.844</td>
<td>7.2</td>
<td>4.5</td>
<td>9.93</td>
<td>8.12</td>
<td>5.11</td>
<td>9.85</td>
</tr>
<tr>
<td>Crystal Structure</td>
<td>cubic, bc</td>
<td>hexagonal</td>
<td>cubic, fc</td>
<td>hexagonal</td>
<td>cubic, fc</td>
<td>cubic, fc</td>
<td>hexagonal</td>
<td>cubic, fc</td>
<td>cubic, fc</td>
</tr>
</tbody>
</table>

CRC Handbook, 81st Edition
Alfa Aesar: Research Chemicals, Metals and Materials……1997-98
Table 2-2. Summary of Melter Tests

<table>
<thead>
<tr>
<th>Metal or Compound</th>
<th>PNNL Findings (1)</th>
<th>German Findings (2)</th>
<th>IDMS Findings (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Particle Size</td>
<td>Composition</td>
<td>Particle Size</td>
</tr>
<tr>
<td>Ru</td>
<td>Submicron, spheres</td>
<td>30 -70% retention, present as RuO₂</td>
<td>2.0 - 5.0 micron spheres</td>
</tr>
<tr>
<td>Rh</td>
<td><10 micron, spheres</td>
<td>1 to 2 microns</td>
<td>1.5 - 2.0 micron spheres</td>
</tr>
<tr>
<td>Pd</td>
<td>Submicron to 10 micron, spheres</td>
<td>1.0 wt%</td>
<td>1.5 - 2.0 micron spheres</td>
</tr>
<tr>
<td>RuO₂</td>
<td><10 micron, needles</td>
<td>1.4 wt%</td>
<td>2.0 - 5.0 micron, needles</td>
</tr>
<tr>
<td>Spinels</td>
<td>2 to 4 micron, cubic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) - Vitrification studies conducted at PNL (Jensen et al. 1983) from "Preliminary Melter Performance Assessment Report", PNL-9822/UC-721.
(2) - From "Virtification of Noble Metals Containing NCAW Simulant with an Engineering Scale Melter (ESM)" (W. Grunwald et al. 1993).
(3) - From "Inspection and Analysis of the Integrated DWPF Melter System (IDMS) After Seven Years of Continuous Operation", WSRC-MS-99-0036 (C.M. Jantzen and D. Lambert, 1994).
<table>
<thead>
<tr>
<th>Metal or Compound</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americium (III) Bromide</td>
<td>6.85</td>
</tr>
<tr>
<td>Americium (IV) Fluoride</td>
<td>7.23</td>
</tr>
<tr>
<td>Antimony</td>
<td>6.68</td>
</tr>
<tr>
<td>Antimony (III, V) Oxide</td>
<td>6.64</td>
</tr>
<tr>
<td>Arsenic (III) Telluride</td>
<td>6.50</td>
</tr>
<tr>
<td>Barium Stannate</td>
<td>7.24</td>
</tr>
<tr>
<td>Bismuth Basic Carbonate</td>
<td>6.86</td>
</tr>
<tr>
<td>Bismuth Oxychloride</td>
<td>7.72</td>
</tr>
<tr>
<td>Bismuth Selenide</td>
<td>7.50</td>
</tr>
<tr>
<td>Bismuth Sulfide</td>
<td>6.78</td>
</tr>
<tr>
<td>Bismuth Telluride</td>
<td>7.74</td>
</tr>
<tr>
<td>Cadmium Antimonide</td>
<td>6.92</td>
</tr>
<tr>
<td>Cadmium Iodide</td>
<td>6.48</td>
</tr>
<tr>
<td>Cadmium Titanate</td>
<td>6.50</td>
</tr>
<tr>
<td>Cerium</td>
<td>6.77</td>
</tr>
<tr>
<td>Cerium (III) Caride</td>
<td>6.90</td>
</tr>
<tr>
<td>Cerium (IV) Oxide</td>
<td>7.65</td>
</tr>
<tr>
<td>Chromium Arsenide</td>
<td>7.04</td>
</tr>
<tr>
<td>Chromium Carbide</td>
<td>6.68</td>
</tr>
<tr>
<td>Chromium Nitride</td>
<td>6.80</td>
</tr>
<tr>
<td>Chromium (III) Telluride</td>
<td>7.00</td>
</tr>
<tr>
<td>Cobalt Arsenide (CoAs₂)</td>
<td>7.20</td>
</tr>
<tr>
<td>Cobalt Arsenide (CoAs₃)</td>
<td>6.84</td>
</tr>
<tr>
<td>Cobalt Boride (CoB)</td>
<td>7.25</td>
</tr>
<tr>
<td>Cobalt (II) Selenide</td>
<td>7.65</td>
</tr>
<tr>
<td>Copper (I) Selenide</td>
<td>6.84</td>
</tr>
<tr>
<td>Copper (II) Telluride</td>
<td>7.09</td>
</tr>
<tr>
<td>Copper (II) Tungstate</td>
<td>7.50</td>
</tr>
<tr>
<td>Dysprosium Boride</td>
<td>6.98</td>
</tr>
<tr>
<td>Dysprosium (III) Hydride</td>
<td>7.10</td>
</tr>
<tr>
<td>Erbium Boride</td>
<td>7.00</td>
</tr>
<tr>
<td>Erbium Silicid</td>
<td>7.26</td>
</tr>
<tr>
<td>Erbium Telluride</td>
<td>7.11</td>
</tr>
<tr>
<td>Europium (III) Oxide</td>
<td>7.42</td>
</tr>
<tr>
<td>Gadolinium (III) Oxide</td>
<td>7.07</td>
</tr>
<tr>
<td>Hafnium Fluoride</td>
<td>7.10</td>
</tr>
<tr>
<td>Hafnium Silicid</td>
<td>7.60</td>
</tr>
<tr>
<td>Holmium Fluoride</td>
<td>7.66</td>
</tr>
<tr>
<td>Holmium Silicid</td>
<td>7.10</td>
</tr>
<tr>
<td>Indium (III) Oxide</td>
<td>7.18</td>
</tr>
<tr>
<td>Indium (III) Iodide</td>
<td>7.40</td>
</tr>
<tr>
<td>Iron Boride (Fe₃B)</td>
<td>7.30</td>
</tr>
<tr>
<td>Iron Boride (FeB)</td>
<td>7.00</td>
</tr>
<tr>
<td>Iron Phosphide</td>
<td>6.80</td>
</tr>
<tr>
<td>Iron Tungstate</td>
<td>7.51</td>
</tr>
<tr>
<td>Lead (II) Bromide</td>
<td>6.69</td>
</tr>
<tr>
<td>Lead (II) Carbonate</td>
<td>6.60</td>
</tr>
<tr>
<td>Lead (II) Chloride Fluoride</td>
<td>7.05</td>
</tr>
<tr>
<td>Lead (II) Hydroxide</td>
<td>7.59</td>
</tr>
<tr>
<td>Lead (II) Molybdate</td>
<td>6.70</td>
</tr>
<tr>
<td>Lead (II) Oxide Hydrate</td>
<td>7.41</td>
</tr>
</tbody>
</table>

