

Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1

R. W. Goles J. M. Perez B. D. MacIsaac D. D. Siemer, INEEL J. A. McCray, INEEL

May 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

> PACIFIC NORTHWEST NATIONAL LABORATORY operated by **BATTELLE** for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830

Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1

R. W. Goles

J. M. Perez

B.D. MacIsaac

D. D. Siemer, INEEL

J. A. McCray, INEEL

May 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

Over several decades, site operations at what is now the U.S. Department of Energy's (DOE's) Idaho National Engineering and Environmental Laboratory have included nuclear reactor testing, reprocessing of spent nuclear fuel, and the storage, treatment, and disposal of the resultant radioactive and mixed wastes generated. Liquid, acidic, and radioactive high-level waste (HLW) and sodium bearing waste (SBW) from spent-fuel reprocessing operations have for the most part been calcined in the New Waste Calcining Facility (NWCF) and the earlier Waste Calcining Facility (WCF) to produce a dry granular waste form that is safer to store. However, about a million gallons of SBW remains uncalcined, and this liquid mixed waste, stored in tanks, does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires the removal and treatment of the remaining SBW.

Several potential options have been proposed for treating the SBW. Of those considered, vitrification received the highest weighted score against the criteria used. Beginning in fiscal year 2000, the INEEL HLW program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility, based upon the liquid-fed melter technology, in the event that vitrification is the preferred alternative for SBW disposal. This program includes several separate activities that include, among others, waste-form development, process feed-stream design, and melter vitrification demonstration testing of the nonradioactive, surrogate SBW flowsheet. The first of the melter flowsheet tests conducted in support of INEEL's vitrification facility design is discussed below.

The Pacific Northwest National Laboratory's (PNNL's) Research-Scale Melter (RSM) was used to conduct these initial melter-flowsheet evaluations. The RSM is a small (1/100-scale) joule-heated melter that is capable of processing melter feed on a continuous basis. This capability is key for:

- developing/evaluating process flowsheets
- characterizing relationships between feed composition and the properties of the final glass produced
- establishing the fate and behavior of process effluent.

This melter system's capability to produce glass in a continuous manner is also essential for estimating the behavior of a full-scale system. Moreover, the size of the RSM allows the impacts of process variables upon melter performance or glass quality to be quickly and efficiently evaluated without undue expense or waste generation.

The experimental scope of this initial, 5-d, 120-h, SBW vitrification test was to evaluate the:

- processing characteristics of the newly formulated SBW surrogate melter feed stream
- acceptability of various SBW to glass-forming additive ratios
- possible formation of a secondary sodium sulfate phase

- effectiveness of sugar as a glass oxidation-state modifier and nitrate reductant
- off-gas effluent emission characteristics of the melter
- quality and durability of the process' vitreous waste-form product.

During the 120 h of experimental testing, melter feeds with three different SBW waste loadings (30, 32, and 35 Wt%) were successfully processed. In addition, the impacts of varying reductant concentrations (135, 155, 166, 177, 184, and 197 g/L) upon processing rates, molten-salt accumulations, and glass oxidation state [Fe(II):Fe(III)] were evaluated. The effects of a 40% increase in SBW sulfate concentration upon melter performance and molten-salt-phase accumulations were also assessed during the final hours of melter testing.

The melting kinetics of all feeds processed, irrespective of their SBW waste loading, was found to be nominally limited to liquid boil-off rates. There is very little evidence, during the processing of the SBW melter-feed material, for the presence of a conventional solid cold cap composed of dried feed and calcine. Moreover, after boil off, residual melter-feed constituents were found to be almost immediately incorporated into the molten vitreous pool.

Feeding rates were generally lower at the beginning of RSM testing, which was due to operator conservatism and the lack of a significant salt phase that facilitates feed-to-glass conversion and the heat transfer between the glass pool and the cold cap. Increased sugar content that provided additional thermal-energy release also likely contributed to the enhanced processing rates observed during the latter stages of melter testing.

Melter glass production rates varied from 7.1 to 11.1 lbs/h/ft² for the various feed batches processed. These values comfortably exceed the reference (cold-lid) LFCM design production rate of 4 lbs/h/ft² that is often quoted and used for flowsheet and equipment sizing estimates. Indeed, this reference-normalized production rate is exceeded even when projections are based upon the overall average rate data (5.8 lbs/h/ft²) that are inclusive of all idle-batching periods.

Average measured Joule heating power was used with corresponding batch feeding rates, reductant loadings, and heat of combustion information to derive specific process energy requirements for SBW feeds. The average value derived for all batches processed, 6.1 kW*h/kg, is slightly greater than typical energy requirements for slurry-fed, Joule-heated ceramic melters: 2 to 4 kW*h/kg of glass produced. Recognizing that the SBW process flowsheet does not provide for pretreatment or concentration and that much of the power required in processing slurry feeds is consumed by boiling away water, the higher specific-energy requirements for vitrifying SBW is largely due to the higher-than-normal weight fraction of water in the melter feed stream.

Monitoring for molten salt accumulations was conducted throughout all phases of RSM testing. A salt phase was slow to develop during initial testing using 30% SBW feed batches. Moreover, the salt phase that did develop at baseline reductant loadings (135 g of sucrose/L of SBW) appeared stable and was confined to small non-contiguous pools. At 35%, SBW significant increases were observed in the

melter's molten-salt inventory. By increasing feed reductant loadings, the apparent increase in the melter salt accumulation rate was successfully counteracted. A contiguous molten-salt phase never developed on the RSM's glass pool, even though the sulfate concentrations in the final batch were 140% of baseline.

The increased reductant loading used to control molten-salt accumulations in the latter stages of testing also affected the oxidation state of the melter's glass product. Fe(II):Fe(III) ratio measurements were conducted colorimetrically on 32% and 35% SBW glasses in order to quickly assess the impact of changing reductant levels upon the chemical state of the glass product. These data suggest that SBW sugar concentrations as high as 154 g/L are adequate for maintaining acceptable glass oxidation conditions: Fe(II):Fe(total)<0.3. Slightly higher sugar concentrations might also be acceptable, but longer term testing at these higher concentrations and product testing of the more highly reduced glass would be necessary to optimize this parameter. However, all glass samples, even those that were highly reduced, were found, upon completion of toxicity characteristic leach procedure (TCLP) testing, to be compliant with all existing Resource Conservation and Recovery Act (RCRA) land-disposal limits.

The partitioning behavior of sulfur was assessed by conducting post-test analysis of all collected process streams. The results of this assessment indicate that 55% of the sulfur processed was incorporated within the melter's vitreous product, and 26% was condensed/collected as soluble sulfates by the off-gas system. It is believed that much of the remaining unaccounted for sulfur (~20%) is residing on the high-efficiency mist eliminator (HEME) fiber bed and/or in ejector venturi scrubber (EVS) insoluble material, as, historically, SO₂ generation rates in nonboosted, cold-lid melters are usually quite low. However, if all the accounted for sulfur is assumed to have been released to the environment as SO₂, the average noncondensable off-gas concentration of this gas would have been <20 ppm. This is much less than the detection limits of the available on-line instrument that failed to detect this effluent during RSM testing.

For the surrogate SBW melter feed used during RSM testing, CO_2 and NO_x (specifically NO) were the major non-condensable (~25°C) gases produced by the vitrification process. An analyzer's failed catalytic converter precluded NO_2 concentrations from being measured, although lower detection limits suggested that NO_2 :NO ratios as high as 1 might have been present. The combustible gases CO and H_2 were also detected, but at much lower concentrations: 0.15% and 0.025%, respectively. These concentrations are well below the lower flammability limits of these combustible gases, 4.65% for H_2 and 15.5% for CO.

The responses of the total hydrocarbon analyzer indicated that volatile organic compounds (VOCs) were present in melter exhaust throughout most periods of testing. Although the off-gas concentrations of these thermal byproducts of incomplete oxidation were relatively low (<100 ppm on the average), they were, not surprisingly, functionally related to SBW sugar loadings. It also appears that overfeeding and abrupt introduction of feed material into the hot melter are responsible for many of the VOC concentration spikes observed during RSM testing.

Melter condensed-phase effluents were also monitored during SBW melter testing. The melter's aerosol mass decontamination factors (DFs), as measured by non-isokinetic filter catches, were

determined for each of the distinct waste-loaded feeds processed. These melter aerosol mass DFs are fairly consistent and do not appear to have been significantly affected by the SBW waste-loading fraction. Their magnitudes (~50), moreover, are consistent with previous small-scale melter flowsheet tests that proved successful when tested on a larger scale.

Melter partitioning for individual feed components was also derived from off-gas sampling data. Due to low off-gas stream temperatures during SBW testing ($\sim 100^{\circ}$ C), essentially feed constituents (excluding C, N, H₂O, etc) were found to be primarily in a condensed state downstream of the film cooler. However, the overall reproducibility of all melter-feed component DFs is quite good, and the magnitudes of most DFs reported are reasonably close to expectations. On the other hand, the DFs recorded for the radiologically important semivolatiles Cs and Ru appear to be atypically low: 5 and 8, respectively.

A value of 10 to 20 is a much more typical DF value for Cs; however, unique chemical effects associated with SBW processing could be responsible for enhancing cesium loss rates. Similarly, Ru DF values also seem artificially depressed. Given the level of reductant used during all phases of testing, a DF value of 40 might normally be expected. However, analytical uncertainty is likely the cause of the latter DF anomaly, as detection limits are being approached in most samples. This also helps to explain the lack of agreement between analytical feed/glass data and corresponding Ru target values. Additional testing will, in time, resolve this apparent cesium loss rate anomaly, but higher levels of Ru will be needed in subsequent testing if reliable melter-performance values for this elements are to be obtained.

During SBW melter-flowsheet evaluation studies, 168-L of SBW simulated waste having a total mass of 210 kg were successfully processed by the RSM producing 22 L of glass having a total mass of 57 kg. Although vitrification results in both mass and volume waste reductions, only the volume-reduction parameter is meaningful since the major mass contributors to the SBW (H₂O and NO₃⁻) are nonvitrifiable, volatile species. On the other hand, since most of the hazardous and rad-waste SBW components can be incorporated and immobilized in the melter's vitreous product and tank waste volumes of SBW are a physical reality, volume reduction has important waste-disposal implications. During the current RSM test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

Acronyms

APEL Applied Process Engineering Laboratory

DF decontamination factor

DOE U.S. Department of Energy

DWPF Defense Waste Processing Facility

EPA U.S. Environmental Protection Agency

EVS ejector venturi scrubber

FY Fiscal Year

GC gas chromatograph

HEME high-efficiency mist eliminator

HEPA high-efficiency particulate air (filter)

HLW high-level waste

INEEL Idaho National Engineering and Environmental Laboratory

INTEC Idaho Nuclear Technology and Engineering Center

LFCM Liquid Fed Ceramic Melter

LOD loss on drying
LOI loss on ignition
MOG melter off-gas

NWCF New Waste Calcining Facility

PCT Product Consistency Test

PLC Programmable Logic Controller

PM particulate matter

PNNL Pacific Northwest National Laboratory

POG process off-gas

RCRA Resource Conservation and Recovery Act

RSM Research-Scale Melter SBW sodium-bearing waste

SCR silicon-controlled rectifier

TCLP toxicity characteristic leach procedure

TFF Tank Farm Facility

TOE total operating efficiency
VOC volatile organic compound

WCF Waste Calcining Facility

Acknowledgments

The authors would like to acknowledge the following people:

- PNNL and INEEL staff who performed laboratory work and RSM shift activities
- Wayne Cosby for editorial assistance
- Harry Smith for Technical Review
- E. William Holtzscheiter for management and guidance.

This study was funded by the U.S. Department of Energy's (DOE's) Office of Science and Technology, through the Tanks Focus Area, and the Office of Environmental Management through the Idaho National Environmental and Engineering Laboratory high-level waste program. This study was performed and documented as a collaborative effort by Pacific Northwest National Laboratory (operated for DOE by Battelle under Contract DE-AC06-76RL01830) and the Idaho National Environmental and Engineering Laboratory (operated for DOE by Bechtel, Babcox and Wilcox Incorporated under Contract DE-AC07-94ID 13223).

Contents

Summ	nary	iii
Acron	yms	vii
Ackno	owledgments	ix
1.0	Introduction	1.1
2.0	Test Objectives	2.1
3.0	RSM System Description	3.1
3.1	Melter	3.1
3.2	Feed System	3.5
3.3	Off-Gas Processing System	3.6
3.4	Off-Gas Sampling System	3.6
3.5	Data Acquisition and Process Control System	3.8
4.0	SBW Simulant, Melter Feed, and Product Glass	4.1
4.1	SBW Surrogate	4.1
4.2	Target Glass Composition	4.5
4.3	Glass Former and Chemical Additives	4.5
4.4	Melter Feed Characteristics	4.6
4.5	Product Glass Characteristics	4.7
4	4.5.1 Oxidation State Results	4.7
4	4.5.2 Compositional Data	4.10
4	4.5.3 TCLP Results	4.10
5.0	Discussion of Results	5.1
5.1	Processing Observations and Parameters	5.1
5.2	Operating Parameters	5.4
5	5.2.1 Process Temperatures	5.5
5	5.2.2 Process Pressures	5.5
5	5.2.3 Melter Electrical Data	5.9
5	5.2.4 EVS Condensate Tank, Film Cooler Injection Air	5.14
6.0	Melter Off-Gas Emission Characterization	6.1

6.	1	Gaseous Effluent	6.1
6.	2	Condensed Phase Effluents	6.6
	6.2.1	Aerosol Mass DFs	6.7
	6.2.2	Aerosol Elemental DFs	6.7
	6.2.3	Total Elemental DFs	6.10
	6.2.4	Process-Waste-Stream Composition	6.13
7.0	By	yproducts, Residuals, and Volume Reduction	7.1
7.	1	Molten-Salt-Phase Composition	7.1
7.	2	Off-Gas Line Deposits	7.1
7.	3	Process Statistics	7.4
7.	4	Sulfur Balance	7.4
8.0	Co	onclusions and Recommendations	8.1
App	endix	A: Test Plan for Vitrification Demonstration Tests of INEEL Sodium-Bearing Waste	A.1
App	endix	B: Test Instruction for Preparing 200 L of Sodium Bearing Waste Simulant	B.1
App	endix	C: RSM Feed Batching and Manual Data Sheets.	C.1
App	endix	D: Colorimetric Procedure for Determining Fe(II) to Total Iron Ratio	D.1
App	endix	E: Variable Process-Temperature Data Collected During the SBW Flowsheet Evaluation	sE.1
App	endix	F: Total Unquenched Melter Flow Rates	F.1
App	endix	G: Temporal Behavior of Melter Off-Gas Effluents	G.1
App	endix	H: Photographs of the Off-Gas Line Deposits	H.1

Figures

Figure 3.1.	Photograph of RSM Demonstration Unit	3.2
C	Research-Scale Melter Test Apparatus (Not shown is a high-efficiency particulate air A] filter that is installed downstream of the high efficiency mist eliminator [HEME])	3.3
Figure 3.3.	Schematic View of the Research-Scale Melter	3.4
Figure 3.4.	Schematic Arrangement of Off-Gas Sampling System Components	3.7
Figure 4.1.	Historical SBW Sugar Concentration and Glass Oxidation-State Values	4.10
Figure 5.1.	Operating Temperature Characteristics During Cold Cap Burn Off	5.2
Figure 5.2.	Processing History of Sequential RSM Feed Batches	5.2
Figure 5.3.	Overall Average RSM Processing Rate	5.3
Figure 5.4.	RSM Glass Accumulation Data	5.4
Figure 5.5.	Melter and Off-Gas Operating Pressures.	5.9
Figure 5.6.	RSM Electrode Voltage/Power Operating Characteristics	5.10
Figure 5.7.	RSM Electrode-Voltage/Glass-Resistance Properties	5.11
Figure 5.8.	RSM Electrode Voltage/Current Operating Characteristics	5.12
Figure 5.9.	EVS Condensate Tank, Film-Cooler Operating History	5.16

Tables

Table 3.1. RSM Dimensions and Operational Features	3.5
Table 3.2. RSM's Effluent Gas Analyzers	3.7
Table 4.1. INTEC TFF Tank WM-180 Waste and Simulant Compositions	4.2
Table 4.2. Stable Isotope Chemical Analog Surrogates	4.3
Table 4.3. SBW and PNNL Surrogate Compositions	4.4
Table 4.4. SBW Surrogate Physical Characteristics	4.5
Table 4.5. Target Glass Composition	4.5
Table 4.6. Melter Feed Glass-Former Additives and Equivalent Frit Composition	4.6
Table 4.7. Physical Properties of Surrogate SBW Melter Feeds	4.6
Table 4.8. Melter Feed Composition for Batch Samples RSM-01-1(-NM)	4.8
Table 4.9. SBW Feed, and Sugar Loadings Vs. Glass Oxidation State	4.9
Table 4.10. Oxide Composition of Vitrified SBW Melter Feeds	4.11
Table 4.11. TCLP Leachate Concentrations from SBW Product Glasses	4.12
Table 5.1. SBW Feeding and Glass Production Rates	5.4
Table 5.2. RSM's Operating Temperature Characteristics	5.6
Table 5.3. Melter Kiln, Pour Spout, and Canister Oven Temperatures	5.8
Table 5.4. RSM Electrode Circuit Operating Characteristics	5.12
Table 5.5. Specific Process Energy Requirements For SBW Feeds	5.14
Table 5.6. Operational Characteristics of Melter Kiln and Overflow Heaters	5.15
Table 6.1. Unquenched Melter Off-Gas Composition	6.2
Table 6.2. Calculated Melter Effluent Concentrations Before Film Cooler Dilution.	6.4
Table 6.3. Gross Melter Aerosol Emission Characteristics	6.7
Table 6.4. Composition of Melter Generated Aerosols and Melter Feed	6.8
Table 6.5. Elemental Melter DFs Associated With Aerosol Emissions	6.9
Table 6.6. Off-Gas Sampler Scrub Solution Composition (ppm)	6.11
Table 6.7. Total Individual Elemental Melter DF Values	6.12
Table 6.8. EVS Condensate Soluble Effluent Composition	6.14
Table 6.9. EVS and Off-Gas Sampler Total Melter DF Values	6.15

Table 6.10. HEME Aqueous Run-Off Composition	6.15
Table 7.1. Composition of Dissolved Molten Salt Samples	7.2
Table 7.2. Assumed Chemical Forms and Weight Contributions of Alkali-Earths	7.3
Table 7.3. Unnormalized Off-Gas Deposit Compositions	7.3

1.0 Introduction

Over several decades, operations at the Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL, formerly called the Idaho National Engineering Laboratory, INEL, and before that the Nuclear Reactor Testing Station, NRTS) has involved nuclear reactor testing, reprocessing of spent nuclear fuel, and the storage, treatment, and disposal of the resultant radioactive and mixed wastes generated. Liquid, acidic, and radioactive, high-level waste (HLW) and sodium-bearing waste (SBW) from spent fuel reprocessing operations has been temporarily stored at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). All of the stored HLW and some of the SBW have been calcined in the New Waste Calcining Facility (NWCF) and the earlier Waste Calcining Facility (WCF) to convert the liquid waste into a dry granular calcine that is safer to store. DOE determined to close the NWCF calciner in Fiscal Year (FY) 2000 rather than upgrade and permit this facility to meet new regulatory requirements, in part because even the calcine is not expected to meet long-term disposal requirements.

The TFF presently contains about 3.8x10⁶ L (1-million gal) of SBW that was not calcined. The SBW is an aqueous, highly acidic (1–3 molar nitric acid) solution containing dissolved and suspended radionuclides, heavy metals, and other species, including halogens. This waste is a listed, mixed waste, containing radionuclides, hazardous characteristics (corrosivity and characteristic metals) and small amounts of listed organic constituents. This liquid mixed waste, stored in tanks, does not meet current regulatory requirements for long-term storage or disposal.

In January 1990, the U.S. Environmental Protection Agency (EPA) issued to DOE a Notice of Noncompliance because the tank farm facility did not meet the secondary containment requirements of the Resource Conservation and Recovery Act (RCRA). As a part of the Settlement Agreement between DOE and the State of Idaho, the TFF tanks are to be taken out of service by December 31, 2012. An obvious element of the TFF tanks closure is the removal and treatment of the remaining SBW.

Several potential options have been proposed for treating the SBW. Of those considered, vitrification received the highest weighted score against the criteria used. Beginning in fiscal year 2000, the INEEL High Level Waste (HLW) program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility, in the event that vitrification is the preferred altnernative, for the SBW, based upon the liquid-fed melter technology. This program includes several separate activities that include, among others, waste-form development, process feed-stream design, and melter vitrification demonstration testing of the nonradioactive, surrogate SBW flowsheet.

This summary report documents the first of the melter flowsheet tests conducted in support of INEEL's vitrification facility design. Specifically, the Pacific Northwest National Laboratory's (PNNL's) Research-Scale Melter (RSM) was used to evaluate 1) the processing characteristics of the newly formulated SBW surrogate melter-feed stream, 2) the acceptability of various SBW to glass-

forming additive ratios, 3) the possible formation of a secondary sodium sulfate phase, 4) the effectiveness of sugar as a glass-oxidation-state modifier and a nitrate reductant, 5) the off-gas effluent-emission characteristics of the melter, and 6) the quality and durability of the process' vitreous wasteform product.

2.0 Test Objectives

The primary objective of RSM testing was to characterize the melter-process flowsheet based upon SBW waste and a target glass composition. The targeted vitreous-product composition was established from a series of laboratory crucible tests involving SBW surrogate material and suitable glass-forming additives that were chosen to maximize product glass waste loading. Although these crucible tests suggested that the solubility of waste constituent Na₂SO₄ would limit maximum achievable waste loadings, continuous feeding and dynamic processing conditions were needed to establish what this bounding condition would be. Indeed, all aspects of process-flowsheet evaluations require the use of such conditions.

Given that the scale of the RSM is ideally suited for conducting parametric flowsheet assessments of processing conditions and glass-product quality, the experimental objectives of the initial RSM test series involving INEEL's SBW were established to:

- 1. Determine the feasibility of vitrifying surrogate SBW without pretreatment to produce a regulatory acceptable borosilicate glass waste form by adding suitable glass-forming chemicals and an oxidation state modifier (sucrose).
- 2. Characterize the product glass, melter off-gas, and particulate matter (PM, material volatilized or otherwise entrained in the off-gas). This characterization includes determination of (a) amounts and elemental compositions of all products, (b) the fate of certain feed components (such as radionuclide surrogates, heavy metals, glass formers, carbon, nitrates, halogens, and sulfur), and (c) leachability (based on toxicity characteristic leach procedure [TCLP] testing) and oxidation state (based on the Fe+2/Fe^{total} ratio) of the product glass, and (d) properties of the off-gas and particulate matter.
- 3. Establish a maximum glass production rate based on stable operation at a maximum surrogate SBW loading and maximum feed rate.
- 4. Resolve whether melt rate or melter-processing conditions can be optimized by changing melter-operating conditions, such as reductant loading.
- 5. Determine surrogate SBW volume and mass reduction.
- 6. Evaluate power requirements as a function of surrogate SBW mass processed and product glass produced.

Testing objectives, sampling and data-recording requirements, quality assurance requirements, and system configuration are documented in the RSM Test Plan that was prepared and approved before the start of testing. A copy of the test plan is presented in Appendix A for reference.

3.0 RSM System Description

PNNL's RSM facility is located in the Applied Process Engineering Laboratory (APEL) building in Richland, Washington. Figure 3.1 is a photograph of the RSM system as it nominally appeared during SBW testing, and Figure 3.2 schematically illustrates the system components and their relationships to one another.

The RSM processing system provides a continuous, Joule-heated vitrification capability, which is key for

- developing process flowsheets
- characterizing relationships between feed composition and the properties of the final glass produced
- establishing the fate and behavior of process effluent.

This melter system's capability to produce glass in a continuous manner is also essential for modeling the behavior of a full-scale system. Moreover, the size of the RSM allows the impacts of process variables upon melter performance or glass quality to be quickly and efficiently evaluated without undue expense or waste generation.

3.1 Melter

The RSM itself is a small joule-heated melter that is capable of processing melter feed on a continuous basis. The body of the RSM is an Inconel® closed-ended cylinder lined with Alfrax® refractory and containing a Monofrax® K3 refractory melt cavity. An Inconel overflow tube discharges molten glass into a stainless steel canister. An electric kiln surrounds the melter body and minimizes heat loss from the melter body during operation, and auxiliary heaters are used to heat the melter's discharge section to facilitate pouring of the glass. The stainless steel glass receipt canister sits inside a smaller kiln maintained between 700°C and 900°C to promote uniform canister filling. A platform scale that supports the smaller kiln allows glass-canister accumulations to be monitored as necessary. Two top-entering Inconel 690 electrodes (7.6-cm square x 0.64-cm thick [3-in. square x ½-in. thick]) that are suspended in the glass supply joule-heating power to the RSM. The electrode's connecting tubular busbars also serve as thermowells that allow continuous measurement of the glass-pool temperatures. Figure 3.3 provides a cross-sectional view of the melter vessel illustrating its refractory makeup while Table 3.1 summarizes the RSM's dimensions and other operational features.



Figure 3.1. Photograph of RSM Demonstration Unit

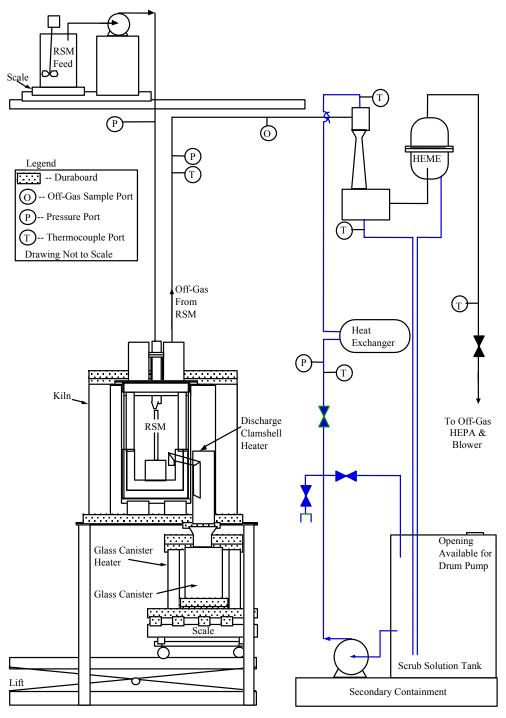


Figure 3.2. Research-Scale Melter Test Apparatus (Not shown is a high-efficiency particulate air [HEPA] filter that is installed downstream of the high efficiency mist eliminator [HEME])

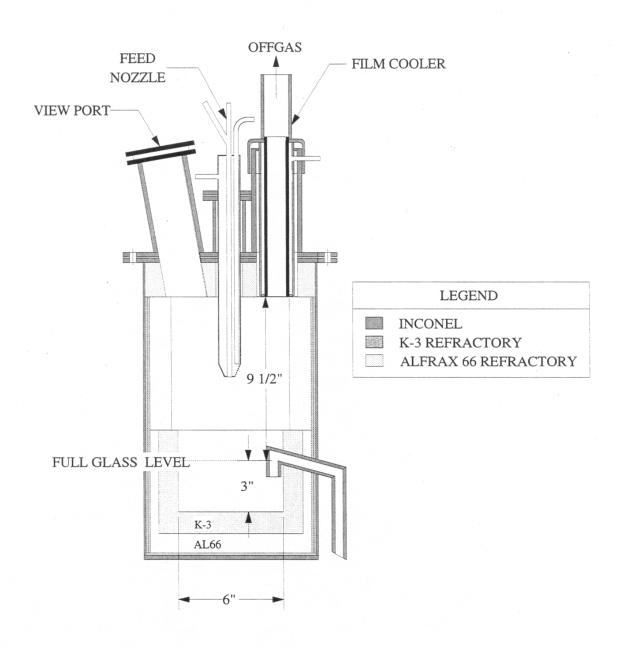


Figure 3.3. Schematic View of the Research-Scale Melter

Table 3.1. RSM Dimensions and Operational Features

Parameter	Value
Melter cavity diameter	15 cm
Melter cavity height	17 cm
Melter inside volume	4.5 L
Glass pool surface area	182 cm ²
Nominal glass depth	7.6 cm
Melter glass inventory volume	1.4 L
Nominal molten glass mass	3.6 kg
Glass turnover rate @ nominal feed rate	4.5 h
of 1.5 L/h of feed with 0.6 kg/L oxides	
Maximum operating temperature	1,200°C
Nominal operating temperature	1,150°C
Electrode Dimensions	7.6 cm x 7.6 cm
Electrode Material	Inconel 690
Electrode melt-cavity bottom clearance	0 cm
Electrode current (average)	90 A
Electrode voltage (average)	25 V
Electrode current density (average/maximum)	1.6/2.0 A/cm ²

3.2 Feed System

The melter-feed system is located on the elevated steel platform adjacent to the melter (see Figure 3.2.). The tank used during current testing was a conical bottom tank with a maximum capacity of 5.7 L (15 gal). The melter feed tank, variable-speed agitator, peristaltic feed pump, and valve-control station are attached to a steel pallet that allows the tank to be lifted from the platform with the use of a forklift. The tank itself is located within a secondary containment that sits upon a load-cell platform scale that is monitored by the RSM's process control and data-acquisition system. The record of changes in feed-tank weight with time provides for a direct measure of the melter mass-feeding rate.

A peristaltic pump, located in a stainless steel enclosure designed to contain any elastomeric pump line slurry leaks, was used to extract feed from the bottom drain of the agitated feed tank. The feed was pumped through a valve-control station that allowed feed to be either sampled or delivered to the water-cooled feed nozzle that extended through the melter lid into the melter's plenum. The valve station also permits feed lines to be flushed with water without resorting to disassembly. A computer/pump interface

allowed the pump's feeding rate to be controlled remotely, thus facilitating necessary adjustments required to maintain a steady melting process.

3.3 Off-Gas Processing System

Melter off-gas is treated by an off-gas treatment system consisting of a film cooler, ejector venturi scrubber (EVS), heat exchanger, HEME, and high efficiency particulate arrestor (also known as HEPA) filter (see Figure 3.2). The film cooler, located at the melter's exhaust port, injects room-temperature building air into the off-gas pipe to

- cool and solidify entrained vitreous matter to minimize pipe-wall particle adhesion
- speed aerosol transport to the EVS quench scrubber to minimize aerosol-settling losses in horizontal off-gas line (2 in.) pipe runs.

The EVS uses a caustic, high-pressure aqueous scrubbing liquor spray to contact the process exhaust stream in order to quench it and to remove steam, large-diameter aerosols, and some condensable and/or acid gases. A 94.6 L (25 gal) charge of fresh water adjusted to pH 10 with NaOH was put in the scrubbing liquor/condensate collection tank at the start of the test. Off-gas condensate and all collected solids were then allowed to accumulate within the condensate tank throughout the entire test, although the pH of this aqueous scrubbing media was always maintained between 9 and 12 by periodic NaOH additions. A water-cooled heat exchanger located in the EVS's spray circuit was used to maintain nominal room-temperature scrubbing liquor conditions.

The HEME uses a deep, regenerable fibrous-bed to remove both liquid aerosols generated by the high-pressure EVS spray and submicron condensed-phase aerosols that successfully penetrate the low-efficiency quench (EVS) scrubber. The demisted and relatively clean HEME exhaust is then treated with a certified HEPA filter to remove any significant remaining concentrations of aerosol matter from the process exhaust before it is released to the environment.

3.4 Off-Gas Sampling System

Process off-gas sampling during the current test was limited to characterizing the melter source. Melter effluents with significant room-temperature vapor pressures were nominally monitored continuously with gas analyzers, while discrete sampling campaigns were conducted to characterize condensed-phase effluents and condensable acid gases. The gas analyzers employed during RSM testing along with the gases they were designed to detect are summarized in Table 3.2.

The sample stream presented to each of these analyzers was extracted downstream of the film cooler but upstream of the EVS. A heated quartz filter close-coupled to the process off-gas (POG) extraction point, was used to remove condensed matter from the sample stream flow. Since the POG sample source was unquenched, the filtered sample stream was diluted (~90%) with argon gas to reduce the dew point of the gas below the ambient operating temperature conditions of the gas analyzers.

Table 3.2. RSM's Effluent Gas Analyzers

Analyzer	Targeted Effluent Gases
Gas Chromatograph	H ₂ , He, N ₂ , CO, NO, O ₂ , CO ₂ , & N ₂ O
Nitrogen Oxide	NO & NO ₂
Total Hydrocarbon	Volatile Hydrocarbons
Quadrupole Mass Spec	Survey Tool: HCl, H ₂ S, NO ₂ , SO ₂ , etc.

Discrete sampling for process-generated aerosols (condensed phase matter) was also conducted using a multicomponent sampling system composed of a sampling probe with an appropriately sized sampling nozzle, an aerosol collection device, a condenser to remove condensable vapors, and a series arrangement of four aqueous chemical gas scrubbers used to collect reactive non-condensable gases. A schematic arrangement of this sampling system's components is illustrated in Figure 3.4. Since all four gas scrubbers were immersed in an ice-bath container, the first chemical scrubber also served as the system's condenser.

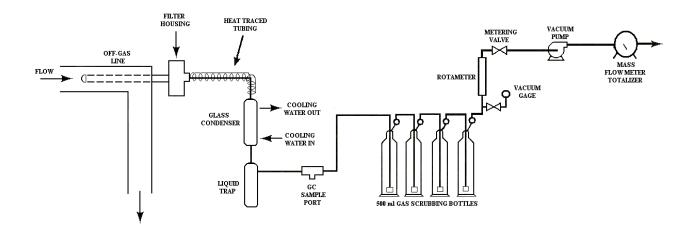


Figure 3.4. Schematic Arrangement of Off-Gas Sampling System Components

In operation, the sampling probe was inserted coaxially along the centerline of the off-gas pipe into the process off-gas line at an elbow between the film cooler and the EVS. The sampling nozzle diameter at the end of the sampling probe was chosen to allow isokinetic sampling conditions to be achieved with reasonable sampling flow rates. The heated filter assembly employed a quartz-filter media to quantitatively collect condensed effluents entrained in the unquenched melter exhaust stream. The filtered gas stream was subsequently quenched (32°C) and chemically washed to remove reactive gases by a series arrangement of two H₂SO₄ scrub solutions followed by a pair of NaOH solutions.

To establish isokinetic sampling conditions, the total off-gas flow rate has to be measured. During RSM testing, this was accomplished by injecting a helium tracer into the melter plenum at a fixed flow

rate (2 L/m) and measuring its resultant off-gas concentration with the online gas chromatograph discussed above. These POG flow rate data were also of fundamental importance in establishing effluent concentrations and emission rates.

3.5 Data Acquisition and Process Control System

The RSM is controlled and monitored with a Square D, SY/MAX® 400 Programmable Logic Controller (PLC). Operators interface with the PLC using a PC running FIX DMACS® software on a Microsoft NT platform that is serially linked to the PLC. FIX32 provides user-control inputs as well as history logging of the RSM system-process variables.

This data-acquisition and control system monitors and controls the electrodes, the melter and discharge canister kilns, the heater for the discharge section, and the peristaltic pump for the feed system. Data collected include the voltage and current for major electrical components, temperature at various locations in the system (e.g., molten glass, plenum space in melter, melter kiln, off-gas treatment system), pressures in the melter and across all off-gas system components, and the weight of the feed tank. Data are typically archived every minute, but are displayed at more frequent intervals to assist the operators.

4.0 SBW Simulant, Melter Feed, and Product Glass

The primary objective of the Liquid Fed Ceramic Melter (LFCM) waste-vitrification process is to isolate the toxic and/or hazardous elements and/or radionuclides from the environment. The vitrification technology achieves this by incorporating and thereby immobilizing these hazardous waste constituents within a high quality, durable glass matrix. To create a vitreous waste product, glass-forming chemicals have to be added to the waste before it can be vitrified (calcined and melted) in a high-temperature melter. However, to meet stringent waste-form durability criteria, an appropriate glass composition has to be formulated, and its chemical properties (multi-valent oxidation states) have to be carefully controlled.

During RSM testing of the SBW flowsheet, melter-feed material of specified waste loading was prepared in batches by mixing a preformulated, SBW stock solution/slurry with appropriate quantities of glass-forming chemicals to which sucrose reductant was added as a glass-oxidation-state modifier. The following discussion provides detailed information concerning these feed-stream constituent additives.

4.1 SBW Surrogate

The SBW surrogate solution prepared for the RSM testing was, with few exceptions, physically and chemically representative of the characterized material contained in INTEC TFF tank WM-180. The make-up procedure was prepared based on information provided by INEEL's Dr. Jerry Christian. The procedure prepared and followed for the RSM test is provided in Appendix B. Table 4.1 compares the defined target SBW composition with the surrogate material used during RSM testing. As is clear from these tabular data, the surrogate recipe does, however, exclude the chemically hazardous constituents As, Be, and Hg and all unstable radioactive components. Some of these radionuclides were, nevertheless, represented by their stable isotopes or chemical analog, but not necessarily at SBW reference concentrations. Table 4.2 summarizes the major radionuclides present in SBW and identifies the stable isotope/surrogate substitutes used to represent them.

Following the waste makeup procedure presented in Appendix B, 200 L (53 gal) of SBW surrogate was prepared, and its resultant composition is compared to the defined SBW target in Table 4.3. The comparative data suggest that the prepared surrogate waste solution may have been about 11% more dilute than expected. Recognizing that the reported SBW analytical data were based on a single analysis, the make-up procedure and chemical certifications were reviewed to gain assurance that sufficient quantities of each material were indeed added to the SBW simulant mixture. Based on these analytical data and a review of the SBW preparation documentation, it was determined that the surrogate material prepared in support of the RSM's SBW flowsheet adequately represented the INTEC TFF waste source, and no chemical adjustments were determined to be necessary.

Table 4.1. INTEC TFF Tank WM-180 Waste and Simulant Compositions

INEEL Waste Definition ^(a) Simulant RSM				
Element	Reagent	Con (M)	SBW?	
Aluminum	Al(NO ₃) ₃ *9H ₂ O	6.3E-01	Yes	
Arsenic	As_2O_3	2.4E-4		
Barium	Ba(NO ₃) ₂	5.3E-05	Yes	
Beryllium	BeF_2	7.3E-6		
Boron	H ₃ BO ₃	1.2E-2	Yes	
Cadmium	Cd(NO ₃) ₂ *4H ₂ O	7.1E-4	Yes	
Calcium	Ca(NO ₃) ₂ *4H ₂ O	4.5E-2	Yes	
Cerium	Ce(NO ₃) ₃ *6H ₂ O	4.5E-5	Yes	
Cesium	CsNO ₃ (Simu only)	1.65E-3	Yes	
Chromium	Cr(NO ₃) ₃ *5H ₂ O	3.2E-3	Yes	
Cobalt	Co(NO ₃) ₂ *6H ₂ O	1.8E-5	Yes	
Copper	Cu(NO ₃) ₂ *3H ₂ O	6.6E-4	Yes	
Gadolinium	Gd(NO ₃) ₃ *5H ₂ O	1.7E-4	Yes	
Iron	Fe(NO ₃) ₃ *9H ₂ O	2.1E-2	Yes	
Lead	$Pb(NO_3)_2$	1.2E-3	Yes	
Lithium	LiNO ₃	3.2E-4	Yes	
Magnesium	Mg(NO ₃) ₂ *6H ₂ O	1.1E-2	Yes	
Manganese	$Mn(NO_3)_2$	1.3E-2	Yes	
Mercury	Hg(NO ₃) ₂ *H ₂ O	1.9E-3		
Molybdenum	Mo in HNO ₃	1.8E-4	Yes	
Nickel	Ni(NO ₃) ₂ *6H ₂ O	1.4 ^E -3	Yes	
Potassium	KNO ₃	1.9E-1	Yes	
Ruthenium	RuCl ₃	1.2E-4	Yes	
Sodium	NaNO ₃	1.9E+0	Yes	
Strontium	$Sr(NO_3)_2$	1.1E-4	Yes	
Titanium	TiCl ₄	5.5E-5	Yes	
Uranium	$UO_2(NO_3)_2*6H_2O$	3.2E-4		
Zinc	$Zn(NO_3)_2*6H_2O$	9.9E-4	Yes	
Zirconium	ZrF ₄	6.0E-5	Yes	
Chloride	HCl	2.8E-2	Yes	
Fluoride	HF	3.4E-2	Yes	
Iodide	KI	1.3E-4	Yes	
Nitrate	HNO ₃	8.6E-1	Yes	
Phosphate	H ₃ PO ₄	1.3E-2	Yes	
Sulfate	H ₂ SO ₄	5.1E-2	Yes	

(a) Unstable elements of insignificant mass not included

Beyond chemical composition, the physical properties of the SBW surrogate were also measured. Specifically, density and weight loss on ignition (LOI) and equivalent oxides/L measurements were conducted on the SBW surrogate and resulting melter feed. These values along with the defined SBW oxide loading value are summarized in Table 4.4. The measured oxide loading data also suggest a slightly diluted SBW surrogate, but only by ~6%.

