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Summary

Pacific Northwest National Laboratory is currently developing enabling science and technologies
for high-performance chemical detection systems based on sensor arrays.  This report describes
progress in new pattern-recognition methods.  A new chemometric method has been developed for
classifying unknowns by transforming the vector containing the responses from a multivariate
detector to a vector containing descriptors of the detected analyte.  These descriptors characterize
the detected analyte.  In principle, this allows characterization and possibly identification of
unknown vapors that were not tested in a training set.

Previously, this approach was derived for gravimetric polymer-coated sensors, such as polymer-
coated acoustic wave devices.  In the present report, we have derived mathematics showing how these
new chemometric methods can be applied to other sensor types.  In particular, it is shown how they
can be applied to volume-transducing polymer-coated sensors.  An example of this type of sensor is
the chemiresistor technology with polymer/carbon black composite sensing layers.

We also discuss the application of this method for surface acoustic wave sensors where the
responses of the sensors have both a gravimetric and a modulus component, the modulus component
representing a volume-based transduction mechanism.

In summary, this report describes how our new chemometric pattern-recognition approach can
now be applied to a variety of sensor technologies.  It is not restricted solely to gravimetric polymer-
coated sensors.

The work described is being published in Analytical Chemistry.
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Introduction

A new chemometric method was recently described for classifying unknowns by transforming the
vector containing the responses from a multivariate detector to a vector containing descriptors of
the detected analyte (Grate et al. 1999).  This approach was derived for sensor arrays where each
sensor’s signal is proportional to the amount of vapor sorbed by a polymer on the sensor surface.  In
this case, the response is proportional to the partition coefficient, K, and the concentration of the
vapor in the gas phase, Cv, where K is the ratio of the concentration of vapor in the sorbent
polymer phase, Cs, to Cv.

K  = Cs / Cv (1)

The descriptors of the detected analyte for sorption-based vapor sensors were taken as the
solvation parameters in a linear solvation energy relationship (LSER) for vapor sorption, as given in
Eq. 2 (Abraham 1993; Grate and Abraham 1991; Grate et al. 1996; Grate 2000).

log K  =  c  +  r R2  +  s πH
2    +  a  ΣαH

2    +  b ΣβH
2    +  l log L16 (2)

In this model, log K is modeled as a linear combination of terms, each of which is related to

particular solubility interactions.  The descriptors of sorbed vapors, R2, πH
2  , ΣαH

2   ,  ΣβH
2   , and log

L16 , are solvation parameters that characterize the solubility properties of the vapor (Abraham
1993), where R2 is a calculated excess molar refraction parameter that provides a quantitative

indication of polarizable n and p electrons; πH
2   measures the ability of a molecule to stabilize a

neighboring charge or dipole;  ΣαH
2   and ΣβH

2   measure effective hydrogen-bond acidity and

basicity, respectively; and log L16  is the liquid/gas partition coefficient of the solute on hexadecane at
298K (determined by gas-liquid chromatography).  The log L16  parameter is a combined measure of
exoergic dispersion interactions that increase log L16  and the endoergic cost of creating a cavity in
hexadecane leading to a decrease in log L16 . The values for all these descriptors except R2 were
determined from experimental measurements of hydrogen-bonding equilibria or partitioning
equilibria, and they have been determined for over 2000 compounds.

The concept of transforming sensor-array patterns into these vapor descriptors is shown in
Figure 1.  This approach stands in contrast to the conventional approach where detected sensor-
array patterns are compared only to patterns for known compounds determined in training.

The new chemometric method was described for acoustic wave sensors where the sensor’s signal
is proportional to the mass of vapor sorbed.  In this case, the gravimetric response function can be
expressed according to Eq. 3 (Grate et al. 1988; Grate et al. 1992).