Table 2-3. Potential Surrogates For RuO₂ Based On Density (6.97 g/cm³ ± 10%

<table>
<thead>
<tr>
<th>Metal or Compound</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (II) Phosphate</td>
<td>7.01</td>
</tr>
<tr>
<td>Lead (II) Selenite</td>
<td>7.00</td>
</tr>
<tr>
<td>Lead (II) Sulfide</td>
<td>7.60</td>
</tr>
<tr>
<td>Lead (IV) Fluoride</td>
<td>6.70</td>
</tr>
<tr>
<td>Lutetium Boride</td>
<td>7.00</td>
</tr>
<tr>
<td>Magnesium Tungstate</td>
<td>6.84</td>
</tr>
<tr>
<td>Manganese</td>
<td>7.30</td>
</tr>
<tr>
<td>Manganese Antimonide (MnSb)</td>
<td>6.90</td>
</tr>
<tr>
<td>Manganese Antimonide (Mn₃Sb)</td>
<td>7.00</td>
</tr>
<tr>
<td>Manganese Boride</td>
<td>7.20</td>
</tr>
<tr>
<td>Manganese Carbide</td>
<td>6.89</td>
</tr>
<tr>
<td>Manganese Tungstate</td>
<td>7.20</td>
</tr>
<tr>
<td>Mercury (I) Chloride</td>
<td>7.16</td>
</tr>
<tr>
<td>Molybdenum Phosphide</td>
<td>7.34</td>
</tr>
<tr>
<td>Molybdenum (IV) Selenide</td>
<td>6.90</td>
</tr>
<tr>
<td>Neodymium</td>
<td>7.01</td>
</tr>
<tr>
<td>Neodymium Oxide</td>
<td>7.24</td>
</tr>
<tr>
<td>Neodymium Telluride</td>
<td>7.00</td>
</tr>
<tr>
<td>Nickel Bromide</td>
<td>7.13</td>
</tr>
<tr>
<td>Nickel Phosphide</td>
<td>7.33</td>
</tr>
<tr>
<td>Nickel Selenide</td>
<td>7.20</td>
</tr>
<tr>
<td>Niobium (II) Oxide</td>
<td>7.30</td>
</tr>
<tr>
<td>Praseodymium Oxide</td>
<td>6.90</td>
</tr>
<tr>
<td>Praseodymium Telluride</td>
<td>7.00</td>
</tr>
<tr>
<td>Promethium</td>
<td>7.26</td>
</tr>
<tr>
<td>Rhenium (IV) Fluoride</td>
<td>7.49</td>
</tr>
<tr>
<td>Rhodium (IV) Oxide</td>
<td>7.20</td>
</tr>
<tr>
<td>Samarium</td>
<td>7.52</td>
</tr>
<tr>
<td>Samarium (III) Telluride</td>
<td>7.31</td>
</tr>
<tr>
<td>Silver (I) Oxide</td>
<td>7.20</td>
</tr>
<tr>
<td>Silver (I) Sulfide</td>
<td>7.23</td>
</tr>
<tr>
<td>Tantalum Aluminide</td>
<td>7.02</td>
</tr>
<tr>
<td>Tantalum (IV) Sulfide</td>
<td>6.86</td>
</tr>
<tr>
<td>Tellurium Dichloride</td>
<td>6.90</td>
</tr>
<tr>
<td>Thallium (I) Carbonate</td>
<td>7.11</td>
</tr>
<tr>
<td>Thallium (I) Chloride</td>
<td>7.00</td>
</tr>
<tr>
<td>Thallium (I) Iodide</td>
<td>7.10</td>
</tr>
<tr>
<td>Thallium (I) Selenide</td>
<td>6.88</td>
</tr>
<tr>
<td>Thorium Boride</td>
<td>6.99</td>
</tr>
<tr>
<td>Thorium Sulfide</td>
<td>7.30</td>
</tr>
<tr>
<td>Tin (white)</td>
<td>7.27</td>
</tr>
<tr>
<td>Tin (IV) Oxide</td>
<td>6.85</td>
</tr>
<tr>
<td>Tungsten (VI) Oxide</td>
<td>7.20 (± 5%)</td>
</tr>
<tr>
<td>Ytterbium</td>
<td>6.90</td>
</tr>
<tr>
<td>Zinc</td>
<td>7.14</td>
</tr>
<tr>
<td>Zirconium Nitride</td>
<td>7.09</td>
</tr>
</tbody>
</table>

Pink - Soluble in H₂O or Glass Melt
Blue – Toxic
Yellow – Radioactive
Green - Non-oxide (unlikely surrogate)
Table 2-4. Potential Surrogates For Ru Based On Density (12.30 g/cm³ ± 10%)

<table>
<thead>
<tr>
<th>Metal or Compound</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hafnium</td>
<td>13.31</td>
</tr>
<tr>
<td>Hafnium Carbide</td>
<td>12.20</td>
</tr>
<tr>
<td>Palladium</td>
<td>12.02</td>
</tr>
<tr>
<td>Tungsten Dioxide</td>
<td>12.11 (± 3%)</td>
</tr>
<tr>
<td>Americium Dioxide</td>
<td>11.68</td>
</tr>
<tr>
<td>Iridium Dioxide</td>
<td>11.67</td>
</tr>
<tr>
<td>Lead</td>
<td>11.34</td>
</tr>
<tr>
<td>Neptunium Dioxide</td>
<td>11.11</td>
</tr>
<tr>
<td>Osmium Dioxide (brown)</td>
<td>11.37</td>
</tr>
<tr>
<td>Plutonium Dioxide</td>
<td>11.46</td>
</tr>
<tr>
<td>Rhenium Dioxide</td>
<td>11.40</td>
</tr>
<tr>
<td>Rhodium</td>
<td>12.40</td>
</tr>
<tr>
<td>Tantallum Diboride</td>
<td>11.15</td>
</tr>
<tr>
<td>Thallium</td>
<td>11.85</td>
</tr>
<tr>
<td>Thorium</td>
<td>11.70</td>
</tr>
<tr>
<td>Uranium Diboride</td>
<td>12.70</td>
</tr>
<tr>
<td>Uranium Dicarbide</td>
<td>11.28</td>
</tr>
<tr>
<td>Uranium Hydride</td>
<td>10.95</td>
</tr>
<tr>
<td>Uranium Dioxide</td>
<td>10.96</td>
</tr>
</tbody>
</table>

Red - Soluble in H₂O or Glass Melt
Blue – Toxie
Yellow – Radioactive
Green - Non-oxide (unlikely surrogate)

2.3 Thermodynamic Stability

The thermodynamic calculation was performed using F*A*C*T*. The free energy of formation of the oxides as a function of temperature is shown in Figure 2.1. WO₂ and WO₃ are relatively more stable than RuO₂ over a temperature range of 0 – 1600ºC. Note that these free energy values are for ideal states at ambient pressure. With change in the melter atmosphere, the redox equilibrium will shift. W-O system shows the promise of serving as a surrogate for Ru as well as RuO₂. As shown below, WO₂ (12.11 g/cm³) can act as a surrogate for Ru (12.30 g/cm³) under reducing conditions. Alternatively, WO₃ (7.20 g/cm³) can act as a surrogate for RuO₂ (6.97 g/cm³) under oxidizing conditions.

<table>
<thead>
<tr>
<th>Reduction</th>
<th>Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru (12.30 g/cm³)</td>
<td>RuO₂ (6.97 g/cm³)</td>
</tr>
<tr>
<td>WO₂ (12.11 g/cm³)</td>
<td>WO₃ (7.20 g/cm³)</td>
</tr>
</tbody>
</table>

*a F*A*C*T* = Facility for the Analysis of Chemical Thermodynamics, Ecole Polytechnique, Université de Montréal, Canada.*
2.4 Solubility

Ruthenium (Ru) and other platinum group of metals are sparingly soluble in glass-forming melts. However, measurable amounts of chemically dissolved Ru (about 100-2000 ppm) have been reported to dissolve in soda-silica glass melts (Mukerji and Biswas, 1967). The solubility appears to be enhanced with rising temperatures and higher Na₂O/SiO₂ compositional ratios. The solubility of ruthenium in phosphate glasses approaches 10 000 ppm of Ru at 1000°C (Biswas and Mukerji, 1968). In these melts, the process by which Ru as RuO₂ goes into the melt solution has been first linked to the indirect reaction of the RuO₂ with singly bonded oxygens of the melt network.

The solubility of Ru has been then linked to the stabilization of certain oxidation states of Ru (redox chemistry) in simple glasses. Ru displays ten oxidation states in its compounds and complexes (Bailar et al., 1973). Every positive oxidation state to +8 is known as the neutral and −2 states. Absorption spectra of glasses colored by Ru indicate the presence of Ru(III) and Ru(IV) dissolved in acidic silicate glasses, Ru(IV) and Ru(VI) in basic silicate glasses, Ru(VI) and Ru(VII) in soda phosphate glasses, Ru(VI) and Ru(VI) in lead phosphate glasses as well as borophosphate glasses and Ru(III) and Ru(IV) in borosilicate glasses (Mukerji and Biswas, 1971; Mukerji, 1972). The colors of these glasses range from pink to yellow to green depending on the composition and synthesis conditions owing to the various Ru oxidation states. Electron spin resonance (ESR) data indicate the absence of Ru(V) and the presence of Ru(III) and Ru(IV) in borosilicates manufactured at 1500°C (Mukerji, 1975). High Ru solubilities always correspond to the occurrence of Ru(VI) in the glasses, indicating that Ru(VI) is the species most easily accommodated within the glass melt structure. Schreiber and coworkers (Schreiber et al., 1986) have investigated the amount of Ru dissolved in a borosilicate glass system as a function of amount of Ru, redox additives, time, and melt temperature and atmosphere. In all the cases, the Ru solubility has been less than about 0.001 wt.%, the approximate limit of detection in the glasses. Insoluble RuO₂ has always been found in these glasses. These results have not substantiated the results by Muherji and Biswas ((Mukerji and Biswas, 1967; Biswas and Mukerji, 1968; Mukerji and Biswas, 1971; Mukerji, 1972; Mukerji, 1975).