Table 4.2. Stable Isotope Chemical Analog Surrogates

	Substitute/
SBW Radio-	-Chemical-
Nuclide	Surrogate
^{3}H	Stable Isotope
⁶⁰ Co	Stable Isotope
⁹⁰ Sr	Stable Isotope
⁹⁹ Tc	
^{129}I	Stable Isotope
¹³⁴ Cs	Stable Isotope
¹³⁷ Cs	Stable Isotope
¹⁵⁴ Eu	Cerium
^{234}U	
²³⁵ U	
^{236}U	
^{238}U	
²³⁷ Np	
²³⁸ Pu	
²³⁹ Pu	
²⁴¹ Am	

Table 4.3. SBW and PNNL Surrogate Compositions

	SBW Conc (ppm)*		
Element	Target	Surrogate	Dev (%)
Al	16900	13100	-22.7
В	126	120	-4.4
Ba	7	7	-0.3
Ca	1820	1800	-0.8
Cd	80	76	-5.6
Ce	6		
Со	1		
Cr	165	146	-11.6
Cs	216		
Cu	42	35	-17.5
Fe	1140	1000	-12.7
Gd	26		
K	7240	6550	-9.6
Li	2	2	-25.8
Mg	276	240	-13.1
Mn	731	610	-16.6
Mo	18		
Na	44600	40800	-8.6
Ni	82		
Р	400	335	-16.5
Pb	255	213	-16.6
Ru	12		
Sr	10	9	-5.6
Ti	3		
Zn	65	61	-6.5
Zr	5		
I-	16		
Cl	1010		
SO ₄ ⁼	4900	4115	-16.0
NO ₃	317000		
F-	870		

^{* ---,} element not detected/measured.

Table 4.4. SBW Surrogate Physical Characteristics

Trial	Sp. Grav.	LOI (%)	Oxides (g/L)
SBW -1	1.25	91.3	109
SBW-2	1.25	91.5	106
Avg	1.25	91.4	107
		SBW Targe	$\mathbf{t} = 114$

4.2 Target Glass Composition

The targeted vitreous product composition for the current RSM flowsheet evaluation was established from a series of laboratory crucible tests involving SBW surrogate material and suitable glass-forming additives that were chosen to maximize product glass waste loading. Since these crucible tests suggested that the glass solubility of waste constituent Na₂SO₄ would limit maximum achievable waste loadings, a highly durable glass with the highest possible sulfur solubility was formulated for melter testing. The target composition of this glass, designated SBW-9, is summarized in Table 4.5, where only major constituents are identified

Table 4.5. Target Glass Composition

Oxide	Wt%
B_2O_3	10.53
CaO	4.13
Fe_2O_3	7.37
Li ₂ O	3.47
Na ₂ O	15.64
SiO ₂	45.16
Balance	13.70

4.3 Glass Former and Chemical Additives

To produce the target glass composition for any specified waste-loading value, calculated quantities of glass-forming chemicals were blended with a prespecified batch volume of SBW solution. The actual glass-forming chemicals employed during this feed-batching operation are summarized in Table 4.6 along with their corresponding oxide-equivalent form. The proportions of each of these equivalent oxide forms, which have been normalized to 100%, define a frit composition that could be directly blended, in appropriate proportions, with the SBW to create the same target glass. However, individual chemical additives were used during all RSM batching operations. The batching sheets used to prepare the melter feeds that were tested appear in Appendix C along with the other test-data logging sheets.

Table 4.6. Melter Feed Glass-Former Additives and Equivalent Frit Composition

Frit	Oxio	le	Glass For	Mass Ratio		
Oxide	Wt%	MW	Chemical	MW	(g-chem /g-frit)	
B_2O_3	15	69.6	H ₃ BO ₃	61.8	0.27	
Fe ₂ O ₃	10	159.7	Fe ₂ O ₃	160	0.10	
Li ₂ O	5	29.9	LiOH*H ₂ O	41.9	0.14	
SiO ₂	64	60.1	SiO_2	60.1	0.65	
CaO	6	56.1	Ca(OH) ₂	74.1	0.066	

As mentioned above, an organic reductant, sucrose, was added to all the feed batches to control the oxidation states of multivalent elements in the product glass. Although reductant is also useful for denitrating the feed during melter processing, the maximum reductant concentration that can be effectively used is limited by the oxidation state of the product glass. Excess reductant will tend to reduce not only nitrates, but also glass oxides. The glass oxidation state is usually characterized by the fraction of iron in its +II valence state, which should be maintained under 0.3. The maximum concentration for sucrose, based on crucible tests, was recommended to be 135 g of sugar per liter of surrogate SBW. This maximum value is about 64% of the amount needed to stoichiometrically reduce all feed-stream nitrates to N₂. While this baseline sugar concentration was used during initial phases of testing, reductant loadings were parametrically varied throughout the test to assess the impact of reductant concentration upon processing rates, nitrogen oxide emissions, and glass-oxidation state.

4.4 Melter Feed Characteristics

Melter-feed samples were collected from each feed batch prepared during the SBW melter test. These feed samples were subsequently analyzed to determine their physical properties and chemical composition. Table 4.7 presents the physical properties associated with all the feeds of differing waste loadings. Also presented in this table, for comparison purposes, are the corresponding total-oxide target values derived from the SBW and the target-glass composition data previously discussed as well as the batch chemical masses.

Table 4.7. Physical Properties of Surrogate SBW Melter Feeds

		Weight I	Loss % Total Oxide/Liter (g)			
SBW Wt%	Sp. Grav.	LOD	LOI	LOI	Batch Wts	Target
30	1.37	62.4	42.0	299	320	326
32	1.34	64.2	42.7	274	297	306
35	1.34	62.6	60.8	Reactive	272	280

Feed total-oxide values derived from laboratory LOI tests appear to be biased low relative to targeted values, but are all within 10% of expectations. The above data suggest that the glass-former additives create a \sim 15% SBW volume change. A larger feed-to-waste volume ratio could easily explain the observed bias. The total average oxide loading of the feed calculated from all the feed processed and the glass produced throughout the duration of RSM testing, 292 g/L, also agrees well with all measured and derived values listed in Table 4.7.

The oxide-equivalent compositions of each of the feed batches prepared during RSM testing are summarized in Table 4.8 and compared to target values based upon the previously defined waste and glass-composition values. All of the major feed component concentrations were reasonably consistent throughout the nominal 4 days of testing. There were no trends or large variations of importance, and most components were close to their target values. However, due to detection-sensitivity limitations, the weight fractions of several trace constituents could not be reported, and the values of those that could appear to be overestimated. However, since the targeted concentrations of these trace constituents are so low, the bulk chemicals used cannot be overlooked as unintended trace-element contributors; consequently, these greater-than-expected as-found values will be adopted as baseline data.

Apart from the trace constituents just discussed, the overall melter-feed composition data agreed quite well with feed-formulation expectation values. In general, it appears there was good control over feed composition throughout the entire test period, which will be corroborated when the glass data are subsequently discussed.

4.5 Product Glass Characteristics

Glass-grab samples were collected from each RSM pour, which nominally occurred every 2 h. Fe(II):Fe(III) ratio measurements were conducted throughout the later part of the melter-testing period to quickly assess the impact of changing reductant levels upon the chemical state of the glass product. In addition, representative glass samples produced from each of the feeds of differing waste loadings were compositionally analyzed and subjected to toxicity characteristic leach procedure (TCLP) testing. The results of these measurements will now be discussed.

4.5.1 Oxidation State Results

As previously discussed (see Section 4.3), the SBW sucrose concentration was an experimental parameter during RSM testing. The purpose of varying the SBW reductant was to establish an optimum concentration that would maximize nitrate destruction while maintaining acceptable glass-oxidation-state conditions. To accomplish this, oxidation states were promptly measured for glass samples taken before and after melter-feed reductant levels were altered.

Table 4.8. Melter Feed Composition for Batch Samples RSM-01-1(-NM)

	Wt%													
	30% SBW			32% SBW			35% SBW							
Oxide	-08	-13	Avg	Trgt	-29	-35	Avg	Trgt	-49	-66	-75	-93A	Ave*	Trgt
Al_2O_3	8.120	6.680	7.400	8.370	6.820	7.270	7.040	8.930	7.850	7.990	8.750	7.970	8.140	9.770
B_2O_3	13.500	14.800	14.200	10.600	10.300	11.100	10.700	10.300	9.730	9.370	9.810	9.570	9.620	9.870
BaO	0.004	0.004	0.004	0.002	0.005	0.005	0.005	0.002	0.004	0.005	0.065	0.005	0.020	0.002
CaO	3.640	2.910	3.270	4.160	3.330	3.000	3.170	4.110	3.220	3.200	3.060	3.240	3.180	4.020
CdO	0.027	0.022	0.025	0.024	0.024	0.024	0.024	0.026	0.025	0.018	0.026	0.016	0.021	0.028
Ce_2O_3				0.002				0.002						0.002
Co ₂ O ₃	0.016	0.015	0.016	0.0004	0.015	0.016	0.016	0.0004	0.016	0.015	0.017	0.016	0.016	0.0005
Cr ₂ O ₃	0.072	0.058	0.065	0.063	0.067	0.065	0.066	0.067	0.069	0.069	0.078	0.070	0.071	0.073
Cs ₂ O	0.046	0.049	0.048	0.060	0.052	0.047	0.049	0.064	0.044	0.050	0.040	0.041	0.044	0.070
CuO				0.014				0.015	0.005	0.004	0.005	0.003	0.004	0.016
Fe ₂ O ₃	8.730	7.140	7.930	7.430	7.440	7.990	7.720	7.260	7.180	6.630	7.360	6.610	6.950	7.000
Gd_2O_3	0.022	0.016	0.019	0.008	0.020	0.018	0.019	0.008	0.018	0.025	0.025	0.017	0.021	0.009
K ₂ O	2.640	2.220	2.430	2.280	2.250	2.380	2.310	2.430	2.510	2.560	3.200	2.700	2.750	2.660
Li ₂ O	4.510	3.870	4.190	3.500	3.470	3.720	3.590	3.400	3.690	3.690	3.770	3.670	3.700	3.250
MgO	0.175	0.144	0.160	0.120	0.154	0.159	0.156	0.128	0.166	0.173	0.187	0.166	0.173	0.140
MnO	0.309	0.250	0.280	0.247	0.276	0.284	0.280	0.263	0.308	0.308	0.354	0.312	0.320	0.288
MoO_3	0.012	0.010	0.011	0.007	0.012		0.006	0.007	0.012	0.014	0.014	0.012	0.013	0.008
Na ₂ O	18.100	16.200	17.100	15.700	18.600	16.500	17.500	16.800	19.300	19.900	14.900	18.900	18.200	18.400
NiO				0.027				0.029						0.032
P_2O_5	0.063	0.062	0.063	0.240	0.062	0.041	0.051	0.256	0.081	0.105	0.095	0.094	0.094	0.280
PbO	0.091	0.074	0.083	0.072	0.080	0.080	0.080	0.077	0.085	0.084	0.127	0.085	0.095	0.084
RuO_2	0.010	0.008	0.009	0.004	0.012	0.010	0.011	0.004	0.013	0.015	0.013	0.012	0.013	0.005
SO_3	1.290	1.050	1.170	1.070	1.250	1.170	1.210	1.140	1.310	1.320	1.460	1.830	1.360	1.250
SiO ₂	38.600	44.400	41.500	45.500	45.800	46.100	45.900	44.200	44.300	44.400	46.600	44.400	44.900	42.300
SrO	0.007	0.007	0.007	0.003	0.008	0.007	0.007	0.003	0.007	0.007	0.008	0.007	0.007	0.004
TiO ₂	0.016	0.017	0.017	0.001	0.018	0.018	0.018	0.001	0.019	0.017	0.021	0.018	0.019	0.001
ZnO	0.022	0.018	0.020	0.021	0.020	0.020	0.020	0.023	0.022	0.022	0.025	0.022	0.023	0.025
ZrO_2				0.002				0.002				0.243	0.061	0.002

^{*} RSM-01-1-93A not included in average, as batch contained 140% SBW sulfur content!

A chemical method for measuring a Fe(II) complex colorimetrically at a wavelength of 515 Om was used to establish the vitreous iron fraction in the +II valance state. This is accomplished by dissolving a powered glass sample in H₂SO₄ and HF, buffering the resultant solution with sodium acetate/boric acid solution containing o-phenanthroline complexing agent, and conducting an Fe(II)-specific absorbance measurement at 515 Om. Ascorbic acid is subsequently used to reduce all remaining iron in the dissolved sample to the Fe(II) state, which allows the total Fe to be measured by a subsequent absorption measurement. These results allow the fraction of iron in the +II valence state in the glass sample to be directly determined. The detailed procedure used for these measurements is reproduced in Appendix D.

The glass oxidation state results, which were only obtained for 32% and 35% SBW glasses using this colorimetric procedure, are summarized in Table 4.9 along with corresponding SBW sugar loading values. The historical SBW sugar-loading and glass-oxidation-state results for the RSM test are also displayed graphically in Figure 4.1. These data suggest that SBW sugar concentrations as high as 154 g/L are adequate for maintaining acceptable glass-oxidation conditions. Slightly higher sugar concentrations might also be acceptable, but longer term testing at these higher concentrations and product testing of the more highly reduced glass would be necessary to optimize this parameter. It should be noted that the variation in Fe(II) percentage exhibited by 32 and 35 wt% glasses produced with a SBW sugar loading of 135 g/L is not considered significant, as variabilities in this parameter of up to ±2% are normally observed.

Table 4.9. SBW Feed, and Sugar Loadings Vs. Glass Oxidation State

			Sugar	
Sample #	Date/Time	%SBW	(g/L)	%Fe(II)
RSM-1-01-30	01/31/01 05:16	32	135.0	1.5
RSM-1-01-39	01/31/01 14:20	32	135.0	1.6
RSM-1-01-53	02/01/01 08:50	35	135.0	0.2
RSM-1-01-58	02/01/01 14:15	35	135.0	0.3
RSM-1-01-64	02/01/01 19:40	35	135.0	0.5
RSM-1-01-69	02/01/01 22:21	35	183.5	12.7
RSM-1-01-77	02/02/01 05:34	35	154.5	5.8
RSM-1-01-78	02/02/01 07:55	35	154.5	2.3
RSM-1-01-79	02/02/01 12:30	35	165.6	1.9
RSM-1-01-80	02/02/01 13:25	35	165.6	2.9
Not Assigned	02/02/01 14:35	35	165.6	2.7
RSM-1-01-83	02/02/01 16:22	35	177.0	2.8
RSM-1-01-85	02/02/01 17:40	35	177.0	7.7
RSM-1-01-87	02/02/01 18:34	35	196.7	13.8
RSM-1-01-89	02/02/01 19:15	35	196.7	23.3
RSM-1-01-92	02/02/01 20:18	35	196.7	45.0

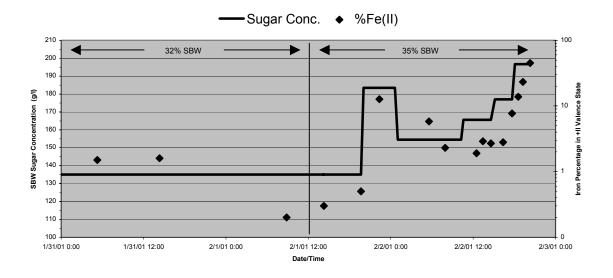


Figure 4.1. Historical SBW Sugar Concentration and Glass Oxidation-State Values

4.5.2 Compositional Data

Glass-product compositional data associated with all melter processed feeds of differing waste loadings are summarized in Table 4.10 along with their corresponding target values. All major oxide constituents compared quite favorably with their respective target values. However, like the feed-composition data discussed earlier, several trace constituents were not reported due to detection sensitivity limitations and others that could were greater than expectations presumably due to unintended contributions from the bulk chemicals used. The classic volatiles/semi-volatiles feed components (e.g., B, alkalis, etc), with the possible exception of S, do not appear to have partitioned significantly to the process exhaust. Partitioning values or melter DFs will be discussed in a later section dealing with offgas emission characterization. The average specific gravities of the 30%, 32%, and 35 % SBW glasses were determined to be 2.60, 2.61, and 2.61, respectively.

4.5.3 TCLP Results

Representative glass samples generated by all SWB feeds processed during the January 2001 RSM campaign were subjected to EPA's TCLP test. The results obtained from the TCLP testing are summarized in Table 4.11.

All analytical results obtained from these tests were below detection limits except for Pb in one of the 35% SBW glasses tested. The sample exhibiting the positive Pb result was obtained at the end of RSM testing when the most highly reduced process glass was produced. Specifically, this glass sample,

RSM-01-1-92, was obtained at the very end of the test after the RSM had processed 12 L (3 gal)of feed-containing SBW sugar loadings of 197g/L. Referring to Table 4.9 and Figure 4.1 in the previous section, the %Fe(II) in this particular sample was 45%. Recognizing, as previously discussed, that glasses containing toxic constituents become measurably less durable when their %Fe(II) values are >30%, the above result is less surprising than predictable. It should be noted, however, that even at this highly reduced state, this glass still conforms with all existing RCRA land-disposal limits.

Table 4.10. Oxide Composition of Vitrified SBW Melter Feeds

				Wt	:%			
	Startup	30% S	BW	32% \$	SBW	35	5% SBW	7
Oxide	RSM-4	RSM-21	Target	RSM-44	Target	RSM-72	RSM-92	Target
Al_2O_3	7.000	8.070	8.370	8.580	8.930	9.670	9.660	9.770
B_2O_3	11.900	10.800	10.600	10.400	10.300	9.840	9.990	9.870
BaO	0.009	0.006	0.002	0.007	0.002	0.007	0.007	0.002
CaO	1.620	3.400	4.160	3.550	4.110	3.480	3.490	4.020
CdO	0.007	0.021	0.024	0.024	0.026	0.021	0.015	0.028
Ce_2O_3			0.002		0.002			0.002
Co ₂ O ₃							0.017	
Cr ₂ O ₃	0.101	0.114	0.063	0.159	0.067	0.178	0.143	0.073
Cs_2O	0.013	0.033	0.060	0.036	0.064	0.041	0.039	0.070
CuO	0.006	0.007	0.014	0.006	0.015	0.012	0.007	0.016
Fe_2O_3	10.200	8.070	7.430	7.680	7.260	7.370	7.300	7.000
Gd_2O_3			0.008		0.008			0.009
K_2O	4.190	2.460	2.280	2.210	2.430	2.550	2.310	2.660
Li ₂ O	3.460	3.560	3.500	3.380	3.400	3.360	3.150	3.250
MgO	0.645	0.218	0.120	0.192	0.128	0.197	0.225	0.140
MnO	0.621	0.311	0.247	0.298	0.263	0.321	0.318	0.288
MoO_3	0.013		0.007		0.007			0.008
Na ₂ O	10.600	15.400	15.700	16.300	16.800	17.800	18.200	18.400
NiO	0.168	0.080	0.027	0.688	0.029	0.090	0.100	0.032
P_2O_5	0.608		0.240		0.256	0.117		0.280
PbO	0.046	0.090	0.072	0.090	0.077	0.103	0.095	0.084
RuO_2	0.031	0.033	0.004	0.031	0.004	0.024	0.035	0.005
SO_3	0.216	0.679	1.070	0.664	1.140	0.697	0.885	1.250
SiO_2	44.300	46.300	45.500	45.600	44.200	44.000	43.900	42.300
SrO	0.255	0.033	0.003	0.016	0.003	0.013	0.012	0.004
TiO ₂	0.560	0.073	0.001	0.041	0.001	0.034	0.029	0.001
ZnO	0.010	0.018	0.021	0.019	0.023	0.022	0.022	0.025
ZrO_2	3.360	0.276	0.002	0.060	0.002	0.119	0.044	0.002

Table 4.11. TCLP Leachate Concentrations from SBW Product Glasses

	Limit	Concentration (µg/cc)								
Element	μg/cc	30% SBW	32% SBW	35% SBW	35% SBW					
Barium	100	< 0.2	< 0.2	< 0.2	< 0.2					
Chromium	5	< 0.05	< 0.05	< 0.05	< 0.05					
Lead	5	< 0.2	< 0.2	< 0.2	0.37					
Cadmium	1	< 0.05	< 0.05	< 0.05	< 0.05					

5.0 Discussion of Results

RSM testing of INEEL's SBW flowsheet was initiated on January 29, 2001, and concluded on February 2, 2001. During this 120-h period, melter feeds with three different SBW waste loadings (30, 32, and 35 Wt%) were successfully processed. In addition, the impacts of varying reductant concentrations (135, 155, 166, 177, 184, and 197 g/L) upon processing rates, molten salt accumulations, and glass oxidation state [Fe(II):Fe(III), see Sect 4.5.1] were evaluated. The effects of a 40% increase in SBW sulfate concentration upon melter performance and molten salt phase accumulations were also assessed during the final hours of melter testing. The observations and experimental test results derived from all phases of SBW melter testing will now be discussed.

5.1 Processing Observations and Parameters

The melting kinetics of all feeds processed, irrespective of their SBW waste loading, was found to be nominally limited to liquid boil-off rates. That is, after dry out, residual melter-feed constituents were found to be almost immediately incorporated into the molten vitreous pool. There is very little evidence, during the processing of the SBW melter feed material, for the presence of a conventional solid cold cap composed of dried feed and calcine. Figure 5.1 illustrates how quickly the melter plenum temperature rises when feeding is interrupted. The time period between feed interruption and the rise in plenum temperature is nominally equivalent to the boil-off period of the melter's feed pool.

Since boiling occurs across the entire feed pool, the prospect of creating a process upset by cold-cap bridging of the melt pool was not ever a serious threat during SBW melter testing. However, feeding rates were lower at the beginning of RSM testing due to the lack of a significant salt phase that can facilitate feed-to-glass conversion and a healthy respect for the usual consequences associated with melter over feeding conditions. Figure 5.2 presents melter-feeding rates recorded for each of the feed batches prepared during RSM testing. These data reflect the average rates observed during active feed-processing periods. Prolonged non-feeding time intervals have been eliminated from these data so melter-processing rates could be cleanly extracted.

As explained earlier, the \sim 50% increase in melter feeding rate between the beginning and end of SBW melter testing had much more to do with operator conservatism than feed-stream characteristics. In other words, the fact that 35 wt% feeds were processed faster than those of lower waste-loading feeds has a lot to do with the sequencing of the feed formulations processed. However, the gradual accumulation of a molten salt phase that facilitated heat-transfer rates and the increased sugar content that provided additional thermal energy release also contributed to the enhanced processing rates observed during the latter stages of melter testing.

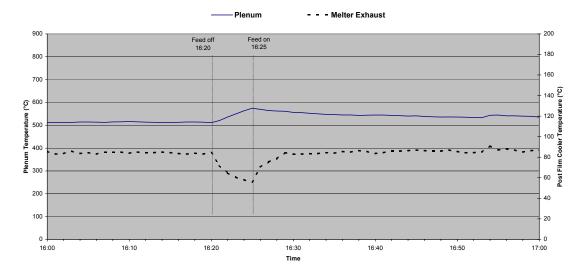


Figure 5.1. Operating Temperature Characteristics During Cold Cap Burn Off

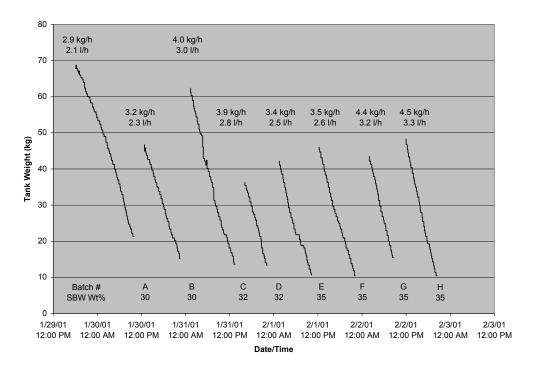


Figure 5.2. Processing History of Sequential RSM Feed Batches

By combining all feed-batch dropout data, an average melter feeding rate for all SBW feeds over the entire processing campaign (feeding and nonfeeding) can be graphically derived as shown in Figure 5.3. The fact that the average overall feeding rate is significantly less than the batch rates previously described is due almost entirely to nonfeeding periods associated with feed-batch preparations. A much higher process efficiency (total operating efficiency [TOE]) would result if batch preparation down times were excluded for these data. Table 5.1 summarizes all the graphical feeding rate data previously discussed.

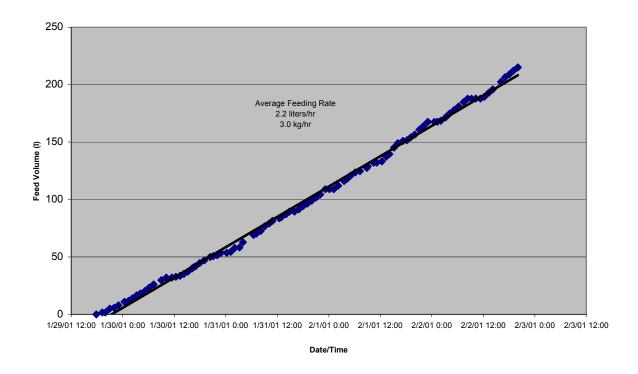


Figure 5.3. Overall Average RSM Processing Rate

Also included in Table 5.1 are area-normalized glass-production rates derived from the nominal total oxide loading of the feed (300 g/L), the glass pool surface area, and the corresponding melter feeding rates. These values comfortably exceed the reference (cold-lid) LFCM design production rate of 4 lbs/h/ft² that is often quoted and used for flowsheet and equipment-sizing estimates. Indeed, this reference normalized-production rate is even exceeded when projections are based upon the overall average feeding rate that is inclusive of all idle batching periods. This derived overall average-production-rate value also agrees fairly well with the actual glass-accumulation information that was manually recorded throughout the duration of the test if we take into account the inherent bias introduced by glass-sampling activities. These glass accumulation data are summarized in Figure 5.4.

Table 5.1. SBW Feeding and Glass Production Rates

Feed	SBW	Feedi	ing Rate	Glass
Batch	Wt%	L/h	kg/h	Lbs/h/ft ²
A	30	2.1	2.9	7.1
В	30	2.3	3.2	7.7
С	32	3.0	4.0	10.1
D	32	2.8	3.9	9.4
Е	35	2.5	3.4	8.4
F	35	2.6	3.5	8.8
G	35	3.2	4.4	10.8
Н	35	3.3	4.5	11.1
	All	2.2	3.0	7.4

50 Average Production Rate 0.52 kg/hr 5.8 lbs/hr/ft² 40 Cumulative Glass Mass (kg) 20 10 1/29/01 12:00 1/30/01 0:00 1/30/01 12:00 1/31/01 0:00 1/31/01 12:00 2/1/01 0:00 2/1/01 12:00 2/2/01 0:00 2/2/01 12:00 2/3/01 0:00 Date/Time

Figure 5.4. RSM Glass Accumulation Data

5.2 Operating Parameters

The primary functional indicators of the RSM processing system are temperatures (glass melt, melter plenum space, and post-film cooler off-gas stream), pressure (plenum, off-gas), and melter electrical

values (electrode current and voltage). The process data relating to these operating parameters will now be discussed.

5.2.1 Process Temperatures

During RSM testing, the temperatures of the following process items were routinely logged:

- Glass melt
- Melter Plenum
- Post film-cooler off-gas flow
- EVS scrub solution
- EVS off-gas exhaust.

Table 5.2 summarizes the maximum, minimum, and average temperatures of the melter's glass, plenum, and off-gas stream during the active processing periods for each melter feed batch (see also Figure 5.2). Also presented in this table are the standard deviations associated with the average temperatures listed. The magnitude of temperature variations about the mean should be indicative of overall batch-processing stability. Table 5.3 provides similar daily tabular data for the melter's kiln, overflow spout, and canister oven.

All variable process-temperature data collected during the SBW flowsheet evaluations are graphically presented in Appendix E using various logical groupings. The pairing of melter plenum and post-film cooler off-gas temperature traces reveals a novel mirror image symmetry (inverse relationship), which is not necessarily intuitive, but nevertheless, logical. Unlike the plenum and melter off-gas (MOG) temperatures, the temperature variations of post-film cooler off-gas and EVS exhaust temperatures are, as expected, highly correlated. Although the temperature history of the EVS scrubbing liquor is correlated with the MOG temperature, it provides very little direct process information since its responses are severely damped by its large volumetric mass and the influences of its water-cooled heat exchanger.

5.2.2 Process Pressures

Melter and differential off-gas system pressures were recorded throughout the duration of the RSM test. Specifically, the process pressures recorded were

- Plenum gauge pressure
- Film cooler pressure drop
- EVS pressure drop
- HEME pressure drop.

A graphical summary of these operating parameters extracted from the hourly process log is presented in Figure 5.5. Recognizing that automatic off-gas control based on plenum pressure was only used during the first 36 h of processing, it is apparent that vacuum control of the melter and its off-gas

system was easily maintained throughout all phases of testing, except possibly for the overfeeding event that occurred at 06:00 on 1/31/01.

Table 5.2. RSM's Operating Temperature Characteristics

		T	emperat	ture (°	C)
Batch	Item	Ave	Std Dev	Min	Max
	Glass	1158	9	1098	1192
	Plenum	530	38	457	679
A	MOG	82	11	44	121
	EVS Exh	18	1	15	20
	Srub Liq	27	3	18	35
	Glass	1159	14	1017	1199
	Plenum	557	52	491	695
В	MOG	91	15	54	147
	EVS Exh	19		17	20
	Srub Liq	29	2	22	33
	Glass	1162	13	1039	1200
	Plenum	544	68	289	715
C	MOG	93	15	44	117
	EVS Exh	19	1	18	22
	Srub Liq	31	4	20	48
	Glass	1160	3	1149	1168
	Plenum	525	31	493	646
D	MOG	101	8	72	147
	EVS Exh	20		18	21
	Srub Liq	32	1	25	45

Table 5.2 (contd)

		Γ	emperat	ture (°	C)
Batch	Item	Ave	Std Dev	Min	Max
	Glass	1152	24	1003	1240
	Plenum	557	67	454	719
E	MOG	99	15	63	144
	EVS Exh	20	1	18	22
	Srub Liq	31	3	22	34
	Glass	1148	12	1062	1164
	Plenum	547	47	477	713
F	MOG	95	7	72	124
	EVS Exh	21	1	18	22
	Srub Liq	33	1	25	36
	Glass	1147	5	1101	1156
	Plenum	510	49	465	707
G	MOG	111	8	76	126
	EVS Exh	21	1	18	23
	Srub Liq	34	2	22	37
	Glass	1152	5	1140	1168
	Plenum	502	34	467	643
Н	MOG	111	12	69	145
	EVS Exh	23	1	20	24
	Srub Liq	36	2	25	44
		1155			1240
,	Plenum	536	54	289	719
All	MOG	96	15	44	147
	EVS Exh	20	2	15	24
	Srub Liq	31	4	18	48

Table 5.3. Melter Kiln, Pour Spout, and Canister Oven Temperatures

	7	Гетр	eratı	ıre (°C	C)
		Kiln		Pour	Can
Date /Statistic	Bot	Mid	Top	Spout	Oven
1/29/01					
Average	855	845	827	1060	734
StdDev.	10	11	11	26	41
Minimum	834	821	803	998	597
Maximum	867	862	842	1080	762
1/30/01					
Average	856	845	826	1040	748
StdDev.	14	15	16	23	16
Minimum	799	789	760	832	500
Maximum	876	865	847	1070	773
1/31/01					
Average	862	851	830	1050	749
StdDev.	4	5	5	2	15
Minimum	849	832	817	1040	475
Maximum	881	869	845	1060	788
2/1/01					
Average	862	852	832	1050	748
StdDev.	4	6	7	2	19
Minimum	851	840	822	1040	408
Maximum	874	872	855	1060	775
2/2/01					
Average	864	854	832	1050	747
StdDev.	6	9	10	1	22
Minimum	851	839	820	1040	486
Maximum	882	881	860	1060	761
1/29/01 - 2/2/01					
Average	860	850	830	1050	747
StdDev.	9	10	11	14	20
Minimum	799	789	760	832	408
Maximum	882	881	860	1080	788

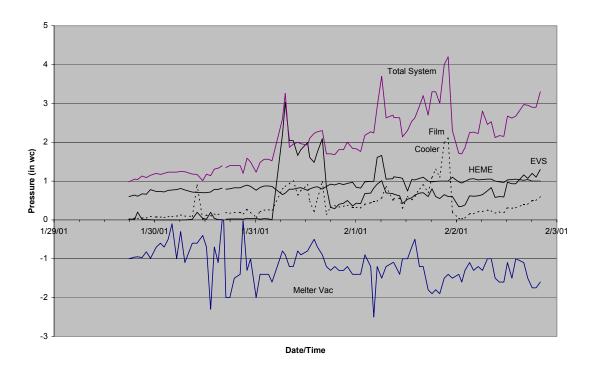


Figure 5.5. Melter and Off-Gas Operating Pressures

As an explanatory note, the steady rise in off-gas system pressure drops indicated by the graphical-pressure data is due to a combination of the following factors:

- Increasing plenum vacuum
- Increasing melter feeding rates
- Decreasing conductance (i.e., blockage) of the melter/EVS jumper.

It should be noted that the apparent buildup of off-gas debris in the melter's off-gas jumper is not a natural outcome of normal process operations. Rather, it is a consequence of the overfeeding upset event that created partial off-gas line obstructions that continually grew in size by capturing and accumulating entrained debris. This subject will be further discussed in Section 7.

5.2.3 Melter Electrical Data

The RSM's electrodes, kiln, discharge, and pour-spout heating loads are all controlled by phase angle, silicon-controlled rectifiers (SCRs). The SCRs control the voltage going to the load and are capable of adjustments anywhere from zero to the full line voltage (120 V and 208 V).

Under normal operating conditions, an interface module provides the RSM's PLC with analog signals directly related to the voltage current and power outputs of each SCR. During the current test, the electrode's SCR interface module failed, requiring these electrical operating parameters to be measured and recorded manually (see Appendix C). Figures 5.6 to 5.8 graphically summarized these electrical quantities in various groupings to allow correlations to be easily recognized.

As would be expected from the constant power control imposed upon the RSMs' Joule heating electrical circuit, the electrode power fluctuated about a value that remained fairly constant throughout melter testing. Also apparent from the various parameter pairings shown are strong correlations between voltage, power, and resistance, as is expected from their functional interrelationships. Consequently, the short-term average values of both voltage and glass resistance also remained fairly constant throughout the testing period, although conductance, as expectead, appears to have increased with waste loading.

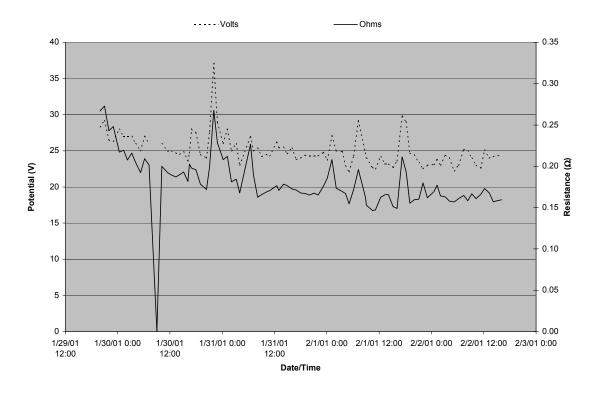


Figure 5.6. RSM Electrode Voltage/Power Operating Characteristics

In the afternoon of February 1st at about 16:49, almost 72 h into the test the electrode voltage and current readings were observed to be erratic. Coincidentally, the glass temperature thermocouple readings were declining with the indicated temperature being 1080°C. This indicated that electrical shorting between the electrodes was occurring. The feed was turned off to melt the cold cap, and power to the electrodes was turned off to allow observation and probing of the melter. Probing of the melter indicated a detectable salt layer that was estimated to be 1 to 3 mm in depth and did not cover a majority

of the glass surface. Upon turning power back on to the electrodes, the current and voltage readings were stable. Two possible explanations or hypotheses can be proposed. When the cold cap is present, it creates "bands" of molten salt that can contact and short the electrodes. The second, and considered more likely explanation, is that during this period of processing, nearly fully flooded conditions were being maintained. Additionally, the SBW melter feed was not creating a solids cold cap; rather, a thin boiling layer was observed to occur. In this condition, molten salt would be dissolved into the aqueous phase creating a highly conductive salt solution. Further, the dissociated sodium sulfate in the aqueous phase would be very electrically conductive compared to the molten sodium sulfate.

Because electrode shorting in past campaigns has led to electrode damage, this period of no feeding was also used to lift the electrodes from the glass and visually inspect them. Both electrodes looked to be in excellent condition, possessing sharp shoulder corners. The east electrode appeared to be perhaps slightly thinner with "softer" corners. However, given the restricted viewing conditions, it was hard to be certain.

Table 5.4 summarizes the maximum, minimum, and average electrode operating parameters and their standard deviations during the active processing periods for each melter feed batch (see Figure 5.2). The average Joule heating requirements of each batch in this table were used with corresponding average batch-feeding rates (see Table 5.1) to derive specific Joule-energy processing requirements for SBW feeds. These data are summarized in Table 5.5.

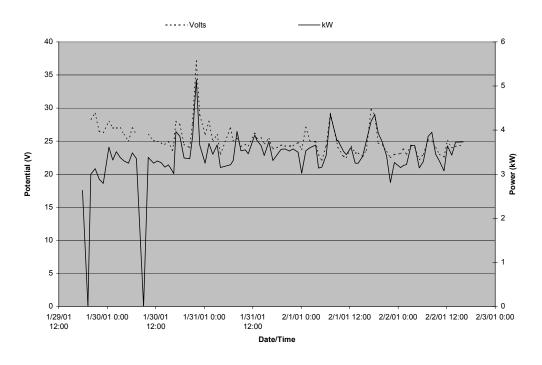


Figure 5.7. RSM Electrode-Voltage/Glass-Resistance Properties

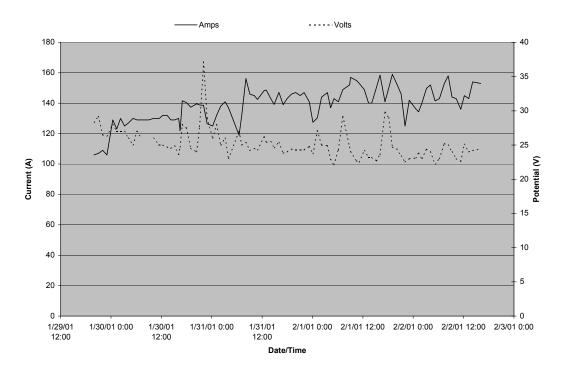


Figure 5.8. RSM Electrode Voltage/Current Operating Characteristics

Table 5.4. RSM Electrode Circuit Operating Characteristics

		RSM	1 Electrode	Parame	eters
Batch	Item	Ave	Std Dev	Min	Max
	Volts	27	1	25	29
A	Amps	119	13	94	130
А	kVA	3.2	0.3	2.6	3.6
	Ohms	0.23	0.03	0.19	0.30
	Volts	26	3	24	37
В	Amps	134	6	122	142
Ь	kVA	3.6	0.5	3.0	5.1
	Ohms	0.20	0.02	0.17	0.27
	Volts	25	1	23	28
C	Amps	141	7	119	156
	kVA	3.5	0.2	3.2	4.0
	Ohms	0.18	0.01	0.16	0.23

Table 5.4 (contd)

		RSN	1 Electrode	Parame	eters
Batch	Item	Ave	Std Dev	Min	Max
D	Volts	24		24	25
	Amps	145	3	139	147
	kVA	3.5	0.1	3.3	3.7
	Ohms	0.17	0.00	0.17	0.17
	Volts	25	2	22	29
E	Amps	145	7	130	157
	kVA	3.7	0.4	3.1	4.4
	Ohms	0.17	0.02	0.15	0.21
	Volts	24	2	23	30
F	Amps	147	10	125	159
ı,	kVA	3.5	0.4	2.8	4.4
	Ohms	0.16	0.01	0.15	0.21
	Volts	24	1	22	25
G	Amps	147	6	134	158
	kVA	3.5	0.3	3.1	4.0
	Ohms	0.16	0.00	0.16	0.18
	Volts	24	1	20	25
Н	Amps	150	6	134	156
11	kVA	3.6	0.2	2.7	3.7
	Ohms	0.16	0.01	0.15	0.17
	Volts	25	2	20	37
All	Amps	139	14	94	159
	kVA	3.5	0.4	2.6	5.1
	Ohms	0.18	0.03	0.15	0.30

Typical energy requirements for slurry feeding Joule-heated ceramic melters range from 2 to 4 kW*h/kg of glass produced. Recognizing that the SBW process flowsheet does not provide for pretreatment or concentration and that much of the power required in processing of slurry feeds is consumed by boiling away water, the slightly higher specific energy requirements for vitrifying SBW is largely due to the higher-than-normal weight fraction of water in the melter feed stream. It should also be noted that in addition to the electrical power delivered to the melt pool, a significant combustion energy is also being provided by the reductant feed-stream component. By combining this combustion power source to the Joule heating component for each of the RSM's batch-processing campaigns, slightly higher but much more consistent vitrification specific-energy values are obtained. Although the RSM construction and design is hardly representative of ceramic-lined production melters, the energy expended to vitrify the SBW feeds is, nevertheless, consistent with generalized LFCM operating expectations.

Like the melter electrodes, the RSM's kiln and overflow heater circuits were similarly characterized. Because of the relatively invariant nature of the electrical loads involved, these data do not contain much structure or embedded information and are therefore summarized on a daily basis in Table 5.6.

Table 5.5. Specific Process Energy Requirements For SBW Feeds

Feed			Glass	Sucrose		` /	1 00	(kW-h/kg)
Batch	Wt%	Rate (L/h)	Lbs/h/ft ²	(g/L–SBW)	Joule	Combust	Joule	Total
A	30	2.1	7.1	135.0	3.2	1.0	5.1	6.7
В	30	2.3	7.7	135.0	3.6	1.1	5.2	6.8
С	32	3.0	10.1	135.0	3.5	1.4	3.9	5.5
D	32	2.8	9.4	135.0	3.5	1.4	4.2	5.8
Е	35	2.5	8.4	135.0	3.7	1.2	4.9	6.5
F	35	2.6	8.8	149.5	3.5	1.4	4.5	6.3
G	35	3.2	10.8	154.5	3.5	1.8	3.6	5.5
Н	35	3.3	11.1	178.1	3.6	2.1	3.6	5.8
							Averag Std De	e = 6.1 v = 9%

5.2.4 EVS Condensate Tank, Film Cooler Injection Air

As described earlier, the EVS acts to both quench the melter exhaust stream and remove entrained debris generated by the melter source. As seen in Table 5.2, the EVS' scrubbing-liquor temperature remained fairly constant (~30°C) throughout RSM testing. Consequently, the EVS also removed condensable melter-generated gases of which steam is a primary component. Figure 5.9 provides a historical summary of the EVS' scrubbing liquor/condensate tank volume throughout the duration of the RSM test.