R = ∆fv  =  ∆fs Cv K / ρs (3)
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Figure 1.  Illustration of the Goal of Converting an Array Response Vector,
Shown as a Bar Graph, into Descriptors of the Detected Vapor, Where
the Descriptors are the Solvation Parameters from a Linear Solvation
Energy Relationship for Vapor Sorption

The response, R, is a frequency shift, ∆fv, that is proportional to the concentration of vapor in the
sorbent polymer phase Cs = Cv K.  For these sensors, the proportionality to Cs is given by the ratio
of the frequency shift due to application of the polymer, ∆fs, to the polymer density, ρs.

In our previous report, two approaches were considered for determining the solvation parameters
for detected vapors from sensor-array response vectors (Grate et al. 1999).  In the first, which was
similar to classical least squares (CLS), all the descriptors were solved for simultaneously given
knowledge of the properties of the sorbent polymers on the sensors.  In the second approach, inverse
least squares (ILS) methods were used to develop equations for each solvation parameter individually.
The ILS approach does not require knowledge of the polymer properties; it relies on training.

Although derived for mass-transducing sensors, the chemometric method for extracting
descriptors from multivariate responses is potentially very general (Grate et al. 1999).  In the
present paper, we describe how solutions can be derived for volume-transducing sensors.  Sorbent
polymers loaded with conductive particles can be used as chemiresistor vapor sensors where the
sensor’s response, a change in resistance, is related to the fractional volume increase of the film on
vapor sorption.  Carbon-particle loaded polymers for this method of vapor sensing have been
described (Ruschau et al. 1989; Lundberg and Sundqvist 1986; Talik et al. 1992), and they have been
used for array-based sensing by Lewis and coworkers (Lonergan et al. 1996; Doleman et al. 1998;
Severin et al. 2000; Albert et al. 2000).  The design of a chemiresistor sensor array by varying the
properties of the sorbent component of a composite film was proposed by Grate in 1990 in
connection with phthalocyanine/polymer composite Langmuir-Blodgett films for organic vapor
sensing (Grate et al. 1990).  The phalocyanine nanoparticles served as the current carrying
component, and response characteristics were correlated with vapor sorption by the polymer
component.
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Recently, Severin and Lewis described detailed studies of carbon-particle-loaded polymer
chemiresistors that examined how vapor sorption, volume increases, and sensor resistance changes
are related (Severin and Lewis 2000).  Vapor sorption by test polymers with and without carbon-
particle loading was made using the quartz crystal microbalance (QCM).  These authors demonstrated
that sensor resistance changes are related to the extent of volume increase regardless of the identity
of the vapor producing the volume increase.  Correlation of the response measurements with vapor
densities as liquids supported this mechanism.  Therefore, just as acoustic-wave sensors represent a
very general method of sensing the mass of vapor sorbed, these carbon/polymer composite
chemiresistor sensors represent a very general method of sensing the volume of vapor sorbed.  As a
result, the signals from an array of these sensors are directly related to vapor sorption, and they can,
in principle, be processed to obtain analyte descriptors.  This paper sets out the equations for doing
so.
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Theoretical Sections

Response Models and Solutions for Mass-Based Sensor Arrays

We have shown previously that the response model for an array of gravimetric sensors can be
expressed in matrix algebra according to Eq. 4 (Grate et al. 1999).

R =  C  10
(VP + 1c)

 D-1 F (4)

This equation is directly analogous to Eq. 3 for a single sensor, where matrix R (vapors by
polymers) contains the response values, and matrix C  (number of vapors by number of vapors) is a
diagonal matrix of the concentrations of the vapors.  Matrix F (number of polymers by number of
polymers) is a diagonal matrix of the ∆fs values of the sensors, and matrix D (number of polymers by
number of polymers) is a diagonal matrix of the polymer densities.  The superscript of -1 denotes the
inverse of the matrix.  The K value in Eq. 3 is represented by the exponential term in Eq. 4.

  L = VP + 1c (5)

As given in Eq. 5, log K values modeled by the LSER relationship are in matrix L, where matrix
V (number of vapors by five) contains the vapor solvation parameters, and matrix P (5 by number of
polymers) contains the polymer parameters.  The constants of the LSER equations are given by the
vector  c (1 by number of polymers), and 1 is a vector of ones (number of vapors by 1) .