Generally solubility is studied by dissolving the dopant in a glass melt characterizing the glass post mortem. Two somewhat different techniques used to obtain solubility of species in glass melts are: 1) the stirred crucible method (Dingwell et al., 1994) and 2) the wire loop method (Holzheid et al., 1994;
Borisov et al., 1994). The principal advantage of the stirred crucible technique is that changes in oxygen fugacity (f_{O_2}) and temperature (or composition) can be performed in a stepwise fashion without interruption of the experiment, and the response of the samples can be monitored by taking samples at any time. This can be used to demonstrate the achievement of equilibrium by time series and by reversals both in temperature and in f_{O_2}. However, the relatively long times needed to achieve equilibrium with this method makes its use undesirable at higher temperatures (> 1500°C), where the time spent at temperature needs to be as short as possible to minimize the inevitable deterioration of the gas-mixing furnace under extreme conditions. Therefore, the conventional wire-loop technique is used at 1600 and 1700°C. Ertel and coworkers (Ertel et al., 1996) have determined the solubility of tungsten (W) in a haplobasaltic melt as a function of f_{O_2} in the temperature range of 1300 – 1700°C, using the above the two techniques. According to this work, W dissolves in the melt with a quadrivalent (4+) formal oxidation state over the entire range of f_{O_2} and temperature investigated. The solubility of W decreases strongly with increasing temperature at constant f_{O_2}. W concentrations range form 20 ppm to 17 wt%. The solution of WO$_2$ in the melt may be described by Henry’s Law (shown in Figure 2.2) up to remarkably high temperatures (e.g., 14 wt% at 1500°C). In the Figure 2.2, the hatched area shows the range in which the Henry’s Limit is obeyed.

![Henry's Law Limit for W in Silicate Melt at 1400°C (Ertel et al., 1996)](image)

As the present task’s main goal is to identify suitable surrogate for noble metals, the exact solubility of noble metals has not been determined. A systematic study of the Ru solubility in high-level waste glass compositions is needed to understand its precise role in processing HLW glass compositions.

2.5 Partitioning

Spinel phases are consistently found to be concentrators of platinum group of elements (PGE) in geochemistry. Capobianco and Drake have studied the partitioning of PGE between spinel and silicate melt. The experimental details are given elsewhere (Capobianco and Drake, 1990). The silicate melt is from the CaO-Al$_2$O$_3$-MgO-SiO$_2$ system. The bulk glass melt composition is temperature dependent because of the spinel capsule dissolves into the sample at higher temperature. The starting capsule material is a very non-stoichiometric spinel (approximately 90 wt% Al$_2$O$_3$, 10 wt% MgO), which at testing conditions exsolves into corundum and a spinel with less excess Al$_2$O$_3$. Table 2.5 summarizes experimentally determined spinel/melt partition coefficients for Pd, Ru, and Rh, the PGE contents of phases of interest, and experimental run conditions.
In the case of these melts, RuO₂ is present in the 1300°C runs, while at 1450°C only Ru has been found in the run products. The amount of Ru in the spinel is not sensitive to temperature and is fairly uniform in the unattached euhedral spinels. The partition coefficients of DRu values of 22-25 ± 9 indicate that Ru is significantly compatible in spinel in these melts.

The results of a preliminary study of partition of Ru and W in contact with spinel and a model glass are summarized in this report. Further study of partition of Ru in high-level waste glass compositions is needed.

2.6 Cost and Availability

The RuO₂ and surrogate WO₃ were purchased from Johnson Matthey and Alfa Aesar, respectively. The costs are compared in Table 2.5. RuO₂ cost 25-30 times more than WO₃. For the quantities ordered (100-500 grams), availability was not a problem. Large amounts of RuO₂ could face supply problem.

2.7 Surrogates Selection

Thermodynamic and cost considerations clearly favor WO₃ as a potential surrogate for RuO₂. In addition, Cr₂O₃, NiCr₂O₄, and Inconel 600 have also been considered. Sources of Cr₂O₃ in melter environments are refractories and oxidation by-products of the electrode used (Inconel 690). NiCr₂O₄ is a basic spinel compound that has been identified in many melters and laboratory studies. Inconel 600 has chemical similarity to the electrode used in melters, Inconel 690.

Table 2-5. Summary of Platinum-Group Element Spinel/Melt Partition Coefficients, Run Conditions, and Phase Concentrations (in ppm)

<table>
<thead>
<tr>
<th></th>
<th>D¹/melt</th>
<th>T(°C)</th>
<th>Spinel</th>
<th>Glass</th>
<th>Atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru</td>
<td>25(9)²</td>
<td>1450</td>
<td>7900(300)²</td>
<td>320(120)²</td>
<td>Air</td>
</tr>
<tr>
<td></td>
<td>22(9)²</td>
<td>1290</td>
<td>5900(400)²</td>
<td>270(110)²</td>
<td>Air</td>
</tr>
<tr>
<td>Rh</td>
<td>78(15)²</td>
<td>1450</td>
<td>4300(460)²</td>
<td>55(9)²</td>
<td>Air</td>
</tr>
<tr>
<td></td>
<td>90(10)²</td>
<td>1300</td>
<td>50*-73700†</td>
<td>50*-980†</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Pd</td>
<td>< 0.02</td>
<td>1450</td>
<td>25*</td>
<td>1120(100)</td>
<td>Oxygen</td>
</tr>
</tbody>
</table>

¹ error in phase concentrations propagated through to quotient, D; ² standard deviation of electron probe analyses; ³ single PIXE analysis and associated counting statistical error; ⁴ standard deviation of D's calculated from analyses of immediately adjacent phases; ⁵ electron probe detection limit; † range of concentrations within single run.

b Alfa Aesar
c Johnson Matthey
d Personal communication with Mr. Denny Bickford at SRTC
e Fisher Scientific
f Alfa Aesar
g GNK Sinter Metals, 22501 Gohlmann Parkway, Richton Park, IL 60471
Table 2-6. Cost of RuO₂ and WO₃

<table>
<thead>
<tr>
<th>Chemical Name:</th>
<th>Ruthenium oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula:</td>
<td>RuO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Typical Purity(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100 mesh</td>
<td>99.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pricing:</th>
<th>Quantity (g)</th>
<th>Price (U.S.$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>166.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>768.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical Name:</th>
<th>Tungsten oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula:</td>
<td>WO₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Typical Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-12 mm pieces (sintered, yellow-green) (vac. dep. grade)</td>
<td>99.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pricing:</th>
<th>Quantity (g)</th>
<th>Price (U.S.$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>130.00</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>246.00</td>
</tr>
</tbody>
</table>
3.0 Surrogate Characterization and Testing

3.1 Characterization of Surrogate Powders

As-received powders were characterized using particle size analyzer, scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). No attempt was made to grind these materials down to specific particle size range or distribution due to preliminary nature of this investigation. These results are discussed in this section.

3.1.1 RuO$_2$

RuO$_2$ shows a narrow particle size range of about 100-400 µm with a peak around 275 µm. The spongy particulates show uniform distribution and some segregation.

![RuO$_2$ Particle Size, SEM, Point EDS area, and EDS Data](image)

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>31.59</td>
<td>0.4082</td>
<td>41.25</td>
<td>81.61</td>
</tr>
<tr>
<td>Ru L</td>
<td>100.11</td>
<td>0.9083</td>
<td>58.75</td>
<td>18.39</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-1. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of RuO$_2$ Powder
3.1.2 WO_3

WO_3 shows a wide particle size range of about 10-500 µm with three peaks around 20, 60, and 300 µm. The particulates have finer granular texture.

![Figure 3-2. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of WO_3 Powder](image)

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>32.35</td>
<td>0.7240</td>
<td>24.85</td>
<td>79.17</td>
</tr>
<tr>
<td>W M</td>
<td>123.67</td>
<td>0.9152</td>
<td>75.15</td>
<td>20.83</td>
</tr>
<tr>
<td>Totals</td>
<td>123.67</td>
<td>0.9152</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 3-2. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of WO_3 Powder
3.1.3 Cr$_2$O$_3$

Cr$_2$O$_3$ shows a particle size range of about 0.2-5 µm with two peaks around 0.8 µm. The spongy particulates show some segregation.

![Figure 3-3. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of Cr$_2$O$_3$ Powder](image)

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>177.57</td>
<td>1.9869</td>
<td>49.96</td>
<td>76.39</td>
</tr>
<tr>
<td>Si K</td>
<td>0.22</td>
<td>0.7637</td>
<td>0.16</td>
<td>0.14</td>
</tr>
<tr>
<td>Cr K</td>
<td>79.96</td>
<td>0.8961</td>
<td>49.88</td>
<td>23.47</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
3.1.4 NiCr$_2$O$_4$

NiCr$_2$O$_4$ shows the widest particle size range of about 0.25-500 \(\mu \text{m} \) with three distinct peaks around 0.45, 120, and 450 \(\mu \text{m} \). The spongy particulates show some segregation.

![Figure 3-4](image_url)

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity Corrn.</th>
<th>Weight</th>
<th>Atomic</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>104.8</td>
<td>1.6607</td>
<td>36.21</td>
<td>65.72</td>
</tr>
<tr>
<td>Cr K</td>
<td>69.81</td>
<td>0.9368</td>
<td>42.76</td>
<td>23.88</td>
</tr>
<tr>
<td>Ni K</td>
<td>32.36</td>
<td>0.8825</td>
<td>21.04</td>
<td>10.41</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-4. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of NiCr$_2$O$_4$ Powder
3.1.5 Inconel 600

Inconel 600 shows a sharp particle size range of about 100-500 µm with one peak around 350 µm. The rounded particulates show granular texture.