The 1.1 L/h condensate accumulation rate is 57% of the overall average rate to which water was fed to the melter. If one directly compares the accumulated condensate volume (94.6 L [25 gal], neglecting solids contributions) and the total water volume (167 L [44 gal]) fed to the melter, a 56% steam recovery is obtained, which is in good agreement with the value derived from average process-rate values.

Also presented in Figure 5.9 is the manually recorded Film Cooler, injection-air rotameter reading. It should be pointed out that the recorded values are apparent and not actual flow rates. This is because of the backpressure at the exhaust of this rotameter, which was not routinely measured. However, before the test, the nominal back-pressure operating condition was determined to be 40 psig at 6 scfm. Under these conditions, the actual flow rate is ~2x the indicated flow. Compounding the rotameter reading uncertainty, the conductance of this device was probably not constant throughout the test period because of fouling that resulted from the melter overfeeding event (1/31/01 06:00). However, total melter off-gas flow, including the film-cooler injection air, was independently measured, quasi-continuously, throughout the test using He dilution techniques. In this method, helium gas was injected into the melter's plenum at a fixed rate of 2 L/m, and its concentration in the sampling stream after being diluted by melter steam and inleakage, film cooler injection air, and a fixed Ar dilution stream (see Section 3.4) was used to measure and monitor total unquenched melter flow rates. These process flow rates are discussed and characterized in Section 6.1, and graphically summarized in Appendix F.

Table 5.6. Operational Characteristics of Melter Kiln and Overflow Heaters

		Kiln			Flow I	
Date /Statistic	Amps	Watts	Volts	Amps	Watts	Volts
1/29/01						
Average	4.95	0.30	21.20	3.65	0.45	118.00
StdDev.	3.88	0.11	16.30	5.77	0.71	5.82
Minimum	0.03	0.28	0.50			102.00
Maximum	14.40	0.78	61.30	20.20	1.58	131.00
1/30/01						
Average	6.83	0.31	29.20	12.80	1.47	127.00
StdDev.	3.32	0.07	14.30	1.78	0.29	11.00
Minimum		0.28	0.50			108.00
Maximum	16.20	0.80	71.80	14.20	1.80	209.00
1/31/01						
Average	5.92	0.31	25.30	12.80	1.57	123.00
StdDev.	3.21	0.07	13.70	0.29		2.55
Minimum	0.00	0.30	0.75	11.10	1.57	103.00
Maximum	15.90	0.81	68.50	13.50	1.57	131.00

Table 5.6 (contd)

		Kiln				Heater
Date /Statistic	Amps	Watts	Volts	Amps	Watts	Volts
2/1/01						
Average	5.54	0.30	23.60	12.90	1.57	124.00
StdDev.	3.16		13.60	0.22		2.51
Minimum	0.09	0.30	0.75	11.70	1.57	109.00
Maximum	9.66	0.30	42.00	13.50	1.57	131.00
2/2/01						
Average	5.45	0.30	23.40	13.00	1.57	125.00
StdDev.	3.27	-	13.80	0.24	-	2.37
Minimum	0.08	0.30	0.75	12.00	1.57	115.00
Maximum	9.17	0.30	39.00	13.50	1.57	131.00
1/29/01 - 2/2/01						
Average	5.89	0.30	25.20	12.30	1.48	124.00
StdDev.	3.33	0.06	14.20	2.79	0.35	6.35
Minimum		0.28	0.50			102.00
Maximum	16.20	0.81	71.80	20.20	1.80	209.00

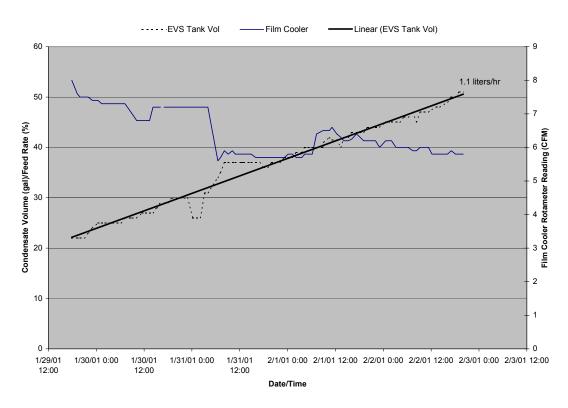


Figure 5.9. EVS Condensate Tank, Film-Cooler Operating History

6.0 Melter Off-Gas Emission Characterization

Off-gas effluent studies were conducted during SBW flowsheet testing to characterize the melter-effluent source. As described in Section 3.4, the off-gas sampling network assembled in support of this objective was designed to determine the composition of the melter exhaust with regard to non-condensable as well as condensable effluents.

The composition of melter-generated, non-condensable effluent emissions was established using a variety of gas analyzers that are described Table 3.1. The instruments used were designed to continuously (or quasi-continuously) monitor and record process-exhaust concentrations of H₂, He, N₂, CO, NO, O₂, CO₂, N₂O, NO₂, and total hydrocarbons. In addition, a direct inlet mass spectrometer was used as a semi-quantitative tool to identify other gases that might be present, such as H₂S, SO₂, the halogens, and the hydrogen halides. Discrete sampling for the halogens and hydrogen halides was also conducted as described below.

To characterize condensable or reactive acid-gas effluent losses, a multi-component sampler composed of an absolute filter and a series of chemical gas scrubbers was employed (see Section 3.4). The manner in which any given element is distributed across the various discrete sampling stages of this device allows the physical state or states assumed by this effluent to be inferred.

The operational data and experimental results obtained from the melter off-gas studies conducted in support of the SBW flowsheet evaluations are discussed below.

6.1 Gaseous Effluent

For the surrogate SBW melter feed used during the January 2001 test, CO_2 , and NO_x (specifically NO) were the major non-condensable (~25°C) gases produced by the vitrification process. Table 6.1 summarizes the maximum, minimum, and average concentrations of melter-generated gaseous effluents during the active processing periods for each melter feed batch (see Figure 5.2). Also presented in this table are the standard deviations associated with the average concentrations listed, and off-gas flow-rate data.

These tabular data, unfortunately, do not contain quantitative NO_2 concentrations due to poisoning of the NO_x analyzer's catalytic reactor. Since the gas chromatograph was not responsive to NO_2 , the detection limit of the direct inlet mass spectrometer was used to place an upper bound for this effluent's concentration, which is discussed more fully further below. For a non-condensable off-gas flow rate of ~15 scfm and a steady-state feeding rate of 3 L/h, the MOG concentrations of the major effluent gases (CO_2 and NO) were found to be, nominally, 0.71% and 0.31%, respectively. The combustible gases CO_2 and CO_3 were also detected, but at much lower concentrations: 0.15% and 0.025%, respectively. These concentrations are well below the lower flammability limits of these combustible gases, 4.65% for CO_3 and 15.5% for CO_3 . Even without the benefit of film cooler dilution, off-gas concentrations of these

Table 6.1. Unquenched Melter Off-Gas Composition

			Post	Film Co	oler Co	ncentr	ation (p	pm)			FlwRate
Date/Batch/ SBW	He	H_2	O_2	N_2	NO	CO	CO ₂	N ₂ O	THA	NO*	(scfm)
1/29-1/30 / A / 30%											
Average	4,000	90	161,000	615,000	1,840	756	5,810	677	62	#N/A	18
Std. Dev.	229	29	5,940	22,200	318	177	978	185	30	#N/A	1
Minimum	3,490	20	144,000	553,000	1,270	216	1,190	246		#N/A	14
Maximum	5,060	180	177,000	673,000	3,810	1,500	10,200	978	245	#N/A	20
1/30-1/30 / B / 30%											
Average	3,800	109	156,000	598,000	2,290	907	5,810	674	61	3,490	19
Std. Dev.	119	32	1,760	6,550	272	267	683	234	34	577	1
Minimum	3,200	25	152,000	582,000	1,620	94	4,040	130	1	263	17
Maximum	4,060	183	165,000	631,000	2,950	1,430	7,610	1,700	431	4,330	22
1/31-1/31 / C / 32%											
Average	4,290	146	160,000	613,000	2,960	1,210	7,020	750	86	3,840	17
Std. Dev.	738	39	12,000	46,000	574	299	1,160	199	94	519	2
Minimum	3,400	67	138,000	532,000	228	530	1,150	269		117	7
Maximum	9,480	417	198,000	761,000	5,540	2,120	15,100	1,380	767	5,260	21
1/31-1/31 / D / 32%											
Average	4,750	162	172,000	658,000	3,400	1,390	7,450	782	96	3,970	15
Std. Dev.	635	41	22,700	86,600	869	388	1,380	201	32	473	5
Minimum	989	26	35,400	135,000	324	267	1,120	127	1	1,760	10
Maximum	7,060	285	246,000	942,000	5,610	2,670	12,000	1,190	345	5,680	71
2/01-2/01 / E / 35%											
Average	4,160	162	183,000	704,000	4,060	1,600	7,040	774	78	2,470	17
Std. Dev.	574	50	22,600	85,700	558	319	1,210	132	42	361	2
Minimum	3,070	72	154,000	596,000	3,120	1,010	5,040	374		385	13
Maximum	5,620	285	246,000	941,000	5,510	2,510	10,200	1,050	434	2,890	23
2/01-2/02 / F / 35%											
Average	4,030	267	166,000	643,000	3,280	1,840	6,790	658	119	2,770	18
Std. Dev.	252	171	7,420	28,100	629	608	1,240	164	82	608	1
Minimum	2,190	40	129,000	499,000	30	51	761	150		297	12
Maximum	5,750	1,000	190,000	730,000	5,070	3,990	13,800	1,130	687	4,430	32

Table 6.1 (contd)

			Post	Film Co	oler Co	ncentr	ation (p	pm)			FlwRate
Date/Batch/ SBW	He	H_2	O_2	N_2	NO	CO	CO ₂	N ₂ O	THA	NO*	(scfm)
2/02-2/02 / G / 35%											
Average	3,860	308	157,000	605,000	3,590	1,850	7,580	790	174	3,380	18
Std. Dev.	373	73	10,700	40,700	504	322	1,250	186	57	449	2
Minimum	2,570	54	106,000	412,000	149	291	754	241	4	48	12
Maximum	5,760	511	222,000	851,000	4,650	2,730	10,600	1,300	468	4,600	27
2/02-2/02 / H / 35%											
Average	3,950	487	150,000	581,000	3,380	2,550	9,320	780	209	3,410	18
Std. Dev.	194	126	6,560	25,400	398	474	932	203	146	597	1
Minimum	2,980	37	120,000	469,000	1,920	993	5,780	266	1	173	16
Maximum	4,420	767	166,000	646,000	4,360	3,510	11,400	1,110	767	4,390	24
1/29-2/2 / Overall											
Average	4,090	245	161,000	618,000	3,100	1,470	7,100	735	113	3,420	17
Std. Dev.	1,540	163	13,400	50,900	789	717	1,590	200	97	688	3
Minimum	24	20	35,400	135,000	30	51	754	127		48	1
Maximum	64,900	1,000	246,000	942,000	5,610	3,990	15,100	1,700	767	5,680	71

^{*} Chemiluminescent, NO_x Analyzer value.

gases were found to be well below lower flammability as is shown in Table 6.2, which uses the batch feeding rates in Table 5.1 and the above tabular information to project melter off-gas composition before film-cooler dilution. In the plenum and before the film cooler, steam is the primary factor that eliminates the flammability hazards of H_2 and CO. The dilution caused by air inleakage and the film cooler precludes any possibility for auto-ignition downstream of the film cooler and EVS.

A dilution-control-system instability specific to the NO_x analyzer is thought to be responsible for the lack of agreement between gas chromatograph (GC) and NO_x analyzer responses for NO; as a result, the GC's NO data are preferred over the corresponding NO_x analyzer responses.

As with NO_2 , the on-line gas chromatograph was found to be unresponsive to the effluent gas species SO_2 , and the sensitivity of the direct-inlet mass spectrometer was insufficient to detect it. Consequently, an upper-bound concentration was assigned to this effluent species based on the noise floor and detection efficiency of the mass spectrometer. The lack of SO_2 results in this data does not necessarily mean that volatility losses for sulfur are small; rather, it is a reflection of the fact that SO_2 production is not thermodynamically favored when plenum temperatures are $<600^{\circ}C$. SO_3 is a reactive condensable gas that could not, therefore, be detected by the ambient-temperature gas analyzers used; however, the magnitude of the SO_3 loss mechanism will be evaluated later in this section when the EVS scrubbing liquor composition is discussed.

Table 6.2. Calculated Melter Effluent Concentrations Before Film Cooler Dilution

	P	rojecte	ed I	Me	lter Ex	haust (Concent	ration	(ppm))	FlwRate
Date/Batch/SBW	He	H_2	O_2	N_2	NO	CO	CO ₂	N ₂ O	ТНА	NO*	(scfm)
1/29-1/30 / A / 30%											
Average	51,700	1,170			23,800	9,760	75,100	8,750	801	#N/A	1.4
Std. Dev.	2,960	370			4,110	2,290	12,600	2,390	386	#N/A	
Minimum	45,100	255			16,400	2,790	15,300	3,180	5	#N/A	
Maximum	65,400	2,330			49,300	19,300	132,000	12,600	3,170	#N/A	
1/30-1/30 / B / 30%											
Average	47,600	1,370			28,700	11,400	72,700	8,440	764	43,700	1.5
Std. Dev.	1,500	403			3,400	3,350	8,550	2,930	419	7,210	
Minimum	40,000	310			20,200	1,170	50,600	1,630	10	3,300	
Maximum	50,800	2,290			37,000	17,800	95,200	21,200	5,390	54,200	
1/31-1/31 / C / 32%											
Average	38,300	1,310			26,400	10,800	62,700	6,690	770	34,300	1.9
Std. Dev.	6,590	352			5,120	2,670	10,400	1,780	840	4,630	
Minimum	30,400	598			2,040	4,740	10,300	2,400	3	1,050	
Maximum	84,600	3,730			49,500	18,900	135,000	12,400	6,850	47,000	
1/31-1/31 / D / 32%											
Average	40,600	1,380			29,100	11,800	63,600	6,670	820	33,900	1.8
Std. Dev.	5,420	350			7,420	3,310	11,700	1,710	274	4,030	
Minimum	8,440	220			2,770	2,280	9,540	1,080	7	15,000	
Maximum	60,300	2,430			47,900	22,800	103,000	10,100	2,950	48,500	
2/01-2/01 / E / 35%											
Average	45,800	1,780			44,700	17,700	77,600	8,540	856	27,200	1.6
Std. Dev.	6,330	552			6,150	3,520	13,300	1,460	467	3,980	
Minimum	33,800	790			34,300	11,100	55,500	4,120	4	4,250	
Maximum	61,900	3,140	-		60,800	27,700	112,000	11,600	4,790	31,900	
2/01-2/02 / F / 35%											
Average	43,100	2,860			35,100	19,700	72,600	7,040	1,280	29,600	1.6
Std. Dev.	2,690	1,820			6,730	6,500	13,300	1,750	882	6,500	
Minimum	23,400	428			319	545	8,150	1,600	4	3,180	
Maximum	61,600	10,700			54,200	42,700	148,000	12,100	7,350		

Table 6.2 (contd)

	P	rojecte	d I	Me	lter Ex	haust (Concent	ration ((ppm))	FlwRate
Date/Batch/SBW	He	H_2	O_2	N_2	NO	CO	CO_2	N ₂ O	THA	NO*	(scfm)
2/02-2/02 / G / 35%											
Average	35,000	2,800			32,600	16,800	68,800	7,170	1,580	30,600	2.0
Std. Dev.	3,390	661			4,570	2,920	11,400	1,690	518	4,080	
Minimum	23,300	493			1,350	2,640	6,840	2,180	38	436	
Maximum	52,300	4,640			42,200	24,800	96,000	11,800	4,240	41,700	
2/02-2/02 / H / 35%											
Average	33,800	4,170			29,000	21,800	79,800	6,670	1,790	29,200	2.1
Std. Dev.	1,660	1,070			3,400	4,060	7,980	1,730	1,250	5,110	
Minimum	25,500	320			16,500	8,500	49,500	2,280	7	1,480	
Maximum	37,800	6,570			37,300	30,100	97,400	9,500	6,560	37,500	
1/29-2/2 / Overall											
Average	41,200	2,470			31,300	14,900	71,600	7,410	1,140	34,400	1.7
Std. Dev.	15,500	1,650			7,960	7,230	16,000	2,010	981	6,930	
Minimum	240	199			301	514	7,600	1,280	4	484	
Maximum	654,000	10,100			56,600	40,200	152,000	17,100	7,730	57,300	

^{*} Chemiluminescent, NO_x Analyzer value.

The responses of the total hydrocarbon analyzer indicated that volatile organic compounds (VOCs) were present in the melter exhaust throughout most periods of testing. Although the off-gas concentrations of these thermal byproducts of incomplete oxidation were relatively low, they were, not surprisingly, functionally related to SBW sugar loadings. It also appears that overfeeding and abrupt introduction of feed material into the hot melter are responsible for many of the VOC concentration spikes observed during RSM testing.

The time-dependent behavior of gaseous process effluent emissions was recorded at nominally 1-min intervals throughout the melter-processing campaign. Because steady-state feeding conditions were maintained throughout most phases of testing, the average process exhaust concentrations of these off-gas effluents remained relatively invariant. They were, however, perturbed by scheduled feed-batch preparations, changes in film cooler injection rates, and during feed sampling and/or feed system repair. Appendix G graphically presents, by analyzer type, the temporal behavior of melter off-gas effluents on a daily basis.

Referring to the direct inlet quadrupole data in Appendix G, the basis for the upper-bound concentration assignments for NO_2 and SO_2 can now be discussed. At first glance, it appears that the quadrupole's response at mass 46 is directly related to the presence of NO_2 in the sampled off-gas stream and that its concentration is significantly below that of NO. Unfortunately, other effluent gases also produce responses at this mass number. Specifically, isotopic forms of CO_2 and N_2O (nominally mass 44) both contribute to the observed mass-46 response. Although the contributions from both CO_2

and N_2O are small fractions of their full mass responses, 0.4% and 0.1%, respectively, they are significant since CO_2 and N_2O are major contributors to the melter's off-gas source term.

When these minor mass-46 contributions from these major effluent species are taken into account, the remaining residual partial pressure is indistinguishable from the noise floor level at this mass number. Assuming this mass-46 noise floor represents the maximum detectable NO_2 partial pressure, and using the instrument's relatively low ionization efficiency and small fractional full-mass yield (50%) and applying a factor of ~10 to account for off-gas to instrument dilution, the minimum NO_2 off-gas concentration detectable by the quadrupole was determined to be ~3000 ppm. Based on this value and Table 6.1, equivalent off-gas concentrations of NO and NO_2 could have been present throughout most of the RSM test. Unfortunately, little meaningful process data regarding NO_2 can be extracted from the available online analytical instruments.

The bounding concentration for SO_2 was similarly determined, but for the case of SO_2 , no significant process-related changes in the mass-64 responses were ever detected, as graphical data clearly show. Using the mass-64 noise floor, the instrument's SO_2 detection efficiency, and the ~10x sample-dilution factor, the minimum SO_2 detectable off-gas concentration was determined to be 3000 ppm. Sulfate analysis of off-gas waste-stream solutions, resulting primarily from vapor carry over of condensable H_2SO_4 and its anhydride SO_3 , should help resolve whether this bounding SO_2 concentration is at all reasonable. These mass-balance evaluations will be considered in Section 7.

6.2 Condensed Phase Effluents

The effluents that enter the MOG system that require long-term environmental isolation are primarily condensed-phase matter (i.e., aerosols). Many feed components are volatilized to some extent within the melter; however, rapid condensation in the melter plenum transforms most of these effluent vapors to airborne aerosols before they can be carried into the off-gas system. Feed and/or glass matter can also be physically ejected into the melter plenum volume by cold-cap and/or glass-surface turbulence. Once in the plenum, this debris can become entrained in gas currents and exhausted from the melter as entrained particulate matter. Both of these loss mechanisms produce off-gas system aerosols; however, the physical characteristics and chemical composition of these two types of airborne matter are markedly different.

Entrained aerosols typically have a mass median diameter of » 1 µm and are compositionally similar to the feed. Consequently, entrainment losses, to first approximation, will influence all feed components in the same way. Feed constituents that fume, e.g., alkali halides, quickly form condensation aerosols, which are predominantly submicron and are chemically dissimilar to the bulk feed. The importance of the volatilization/condensation loss mechanism is totally dependent upon the physical and chemical properties of the feed components and the range of compounds they can form. Consequently, melter aerosol loss rates will be exacerbated by the presence of semi-volatile feed components, and effluent emission rates of elements capable of forming semi-volatile compounds will always be greater than those elements forming refractory compounds. Effluent loss rates are traditionally expressed in terms of equipment DFs. A device DF value for a particular feed component is derived by taking the ratio of the

rate at which the component enters the device to the rate at which it exits. Aerosol DFs are partial DFs that relate to only one off-gas effluent form: aerosols.

6.2.1 Aerosol Mass DFs

The melter's aerosol mass DFs, as measured by the filter catches of the differential sampler previously described, are tabulated in Table 6.3 for each of the distinct waste-loaded feeds processed during RSM testing. These melter aerosol mass DFs are fairly consistent and do not appear to have been significantly affected by the SBW waste-loading fraction. Their magnitudes, moreover, are consistent with previous small-scale melter flowsheet tests that proved successful when tested on a larger scale. Also listed in this table are the related, source-emission parameters of melter partitioning and off-gas aerosol loading. The internal consistency of these off-gas loading and DF data suggest that steady-state melter processing conditions were easily achieved and maintained for all SBW feeds tested.

It should be noted that isokinetic sampling conditions were not achieved during RSM particulate sampling. Specifically, extraction velocities were always much lower than the off-gas stream velocities sampled. The effect of this condition is to overestimate the off-gas stream's aerosol mass loading. Therefore, the bias introduced by this miss-matched condition acts to decrease apparent melter DFs and increase the apparent magnitude of effluent partitioning coefficients. Since the sampler will tend to collect a greater and unrepresentative proportion of larger particles, the elemental composition of the collected aerosols would overemphasize the importance of entrainment relative to the volatilization/condensation loss mechanism. The relative proportions of fuming to entrained effluents will be examined in the following section.

MOG Flw Aerosol Catch Melter Feed Sampling Date/Time (scfm) Batch|SBW %|Rate (L/h)|Time (m)|Flw (slpm) Mass Con (mg/sl) DF Loss% 58 1/30/01 17:55 В 30 2.3 52 5 18.7 0.27 0.93 1.7 1/31/01 18:33 D 32 2.8 49 5.4 14.6 0.33 1.14 51 2.0 2/1/01 18:51 F 17.3 35 2.6 5.8 0.49 1.31 41 60 2.4

Table 6.3. Gross Melter Aerosol Emission Characteristics

6.2.2 Aerosol Elemental DFs

Individual melter aerosol DFs have been calculated for all melter-feed components using the compositional data derived from off-gas filter samples. A comparison of these filter compositional data with 35% SBW feed shown in Table 6.4 illustrates the unmistakable influence of volatility upon the melter-emission source term. For all SBW feeds processed, the concentration of all the classic semivolatiles (B, Cd, Cr, Ru alkali earths, etc.) are seen to be enriched by up to a factor of 5 over their

nominal feed-composition values. These results are in total conformity with generalized LFCM effluent-emission expectations developed from past melter-source-term characterization studies.

Table 6.4. Composition of Melter Generated Aerosols and Melter Feed

	Melter A	erosol Wt	% Comp	Feed
Element	30% SBW	32% SBW	35% SBW	Wt%
Al_2O_3				8.970
$\mathrm{B_2O_3}$	22.100	21.900	20.100	10.400
BaO	0.006	0.014	0.005	0.002
CaO	1.350	1.690	1.790	4.130
CdO	0.039	0.053	0.083	0.026
Ce_2O_3	0.002	0.002	0.001	0.002
Co_2O_3				
Cr_2O_3	0.174	0.215	0.240	0.067
Cs_2O	0.500	0.574	0.559	0.064
CuO	0.001		0.012	0.015
Fe_2O_3	0.217	0.395	0.201	7.290
Gd_2O_3				0.008
K_2O	14.500	16.000	17.300	2.450
Li ₂ O	5.290	5.680	5.190	3.420
MgO				0.128
MnO	0.041	0.043	0.045	0.264
MoO_3	0.002	0.004	0.004	0.007
Na_2O	47.200	44.800	38.900	16.900
NiO		0.001		0.029
P_2O_5	0.222		0.330	0.257
PbO			0.078	0.077
RuO_2	0.065	0.068	0.092	0.004
SO_3	8.280	8.560	15.100	1.140
${ m SiO_2}$				44.400
SrO	0.010	0.008	0.008	0.003
TiO ₂				0.001
ZnO			0.006	0.023
ZrO_2				0.002

Using the compositional information provided in Table 6.4, melter DFs associated with aerosol loss for individual elements can be calculated. These derived DF values are tabulated in Table 6.5. These tabular results reinforce the previous discussion that predicted low DFs for feed constituents that are volatile, or can form volatile or semivolatile compounds at melter-processing temperatures.

Table 6.5. Elemental Melter DFs Associated With Aerosol Emissions

	Melter Ae	erosol DFs	@ %SBV	V Loading
Element	30%	32%	35%	Ave
Al				
В	36	30	20	29
Ba	37	21	138	65
Ca	133	116	75	108
Cd	34	28	11	24
Ce				
Co				
Cr	20	19	13	17
Cs	5	5	3	5
Cu			15	8
Fe	2010	1210	1450	1560
Gd				
K	9	9	7	8
Li	44	39	30	38
Mg				
Mn	372	402	302	359
Mo	253	89	126	156
Na	20	24	20	21
Ni				
P	16		12	14
Pb			51	51
Ru	8	10	6	8
S	8	9	4	7
Si				
Sr	37	54	40	44
Ti				
Zn			157	157
Zr				

The reproducibility of melter-feed component DFs are, overall, quite good. The magnitudes of nonvolatile DFs, such as Fe, however, are atypically high and should not be interpreted as representing average melter-performance behavior. On the other hand, the low DFs recorded for some of the volatiles/semivolatiles previously discussed may be atypically low. In particular, Cs and Ru DFs appear to be much lower than might normally be expected. A value of 10 to 20 is a much more typical DF value for Cs; however, unique chemical effects associated with SBW processing could be responsible for enhancing cesium loss rates. Similarly, Ru DF values also seem artificially depressed given the level of reductant used during all phases of testing. Analytical uncertainty is likely the cause of the latter DF anomaly, as detection limits are being approached in most samples. The lack of agreement between actual and target feed/glass data also support this proposition. Additional testing will, in time, resolve this apparent cesium-loss-rate anomaly, but higher levels of Ru will be needed in subsequent testing if reliable melter-performance values for this noble metal is to be obtained.

6.2.3 Total Elemental DFs

Since only a very few feed components are lost to the off-gas processing system in the gaseous state, essentially all the aerosol performance values listed in Table 6.5 also represent total melter DFs for these elements. However, notable exceptions to this statement include B, Cl, F, N, P, and S, whose gaseous forms usually dominate melter off-gas system losses and determine their melter DFs. Table 6.6 summarizes the composition of the (0°C) chemical gas-scrubber solutions used to condense and/or remove melter (gaseous) effluents penetrating the upstream aerosol filter of the differential sampling system previously described (see Fig. 3.4). With the exception of NO_x, these data show little evidence of gas-phase effluents. Moreover, the systematics of the distributions of nitrate and nitrite ion concentrations in these sequential scrubber vessels suggests a melter NO_x source exhibiting a high NO:NO₂ ratio. Because of this apparently high ratio, gas-scrubber collection of NO_x was incomplete and nonquantititative as evidenced by the high nitrite concentrations in the final caustic scrubber bath.

The only other feed components that exhibit any sort of systematic presence in these gas scrubber solutions are boron and calcium. Boron, as mentioned earlier, is an expected gaseous melter effluent, but calcium and its various compounds have not, historically, exhibited semivolatile characteristics under LFCM processing conditions. If, on the other hand, aerosols were penetrating the upstream filter of the multicomponent sampling system, sodium would surely produce a much stronger systematic trend across the acid baths, which it does not.

Table 6.6. Off-Gas Sampler Scrub Solution Composition (ppm)

	3(0% SBV	V Gas Sci	rub	í	32% SBW	Gas Scr	ub	359	% SBW	Gas Sc	rub
Element	H ₂ S	SO ₄	Na	ОН	H_2	SO ₄	Na	ОН	H ₂ S	SO ₄	Na	ОН
Al												
В	0.2				0.17				0.1			
Ba												
Ca	0.399	0.219	0.081	0.011	0.159	0.004			0.509	0.339		
Cd												
Ce			2.8									
Co												
Cr												
Cu			0.21	0.03								
Fe	0.67					0.21			0.06	0.22		
Gd												
I												
K												
Li												
Mg	0.01		0.006			0.01				0.01		
Mn												
Mo												
Na	6.866	4.166			2.866	5.716			3.666	5.966		
Ni												
P												
Pb												
Ru												
S												
Si	0.16	0.09	0.26	0.08	0.09		0.027	0.021	0.05	0.21	0.025	0.024
Sr												
Ti												
Zn			0.07			0.01				0.01		
Zr	0.07	0.04				0.6						
F-	0.22	0.04	0.044	0.045	0.03	0.03	0.03	0.04	0.03	0.08	0.04	0.04
NO ₂			3600	2400			4500	3000			5800	4600
NO ₃	350	900	84	32	360	1670	94	130	760	3000	310	150

However, apart from the nature and source of the calcium in these scrub solutions, its cumulative mass in all cases is <10% of the corresponding calcium particulate yield. Indeed, this is also true for all elements detected above scrub-solution background levels, except, of course, for nitrogen.

Table 6.7 summarizes total elemental melter DFs obtained by combining the scrub-solution composition with its corresponding particulate catch. Comparison of these total values with corresponding particulate DFs previously discussed (Table 6.5) clearly illustrate the dominant role played by the aerosol loss mechanism. The fact that greater volatility losses for boron and halogenated compounds was not observed during RSM testing is due to the low post film-cooler off-gas temperatures (~100°C). Unquenched exhaust temperatures of larger melters are typically at least twice this value.

Estimates of total melter DFs can also be extracted from off-gas system waste stream concentration data, provided the volatiles are efficiently scrubbed and that the effluent steams can be representatively sampled. These estimates will be discussed in the following Section.

Table 6.7. Total Individual Elemental Melter DF Values

	Total Melter DFs @ %SBW Loading							
Element	30%	32%	35%	Ave				
Al								
В	35	30	20	29				
Ba	37	21	138	65				
Ca	120	114	71	102				
Cd	34	28	11	24				
Ce								
Co								
Cr	20	19	13	17				
Cs	5	5	3	5				
Cu			15	8				
Fe	1220	1100	1230	1180				
Gd								
K	9	9	7	8				
Li	44	39	30	38				
Mg								
Mn	372	402	302	359				
Mo	253	89	126	156				
Na	19	23	19	21				
Ni								
Р	16		12	14				

Table 6.7 (contd)

	Total Melter DFs @ %SBW Loading						
Element	30%	32%	35%	Ave			
Pb			51	51			
Ru	8	10	6	8			
S	8	9	4	7			
Si							
Sr	37	54	40	44			
Ti							
Zn	82	789	133	335			
Zr							

6.2.4 Process-Waste-Stream Composition

The RSM's EVS acts as a single-stage sampler for process aerosols and condensable and/or reactive effluent gases. Many chemically reactive and condensable gases are generated during LFCM processing. Boron, chlorine, fluorine, phosphorous, and sulfur-feed components are all volatilized to some extent during LFCM processing, and some of the volatile species are efficiently removed (physically and/or chemically) by the aqueous off-gas system quencher—in this case, the EVS. Consequently, rough melter DFs can be estimated from EVS effluent concentration data if all chemical forms escaping the process are soluble. Elements that form insoluble compounds are of no practical analytical value for melter DF determinations since they cannot be representatively sampled from the EVS' condensate tank.

The time-dependent composition of the filtered SBS scrubbing liquor during RSM testing is summarized in Table 6.8. If the concentration information is examined for species whose compounds are thought to be totally soluble in samples RSM-01-1-28 and RSM-01-1-32, the impact of the 1/31/01 melter overfeeding event upon scrubbing liquor composition can be clearly distinguished. Since the feed composition is known and the volume of the EVS' condensate tank was approximately 117 L (31 gal) at the time of the event, one can attempt to estimate the feed volume directly lost to this tank. Using the most significant of the nominally soluble elements, B, K, Na, and S, the feed volume inadvertently lost is estimated to be 1.04, 0.97, 0.91 and 1.22 L, respectively. Since the Na value had to be compensated for NaOH additions, and volatile sulfur contributions were likely significant during this event, the average value of 1 L based on the B and K values is probably the most accurate estimate of the feed-loss volume to the EVS' condensate tank.

Using this feed-transfer information along with initial condensate tank composition, tank volume, and chemical additions made to the tank during testing, the accumulations of soluble process effluents in the condensate tank can be estimated from which the melter DF's can be derived. Table 6.9 presents these DF approximations and compares them to the reference average values derived from the off-gas sampling campaigns. Although the relative trends for related groups of elements are similar in both sets of data, corresponding DF values do not agree well. This result is not surprising insofar as representative

sampling of the EVS waste stream is limited to elements whose compounds are 100% soluble. The apparent melter DF will increase for any element that partitions to EVS insolubles or is otherwise lost to the process off-gas system.

Table 6.8. EVS Condensate Soluble Effluent Composition

		EV	S Scrubbi	ng Liquor	Effluent	Concentr	ations (p	om)	
Element	RSM -1	RSM -22	RSM -28	RSM -32	RSM -42	RSM -65	RSM -74	RSM -81	RSM -91
Al	0.073	0.5	0.49	1	2.2	1.8	1.4	1.5	1.4
В	1.53	29.5	35	89	92	100	100	97	98
Ba	0.004			0.01					
Ca	7.6	2.59	4.6	3.5	2.4	2.45	3.3	3.2	4.7
Cd			0.01						0.046
Ce									
Co		0.025	0.024	0.04					
Cr	0.011	0.55	0.73	0.73	0.93	1.3	1.4	1.4	1.4
Cs	0.064	2.85	3.46	5.59	6.21	7.52	8.48	8.90	9.10
Cu	0.016	9	9.8	7.6	7.96	9.05	9.4	9.4	10
Fe		0.023	0.044	0.0125					0.1
Gd									
I		0.2	0.3	0.3					
K	1.7	47	60	120	130	140	150	160	160
Li	0.15	8.3	10	31	31	34	35	35	35
Mg	0.008	1.2	1.3	1.5	0.71	0.74	1	1.1	1.2
Mn			0.01	0.026		0.024			
Mo	0.01	0.16	0.19	0.27	0.31	0.385	0.44	0.42	0.41
Na	280	1240	1400	2060	2430	2765	2700	2700	2700
Ni		0.13	0.14	0.3	0.3	0.4	0.4	0.4	0.4
P		0.52	0.53	0.51	0.8	1.05	0.8	0.8	1.5
Pb									
Ru		0.05	0.07	0.1	0.16	0.225	0.25	0.24	0.25
S	36.4	52	53	70	70	74	80	76	86
Si	2.28	2.35	2.2	0.67	0.77	0.82	0.79	0.72	0.87
Sr	0.13	0.088	0.15	0.19	0.17	0.17	0.17	0.15	0.15
Ti									
Zn		0.01	0.02	0.01					
Zr		0.6	0.07			0.36			
F ⁻	0.45	9.74	11.9	20.7	20.5	23.6	23.2	23.2	26
Cl	9.4	6.4	7.5	115	120	130	150	140	140
NO ₂		1300	1700	2050	1700	3300	3300	3500	3500
NO ₃	5.8	99	130	1400	980	1340	1360	1300	1250
$SO_4^=$	120	150	160	172.5	140	180	200	210	210

Table 6.9. EVS and Off-Gas Sampler Total Melter DF Values

	Tot	tal DF
Element	EVS	OG Smp
В	310	28
Cr	309	17
Cs	28	4
Cu	4	2
K	61	8
Li	1040	37
Ru	64	8
S	28	7
Sr	284	44

Sulfur provides a classic example of the latter partitioning situation where the high-sulfur DF value derived from the EVS solution data is due to the low-efficiency removal of the primary effluent form(s) of sulfur: SO_2 , SO_3 and/or H_2SO_4 . And indeed, the composition of aqueous run off from the downstream HEME, summarized in Table 6.10, strongly confirms this supposition. These tabular data when compared with Table 6.8 show that although the total HEME runoff (7.5 L [2 gal]) volume is only ~4% of EVS' condensate volume (193 L [51 gal]), it contains 3x as much sulfur.

Table 6.10. HEME Aqueous Run-Off Composition

	HEME Sol.
Element	Conc. (ppm)
Al	128
В	3770
Ba	4.3
Ca	820
Cd	28
Ce	
Co	
Cr	100
Cs	643
Cu	58
Fe	265
Gd	

Table 6.10 (contd)

	HEME Sol.
Element	Conc. (ppm)
I	
K	600
Li	100
Mg	79
Mn	19
Mo	22
Na	2200
Ni	53
P	106
Pb	51
Ru	0.05
S	7500
Si	39
Sr	7.2
Ti	1.5
Zn	26
Zr	11.3

The reason for the high-efficiency removal of sulfur is that the HEME's extremely high surface area is continually soaked by the aqueous mist carryover from the EVS. The high aqueous/gas-phase contacting that results from the wetting of this high-surface-area fiber bed provides efficient gas scrubbing capabilities for acid gases such as NO_x and SO_x . The very high nitrate (HNO₃) content of the HEME run-off (pH <<1) is primarily due to NO_x removal. The sulfur effluents responsible for the $SO_4^=$ content of the HEME waste stream are not, however, as easily identified, as was the case for the NO_3^-/NO_x pairing.

Clearly, the HEME is specifically designed to efficiently coalesce liquid aerosols (droplets), including those associated with SO₃ and H₂SO₄. Since droplets of SO₃ and H₂SO₄ do not quickly dissolve in water, low and high removal efficiencies would be predicted for the EVS and HEME, respectively, which is precisely what is observed. But on the other hand, SO₂ is capable of being oxidized by nitric acid, which is the major chemical constituent of the fluid wetting the HEME fibers. Consequently, a melter SO₂ effluent source could also explain the high concentration of sulfate in the HEME waste stream. Of course, any combination of these sources is also consistent with process-waste-stream observations. Historically, SO₃/H₂SO₄ off-gas emissions have been the dominant sulfur loss mechanism associated with non-boosted melter operations. It is hoped that gas chromatographic monitoring of SO₂ during future RSM testing will help to further define the nature of the RSM's sulfur off-gas source term.

7.0 Byproducts, Residuals, and Volume Reduction

Beyond feed, glass, off-gas effluents, and process system waste streams, other process products and residuals generated by the RSM test were also characterized for the sake of completeness. Specifically samples of the melter's molten salt phase and off-gas system deposits formed during RSM processing were analyzed, and a physical accounting of the primary SBW process flowsheet streams and feed component sulfur were conducted. The results of these evaluations are discussed below.

7.1 Molten-Salt-Phase Composition

Monitoring the RSM melt pool for accumulations of a molten salt phase was an important part of the SBW flowsheet evaluations. This was accomplished periodically by interrupting melter feeding, allowing the melter cold cap to burn off, and probing the melter's glass surface with a ceramic rod. By carefully contacting the molten salt pools on the glass surface with a room-temperature probe, frozen salt deposits could be selectively extracted from the melter. These solidified salt deposits were subsequently dissolved by leaching in distilled water. The resultant salt solutions formed were analyzed and found to be composed primarily of constituents representative of Na₂SO₄ with significant quantities of the alkali halides being present, as is summarized in Table 7.1. By making the reasonable assumptions and associations documented in Table 7.2, Na₂SO₄ was found, in all cases, to represent ~80% of the molten salt's mass with most of the remaining mass, 15 Wt%, being accounted for by the alkali halides. The presence of chromium in the salt layer, ~1 Wt%, is not alarmingly high, although its very presence may be indicative of molten-salt-induced corrosion of the refractories and/or electrodes. Indeed, the relative weight fractions of chromium to sodium in the molten-salt phases sampled are 3.5 to 5 times higher than its corresponding ratio in the glass. However, no unusual corrosion of the melter's components was visually obvious at the conclusion of RSM testing.

7.2 Off-Gas Line Deposits

A significant buildup of process debris in the off-gas line connecting the melter to the EVS quench scrubber occurred during RSM testing. Although the POG's film cooler is designed to prevent the buildup and growth of off-gas line obstructions, the overfeeding event previously mentioned in 6.2.4 introduced raw feed into the melter's off-gas jumper that, upon drying, created significant pipe-wall deposits. Once formed, these pipe-wall irregularities will inevitably build upon themselves, despite the film-cooler, by collecting off-gas debris generated by the melter. Although the buildup of off-gas line deposits did not impact the RSM's 5-day processing schedule, over time, they would have had to be removed.

Table 7.3 summarizes the compositions of deposit samples taken from the melter view port, the film cooler wall, and EVS' entry port. Of the samples taken, the film-cooler deposit most resembled fused material. Deposits taken from the view port and EVS entry area are best described as a mixture of dried and fused feed material laced with semivolatiles and distinguishing high-sulfur values.