Using the CLS approach, one can solve for V containing the vapor descriptors given knowledge
of P, c, D, F, and C .

{log (  C -1 R D F-1 ) - 1c } PT(PPT)-1= V (6)

The superscript T denotes the transpose of a matrix.  The requirement to know C  in order to
solve for V represents a significant limitation of this solution since one is unlikely to know the
concentration of an unknown vapor before identifying it.  However, it is possible to rearrange the
response model and the solution so that one solves for the log of the concentration simultaneously
with the descriptor values.  In this approach, the V matrix is augmented to contain the log of the
vapor concentration in addition to the descriptors for each vapor, and the P matrix is augmented
with a vector of ones.  Then the response model and the solution are given as shown in Eqs. 7 and 8.
Equation 8a expresses the solution for an entire matrix of responses, R, while Eq. 8b expresses the
solution where a vector of descriptors va is obtained from a single response vector, r.

R =  10
(Va Pa + 1c)

 D-1 F (7)

{log ( R D F-1 ) - 1c } PaT(PaPaT)-1= Va (8a)

{log ( r D F-1 ) - c } PaT(PaPaT)-1= va (8b)
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Solving Eq. 8 for Va gives the values of the descriptors R2, πH
2  , ΣαH

2   ,  ΣβH
2   , and log L16 , and

the log of the concentration.  This method of augmenting the V matrix with other parameters
related to the vapor, such as its concentration, provides the key to adapting the model to address
volume-transducing sensors in addition to gravimetric sensors.

This approach represents a synthesis of chemometric data analysis with a detailed response
model that includes the LSER model describing the interaction between vapors and polymers.  It is
similar to a CLS approach (Beebe et al. 1998).  In the CLS formulation, the instrument response, R,
is a function of concentration, C , and other parameters: R=CS , where S  is the sensitivity.  In this
model, the effect on the response R of different analytes is linearly additive.  This is a sensible
physically interpretable model, which works in many physical systems, the most notable of these
being spectroscopy where the Beer-Lambert law holds.  Given knowledge of the sensitivities in S , the
concentrations, C , can be obtained from R:  C  = R ST(SST)-1.  CLS is typically used to obtain
concentrations of multiple analytes in a mixture.  The response model for mass-transducing sensors
in Eq. 4 fits the form of a CLS model, with all parameters after the concentration C  lumped into a
single sensitivity parameter, S .  Given knowledge of the polymer properties, one can solve for the
values of all the vapor descriptors simultaneously.  In our approach, we essentially model a single
vapor as a mixture of five “pure components” related to each solvation parameter, yielding the five
parameters for the test vapor.  Thus, one obtains descriptor values instead of concentrations.

It is also possible to determine equations for each descriptor individually using an appropriate ILS
method such as partial least squares (PLS) regression or principal components regression (PCR).  ILS
models one specific parameter of interest, y, as a function of instrumental response, X:  y = Xb ,
where b is a vector of weighs generally determined by regression (Beebe et al. 1998; Wise and
Gallagher 1996).  While the ILS model is not physically interpretable, it has a number of desirable
properties.  Perhaps the most important of these is that complete knowledge of the sources of
variance in the response need not be known.  Instead, it is possible to construct models from the
measured response R and an independent measurement of the particular property of interest.  In
addition, there exist a variety of ILS models that tolerate, in fact take advantage of, collinearity in
the data, which is a must in the system of interest given large arrays (six or more sensors).  In
particular, PLS and PCR methods tolerate collinearities in the data and filter out noise.  In our case,
the ILS approach is advantageous because prior knowledge of polymer properties in not required.  We
described the use of ILS models to extract vapor descriptors in our previous paper on mass-
transducing sensors and conducted simulations on synthetic gravimetric sensor data showing how the
precision of the vapor descriptors depends on the measurement noise (reproducibility) in the sensor
responses (Grate et al. 1999).  We will not elaborate on ILS approaches in this paper, but whenever it
is possible to derive a CLS solution, it follows that ILS solutions could also be found.