![Figure 3-5. a) Particle Size, b) SEM, c) Point EDS area, and d) EDS Data of Inconel 600 Powder](image)

Table 3.1

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>56.51</td>
<td>1.2558</td>
<td>21.55</td>
<td>47.49</td>
</tr>
<tr>
<td>Si K</td>
<td>7.54</td>
<td>0.6247</td>
<td>5.78</td>
<td>7.26</td>
</tr>
<tr>
<td>Cr K</td>
<td>37.28</td>
<td>0.9875</td>
<td>18.08</td>
<td>12.26</td>
</tr>
<tr>
<td>Fe K</td>
<td>13.29</td>
<td>0.9953</td>
<td>6.39</td>
<td>4.04</td>
</tr>
<tr>
<td>Ni K</td>
<td>92.57</td>
<td>0.9195</td>
<td>48.20</td>
<td>28.95</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Selection and Preparation of Glasses

Two glasses, shown in Table 3.1, were chosen for this study. MS-7 (a simplified version of a typical Hanford HLW glass with a liquidus temperature, T_L, of 1078°C) was chosen as it had been used as a model high-level waste glass in recent spinel settling studies at PNNL. Modified NCAW was chosen as several melter studies had already reported using this composition.

Glasses were made from oxides, carbonates, and boric acid. These batch chemicals were milled for 5 min in an agate mill and melted for 1 h. The glass was quenched on a steel pour plate, then ground in a tungsten carbide mill for 4 min and remelted to ensure homogeneity.
Table 3-1. Target Glass Compositions

<table>
<thead>
<tr>
<th>Oxide</th>
<th>Wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>8.00</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>7.00</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.30</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>11.50</td>
</tr>
<tr>
<td>Li₂O</td>
<td>4.54</td>
</tr>
<tr>
<td>MgO</td>
<td>0.60</td>
</tr>
<tr>
<td>MnO</td>
<td>0.50</td>
</tr>
<tr>
<td>Na₂O</td>
<td>15.30</td>
</tr>
<tr>
<td>NiO</td>
<td>0.95</td>
</tr>
<tr>
<td>SiO₂</td>
<td>45.31</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>6.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oxide</th>
<th>Wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52.97</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>14.99</td>
</tr>
<tr>
<td>Li₂O</td>
<td>5.34</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.57</td>
</tr>
<tr>
<td>CaO</td>
<td>0.23</td>
</tr>
<tr>
<td>CdO</td>
<td>0.87</td>
</tr>
<tr>
<td>CeO₂</td>
<td>0.18</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0.08</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.07</td>
</tr>
<tr>
<td>Cs₂O</td>
<td>0.17</td>
</tr>
<tr>
<td>CuO</td>
<td>0.07</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.06</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>0.19</td>
</tr>
<tr>
<td>MgO</td>
<td>0.10</td>
</tr>
<tr>
<td>MnO₂</td>
<td>0.61</td>
</tr>
<tr>
<td>MoO₃</td>
<td>0.16</td>
</tr>
<tr>
<td>Na₂O</td>
<td>6.10</td>
</tr>
<tr>
<td>Nd₂O₃</td>
<td>0.99</td>
</tr>
<tr>
<td>NiO</td>
<td>0.66</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.25</td>
</tr>
<tr>
<td>PbO₂</td>
<td>0.20</td>
</tr>
<tr>
<td>ReO₂</td>
<td>0.10</td>
</tr>
<tr>
<td>RuO₂</td>
<td>0.11</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.14</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.19</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.19</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.10</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>4.31</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

3.3 Double Crucibles Test

Klouzek and coworkers (Klouzek et al. 2001) used a double crucible assembly, a smaller alumina crucible placed inside a larger silica crucible (shown in Figure 3.6). This assembly was used to minimize Marangoni convection and bubble generation within the inner crucible (LaMont and Hrma, 1998). MS-7 glass melt was poured into preheated crucibles until the top of the inner crucible was just covered with the
melt. The crucible assembly was then placed back into the furnace at 1220°C. After 20 min., the temperature was lowered to the test temperatures, for increasing time intervals (up to 30 h), and then cooled. The test conditions are listed in Table 3.2. Vertical thin sections were prepared to investigate the area inside the alumina crucible. Crystals were studied using an Olympus PMG3 microscope and Clemex Image Analyzer.

![Figure 3-6. Double Crucible Test (Klouzek et al. 2001)](image)

Table 3-2. Test Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides</td>
<td>RuO₂, WO₃</td>
</tr>
<tr>
<td>Concentrations (nominal wt %)</td>
<td>0.005, 0.5, 1.0</td>
</tr>
<tr>
<td>Temperature (ºC)</td>
<td>900, 950, 1000</td>
</tr>
<tr>
<td>Time (hours)</td>
<td>7, 15, 19, 23</td>
</tr>
</tbody>
</table>

In addition, NiCr₂O₄ was also tested to a limited extent (0.1 and 0.5 wt % at 950ºC and 1050ºC for 15-23 h.) in modified NCAW glass melt. Quick tests showed that Cr₂O₃ dissolved easily into the model systems and Inconel 600 powders settled shortly after their addition to the test melts. Therefore, Cr₂O₃ and Inconel 600 were not further investigated.

3.4 Crystallization Studies

In order to compare the role of RuO₂ and WO₃ in spinel crystallization (Plaisted et al. 2001), samples of MS-7 glass with 0.5 wt% of RuO₂ or WO₃ for crystallization studies were heat-treated in 2 × 2 × 2 cm platinum crucibles at 900, 950, and 1000ºC for 7-23 h. The heat-treated samples were characterized by using x-ray diffraction (XRD). Qualitative XRD data are presented in this report.

3.5 Viscosity Tests

Modified NCAW glass was used for these tests. The rheology of the melts containing 1 and 10 wt.% of NiCr₂O₄, was studied using a Brookfield digital rotating viscometer with a disk spindle (Mika and Hrma 2000). The temperature ranged from 1050ºC to 1350ºC, and the spindle speed, from 0.005 to 1 RPS. Before each measurement, the sample was held for 90 min at the measuring temperature. The idle time for spindle-speed change was 5 min and for temperature change 30 min. The lower surface of the
spindle was about 13 mm above the crucible bottom. The shear stress \(\tau = \frac{M}{2\pi R_d L} \), where \(M = \) torque, \(R_d = \) spindle radius, 7.3 mm, and \(L = \) spindle height, 2 mm) was determined\(^h\).

3.6 High Temperature Optical Microscopy

High temperature optical microscopy was used to study the suspension of RuO\(_2\) and NiCr\(_2\)O\(_4\). The hot stage designed and developed in-house (shown in Figure 3.7) was used. The stage was placed on the platform of the optical microscope (Metallux II, Leco Corporation) with the crucible with the test glass. Test melt (MS-7) with 1 wt.% of RuO\(_2\) or NiCr\(_2\)O\(_4\) powder added was observed from room temperature to about 1100ºC. The melt changes were photographed.

![Figure 3-7. Hot Optical Microscopy Stage](image)

3.7 Partition Studies

Partitioning of noble metal species (Ru and RuO\(_2\)) and the surrogate species (W and WO\(_3\)) between spinel (MgAl\(_2\)O\(_4\)) and model glass melt (MS-7) was studied following the same technique followed by Capobianco and Drake (Capobianco and Drake, 1990). Capsules made from single crystal synthesized spinel boules (grown by the flame fusion method, i.e., Verneuil process) commercially available\(^i\). The capsule spinel was chosen for its easy availability and its prior use for partition study. The starting capsule is non-stoichiometric spinel (90 wt.% Al\(_2\)O\(_3\) and 10 wt.% MgO). In the preparation of the spinel capsule, a slice was cut from the boule and a hole was drilled into the slice (Figure 3.8 (a) – (c)). Then, the hole was packed with the glass powder with suitable additive and suspended using platinum wire wound around an alumina rod (Figure 3.8(d)). Several samples were assembled in a ceramic trough, as shown in Figure 3.8(e).

About 2 gm of MS-7 glass was mixed with 0.5 wt.% of the species (Ru, RuO\(_2\), W, WO\(_3\)) and placed into the capsule. The assembly of capsules were heated to 1220ºC and held at that temperature for

\(^h\) Brookfield Viscometer Guide, Brookfield Engineering Laboratories, Brookfield, MA, USA.
\(^i\) Supplier: Morion Company, Birghton, MA, USA.
Then, the temperature was decreased to the test temperatures (900°C and 1000°C) for 7 – 23 h. After the completion of the heat-treatment, the capsule was cooled to room temperature and sectioned at the middle. The cross section of the capsule with the glass melt was prepared for SEM and EDS. EDS scans (along a line at and across the spinel-melt interfacial region) were done to determine the extent of the spinel-melt interaction and chemistry change across the interface.