Table 7.1. Composition of Dissolved Molten Salt Samples

	Molten Salt Solution Composition							
	RSM-	1-01-18	RSM-1-01-31		RSM-1-01-41		RSM-1-01-63	
Element	ppm	mEq/L	ppm	mEq/L	ppm	mEq/L	ppm	mEq/L
Al							1.6	0.2
В	18.0	5.0	21.0	5.8	21.0	5.8	19.0	5.3
Ba	0.2	-	0.2	-	0.2			
Ca	34.0	1.7	22.0	1.1	22.0	1.1	0.1	
Cl	210.0	5.9	87.0	2.5	120.0	3.4	220.0	6.2
Cr	24.0	0.9	17.0	0.7	45.0	1.7	55.0	2.1
Cs	9.1	0.1	6.6	-	12.1	0.1	13.1	0.1
Cu	0.5		0.3					
F	16.3	0.9	12.6	0.7	14.6	0.8	26.4	1.4
Fe	0.2							
K	400.0	10.2	260.0	6.6	510.0	13.0	400.0	10.2
Li	110.0	15.8	64.0	9.2	100.0	14.4	66.0	9.5
Mg	3.4	0.3	0.2		0.1		13.0	1.1
Mn	0.1							
Mo	12.0	0.4	7.7	0.2	15.0	0.5		
Na	1900.0	82.6	1260.0	54.8	2350.0	102.2	1700.0	73.9
P	6.3	0.6	3.1	0.3	9.0	0.9	3.4	0.3
S	1420.0	88.6	930.0	58.0	1770.0	110.4	1220.0	76.1
Si	5.3	0.8	2.3	0.3	2.6	0.4	2.8	0.4
Sr	1.5		0.8		0.9			
Ti	0.7							

Photographs taken of the film cooler, the off-gas jumper and the EVS inlet are displayed in Appendix H. All off-gas lines and components downstream of the EVS' inlet section were found to be clean and unobstructed.

Table 7.2. Assumed Chemical Forms and Weight Contributions of Alkali-Earths

Assumed	Wt% Contributions Of Constituents						
Form	RSM-18	RSM-31	RSM-41	RSM-63			
Na ₂ SO ₄	77.31	79.37	79.90	77.15			
K ₂ SO ₄	7.83	6.54	9.03	3.16			
KCl	7.70	6.79	5.05	12.37			
KF		1.43	0.89	2.15			
CsCl	0.28						
LiCl	1.57	-	-				
LiF	0.48						
Total (%)	95.17	94.13	94.88	94.83			

Table 7.3. Unnormalized Off-Gas Deposit Compositions

	Equivalent Oxide Wt%							
Oxide	Vw Port	Flm Cool	EVS	Trgt Gls				
Al_2O_3	3.820	8.110	1.990	8.930				
B_2O_3	4.150	4.420	6.930	10.300				
BaO	0.010	0.013	0.003	0.002				
CaO	1.490	8.190	1.230	4.110				
CdO	0.014	0.169	0.041	0.026				
Ce_2O_3				0.002				
Co_2O_3								
Cr_2O_3	0.087	0.179	0.105	0.067				
Cs ₂ O	0.037	0.171	0.205	0.064				
CuO		0.010	0.003	0.015				
Fe_2O_3	3.030	8.460	1.540	7.260				
Gd_2O_3				0.008				
K_2O	1.990	1.700	6.080	2.430				
Li ₂ O	1.570	1.360	2.020	3.400				
MgO	0.082	0.335	0.058	0.128				
MnO	0.126	0.318	0.077	0.263				
MoO_3			0.026	0.007				
Na ₂ O	10.300	9.940	21.200	16.800				
NiO	0.035	0.089	0.023	0.029				
P_2O_5		0.331		0.256				
PbO	0.058	0.231	0.046	0.077				

Table 7.3 (contd)

	Equivalent Oxide Wt%						
Oxide	Vw Port	Flm Cool	EVS	Trgt Gls			
RuO ₂	0.029	0.049	0.026	0.004			
SO_3	3.600	0.983	5.610	1.140			
SiO_2	17.700	45.100	8.690	44.200			
SrO	0.043	0.023	0.006	0.003			
TiO_2	0.014	0.063		0.001			
ZnO	0.009	0.042	0.009	0.023			
ZrO_2	0.046			0.002			
Total	48.2	90.3	55.9				

7.3 Process Statistics

During the January 2001 melter-flowsheet evaluation studies, 168 L (44 gal) of SBW simulated waste having a total mass of 210 kg were processed by the RSM producing 22 L (5.8 gal) of glass having a total mass of 57 kg. Although vitrification results in both mass and volume waste reductions, only the volume-reduction parameter is meaningful since the major mass contributors to the SBW (H₂O and NO₃) are nonvitrifiable, volatile species. On the other hand, since most of the hazardous and rad-waste SBW components can be incorporated and immobilized in the melter's vitreous product and tank waste volumes of SBW are a physical reality, volume reduction has important waste-disposal implications. During the current RSM test, an overall SBW waste-volume reduction factor of 7.6 was achieved.

7.4 Sulfur Balance

As discussed in the previous section, 167 L (44 gal) of SBW simulant having an equivalent elemental sulfur concentration of 1.635 g/L were fed to the melter, which produced 57 kg of glass having an average elemental sulfur loading of 0.265 Wt%. Off-gas system losses of sulfur were estimated from the concentrations of the soluble sulfur, 86 ppm and 7500 ppm, in the 193 L (51 gal) of EVS condensate and in the 7.5 L (2 gal) of HEME aqueous runoff, respectively. If the following sulfur residuals are neglected,

- the molten-salt-phase mass remaining (as glass inclusions) within the melter
- the feed deposits lining the walls of the off-gas jumper
- the insoluble forms of sulfur in the EVS condensate tank
- the aqueous inventory remaining within the HEME's fiber bed

then 80% of the sulfur fed to the melter can be accounted for by glass, EVS, and HEME process streams.

The \sim 55 g of sulfur that is unaccounted for can be used to estimate an upper bound to the average concentration of SO₂ gas that could have escaped detection by being released to the environment. If a

15-scfm noncondensible off-gas flow rate is assumed over an effective 4-day, steady-state processing period, the maximum possible SO_2 concentration is calculated to be <20 ppm. Previous melter tests have shown SO_2 emission rates to be very low (~ 1 ppm) when plenum temperatures are <600°C. Since the RSM's plenum temperature conforms with this low-temperature condition, it would be surprising if residual undetected sulfur residing on the HEME fiber bed and/or in EVS insoluble material could not account for a large fraction of the missing sulfur mass.

8.0 Conclusions and Recommendations

The results obtained from SBW melter-flowsheet evaluations have demonstrated that the processing characteristics of baseline melter-feed formulation for 30%, 32%, and 35% waste loadings are more than adequate and that the vitreous product formed is sufficiently durable to comply with all existing RCRA land-disposal limits. Moreover, area-normalized glass-production rates and specific process energy requirements for the SBW flowsheet are found, overall, to be in reasonably good agreement with generalized expectations for slurry-fed, Joule-heated ceramic melters.

Determining the fate of feed-component sulfur was an important objective during and after melter testing. Accessing melter accumulations of molten Na₂SO₄ was an ongoing activity conducted during all phases of testing, as was SO₂ off-gas monitoring. Post-test analyses of all process waste streams were used to help establish a mass balance for sulfur around the melter. The conclusions and results obtained from these evaluations are summarized by the following observations:

- A molten-salt phase was present for all waste loadings tested (30, 32, and 35 Wt%), but it never formed a contiguous surface layer.
- At the reference reductant (sugar) loading of 135 g/L-SBW, the inventory of molten salt noticeably increased when processing 35% SBW feeds.
- Increased reductant levels mitigated molten-salt accumulations at higher waste loadings, but it also affected the oxidation state of the product glass.
- 55% of the sulfur fed to the melter was incorporated within the melter's glass product, and 26% was condensed/collected as soluble sulfates by the RSM's off-gas system.
- Residual, uncollected H₂SO₄ residing on the HEME fiber bed and/or unanalyzed insoluble sulfate material in EVS' condensate tank are believed to account for much of the remaining sulfur (~20%), as SO₂ generation rates in nonboosted, cold-lid melters are usually quite low.
- If SO₂ environmental releases are assumed responsible for all the unaccounted for sulfur, the average noncondensable off-gas concentration of this gas would have been <20 ppm, which is significantly less than the detection limit of the online instrument that failed to detect this effluent during RSM testing.

Given the importance of S in the SBW flowsheet, a dedicated, high-sensitivity SO_2 monitor should be used in subsequent tests to help resolve ambiguities associated with sulfur off-gas behavior. Furthermore, since increased SBW reductant loading appears to have been effective in controlling molten salt accumulations when feed containing 140% of the baseline sulfur content was processed, a careful parametric study needs to be conducted to establish the reductant level that optimizes sulfate reduction while not overly reducing the melter's glass product.

Off-gas measurements revealed little evidence for the presence of gas-phase compounds of B, Cl, F, P and S due presumably to low (~100°C) unquenched off-gas temperatures. This situation is not representative of full-scale operating conditions where temperatures exceeding 200°C are common; consequently, lower film-cooler injection rates should be considered when future RSM tests are conducted as the fate and behavior of reactive/condensable gases were not being properly represented.

Since only a very few feed components are typically lost to the off-gas processing system in the gaseous state, the low off-gas temperatures had little impact upon the majority of waste/feed constituents. Consequently, melter aerosol mass DFs (~50) were found to be consistent with previous small-scale melter flowsheet tests and did not appear to have been significantly affected by the SBW waste loading fraction. This was also true for most individual melter-feed component DFs, since aerosol losses normally dominate the melter source term.

However, atypically high off-gas partitioning coefficients were recorded for the radiologically important semivolatiles Cs and Ru. Although additional testing will resolve this apparent cesium loss rate anomaly, higher levels of Ru are recommended in subsequent RSM tests if reliable melter-performance values for this element is to be obtained. In addition, the method of preparing the aerosol samples for analysis (digestion with the quartz filter media) should be reexamined as it significantly reduced sensitivities for detecting minor effluent constituents and eliminates the possibilities of measuring trace constituents, such as the halogens.

Appendix A

Test Plan for Vitrification Demonstration Tests of INEEL Sodium-Bearing Waste

TEST PLAN FOR VITRIFICATION DEMONSTRATION TESTS OF INEEL SODIUM-BEARING WASTE

Nick Soelberg, INEEL John McCray, INEEL Ron Goles, PNNL Joe Perez, PNNL

January 2001

Pacific Northwest National Laboratory Richland, Washington 99352

Idaho National Engineering and Environmental Laboratory Idaho Falls, Idaho 83415

CONTENTS

1. INTRODUCTION	A.3
2. OBJECTIVES	A.4
3. PROJECT ORGANIZATION AND SCHEDULE	A.6
4. TEST PROGRAM	A.7
4.1 Determine feasibility of vitrifying surrogate SBW	A 8
4.2 WASTE LOADING MAXIMIZATION	
4.3 REDUCTANT OPTIMIZATION	A.9
5. DATA COLLECTION AND SAMPLE COLLECTION/ANALYSIS	A.10
5.1 PROCESS MONITORING, CONTROL, AND DATA COLLECTION	A 10
5.2 PROCESS SAMPLE COLLECTION AND ANALYSIS	A 12
5.3 OFFGAS SAMPLE COLLECTION AND ANALYSIS	A 13
5.4 SAMPLE ANALYSIS PROCEDURES AND EQUIPMENT	A.15
6. SURROGATE SBW AND FEED MIXTURE	
6.1 SBW Description	A 16
6.2 GLASS FORMULATION	
6.3 FEED MIXTURE DESCRIPTION	A 18
6.4 GLASS-FORMING ADDITIVE COMPOSITION	A.19
7. RSM FACILITY DESCRIPTION	A.20
8. QUALITY ASSURANCE	A.23
8.1 Data Quality Objectives	A 23
8.1.2 Quantitative Measurements	
8.1.3 Qualitative Measurements	
9. ENVIRONMENTAL, HEALTH, AND SAFETY	A.25
9.1 Flammability Mitigation	A.25
9.2 Personnel Safety	A.26
9.2.2 Noxious Gas Releases	
9.2.3 Personnel Protective Equipment	
9.2.4 Material Safety Data Sheets	
9.2.5 Medical Requirements	
9.2.6 Confined Space	A.28
9.2.7 Respiratory Protection Requirements	A.28
9.4 EMERGENCY RESPONSE	A.28
10. REFERENCES	
IV. REFERENCES	A.30
ADDENDIY A 1	A 21

TEST PLAN FOR VITRIFICATION DEMONSTRATION TESTS OF INEEL SODIUM-BEARING WASTE

1. INTRODUCTION

Over several decades, operations at the Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL, formerly called the Idaho National Engineering Laboratory, INEL, and before that the Nuclear Reactor Testing Station, NRTS) has performed nuclear reactor testing, reprocessing of spent nuclear fuel, and storage, treatment, and disposal of radioactive and mixed wastes that result from reactor operations and nuclear fuel reprocessing operations. Liquid, acidic, and radioactive, high-level waste (HLW) and sodium bearing waste (SBW) from spent fuel reprocessing operations has been temporarily stored at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm facility (TFF). All of the stored HLW and some of the SBW have been calcined in the New Waste Calcining Facility (NWCF) and the earlier Waste Calcining Facility (WCF) to convert the liquid waste into a dry granular calcine that is safer to store. DOE determined to close the NWCF calciner in Fiscal Year 2000 rather than upgrade and permit this facility to meet new regulatory requirements, in part because even the calcine is not expected to meet long-term disposal requirements.

The TFF presently contains about 1 million gallons of SBW that was not calcined. The SBW is an aqueous, highly acidic (1-3 molar nitric acid) solution containing dissolved and suspended radionuclides, heavy metals, and other species including halogens. This waste is a listed, mixed waste, containing both radionuclides, hazardous characteristics (corrosivity and characteristic metals) and small amounts of listed organic constituents. This liquid mixed waste, stored in tanks, does not meet current regulatory requirements for long-term storage or disposal.

In January 1990, the U.S. Environmental Protection Agency (EPA) issued to DOE a Notice of Noncompliance because the tank farm facility did not meet the secondary containment requirements of the Resource Conservation and Recovery Act (RCRA). As a part of the Settlement Agreement between DOE and the State of Idaho, the TFF tanks are to be taken out of service by December 31, 2012. An obvious element the TFF tanks closure is the removal and treatment of the remaining SBW.

Several potential options have been proposed for treating the SBW. Of those considered, vitrification was selected by DOE in fiscal year 2000 as the preferred method. Beginning in fiscal year 2000, the INEEL High Level Waste (HLW) program embarked on a program for technology demonstration and development that will lead to conceptual design of a vitrification facility for the SBW. This program includes several separate activities that include, among others, demonstration testing of nonradioactive surrogate SBW in pilot facilities.

Demonstration tests are currently planned using two existing, nonradioactive pilot-scale melter test facilities. Small -scale tests will be performed using the Research Scale Melter (RSM) located at the Applied Process Engineering Laboratory (APEL) facility in Richland, Washington. Larger, pilot-scale tests are also planned using the EV-16 melter located at the Clemson Environmental Technologies Laboratory (CETL) at Clemson University in Anderson, South Carolina. Laboratory crucible tests are also included prior to and simultaneously with planned research and pilot-scale demonstration tests, in part to provide initial information for establishing surrogate feed recipes and target melter-operating conditions for the demonstration tests.

This test plan describes the RSM test series planned for late January 2001. A second RSM test series is planned for later in 2001.

2. OBJECTIVES

The objectives of the first RSM test series, in order of priority, are summarized as follows:

- 1. Determine feasibility of vitrifying surrogate SBW without pretreatment to produce a regulatorily acceptable borosilicate glass waste form.
- 2. Characterize the product glass, melter offgas, and particulate matter (PM, material volatilized or otherwise entrained in the offgas). This characterization includes determination of (a) amounts and elemental compositions of all products, (b) the fate of certain feed components (such as radionuclide surrogates, heavy metals, glass formers, carbon, nitrates, halogens, and sulfur), and (c) leachability (based on Product Consistency Test, PCT) and oxidation state (based on Fe⁺²/Fe^{total} ratio) of the product glass, and (d) properties of the offgas and particulate matter.
- 3. Determine a maximum process rate based on stable operation at a maximum surrogate SBW loading and maximum feedrate.
- 4. Determine if the melt rate or melter processing conditions can be optimized by changing melter-operating conditions.
- 5. Determine surrogate SBW volume and mass reduction.
- 6. Determine power requirements versus surrogate SBW mass processed and versus glass produced.

Objective 1 is to verify the feasibility of SBW vitrification via direct slurry feeding of a surrogate SBW with added glass formers and an organic reducing agent. The added glass formers are used to produce an acceptable borosilicate glass waste form for the melter product. Glass waste form acceptability will be based on results of glass characterization summarized in Objective 2.

A reducing agent is expected to be needed to control the oxidation states of multivalent glass constituents, aid in the denitration of the feed, and to increase melt rate by reducing such conditions as melt foaming. Reductant may also help prevent formation or persistence of sulfate salts in the melter. Sucrose will be the first reductant that will be tested. Based on results of crucible tests and initial pilot tests, other reductants or varying concentrations of reductants may also be tested in the second RSM test series. This will demonstrate the ability to perform feed evaporation and denitration steps along with vitrification in the melter, thereby eliminating the need for any SBW pre-treatment technologies prior to vitrification.

The feasibility of vitrifying the surrogate SBW will be determined by establishing continuous surrogate SBW feeding at the maximum surrogate waste loading and feedrate, based on melter operating conditions such as cold cap, while avoiding the generation of sulfate salts in the melter in amounts that could impair melter performance. Establishing a maximum waste loading and feedrate will determine a maximum waste-processing rate and accomplish Objective 3.

To satisfy Objective 4, flowsheet reductant concentration will be varied to examine its influence upon feed rheology, melter processing rates, melt oxidation state and process off-gas conditions.

Objectives 5 and 6 are accomplished by recording and comparing the melter product masses and the melter power consumption to the surrogate waste feedrate and loading.

Not included in the scope of the first RSM test are:

- Determinations of offgas system or technology performance (beyond determinations used for waste characterization and mass balances)
- Determination the fate of Hg during the vitrification process (no Hg will be added in the feed)
- Evaluations of different reductants besides sucrose
- Measurements of sulfur and chlorine species in the offgas except as provided by the continuously operated mass spectrometer, which can quantify those species only to the extent that other species with identical masses are not also present in the offgas
- In-situ determination of particle size distribution of the entrained/volatilized particulate matter (INEEL will conduct post-test estimates of particle size by scanning electron spectroscopy of filter/bulk PM sample fractions)
- Particulate/metal sample train collection and analysis in excess of 3 separate sample trains
- Evaluations with sample collection and analysis to determine PM emissions for different melter conditions such as reduced cold cap.

3. PROJECT ORGANIZATION AND SCHEDULE

The RSM test program will be performed primarily by personnel from Pacific Northwest National Laboratory (PNNL) and INEEL. Project activities and performing organizations are listed as follows:

- INEEL: Provide (a) project definition and test objectives, (b) SBW composition and determination of reductant, (c) test plan preparation support, (d) project schedule definition, (e) onsite test team support of at least 1 engineer or technician on all shifts during testing, (f) scanning electron micrograph (SEM) analysis of PM samples, and (g) test report review and comment.
 - PNNL (Battelle): Provide responsibility for the performance of the test, including (a) test facility (RSM system) and support infrastructure (utilities, electrician, mechanic, machine shop, etc), (b) feed procurement and preparation, (c) facility and test plan preparations for the test series, (d) sampling and analysis equipment preparation and operation, (e) all materials including sample containers, reagents, calibration gases, etc. associated with operating the RSM and collecting samples, (f) test team direction during the test series, (g) all sample analysis (except for SEM analyses performed at the INEEL), (h) all data reduction except for what can be done during test operation by INEEL personnel, and (i) draft and final test reports.

An approximate schedule is shown in Table 1. As this schedule shows, the soonest that draft report information could be available to help in planning subsequent EV-16 pilot tests is about March 16, 2001. These activities are all on the critical path for project completion. Any delays in these activities could extend this schedule beyond the estimated dates.

Table 1. RSM Tes	Table 1. RSM Test Program Schedule							
Activity	Start date	Completion date	Performer					
1. Draft test plan	Dec 11, 2000	Dec 22, 2000	INEEL & PNNL					
2. Procure feed components	Dec 2000	Jan 19, 2001	PNNL					
3. Finalize test plan		Jan 19	INEEL & PNNL					
4. Prepare test facility including preparation of RSM	Dec 2000	Jan 26	PNNL					
system, feed system, and sample collection and								
analysis equipment								
5. Prepare feed mixture(s)	Jan 22	Jan 26	PNNL					
6. Perform pretest shakedown	Jan 22	Jan 26	PNNL					
7. Conduct test	Jan 29	Feb 2	PNNL w/ INEEL					
8. Post-test inspections, facility cleanup, sample	Feb 2	Feb 9	PNNL					
collection, and sample delivery to laboratory(ies)								
9. Laboratory analysis	Feb 9	Feb 23	PNNL (& INEEL					
			for SEM analysis)					
10. Continuous process monitor and continuous offgas	Feb 5	Feb 23	PNNL					
monitor data reduction								
11. Laboratory data reduction	Feb 23	Mar 9	PNNL					
12. Data evaluation and draft test report	Feb 23	Mar 16	PNNL					
13. Project internal review and comment	Mar 16	Mar 30	PNNL & INEEL					
14. Final report prepartion/DOE review	Mar 30	Apr 13	PNNL					
15. External report preparation/issuance	Apr 13	Apr 30	PNNL					

4. TEST PROGRAM

The January 2001 test series is limited to 96 hours of continuous, 24 hr/day melter operation. A target test condition matrix is shown in Table 2. This matrix is designed to satisfy the test objectives described in Section 2. The ability of this test series to accomplish all test objectives depends on how rapidly Objective 1 is satisfied. Establishing stable operation with surrogate SBW waste may require some trial and error operation. At a given set of operating conditions, some operating time is needed to (a) detect changes in some potentially slow-responding conditions such cold cap coverage and a separate molten sulfate salt layer, and (b) allow time for the melt bath composition to approach a new equilibrium after step changes in the feed composition that affect the melt composition. Based on the RSM bath volume and nominal feedrate, the bath normally requires at least 4.5 hours of operation and tapping after a feed composition change to purge one volume of the old bath composition. Up to 3-bath volume changes (approximately 12 hours) are needed to approach a new composition equilibrium.

	Table 2. Target test matrix for the January 2001 RSM test series.								
	Waste				Cumu-				
	Loading,		Reduc-	Dur-	lative				
Objective	%	Feedrate	tant	ation	hours	Data/Sample Collection	Comments		
Vitrification	A (a)	1.5 l/hr		24	24	Routine data recording; collect	Assuming that offgas		
feasibility		(b)				all samples & PM/metal train 1 at stable condition	measurements are continuous and relatively rapid, and that		
Waste loading	B (d)	Highest optimum	X (c)	24	48	Routine data; all samples & PM/metal train 2 at stable	the response of the offgas to a step feed change is relatively rapid, extra time for feeding		
maximization	C (d)	Highest optimum		24	72	condition	is not expected for offgas measurements except for the		
Reductant optimization	Highest optimum	Highest optimum	Y(c) (≠X)	12	84	Routine data; all samples & PM/metal train 3 at stable	sample trains.		
	Highest optimum	Highest optimum	Z(c) (≠X,Y)	12	96	condition			

a. % of surrogate SBW in the feed mixture, determined from crucible tests to be the highest value that provides a reasonable expectation that stable, sulfate-phase free operation can be established and maintained. This value may be between 20-35%.

If some conditions such as the generation of a separate molten sulfate salt phase occur, some time may be required to take corrective activities. Such corrective activities could include (a) temporarily increasing the amount of feed reductant or adding another reductant (such as starch) to react with the sulfate to form metal oxides and gaseous sulfur species, or (b) temporarily decreasing the amount of sulfur in the feed and allowing time to sulfates to dissolve from the sulfate phase into the lower-sulfate-concentration glass product.

When satisfactory operating conditions are maintained stably, then time, while maintaining those conditions, will be required to obtain glass, offgas, PM, and secondary waste samples for analysis. Depending on the number of particulate/metals sample trains that are collected, the duration of this sample period may extend to at least 6 hours.

b. The feedrate may be adjusted if necessary to try to achieve an optimum 90-95% cold cap.

c. Ratio of reductant to nitrates in the surrogate SBW. Determined from crucible tests to be adequate to reduce the feed nitrates, reduce melt foaming, and help reduce any sulfate phase. This may need to vary during the vitrification feasibility determinations if the melt becomes too reduced (as determined by measured $Fe^{=2}/Fe^{total}$ ratios) or if there is too much melt foaming.

d. Incrementally increased, if possible, to attempt to increase the melt rate and overall waste loading in the glass

4.1 Determine feasibility of vitrifying surrogate SBW

At the start of the test series, a slurry of the SBW surrogate, glass formers, and reductant (sucrose) will be fed to the RSM melter to verify the glass formulation. The feed mixture recipe will be based on determinations of reductant concentration and waste loading determined previously during crucible tests at PNNL. Target operating conditions for the melter system are shown in Table 3. The target melt temperature is 1,150°C, and the target feedrate is 1.5 l/hr. As shown in Table 2, this first feasibility evaluation may require 24 hours or more of operation (at least 3 melt turnovers, and added time for adjustments), depending on how many feedrate, temperature, or other adjustments or corrective actions are needed to enable operation at or near the target operating conditions. When stable and acceptable conditions are established, samples of the glass, offgas, offgas particulate/metals, and offgas system secondary wastes will be collected for analysis to satisfy Objective 2. Monitoring and recording of other operating conditions such as tap rates and power levels will satisfy Objectives 5 and 6.

Test conditions after the feasibility determination will be based on results of the feasibility determination. If the test leader determines that the waste loading can be increased above the loading established in the feasibility determination, time is allowed (48 hours) in Table 2 to incrementally increase the waste loading to determine a maximum loading that still provides acceptable system conditions. The waste loadings for the subsequent test iterations will be increased based on results of the previous iterations. If sulfate salts are not present following the previous test, the waste loading will be increased until a separate sulfate salt layer becomes apparent (providing values for other operating parameters are within acceptable ranges).

Table 3. Target RSM operating conditions for the January 2001 test series.

	Tr. 4						
Parameter	Target						
Feedrate, liters/hr	1.5						
Feedrate, kg/hr (a)	2.0						
Feed oxides, kg/liter	0.45						
	1.150						
Glass melt temperature, °C	1,150						
Glass melt volume, liters	1.4						
Glass melt mass, kg (b)	3.6						
Glass production rate, kg/hr	0.7						
Glass production rate, kg/m ² /day	890						
Glass Fe ⁺² /Fe ^{total} ratio	<0.3						
Plenum temperature, °C	600						
Plenum pressure, inches water	-0.5 to -1.5						
Air inleakage rate, scfm	~1.0 (estimated)						
Total offgas flowrate, liters/minute	173						
Plenum residence time, sec	1.6						
a. Assuming a feed mixture specific gravity of 1.34.							
b. Based on a glass specific gravity of 2.6.							

4.2 Waste Loading Maximization

During the waste loading maximization tests, the reductant concentration will change in proportion with the surrogate SBW, so that the ratio of reductant to nitrates and other species in the surrogate waste stays constant. If/when a sulfate salt phase begins to form, corrective actions will be implemented to remove this phase. When stable operation is established at maximum waste loading and feedrate conditions, sample and data collection including offgas composition and particulate/metals will provide data to satisfy Objectives 2, 3, 5, and 6.

4.3 Reductant Optimization

Following the maximum waste loading determination, and assuming adequate remaining time, additional test(s) will be conducted to optimize melter performance by changing the amount of reductant while maintaining (or increasing) the maximum melt rate. Decreasing the amount of reductant may be considered to optimize the melt oxidation state or reduce levels of products of incomplete oxidation in the melter offgas. Increasing the amount of reductant may be considered to improve nitrate reduction and melt rate, or improve the ability to prevent sulfate phase formation. 24 operating hours are available in Table 2 for this activity. If a new stable operating condition results from this activity, sample collection will be done to provide data for satisfying Objectives 2-6.

5. DATA COLLECTION AND SAMPLE COLLECTION/ANALYSIS

The test program includes process monitoring and control, data collection, sample collection, and sample analysis.

5.1 Process Monitoring, Control, and Data Collection

Process monitoring, process control, and data collection is performed primarily by a data acquisition and control system that monitors and controls key system components and electronically logs key data. Process data that is not electronically logged by this system must be recorded manually on operator data sheets.

Table 4 shows process data that is electronically logged by the data logging system and manually logged on operator data sheets. These data document data about melter conditions, electrode power, the kiln that encloses the melter, glass tapping, and the offgas system.

Visual observations of the operating behavior of the feed system and the melter will be very important during these trials. Any foaming, corrosion, or salt formation will be noted. Accurate records of feed rate will be made so reaction times and associated glass oxidation conditions can be documented. Any operational problems or potential optimizations will also be recorded.

At the completion of each test, the melter will be shut down according to PNNL procedures. Any devitrification in the containers of glass produced will be noted. The melter tank, other melter components, and the off-gas system will be examined for any wear, pitting, or corrosion. If operating or glass product characteristics suggest the presence of a separate metal phase, the RSM's melt cavity will be examined for possible accumulations of reduced metals.

Table 4. RSM process data that is electronically or manually logged.

Parameter	Units	Range	Electronic log	Manual log
Melt Temperature (T1, control, T2, manual log)	° C	1,125 - 1,175	X	X
Plenum Temperature	° C	400 - 600	X	
Feed pump setting	%		X	X
Cold Cap Coverage	%	> 75		X
Slurry Pool Coverage of Cap	%			X
Cold Cap Flexibility Visible	y or n			X
Number of Vents	#			X
Cold Cap Thickness	inch			X
Phase Separation Noted in LRB	y or n			X
Glass Pouring	y or n			X
Electrode Potential	Volts		X	X
Electrode Current	Amps		X	X
Electrode Power	kW		X	X
(Electrode Power) Output	%		X	X
(Electrode) Control Mode	A or M		X	X

Table 4. RSM process data that is electronically or manually logged.

Table 4. RSM process Parameter	Units	Range	Electronic log	Manual log
Melt Resistance	$\frac{\Omega}{\Omega}$	Range	X	X
Melt (Electrode) Setpoint Temp	° C		X	X
Parameter	Units	Danga		
	kW	Range	Electronic log	Manual log
Kiln Power			X	X
Kiln Temp Setpoint	° C		X	X
Kiln Actual (Middle) Temp	°C		X	X
Kiln Power Output	%		X	X
Kiln Control Mode	A or M		X	X
Discharge Can Power	kW		X	X
Discharge Can Temp Setpoint	° C		X	X
Discharge Can Actual Temp	° C		X	X
Discharge Can Power Output	%		X	X
Overflow Heater Power	kW		X	X
Overflow Heater Setpoint	° C		X	X
Overflow Heater Power Output	%		X	X
Overnow freater rower output	70		Α	Λ
Feed Nozzle Cooling Flow	gpm	reg FNT (0.5)		X
Film Cooler Air Flowrate	scfm	reg OGT (1-10)		X
Melter Vacuum-Magnehelic	in. H2O	0.1 -2.0		X
EVS HX Cooling Flow	gpm	reg SLT (1-5)		X
EVS Scrub Tank Volume	gallon	35 - 50		X
EVS Nozzle Pressure	psi	50 - 55		X
EVS Scrub Solution pH	pН	> 9		X
Feed Pump (tubing) Condition				X
Agitator Setting				X
Blower Cooling Flow	gpm	1 - 1.5		X
Feed Nozzle Temp (FNT)	° C	< 40		X
recurrozzie remp (rivi)	C	` 10		Λ
Off-Gas Temp (OGT)	° C	< 250		X
Post EVS Off-Gas Temp	° C	< 50		X
Scrub Liquid Temp (SLT)	° C	< 40		X
Heat Xfer Temp	° C	< 30		X
Feed Pressure	psi	<1.0		X
Feed Tank Wt	Kg	decreasing		X
Overflow Temp	° C	1,000 - 1,100		X
Discharge Can Temp	°C	750 - 850	- 	X
Glass Scale	Kg	< 10		X
	_			
Alarm Condition	On/Off	Off		X

5.2 Process Sample Collection and Analysis

Process samples that will be collected for analysis for this test series include the feed slurry, glass product, accretions of material on the inside of the melter plenum or offgas pipe (if present), and scrubber solution. Table 6 shows these sample matrices, frequency of sample collection, and planned analyses. In general, process samples (except for plenum or offgas pipe samples, which cannot be collected until those areas are physically accessed either at the end of the test series or during other shut down conditions) will be collected at least for every identified "stable" operating condition that represents a condition that satisfies the test objectives. Sample analyses will be done to determine elemental compositions for mass balances and for determining properties of those melter product streams.

Glass sample analysis will include not only the elemental composition, but also leachability, density, crystalline morphology, and viscosity. Leachability will be measured using both the Product Consistency Test (PCT), ASTM C-1285-94^[1], and the Toxicity Characteristic Leaching Procedure (TCLP). The PCT measurement is the standard test method used for determining the durability of high-level waste glasses in the United States, and is a criterion that will be used to determine how the product glass of the actual waste will meet regulatory requirements for high-level waste disposal. TCLP analyses will be done to determine how the hazardous metals in the feed (such as Cd, Cr, and Pb) will be stabilized to meet RCRA disposal requirements.

Beyond compositional characteristics of the glass product, a limited PNNL budget (~\$4K) remains for conducting morphology, viscosity and regulatory-based tests mentioned above. Consequently, PNNL evaluations of noncompositional properties of glasses will, by necessity, be limited unless additional analytical scope is authorized. Otherwise, samples will be transmitted to INEEL for characterization.

Table	Table 6. Process sample collection and analysis for the RSM January 2001 test series.								
Sample Matrix	Size	Frequency	Analysis	Comments					
Glass product	≥200 g?	During each pour (~ every 1 to 4 hours) or every two hours whichever is less frequent.	Elemental (a) Fe ratio PCT leachability TCLP leachability Density Crystalline morphology Viscosity	Full metals and other analyses may only be done on those glass samples that represent test conditions that satisfy test					
Plenum or offgas pipe accretions	≥200 g	At end of test series or when system is shut down and opened up	Elemental (a)	objectives; full sample analysis will not be done on					
Scrubber solution	≥50 ml	Once per shift and/or at the conclusion of every test condition considered to be stable and satisfactory of test objectives	Elemental (a)	all collected glass samples.					

a. Elemental analysis includes 25 elements – 7 RCRA metals (Ag, Ba, Be, Cd, Cr, Pb, Se), 10 glass formers (Al, B, Ca, Fe, K, Li, Mg, Mn, Na, and Si), 2 nonradioactive surrogates of radioactive elements (Ce and Cs), 3 halogens (Cl, F and I), and P, S, and C.

5.3 Offgas Sample Collection and Analysis

Offgas sampling and analysis will include online, practically online, and off-line measurements. True online measurements include offgas temperature and NO, NO₂, and total hydrocarbon (THC) measurements. Measurements of the offgas flowrate and composition using gas chromatography and mass spectroscopy are not true online measurements. These measurements include continuous or discrete sample gas extraction, and discrete injection of sampled gas into the gas chromatograph (GC) or the mass spectrometer (MS). Analytical GC and MS results are typically available within minutes (\leq 75s) of sample collection, and so are still as useful as online measurements.

Table 7 shows the offgas and particulate/metals sampling and analysis for this test series. All sampling will be done near the outlet of the melter, just downstream of the film cooler, but upstream of the offgas processing system. These measurements, when corrected for dilution from the film cooler gas, will best represent the actual uncontrolled melter emissions for melter mass balance evaluations and offgas system design.

The Stanford Research System's quadrupole mass spectrometer is a general analytical tool that can quantitatively and qualitatively measure certain gaseous species with molecular masses up to 300 atomic mass units (AMU). Species such as CO and N₂ (with molecular weight of 28) and CO₂ and N₂O (with molecular weight of 44) are not easily discriminated using the MS results, so these results must be interpreted carefully using other measurements or process knowledge.

Table 7. Melter offgas sample collection and analysis for the RSM January 2001 test series.

	Analytic			the conection and analysis for the RSM January 2001 test series.
Offgas	no. of	sample	es (b)	
Measurement (a)	GC (c)	MS	Other	Comments
Offgas flowrate/	X (He)	X		Use He fed into the melter plenum as a tie element (tracer); subtract film cooler
Velocity				gas flowrate
% sample gas	X (Ar)	X		Use Ar in the dilution gas supply as a tie element (tracer) to calculate sample gas
dilution				dilution
O_2	X	X		
CO_2	X			
CO	X			
N_2	X			
NO			X	Chemiluminescent analyzer
NO_2	37		X	Chemiluminescent analyzer
N ₂ O	X	37		Which column/detector?
HNO_3		X		Sampling temp below BP/moisture reactive, data may not be valid
SO_2		X		
COS		X		
CS_2		X		Sampling temp below BP
H_2S		X		Sumpling temp below Di
SO ₃		X		Sampling temp below BP
50,				Samping wing ottom 21
THC			X	FID, Total Hydrocarbon Analyzer
CH_4		X	X	FID
VOCs		X		Specific species need to be identified
H_2	X			
HC1		X		Moisture reactive
Cl_2		X		
HF		X		
F_2		X		
1 <u>7</u>		71		
PM and metals			3	Single-point, isokinetic Method 5 sample train; filtration without size
(d)			trains	discrimination; INEEL will do SEM analysis of aliquots of filter.
			total	

a. Off-gas measurements not included or deferred to later RSM or EV-16 tests include HCl/Cl₂/F/nitrates sample train, HCl & SO₂ continuous monitoring, sulfur species sample train (total reduced sulfur, TRS sample train), and cascade impactor particle sizing, and all Hg feed and analysis. To the extent that the MS analysis can provide measurements of sulfur species SO₂, H₂S, COS, and CS₂, Cl species HCl and Cl₂, F species HF and F₂ and HNO₃ these will be reported.

- b. GC = Microtechnologies Incorporated (MTI) gas chromatograph calibrated for the specified species. The GC measurements are continuous only when the GC sample system and GC are online. MS = mass spectrometer calibrated for quantitative analysis based on height of peaks that are qualitatively identified based on molecular weight.
- c. The GC has two separate columns and detectors. He is a carrier gas for one column/detector for measuring CO₂ and N₂O. Ar is the carrier gas for the other column/detector for measuring H₂, He, N₂, CO NO, and O₂,
- d. Elemental analysis includes 25 elements 7 RCRA metals (Ag, Ba, Be, Cd, Cr, Pb, Se), 10 glass formers (Al, B, Ca, Fe, K, Li, Mg, Mn, Na, and Si), 2 nonradioactive surrogates of radioactive elements (Ce, and Cs), 3 halogens (Cl, F and I), and P, S, and C.

5.4 Sample Analysis Procedures and Equipment

Process and offgas samples will be analyzed, as applicable, for elemental composition, species composition (for gaseous effluents), leachability, density, particle size, viscosity, and oxidation state (as discussed Sect. 5.2). Multiple analyses of various different sample matrices will be used. Some analyses are online during test operation, while others incur delays of a few minutes to several hours or days, depending on the kind of analysis, sample preparation required prior to analysis, and location of the analytical equipment.

Table 8 shows the briefly describes the different analyses that will be included in this test program.

	Table 8. Sample analysis methods used in the January 2001 RSM test series.								
Analysis	Sample Matrix	Sampling/Analysis Method*	Detection limits	Sample Preparation (solids)	Analysis Description				
Cations	0.11.1	EPA 6010B, Inductively-coupled argon plasma atomic	Variable	Na fusion followed by total digestion (EPA 3050)	Analysis of total amount of element, regardless of speciation				
	Solid or liquid	emission spectroscopy (ICP-AES) . AA for Cs	Variable	K fusion followed by total digestion (EPA 3050)					
Anions		IC	≥1ppm	Leachate (solids)	Cl, F, I, S and P				
Organic		TOC	TBD	Feed samples only	Combustion, CO ₂ detection				
Leach	Glass	TCLP , PCT, ASTM C-1285-94,	By Reg	Crush and size- segregate	By PNNL if requested, otherwise by INEEL.				
Parti- culate matter (PM)	Method 5/0060 probe & filter	EPA 5	1 mg/dscm	Dry per EPA 5	Gravimetric				
PM size distri- bution	catches	Scanning electron micrograph (SEM)	0.1 micron	Mount on stages, coat with gold	Visually count particles and estimate size in SEM fields magnified up to 10,000x				
O ₂ , CO ₂ , CO, and Ar H ₂ and He	Gaseous Effluents	MTI GC with 2 columns/detectors, He carrier gas in one of the columns Ar carrier gas in other.	1 ppm, depending on dilution factor		mple gas extraction followed by g, and filtration; injection of discrete into GC				
NO, NO ₂	Efficients	EPA 7E		Filter, dilute and cool.	Rosemount continuous emissions monitoring (CEM) using chemiluminescence				
THC		EPA 25A		Filter dilute keep warm	CEM using flame ionization detection (FID)				
Gaseous species <300 molec- ular weight		quadrupole mass spectrometer		dilution,; continuous, stream aliquots into M on molecular weight; c calibrated peak height;	mple gas followed by sample direct injection of <1 ml/m sample S. Qualitatively detect species based quantify detected species based on process knowledge or other analyses minate between species with similar				

^{*}Analytical/sampling approaches identified, as applicable, to similar EPA methodologies.