Response Models and Solutions for Volume-Transducing Arrays

The response function for a volume-transducing sensor can be expressed according to Eq. 9.

R = φv  S (9)

The volume fraction of the vapor in the polymer/vapor solution, φv, times the sensitivity, S,
gives the response, R.  (It is assumed throughout this presentation that the volume increase due to
vapor sorption is small relative to the initial polymer volume, and the ratio of vapor volume to
polymer volume is nearly the same as the ratio of vapor volume to the volume of the vapor/polymer
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solution.)  The volume fraction is related to the amount of vapor in the polymer, Cs = Cv K.
Therefore the volume fraction of vapor can be expressed according to Eq. 10, where vv is the
specific volume of the vapor as a liquid.

  φv  = vv Cv K (10)

Then the response function can be expressed so that the response is related to vapor specific
volume and the concentration, as given in Eq. 11.

 R = vv Cv K S (11)

The sensitivity, S, in Eq. 11 has a different value and different units than the sensitivity in Eq. 9
above, but the unchanged notation S is retained for simplicity.

It follows that the response function can be expressed in matrix algebra according to

R =   Y C  10
(VP + 1c)

 S  (12)

The matrix Y is a diagonal matrix (number of vapors by number of vapors) containing the
specific volumes of the vapors.  Then the solution can be expressed as

{log (Y-1  C -1 R  S-1 ) - 1c } PT(PPT)-1= V (13)

This solution, like the initial solution for mass-based sensors described above, is of limited value
because the concentration and the specific volume of the unknown vapor must be known to solve for
the descriptors in V.  However, matrix V can be augmented so that it contains the log of the product
of the vapor concentration times the vapor specific volume.  This augmented matrix will be defined
as Vb.  The P matrix must be augmented with a vector of ones as before.

R =  10
(Vb Pa + 1c)

  S  (14)

{log ( R S-1 ) - 1c } PaT(PaPaT)-1= Vb (15a)

{log ( r S-1 ) - c } PaT(PaPaT)-1= vb (15b)

This derivation shows for the first time how an array of polymer-sorption based sensors with
signals proportional to volume increases can be can be used to solve for the descriptors of sorbed
vapors.  One also solves for the value of the log of the product of the vapor concentration times the
vapor specific volume. This is not of value for classification. If the vapor was identified from the
found descriptors and the specific volume determined, then the concentration could be obtained.   In
any case, the important point is that the descriptor values can, in principle, be obtained.  As noted
previously, the existence of this CLS type solution indicates that ILS solutions for each individual
descriptor could be determined by calibration.

The product of vapor concentration in mass per volume times the vapor specific volume in
volume per mass can be regarded as a vapor concentration in volume per volume units.  Although
this is a strange expression for concentration, regarding this product as a concentration indicates that
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the solution in Eq. 15 for a volume-based sensor array is equivalent to the solution in Eq. 8 for a
mass-based sensor array.

Vapor specific volume is not highly correlated with the solvation parameters used as descriptors.
To verify this, the liquid densities of 43 diverse compounds were tabulated with the solvation
parameters and examined for correlations.  The correlation matrix is given in Table 1.

The responses of carbon particle/polymer composite chemiresistor sensors, generally taken as
the change in resistance relative to the initial resistance, are proportional to the relative volume
change of the polymeric insulating phase (Lonergan et al. 1996).  For appropriate carbon loadings,
the response is linearly proportional to the vapor concentration and the fractional volume increase
of the polymer (Lonergan et al. 1996; Severin et al. 2000; Severin and Lewis 2000).  Given these
characteristics, this sensor technology represents a volume-transducing method that may be
appropriate for this classification approach.  The models above indicate a dependence on vapor
specific volume, which has been demonstrated experimentally (Severin and Lewis 2000).