Figure 3-8. Capsule and Sample Preparation for Partition Study

3.8 AC Conductivity Test

AC electrical conductivity (at 60 Hz) of the DWPF frit glass samples with 1, 2, 5, and 10 wt.% of the conductivity surrogates (Inconel 600, Cr₂O₃, NiCr₂O₄), RuO₂ and WO₃ at 950-1250°C was measured using two-probe technique.
4.0 Results and Discussion

4.1 Double Crucible Tests

4.1.1 RuO$_2$ vs. WO$_3$ in MS-7

Figure 4.1 shows the thin sections of the inner crucible containing the test glasses with 0.5 wt.% RuO$_2$ or WO$_3$ at test temperatures for 7-23 h. At 900ºC, RuO$_2$, spinel crystals formed sparingly. In the case of WO$_3$, more spinel crystals (dark spots) were clearly seen at 950ºC, especially after 19 h. The temperature effect was more pronounced. In either case, more spinel crystals formed at 950ºC and started settling at 1000ºC, as shown in Figure 4.2.

Selected areas of the samples (especially near the wall of the inner crucible) were characterized using SEM and EDS. Figures 4.3 and 4.4 show features of sample containing 0.5 wt.% of RuO$_2$ heat-treated at 950ºC for 23 h. Area 1 in Figure 4.3 represents bulk glass region. No measurable Ru was detected in this region. This was interpreted to be due to low solubility of RuO$_2$ in glass as well as the detectability limit of the EDS technique. Spinel crystals (about 2-5µm size) were seen in the sample. The crystal on right side of Figure 4.3 was Fe-Ni spinel with about 3.56 wt.% of Ru. In Figure 4.4, the crystal on the left side was Fe-Ni spinel with no detectable Ru. The area marked 4 on the right side of Figure 4.4 was an alkali silicate phase containing Fe and Zr along with about 7.65 wt.% of Ru.

Figure 4.5 shows features of sample containing 0.5 wt.% of WO$_3$ heat-treated at 950ºC for 23 h. Area 1 represents bulk glass region. The crystal was Fe-Ni spinel (about 20-50µm size). No measurable W was detected in these regions. This was also interpreted to be due to low solubility of RuO$_2$ in glass as well as the detectability limit of the EDS technique. On comparing these observations with Figures 4.3 and 4.4, the data suggested RuO$_2$ partitioned in spinel more readily.

Figure 4.6 shows features of sample containing 1 wt.% of RuO$_2$ heat-treated at 950ºC for 23 h. Area 1 represents bulk glass region. Islands of segregated Ru-rich regions were observed. These regions clearly indicated supersaturation of the melt with Ru. Based on these results, all partition studies (section 4.5) used 0.5 wt.% of RuO$_2$ or WO$_3$.

4.1.2 NiCr$_2$O$_4$ in Modified NCAW

Figures 4.7, 4.8, and 4.9 show the thin sections of test glasses containing 0.1, 0.5, and 1 wt.% of NiCr$_2$O$_4$ at test temperatures for 15-25 h, respectively. In the case of 0.1 wt.% (Figure 4.7), the spinel crystals (dark spots) appeared after 15 h but reduced in number after 23 h, suggesting redissolution of the crystals in the melts. Relatively more spinel crystals were observed with 0.5 wt.% of NiCr$_2$O$_4$ (Figure 4.8). Addition of more NiCr$_2$O$_4$ (Figure 4.9) resulted in segregation of the crystals.

Figures 4.10-4.12 show SEM-EDS data of different regions for the sample containing 0.5 wt.% of NiCr$_2$O$_4$ heat-treated at 950ºC for 23 h. In Figure 4.10, region 1 represents the bulk glass. Several Ni-Cr spinel crystals clustered together. Different regions showed in Figures 4.11 and 4.12 contained various levels of Ru. As the test glass contained 0.11 wt.% RuO$_2$, these observations supported our conclusion in the previous section (4.1.1) that Ru precipitated more readily in the presence of spinel.
Figure 4-1. RuO$_2$ vs. WO$_3$ – Time Effect (0.5 wt.% in MS-7)
Figure 4-2. RuO$_2$ vs. WO$_3$ – Temperature Effect (0.5 wt.% in MS-7)
Figure 4-3. SEM–EDS of RuO$_2$ in MS-7 (0.5 wt.%; 950°C/23h)
<table>
<thead>
<tr>
<th>Element</th>
<th>App Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc.</td>
<td>Corrn.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O K</td>
<td>79.23</td>
<td>0.9409</td>
<td>55.88</td>
</tr>
<tr>
<td>Na K</td>
<td>9.34</td>
<td>0.7471</td>
<td>8.30</td>
</tr>
<tr>
<td>Mg K</td>
<td>0.18</td>
<td>0.6269</td>
<td>0.19</td>
</tr>
<tr>
<td>Al K</td>
<td>3.86</td>
<td>0.7490</td>
<td>3.42</td>
</tr>
<tr>
<td>Si K</td>
<td>20.32</td>
<td>0.8161</td>
<td>16.52</td>
</tr>
<tr>
<td>Cr K</td>
<td>0.25</td>
<td>0.8439</td>
<td>0.20</td>
</tr>
<tr>
<td>Mn K</td>
<td>0.29</td>
<td>0.8237</td>
<td>0.24</td>
</tr>
<tr>
<td>Fe K</td>
<td>5.67</td>
<td>0.8417</td>
<td>4.47</td>
</tr>
<tr>
<td>Ni K</td>
<td>10.28</td>
<td>0.8939</td>
<td>19.36</td>
</tr>
<tr>
<td>Zr L</td>
<td>3.04</td>
<td>0.6436</td>
<td>3.14</td>
</tr>
<tr>
<td>Ru L</td>
<td>8.28</td>
<td>0.7185</td>
<td>7.65</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 4-4. SEM–EDS of RuO₂ in MS-7 (0.5 wt.%, 950°C/23h)
Figure 4-5. SEM – EDS of WO$_3$ in MS-7 (0.5 wt.%, 950°C/23h)

<table>
<thead>
<tr>
<th>Element</th>
<th>App</th>
<th>Intensity</th>
<th>Weight</th>
<th>Atomic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc.</td>
<td>Corrn.</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>O K</td>
<td>62.38</td>
<td>1.0518</td>
<td>48.61</td>
<td>64.71</td>
</tr>
<tr>
<td>Na K</td>
<td>10.26</td>
<td>0.7765</td>
<td>10.83</td>
<td>10.03</td>
</tr>
<tr>
<td>Mg K</td>
<td>0.11</td>
<td>0.6205</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>Al K</td>
<td>3.93</td>
<td>0.7439</td>
<td>4.33</td>
<td>3.42</td>
</tr>
<tr>
<td>Si K</td>
<td>22.25</td>
<td>0.8004</td>
<td>22.79</td>
<td>17.28</td>
</tr>
<tr>
<td>Cr K</td>
<td>0.22</td>
<td>0.8585</td>
<td>0.21</td>
<td>0.08</td>
</tr>
<tr>
<td>Mn K</td>
<td>0.39</td>
<td>0.8271</td>
<td>0.39</td>
<td>0.15</td>
</tr>
<tr>
<td>Fe K</td>
<td>7.98</td>
<td>0.8448</td>
<td>7.74</td>
<td>2.95</td>
</tr>
<tr>
<td>Ni K</td>
<td>0.64</td>
<td>0.8450</td>
<td>0.62</td>
<td>0.22</td>
</tr>
<tr>
<td>Zr L</td>
<td>3.15</td>
<td>0.5951</td>
<td>4.34</td>
<td>1.01</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>App</th>
<th>Intensity</th>
<th>Weight</th>
<th>Atomic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conc.</td>
<td>Corrn.</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>O K</td>
<td>36.65</td>
<td>1.3784</td>
<td>22.25</td>
<td>49.98</td>
</tr>
<tr>
<td>Mg K</td>
<td>0.07</td>
<td>0.3757</td>
<td>0.15</td>
<td>0.23</td>
</tr>
<tr>
<td>Al K</td>
<td>0.10</td>
<td>0.4920</td>
<td>0.17</td>
<td>0.23</td>
</tr>
<tr>
<td>Si K</td>
<td>0.49</td>
<td>0.6203</td>
<td>0.67</td>
<td>0.85</td>
</tr>
<tr>
<td>Cr K</td>
<td>3.19</td>
<td>1.0894</td>
<td>2.45</td>
<td>1.69</td>
</tr>
<tr>
<td>Mn K</td>
<td>0.84</td>
<td>0.9526</td>
<td>0.74</td>
<td>0.48</td>
</tr>
<tr>
<td>Fe K</td>
<td>55.83</td>
<td>0.9820</td>
<td>47.56</td>
<td>30.61</td>
</tr>
<tr>
<td>Ni K</td>
<td>27.66</td>
<td>0.8899</td>
<td>26.01</td>
<td>15.92</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4-6. SEM – EDS of RuO₂ in MS-7
(1 wt.%, 950°C/23h)