6. SURROGATE SBW AND FEED MIXTURE

The feed mixture includes surrogate SBW in the specified waste loading compared to added glass forming frit, and added reductant (sucrose).

6.1 SBW Description

Liquid SBW contained in the INTEC TFF is a waste product of past spent nuclear fuel reprocessing activities. The waste is a highly acidic (~1 molar nitric acid) aqueous solution of sodium nitrate containing significant amounts of aluminum and potassium, some toxic metals, and radionuclides. Due to its relatively high concentration of sodium, this waste is referred to as sodium-bearing waste (SBW). This waste contains not only dissolved matter but also undissolved solids that have generally settled and formed solid or sludge-like tank heels. At present, the mass or composition of the tank heels are not included in target composition of the RSM tests.

Added to this waste is also some liquid high-level waste that has been recycled back to the tank farm from processing activities such as calcination, and other wastes generated from decontamination and solvent recovery efforts. This waste is a mixed waste, containing not only radionuclides, but also RCRA hazardous characteristics (corrosivity and hazardous metals) and listed wastes (organic solvents). The actual concentrations of any organics is not well known, but is expected to be low (under 1 weight %).

The surrogate SBW for the RSM tests needs to simulate as closely as reasonably possible. Table 9 shows the target composition of the surrogate SBW, based on the chemical composition of the actual SBW contained in INTEC TFF tank WM-180 [2]. A procedure for preparing the surrogate based on specific compounds and sequences of mixing that will enable the different components to become dissolved in the acid matrix was also recommended in this reference.

The surrogate SBW will not contain any radionuclides. Surrogates of some of the actual radionuclides will be used if non-radioactive isotopes of the radionuclides do not exist. Waste radionuclides and those that will be represented by stable isotopes or chemical surrogates in the January RSM Test are summarized below.

Radio	Stable /
Nuclide	Surrogate
H-3	X
CO60	
Sr-90	
TC99	
l129	X
CS134	X
CS137	X
EU154	X (Ce?)
U234	
U235	
U236	
U238	
NP237	
PU238	
PU239	
AM241	

The surrogate recipe does not include Hg to avoid system contamination and increased administrative and engineered protection against Hg environmental releases and worker exposure. Other elements that are in the SBW but that are excluded from the surrogate recipe are indicated in Table 9.

Table 9. INTEC TFF Tank WM-180 Waste and Simulant Compositions

INEEL Waste Definition*		PNNL			
Element	Reagent	Simulant	Comment		
Aluminum	Al(NO ₃) ₃ *9H ₂ O	X			
Arsenic	As_2O_3		Chem hazard, excluded, no impact on glass product		
Barium	$Ba(NO_3)_2$	X			
Beryllium	BeF ₂		Chem hazard, excluded, no impact on glass product		
Boron	H ₃ BO ₃	X			
Cadmium	Cd(NO ₃) ₂ *4H ₂ O	X			
Calcium	Ca(NO ₃) ₂ *4H ₂ O	X			
Cerium	Ce(NO ₃) ₃ *6H ₂ O	X			
Cesium		X	Added as CsNO ₃		
Chromium	Cr(NO ₃) ₃ *5H ₂ O	X			
Cobalt	Co(NO ₃) ₂ *6H ₂ O	X			
Copper	Cu(NO ₃) ₂ *3H ₂ O	X			
Gadolinium	Gd(NO ₃) ₃ *5H ₂ O	X			
Iron	Fe(NO ₃) ₃ *9H ₂ O	X			
Lead	Pb(NO ₃) ₂	X			
Lithium	LiNO ₃	X			
Magnesium	Mg(NO ₃) ₂ *6H ₂ O	X			
Manganese	$Mn(NO_3)_2$	X			
Mercury	Hg(NO ₃) ₂ *H ₂ O		Chem hazard, excluded, no impact on glass product		
Molybdenum	Mo in HNO ₃	X	H_2MoO_4 used.		
Nickel	Ni(NO ₃) ₂ *6H ₂ O	X			
Potassium	KNO ₃	X			
Ruthenium	RuCl ₃	X			
Sodium	NaNO ₃	X			
Strontium	$Sr(NO_3)_2$	X			
Titanium	TiCl ₄	X			
Uranium	UO ₂ (NO ₃) ₂ *6H ₂ O		No available nonradioactive surrogate		
Zinc	Zn(NO ₃) ₂ *6H ₂ O	X			
Zirconium	ZrF ₄	X			
Chloride	HCl	X			
Fluoride	HF	X			
Iodide	KI	X			
Nitrate	HNO ₃	X			
Phosphate	H ₃ PO ₄	X			
Sulfate	H ₂ SO ₄	X			

^{*} Unstable elements of insignificant mass not included.

6.2 Glass Formulation

The product glass needs to meet regulatory limits for high-level waste borosilicate glass. The target glass for SBW vitrification is an iron-enriched borosilicate glass. The target composition for this glass is shown in Table 10.

Table 10. Target Glass Composition.

Oxide	Wt%
$\mathrm{B_2O_3}$	10.53
CaO	4.13
Fe_2O_3	7.37
Li_2O	3.47
Na_2O	15.64
SiO_2	45.16

6.3 Feed Mixture Description

The feed mixture includes surrogate SBW in the specified waste loading compared to added glass forming frit and added reductant (sucrose). In order to satisfy the test objectives, separate batches of feed mixtures may need to be prepared to provide feed mixtures of different compositions to perform the target test matrix shown in Table 2.

The maximum reductant concentration is limited by the oxidation state of the product glass. Excess reductant will tend to reduce not only nitrates but also glass oxides. The oxidation state is indicated by the Fe^{+2}/Fe^{total} ratio, which should be maintained under 0.3. The maximum concentration for sucrose, based on crucible tests, is 141 g of sugar per liter of surrogate SBW. This maximum value is about 64% of the amount needed to stoichiometrically react C with nitrates to reduce the nitrates to N_2 . While initial reductant concentrations may target values less than this, the results of initial testing early in the test series should provide information to enable adjusting the reductant concentration to maximize the melt rate while staying within the acceptance limit for the glass oxidation state.

Different waste loadings also need to be investigated during the test series. Batches need to be prepared that can enable increasing or decreasing the waste loading according to Table 2.

The composition of the feed mixture will not be based on sample collection and analysis of the feed mixture. Instead, the feed mixture composition will be based on calculated weighted averages of compositions of the separate feed components.

6.4 Glass-forming Additive Composition

Table 11 shows the composition of the glass-forming chemicals used as a feed additive to produce a regulatorily acceptable product glass.

Table 11. Frit Composition For The January 2001 RSM Test Series.

Frit	Ox	ide	Glass Former		Mass Ratio
Oxide	Wt%	MW	Chemical	MW	(g-Chem /g-frit)
B_2O_3	12	69.6	H_3BO_3	61.8	0.266
Fe_2O_3	12	159.7	Fe_2O_3	160	0.100
Li_2O	4.0	29.9	LiOH*H ₂ O	42.0	0.140
SiO_2	70	60.1	SiO_2	60.1	0.650
CaO	2.0	56.1	$Ca(OH)_2$	74.1	0.066

7. RSM FACILITY DESCRIPTION

The Research Scale Melter (RSM) facility is located in the Applied Process Engineering Laboratory (APEL) building in Richland, Washington. Figure 1 shows the RSM system. Table 12 shows RSM dimensions and other operational features.

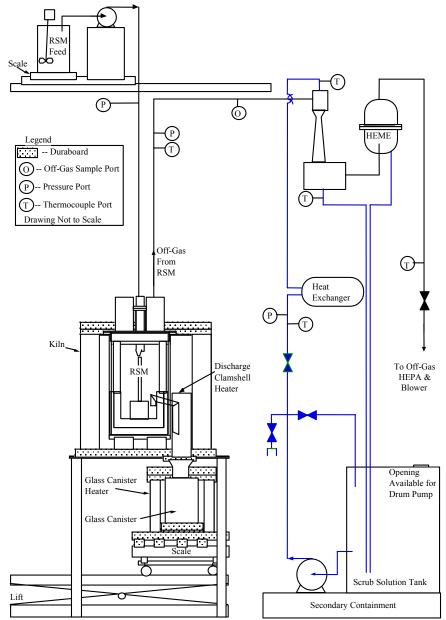


Figure 1. Research-Scale Melter Test Apparatus (*Not shown is a HEPA filter that was installed for this test downstream of the HEME*)

Table 12. RSM dimensions and operational features

Table 12. KSW difficultions and operational reactives					
Parameter	Value				
Melter cavity diameter	15 cm				
Melter cavity height	17 cm				
Melter inside volume	4.5 liters				
Glass pool surface area	182 cm^2				
Nominal glass depth	7.6 cm				
Melter inside volume	1.4 liters				
Nominal molten glass mass	3.6 kg				
Glass turnover rate @ nominal feedrate of 1.5 liters/hr of feed with 0.6 kg/liter oxides	4.5 hr				
Maximum operating temperature	1,200°C				
Nominal operating Temperature	1,150°C				
Electrode Dimensions	7.6 cm x 7.6 cm				
Electrode Material	Inconel 690				
Electrode distance from bottom	0 cm				
Electrode current (average)	90 A				
Electrode voltage (average)	35 V				
Electrode current density (average/maximum)	1.6/2.0 A/cm ²				

The RSM is a small joule-heated melter that is capable of processing melter feed on a continuous basis. This capability is key for determining the relationships between the properties of the feed and the properties of the final glass produced. Production of glass in a continuous manner is also more representative of a full-scale system. Testing in the RSM allows for quantitative measurement of the offgas stream and the performance of parametric studies (*e.g.*, changing one feed component at a time to determine its effect on the process) in a relatively short time frame.

Melter feed is delivered from a feed tank to the RSM feed nozzle by a peristaltic pump. An agitator in the feed tank keeps the slurry well mixed. The feed tank sits on a scale that is monitored by the computer data acquisition and control system. Pump speed (and thus the rate at which feed is introduced into the melter) is controlled from the computer.

The body of the RSM is an Inconel® closed-ended cylinder lined with Alfrax® refractory and containing a Monofrax® K3 refractory melt cavity. An Inconel overflow tube discharges molten glass into a stainless steel canister. An electric kiln surrounds the melter body and minimizes heat loss from the melter body during operation. The discharge section is heated to facilitate pouring of the glass. The stainless steel canister sits inside a smaller kiln maintained between 700°C and 900°C to promote uniform canister filling. Two top-entering Inconel 690 electrodes suspended in the glass supply joule-heating power to the RSM.

Melter offgas is treated by an off-gas treatment system consisting of a film cooler, venturi scrubber (caustic scrub solution), heat exchanger, high efficiency mist eliminator (HEME) and high efficiency particulate arrestor (HEPA, also known as high efficiency particulate-air) filter.

A data acquisition and control system monitors and controls the electrodes, the melter and discharge canister kilns, the melter, the heater for the discharge section, and the peristaltic pump for the feed system. Data collected include the voltage and current for major electrical components, temperature at various locations in the system (*e.g.*, molten glass, plenum space in melter, melter kiln, off-gas treatment system), pressure in the melter, and weight of the feed tank. Data are typically archived every minute but is displayed at more frequent intervals to assist the operators.

8. QUALITY ASSURANCE

All laboratory data, general observations, and details of the activities performed per this test plan will be recorded in a Laboratory Record Book (LRB) or data entry sheets. Subsequent notebooks will be cross-referenced.

Changes to this test plan will be documented on the work place copy. Changes may be entered by the shift leader or responsible engineer (initialed and dated) and approved by the principal investigator as indicated by initial and date. Changes that may affect successfully achieving the primary test objectives will be concurred upon by the INEEL project staff and noted by initial and date. An explanation of any changes should be noted in the LRB. PNNL standard laboratory practices will be followed throughout the testing.

8.1 Data Quality Objectives

The data quality objectives (DQOs) establish the degree of quality assurance/quality control (QA/QC) required to meet the data quality needs of the test objectives. Table 13 summarizes the DQOs for each test objective previously discussed in Section 2 of this Test Plan. This table also shows whether each objective is critical (C) or non-critical (NC). Finally, the type of data for each objective is identified as either quantitative (Quan) or qualitative (Qual). Additional discussion regarding specific measurements is given below.

Table 13. Data Quality Objectives for RSM Test Objectives

Objective#	C/NC	Quant.	Qual.	DQOs	
1	С	x		By using standard with established procedures, develop an optimized SBW melter process flowsheet that doesn't produce a separate salt phase, and results in a glass waste product that maximizes waste loading and meets regulatory repository requirements,	
2	С	X		Analyses of product streams by standard methods with established QA/QC procedures; replicates performed to obtain statistical confidence intervals; accuracies of calibrated M&T are summarized in Appendix A	
3 & 4	С	Х	х	Characterize maximum stable processing rates of the SBW baseline flowsheet as a function of waste loading and reductant composition using M&TE listed in Appendix A. Analyze vitre waste products by standard methods with established QA/QC procedures, to establish compliance with regulatory standards. Process observations	
5 & 6	NC	X		Recorded process measurements using the M&TE listed in Appendix A will be use to accomplish these test objectives.	

8.1.2 Quantitative Measurements

Feed and Product Stream Masses—The mass of each stream will be measured with an analytical balance or load cell, user calibrated to $\pm 2\%$ full scale accuracy, with the calibration documented in the laboratory record book. Duplicate samples will not be available since this is the measurement of the total mass of the stream

<u>Feed (additives)</u> and <u>Product Stream Compositions, Product Durability</u>—The composition of each stream will be measured by obtaining representative samples from each stream and submitting the samples to an analytical laboratory for the required analyses. Accuracy of the analyses will be ensured by the analytical laboratory performing the analyses through the use of standard methods with approved QA/QC procedures. Selected samples will be run in duplicate for each stream and each analytical technique to determine the precision of the measurements. Precision of two measurements will be expressed as the relative percent difference (RPD), which is the absolute value of the difference between the two measurements, divided by the average value of the two measurements, expressed as a percentage.

<u>Process Measurements</u>—The accuracy of process measurements will be ensured through user and/or manufacturer calibration of the test instrumentation and data acquisition system. Verification of the DAS system to the accuracy indicated in Appendix A will be accomplished using a calibrated signal source to simulate the signal from the measurement equipment to the DAS system. The output of the measurement instrument will be verified by user or manufacturer calibration. All verification and calibrations will be documented on data sheets or in the laboratory record book. Since the data are recorded over time, duplicate measurements are not applicable.

Off-Gas Measurements — Gas compositional analysis will be conducted using the user calibrated instruments previously described in Table 7. These gas analyzers will also be used to characterize total unquenched melter flow rates downstream of the melter's film cooler by measuring the concentration of a He tracer gas that will be continuously injected, at a fixed rate, into the film cooler's air supply. The quantified off-gas flow rate along with off-gas temperature and piping dimensions will allow isokinetic, particulate sampling flow rate conditions to be established for a sampling probe of fixed cross sectional area.

8.1.3 Qualitative Measurements

By their nature, qualitative measurements cannot have quantitative measures of data quality. However, the quality of these measurements can be ensured by establishing guidelines for recording qualitative measurements. Qualitative measurements (observations, comments, descriptions, etc. of system operations and/or abnormal events) should be recorded directly in the LRB, as soon as possible after the occurrence. Descriptions should be as detailed as possible, and referenced to a time or other quantitative process measurement, which will allow correlation of the observation to the quantitative process data. All entries should follow established QA/QC procedures for recording data in the LRB.

9. ENVIRONMENTAL, HEALTH, AND SAFETY

Hazards associated with the operation of the RSM are documented in SOP #80. All attempts will be made to conduct operations in a safe manner. Procedures and practices will be established to prevent the inadvertent or uncontrolled release of environmental contaminants. PNNL will take all reasonable precautions to protect the safety and health of its employees and members of the general public, and will comply with all applicable safety, health, and environmental regulations as set forth by local, state, and federal authorities.

9.1 Flammability Mitigation

The melter feed stream that will be thermally processed by the RSM contains the reductant sucrose (sugar). The purpose for feed component sugar is to control the overall oxidation state of the product glass. The unmodified melter feed stream is extremely oxidizing due to its high acidity (pH \approx 0) and NO₃ (5M) content. Because of the high melter oxidizing conditions, CO₂ and H₂O will be the primary thermal effluent gases generated by feed component sugar. Historically, these primary combustion products have always been observe red to dominate the melter reductant source term whenever sugar has been used.

Although CO₂ and H₂O will be the dominant thermal byproducts of sugar, the off-gases generated could possibly contain pyrolytic and incomplete products of combustion such: as CO, H₂, and volatile organic compounds (VOCs). However, the highly oxidizing conditions expected in the plenum will virtually eliminate the flammability risks posed by pyrolytic byproducts such as H₂, and VOCs. CO, on the other hand, is expected to be present at measurable concentrations (~0.1 Vol%).

In general, flammability concerns in the melter plenum and associated off-gas system are avoided if the plenum temperature is maintained above the auto-ignition temperatures of the potential organic vapors. Any generation of flammable mixtures would safely combust in the refractory-lined plenum before sufficient potential energy could be built up to cause dangerous pressure surges in the plenum. According to safety control practice at the Savannah River Site's Defense Waste Process Facility (DWPF), a minimum plenum temperature of 300°C assures a sufficiently high temperature. Flammability concerns in the melter plenum will be avoided during the test series by maintaining at least this temperature in the melter plenum.

Beyond the use of plenum temperature control of flammables, the RSM test will comply with the NFPA 69 standard. According to NFPA 69, the lower flammable limit (LFL) of a vapor must be maintained below 25% using engineering controls if automatic interlocks based on the flammable gas concentration are not used. This means that to maintain a guaranteed safe condition in the off-gas system, sufficient dilution air must be added in a controlled manner such that the LFL does not exceed 25%. However, the worst-case off-gas system concentration of CO (where all available carbon is converted to CO) that could occur under maximum melter feeding and sugar loading conditions and minimum film-cooler flow rate (6 scfm) is: 1.2% (9.4% of LFL). Since, as mentioned above, flammability issues involving VOCs are expected to be inconsequential, baseline-operating conditions preclude hazardous flammability-based test conditions. Nevertheless, in order to assure and maintain safe operating conditions, active monitoring of combustible off-gas constituents will be continuously conducted through use of a total hydrocarbon analyzer for VOCs and a gas chromatograph for H₂ and CO.

In the event that H_2 , CO, or H_2 +CO should exceed 25% of their flammability limits (4%, 12.5%, and 8.25%, respectively) under baseline operating conditions, film cooler dilution air will be increased, and/or feed rates will be reduced to control off-gas concentration at safe operating limits (25% of LFL). VOC concentrations will be controlled to 0.75% (25% of ethane's LFL). If active, sustained flammability limit control cannot, for any reason, be maintained, feeding operations will be terminated. Similarly, feed termination followed by cold cap burn-off must precede any designed interruption of the film cooler's air supply.

9.2 Personnel Safety

Safe operation of the RSM and personnel safety is ensured when personnel follow training by cognizant PNNL safety staff. At a minimum, this training includes reading and understanding the following documents:

- 1. Research Scale Melter SOP #80, latest version
- 2. The Research Scale Melter Test Plan
- 3. All applicable test instructions (see Appendix A)
- 4. Applicable Material Safety Data Sheets

These training activities will be documented in sign-off record sheets when each training activity is completed. After completing all reading assignments, operating staff will be required to attend a complete system walk through. The walk through will include a review of the test plan and the RSM SOP.

There may be times when the melter will need to be opened (to clear the offgas line, etc.). Prior to opening the melter, feeding will be stopped and the cold cap will allowed to be fully incorporated into the melt. This will ensure that no noxious or hazardous gases are present in the system when it is opened. Additionally, the melter will be maintained at a slight vacuum so that no gases are expelled into the work area.

9.2.2 Noxious Gas Releases

In the unlikely event that an off-gas processing system failure occurs, noxious gases generated by the inventory of unprocessed feed material within the melter (i.e., the cold cap) will, to some extent, be released to the high-bay experimental area hosting the RSM. The various operational scenarios that could lead to a process exhaust failure and the emergency responses required are detailed in RSM-SOP-80. However it is useful to estimate the maximum possible gas release condition expected from a worse case scenario.

Under worst–case conditions (facility power failure) all off-gas functions would be lost. If under these conditions, a 100% cold cap is assumed that is:

- 6" in diameter by 1" thick,
- devoid of water (1.6 g/cc) and

• totally unreacted,

the maximum possible volumetric releases of all anticipated noxious, room-temperature gases are summarized in Table 14.

Table 14. Worst Case RSM Noxious Gas Release Estimates Accompanying Off-Gas System Failure

Noxious Volatiles	Max Vol (Std.liters)	Vol (%)	Max Mixed Conc. (ppm)
NO, NO ₂ , N ₂ O	127.4	97.61	5.80
SO ₂ , H ₂ S	1.3	0.97	0.06
HF, F ₂	1.1	0.87	0.05
HCI, Cl ₂	0.7	0.54	0.03
HI, I ₂	0.003	0.002	0.0001

It is clear from this tabular data that NO_x is the dominant (98%) gas generated. If it is further assumed that these released gases were allowed to mix uniformly within the confines of the high-bay without the benefit of outside ventilation that would normally result from required emergency responses, the total resultant concentration of all released gases, (excluding steam) would be bounded at 10ppm. However, the cross ventilation that will result from opening of the (5) 14-ft roll-up doors located on all but one side of the high-bay will provide quick and effective recovery from any uncontrolled release of process gases, should such an event occur.

9.2.3 Personnel Protective Equipment

During routine RSM testing activities, required personnel protective equipment includes safety glasses and protective gloves. Leather gloves are required when performing operations at and around the kiln, melter, and off-gas line between the melter and the EVS. Because of the corrosive process stream conditions, a full face shield, and latex gloves must be worn when conducting sampling, pH adjustments or transfer operations involving the caustic off-gas condensate. Because the simulated melter waste and feed streams are highy acidic (pH~0) and contain small concentrations of HF, a full-face shield, goggles, acid resistant over garments and HF-rated, protective (non-latex) gloves are also required when in proximity of the agitated waste and feed tanks, when sampling, handing or transferring waste or when performing maintenance or disassembling the melter feed system as the line could be under pressure, e.g., a plugged feed line. In the event of a feed spill, spill kit materials must be immediately deployed to mitigate the corrosive, acidic feed conditions. All personnel protective equipment (PPE) used with waste and feed streams must be inspected and washed free of all waste and/or feed residues that may be present before the PPE is removed. Appendix A contains additional HF handling precautions. Equipment needed for other activities are discussed in SOP #80.

9.2.4 Melter Electrical Safety

It may be necessary during RSM testing to probe the melter's glass pool for the purposes of extracting molten and/or glass samples or to mechanically stir the melt to help expedite the dissolution of molten

sulfate salts. This can only be done with an insulating, alumina probe if power to the electrodes is not, first, physically locked out by the operator. Details concerning the probing of the melter with an alumina rod are provided in RSM test instructions (see Appendix A); however, because of the electrical hazard associated with the electrode power source, a stainless steel or other conductive probe material may not be used unless the operator is authorized and trained to use lockout and tagout procedures and they are appropriately applied to the electrode breaker disconnect switch.

9.2.5 Material Safety Data Sheets

Material Safety Data Sheets (MSDSs) associated with the RSM feed will be maintained at the RSM unit during testing. Reading and understanding of the MSDS will be required for all operators and will be documented via a training sheet.

9.2.6 Medical Requirements

Since the waste and feed streams will be treated with the same precautions required for HF solutions, skin exposure to either waste or feed solutions will require medical attention, after the exposed area is thoroughly flushed with water and application of calcium glutonate, as prescribed by the MSDS, has been accomplished.

9.2.7 Confined Space

Not Applicable.

9.2.8 Respiratory Protection Requirements

There are no respiratory protection requirements for operation of the RSM unit.

9.3 Waste Minimization/Management

The following waste minimization practices will be followed:

- The chemical Management System (CMS) will be checked before ordering new chemicals.
- Waste will be accumulated in satellite accumulation areas until the project is completed, after which waste will be disposed of in accordance with PNL-MA-8.
- Waste will be stored in separate containers as appropriate to minimize volume of highly toxic waste and toxic waste, etc.
- Surrogate feed preparation procedures will be designed to avoid, where possible, toxic components.

9.4 Emergency Response

Actions for Emergency Response are detailed in SOP #80. Personnel who need to comply with SOP #80 shall be trained and understand the appropriate actions to be taken in the event of an emergency, know how to respond to alarms in the APEL High Bay, or be under the direct control of PNNL staff who have

had the required training. Building actions are discussed in the APEL Facility Emergency Procedure. Actions specific to the operation of the RSM are contained in SOP #80.

10. REFERENCES

- Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT), **ASTM C1285-94**, 1994. Christian, Jerry D., BBWI 4121, INEEL, private communication, November 2000. 1.
- 2.

Appendix A.1

Research-Scale Melter Measurement and Testing Equipment - DRAFT

DESCRIPTION	M&TE DESCRIPTION	LOCATION	CALIBRATION	CALIBRATION
			BASIS	LEVEL
Analog Gauge	EVS Nozzle Pressure - Ashcroft (0 - 80 psig)	South side of RSM stand	NA	Indication Only
Analog Gauge	Melter Vacuum - Magnehelic (0 - 10 in.WC)	On top of RSM	Na	Indication Only
Analog Gauge	Offgas Header Vacuum - Magnahelic (0 - 80 in.WC)	Southwest corner of RSM stand	NA	Indication Only
Analog Gauge	Pre-HEME Vacuum - Magnahelic (0-5 in.WC)	South side of RSM stand	NA	Indication Only
Analog Gauge	RSM Offgas Line Vacuum - Magnahelic (0-15 in.WC)	Southwest corner of RSM stand	NA	Indication Only
Interface module	Discharge Can Power	SCR Panel	Integral to SCR	
Interface module	Electrode Current	SCR Panel	Integral to SCR	
Interface module	Electrode Potential	SCR Panel	Integral to SCR	
Interface module	Electrode Power	SCR Panel	Integral to SCR	
Interface module	Kiln Power	SCR Panel	Integral to SCR	
Interface module	Kiln Power Output	In Kiln	Integral to SCR	
Pres. Transducer	Ejector Venturi Scrubber Diff. Pressure	North side of RSM stand	NA	Indication Only
Pres. Transducer	Feed Pressure	Feed line near valve panel	NA	Indication Only
Pres. Transducer	Film Cooler Diff. Pressure	North side of RSM stand	NA	Indication Only
Pres. Transducer	High Efficiency Mist Eliminator Diff. Pressure	North side of RSM stand	NA	Indication Only
Pres. Transducer	Melter Pressure	North side of RSM stand	Site Calibration Services	
Pres. Transducer	Total Off-Gas System Diff. Pressure	North side of RSM stand	NA	Indication Only
Rotometer	Blower Cooling Flow	West wall near blower	NA	Indication Only
Rotometer	EVS HX Cooling Flow	Southeast corner of RSM stand	NA	Indication Only
Rotometer	Feed Nozzle Cooling Water Out Temp.	TE-2006 near water discharge header	NA	Indication Only
Rotometer	Film Cooler Air Supply Flowrate	Northeast corner of RSM stand	NA	Indication Only
Type K Thermocouple	Discharge Canister Temperature	In Can Furnace	Vendor certification	+/- 2% full scale
Type K Thermocouple	Feed Nozzle Temperature	TE-20010 near water discharge header	NA	Indication Only
Type K Thermocouple	Heat Xfer Temperature	TE-2006 South side of RSM stand	NA	Indication Only
Type K Thermocouple	Kiln Temp Bottom	In Kiln	NA	Indication Only
Type K Thermocouple	Kiln Temp Middle	In Kiln	NA	Indication Only
Type K Thermocouple	Kiln Temp Top	In Kiln	NA	Indication Only
Type K Thermocouple	Melt Temperature (T1 - Control)	In Melter	Vendor certification	+/- 2% full scale
Type K Thermocouple	Melt Temperature (T2)	In Melter	Vendor certification	+/- 2% full scale
Type K Thermocouple	Off-Gas Temp Exiting Film Cooler	TE-6815A	NA	Indication Only
Type K Thermocouple	Overflow Heater Temp	In RSM Overflow	Vendor certification	+/- 2% full scale
Type K Thermocouple	Plenum Temperature	In Melter	Vendor certification	+/- 2% full scale
Type K Thermocouple	Post EVS Off-Gas Temperature	TE-2003 South side of RSM stand	NA	Indication Only
Type K Thermocouple	Scrub Liquid Temperature after Heat Exchanger	TE-20010 South side of RSM stand	NA	Indication Only
Type K Thermocouple	Water Header Temperature	Southeast corner of RSM stand	NA	Indication Only
Weigh Scale	Feed Tank Weight	Feed station stand	Site Calibration Services	
Weigh Scale	Glass Scale Weight	Under RSM Kiln	NA	Indication Only

RSM-01-1 TEST INSTRUCTION

This test instruction provides additional guidance to testing staff during the execution of the INEEL SBW RSM test, RSM-01-1.

Objectives

<u>Waste Loading Determination</u>: The main test objective is to establish a waste loading that does not result in the formation of a sulfate salt phase on the glass surface. An initial waste loading will be recommended by John Vienna prior to the test start and concurred upon by INEEL staff. It is expected that a waste oxide loading between 28 and 33% will be recommended. A sugar addition level to achieve an acceptable redox level will also be defined by John Vienna prior to the test. Based on testing to date, the sugar addition level is expected to be between 110 and 141 grams of sugar per liter of SBW simulant.

Salt Layer Formation: Detection of a sulfate phase will require careful and frequent observations of the cold cap and glass surface. From past experience it is known that the salt layer will appear translucent and fluid (like water). The edges of the cold cap or liquid and solid splatter that lands on top of a salt layer could look similar to the appearance of something being placed in a deep fryer. If a layer is thought to be present a valuable validation test is to probe the glass surface. To do this interrupt the feed to the melter and, once the slurry has evaporated, turn off the power to the electrodes and quickly extend a nonconductive alumina probe through the view port and into the area where the salt is thought to be Remove it quickly to minimize the heating up of the probe. Resume current flow to the electrodes and feeding. Examine the probe for signs of salt adhering to the probe. Note: because of the electrical hazard associated with the electrodes a stainless steel or other conductive probe material may not be used unless you are authorized and use lockout and tagout procedures to lock out the electrode breaker disconnect switch.

If sulfate has accumulated the shift leader will confer with the INEEL shift member and agree to suspend this feeding phase. The cold cap will be allowed to melt into the glass and a second confirmatory probe sample will be obtained. Any salts collected should be washed from the probes with as little DI water as possible and the DI water and salt sample retained as a test sample. If glass can be made to pour from the melter a short pour sequence should be executed and a glass sample obtained and saved. Do not pour any more glass than is necessary to account for glass in the riser piece and the glass sample itself. The sample will be analyzed to establish a maximum sulfate concentration and redox state. If glass can not be obtained via the discharge obtain a sample via the view port (again using a ceramic alumina probe unless lockout/tagout is applied).

To dissipate the sulfate attempt first to stir the sulfate into the glass melt. This must be done in short durations with the electrode power turned off. If no obvious reduction in sulfate layer occurs, a cornstarch slurry will be made and feed using the feed pump to meter the slurry into the RSM. There is some consideration to introducing the cornstarch into the RSM in a dry form. This may be attempted with small batches dropped through an insulated piece of tubing and determining if the cornstarch is reacting with the sulfate or simply burning in the plenum space.

After the sulfate layer has been removed a glass sample is to be removed from the melter via the viewport (again using a ceramic alumina probe unless lockout/tagout is applied), and archived. The feed material in the feed tank should be shimmed to reduce the waste loading and melter feeding resumed. The waste oxide loading will be defined by the shift leader based on guidance provided at the start of the test and recorded in this test instruction (see Attachment 1: Run Guidance)

No Salt Layer Formation: For planning purposes it has been established that at least 24 hours of melter feeding will be required as a minimum to confirm an acceptable waste loading, i.e., no visible salt phase accumulation. At an assumed feed rate of 1.5 L/h, 450 g-oxide per liter of feed and a 1.4 liter glass tank volume approximately 4.5 tank turnovers can be achieved. If feed rates are significantly different than 1.5 L/h the lead test engineer will define the minimum run time in Attachment 1: Run Guidance. If no salt formation has been observed at the end of the minimum run time the shift leader will confer with the INEEL shift member and agree to suspend this feeding phase. Glass and glass surface samples should be obtained (again using a ceramic alumina probe unless lockout/tagout is applied) as described above after the cold cap has melted. The feed tank contents will then be adjusted or replaced with a batch of feed containing the next higher waste loading target (see Attachment 1 Run Guidance).

Reductant Level: The initial reductant level will have been established prior to starting the run (see Attachment 1). If the waste loading test objectives have been accomplished within the 96-hr feeding period; a second redox level will be tested to assess its effect on sulfate salt formation. Based on earlier test results and measurements of the glass Fe⁺³/Fe^{total} redox values a second and possibly a third reductant level will be selected for testing. It is assumed that if two levels may be tested, reductant levels will be progressively increased to avoid the need for having to change out the melter feed. That is, more reductant will be added to the feed rather than having to replace the feed with a feed batch containing less reductant. The duration of each test will depend on the initial conditions of the melter, i.e., if a salt layer is already present, if the redox analyses performed by an INEEL staff member can be performed quickly enough to observe a stable redox level prior to changing to the next redox level.

Supplemental information on test activities, schedules, and documentation are described below.

Test Activities

1. Feed Batching Activities: With the exception of the first batch, feed batches will be sized to provide approximately 12 hours of operation. The first hours of operation will establish the volumetric feed rate possible, e.g., one to two liters per hour. This value will be used to calculate the subsequent volumes of feed to be prepared and quantity of glass formers (here glass formers includes the sugar reductant). There is expected to be a 10% to 20% volume expansion in feed volume when the glass formers are added to the SBW waste simulant. However, for

batching purposes, melter feed volume will be assumed to be equivalent the SBW waste simulant volume. The attached Feed Batching Sheet (Attachment 2) will be used and completed for the preparation of each feed batch. The steps are:

- a. Test engineer to enter into the Feed Batching Sheet:
 - i. Time and date
 - ii. A sequential feed batch number (Starting with "RSM-01-1-1") iii. The SBW target batch volume
- b. Transfer volume of SBW simulant to SBW transfer tank The SBW "master batch" will be stored in the large RSM feed tank. A poly line connected to the bottom of the tank will be used to transfer feed to the make-up tank. It is required that splash protection, coat and overalls, full-face shield, safety goggles and gloves suitable for HF be donned.
- c. Estimate the volume and measure the SBW gross weight (tare weight is written on the transfer tank; 2.30 kg).
- d. Use SBW density and weight to confirm/calculate the actual SBW volume.
- e. Calculate and enter into the Batch Sheet the glass former weights.
- f. Weigh glass formers and combine into the glass former containers.
- g. Shift engineer or lead test engineer review and sign off the Feed Batching Sheet.
- 2. Melter Feed Tank Transfer: To refill the melter feed tank perform the following (note: 2 staff are required for this activity):
 - a. Place two buckets next to the feed station. One should have approx. one inch of water to use to wet paper towels needed for wiping spills. The second will serve as a receptacle for any used paper towels.
 - b. Don PPE (goggles, face shield, gloves and coat and overalls).
 - c. Note the melter feed tank weight and time and record on the batch sheet. Note: be sure to remove all tools, buckets, etc. from the scale before recording the feed tank weight.
 - d. Place the SBW transfer tank on the transfer stand and secure it.
 - e. Place the glass former containers within easy access.
 - f. Please the copus blower intake hose at the feed station.
 - g. Reduce the melter feed tank agitator speed until no splashing is occurring.
 - h. Extend the SBW transfer hose into the lid opening and open the valve at the base of the SBW transfer tank. Note: while turning valve use other hand to hold the valve body to prevent it from possibly pulling the tubing from the poly tank. Allow contents to transfer into the melter feed tank. OBSERVE CLOSELY THAT THE MELTER FEED TANK LEVEL AND CLOSE THE VALVE IF THE LEVEL APPROACHES 6 in. FROM THE TOP OF THE TANK.
 - i. After contents of the transfer tank have emptied into the feed tank rotate the restraining strap away from the tank and raise and tip the transfer tank to allow any remnants of SBW to drain into the melter feed tank. Close the valve and carefully remove the transfer line from the melter feed tank and raise the open end up to prevent any drips. Use a wet paper towel to wipe the end of the tube and insert the opening into a nitrile or vinyl

- glove to prevent dripping while carrying the transfer tank back to the walk-in hood.
- j. Read and record the melter feed tank weight and time on the batch sheet.
- k. Rotate the agitator shaft angle to the vertical position and secure. This orientation allows a larger vortex to form.
- Increase the agitator speed to develop a vortex around the shaft.
 IF SPLASHING DEVELOPS REDUCE THE SPEED UNTIL SPLASHING DOES NOT
 OCCUR
- m. Remove the melter lid and slid it into the plastic bag next to the tank to prevent any feed splatter on the tank lid from spreading.
- n. Turn on the copus blower and hold the intake at the tank edge.
- o. The second staff member will slowly sprinkle the glass formers onto the surface of the melter feed tank slurry being careful to assure that a thin even layer is deposited without piles or agglomerations forming.
- p. Replace lid, turn off copus blower, clean up any spills and remove tools and other material from the weigh scale (the bag used to hold the tank lid can remain).
- q. Inspect each other for any signs of feed splash stains and wipe with a damp paper towel.
- r. Note the time and melter feed tank weight and record on the batch sheet and the log book.
- 3. Off-gas condensate tank pH adjustment: The pH of the condensate will be measured hourly. If the pH drops to 9, add 50 grams of NaOH to the condensate tank. This should increase the pH to above 11. Record the amount of NaOH added in the laboratory record book and the NaOH log sheet.
- 4. Sample Identification: Mark sample containers with the following:
 - a. RSM-01-1
 - b. Sequential Sample Number
 - c. Date & Military Time
 - d. Sample description, e.g., Feed, Condensate, Glass Sample
 - e. Initial of operations staff obtaining sample
- 5. Routine data sheets and sample logs are attached for information. Data sheets #1 & #2 are to be filled out every hour on the hour.

ATTACHMENT 1: RUN GUIDANCE

(Guidance to be initialed and dated by lead test engineer)

Initial Waste Loading:
Second Waste Loading if initial waste loading IS NOT Acceptable:
Cocond Woots Loading if initial worts loading TC Assertable.
Second Waste Loading if initial waste loading IS Acceptable:
Third Waste Loading if second waste loading IS NOT Acceptable:
Initia wabee loading if become wabee loading 10 Not neceptable.
Third Waste Loading if second waste loading IS Acceptable:
Initial Sugar Addition Level:
Second Sugar Addition Level:
Third Sugar Addition Level:
Minimum Run Time to achieve 4.5 turnovers (based on feed rate):
Additional Guidance:

1			
2			
3 . _			
4			
5			
6. <u>-</u>			
7. <u>-</u>			
8			
9.			
- · -			
10.	 	 	

ATTACHMENT 2: FEED BATCHING CALCULATION SHEET

Batch Sheet No. RSM-01-1-:				
Prepared by:				_
Date:			Time:	_
SBW target volume, Liters:				
SBW transfer tank gross wt: SBW transfer tank tare wt: SBW transfer tank net wt: SBW Density:	2.30	kg		
Calculated volumed transferred:	Net wt. / den	sity =		
Target glass waste oxide fraction:				
Glass Former Addition Calcula				
Glass former weights: 114.6 gm WO/L* (1 gm gla Waste oxide loading, g/L: Fraction waste oxide loading: Fraction glass former loading: SBW Volume, liters	114.6	= A	5⊦O/ gm glass) * Y L SBW * (gi	m GF cnemical / gm total GFO)
(A/B) * C * D =		= E		
Glass Formers gm silica / gm total GFO = gm boric acid / gm total GFO = gm Fe2O3 / gm total GFO = gm LiOH / gm total GFO = gm Ca(OH)2 / gm total GFO =	F 0.7 0.213 0.12 0.064 0.026	=> => => =>	Batch totals: (E * F) grams grams grams grams grams grams	
Initial melter feed tank weight: Melter feed tank wt. after SBW addition:		kg kg	Time:	
Melter feed tank wt. after glass formers addition:			Time:	
Completed by (sign & data):	_			
Reviewed & Approved by:				

RSM-01-1						
	By:					
	Date:					
1	Time					
DESCRIPTION	UNITS	Range				
Priority Data						
Melt Temperature (T1, control		1125 - 1175				
Melt Temperature (T2)	° C	1125 - 1175				
Plenum Temperature	° C	400 - 600				
Feed pump setting	%					
Cold Cap Coverage	%	> 75				
Slurry Pool Coverage of Cap	%					
Cold Cap Flexibility Visible	y or n					
Number of Vents	#					
Cold Cap Thickness	inch					
Phase Separation (Note in LRE	y or n					
Glass Pouring	y or n					
Electrical Data						
Electrode Potential	Volts					
Electrode Current	Amps					
Electrode Power	kW					
Melt Resistance	?					
Melt (Electrode) Setpoint Tem						
(Electrode Power) Output	%					
(Electrode) Control Mode	A or M					
Kiln Power	kW					
Kiln Temp Setpoint	° C					
Kiln Actual (Middle) Temp	° C					
Kiln Power Output	%					
Kiln Control Mode	A or M					
Discharge Can Power	kW					
Discharge Can Temp Setpoint	° C					
Discharge Can Actual Temp	° C					
Discharge Can Power Output	%					
Overflow Heater Power	kW					
Overflow Heater Setpoint	° C					
Overflow Heater Power Output						
Time	hh:mm					

Data Sheet #2: Routine Status Sheet

RSM-01-1

KSIVI-U1-1			 	 	 	
		By:				
		Date:				
		Time:				
DESCRI PTI ON	units	range				
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)				
Film Cooler Air Supply	scfm	1-10 (reg OGT)				
Melter Vacuum-Magnehelic	in. H ₂ O	0.1 - 2.0				
EVS?P	in. H ₂ O					
Film Cooler ? P	in. H ₂ O					
HEME ? P	in. H ₂ O					
System ? P	in. H ₂ O					
EVS HX Cooling Flow	gpm	1-5 (reg SLT)				
EVS Scrub Tank Volume	gallon	35 - 50				
EVS Nozzle Pressure	psi	50 - 55				
EVS Scrub Solution pH	рН	> 9				
OG Control Valve position	%					
OG Control Valve mode	A or M					
Feed Pump (tubing) Condition						
Agitator Setting	%					
Blower Cooling Flow	gpm	1 - 1.5				
Feed Nozzle Temp (FNT)	° C	< 40				
Off-Gas Temp (OGT)	° C	< 250				
Post EVS Off-Gas Temp	° C	< 50				
Scrub Liquid Temp (SLT)	° C	<40				
Heat Xer Temp	° C	< 30				
Feed Pump Setting	%					
Feed Pump Control Mode	A or M					
Feed Pressure	psi	< 1.0				
Feed Tank Wt	Kg	decreasing				
Overflow Temp	° C	1000 - 1100				
Discharge Can Temp	° C	750 - 850				
Glass Scale	Kg	< 10				
Alarm Condition	On/Off	off				
time	hh:mm					

Sample Log Sheet

Sample Number	Date	Time	Initials	Sample Source	Size	ARF#	Archived	Comments
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								
RSM-01-1-								

Safety Precautions Working with SBW Feed

Hydrofluoric acid (HF) is present in the SBW simulant at a concentration of approximately 0.03 moles per liter. At a density of 1.25 g/ml the weight percent HF in the SBW is only 0.05 wt.%. Although this concentration is very low, MSDS documentation on 1 wt.% recommends treating skin contact in the same manor as if the solution were concentrated HF. HF acid is a health hazard to the respiratory and digestive systems, and an extreme irritant to the skin. Hydrofluoric acid is especially dangerous as it anesthetizes the nerves as it makes contact with the body. Major and potential health hazards are:

- Major health hazards: No significant target effects reported.
- Potential health effects:
 - o Inhalation:
 - Short term exposure: no information on significant adverse effects
 - Long term exposure: no information on significant adverse effects
 - Skin contact:
 - Short term exposure: delayed tissue destruction
 - Long term exposure: no information on significant adverse effects
 - O Eye contact:
 - Short term exposure: no information on significant adverse effects
 - Long term exposure: no information on significant adverse effects
 - o Ingestion:
 - Short term exposure: no information on significant adverse effects
 - Long term exposure: no information on significant adverse effects

If any feed spills occur, even a drop of solution, clean up the area carefully with a damp towel.