The experiments used to investigate vapor sorption and chemiresistor response employed QCMs
modified with electrodes so that QCM and chemiresistor measurements could be made simultaneously,
providing a signal related to vapor mass and a signal related to vapor volume.  These studies tested a
swelling-induced resistance change hypothesis.  As noted by Lewis in the final sentence of his paper,
this approach provides a “single-element densitometer” (Severin and Lewis 2000).  This could
provide a descriptive molecular property directly, provided that the measurement was calibrated.
Thus, the QCM/chemiresistor combination would require training to calibrate the resistance change
to frequency change ratio to the vapor densities.  Then densities could be obtained directly for
additional vapors not in the training.
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Table 1. Correlation Matrix for Vapor Solvation Parameters and Vapor Density as a
Liquid (Grate et al. 1999)

R2 πH
2  ΣαH

2   ΣβH
2   log L16 d2

R2 0.347 -0.264 -0.229 0.576 0.476

πH
2  0 1 0.020 0.507 0.277 0.217

ΣαH
2   0 0 1 -0.030 -0.428 0.124

ΣβH
2   0 0 0 1 0.127 -0.336

 log L16 0 0 0 0 1 0.132
d 0 0 0 0 0 1

1  Based on a set of 43 diverse compounds.
2  density as a liquid

Response Models and Solutions for Arrays of Sensors with Combined Mass
and Volume Transduction Mechanisms

Sorption-based sensor arrays whose individual sensors respond to both the mass and the volume
of the sorbed vapor can be modeled by combining Eqs. 4 and 12, obtaining:

 R =  C  10
(VP + 1c)

 D-1 F + Y C  10
(VP + 1c)

 S (16)

Unfortunately, it does not appear possible to obtain a closed form solution for vapor parameters
V and Y, and concentration C  given the response R and polymer parameters P, c, D, F and S . If Y is
taken as the identify matrix (specific volumes of the vapors as liquids = 1), however, the following
solution is obtained:

{log ( R (D-1 F + S) -1) - 1c } PaT(PaPaT)-1= Va (17a)

{log ( r (D-1 F + S) -1) - c } PaT(PaPaT)-1= va (17b)

where Va is defined as before.

Using this as an initial guess, it is possible to determine Va and Y using direct fitting of the sensor
responses to the model with a non-linear least squares optimization procedure. This has been verified
on simulated data.

Polymer-coated acoustic wave vapor sensors (Grate 2000; Grate et al. 1993a, b) responding to
both the mass of the sorbed vapor and its effect on the polymer modulus represent a combined mass
and volume transducing sensor technology.  The modulus effect can be modeled as a volume effect
(i.e., a swelling-induced modulus change), since modulus changes are proportional to increases in
polymer free volume (Grate et al. 1992; Martin and Frye 1990; Martin et al. 1994; Ferry 1980).
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Models for SAW vapor sensor response expressed as the sum of mass and volume terms were
reported by Grate in 1992 and 2000 (Grate et al. 1992; Grate and Zellers 2000).  These assume the
polymer films on the sensors are acoustically thin.  The full model is given in Eq. 18.

∆fv  =  ( ∆fs Cv K / ρs  )  +   fL ( vv Cv K )  ( ∆fs ΑSAW / α ) (18 )

The mass term is the same as the mass term above in Eqs. 3 and 4.  The volume term includes
the fractional free volume of the vapor as a liquid, fL.  The product ∆fs ΑSAW  / α gives the
frequency change due to a fractional volume increase of the polymer film, where α in Eq. 4 is the
coefficient of thermal expansion of the polymer and ΑSAW represents the kHz change in frequency
due to a 1°C change in temperature per kHz of coating on the device surface.  Values for this variable
are empirically measured by determining the effect of polymer thermal expansion on polymer-
coated SAW device frequency.  Assuming that the fractional free volume factor is a constant (Grate
and Zellers 2000), the volume term can be reduced to the form in Eq. 11, giving

∆fv  =  ( ∆fs Cv K / ρs  )  +    vv Cv K S (19)

Thus, this response model fits the form of the matrix model in Eq 16.(a)

As formulated above, the vapor mass and volume contribute to a single sensor signal, the
resonant frequency.  Accordingly, the density of the vapor cannot readily be obtained directly
because separate signals for each transduction mechanism are not provided by the measurement.
Using other measurement approaches on SAW sensors that provide two separate signals per sensor,
Martin and coworkers obtain velocity and attenuation changes, which are related primarily to mass
and volume respectively.  By obtaining two signals per sensor, the vapor response behavior observed
(e.g., in parametric representations) could be related to vapor density (Martin and Frye 1990; Martin
et al. 1994).