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity Corrn.</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>53.30</td>
<td>1.0174</td>
<td>52.01</td>
<td>68.36</td>
</tr>
<tr>
<td>Na K</td>
<td>3.28</td>
<td>0.7540</td>
<td>4.32</td>
<td>3.95</td>
</tr>
<tr>
<td>Al K</td>
<td>1.30</td>
<td>0.7957</td>
<td>1.62</td>
<td>1.26</td>
</tr>
<tr>
<td>Si K</td>
<td>26.23</td>
<td>0.8684</td>
<td>29.99</td>
<td>22.46</td>
</tr>
<tr>
<td>Mn K</td>
<td>0.28</td>
<td>0.8215</td>
<td>0.34</td>
<td>0.13</td>
</tr>
<tr>
<td>Fe K</td>
<td>6.06</td>
<td>0.8396</td>
<td>7.17</td>
<td>2.70</td>
</tr>
<tr>
<td>Ni K</td>
<td>0.58</td>
<td>0.8404</td>
<td>0.68</td>
<td>0.25</td>
</tr>
<tr>
<td>Zr L</td>
<td>2.28</td>
<td>0.5828</td>
<td>3.88</td>
<td>0.89</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity Corrn.</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>30.34</td>
<td>0.5100</td>
<td>44.66</td>
<td>74.97</td>
</tr>
<tr>
<td>Na K</td>
<td>1.73</td>
<td>0.7033</td>
<td>1.84</td>
<td>2.16</td>
</tr>
<tr>
<td>Al K</td>
<td>0.70</td>
<td>0.7826</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>Si K</td>
<td>12.88</td>
<td>0.8865</td>
<td>10.91</td>
<td>10.43</td>
</tr>
<tr>
<td>Fe K</td>
<td>3.23</td>
<td>0.8800</td>
<td>2.75</td>
<td>1.32</td>
</tr>
<tr>
<td>Zr L</td>
<td>1.33</td>
<td>0.7416</td>
<td>1.35</td>
<td>0.40</td>
</tr>
<tr>
<td>Ru L</td>
<td>41.02</td>
<td>0.8146</td>
<td>37.81</td>
<td>10.05</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4-7. 0.1% NiCr$_2$O$_4$ in Modified NCAW
Figure 4-8. 0.5% NiCr$_2$O$_4$ in Modified NCAW
Figure 4-9. 1% NiCr₂O₄ in Modified NCAW
Figure 4-10. 0.5% NiCr$_2$O$_4$ in Modified NCAW (950°C/23h)

<table>
<thead>
<tr>
<th>Element</th>
<th>App Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>76.59</td>
<td>1.3477</td>
<td>40.42</td>
</tr>
<tr>
<td>Na K</td>
<td>1.41</td>
<td>0.4915</td>
<td>2.04</td>
</tr>
<tr>
<td>Al K</td>
<td>0.67</td>
<td>0.6172</td>
<td>0.77</td>
</tr>
<tr>
<td>Si K</td>
<td>11.26</td>
<td>0.7342</td>
<td>10.91</td>
</tr>
<tr>
<td>Cl K</td>
<td>0.28</td>
<td>0.7590</td>
<td>0.26</td>
</tr>
<tr>
<td>Cr K</td>
<td>22.66</td>
<td>0.9291</td>
<td>17.35</td>
</tr>
<tr>
<td>Fe K</td>
<td>20.52</td>
<td>0.8787</td>
<td>16.61</td>
</tr>
<tr>
<td>Ni K</td>
<td>12.50</td>
<td>0.8617</td>
<td>10.32</td>
</tr>
<tr>
<td>Zr L</td>
<td>1.19</td>
<td>0.6436</td>
<td>1.31</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>App Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>71.48</td>
<td>1.6751</td>
<td>32.57</td>
</tr>
<tr>
<td>Mg K</td>
<td>0.14</td>
<td>0.4489</td>
<td>0.23</td>
</tr>
<tr>
<td>Si K</td>
<td>0.30</td>
<td>0.7063</td>
<td>0.33</td>
</tr>
<tr>
<td>Cl K</td>
<td>0.15</td>
<td>0.8271</td>
<td>0.14</td>
</tr>
<tr>
<td>Cr K</td>
<td>55.82</td>
<td>0.9477</td>
<td>44.95</td>
</tr>
<tr>
<td>Mn K</td>
<td>3.11</td>
<td>0.9208</td>
<td>2.58</td>
</tr>
<tr>
<td>Fe K</td>
<td>11.55</td>
<td>0.8613</td>
<td>10.23</td>
</tr>
<tr>
<td>Ni K</td>
<td>7.79</td>
<td>0.8760</td>
<td>6.79</td>
</tr>
<tr>
<td>Zn K</td>
<td>2.42</td>
<td>0.8432</td>
<td>2.19</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>App Intensity</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>70.65</td>
<td>1.4200</td>
<td>41.25</td>
</tr>
<tr>
<td>Na K</td>
<td>3.50</td>
<td>0.7404</td>
<td>1.92</td>
</tr>
<tr>
<td>Al K</td>
<td>1.48</td>
<td>1.0066</td>
<td>1.21</td>
</tr>
<tr>
<td>Si K</td>
<td>29.37</td>
<td>0.8724</td>
<td>28.82</td>
</tr>
<tr>
<td>Cl K</td>
<td>0.20</td>
<td>0.6831</td>
<td>0.24</td>
</tr>
<tr>
<td>Cr K</td>
<td>0.26</td>
<td>0.9491</td>
<td>0.24</td>
</tr>
<tr>
<td>Mn K</td>
<td>0.28</td>
<td>0.8170</td>
<td>0.29</td>
</tr>
<tr>
<td>Fe K</td>
<td>6.06</td>
<td>0.8341</td>
<td>6.22</td>
</tr>
<tr>
<td>Zr L</td>
<td>2.67</td>
<td>0.5898</td>
<td>3.87</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>
Figure 4-11. 0.5% NiCr$_2$O$_4$ in Modified NCAW (950°C/23h) – Different Region

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity</th>
<th>Weight Corrn.</th>
<th>Atomic %</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>15.10</td>
<td>0.3674</td>
<td>30.66</td>
<td>72.59</td>
<td></td>
</tr>
<tr>
<td>Si K</td>
<td>1.18</td>
<td>0.9053</td>
<td>0.98</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>Cr K</td>
<td>0.85</td>
<td>0.8780</td>
<td>0.72</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Fe K</td>
<td>0.93</td>
<td>0.9251</td>
<td>0.75</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Ru L</td>
<td>82.60</td>
<td>0.9209</td>
<td>66.89</td>
<td>25.06</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>App Conc.</th>
<th>Intensity</th>
<th>Weight Corrn.</th>
<th>Atomic %</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O K</td>
<td>31.47</td>
<td>0.5295</td>
<td>45.31</td>
<td>74.30</td>
<td></td>
</tr>
<tr>
<td>Na K</td>
<td>1.77</td>
<td>0.7024</td>
<td>1.93</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>Al K</td>
<td>0.70</td>
<td>0.7813</td>
<td>0.68</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Si K</td>
<td>14.61</td>
<td>0.8837</td>
<td>12.60</td>
<td>11.77</td>
<td></td>
</tr>
<tr>
<td>Ca K</td>
<td>0.20</td>
<td>0.8862</td>
<td>0.17</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Cr K</td>
<td>0.38</td>
<td>0.8534</td>
<td>0.34</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Fe K</td>
<td>3.61</td>
<td>0.8752</td>
<td>3.15</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Ru L</td>
<td>38.23</td>
<td>0.8135</td>
<td>35.83</td>
<td>9.30</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-12

<table>
<thead>
<tr>
<th>Element</th>
<th>App Intensity %</th>
<th>Weight Conc. %</th>
<th>Atomic Corrn. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>84.28</td>
<td>40.93</td>
<td>67.82</td>
</tr>
<tr>
<td>Na</td>
<td>0.49</td>
<td>0.72</td>
<td>0.83</td>
</tr>
<tr>
<td>Al</td>
<td>0.54</td>
<td>0.62</td>
<td>0.61</td>
</tr>
<tr>
<td>Si</td>
<td>7.75</td>
<td>7.34</td>
<td>6.92</td>
</tr>
<tr>
<td>Cr</td>
<td>21.31</td>
<td>15.18</td>
<td>7.74</td>
</tr>
<tr>
<td>Mn</td>
<td>1.20</td>
<td>0.90</td>
<td>0.43</td>
</tr>
<tr>
<td>Fe</td>
<td>26.21</td>
<td>19.78</td>
<td>9.39</td>
</tr>
<tr>
<td>Ni</td>
<td>15.97</td>
<td>12.42</td>
<td>5.61</td>
</tr>
<tr>
<td>Zn</td>
<td>0.74</td>
<td>0.61</td>
<td>0.25</td>
</tr>
<tr>
<td>Ru</td>
<td>1.72</td>
<td>1.51</td>
<td>0.40</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-12. 0.5% NiCr$_2$O$_4$ in Modified NCAW (950°C/23h) – Different Region
4.2 Crystallization Studies

XRD was used to compare the effect of RuO$_2$ and WO$_3$ on crystals formed in the MS-7 glass melt. Figures 4.13 and 4.14 showed that RuO$_2$ as well as WO$_3$ formed mainly spinel (Trevorite – NiFe$_2$O$_4$) crystals under comparable test conditions (0.5 wt.% 1000ºC). Undissolved RuO$_2$ was detected. No other prominent phase could be detected within the detectability of the XRD technique. Further investigation of effects of temperature (950ºC) and time (Figure 4.15) on the crystallization confirmed formation of various amounts of Trevorite. These results indicated that WO$_3$ addition did not crystallize any new phase in the test melt.