A container of calcium gluconate is available at the sink along the north wall. This is an antidote that helps neutralize the HF acid burns on the skin. The quickest and best remedy for HF acid burns to the skin are copious amounts of water, intermingled with scrubbing with soap, repeated numerous rinsings and scrubbings followed by applications of the calcium glucomate which is to be applied repeatedly while medical help is being obtained. Do not breathe fumes of HF acid even for a very short time, the fumes can cause severe damage to the respiratory system.

Fumes from the HF acid are very harmful to the respiratory system. This is not expected to be a factor because of the very dilute concentration in the feed. However, melter off-gas emissions are also a source of HF fumes. As a result, except when changing the viewport glass, no access into the melter should occur without first turning the feed off and allowing any liquid in the melter to completely evaporate. When changing the viewport window other staff should remain clear of the immediate area and positive vacuum must be maintained on the melter. This may require the melter off-gas control to be temporarily switched from auto to manual control (if not already on manual control) to prevent the controller from over-reacting to the approx. one second period when the viewport glass is removed.

Full personal protection equipment are to be worn when handling the SBW simulant or melter feed (feed make-up and feed sampling) or when working on any part of the feed mixing or RSM feeding equipment. Minimum PPE includes:

- 1. Chemical safety goggles, at a minimum, are worn when handling the corrosive chemicals that may splash. Chemical splash shields, in combination with safety glasses or safety goggles, are worn when working with these chemicals.
- 2. Operations that pose a skin exposure while working with chemicals require hand gloves to be worn. Specific types include: nitrile or neoprene gloves
- 3. Protective coat and bib overalls are to be worn when performing feed makeup and transfer operations.

Appendix B

Test Instruction for Preparing 2001 of Sodium Bearing Waste Simulant

TEST INSTRUCTION FOR PREPARING 200L OF SODIUM BEARING WASTE SIMULANT

Objective: To prepare a sodium bearing waste (SBW) simulant to use in PNNL RSM testing.
Start Date:
End Date:
Laboratory Record Book Used, pp
This test instruction has been reviewed in collaboration with the Responsible Scientist.
Author:
Responsible Scientist:
Test Operator(s):

Balance Calibration Reco	ord:			
Balance Calibration #		Last Cal	Due	
Balance Calibration #		Last Cal	Due	
Chemical Inventory List:				
<u>Chemical</u>	<u>Manufacturer</u>		<u>Lot #</u>	Amount Used
		 -		
		 -		
		<u>-</u>		
		 -		
				

1. Add 952.80 g of 5 sized vessel.	50% Mn(NO ₃) ₂ sol	ution and 57.11 L of	f 2.2M Al(NO ₃) ₃ to	an appropriate
Amount of Mn	(NO ₃) ₂ solution ac	lded:		
Amount of 2.2	M Al(NO ₃) ₃ added	l:		
2. Add the following	salts to the solution	n in the amounts ind	licated:	
Chemical	Target Wt.	Actual Wt.	<u>Initial</u>	<u>Date</u>
NaNO ₃	33.01 kg			
KNO_3	3744.4 g			
Ca(NO ₃) ₂ @4H ₂ O	2139.0 g			
Cd(NO ₃) ₂ @H ₂ O	44.00 g			
Ni(NO ₃) ₂ @6H ₂ O	80.80 g			
Fe(NO ₃) ₃ @H ₂ O	1656.4 g			
ZrF ₄	2.00 g			
Cr(NO ₃) ₃ @H ₂ O	253.2 g			
$Ba(NO_3)_2$	2.80 g			
Ce(NO ₃) ₃ @6H ₂ O	3.80 g			
Co(NO ₃) ₂ @6H ₂ O	1.00 g			
$Cu(NO_3)_2$ @ H_2O	31.80 g			
Gd(NO ₃) ₃ @H ₂ O	14.60 g			
Pb(NO ₃) ₂	81.60 g			
LiNO ₃	4.40 g			
Mg(NO ₃) ₂ @6H ₂ O	582.60 g			
RuCl ₃	4.80 g			

S	$Sr(NO_3)_2$	4.80 g	
Τ	CiO_2	0.80 g	
Z	Zn(NO ₃) ₂ @6H ₂ O	59.00 g	
k	XI	4.20 g	
(CsNO ₃	63.38 g	
2.	Add just enough D	water to dissol	ve 100% of the salts. Stir and heat as needed.
	Actual amount of	of DI water adde	ed:
3.	Add 143.6 g H ₃ BO ₂	3. Dissolve as n	nuch as possible by heating and stirring as necessary.
	Amount of H ₃ B	O ₃ added:	
4.	•	g, goggles, and	Add 234 mL of 28.9 M HF. Stir well. Wear acid gloves. Be extremely careful in handling HF as it is
	Amount of HF a	dded:	
5.	In a separate vessel the water and mix t		0 mL of DI water. Slowly add 566 mL of 18M H_2SO_4 to
	Amount of DI w	ater added:	Amount of 18M H ₂ SO ₄ added:
6.	Slowly add the H ₂ S	O ₄ solution to t	he solution from Step 1 while stirring vigorously.
7.	Add DI water to the	e solution to bri	ng the total solution volume to about 170 L.
	Amount of DI w	ater added:	
8.	In a separate vessel 15.4M HNO ₃ .	, combine 464 r	mL 12M HCl, 178 mL 14.6M H ₃ PO ₄ and 11.41 L
	Amount of HCl	added:	Amount of HNO ₃ added:
	Amount of H ₃ PO	D ₄ added:	

9.	Slowly add this mixture of acids to 20 L of DI water. Amount of DI water added:
10.	Slowly add the diluted acid mixture to the 170 L solution.
11.	Add 5.89 g H ₂ MoO ₄ to the solution.
	Amount of H ₂ MoO ₄ added:
12.	Add DI water (approximately $10\mathrm{L}$) to the combined solution, bringing the final volume to $200\mathrm{L}$.
	Amount of DI water added:
	Final slurry volume:

Appendix C

RSM Feed Batching and Manual Data Sheets

Feed Batching Sheets

Batch Sheet No. RSM-01-1-:	1				
Prepared by:	Rene's F	Russ	ell		
Date:	1-29-01		Time: 3:;	35pm	
SBW target volume, Liters:	40		Note: shaded are require value to b	A SECURE OF THE PERSON NAMED IN COLUMN	
SBW transfer tank gross wt: SBW transfer tank tare wt: SBW transfer tank net wt: SBW Density:	52.1 2.30 49.80 1.25	kg kg kg kg/L			
Calculated volumed					
transferred:	Net wt. / den	sitv =	39.84 Lite	ers	
		-			
Target glass waste oxide					
fraction:	0.3		1		
Glass Former Addition Calcula	tion				
Glass former weights: 114.6 gm WO/L * (1 gm gk		m total C	CEO/am alocal * VI SBW	/ * /om CE shaminal / om to	H OFO
Waste oxide loading, g/L:			arorgin glass) Y L SBW	gm GF chemical / gm to	iai GFO)
Fraction waste oxide loading:					
Fraction glass former loading:		= C			
SBW Volume, liters					
		- 1100			
(A/B) * C * D =	10653.22	= E			
				Initial after	
Glass formers	F		Batch totals: (E * F)		
gm silica / gm total GFO =	0.65	=>	6924.6 gram		28
gm boric acid / gm total GFO =	0.2664	=>	2838.0 gram		
gm Fe2O3 / gm total GFO =	0.10	=>	1065.3 gram	ns 1065.2	105
gm LiOH / gm total GFO =	0.1404	=>	1495.7 gram	The state of the s	05
gm Ca(OH)2 / gm total GFO =	0.0661	=>	704.2 gram		R
gm sugar/L SBW	135	=>	5378.4 gram		+05
Initial melter feed tank weight:	50.0	kg	Time: /	7	
Melter feed tank wt. after SBW		ng	Tillie	76.10	
addition:	50.0	kg	Time:	16:18	
Melter feed tank wt. after glass	15 0		4	17.18	
formers addition:	68.0	kg	Time:/	17:18	
Completed by (sign & data):	1	3	1/29/0	c/	
Reviewed & Approved by:	Ra/	2	le 1/29/	6/	

Batch Sheet No. RSM-01-1-:_	2			
Prepared by:	Renée 1	Pus.	sel)	
Date: _	1-30-01		Time: 9:15	<u>2</u> m
SBW target volume, Liters:	15		Note: shaded areas require value to be it	nput
SBW transfer tank gross wt:	20.95	kg	roquito valao to be i	прис
SBW transfer tank tare wt:	2.30	kg		
SBW transfer tank net wt:	18.65	kg		
SBW Density:	1.25	kg/L		
Calculated volumed				
transferred:	Net wt. / den	sity =	14.92 Liters	
Target glass waste oxide				
fraction:	0.3			
Blass Former Addition Calcula				
lass former weights: 114.6 gm WO/L * (1 gm gla			GFO/gm glass) * Y L SBW * (gr	m GF chemical / gm total GFO)
Waste oxide loading, g/L:_	114.6			
Fraction waste oxide loading:	The second second	= B		
Fraction glass former loading:		= C		
SBW Volume, liters_	14.92	= D		
(A/B) * C * D = _	3989.61	= E		
				Initial after
Glass formers	F		Batch totals: (E * F)	weighing
gm silica / gm total GFO =	0.65	=>	2593.2 grams	2593.1 9 HPS
gm boric acid / gm total GFO =	0.2664	=>	1062.8 grams	1062.80 RR
gm Fe2O3 / gm total GFO =	0.10	=>	399.0 grams	399.00 RR
gm LiOH / gm total GFO =	0.1404	=>	560.1 grams	560.10 PR
gm Ca(OH)2 / gm total GFO =	0.0661	=>	263.7 grams	263. Talk
gm sugar/L SBW	135	=>	2014.2 grams	2014.2 HDS
Initial melter feed tank weight:	NOT RECEPOR	n ka	8.45 K ₂ Time:	
Melter feed tank wt. after SBW	0.0	1	RODED	38
	MOT RECORDED	ka)	FAIRBANGTIME:	
Melter feed tank wt. after glass	1-1-1-11	4	LOAD CELL	
formers addition:	46	kg	Time://.	45
Completed by (sign & data):	RWS	Zal	2_	
Reviewed & Approved by:	16.	~	2/1/01	_

	(2)		40.	JUSTMENT CALC	MODERNO
Batch Sheet No. RSM-01-1-:	(3)		= 0	DETERMINE SON 1	N REMAINING
		1		20.1 kg of FEE	0
Prepared by:	D. Ben	VI.			
			(2)	DETERMINE ADOSO	584 To
Date: _			Time:	BRING FEED TO	32% W.L.
SBW target volume, Liters:	4.52		Note: shaded area	S	
_			require value to be	input	
SBW transfer tank gross wt:	17	kg			
SBW transfer tank tare wt:	2.30	kg			
SBW transfer tank net wt:	(14.70)kg			
SBW Density:	1.25	_	7		
obvi bolidily.	1.20	g. =		54339	GLASS CORMERS
Calculated volumed				147004	CLASS CORMERS SBN
transferred: N	et wt /der	eity =	= 11.76 Liters	-	
transferred. N	et wt. / dei	iony	11.70 Ellers	20,133 9	FEED
Target aloes waste evide	PER MINISTER DE				
Target glass waste oxide	0.2			C 30% W.	D. LOADING
fraction:	0.3				~
					1
Blass Former Addition Calcula					
lass former weights: 114.6 gm WO/L * (1 gm glas	THE RESERVE THE PERSON NAMED IN COLUMN 1		GFO/ gm glass) *Y L SBW *	(gm GF chemical / gm total	GFO)
Waste oxide loading, g/L:	114.6				
Fraction waste oxide loading:	0.3				1
Fraction glass former loading:	0.7	= C			1
SBW Volume, liters	11.76	= D			- 1
)
(A/B) * C * D =	3144.62	= E			/
	-			Initial after	/
Glass formers	F		Batch totals: (E * F)	weighing \	/
gm silica / gm total GFO =	0.65	=>	2044.0 grams		/
m boric acid / gm total GFO =	0.2664	=>	837.7 grams	(5433.29
gm Fe2O3 / gm total GFO =	0.10	=>	314.5 grams	(3 100.
gm LiOH / gm total GFO =	0.1404	=>	441,5 grams	7.	
gm Ca(OH)2 / gm total GFO =	0.0661	=>	207.9 grams		
gm sugar/L SBW	135	=>	1587.6 grams		
Initial melter feed tank weight:		kg	Time:	6	
Melter feed tank wt. after SBW					
addition:		kg	Time:		
Melter feed tank wt. after glass			Annah An		
formers addition:		kg	Time:		
		9		(6)	
Completed by (sign & data):					
completed by (sign & data)		8		_	
Reviewed & Approved by:	10	0	21./61		
reviewed a Approved by:	100	1	3/1/00		

			war on a second		22.000
Batch Sheet No. RSM-01-1-:	(3)		ANJUSTME S	ENT CALCULA	TION
	0	_	1/30/01	20:45	(Am)
Prepared by:	1	Bu	met		
	/	1200	PV 1	_	
Date:			Time:		
			100000000000000000000000000000000000000		
SBW target volume, Liters:	4.52		Note: shaded areas		
			require value to be i	nput	
SBW transfer tank gross wt:	18	kg			
SBW transfer tank tare wt:	2.30	kg			
SBW transfer tank net wt:	(15.70)kg			
SBW Density:	1.25	kg/L			
_				to a later of	
Calculated volumed				× 5436	. 1 g anss roences
transferred: N	let wt. / der	sity =	12.56 Liters	15700	9 5BW
				21,136	. 1
Target glass waste oxide	THE E		411211	and the same of th	
fraction:	0.32		EXISTING IN		9
				1003	9 = .81.
Glass Former Addition Calcula	tion		4		
Glass former weights: 114.6 gm WO/L * (1 gm gla	ss/ X gm WO) * (gm total	GFO/ gm glass) * Y L SBW * (g	m GF chemical / gm	total GFO)
Waste oxide loading, g/L: _	114.6		F	000 000	0
Fraction waste oxide loading: _	0.32		1 6	0.81 SBW	
Fraction glass former loading: _	0.68			135 g suame	18 580
SBW Volume, liters_	12.56	= D		= 108 9 80	KAR.
				, , ,	
(A/B) * C * D = _	3058.67	= E			1
				Initial after	/
Glass formers	F		Batch totals: (E * F)	weighing	
gm silica / gm total GFO =	0.65	=>	1988.1 grams		1
gm boric acid / gm total GFO =	0.2664	=>	814.8 grams)
gm Fe2O3 / gm total GFO =	0.10	=>	305.9 grams		543610
gm LiOH / gm total GFO =	0.1404	=>	429.4 grams		7
gm Ca(OH)2 / gm total GFO =	0.0661	=>	202.2 grams		GLASS FORMERS
gm sugar/L SBW	135	=>	1695.6 grams		
			-)
Initial melter feed tank weight:		kg	Time:		
Melter feed tank wt. after SBW			(4.60%) (3.6)		
addition:		kg	Time:		
Melter feed tank wt. after glass		U.0.6.TK	5 (100 A1505)		
formers addition:		kg	Time:		
Completed by (sign & data):_					
-	1/	7		-33	
Reviewed & Approved by: _	dhe	in	2 2/01/01		
			()		

Batch Sheet No. RSM-01-1-:	4				
Prepared by:	H.D.	S	nuth/ D.B	emot	
Date:	1/30/01		Time: 21:5	59	
SBW target volume, Liters:	30		Note: shaded areas require value to be in	nput	
SBW transfer tank gross wt:	37.5	kg			
SBW transfer tank tare wt: SBW transfer tank net wt:	2.30 35.20	kg kg	TRANS.	201 -	27.10 - 2.3 = 24.8kg /19.8l
SBW Density:	1.25	kg/L	Taut 7	7.110	10.4 kg/ 8.321
			(ICAN > 1		-2.3 = 10.4 kg
Calculated volumed		0.02200		/2.1	-2.3 = 10.1 2
transferred:	Net wt. / den	sity =	28.16 Liters		
Torget along weets swide	AND DESCRIPTION OF THE PERSON NAMED IN				
Target glass waste oxide fraction:	0.30				
Ifaction.	0.32				
Glass Former Addition Calcula	ation				
Glass former weights: 114.6 gm WO/L * (1 gm gl			GFO/ gm glass) * Y L SBW * (gr	m GF chemical / gr	n total GFO)
Waste oxide loading, g/L:_	114.6				
Fraction waste oxide loading:	0.32				
Fraction glass former loading:	0.68				
SBW Volume, liters	28.16	= D			
(A/B) * C * D = _	6857.66	= E			
				Initial after	E a
Glass formers	F		Batch totals: (E * F)	weighing	
gm silica / gm total GFO =	0.65	=>	4457.5 grams	4457	5 HES
gm boric acid / gm total GFO =	0.2664	=>	1826.9 grams	1824.9	#DCI
gm Fe2O3 / gm total GFO =	0.10	=>	685.8 grams	685.8	ADS
gm LiOH / gm total GFO =	0.1404	=>	962.8 grams	962.9	MAS
gm Ca(OH)2 / gm total GFO =	0.0661	=>	453.3 grams	453.3	HOS
gm sugar/L SBW	135	=>	3801.6 grams	3801.7	#ES
	15.51	COMPUE	· .		12,188-1
Initial melter feed tank weight:	15.40	kg	Time: 23.2	5.	121100
Melter feed tank wt. after SBW	PANS . #1 - 40.1		11 743000000		
addition:	TRUS BZ 50.	kg	Time: 23.4	18	
Melter feed tank wt. after glass	100000 100		2000 000 000 000 000 000 000 000 000 00	194	
formers addition:	62.6	kg	Time: 00:1	2	
Completed by (sign & data):	1MD	20	1/31/01		
, , , , , , , , , , , , , , , , , , , ,	1120	>	1111	 83	
Reviewed & Approved by:	-	san	2 1/3/01		
				=00	
			7		

Batch Sheet No. RSM-01-1-:	5				
Prepared by:	Renee F	Rus	Se.1		
Date:	1-31-01		Time: 2	20pm	1
SBW target volume, Liters:	14		Note: shaded ar require value to		IT.
SBW transfer tank gross wt: SBW transfer tank tare wt: SBW transfer tank net wt: SBW Density:	19.7 2.35 17.35 1.25	kg kg kg kg/L		DO INDO	
Calculated volumed					
transferred:	Net wt. / den	sity =	13.88 Lite	ers	
Target glass waste oxide					
fraction:	0.32				
f and	0.02				
Glass Former Addition Calcula	tion				
Blass former weights: 114.6 gm WO/L * (1 gm gla	ss/X gm WO) * (g	m total G	FO/ gm glass) * Y L SBV	V * (gm GF	chemical / gm total GFO)
Waste oxide loading, g/L:_	114.6				
Fraction waste oxide loading:_					
Fraction glass former loading: _	0.68	= C			
SBW Volume, liters_	13.88	= D			
(A/B) * C * D = _	3380.13	= E	1/4		
				li li	nitial after
Glass formers	F		Batch totals: (E * F) v	veighing
gm silica / gm total GFO =	0.65	=>	2197.1 gran	ns _	2196.89 PR
gm boric acid / gm total GFO =	0.2664	=>	900.5 gran	the second second	900 59 RR
gm Fe2O3 / gm total GFO =	0.10	=>	338.0 gran	200	338.09 RR
gm LiOH / gm total GFO =	0.1404	=>	. 474.6 gran	ns 7	174.59 RR
gm Ca(OH)2 / gm total GFO =	0.0661	=>	223.4 gran	ns ő	23.30 RR
gm sugar/L SBW	135	=>	1873.8 gran		873.8g RR
Initial melter feed tank weight: _ Melter feed tank wt. after SBW	13.5	kg	Time:	1503	<u></u>
addition:_	31.0	kg	Time: _^	15:	15
Melter feed tank wt. after glass formers addition:	37.0	kg	Time:	15:2	5
Completed by (sign & data):_	2w	20	ls .		
Reviewed & Approved by:_	1	2	1/31/01		

Batch Sheet No. RSM-01-1-:_	6		in	
Prepared by: J	J. M. Perez			
Date:_	1/31/01		Time: 2242	25
SBW target volume, Liters:	20		Note: shaded areas	
SBW transfer tank gross wt:	27.1	kg		
SBW transfer tank tare wt:	2.30	kg		
SBW transfer tank net wt:	24.80	kg		
SBW Density:	1.25	kg/L		
Calculated volumed				
transferred: N	Net wt. / den	sity =	19.84 Liters	
Target glass waste oxide	Service of the service of			
fraction:	0.35			
lass Former Addition Calcula	tion			
ass former weights: 114.6 gm WO/L * (1 gm gla			GFO/ gm glass) * Y L SBW *	(gm GF chemical / gm total GFO)
Waste oxide loading, g/L:_	114.6			
Fraction waste oxide loading: _	0.35			
Fraction glass former loading: _	0.65			
SBW Volume, liters_	19.84	= D		
(A/B) * C * D = _	4222.52	= E		
				Initial after
Glass formers	F		Batch totals: (E * F)	weighing
gm silica / gm total GFO =	0.65	=>	2744.6 grams	2744.616
m boric acid / gm total GFO =	0.2664	=>	1124.9 grams	1124.916
gm Fe2O3 / gm total GFO =	0.10	=>	422.3 grams	422.318
gm LiOH / gm total GFO =	0.1404	=>	592.8 grams	592.818
gm Ca(OH)2 / gm total GFO =	0.0661	=>	279.1 grams	274.216
gm sugar/L SBW	135	=>	2678.4 grams	3678.4-65
Initial melter feed tank weight:	9.0	kg	Time: _ @3	5:17
Melter feed tank wt. after SBW	(AM	4		
addition: _	33.8	kg	Time: 23	:31
Melter feed tank wt. after glass	105 1	0	1923	2 50
formers addition:	47.0-	kg	Time: 2	3:58
Completed by (sign & data):_	16	è	2/1/01	
Reviewed & Approved by: _	1114	<u> </u>	2111	_

Batch Sheet No. RSM-01-1-:	7				
Prepared by:	D. Bennert			_	
Date:	1/31/01		Time: ∼⊋ೌ	-2110	
Date.	1/51/01		Tillie.	1.30-46-	
SBW target volume, Liters:	6		Note: shaded areas		
SBW transfer tank gross wt:	9.7	kg	BALANCE IN TOL		. Ka
SBW transfer tank tare wt:	2.30	kg	= 1.40 kg 58W	. ,	-7
SBW transfer tank net wt:	7.40	kg	+ 2562 9 4LASS	COTMEDS	
SBW Density:	1.25	kg/L	98629 FEED	2	
Calculated values d			4		
Calculated volumed	Not ut /dor	nih	E 02 Litora		to increase to
transierred.	Net wt. / den	ISITY -	5.92 Liters	35% W.L	
Target glass waste oxide				7.40 kg - 35	= 8.09
fraction:	0.32				= 0.69 kg A0060.
maction.	0.52				25 4 = 0.552 6
Glass Former Addition Calcul	ation			0.5526. 1353	succe = 74.5g
Glass former weights: 114.6 gm WO/L * (1 gm g	-0.000	am tota	GFO/ gm glass) * Y L SBW *	(am GF chemical /	gm total GFO)
Waste oxide loading, g/L:	114.6				
Fraction waste oxide loading:					
Fraction glass former loading:	0.68				
SBW Volume, liters	5.92	= D			
(A/B) * C * D =	1441.67	= F			
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111101	_			
Oleve ferrore	-			Initial after	
Glass formers	F		Batch totals: (E * F)	weighing	-)
gm silica / gm total GFO =	0.65		937.1 grams	<u>s:</u>	- (
gm boric acid / gm total GFO =	0.2664	=>	384.1 grams		- > 25625
gm Fe2O3 / gm total GFO = gm LiOH / gm total GFO =	0.1404	=>	144.2 grams 202.4 grams		- GLASS FORMERS
gm Ca(OH)2 / gm total GFO =	0.0661	=>	95.3 grams		- (forcalcula-
gm sugar/L SBW	135		700.2	-	tional purposes
giii sugaire obvv	33.06	2 /	SL MOKED) Time:	-	- 1 mig 200120000
Initial melter feed tank weight:	33.8	ka	Time:	23.34	2
Melter feed tank wt. after SBW		9			- SCONDUCTED
addition:	34.9	kg	Time:	23:35	SIMULTANIEOUSU
Melter feed tank wt. after glass		24	g succe		- JUT BOTCH G
formers addition:	425	kg	Time:		
.,		5	1 1		
Completed by (sign & data):	O. Benne	1	- 2/1/017	6	
Reviewed & Approved by:	26	2	7 2/1/01	6	
			U		

D					
Batch Sheet No. RSM-01-1-:	N/				
Prepared by:	Rene's F	uss	ell		
Date:	2-01-01	e	Time: /۵:	00 am	
SBW target volume, Liters:	20		Charles and the control of the contr	CONTROL OF THE PARTY OF THE PAR	
SBW transfer tank gross wt: SBW transfer tank tare wt: SBW transfer tank net wt: SBW Density:	RBW transfer tank gross wt: SBW transfer tank tare wt: SBW transfer tank net wt: SBW transfer tank net wt: SBW transfer tank net wt: SBW Density: Calculated volumed transferred: Net wt. / density = 21.96 Liters Target glass waste oxide fraction: SFORMER Addition Calculation Immer weighbs: 114.6 gm WoOA* (1 gm glass/ X gm WO)* (gm total GFO/ gm glass)* YL SBW* (gm GF chemical / gm total GFO) Waste oxide loading: O.35 = B action waste oxide loading: O.35 = B action glass former loading: O.65 = C SBW Volume, liters Z1.96 = D (A/B)* C* D = 4673.72 = E Glass formers F gm silica / gm total GFO = 0.2664 => 1245.1 grams Ooric acid / gm total GFO = 0.10 => 467.4 grams Fe2O3 / gm total GFO = 0.10 => 467.4 grams Fe2O3 / gm total GFO = 0.1404 => 656.2 grams Grams GAT. Julia GCO(OH)2 / gm total GFO = 0.0661 => 308.9 grams GM sugar/L SBW addition: All GAT. Julia Reference tank weight: F Grams GAT. Julia GAT. Julia Reference tank weight: F Reference ta				
Calculated volumed					
transferred:	Net wt. / den	sity =	21.96 Liter	"S	
with authorities the state					
fraction:	0.35				
01 - 5 - 1100					
			GFO/gm glass) * Y L SBW	* (gm GF chemical / gm to	tal GFO)
SBW Volume, liters_	21.96	= D			
(A/B) * C * D = _	4673.72	= E			
				Initial after	
Glass formers	F		Batch totals: (E * F)	weighing	
gm silica / gm total GFO =	0.65	=>	3037.9 gram	s 3037.79 R	2
gm boric acid / gm total GFO =	0.2664	=>	1245.1 gram	s 1245.1. RF	2
gm Fe2O3 / gm total GFO =	0.10	=>	467.4 gram	s 467.4aR	R
gm LiOH / gm total GFO =	0.1404	=>			2
gm Ca(OH)2 / gm total GFO =	0.0661	=>		4.3	R
gm sugar/L SBW	135	=>		s 2964.80 R	a
Initial melter feed tank weight: Melter feed tank wt. after SBW	10.5	kg	Time:/	2000 Del 2000	
addition:	38,5	kg	Time: / 0	58	
Melter feed tank wt. after glass			g _e		
formers addition:	46.5	kg	Time: _ / /	:40	
Completed by (sign & data):_	24	2.6	3_ 2/11	6116	
Reviewed & Approved by:_	16) ~	2/1/01	12	
			7.3	Pro-	

Batch Sheet No. RSM-01-1-:_	9						
Prepared by:	J. M. Perez						
Date: _	2/1/01		Time: _	23:44			
SBW target volume, Liters:	20		Note: shaded require value t		aut.		
SBW transfer tank gross wt:	27.35	kg	require value t	o pe int	, ut	8	
SBW transfer tank tare wt:	2.30	kg					
SBW transfer tank net wt:	25.05	kg					
SBW Density:	1.25	kg/L					
Calculated volumed							
transferred: N	Net wt. / den	sity =	20.04 Li	ters			
Target glass waste oxide							
fraction:	0.35					83	
38							
Blass Former Addition Calcula	tion		- 1				
lass former weights: 114.6 gm WO/L * (1 gm gk			GFO/ gm glass) * Y L	SBW * (gm	GF chemical /	gm total GFO)	
Waste oxide loading, g/L: _	114.6						
Fraction waste oxide loading: _	0.35						
Fraction glass former loading: _	0.65						9
SBW Volume, liters_	20.04	= D					
(A/B) * C * D = _	4265.08	= E					
					Initial after		
Glass formers	F		Batch totals: (E *		weighing	- 110	
gm silica / gm total GFO =	0.65	=>	2772.3 gr		2772.3	10	
gm boric acid / gm total GFO =	0.2664	=>	1136.2 gr		1136.2	-109/1	
gm Fe2O3 / gm total GFO =	0.10	=>	426.5 gr		426,5	14211	2905.8
gm LiOH / gm total GFO =	0.1404	=>	598.8 gr		598-86	0.5	426.5
gm Ca(OH)2 / gm total GFO =	0.0661	=>	281.9 gr		2905.5	720	33325
gm sugar/L SBW	145	=>	2905.8 gr	ams	74031	2/10	
Initial melter feed tank weight:	10.5	kg	Time:	23:	15		
Melter feed tank wt. after SBW	- 11-12				- 2		
addition:	35.5	kg	Time:	23:	25	_	
Melter feed tank wt. after glass	112 5			03 03 0	F150912a11		
formers addition:	45.3	kg	Time:	2/2/01	-01:05	-	
Completed by (sign & data):_	- fre	50	ex 2/2	101			
Reviewed & Approved by:	111:	0	2/1/1				
	1 7		17/				

Batch Sheet No. RSM-01-1-:_	10	8		
Prepared by.	Renee R) iu 35	e11	_
Date: 6	1-2-01	8	Time: 8:10	am
SBW target volume, Liters:	20		Note: shaded areas require value to be	The second secon
SBW transfer tank gross wt:	27.5	kg	require value to be	input
SBW transfer tank tare wt:_	2.30	kg		
SBW transfer tank net wt: _	25.20	kg		
SBW Density:	1.25	kg/L		
Calculated volumed				
	let wt. / den	sitv =	20.16 Liters	
		,		
Target glass waste oxide	BEAT SAY			
fraction:	0.35			
<u> </u>				
lass Former Addition Calculat			800 (100 (100 - 100 (100 (100 (100 (100 (80000
ass former weights: 114.6 gm WO/L * (1 gm glas	s/ X gm WO) * (g	m total	GFO/ gm glass) * Y L SBW * (gr	m GF chemical / gm total GFO)
Waste oxide loading, g/L:				
Fraction waste oxide loading:	The state of the s			
Fraction glass former loading:	0.65			
SBW Volume, liters _	20.16	= D		
(A/B) * C * D = _	4290.62	= E		
				Initial after
Glass formers	F		Batch totals: (E * F)	weighing
gm silica / gm total GFO =	0.65	=>	2788.9 grams	2789.30 RR
gm boric acid / gm total GFO =	0.2664	=>	1143.0 grams	1143.09 RR
gm Fe2O3 / gm total GFO =	0.10	=>	429.1 grams	429.32 RR
gm LiOH / gm total GFO =	0.1404	=>	602.4 grams	602. Ta RR
gm Ca(OH)2 / gm total GFO =	0.0661	=>	283.6 grams	283.6g RR
gm sugar/L SBW	145	=>	2923.2 grams	2923.5 RR
Initial melter feed tank weight:	15,0	ka	Time: 08	670
Melter feed tank wt. after SBW		1.9	1111G. 00.	10
addition:	40.0	ka	Time: 09	07
Melter feed tank wt. after glass		9	11110.	
formers addition:	48.0	kg	Time: 09	25
Completed by (sign & data):	811	10.	0	
	11.			_
Reviewed & Approved by:	1102		2/2/1	
NOTE THIS AS WELL A	elist			_
IN 904 AND 16	52/2 34	GAR	(LASIE BAS) SE	TED FOR A 40%
	ACCOUNT OF THE PARTY OF THE PAR			C 2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (

Data Sheet #1: Priority & Electrical Data

Data Sheet #1: Priority & Electrical Data

RSM-01-1				0.00			- 3			
0.0000000000000000000000000000000000000	By:	ATTION AND ADDRESS.	JWG	M	15	Bot	95	14	1	
	Date:	Say Tan Bulling	1/24	1/29/01	1/29/01		1/29/01		1	1
	Time		1752	1929050	- 2005	21:10		23:08		1
DESCRIPTION	UNITS	Range			70,0	21111	PP.00	77.00	1	1
Priority Data									1	1
Melt Temperature (T1, control)	°C	1125 - 1175	1149	1149	1147	1143	1145	1134	1	/
Melt Temperature (T2)	°C	1125 - 1175	1149	1145	1155	1157	1156	1146	1	/
Plenum Temperature	°C	400 - 600	662	557	554	519	559	538		
Feed pump setting	%		0	15	15	20	20	15	1/	
Cold Cap Coverage	%	> 75	0	70	60	70	90	70	1	-
Slurry Pool Coverage of Cap	%		0	90	3.	70	70	70	X	
Cold Cap Flexibility Visible	yorn	CALCULATION NAMED IN	_	Y	4.	N	5	N	/\	
Number of Vents	#	12 50 50	_	0	0	0	o	0	1	
Cold Cap Thickness	inch	LEESTENGERICE		1	1.5	1	7	1/2	1	
Phase Separation (Note in LRB)	yorn			N	N	N	N	N		1
Glass Pouring	yorn	DES ESCUEDA	N	N	N	N	y	N		1
- 8		A THE STANFORM				//	-	-/4		1
Electrical Data		MAN PROPERTY.							1	1
Electrode Potential	Volts	Party Strategy	28	5.	729.3	7.7 /29.2	7.4/265	7.4/203	1	
Electrode Current	Amps		94 -	10	1106	134/107	132/109	13.1/106	1	1
Electrode Power	kW		2.6 1000		2.630	3.120	2 900	2.79 €		
Melt Resistance	Ω		0.3 CALC		0.276	0.276	0.240		7	1
Melt (Electrode) Setpoint Temp	°C		1150	1150		1150	1150	1150	1	1
(Electrode Power) Output	%	S OF THE REAL PROPERTY.	4/7	45	52	46	46	55	1 /	1
(Electrode) Control Mode	A or M	STEEL STATE OF STATE	A	A	A	A	A	A	1/	1/
Kiln Power	kW	Contract Service	09	0.3	0.1	0.3	0.0	0.0	1/	1/
Kiln Temp Setpoint	°C	E O TORONO TO	8/50	850	850	850	860	800	1/	V
Kiln Actual (Middle) Temp	°C	ALL SUPPLIES	951	850	850	850	850	825	V	A
Kiln Power Output	%	NAMES AND DESCRIPTIONS OF REAL PROPERTY.	60	34	18	34	0	0	Λ.	/
Kiln Control Mode	A or M		A	A	A	A	A	A	-/1	1
Discharge Can Power	kW	STEERS HERWIN	0.1	0.2	0.2	0.2	0.2	0.2	1	7 1
Discharge Can Temp Setpoint	°C		600	750	750	750	750	750		1
Discharge Can Actual Temp	°C	Sergial Spinish	603	747	749	749	750	750		/
Discharge Can Power Output	%	PERSONAL PROPERTY.	50	72	69	62	62	69	1	
Overflow Heater Power	kW	A STATE OF THE STATE OF	1.2	0.0	0.0	0.0	0	0	1 1	
Overflow Heater Setpoint	"C	STATE OF STREET	1000	1050	1050	1050	1050	1050	1 /	
Overflow Heater Power Output	%	The same of	52	244	0	0	0	0		
	hh:mm	TETRACOLOGICAL PROPERTY	1259	1945	2014	2115	2209	2313		

Occlowlated from Va A floke neadings
Reviewed and Approved: Russes

Date: 4/23/01

sheet 1 of 13

Data Sheet #1: Priority & Electrical Data

RSM-01-1	Den		was .		1	111	one	MA		at
	By:			oro	0250			14	4350	750
	Date:	Designation of the last	1/30/01	1/30/01	1/30/01	1/30/11	1/30/01		1/30/0)	11/30
DECCRIPACION I	Time	NAME OF TAXABLE PARTY.	80:48	01:30	0215	0302	0410	0503	86:12	7:02
DESCRIPTION	UNITS	Range	_		-					
Priority Data	2.0	1105 1175			. 14	11.00		12 X-A		
Melt Temperature (T1, control)	°C	1125 - 1175		1150	1147	1148	1147	1149	1151	147
Melt Temperature (T2)	°C	1125 - 1175	1155	1156		1161	423	1166	1166	1166
Plenum Temperature	°C	400 - 600	528	522	521	495		499	486	506
Feed pump setting	%	SALES CONTRACTOR	15	17	19%	20%	22	22	2.1	21
Cold Cap Coverage	%	> 75	6040		50	50	60	70	60	60 6
Slurry Pool Coverage of Cap	%		2	50	75	wo	30	80	80	6.0
Cold Cap Flexibility Visible	yorn		N	N	N	Y	N	У	N	N
Number of Vents	ff		2	3	2	10/2/fast	4	0	3	٥
Cold Cap Thickness	inch	THE PERSON NAMED IN	1/2	Yz.	1/2	1	1/4	1/2	1	1/2
Phase Separation (Note in LRB)	yorn	Elocal member	N	N.	N.	и	N	14	N,	n
Glass Pouring	yorn		N	8	N	n	N	H	N	n
Electrical Data									5,500	
Electrode Potential	Volts	Sacration State	230	270	0.7/27	27	26	25	27	26
Electrode Current	Amps	尼生品及船份	1290	1230	1/30	175	127	130	129	129
Electrode Power	kW		3.60	3.30	3,50	3.4 0	5.30	3,25 €	3,40	3.40
Melt Resistance	Ω	STERRING TO STATE	0.220	0.220	0.210	0.220	0.200	0.19 0	0.210	0.20
Melt (Electrode) Setpoint Temp	°C	NUMBER OF STREET	1156	1150	1150	1150	1,50	1150	1150	1150
(Electrode Power) Output	%	A BUILDING	64	64	45	62	65	64		641
(Electrode) Control Mode	A or M	CAN TOTAL STREET	A	14	A	A	A	A	64 A	A
Kiln Power	kW	A STATE OF THE PARTY OF THE PAR	0	0	0	1.0	3.3	0.3	0.4	0.3
Kiln Temp Setpoint	°C		406	200	800	850	850	850	850	9.50
Kiln Actual (Middle) Temp	°C	TRANSPORTED TO SERVICE	810	5419	810	867	851	850	850	8250
Kiln Power Output	%		0	0	0	67.	37	36	46	38
Kiln Control Mode	A or M	SOUTH SEVERAL SERVICE	4	A	4	A	A	A	A	A
Discharge Can Power	kW	STATE OF STREET	0.2	0.3	0.1	8.1	0.2	0.7	0.1	0.2
Discharge Can Temp Setpoint	°C	CONTROL ROLLEGIS	750	750	250	750	720	750	750	750
Discharge Can Actual Temp	°C	SHALL SON YSUN B	752	756	750	754	752	748	750	750
Discharge Can Power Output	%	A STATE OF THE STA	46	78	46	43	75	63	46	62
Overflow Heater Power	kW		1.7	1.8	1.8	1.8	1,6	1,6	1.6	1.6
Overflow Heater Setpoint	°C	SHOW COLUMN	1050	1050	1050	10SD	1050	1050	1050	1050
Overflow Heater Power Output	%	CANADA CANADA	63	63	65	59	41	61	41	61
Time	hh:mm		01:10	1143	2:37	3 111	4:19	050%	06:24	2:07
() calculated from Flore	readings					-			- 67	7.0
wed and Approved:				(-1-						