Generalized Response Model and Solution

The mathematics underlying this approach are not necessarily limited to sensor arrays.   In its
most general form, this work represents a classification method for a multivariate detector where the
response of each channel can be modeled with a linear relationship based on a set of sample
descriptors.  Unknown samples can then be characterized and classified in terms of those descriptors.
The most general response models and solutions can be expressed as follows.

R =   SV C  10
(V’P’)

 SP (20)

{log ( R SP
-1 ) } P’aT(P’aP’aT)-1= V’a (21)

The matrix SV is a diagonal matrix containing analyte specific parameters that influence the
response independent of the specific interactions of the analyte with each channel.  Specific
interactions of the analyte with detector channel properties are modeled in the general linear

                                                
(a) Note that the volume fraction of diluent vapor in a vapor/polymer solution is symbolized by φv in this paper,

whereas v1 was used to symbolize the same volume fraction in the recent paper on modeling SAW responses as
mass and volume terms.  The symbol v is used in the present paper as  vv, representing the specific volume of
the vapor as a liquid, not the volume fraction of diluent vapor.



11

relationship V’P’, where V’ contains analyte descriptors (not necessarily vapor analytes) and P’
contains parameters specific to the properties of detector channels.  The matrix Y in Eq. 12 is an
example of a specific SV matrix, containing vapor specific volumes that influence sensitivity but are
not part of VP.  The matrix SP contains channel specific sensitivity parameters, like S  in Eq. 12 or
D-1 F in Eq. 4.   Augmentation of V’ and P’  to capture SVC  leads to the solution for V’a containing
the analyte descriptors in V’ as well as the log of the product of analyte specific sensitivity factor
times the analyte concentration.
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Discussion

The conventional approach for processing sensor array data relies on training to develop pattern
recognition algorithms for specific analytes or classes of analytes, an approach used successfully in
many types of multivariate analysis including electronic noses (Grate 2000; Albert et al. 2000; Jurs
et al. 2000).  It would be desirable, however, if sensor arrays can be designed and/or trained to
recognize analyte properties, just as an infra red spectrum can indicate the presence of particular
types of bonds and functionalities in an analyte.  A pattern vector from a sensor array is
mathematically equivalent to a spectrum, both being first order responses (Booksh and Kowalski
1994).

The chemometric approach described in this paper and its preceding paper represents a synthesis
of chemometric methods with knowledge of the response mechanisms of the sensors.  Given
knowledge of the sensor materials and their interactions with vapors, it is possible to extract
information about those vapors from the array. Thus, once an array has been suitably calibrated on
known vapors, the array response to an unknown vapor can be converted to several descriptors of
the detected vapor, even if the vapor was not included in the original training.

In our previous publication (Grate et al. 1999), we derived the approach for extracting analyte
descriptors from multivariate instrument responses using underlying theory for LSERs and mass-
transducing acoustic wave sensor responses.  We claimed that the approach might be used for any
multivariate instrument where the responses of each channel could be modeled with a suitable linear
relationship.  The mathematics in the first manuscript accounted for analyte/detector channel
interactions (vapor/polymer interactions for SAW sensors) and channel specific calibration factors
(such as those in D and F).  No analyte specific calibration factors that were independent of
analyte/detector channel interactions were included.