Figure 4-13. XRD of RuO$_2$ in MS-7 (0.5 wt.% 1000°C)
Figure 4-14. XRD of WO$_3$ in MS-7 (0.5 wt.%). 1000°C
Figure 4-15. XRD of a) RuO₂ and b) WO₃ (MS-7, 0.5 wt.%, 950°C)
4.3 Viscosity

Gradual addition of NiCr$_2$O$_4$ to modified would increase the spinel that crystallized from the melt, consequently increasing the viscosity of the melt. This is demonstrated in this section. Figure 4.16 shows the temperature dependence of the base modified NCAW glass. The viscosity values ranged from 1.8 Pa·s at 1356°C to 17.3 Pa·s at 1051°C. On addition of 1 wt.% of NiCr$_2$O$_4$ (Figure 4.17), the viscosity values increased slightly to 3.1 Pa·s at 1247°C and to 58.6 Pa·s at 953°C. On further addition (10 wt.% of NiCr$_2$O$_4$), the viscosity values increased significantly to 47.4 Pa·s at 1351°C and to 209.8 Pa·s at 1050°C. At about 1050°C, the viscosity values were 17.3, 18.2, and 209.8 Pa·s for the base modified NCAW glass, the modified NCAW glass with 1 wt.% NiCr$_2$O$_4$, and the modified NCAW glass with 10 wt.% NiCr$_2$O$_4$, respectively.

Figure 4.19 shows the rheology of the modified NCAW glass with 10 wt.% NiCr$_2$O$_4$. Shear stress (Figure 4.19 (a)) corresponds to viscosity values (Figure 4.19(b)). Temperature schedule is shown for comparison. At 1350°C, the shear stress was 10 Pa that decreased slightly to 9 Pa at 1250°C. Then the shear stress increased to 11 Pa at 1150°C and 12 Pa at 1050°C. The increase in shear stress was attributed to the precipitation and settling of the spinel phase.

![Graph showing temperature dependence of viscosity with a linear regression equation $y = 16262x - 9.4552$ and $R^2 = 0.9974$]
Figure 4-17. Temperature Dependence of Viscosity of Modified NCAW with 1 wt.% NiCr$_2$O$_4$

\[y = 18733x - 11.226 \]
\[R^2 = 0.9997 \]

Figure 4-18. Temperature Dependence of Viscosity of Modified NCAW with 10 wt.% NiCr$_2$O$_4$

\[y = 10098x - 2.4262 \]
\[R^2 = 0.9299 \]
Figure 4-19. (a) Shear Stress and (b) Viscosity of Modified NCAW with 10 wt.% NiCr$_2$O$_4$
4.4 High Temperature Optical Microscopy

High temperature optical microscopy was used to compare the dissolution and suspension of 1 wt.% of RuO$_2$ (Figure 4.20) and NiCr$_2$O$_4$ (Figure 4.21) in MS-7 glass melt. The bright spots were due to reflections of the light from the surface of the melt. The melts showed a lot of activities, that is, moving, turning, bubbling, and convection as the temperature increased. Aggregates of RuO$_2$ seen at 461°C in Figure 4.20 incorporated into the melt as the temperature increased. At 994°C and beyond, residual fibrous suspensions were seen, indicating undissolved RuO$_2$ floating on the surface. In the case of NiCr$_2$O$_4$, aggregates incorporated into the melt as temperature increased. At 1078°C, no suspension was seen, indicating solubility of NiCr$_2$O$_4$ in the melt. These observations also supported the observations of the double-crucible study (section 4.1).

Figure 4-20. High Temperature Optical Micrographs (1 wt.% RuO$_2$ in MS-7)
Figure 4-21. High Temperature Optical Micrographs (1 wt.% NiCr₂O₄ in MS-7)
4.5 Partition Studies

All partition studies used 0.5 wt.% of Ru, RuO$_2$, W, or WO$_3$. All the SEM images shown in this section (Figure 4.22 – 4.31) as well as in Appendix A (Figures A.1-A.20) are back-scattered images. In these figures, the line scans are shown on the SEM images as well as separately for clarity and comparison.

4.5.1 Ru vs. RuO$_2$

Figures 4.22 and 4.23 compare the addition of Ru and RuO$_2$ under identical test conditions (900°C/7h), respectively. In the case of Ru (Figure 4.22), an interfacial reaction layer of about 10-20 µm thickness containing Ru and spinel components (Al, Mg) was observed at the spinel-glass interface. Ru particulates crowded the glass side of this interface over 100 µm. Near the reaction layer, dislodged spinel segments were seen. In the case of RuO$_2$ (Figure 4.23), the reaction layer was about 5-15 µm. On the glass side of the interface, several dislodged spinel segments drifting well into the glass was seen. Ru-containing clusters were also seen in the glass side of the interfacial region.

4.5.2 W vs. WO$_3$

Figures 4.24 and 25 compare the addition of W and WO$_3$ under identical test conditions (900°C/7h), respectively. In the case of W (Figure 4.24), an interfacial reaction layer of about 10-15 µm thickness containing W and spinel components was observed at the spinel-glass interface. On the glass side of the interface, several dislodged spinel segments drifting into the glass was seen. A few W-containing particulates were also observed. In the case of WO$_3$ (Figure 4.25), the interfacial layer was thicker (20-30 µm) with no dislodged spinel segments in the interfacial region.

4.5.3 Effect of Temperature of Testing

On increasing the test temperature from 900 to 1000°C for 7h of exposure, the thickness of the interfacial reaction layer remained more or less same in the sample containing RuO$_2$ (Figure 26 vs. Figure 27). At 1000°C, the dislodged spinel segments dissolved into the glass melt. Ru-containing particulates were observed in the interfacial regions. Recrystallization of spinel (sharp edges of crystals in the glass side in Figure 4.27) was observed at 1000°C.

In the case of WO$_3$, increase of test temperature from 900 to 1000°C for 7 h exposure (Figure 4.28 vs. Figure 4.29) resulted in a slightly thinner interfacial reaction layer. At 1000°C, the spinel started dislodging and drifting into the glass side of the interfacial region. Other features remained the same.

4.5.4 Effect of Duration of Testing

On increasing the duration of the testing from 7h to 23h, RuO$_2$ showed the interfacial layer of more or less same thickness of about 5-15 µm, containing Ru- and spinel components (Figure 4.30). For extended period of exposures (after 19h), spinel dislodging and drifting into the glass melt was observed. Ru-rich clusters were seen in the glass side of the interfacial region.

In the case of WO$_3$, the reaction layer gradually thickened with increasing exposure time (Figure 4.31). Cracks along the interfacial reaction layer for 19h and 23h exposures indicated removal of the thick reaction layer due to difference in thermal expansion characteristics of the layer compared to the spinel and glass that resulted in interfacial stresses. Small segments of spinel continued to dissolve in to the glass. Recrystallization of large spinel crystals was observed for 23 h exposure.
4.5.5 *Partition - RuO₂ vs. WO₃*

The results presented in this section (Figures 4.22 – 4.31) and the Appendix A (Figures A.1 – A.20) revealed the similarities and differences between RuO₂ and WO₃. The similarities were:

- The glass melt reacted with the spinel forming a reaction layer at the spinel-glass interfacial region. Ru or W partitioned in spinel in this reaction layer.
- Dislodged spinel segments from the bulk spinel eventually dissolved into the glass melt.
- Ru-containing and W-rich regions were observed in the glass side of the interfacial region.
- Spinel (either MgAl₂O₄ or Trevorite or a combination of these two) recrystallized in the glass melt.

The differences were:

- Spinel segments started dislodging from the bulk and drifting into the glass melt early in the process with WO₃.
- The reaction layer thickened with duration of testing in the case of WO₃. Interfacial cracks indicated stresses introduced by the thickening reaction layer at the spinel-glass interfacial region.
- In the case of RuO₂, undissolved Ru-containing particles crowded the interfacial region.
- Bigger spinel crystals (sharp plates as well as nodular) recrystallized from the melt with WO₃ as compared to small crystal with RuO₂ for identical test conditions.