			-		1	1 1	d open	4		
RSM-01-1						/				@
	By:	CONTRACTOR OF	54	Jan	JAM	Jam	520	JAM	San	1
	Date:		1-30-01	1/30/01	1/30/01	1/30/01	1/20/01	1/3/4	11/30/01	1/30/01
The second second second	Time	134078	2005	1000	11:20	12:14	1318	13:58	15:05	1601
DESCRIPTION	UNITS	Range	0810						****	
Priority Data				02 0 3						
Melt Temperature (T1, control)	°C	1125 - 1175	1132	1140	1140	1132	1131	1137	1140	1141
Melt Temperature (T2)	°C	1125 - 1175	1151	1156	1159	1161	1157	1154	1154	1152
Plenum Temperature	°C	400 - 600	537	509	654	691	608	632	531	513
Feed pump setting	%	- THE CARL	20	20	0	20	20	20	20	20
Cold Cap Coverage	%	> 75	80	75	0	3	60	20	90	45
Slurry Pool Coverage of Cap	%	WELL STREET	15		NA	NA	10	25	10	50
Cold Cap Flexibility Visible	y or n		7	4	NA	NA	4	4	ĭ	
Number of Vents	#		3	3	NA	NA	4	*3	2	2
Cold Cap Thickness	inch		1/2	1/2	NA	MA	MAR	1/4	1/4	2 1/2 N-51
Phase Separation (Note in LRB)	y or n	STATE OF THE PARTY OF	N	N	N	N	N	N	N	N-31
Glass Pouring	y or n	CONTRACTOR	N	18	N	N	p.l	N	N	N
Electrical Data			-AM							
Electrode Potential	Volts		-5-6	26	25	2.5	24.7	24.5	24,9	23.6
Electrode Current	Amps		129	130	130	132	132	129	129	130
Electrode Power	kW	AND THE PARTY OF	-	-			-			
Melt Resistance	Ω	71-1/20 5/2	0.553	0.555	0.558	0.565	0.558	0.497	0.557	
Melt (Electrode) Setpoint Temp	°C	SHOW THE REAL PROPERTY.	1650	1150	1150	1150	1150	1150	1150	1150
(Electrode Power) Output	%	THE 200	59	65	65	49	68	65	67	65
(Electrode) Control Mode	A or M	THE PARTY OF THE P	A	A	A	A	A	A	A	A
Kiln Power	kW	16 3 6 19 19 19 19 19	0.3	0.3	0.2	0.0	0	0.3	0.3	.3
Kiln Temp Setpoint	°C	2007年代的	850	850	250	850	8.50	850	850	950
Kiln Actual (Middle) Temp	°C		850	250	158	860	643	858	851	850
Kiln Power Output	%		34	37	31	0	11	32	38	37
Kiln Control Mode	A or M		A	A	A	A	A	A	A	A
Discharge Can Power	kW	SE UNIVERSE	0.2	0.2	5.0	0.2	0.2	0.2	0.3	-1
Discharge Can Temp Setpoint	°C	COLUMN TO SERVICE	750	750	750	750	750	750	750	750
Discharge Can Actual Temp	°C	LEAD VIEW BOOK	758	748	749	750	747	754	75%	752
Discharge Can Power Output	%		67	62	71	71	70	63	80	57
Overflow Heater Power	kW	CONTRACTOR NO	1.5	1.2	1.2	1.2	1.8	1.6	1.6	1.6
Overflow Heater Setpoint	°C	AND SHOW THE	1050	1050	1050	1050	1050	1050	1050	1050
Overflow Heater Power Output	%	AST AUDIO PRIED	39	65	65	65	65	61	63	61
	ne hh:mm	WELL Y DATE OF	0924	10:16	11.128	12:22	1322	14-114	15:09	1607

Reviewed and Approved: <

Date: 2/1/00

Data Sheet #1: Priority & Electrical Data

RSM-01-1	N 8	Section to the state of		1		0	6		0	
	By:		oms	DMS	am	(W	Du	ans	100	MS
	Date:	No. of the last of	1/30	1/30	1/30	1130	1/30	1/30	1/30/01	1/30/01
	Time	16:24	15:59	16:56	17:5Y	1857	2002	2100	2202	2303
DESCR!PTION	UNITS	Range	100		70000000			7-21/1/2-2	1	
Priority Data	3		4			La constant				
Melt Temperature (T1, control)	°C	1125 - 1175	1142	1134	1145	1144	1145	1/43	1132	1142
Melt Temperature (T2)	°C	1125 - 1175	1158	1162	1174	1161	1157	1163	1153	1170
Plenum Temperature	°C	400 - 600	570	542	540	510	492	526	690	6/3
Feed pump setting	%	THE THE PERSON NAMED IN	20%	20%	21%	21%	22%	20	20%	207.23
Cold Cap Coverage	%	> 75	~60%	807.	80%	1 /	85	90:	25%	60%
Slurry Pool Coverage of Cap	%		-50%	50%	50%	1 /	60	50	70%	70%
Cold Cap Flexibility Visible	yorn	STATE OF THE PARTY	Y	Y	Y	13 1/2	Y	Y	Y	У
Number of Vents	#	United Street, S	>5	>5	>5	1 /	4	2	1	6
Cold Cap Thickness	Inch	CHICAGO WILLIAM	0.5	0.5	0.5		.5	.5	125	.25
Phase Separation (Note in LRB)	yorn		Y	STABLE	STABLE	0	Stable	STABLE	Not Visible	NO NOT WS
Glass Pouring	y or n		N	У	У	N	N.	N	N	N
Electrical Data	1				-				-	-
Electrode Potential	Volts	TOTAL MARKET	24.7	28.0	27.5	24.5	24.0	27.7	37.1	28.9
Electrode Current	Amps		121.9	141.6	140.4	137.4	139.6	1388	138.6	126.5
Electrode Power	-KW KVA		3.00	3.96	3.86	7:37	3.35	3.84	5.14	3.66
Melt Resistance	Ω		0.20	0.20	0.20	0-18	0.17	0.20	0.27	0.23
Melt (Electrode) Setpoint Temp	°C		1150	1/50	1150	1150	1150	1150	1150	1140
(Electrode Power) Output	96	The State of the State of	70	59	69	69	69	69	76	57
(Electrode) Control Mode	A or M	LINE ESTATE	A	4	A	A	A	A	A	A
Kiln Power	kW	WE SEE STE	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2
Kiln Temp Setpoint	°C		850	850	850	\$50	850	850	850	850
Kiln Actual (Middle) Temp	°C	15 THE THRESTONES	849	848	850	849	852	848	85%	848
Kiln Power Output	%	THE SHOOT STEEL	35	34	34	33	30	31	30	27
Kiln Control Mode	A or M	ON STREET	4	4	A	A	A	A	A	A
Discharge Can Power	kW	TOWN THE PARTY.	0.2	0.1	6.1	0.1	6102	0.1	5.0	0. Z
Discharge Can Temp Setpoint	°C	RANGE DEL SURFICI	750	750	750	750	750	750	750	750
Discharge Can Actual Temp	°C	for officers	752	747	733	747	749	761	747	753
Discharge Can Power Output	%	CALL THE SECOND	60	57	37	51	70	41	69	67
Overflow Heater Power	kW	CONTRACTOR DESIGNATION	1.6	1.6	1.6	1.6	1.6	1.3	1.8	1.6
Overflow Heater Setpoint	°C	No. of Concession, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, Name of	1050	1050	650	1050	1050	1050	1050 .	1050
Overflow Heater Power Output	%	RATE SEES NO.	1050	105Z	1049	1050	1050	1053	7100465	1052
	e hh:mm	THE SERVICE	16:28	16:59	17:57	1900	2024	21.00	220%	/2305

Date: 2/01/01

RSM-01-1							111	*	3.1	200
	By:		110	שמש	wee M	000	1110	200	2000	WCG
	Date:	19869	1/31/07	1/31/01	1/31/01	1/31/01	1/21/01	1/31/01	1/31/01	1/2/10
	Time		0015	0/61	0209	03:03	~402	5:00	6:20	0720
DESCRIPTION	UNITS	Range					A Section 1			
Priority Data								N.		
Melt Temperature (T1, control)	°C	1125 - 1175	1139	1142	14381158	1144	1150		1105	1145
Melt Temperature (T2)	°C .	1125 - 1175	1147	1169	123161	1160	1166		1131	1164
Plenum Temperature	°C	400 - 600	751 feel mixing	702	516	458	493		638	611
Feed pump setting	%	1970年联络公共海岸	6 notest	20	25	25	25		10%	20
Cold Cap Coverage	%	> 75	0 ' '	8	100	100	Ocold		0-feed	40
Slurry Pool Coverage of Cap	%		0	₽	20	20	م م		line of	190
Cold Cap Flexibility Visible	y or n	day attended		3	Y	N	ø₽°		Player	_5_
Number of Vents	#		_	40	loto	7	broken	est Park 1	I	<u> </u>
Cold Cap Thickness	inch	and the second		13	1/4-1/2	calital	broken			14"
Phase Separation (Note in LRB)	y or n	Processor and the second	y small aut	4	N	4.	feed link		7	ν
Glass Pouring	y or n	4.000	n	N	drips	Y	N			N
		(1)等于" 发展 "之一。			La file					gar yar ili
Electrical Data							The street			
Electrode Potential	Volts	4444	26	28	25	26	23	1	27	25
Electrode Current	Amps	S .49 - 19 (18)	125	132	138	141	137	7	119	132.3
Electrode Power	kW	一种一种种种种的	3,25	3.70	3.45	3.67	3.15	1	3.91	3,31
Melt Resistance	Ω	100	0.21	0.21	0.18	0.18	0.17	•	0.33	0,19
Melt (Electrode) Setpoint Temp	°C	100	1140	1140	1150	1150	150	1	1140	1140
(Electrode Power) Output	%		60	66	69	49	69	11,	60	65
(Electrode) Control Mode	A or M	all the second	A	4	A	A	4		A	<u> </u>
Kiln Power	kW	2000	6	0	0.5	0.3	0.3		0	0.2
Kiln Temp Setpoint	°C		8570	850	8.50	850	850	3	850	850
Kiln Actual (Middle) Temp	°C	4 4	358	860	352	850	850	X	846	825
Kiln Power Output	%		0	0	44	36	36	7	13	28
Kiln Control Mode	A or M	A 11 数 1 (4)	A	A	A	A	A	12	Done A	<u> </u>
Discharge Can Power	kW		0,2	0.2	0.2	0.1	0,2	_ ''	\$ 2500.2	0.2
Discharge Can Temp Setpoint	°C	Other Copins and Philips	750	750	750	750	750		750	750
Discharge Can Actual Temp	°C	3 1/4	730	749	742	761	747		749	749
Discharge Can Power Output	%		67	67	62	54	71		63	(8)
Overflow Heater Power	kW	非科技的基础的模型	1.6	1.6	1.6	1.3	1.6		1.6	المارا
Overflow Heater Setpoint	°C	740	1050	1050	1050	1050	1050		1050	1050
Overflow Heater Power Output	%		61	61	61	56	61	T T	62	62
Tim	ne hh:mm	A. 3 . (2) (3. 4. 4. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	0023	0106	0215	03:07			6:34	732

10___

Date: 1/31/60

sheet <u>5</u> of <u>13</u>

Data Sheet #1: Priority & Electrical Data

RSM-01-1										
1900 1 1000 100 100 100 100 100 100 100	By:	ET MENT NE	59	54	54	54	31	54	Jan	50
	Date:	Me House of	1/3/61	1/3/101	1/3/101	1/3/101	1/31/01	1/3/101	1/2/101	1/3/101
	Time	WINDS	0808	0919	1006	1183	1229	1305	13 455	1435
DESCRIPTION	UNITS	Range							7// 1	
Priority Data										
Melt Temperature (T1, control)	°C	1125 - 1175	1138	1150	1150	1150	1149	1145	1149	1151
Melt Temperature (T2)	°C	1125 - 1175	1155	1164	1166	1161	1168	1164	1156	1164
Plenum Temperature	°C	400 - 600	545	532	530	629	1091	613	568	537
Feed pump setting	%	DABLE EXPLORE	20	20	20	20	20	20	20	20
Cold Cap Coverage	%	> 75	75	50	75	60	25	60	50	75
Slurry Pool Coverage of Cap	%	CALIFFORD LINES	50	50	50	50	25	50	50	50
Cold Cap Flexibility Visible	y or n		4	4	Y	4	4	4	4	Y
Number of Vents	#	A BOTH THE	4	7-8	4-3	4-7	-	6-7	4	4
Cold Cap Thickness	inch	MINISTER BERNESS	12	1/2	1/2	1/2	-	1/2	51/2	1/0
Phase Separation (Note in LRB)	y or n	2000年1000年	Na	No	No	No	No	No	22.0	No
Glass Pouring	y or n		Na	NO						
Electrical Data										
Electrode Potential	Volts	STATE OF THE PARTY.	25,41	24.2	24,5	243	26.2	25,4	25.5	24.6
Electrode Current	Amps	4 (4 4 4 7 7 9	156,2	145,9	145.0	142.5	148.4	148.6	143.0	139,2
Electrode Power	kW		443,9	3.5	3.6	3.46	3,89	3,77	3.64	3,42
Melt Resistance	Ω		0.14-alles	10,166	0.169	0,171	0.177	0,171	0,078	0,177
Melt (Electrode) Setpoint Temp	°C		1150	1130	1150	1150	1150	1150	1150	1150
(Electrode Power) Output	%	STATE OF THE PARTY	74	73	72	70	74	74	71	69
(Electrode) Control Mode	A or M		A	A	A	A .	A	A	A	1
Kiln Power	kW		0,2	0,2	0.2	0.6	0.2	0	0,3	0.3
Kiln Temp Setpoint	°C		850	850	850	850	850	850	850	850
Kiln Actual (Middle) Temp	°C		850	850	850	850	855	846	351	850
Kiln Power Output	%		31	28	31	30	3	5	33	32
Kiln Control Mode	A or M		4	A	A	A	4	A	A	A
Discharge Can Power	kW		0,2	0,2	0.2	0.2	0,2	0.2	0.2	0.2
Discharge Can Temp Setpoint	°C		350	750	750	750	750	750	750	750
Discharge Can Actual Temp	°C	THE PERSON NAMED IN	750	750	747	749	749	750	750	750
Discharge Can Power Output	%		67	63	72	63	64	05	61	66
Overflow Heater Power	kW		1.6	1.6	1.6	1.6	1.6	1.6	1.6	1,6
Overflow Heater Setpoint	°C		1050	1050	1050	1030	1050	1050	1050	1050
Overflow Heater Power Output	%	No. of Local	62	60	61	61	62	61	61	62
* Tim	e hh:mm	3500000000	0014	0921	1008	1107	1230	1309	14.05	1458

Date: 2/1/01

sheet 6 of 13

Data Sheet #1: Priority & Electrical Data

RSM-01-1										
	By:		54	16	(sm)	18	des	ans	on	des
	Date:	DESIGNATION OF THE PERSON NAMED AND POST OF T	1/31/01	1/3/01	1/31/01	1/31/61	1/31/01	1/31/01	1/3/101	1/31/01
	Time	THE RESERVE	1556	1700	1756	1904	2007	2101	2208	2306
DESCRIPTION	UNITS	Range								
Priority Data	7,000,000	TOTAL MANAGEMENT								
Melt Temperature (T1, control)	°C	1125 - 1175	1142	1151	1151	1149	1147	1149	1150	1143
Melt Temperature (T2)	°C	1125 - 1175	1166	1164	1156	1161	1158	1158	1160	1159
Plenum Temperature	°C	400 - 600	676	566	522	509	514	515	510	630
Feed pump setting	%	Day - Leading	22	22	22	22	22	22	22	0
Cold Cap Coverage	%	> 75	75	65	75	70	75	080	70	0
Slurry Pool Coverage of Cap	%		60	70	60	50	60	60	60	
Cold Cap Flexibility Visible	y or n	A Constitution of the	4	Y	У	Y	V	Y	Y	_
Number of Vents	#		3	Edgesone	- 2	2	3	2	2	-
Cold Cap Thickness	inch	15 A SERVICE S	1/2	~ 1/2	-1/2	1/2	1/2	42	12	
Phase Separation (Note in LRB)	yorn	HARRING TO STATE OF	N	small	N	saltmini	3.	N.O.	N.D.	Y
Glass Pouring	yorn		N	N	N	N	N	Ν	N	N
Electrical Data										
Electrode Potential	Volts	DATE OF LINE	25.4	29.8	24.0	24.4	24.3	24.3	24.3	24.8
Electrode Current	Amps	展想电影观察	147.1	139	143.1	146	147	145	147	141
Electrode Power	kW		3.7	3.3	3.4	3.6	3.6	3.5	3.6	3.5
Melt Resistance	Ω	Section 2	0.173	0,171	0.17	0.17	0.17	0.17	0.16	0.18
Melt (Electrode) Setpoint Temp	"C		1150	150	1150	1150	1150	1150	1150	1150
(Electrode Power) Output	%		73	70	71	73	74	72	72	66
(Electrode) Control Mode	A or M	MESSING BEEN	A	A	A	A	A	A	A	A
Kiln Power	kW	以上,公司公司有有政治	0	0.3	0.2	0.3	0.2	0.2	0.2	0.2
Kiln Temp Setpoint	°C	於主义自由的各种的知识	850	820	850	850	850	550	850	850
Kiln Actual (Middle) Temp	°C		855	851	850	850	850	850	350	856
Kiln Power Output	%		0	3.6	30	3.3	32	31	31	29
Kiln Control Mode	A or M		A	A	A	A	A	A	A	A
Discharge Can Power	kW	(書籍)((2002)(在高級)(6	0,2	0.2	0. Z	0.2	0.2	0.2	0.2	0
Discharge Can Temp Setpoint	°C	CHARLES THE SERVICE	750	750	750	7.50	750	750	750	750
Discharge Can Actual Temp	°C		625	73'2	751	750	747	749	749	764
Discharge Can Power Output	%		70	757	61	69	72	66	61	5
Overflow Heater Power	kW	MILE WALK	1,7	1.6	1.6	1.6	1.6	1.6	1.6	1.6
Overflow Heater Setpoint	°C		1050	1056	1032	1051	1050	1050	1050	1050
Overflow Heater Power Output	%		63	62	61	61	62	105) T	we 61	62
Tim	ne hh:mm	STATE OF STA	1605	17:06	17:59	1910	2009	2107	22/2	2316

Date: 2(10+

sheet $\frac{7}{2}$ of $\underline{\cancel{3}}$

RSM-01-1					11.					
	By:		15/10	ws	113	020	2500	100	500	WB
	Date:	MERCHANISM STREET	2/1/01	2/1/01	12/1/1	2/1/51	2/1/01	2/1/01	2/1/01	211/01
	Time		0:09	0100	6203	3:01	3:02	05:00	06:07	0711
DESCRIPTION	UNITS	Range	6			1000				Sec. 10.00
Priority Data										
Melt Temperature (T1, control)	°C	1125 - 1175	1149	1081	1149	1151	1149	1150	1150	1091
Melt Temperature (T2)	°C	1125 - 1175	1165	1105	1158	1150	1152	1168	1157	1095
Plenum Temperature	°C	400 - 600	761	722	573	495	460	480	492	600
Feed pump setting	96		0.0	off	25	25	25	25	25	25
Cold Cap Coverage	%	> 75	0	0	40%	70%	90%	100	100	60
Slurry Pool Coverage of Cap	%		4) 4	1,6	50	50	50	20	Count Soon	90
Cold Cap Flexibility Visible	yorn		2. 4 7	K	Y	7	4	N	N	У
Number of Vents	#		312	10	10%	No	None	0	0	4
Cold Cap Thickness	inch	SINCEPE AND ADDRESS.	6.51	2	-1"	1	/	1	1	1/2
Phase Separation (Note in LRB)	y or n	H00 80 80	4	Pa	Y	7.	4.	N	Can't soo	N
Glass Pouring	y or n		N	4	N	2	N	4	N	N
Electrical Data	+				-		+			
Electrode Potential	Volts		23.7	27.1	25	24.9	22.9	2241	24.3	29.2
Electrode Current	Amps	BARRIOT ST	127.4	130.3	144	147	137	143.	141	149.
Electrode Power	kW		3.02	3.53	3.60	3.67	3.14	3.16	3,43	4.3
Melt Resistance	Ω		0.19	0.21	0.174	0.169	0.17	0.16	0.17	0,2
Melt (Electrode) Setpoint Temp	°C	BON LEWIS BOOK	1150	1050	1050	1150	1150	1150	1150	1150
(Electrode Power) Output	96	Street the Supplied	64	62	72	74	70	70	70	80
(Electrode) Control Mode	A or M	CHARLES SHOWER	A	A	A	A	A	A	A	A
Kiln Power	kW		0.0	0.0	0.0	0.3	0.3	0.3	0-3	00
Kiln Temp Setpoint	°C	SET DE DALLA	850	850	850	250	850	850	850	850
Kiln Actual (Middle) Temp	°C	MASSES PROPERTY	865	857	944	851	850	250	856	848
Kiln Power Output	%	STATE OF THE PARTY OF	0	0	8	34	34	37	38	1
Kiln Control Mode	A or M	- Carlottan	A	A	A	A	A	A	A	A
Discharge Can Power	kW	COMMUNICATION CONTRACTOR	0.2	0.2	0,2	0.2	0.1	0,2	0.2	0,2
Discharge Can Temp Setpoint	°C		750	750	750	250	750	750	750	750
Discharge Can Actual Temp	°C	15 Mar 38 Lts	749	750	750	751	245	752	751	750
Discharge Can Power Output	%	A CONTRACTOR	67	67	66	63	49	59	47	66
Overflow Heater Power	kW	RUNE HELE	1.5	1.6	1.0	1.6	16	1.6	1.6	1.7
Overflow Heater Setpoint	°C	THE REAL PROPERTY.	1050	1050	1050	1050	1050	1050	1056	1050
Overflow Heater Power Output	96	ACCORDANGE STREET	61	62	62	41	62	62	62	63
Tim	ne hh:mm	CANTEL SECTION OF	0:15	1:03	_	3:10	4:10	5:07	06:10	0714

C.21

Date: 2)111

sheet 8 of 2

Data Sheet #1: Priority & Electrical Datashut down for feed onth

RSM-01-1				1		14	4	1		1
H-5M-U1-1	By:	CONTRACTOR OF THE PARTY OF	JAM	111	-	Jan	-	_		(A)
	Date:	Annual Control of the Control	2/1/61	12/11	2/1/01		Jan	Jan	Jon	
	-	CONTROL CONTROL	1 1101	0904	- market and a second	2/1/01	2/1/01	2/1/01	2/1/01	12/1/01
DESCRIPTION	Time	Design Company	8:39	0109	10129	10:59	12:22	13:00	15:13	1601
	UNITS	Range				-		_		
Priority Data			1.70	11.000		1 2 2		-		
Melt Temperature (T1, control)	°C	1125 - 1175	1149	450	1/50	1149	1150	1149	1149	1149
Melt Temperature (T2)	°C	1125 - 1175	1159	1157	1160	1165	1163	1152	1157	1752
Plenum Temperature	°C	400 - 600	626	563	547	727	691	558	489	499
Feed pump setting	%	THE PARTY OF	25	25	20	-0-	25	25	23	23
Cold Cap Coverage	%	> 75	60	90	60	00	50	70	80	90
Slurry Pool Coverage of Cap	%	NOT THE REAL PROPERTY.	50	25		-	50	30	70	50
Cold Cap Flexibility Visible	y or n	SERVICE SUPPLY	4	7	_	_	4	4	Y	8
Number of Vents	#	Marie Total	~5	Sevende	-	_	0	4-5	4-5	3
Cold Cap Thickness	inch	COTTO NOTES	<1/2	-42	-0-	63	1/2	1/2	1/2	3/4
Phase Separation (Note in LRB)	y or n	DOWNSHIP OF	Y	Y	Y	4	Y	4	4	17.
Glass Pouring	yorn	Constant and the second	N	N	N	14	N	N	N	N
Electrical Data					Section 10		1			-
Electrode Potential	Volts	STATISTICS STATE	24.7	24	22.7	22.5	24.2	23.2	22.7	23.6
Electrode Current	Amps	THE REPORT OF THE PARTY OF	152	157	155	153	149	140	150	15%
Electrode Power	kW	THE RESIDENCE OF THE PARTY OF T	3.75	3.8	3.5	3.4	2.6	3.3	3.4	3.7
Melt Resistance	Ω		0.16	.15	0.15	0,15	0,16	0.17	0,15	0.15
Melt (Electrode) Setpoint Temp	°C.		1150	1150	1150	1150	1150	1150	1150	1150
(Electrode Power) Output	%	ACCUPATION OF THE PARTY.	75	78	77	76	73	69	72	78
(Electrode) Control Mode	A or M	SERVICE OF STATE	A	A	A	A	4	A	A	A
Kiln Power	kW	Military English	0	0.7	0.2	0	0	0.1	0.3	-3
Kiln Temp Setpoint	°C	CHIEF TON HEREON	250	029	250	850	850	250	350	850
Kiln Actual (Middle) Temp	°C	To Oliver the York Street	850	1944	251	260	867	841	250	850
Kiln Power Output	%		8	26	29	3	0	16	33	32
Kiln Control Mode	A or M	THE RESERVE THE REAL PROPERTY.	A	A	A	A	A	A	A	A
Discharge Can Power	kW	STREET, STREET	0.2	0.2	0,2	0.2	0.2	0-2	0.2	5,00
Discharge Can Temp Setpoint	°C	NAME OF BRIDE	750	750	750	750	750	750	750	756
Discharge Can Actual Temp	°C	Surface 35-500 et 61 (8)	754	752	752	747	750	750	749	749
Discharge Can Power Output	%	CALL SEXUALIS	65	70	71	67	71	70	69	68
Overflow Heater Power	kW	CONTRACTOR OF THE	1.6	1.6	1.6	1,6	1.6	1.7	1.6	1.6
Overflow Heater Setpoint	°C		1050	10.50	1050	1050	1050	1050	1050	1150
Overflow Heater Power Output	%		62	STO CI	62	41	62	63	61	1-1
	e hh:mm		2:42	0913	10:34	11203	12:26	13:11	15:20	1603

Date: 2/1/06

sheet 9 of 13

	S	Data She	et #1: Prio	rity & Elect	rical Data					
	- P 11,5 1						11 1 m to			
RSM-01-1										
	By:	10000	an	en	10	Ju)	Art .	(A)	an	
	Date:	A 1999	2/1/01	2/1/01	2/1/01	2/1/01	2/1/01	12/1/01	2/1/01	100
	Time	Sec. Like	1705	1800	1856		2100	2158	2300	
DESCRIPTION	UNITS	Range								
Priority Data				100						
Meit Temperature (T1, control)	°C	1125 - 1175	1027	1075	1149	1149	1150	1164	1150	a Africa
Melt Temperature (T2)	°C	1125 - 1175	1037	1079	1149	1145	1147	1150	1145	
Plenum Temperature	°C	400 - 600	592	687	608	592	556	539	M74 501	
Feed pump setting	%	A ABOVE	0	0	20	20	21	21	21	Se autor
Cold Cap Coverage	%	> 75	0	В	50	50	50	60	60	
Slurry Pool Coverage of Cap	%	E 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		_	C۰	~/00	100	160	100	
Cold Cap Flexibility Visible	y or n				y	on sides	y	Y	Y	
Number of Vents	#			-	7	ansides	SIDES	None	BUBBLES	
Cold Cap Thickness	inch				< 1/2	~1/2	1/2	1/2	1/2	
Phase Separation (Note in LRB)	yorn		У		9	У	YES	deceasi		2. Ali 53
Glass Pouring	yorn	100	\mathcal{U}	W	ん	N	NO	No		
								14. A 15.		
Electrical Data		Alternative p		l.e						
Electrode Potential	Volts	1	2141	Val50	24.7	24.4	23.4	27.5	23	
Electrode Current	Amps	A Alberta	29.8	129	159	153	146	125	142	
Electrode Power	kW		4.2	MQ-14.3		3.7	3.4	2-8	3.3	
Melt Resistance	Ω		0.21	0.193	0-16	0.16	0.16	0.18	0.16	5. 20.7 (6.1)
Melt (Electrode) Setpoint Temp	°C	g. 1985	1150	1150	1150	1150	1150	1150	(150)	
(Electrode Power) Output	%	28 (48) (1) 464	70	75	78	77	71	64	72	<u>- </u>
(Electrode) Control Mode	A or M		M	M	A	I A	A	A	A	<u> </u>
Kiln Power	kW	100	9.7	0.1	6	0.1	0.2	0.3	0.3	
Kiln Temp Setpoint	°C	A CONTRACTOR	850	850	850	85D	850	850	850	
Kiln Actual (Middle) Temp	°C		851	848	8€1	450	848	848	849	
Kiln Power Output	%	1.17.14.71.00	41	18]/	22	26	32	34	
Kiln Control Mode	A or M		A	A	A	L A	A	A	A	44 - 12 - 14
Discharge Can Power	kW		0.2	2.7	0.2	0.2	0.2	0.2	2.7	1.65. 1
Discharge Can Temp Setpoint	°C		750	750	750	750	750	750	750	<u> </u>
Discharge Can Actual Temp	°C	4. 486. 1.86	756	749	748	745	750	747	749	
Discharge Can Power Output	%	AND AND ASSESSED.	63	66	68	76	64	64	66	
Overflow Heater Power	kW	A COLUMN TO SERVE OF THE SERVE	1.7	17	1.6	1.7	1.7	1.7	1.7	
Overflow Heater Setpoint	°C		1050	1050	1050	1050	1050	1050	1050	<u>. 1992 </u>
Overflow Heater Power Output	%		64	64	63	63	63	63	63	

Reviewed and Approved: 26 Sec. Date: 4/23/6/

Data Sheet #1: Priority & Electrical Data

started cities

RSM-01-1					111		11.1	40	10	
	By:		ON	640	101	2000	185	DN	1	02
	Date:	HERSSHIP OF THE STREET	2/2/01	2/2/01	12/1/1	2/2/01	12/2/1	2/2/01	221	2/2/0
	Time	Share Gri	00:22	20/:01	8410	03:05	0903	0565	605	07:17
DESCRIPTION	UNITS	Range		1						
Priority Data									31	
Melt Temperature (T1, control)	°C	1125 - 1175	1149	1149	1156	1149	1150	1154	1159	1148
Melt Temperature (T2)	°C	1125 - 1175		1148	1152	444	1149	1152	7147	1147
Plenum Temperature	°C	400 - 600	717	756	667	535	483	422	440	495
Feed pump setting	%	A CONTRACTOR	0	0	22	25	25	25	75	25
Cold Cap Coverage	%	> 75	None	Food	25	40	90%	90%	100%	
Slurry Pool Coverage of Cap	%	the state of the s	Feed	aff.	90	60	20	20	2570	20%
Cold Cap Flexibility Visible	y or n	LESSES SOCIETY	off	MIRING	y	Y	¥	4	Y	7
Number of Vents	#		for feet	paul	Sister	3	2	0	H	2
Cold Cap Thickness	inch		mckacop		1/4	/	1-4 000	1	1/4 - 2'	1×20
Phase Separation (Note in LRB)	y or n	STREET, STREET,	^	N	н	n	n	N	n	M
Glass Pouring	y or n		h	И	и	n	n	N	и	8
Electrical Data										
Electrode Potential	Volts	DESTRUCTION OF THE PARTY OF	23.1	23.8	25	244	24	222	7.3	25.2
Electrode Current	Amps	A SUM OF BUILDING	136.3	134.33	140	149.8	157	1415	143	153
Electrode Power	kW		3,1	3.2	3.2	3.7	3.6	3.1	3.3	3.9
Melt Resistance	Ω	The same	8.17	0.18	0.16	0.16	0.16	0.16	0.16	0.16
Melt (Electrode) Setpoint Temp	°C		1150	1150	1150	1150	1/50	1150	1150	1150
(Electrode Power) Output	%	DO LANGE MAN	68	67	70	74	75	70 A	78	79
(Electrode) Control Mode	A or M		A	A	A	A	A	A	A	A
Kiln Power	kW	The section of the	0	0	0	0.3	0.2	8.2	D/Z	0.2
Kiln Temp Setpoint	°C	Same Park	850	850	850	850	950	850	830	850
Kiln Actual (Middle) Temp	°C	TO ESTADO (INC	860	869	951	848	850	851	550	851
Kiln Power Output	%	of the second	13	0	13	34	32	32	3/	30
Kiln Control Mode	A or M	BUTTER ASSESSED.	A	A	Az	A	A	A	A	A
Discharge Can Power	kW	THE PARTY OF	0.2	0.2		0-2	0,2	0.2	0.2	0.7
Discharge Can Temp Setpoint	°C	AND SHUELES	750	750	750	750	750	750	750	750
Discharge Can Actual Temp	°C	SERVICE COLOR	750	750	750	752	750	750	749	749
Discharge Can Power Output	%	Classification of	65	67	68	71	63	62	72	71
Overflow Heater Power	kW		1.6	1.5	1.7	1.7	1.6	1.6	1,6	Inh
Overflow Heater Setpoint	°C	A THE RESERVE	1050	1050	10,50	1050	1050	1050	1050	105
Overflow Heater Power Output	%	ATT SECURE	62	61	63	63	GI	42	6Z	62
Tin	ne hh:mm	ADS NEWSFIELD	00:25	01:03	2120	63:10	0405	05:09	9607	0723

Reviewed and Approved: Rw. S. e.

Date: 4/23/6/

sheet // of /3

Data Sheet #1: Priority & Electrical Data and sound suffer out of all the state of suffer out of the s

RSM-01-1								ne A	Same of the same o	
	By:		JAZ	183	SAM	JAM	Jan	900	JAM	JAM
	Date:	THE RESERVE	2/4/01	212/1	2/2/01	2/2/01	2/2/01	11	1	2/2/01
	Time	ETICOLOGICA SER	8:19	0916	10:05	11:11	12:10	1300	1400	16:05
DESCRIPTION	UNITS	Range		5 ***		12-16/			***	100000
Priority Data										
Melt Temperature (T1, control)	°C	1125 - 1175	1145	1154	1149	1152	1150	1150	1148	1147
Melt Temperature (T2)	°C	1125 - 1175	1149	1156	1154	1154	1150	1149	1150	11 45
Plenum Temperature	*C	400 - 600	500	705	761	780	575	507	991	491
Feed pump setting	%	SALES TABLE	25	0	0	0	30 *	28	27,5	27.5
Cold Cap Coverage	%	> 75	50	6	0	0	70	100	90	90
Slurry Pool Coverage of Cap	%	Own particular	30	0	-	-	30	2.5	30	25
Cold Cap Flexibility Visible	yorn	SALES BANGER	Y	-	-	-	Y	Y	4	4
Number of Vents	#	NE SEZULIO	4-6	-	-	-	5-6	0	6-7	6-7
Cold Cap Thickness	inch		1/2	-	_	-	1/4	1/4-3	1/4-1/2	119-1/2
Phase Separation (Note in LRB)	yorn	STATE OF THE PARTY	h	Y	Y	Y	Y	N	N	N
Glass Pouring	y or n	(S10) E-100(G)	h	N	-	_	N	n	N	V
Electrical Data										
Electrode Potential	Volts	Contract Contract	15825	24	23	22.6	25.1	24	24,2	24,4
Electrode Current	Amps	- 15 IS 15 IS 15 IS	158	144	143	136	145	143	154	153
Electrode Power	kW	SERVICE SENT		1		1	1000000			
Melt Resistance	Ω	SOUTH THE PERSON NAMED AND								
Melt (Electrode) Setpoint Temp	°C	SENTENCE S	1150	1150	1150	1150	1150	1150	1150	1150
(Electrode Power) Output	96	CHIEF CHEST	79	7.1	71	68	67	69	77	77
(Electrode) Control Mode	A or M	Moderate	A	A	A	A	A	1	A	A
Kiln Power	kW		0.2	0.1 014	0	0	0	0.3	0.2	6.3
Kiln Temp Setpoint	°C	100 1 20 20 20 20	9.50	550	850	850	850	950	850	25D
Kiln Actual (Middle) Temp	°C	SHAME	251	853	872	879	866	844	850	851
Kiin Power Output	%	to Made and the	30	17	0	0	0	35	30	34-
Kiln Control Mode	A or M	CONTRACTOR AND ADDRESS.	A	A	A	A	A	A	A	A
Discharge Can Power	kW	Charles Land Control	0,2	0.2	0,2	0,2	0.2	0,2	0.1	0.2
Discharge Can Temp Setpoint	°C	OTHER SERVICE	750	150	750	750	750	750	750	750
Discharge Can Actual Temp	°C	ALL PLANSING	755	740	750	750	751	752	747	750
Discharge Can Power Output	%	ASSESSMENT OF THE PARTY OF THE	72	71	20	73	67	66	59	45
Overflow Heater Power	kW	and the contract of	1.6	1.0	1.5	1.5	1,6	1.7	1.6	1.6
Overflow Heater Setpoint	°C		1050	1050	1050	1050	1050	1050	1050	1050
Overflow Heater Power Output	%	STORE AND INC.	61	60	61	61	61	64	62	62
Tim	e hh:mm	ADDRESS CONTROL	8:19	8918	10:08	11:13	12:17	1302	14:04	16:10

Reviewed and Approved: Rw Ree

Date: 123/61

Data Sheet #1: Priority & Electrical Data foed just turned back

RSM-01-1		Part Hardines		Von.		ГТ				
	By:	and the second	160	_16	SAM	16		100		
강하시다. 독일에 이번 때마다.	Date:	Anneal Anneal	2/2/01	2/2/01	2/2/1	2/2/01				
	Time	46.4	17/2	1803	18:59	2003				
DESCRIPTION	UNITS	Range					•			
Priority Data			5.54							- 18 November 1
Melt Temperature (T1, control)	°C	1125 - 1175	1151	1151	1147	1153				
Melt Temperature (T2)	°C	1125 - 1175	1153	1149	1147	1154				
Plenum Temperature	°C	400 - 600	471	606	491	477				
Feed pump setting	%	Samuel Commence	27.5	25	25	25	40			A 97.45
Cold Cap Coverage	%	> 75	> 95	5%	95	795) w	col co	er most	
Slurry Pool Coverage of Cap	%		~70	100	50	toodark	5 0/ 30	whose	Connit	
Cold Cap Flexibility Visible	yorn		~otvisible	У	Y	notsure	(velit		mens 6	11.65
Number of Vents	#		0-1	10/3	6-7	0	\ salt	present	مع	
Cold Cap Thickness	inch	440	~ 1/2	0	1/6-1/2	unknown	J	•		
Phase Separation (Note in LRB)	yorn	est operation and survey	Y	У	?	?				
Glass Pouring	yorn	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	drips	رخر ا	N	<i>N</i>	Length Service Con-			4
Electrical Data		0.00								
Electrode Potential	Volts	46 562	23.0	23.5	22.8	20.4		A. A. A.		J. Grande
Electrode Current	Amps		154	152	156	134			#124 P. 1	
Electrode Power	kW	S 1882	156 35	3.6	3,6					
Melt Resistance	Ω		0.15	0.15						
Melt (Electrode) Setpoint Temp	°C		1150	1150	1150	1150				No. in Proceed
(Electrode Power) Output	%		76	76	75	66				
(Electrode) Control Mode	A or M	47762	A	A	A	A				£0.5% (1.5)
Kiln Power	kW		0.3	0.2	0.3	0.3				
Kiln Temp Setpoint	°C		850	850	850	850				
Kiln Actual (Middle) Temp	°C		850	853	849	850				
Kiln Power Output	%		32	30	36	37				
Kiln Control Mode	A or M	A	A	A	A	A	its area			
Discharge Can Power	kW	NEW YORK OF THE OWNER.	75015	e.l	0,2	0.2	10			The Mark
Discharge Can Temp Setpoint	°C		750	750	756	750	1 122 g 3			100
Discharge Can Actual Temp	°C		751	750	750	746				1.560.00
Discharge Can Power Output	%	school Marie L	60	48	66	66				
Overflow Heater Power	kW	Manual Manual Services	1.6	1.7	1.6	1.6	\$ 4.0 5.0			1000
Overflow Heater Setpoint	°C	* ***	1050	1050	1050	1050				
Overflow Heater Power Output	%		61	63	62	62			الليل الماليا	
Tin	ne hh:mm	State of the state	17:22	18:06	19:06	20:05				1.4