In this paper, we show for the first time how this new approach for obtaining chemical
information from multivariate instruments can, in fact, be applied to a technology other than mass-
transducing acoustic wave sensor arrays.  The QCM is the most obvious example of a mass-
transducing acoustic wave sensor.  If the new method were restricted to only QCMs, it would be of
limited application.  By revising the approach to include analyte-specific calibration factors,  such as
the vapor specific volume, the method can be applied to sensors that respond to the amount of
sorbed analyte, whether the amount is a mass or a volume.  Thus, the methodology is now more
general, and can include volume-transducing chemical sensors such as the polymer/carbon black
composite chemiresistors.

We also show for the first time how the approach can be applied to estimate descriptors for
sensors where each sensor provides one signal containing components due to the mass and volume of
the sensed analyte.  Optimizations can be used successfully to correctly obtain the descriptors.  We
will elaborate on this result using simulations in a future paper.  With this capability, the method will
be applicable to sensors such as the SAW device, which is a very popular platform for sensor array
instruments.  Thus, the method is not restricted to strictly mass-transducing acoustic wave sensors,
but is more generally applicable to a variety of acoustic wave sensor array types.

The inclusion of analyte-specific calibration factors leads further to a more general formulation
with pleasing simplicity and symmetry, as shown in Eq. 20 and 21.  This now includes analyte
specific calibration factors in SV, analyte/detector channel interactions in V’P’, and channel-specific
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calibration factors in SP. The possibility of analyte specific calibration factors was not present in our
previous publication.  The formulation in Eq. 20 and 21, along with derivations for additional sensor
technologies, substantiates our previous claim for generality beyond mass-transducing sensor arrays.

Application of these approaches to polymer-coated sensor arrays requires that the responses are
due solely to absorption in the bulk of the polymer and that the sorption process can be accurately
modeled with a linear descriptor-containing relationship such as the LSER.  In addition, the method
requires that the polymers in the array be diverse.  In our previous paper on mass-transducing
sensors, we used synthetic sensor data and simulations to explore the sensitivity of the descriptor
solutions to measurement noise in the array data.  We found that 10 to 20% measurement noise was
acceptable for obtaining descriptors to a precision that is similar to the precision with which the
descriptor values are known (Grate and Zellers 2000).  The root-mean-square errors of prediction
(RMSEP) for each of the parameters grew approximately linearly with noise. The parameter errors

for πH
2    ,  ΣαH

2    , and ΣβH
2    were approximately 0.06, 0.02, and 0.03, respectively, for 20% noise

in the sensor responses. This is comparable to the error in the original parameters, which can be

taken as about 0.03 units for the πH
2    ,   ΣαH

2    , and  ΣβH
2    parameters.  The error for the log L16

parameter can be taken as 0.1 units.  In the simulations, the log L16  error at 20% sensor noise was
somewhat larger at 0.3 – 0.4 log units.

In addition, it was shown that found descriptor values could be used to classify vapors by
comparison with tabulated descriptor values for known compounds. In the simulations, error bounds
of two times the RMSEP were constructed for each parameter.  The number of test vapors falling
within these error bounds for all parameters was determined as a function of noise.  Averaging over
all the vapors in the test set, typically two or fewer vapors were within the error bound for noise
levels up to about 10%.   In addition, for the vast majority of cases where more than one match was
found,  the found vapors included the correct vapor plus one or more compounds within the same
compound class.

If sensor array response vectors are related to solvation parameters, it follows that any property
or process that can also be correlated with solvation parameters could be correlated with array
responses.  Solvation parameters can be used to calculate such properties as the air/water partition
coefficient,  sorption in biological tissues and fluids, respiratory tract irritation in mice, eye irritation
and nasal pungency thresholds in man, and possibly also odor thresholds in man(Abraham 1993;
Abraham and Weathersby 1994; Abraham et al. 1994; Nielsen et al. 1996; Abraham et al. 1996;
Abraham 1996; Alarie et al. 1998a, b; Alarie et al. 1996; Alarie et al. 1995; Abraham et al. 1998a, b,
c, d).  Thus, a scientific basis exists for relating sensor array responses to parameters that are
relevant to environmental fate, toxicology, environmental health, and olfaction.
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