In spite of these differences, the basic interaction mechanism was found to identical in these cases. These results supported use of WO₃ as a suitable surrogate for RuO₂ in the test glass melt.
Figure 4-22. SEM (Left) – Line EDS (Right) of Ru in MS-7 (900°C/7h)

Figure 4-23. SEM (Left) – Line EDS (Right) of RuO₂ in MS-7 (900°C/7h)
Figure 4-24. SEM (Left) – Line EDS (Right) of W in MS-7 (900°C/7h)

Figure 4-25. SEM (Left) – Line EDS (Right) of WO3 in MS-7 (900°C/7h)
Figure 4-26. SEM (Left) – Line EDS (Right) of RuO₂ in MS-7 (900°C/7h)

Figure 4-27. SEM (Left) – Line EDS (Right) of RuO₂ in MS-7 (1000°C/7h)
Figure 4-28. SEM (Left) – Line EDS (Right) of WO$_3$ in MS-7 (900°C/7h)

Figure 4-29. SEM (Left) – Line EDS (Right) of WO$_3$ in MS-7 (1000°C/7h)
Figure 4-30. SEM (Top) – Line EDS (Bottom) of RuO₂ in MS-7 (1000ºC) for (a) 7h, (b) 15h, (c) 19h, and (d) 23h
Figure 4-31. SEM (Top) – Line EDS (Bottom) of WO$_3$ in MS-7 (1000°C) for (a) 7h, (b) 15h, (c) 19h, and (d) 23h
4.6 AC Conductivity Results

Figure 4.32 shows the AC conductivity of DWPF frit containing 1-10 wt. % of Inconel 600 powder, as a conductivity surrogate. Integrated DWPF Melter System (IDMS) data are shown for comparison. IDMS was run for over seven years before shutting down for post mortem analysis. The meltblobs were found at the bottom of the melter, containing significant level of the noble metals as sludge. At lower temperature (950-1050°C), the conductivity values are comparable to each other (< 100 S/m). As the temperature increased, the IDMS showed a sharp increase in conductivity.

![AC Conductivity of DWPF Frit Containing Inconel 600](image)

Figure 4-32 AC conductivity of DWPF frit containing Inconel 600

(Integrated DWPF Melter System (IDMS) data are shown for comparison.)

Figures 4.33 - 4.36 show the temperature dependence of AC conductivity of DWPF frit containing other conductivity surrogates, Cr₂O₃, NiCr₂O₄, RuO₂, and WO₃, respectively. Except the case of NiCr₂O₄, the additives showed a steady drop in conductivity with increase in the amount of additive until 5 wt. %. Above this limit, the conductivity increased, indicating connectivity among additive particles that establish low resistance paths for current flow in the melt. In the case of NiCr₂O₄, the conductivity continued to decrease with 10 wt.% addition. Cr₂O₃ showed conductivity data closely following the data of RuO₂.
Figure 4-33 AC conductivity of DWPF frit containing Cr$_2$O$_3$

Figure 4-34 AC conductivity of DWPF frit containing NiCr$_2$O$_4$
Figure 4-35 AC conductivity of DWPF frit containing RuO$_2$

Figure 4-36 AC conductivity of DWPF frit containing WO$_3$
5.0 Conclusion and Recommendation

1. Limited data on noble metals solubility in silicate glass exists in the literature. Data on Ru-solubility is inconclusive. Currently, no data exists on noble metals surrogate solubility in nuclear waste glass melts. A systematic study of the solubility of noble metals (mainly Ru) as well as suitable surrogates in nuclear waste glass melts is recommended.

2. Overview of existing literature on noble metals in waste melts and melter testing indicates that RuO$_2$ is the most commonly detected phase present. Hence, the present investigation is focused at RuO$_2$ and its potential suitable surrogates.

3. Thermodynamic and density consideration supports the promise of using W-O system as a surrogate for Ru as well as RuO$_2$. WO$_2$ (12.11 g/cm3) can act as a surrogate for Ru (12.30 g/cm3) under reducing conditions. Alternatively, WO$_3$ (7.20 g/cm3) can act as a surrogate for RuO$_2$ (6.97 g/cm3) under oxidizing conditions. WO$_3$ is selected as the potential surrogate for RuO$_2$ in this investigation. Cost data also supports this selection.

4. Double-crucible settling study indicates formation of more spinel crystals have formed at 950$^\circ$C and started settling at 1000$^\circ$C, with RuO$_2$ as well as WO$_3$ in MS-7 glass. SEM, EDS, and XRD data have supported this observation. XRD data has not shown any other phase formed. Ru has been found to partition readily in the spinel phase, as compared to W.

5. Crystallization study has shown formation of Trevorite phase in the sample with addition of RuO$_2$ as well as WO$_3$. Unlike WO$_3$, the undissolved RuO$_2$ is detected by the XRD.

6. An order of magnitude increase in viscosity values has been observed as addition of NiCr$_2$O$_4$ (one of potential surrogates studied in this project) increased from 1 wt.% to 10 wt.% in modified NCAW glass melts. This also results in an increase in shear stress of rotating spindle in rheology testing. This data clearly establishes the consequences of increased spinel formation and accumulation.

7. High temperature optical microscopy results show floating nodular aggregates of RuO$_2$ at higher temperature (> 900$^\circ$C) due to its insolubility in the MS-7 melt. On the contrary, NiCr$_2$O$_4$ dissolved completely in the test melt.

8. Partitioning study of noble metal species (Ru and RuO$_2$) and the surrogate species (W and WO$_3$) between spinel (nonstoichiometric MgAl$_2$O$_4$) and model glass melt (MS-7) indicates striking similarity between RuO$_2$ and WO$_3$ in their interaction with the glass melt. Based on these results, use of WO$_3$ as a suitable surrogate for RuO$_2$ is recommended.

9. Conductivity data indicate that effect of Cr$_2$O$_3$ addition closely follow that of RuO$_2$ in DWPF frit.

10. In the absence of advanced data on solubility of the noble metals and surrogates, a research-scale melter (RSM) test is recommended before testing the surrogate in an engineering scale melter. RSM test will provide key processing data that will help planning the engineering scale melter test.
6.0 References

Appendix A

Additional Noble Metal Partition Data (SEM/EDS)
Figure A.1. SEM (Left) – Line EDS (Right) of Ru in MS-7 (900°C/15h)

Figure A.2. SEM (Left) – Line EDS (Right) of Ru in MS-7 (900°C/19h)
Figure A.3. SEM (Left) – Line EDS (Right) of Ru in MS-7 (900ºC/23h)

Figure A.4. SEM (Left) – Line EDS (Right) of Ru in MS-7 (1000ºC/7h)
Figure A.5. SEM (Left) – Line EDS (Right) of Ru in MS-7 (1000°C/15h)

Figure A.6. SEM (Left) – Line EDS (Right) of Ru in MS-7 (1000°C/19h)
Figure A.7. SEM (Left) – Line EDS (Right) of Ru in MS-7 (1000°C/23h)

Figure A.8. SEM (Left) – Line EDS (Right) of RuO₂ in MS-7 (900°C/15h)
Figure A.9. SEM (Left) – Line EDS (Right) of RuO$_2$ in MS-7 (900°C/19h)

Figure A.10. SEM (Left) – Line EDS (Right) of RuO$_2$ in MS-7 (900°C/23h)
Figure A.11. SEM (Left) – Line EDS (Right) of W in MS-7 (900°C/15h)

Figure A.12. SEM (Left) – Line EDS (Right) of W in MS-7 (900°C/19h)
Figure A.13. SEM (Left) – Line EDS (Right) of W in MS-7 (900°C/23h)

Figure A.14. SEM (Left) – Line EDS (Right) of W in MS-7 (1000°C/7h)

A.7
Figure A.15. SEM (Left) – Line EDS (Right) of W in MS-7 (1000°C/15h)

Figure A.16. SEM (Left) – Line EDS (Right) of W in MS-7 (1000°C/19h)
Figure A.17. SEM (Left) – Line EDS (Right) of W in MS-7 (1000°C/23h)

Figure A.18. SEM (Left) – Line EDS (Right) of WO₃ in MS-7 (900°C/15h)
Figure A.19. SEM (Left) – Line EDS (Right) of WO$_3$ in MS-7 (900°C/19h)

Figure A.20. SEM (Left) – Line EDS (Right) of WO$_3$ in MS-7 (900°C/23h)
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Distribution</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFSITE</td>
<td></td>
<td>OFFSITE</td>
</tr>
<tr>
<td>2</td>
<td>U.S. DOE / Office of Scientific and Technical Information</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>DOE Idaho Operations Office</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>750 DOE Place, MSIN: 1145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idaho Falls, ID 83402, Attn: Kieth Lockie</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Bechtel BWXT Idaho, Inc. (BBWI)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idaho Falls, ID 83415, Attn:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. K. Herbst MS 5218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. D. Herzog MS 3710</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. L. Law MS 5218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. L. Olson MS 5218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. B. Palmer MS 3211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. RindlFleisch MS 5218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. A. Todd MS 5218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. H. Valentine MS 3211</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Westinghouse Savannah River Co.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SRTC, Bldg 773-A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aiken, South Carolina 29808, Attn:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. F. Bickford 999-W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. B. Calloway 704-1T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>William E. Daniel, Jr. 704-1T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. J. O’driscoll 704-30S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. F. Edwards 704-25S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. T. Gee 704-25S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. R. Goetzman 773-A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. K. Hansen 704-T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. W. Holtzscheiter 773-A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. C. Iverson 704-30S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. D. Kerley 704-S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. C. Marra 773-43A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. L. Marra 999-W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. K. Peeler 773-43A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. T. Randall 773-42A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F. G. Smith 774-42A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. E. Smith 773-43A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Witt 999-W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. R. Zamecnik 773-41</td>
<td></td>
</tr>
</tbody>
</table>

Distr. 1