Reviewed and Approved: & Lul

Date: 4/23/61

sheet 13_{of} 13

Data Sheet #2: Routine Status Sheets

RSM-01-1	1,40	By:	HES	M	This -	M	45	ar	MI	
		Date:	1/29/01	1/29/01	1/29/01	1/29/01			1/30/01	
		Time:	17:52	19:13	19:56	2500	22:00	23:00	00:24	
DESCRIPTION	units	range	1,7,00	171	17.50	×100		77.50	00.24	
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.5	0.45	0.45	0.45	0.45	8:35	0.45	
Film Cooler Air Supply	scfm	1-10 (reg OGT)	8	7.6	7.5	7.5	7.5	7.4	7.4	
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0	1.0	0.96	0.95	0.97	0.62	0.99	6.7	
EVSΔP	in. H2O			-0.0156	0.02	0.01	0.01	0.004	311	
Film Cooler ΔP	in. H2O		-0.01	0.047	0.039	0.05	0.05	0.09	. 100	
HEME ΔP	in. H2O		0.60	0.64	0.609	0.67	0-66	0.78		
System ΔP	in. H2O		0-98	1.08	1.04	1.13	1.09	1.15		
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.7	3.1	3.7	3.7	3.1	3.7		
EVS Scrub Tank Volume	gallon	35 - 50	22	22	22	22	23	24		7800
EVS Nozzle Pressure	psi	50 - 55	55	55	55	55	55	5\$		
EVS Scrub Solution pH	pН	> 9	12_	12	12	12	(1	S 11	1 TO 63 17 (#)	
OG Control Valve position	%dos	e	50	50	50	50	55	55		
OG Control Valve mode	A or M		A	A	A	Α	A	A	1	
Feed Pump (tubing) Condition			OK	OK	OK	OK	OK	OK	1 3	7
Agitator Setting	0-10-			5	5	5	5	5	1/2	
Blower Cooling Flow	gpm	1 - 1.5	1.15	1.15	1.15	1.15	1.15	1.15		
Feed Nozzle Temp (FNT)	°C	< 40	20	20	22	20	21	20	4	14.4
Off-Gas Temp (OGT)	°C	< 250	79	55	88	88	83	80	3	
Post EVS Off-Gas Temp	°C	< 50	25	25	30	27	26	25	1	
Scrub Liquid Temp (SLT)	°C	<40	16	18	17	18	17	17		
Heat Xer Temp	°C	< 30	15	15	17	16	15	15	1	
Feed Pump Setting	%		15	15	15	20	20	15	1 4	
Feed Pump Control Mode	A or M			A	A	A	A	A	3	,
Feed Pressure	psi_	<1.0		0.6	0	0	0.3	0.1	***	
Feed Tank Wt	Kg	decreasing	67,8	65.5	65.5	61.0	60.0	57.0	VØ	
Overflow Temp	°C	1000 - 1100	1000	1050	1082	1083	1084	1069		
Discharge Can Temp	°C	750 - 850	602	752	755	752	752	748		
Glass Scale	Kg	< 10	-	-						1.0
Alarm Condition	On/Off	off		OFF	OFF	OFF	OFF	OFF		
tir	ne hh:mm									

Reviewed and Approved: Reviewed

Date: 4/23/01

sheet \perp of $\angle 3$

		By:	020	110	1111	620	a DOW	KONO.	KOND	1572
		Date:	1/30/01	1/30/01	1/30/0/	1/30/01	1/36/01	1/30/01	1/30/01	1/30/01
		Time:	50124	1:11	2:06	3:00	14.00	5:03	06:01	7:03
DESCRIPTION	units	range						and the		
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.45	0.47	0.47	0.47	0.47	6,47	0.47	0.47
Film Cooler Air Supply	scfm	1-10 (reg OGT)	7.4	7.3	7-3	7.3	7.3	7/3	7.3	7-3
Melter Vacuum-Magnehelic	in, H2O	0.1 - 2.0	0.7	0.6	0.7	0.5	(04)	1.0	0.3	1.1
EVSΔP	in. H2O		0	0	0	0	B	0	0	0
Film Cooler ΔP	in. H2O		6.070	6.074	.062	0.082	0.086	0.094	6,129	0.098
HEME ∆P	in. H ₂ O		0.73	0,73	0.72	0.76	0.77	0.78	0.81	0.77
System ΔP	in. H2O		1,2	417	1.26	1.23	1,23	1,23	1,28	1.24
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.7 /	3.7	3,7	3.7	3.7	3-7	3.7	3.7
EVS Scrub Tank Volume	gallon	35 - 50	25.0	25	25	25	25	25	25	26
EVS Nozzle Pressure	psi	50 - 55	4855	55	55	55	55	53	55	55
EVS Scrub Solution pH	рН	> 9	14	10	9.5	4	10	10	10	9
OG Control Valve position	%dox	V	50	50	50	50	50	50	45	45
OG Control Valve mode	A or M			A	A	A	TA	M	A	A
Feed Pump (tubing) Condition			OK	0h	oh	OK	OK	OK	ok	6 K
Agitator Setting	0-10		5-	5-	1 5	5	5-,	5	5	6
Blower Cooling Flow	gpm	1 - 1.5	1.15	1.15	1.15	1,15	1,15	1,15	1-15	1.15
Feed Nozzle Temp (FNT)	°C	< 40	22	21 .	20	21	19	20	22	2.)
Off-Gas Temp (OGT)	°C	< 250	77	89	84	86	70	86	86	92
Post EVS Off-Gas Temp	°C	< 50	26	28	1 27	29	27	30	30	29
Scrub Liquid Temp (SLT)	°C	<40	18	18	17 1911	18	18	18	18	18
Heat Xer Temp	°C	< 30	15	16	15	15	15	17	17	17
Feed Pump Setting	%		15	20	19	20	20	22	21	2
Feed Pump Control Mode	A or M		A	A	A	A	A	A	A	4
Feed Pressure	psi	<1.0	0.2	0.0	0.0	0.0	00	0.0	0.1	0.3
Feed Tank Wt	Kg	decreasing	52.8	51.5	48.8	45,2	42-9	39,5	35,8	32.2
Overflow Temp	°C	1000 - 1100	1042	1050	1048	1048	1051	1051	1048	1049
Discharge Can Temp	°C	750 - 850	754	747	749	752	745	749	749	750
Glass Scale	Kg	< 10	2.82	3,19	3,66	4.63	5.36	5.77	6.65	7.43
Alarm Condition	On/Off	off	OFF	04	of	OFF	OFF	OFF	OFF	OFF
time	hh:mm			1:22	245	3:14	4508	5:15	06:11	06:12

Date: 1/30/01

sheet Z of L3

[•] Reviewed and Approved:

Data Sheet #2: Routine Status Sheet

Tast start of

20		\sim	
RS	IVI –	111	- 1

		By:		I McCacy	n	J Mc Cray	S. Mc Cre	5d	fel	sil
		Date:		1/36/01	1/20/01	1/30/01	1130101	1/30/01	1/30/01	1/30/01
		Time:	-T	9:00	1000	11:00	12:22	1311	1408	1504
DESCRIPTION	units	range				Branch Branch		TWW Section		
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)		,45	0.50	0.5	0.5	0.5	0.5	0,5
Film Cooler Air Supply	scfm	1-10 (reg OGT)		7.0	2.8	6.8	4.8	6,8	7.2	7.2
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0		0.6	0.6	0.4	0.7	2.3	0.7	1,1
EVS AP	in. H2O		-I	016	-0.195	-,0390	-0.0195	-0.195	-0.04	-0,008
Film Cooler ΔP	in. H2O		1	.09	0.90	.056	0.1210	0.102	0.148	0.141
HEME AP	in. H2O			.715	0.707	0.7	0.703	191140.719	0.785	0.785
System ΔP	in. H2O			1.18	1.17	1.0+2	1.179	1.14	1.308	1.332
EVS HX Cooling Flow	gpm	1-5 (reg SLT)		3,7	3.7	3.7	3:7	3.7	3,7	3.7
EVS Scrub Tank Volume	gallon	35 - 50		26	26	27	227	27	27	23
EVS Nozzle Pressure	psi	50 - 55	7	55	55	55	55	55	55	55
EVS Scrub Solution pH	рН	> 9		17	10	10	~10	9	11	11
OG Control Valve position	%closel			5%	35	55	55	55	66	30
OG Control Valve mode	A or M				A	-A	Α	A	Á	A
Feed Pump (tubing) Condition	145			OK	OK	81<	UK	OK	06	DK
Agitator Setting	0-10 16			5	5	5	5	5	3	5
Blower Cooling Flow	gpm	1 - 1.5		1.1	1.15	1.15	1.15	1,15	1.15	1.15
Feed Nozzle Temp (FNT)	°C	< 40		22	22	18	20	21	20	21
Off-Gas Temp (OGT)	°C	< 250			93	57	80	100	92	A 388
Post EVS Off-Gas Temp	°C	< 50		29	29	22	25	28	29	29
Scrub Liquid Temp (SLT)	°C	<40		1.8	18	18	18	18	19	19
Heat Xer Temp	°C	< 30		16	17	15	n	17	17	17
Feed Pump Setting	%			20	20	0	20	20	20	20
Feed Pump Control Mode	A or M			A	A	A	A	A	1	A
Feed Pressure	psi	<1.0		0./	0.1	0.6	1.1	0.0	ort	0.0.
Feed Tank Wt	Kg	decreasing		27.0	24.0		44.9	43.8	41.5	38.8
Overflow Temp	°C	1000 - 1100		1081	1052	1048	1036	1050	1051	1050
Discharge Can Temp	°C	750 - 850		750	752	251	749	751	749	754
Glass Scale	Kg	< 10	· I	0.24	1.07	1.83	1.84	2,24	2060	3,51
Alarm Condition	On/Off	off		eff	OFF	off.	ott	OFF	OFF	081
tir	ne hh:mm				1008	11:20	12:34	1318	1414	1510

Reviewed and Approved: Russe

4/23/6/ Date: +/36/01

sheet _3_ of _13

	7
į	٠,
_	~

		By:	SAM	DMB	sus h) Jul	1 XW	DMS	MB	M
		Date:	1/30/01	1/30/01	obtolo	1/30/01	1/30/0)	1/30/01	1/30/01	1/30/01
		Time:	15:59	16:59	12:57	1900	2024	21:06	2203	22:54
DESCRIPTION	units	range								
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.5	0.5	0.5	0.5	0,5	0.5	0.5	0.5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	7,2	7.2	7.2	7, 2	7.2	7.2	7.2	7.2
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0	9	2.0	2.0	1.5	1.4	0.7_	1.3	1.0
EVSΔP	in. H2O		,0078	0.016	6.023	1023	0. 2 23	0.0195	0.043	0-031
Film Cooler ΔP	in. H2O		.1601	0.187	0.172	,188	.995	0.863.154	0.273	0-195
НЕМЕ ДР	in. H2O		. 8203	0.79	0.801	.828	1158,	.863	0.395	0-863
System ΔP	in. H2O		1.390	1.35	1.40	1.4	1.4	1.2	1.59	1.49
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.7	3.7	3.7	3,7	3,7	3.7	3.7	3.7
EVS Scrub Tank Volume	gallon	35 - 50	29	29	29	30	30	30	30	30
EVS Nozzle Pressure	psi	50 - 55	<i>5</i> 5	22	5655	55	55	55	22	25
EVS Scrub Solution pH	ρH	> 9	10	10	SEE LOG	10	9	9	9	ю
OG Control Valve position	% close		50	54	55	56	84	49	0	0
OG Control Valve mode	A or M		A	A	4	1 A	l A	A	m	M
Feed Pump (tubing) Condition			0 K	ok	ok	OK	OK	ok	ok	ok
Agitator Setting	0-1094		S	5	5	5	5	5	े र	ς
Blower Cooling Flow	gpm	1 - 1.5	1,15	1.15	1.15	1.2	1,2	1.2	1.2	1,2
Feed Nozzle Temp (FNT)	°C	< 40	20	Zo	20	19	20	18	20	27
Off-Gas Temp (OGT)	°C	< 250	84	85	(PW 48-87	80	84	69	138	109
Post EVS Off-Gas Temp	°C	< 50	29	29	30	24	29	25	29	3)
Scrub Liquid Temp (SLT)	°C	<40	19	19	18	18	18	18	(8	16
Heat Xer Temp	°C	< 30	16	17	11	15	17	15	17	17
Feed Pump Setting	%		20	20	21	こし	70	0	20	23
Feed Pump Control Mode	A or M		A	4	A	A	l A	A	A	p.
Feed Pressure	psi	<1.0	0.0	0.0	0.0	0.0	0	0.5	0.1	0-(
Feed Tank Wt	Kg	decreasing	35.2	32.4	28-6	25.4	21.4	20.4	19.3	16.3
Overflow Temp	°C	1000 - 1100	1051	1051	1050	1050	1050	1041	1004	1050
Discharge Can Temp	°C	750 - 850	749	749	735	750	750	764	749	754
Glass Scale	Kg	< 10	4,33	4.83	5.46	5.82	6,40	8.94	8.96	0.02
Alarm Condition	On/Off	off	off'	off	off	288	off	off	off	olf
time	hh:mm	Z1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	16:11	17:12	18:03	1710	2030	21.17	2210	2302

4/23/01 Date: + /30/01

Reviewed and Approved: Lusse

sheet <u>4</u> of <u>13</u>

		Ву:	Ans 800	12/2)	800	112	WB		MJ	DLA
		Date:	1/31/20	1/31/01	1/31/01	11/3/101	1/3/6/		1 1(3/10)	1/31/01
		Time:	0013	01:10	02:07	6312	0400	7	0630	67:10
DESCRIPTION	units	range								
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.5	0.5	0.5	0.5	0.5	OIX	0.5	0.5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	7.2	7.2	7.2	7-2	7,2	NA	5.6	5.7
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0	2.0	1.4	1.4	1-4	1.6	9.4	6.8	0.9
EVS AP	in. H ₂ O		0.039	0.019	0.031	0.027	0	4.2	2.2	3.03
Film Cooler ΔP	in. H2O		0.066	6.21	0.25	0.26	0.25		-0.79	-0.86
HEME AP	in. H2O		0.765	0.836	0.875	0.875	0.863		0.65	0.69
System ΔP	in. H2O		1.23	1.48	1.56	1.56	1.52	3.77	2.6	3.26
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.7	3.7	3.7	3.6	3,65		3.6	3.6
EVS Scrub Tank Volume	gallon	35 - 50	26	26	26	31	31	1	34	35
EVS Nozzle Pressure	psi	50 - 55	55	55	55	55	55	1.5	53	55
EVS Scrub Solution pH	рH	> 9	10	18	10	9	10	31	8.5	9
OG Control Valve position	%clox	\	0	0	0	D	0	8	7	0
OG Control Valve mode	A or M		14	M	M	M	Δ		M	M
Feed Pump (tubing) Condition		1,236.75.60	OK	OK	BK	oh	selt	5	fixed	Fixed
Agitator Setting	0-10 9		7.3	5	15	5-	5		5	K
Blower Cooling Flow	gpm	1 - 1.5	1-2	12	1.2	1.2	1.2	0	1.2_	7,2
Feed Nozzle Temp (FNT)	°C	< 40	19	20	20	19	18	3	27.	20
Off-Gas Temp (OGT)	°C	< 250	49	114	98	86	46	3	74	81
Post EVS Off-Gas Temp	°C	< 50	20	31	32	33	22	릴	29	30
Scrub Liquid Temp (SLT)	°C	<40	18	18	18	20	19	13	19	19
Heat Xer Temp	°C	< 30	14	17	17	13	14		18	17
Feed Pump Setting	%		0	25	25	2.5	off		20	20
Feed Pump Control Mode	A or M		A	A	A	A	off		A	A
Feed Pressure	psi	<1.0	0.7	0.2	0.6	2.2	2.8		0.1	0.2
Feed Tank Wt	Kg	decreasing	62-4	61.5	56.9	56.4	50,0		41.3	39.7
Overflow Temp	°C	1000 - 1100	1050	1051	1051	1049	1056		1050	1051
Discharge Can Temp	°C	750 - 850	749	750	742	754	787		749	749
Glass Scale	Kg	< 10	0	0	0.43	0,89	2,23		4.03	3.79
Alarm Condition	On/Off	off	OFF	OFF	OFF	0\$	off	1	o H	off
	hh:mm		00:21	01:20	02:17	322	0 409	100	0641	0721

Reviewed and Approved: La Pola

Date: 4/23/6/

sheet <u>5</u> of <u>13</u>

Data Sheet #2: Routine Status Sheet

		By:	WCB	54	54	54	29	JAM	54	Jan
		Date:	1/31/01	1/31/01	1/3//01	1/31/01	1/31/01	1/31/01	1/31/01	1/31/01
하고 하루를 다 하는데 하는데 하게 되다.		Time:	0808	0905	1008	10:53	1231	13:00	1404	19:51
DESCRIPTION	units	range								
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	5	0.5	0.5	0.5	0,5	0.5	0.5	0.5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	5.9	5.8	5.9	5,8	5.8	5.3	3.8	2.8
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0	1,2	1,2	0.8	0.9	0.8	0.7	0.5	0.7
EVS AP	in. H2O		204	1.012.0g	1,66	1.31	1,99	1.61	1,48	1,75
Film Cooler ΔP	in. H2O		0.93	1.01	0,64	.7460	0.91	0.48	0.21	0.547
HEME AP	in. H2O		0.79	0.79	0.82	.93	0.76	,797	0,84	0.852
System ΔP	in. H2O		1.87	1.95	200	1,96	6,93	2.10	2,23	2.27
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3,5	3.6	3.5	3.6	3,6	3.7	3.6	3.6
EVS Scrub Tank Volume	gallon	35 - 50	37	37	37	37	37	37	37	37
EVS Nozzle Pressure	psi	50 - 55	55,2	55	<i>45</i> ×	55	5.5	55	55	22
EVS Scrub Solution pH	pН	> 9	10	10	9	10	10	10	9	9
OG Control Valve position	% dex		100/0004	100	100	100	100	100	100	100
OG Control Valve mode	A or M		M	M	M	M	M	M	M	M
Feed Pump (tubing) Condition			OK	04	OK	OK	OK	OK	OK	0 /<
Agitator Setting	0-10		55	55	5,5	5,5	5.5	5,5	515	5.5
Blower Cooling Flow	gpm	1 - 1.5	1.2	1,2	1.2	1,2	1,2	1,2	1.2	1.2
Feed Nozzle Temp (FNT)	°C	< 40	20	19	20	ŻO	22	20	20	19
Off-Gas Temp (OGT)	°C	< 250	102	98	93	91	112	114	105	107
Post EVS Off-Gas Temp	°C	< 50	31	30	31	30	18	30	32	32
Scrub Liquid Temp (SLT)	°C	<40	20	20	20	20	10	19	20	20
Heat Xer Temp	°C	< 30	18	18	17	17	18	17	18	18
Feed Pump Setting	%		30	20	20	20	20	20	20	(22)
Feed Pump Control Mode	A or M		A	4	A	A	A	A	A	A
Feed Pressure	psi	<1.0	0.1	0.1	0.1	0,2	0,1	0.2	0.7	0,1
Feed Tank Wt	Kg	decreasing	36.5	31.0	27.5	14.5	21.5	20.0	16,5	13,4
Overflow Temp	°C	1000 - 1100	1050	1051	1050	1050	1050	1051	1050	1051
Discharge Can Temp	°C	750 - 850	750	750	753	749	749	750	750	750
Glass Scale	Kg	< 10	3,87	4.50	5.53	6.10	0.66	6.87	7.76	8.10
Alarm Condition	On/Off	off	off	off	OFF	OFF	off	off	OFF	off
in the state of th	me hh:mm		0815	0917	1016	1103	1236	13:09	1409	

Reviewed and Approved: Quelle

Date: 4/23/01

sheet **6** of **3**

		Ву:	JAM	nrs	125	urs	ast	and .	ON	DWB
		Date:	1/31/01	1/31/01	1/31/01	1/3/01	1/31/01	1/31/01	1/31/00	1/31/01
		Time:	16:00	1700	1759	1900	2000	2104	2200	2313
DESCRIPTION	units	range		nrs						As a second
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	5.7	5.7	5-7	5.7	5.7	5.7	5.7	\$ 7
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0	0,9	41.2	1.3	1.2	1.3	1.3	1.2	1.4
EVS AP	in. H2O		2.09	0,85	0.32	0,29	0.40	0.43	.50	0.36
Film Cooler ΔP	in. H2O		0.977	-0.14	-0.32	-0.37	-0.33	0.35	. 38	-29-92
HEME AP	in. H2O		.793	0.86	0,92	0,90	0.94	0.91	.94	,97
System ΔP	in. H2O		2,30	1.7	1,7	1.68	1.81	01.81	2.0	1.84
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.6	3.6	3,6	3.6	3.6	3.6	36	3.60
EVS Scrub Tank Volume	gallon	35 - 50	37	37	36	36	37	37	37	3 <i>8</i>
EVS Nozzle Pressure	psi	50 - 55	55	55.5	55	55	55	55	55	55
EVS Scrub Solution pH	pН	> 9	9	9	~91/2	9.5	12	12	10	10
OG Control Valve position	%clox	1	100	100	100	100	100	100	100	100
OG Control Valve mode	A or M		M	m	m	m	M	M	M	M
Feed Pump (tubing) Condition			OK	OK	ak	de	OK	OK	OK	ok
Agitator Setting	δ-10 %		5,2	5.2	5,7	5.2	5.2	5.2	4	4
Blower Cooling Flow	gpm	1 - 1.5	1,2	1.2	1.3	1,2	1.2	1.2	1.2	1.2
Feed Nozzle Temp (FNT)	°C	< 40	20	19	18	19	18	19	18	B
Off-Gas Temp (OGT)	°C	< 250	121	110	103	98	97	97	98	76
Post EVS Off-Gas Temp	°C	< 50	32	32	32	32	32	32	32	22
Scrub Liquid Temp (SLT)	°C	<40	19	20	75	20	20	20	20	20
Heat Xer Temp	°C	< 30	18	18	18	18	18	18	18	15
Feed Pump Setting	%		22	22	22	22	22	22	22	0
Feed Pump Control Mode	A or M		A	A	A	A	A	A	A	A ,
Feed Pressure	psi	<1.0	0.1	0.2	0.3	0.3	0.1	0.3	0.1	0.4
Feed Tank Wt	Kg	decreasing	35.4	32,9	29.0	25.9	22.5	18.5	15.0	8.8
Overflow Temp	°C	1000 - 1100	1049	1,050	1049	1050	1048	1051	1051	1050
Discharge Can Temp	°C	750 - 850	681	754	749	748	743	749	751	731
Glass Scale	Kg	< 10	-0-0.0		1.02				_	5.11
Alarm Condition	On/Off	off	UH	044	ofe	off	OFF	OFF	OFF	ORF
tin	ne hh:mm		16:11	1509	1815	1906	2006	2110	2208	2323

Reviewed and Approved: Au Beland

Date: 4/23/6/

sheet $\overline{2}$ of $\underline{3}$

		By:	TWA	111)	SNO	1501	2000)	uk,B	128	15000
		Date:	2/1/0)	12/11/	2/1/01	2/1/01	2/1/01	3/1/01	21/01	2/401
		Time:	0:00	0100	2:02	3:27	8:11	0500	0604	7:63
DESCRIPTION	units	range		100		-			2-34 (5 K, 19) K	
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.5	0.5	0.5	0,5	0-5	0.5	0,5	0.5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	5,8	5.8	5.7	5.7	5.8	5.8	5.8	6.4
Melter Vacuum-Magnehelic	in, H2O	0.1 - 2.0	1.4	1.4	0.9	1.2	2.5	1,2	1,5	1.2
EVS AP	in, H2O		0.43	6,42	0.68	0.69	0.82	0.92	1.01	0,693
Film Cooler ΔP	in, H2O		-0.32	-0.31	-0.40	-0.44	-0.48	-0.48	-057	-0.86
HEME AP	in. H ₂ O		0.94	0.42	0.98	0.99	0.99	1001	1,66	1.05
System ΔP	in. H ₂ O	James - Santa	1.83	1.76	2.18	2,27	2,24	2,92	3.70	2.63
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.7	3.7	27	3.7	3.7	3.7	3.7	3.6
EVS Scrub Tank Volume	gallon	35 - 50	38	38	39	79	90	40	3.7	40
EVS Nozzle Pressure	psi	50 - 55	55	55	55	35	55	55	55	55
EVS Scrub Solution pH	pH	> 9	9	9	9	9	9	12	12	10
OG Control Valve position	%close		0	6	0	0	0	0	0	0
OG Control Valve mode	A or M		M	141	14	M	14	M	M	M
Feed Pump (tubing) Condition		E Nava al	OK		OK	OK	OK	OK	OK	OK
Agitator Setting	0-10%		6	1 1183	6	6	6	6	6	6
Blower Cooling Flow	gpm	1 - 1.5	1.2	1.2	1.2	12	12	1.2	1.2	1.2
Feed Nozzle Temp (FNT)	°C	< 40	19	18	18	18	18	17	18	20
Off-Gas Temp (OGT)	"C	< 250	79	76	120	100	102	81	101	116
Post EVS Off-Gas Temp	°C	< 50	21	20	32	33	32	24	34	32
Scrub Liquid Temp (SLT)	°C	<40	18	17	20	20	21	21	20	20
Heat Xer Temp	°C	< 30	15	15	18	18	18	16	19	18
Feed Pump Setting	%		0	0	25	25	25	25	25	25
Feed Pump Control Mode	A or M		A	A	A	A	A	A	A	A
Feed Pressure	psi	<1.0	0.4	0.5	0.2	0.3	6,0	010 .	0.0	0.0
Feed Tank Wt	Kg	decreasing	42.2	42.4	38.3	32.7	229	26.3	225	20,9
Overflow Temp	°C	1000 - 1100	1050	1050	1051	1051	1051	1055	1050	1050
Discharge Can Temp	°C	750 - 850	752	750	751	150	746	750	750	750
Glass Scale	Kg	< 10	5.05	5.11	5.16	6.04	6.70	7,52	750	8.47
Alarm Condition	On/Off	off	OFF	0并	088	off	OFF	Off	del	084
1	ime hh:mm		0:07	0189	2110	3:34	04:18	0506	0610	07:14

Date: 2(1)

sheet 8 of 2

Data Sheet #2: Routine Status Sheet

en Zed batch Just Started

	2 T 1 T 1 T 1	By: Assec	Boul	Jan	JAM	119	JAM	JAM	Bour	Jan
		Date:	2-1-01	2/1/01	2/1/01	ZKI	2/1/01	2/1/04	2-1-01	2/1/01
		Time:	08:25	09:04	10:22	110	12:12	13:12	13:56	1509
DESCRIPTION	units	range				1000		1		
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.5	0.5	0.5	0.5	0.5	0.5	0,5	0,5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	6.5	6.5	6.5	6.6	6.4	6.3	6.2	6.2
Melter Vacuum-Magnehelic	in. H ₂ O	0.1 - 2.0	1.1	101	1.4	1.9-11.0	1,0	.7	0.5	1,2
EVS AP	in. H2O		0.68	0.66	0.62	0.42	0.53	-57	0.64	0.69
Film Cooler ΔP	in. H2O		0.51	0.543	0.56	6.30	0.61	0.52	0.61	0.801
НЕМЕ ДР	in. H2O		1.06	1.11	1.09	1.07	6.945	1.04	1.03	1,07
System ΔP	in, H2O		2.7	2.64	2.63	2.14	2.30	2.54	2.63	2.93
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.7	3.6	3.6	3.6	3.7	3.6	3.7	3.6
EVS Scrub Tank Volume	gallon	35 - 50	40	41	142	41%	411/2	N/440	42	42
EVS Nozzle Pressure	psi	50 - 55	45	55	55	55	55	55	55	55
EVS Scrub Solution pH	pН	> 9	10.5	10	10	10	10	9,5	10.5	lo lo
OG Control Valve position	% the close		07	100	100	070 closed	100	100	100	100
OG Control Valve mode	A or M		N.	n	M	M	n	n	M	n
Feed Pump (tubing) Condition			Good	OK	OK	changen	OK	0(OK	ole
Agitator Setting	0-10#		4	4	4	Peec	4,5	4.5	4.5	4.5
Blower Cooling Flow	gpm	1 - 1.5	1.2	1.2	1.2	1.2	1,2	1.2	1.2	1.2
Feed Nozzle Temp (FNT)	°C	< 40	20	20	18	20	20	19	18	18
Off-Gas Temp (OGT)	°C	< 250	100	98	99	55	91	95	91	90
Post EVS Off-Gas Temp	°C	< 50	32	33	32	21	29	34	34	33
Scrub Liquid Temp (SLT)	°C	<40	19	20	21	20	18	26	2/	22
Heat Xer Temp	°C	< 30	18	18	19	16	18	19	20	20
Feed Pump Setting	%		25%	25	20	8	20	25	25	23
Feed Pump Control Mode	A or M		A	4	À	M	A	A	4	A
Feed Pressure	psi	<1.0	0.2	0,1	0.2	0.7	0.4	0,2	0.4	0
Feed Tank Wt	Kg	decreasing	17.2	15.2	10.9	add on feed	45.4	41.3	39.0	33.3
Overflow Temp	°C	1000 - 1100	1050	1050	1050	1050	1051	1050	1050	1050
Discharge Can Temp	°C	750 - 850	754	754	747	754	751	749	749	749
Glass Scale	Kg	< 10	0.07	0.28	0.70	0.03	1.49	2,00	2.80	3.09
Alarm Condition	On/Off	off	OFE	off	o ff	430	off.	OFF	OFF	off
tir	ne hh:mm		08:52		10:28	1109	12:21	13:22	14:07	15:12

Reviewed and Approved: Lu July

Date: 4/23/01

sheet 9 of 23

RSM-01-1		By:	(A)	19	n-		T (fw).		an-	(A)
현대 내가 하는 사람이 얼마나 하는데 하는데		Date:	2/1/01	2/1/01	2/1/01	12/1/01	2/1/01	12/1/01	2/1/01	2/1/61
배교로 보내하고 말았다. 그리는 얼굴하고 그 이상		Time:	1606	1710	1805	145%	1955	2101	2200	2259
DESCRIPTION	units	range	1000	11110	1005	1000	1100	(7,9)	00 CU	12001
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	.5	0.5	0.5	0.5	(2.5	0.5	0.5	0.5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	1.25	6.4	6.3	62	6.2	6.2	6.2	60
Melter Vacuum-Magnehelic	in. H ₂ O	0.1 - 2.0	1.2	1.8	1.9	1.8	1,9	1.5	1.4	1.5
EVS AP	in. H2O		0,7	0.6		0.6	.55	,65	0.6	0.6
Film Cooler ΔP	in. H2O		0.9	0.7	11	1.3	1.10	2,0	2.1	0.7
HEME AP	in. H2O		1.1	10	.98	.99	Dio	1,0	1.0	Til
System ΔP	in. H2O		3,2	2.7	3.3	3.3	F-673.0		4.2	2.3
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3,7	3.6	3.6	3.6	3.6	3.6	3.6	3.6
EVS Scrub Tank Volume	gallon	35 - 50	43	43	43	43	44	44	44	44
EVS Nozzle Pressure	psi	50 - 55	55	55	155	35	5.5	55	55	55
EVS Scrub Solution pH	Hq	> 9	11	11	11	10	10	10	10	10
OG Control Valve position	pen%des		Manual	100 %	100	Work	100 open	100	100	100
OG Control Valve mode	A or M		M	Menual	M	m '	m	m	A	m
Feed Pump (tubing) Condition			OK	OK	Oll	OV	OK	05	OUL	OX
Agitator Setting	0-10 98		4.5	4.5	4.5	4.5	4.5	4.5	4.5	1.3
Blower Cooling Flow	gpm	1 - 1.5	1.2	1.2	1.3	ドこ	1,2	1.2	1.2	102
Feed Nozzle Temp (FNT)	°C	< 40	18	18	20	21	20	19	18	18
Off-Gas Temp (OGT)	°C	< 250	91	66	48	97	86	95	91	121
Post EVS Off-Gas Temp	°C	< 50	34	23	30	32	31	33	32	33
Scrub Liquid Temp (SLT)	°C	<40	22	21	20	20	ZO	21	21	7.5
Heat Xer Temp	°C	< 30	20	17	18	18	18	18	18	18
Feed Pump Setting	%		23	0.0	20.0	zo	20	21	21	21
Feed Pump Control Mode	A or M		LA	A	A	A	1 A	A	A	A
Feed Pressure	psi	<1.0	0	0.6		0	1.6.1	0.2	0.1	0.1
Feed Tank Wt	Kg	decreasing	29.5	27.5	27.0	24.5	22.0	17.7	14.5	16.9
Overflow Temp	°C	1000 - 1100	1050	1050	1051	1051	1050	1051	1050	1050
Discharge Can Temp	°C	750 - 850	750	747	749	749	743	750	747	749
Glass Scale	Kg	< 10	3.96	4.65	4.61	4,73	5.26	6,07	6-81	7.40
Alarm Condition	On/Off	off	off	off	off	off	off	off	off	off
time	hh:mm	1		1714	14/11	1903	2003	2107	2304	2304

Reviewed and Approved: Russe

		By:	white	1110	any	MJ	w	1113	1229	11.
		Date:	2/2/01	2/2/1	2/2/01	2/2/1	2/2/01	2/2/1	2/2/4	2/2/1
		Time:	00:29	0102	01:58	0303	4:02	6506	0602	6717
DESCRIPTION	units	range								
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0,5	0.5	0,5	0.5	0.5	0.5	0.5	0.5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	6.2	6.2	6.2	6.0	6-8	6.0	6.0	5.9
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0	1.4	1-00	1.3	1.1	1.3	1,2	1.3	I-D
EVS ΔP	in. H2O		0.339	0.035	0.383	0.62	0,609	0.62	0.65	0.75
Film Cooler ΔP	in, H2O		0.039	0.35	0.047	0.161	0-156	0.21	0,219	0.25
HEME AP	in. H2O		0.949	0.95	0,992	1.05	1.06	1.03	1-04	1.05
System ΔP	in. H2O		1710	1.7	1.86	2.25	2.26	2.222	2.80	2.46
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	26	86.6	3.6	3,5	3.4	3-6	3.6	3.6
EVS Scrub Tank Volume	gallon	35 - 50	45	45	45	45	45	46	42	41
EVS Nozzle Pressure	psi	50 - 55	53	55	55	55	55	58	55	5
EVS Scrub Solution pH	рН	> 9	9	9.5	g	9	9	9	9	প
OG Control Valve position	% close		ø	0	0	0	0	0	0	ව
OG Control Valve mode	A or M		m	M	79	M	M	M	m	M
Feed Pump (tubing) Condition	4. 4.3.4.24		OK	oh	OK		ek	- Sh	Adjusted	6h
Agitator Setting	0-101		3	6	6	6	6	6	6	6
Blower Cooling Flow	gpm	1 - 1.5	22	1.7	1,2	1.2	212	1.2	1.2	1.2
Feed Nozzle Temp (FNT)	°C	< 40	20	20	20	19	18	18	18	12
Off-Gas Temp (OGT)	°C	< 250	63	63	77	124	113	/08	104	108
Post EVS Off-Gas Temp	°C	< 50	21	20	22	35	34	34	34	34
Scrub Liquid Temp (SLT)	°C	<40	19	18	18	22	21	7.7	22	22
Heat Xer Temp	°C	< 30	15	15	16	19	20	20	ZO	20
Feed Pump Setting	%		0.0	0.0	0.00	25	25	25	25	25
Feed Pump Control Mode	A or M		A	A	A	A	A	A	4	A
Feed Pressure	psi	<1.0	0.7	6,7	0-1	0,0	0.1	0.0	0.2	0.1
Feed Tank Wt	Kg	decreasing	11 N 11 11	43.3	422	38.3	33.6	29.3	25.0	20.0
Overflow Temp	°C	1000 - 1100	1050	16.50.	1051	1051	1048	1050	1051	1051
Discharge Can Temp	°C	750 - 850	750	750	750	752	751	749	750	751
Glass Scale	Kg	< 10	ブフ3	7.75	7-79	8.31	8.83	9,13	0.97	2.00
Alarm Condition	On/Off	off	OKK	OCF	OFF	off	OFF	o₩	OFF	0
tir	ne hh:mm		0:36	01(7	02:04	0311	4:07	05/2	0614	0725

Reviewed and Approved: Reviewed and Approved:

그리 없는데요 그 남이 잘 하는 것은 그런 어떤		By:	UNI	119	1/19	JAM	100	Bene	JAM	JAM
		Date:	2/2/01	212/1	2/2/1	2/2/1	1 2/21.	2-2-01	2/2/1	2/2/1
		Time:	68:14	0010	1006	11:13	1206	1300	19:05	16:00
DESCRIPTION	units	range								7.534.67
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0-5
Film Cooler Air Supply	scfm	1-10 (reg OGT)	5.9	6.0	.6.0	6.6	5.8	58	5.8	5'-8
Melter Vacuum-Magnehelic	in, H2O	0.1 - 2.0	1.0	1.5	1.6	-594 1.6	1.1	1.5	1.0	1.1
EVS ΔP	in. H2O		0-832	0.578	0.60	-+9-1.59	0.97	0.93	0.93	1.16
Film Cooler ΔP	in. H2O		0.238	0.175	0.20	.963.81	0.31	0.30	0.31	0.402
HEME AP	in. H2O		1.05	1.0	0.98	.965	1.03	1.04	1.05	1.02
System ΔP	in. H2O		2.53	2.12	217	2.15	2.67	2.62	2.67	2.97
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.6	3.6	3.6	3.6	3.6	3.5	3.5	3.5
EVS Scrub Tank Volume	gallon	35 - 50	45	47	47	47	47.5	48	48	49
EVS Nozzle Pressure	psi	50 - 55	55	55	55	55	55	66	55	22
EVS Scrub Solution pH	pН	> 9	1	9	G	9	9.	8.5	9	9
OG Control Valve position	%closel		0	0	0	0	Ø	0	0	0
OG Control Valve mode	AorM		M	M	111	M	m	M	M	m
Feed Pump (tubing) Condition			OK	adding	agitutix	OK	oh	Gal	OK	o ×
Agitator Setting	0-10 14		6	fees	fied 6		5	5	15	S .
Blower Cooling Flow	gpm	1 - 1.5	ルセ	1.7	1.2	1.2	1.1	1.2	1,2	1,2
Feed Nozzle Temp (FNT)	°C	< 40	19	20	20	20	20	18	18	18
Off-Gas Temp (OGT)	°C	< 250	109	76	8(81	135	119	114	112 .
Post EVS Off-Gas Temp	°C	< 50	36	23	22	೭೭	36	36	36	37
Scrub Liquid Temp (SLT)	°C	<40	22	2(<u></u> ኢፀ	18	20	22	22	23
Heat Xer Temp	°C	< 30	20	17	16	16	20	20	20	21
Feed Pump Setting	%		25	0	٥	0	30	25	27.5	27.5
Feed Pump Control Mode	A or M		A	4	A	A	A	1	A	A
Feed Pressure	psi	<1.0	0.1	0,7	0,6	0.6	0.4	0.4	0.1	0.3
Feed Tank Wt	Kg	decreasing	15.9		47.9	55-1	45.8	41.0	37.0	27.9
Overflow Temp	°C	1000 - 1100	1051	1050	1051	1050	1050	1050	1051	1050
Discharge Can Temp	°C	750 - 850	756	747	749	750	751	749	749	750
Glass Scale	Kg	< 10	2.81	3,45	3,50	#+203.5	3.49	4.29	5.06	6.97
Alarm Condition	On/Off	off	OPP	off	a H		σĤ	OFF	off	041
tir	ne hh:mm		88:20	9:15	(015	11:20	1212	1316	14-11	18:05

Reviewed and Approved:

		By:	0	AN	XW.	1960				1
		Date:	2/2/01	10/2/2	10/2/01	12/2/05				
김, 아이에 어깨움을 했다. 그 남편		Time:	1703	1805	1901	2003				
DESCRIPTION	units	range	N. 17.14.	Phas Wile.			1,250			1
Feed Nozzle Cooling Flow	gpm	.5 - 1(reg FNT)	0.47	15	0.5	6.5				
Film Cooler Air Supply	scfm	1-10 (reg OGT)	5.9	5.8	5.8	5.8			1000	
Melter Vacuum-Magnehelic	in. H2O	0.1 - 2.0	1.5	1.75	1.75	1.6				
EVSΔP	in. H2O		1.07	LZ.	14	1,3	1.00		74.	Jan Com
Film Cooler ΔP	in. H2O		0.4	15	0.5	0.6	A 444			
HEME AP	in. H2O		1.04	2910	1.0	10				
System ΔP	in. H2O		2,95	2.9	2.9	3.3	1 14 J. 18 3 .			They seem
EVS HX Cooling Flow	gpm	1-5 (reg SLT)	3.5	3.5	316	3.6				
EVS Scrub Tank Volume	gallon	35 - 50	50	50	51	51				
EVS Nozzle Pressure	psi	50 - 55	55	55	55	55				
EVS Scrub Solution pH	pН	> 9	10	9	9	9				
OG Control Valve position	%close		0	0	0	O	4.4.2.8%的		1.00	S1.84
OG Control Valve mode	A or M		m	m	m	7				4 3/4/4
Feed Pump (tubing) Condition			ck	OK	OK	OK				V 1
Agitator Setting	0-10 96		5	- 5	5	3				State .
Blower Cooling Flow	gpm	1 - 1.5	1.2	1.2).Z	15				
Feed Nozzle Temp (FNT)	°C	< 40	17	14	18	18				
Off-Gas Temp (OGT)	°C	< 250	472	115	106	96				
Post EVS Off-Gas Temp	°C	< 50	37	35	36	35				
Scrub Liquid Temp (SLT)	°C	<40	23	ZZ	22	22		1 1 1 1 1 1 1 1 1		
Heat Xer Temp	°C	< 30	21	20	20	20				
Feed Pump Setting	%		27.5	25.0	25	25				1 sq. 158.5
Feed Pump Control Mode	A or M		A	A	A	A				la de la composition della com
Feed Pressure	psi	<1.0	0.3	0.0	0.1	0.1				
Feed Tank Wt	Kg	decreasing	22.5	18.8	14.7	10.7				1000
Overflow Temp	°C	1000 - 1100	1051	1051	1051	1045				
Discharge Can Temp	°C	750 - 850	750	747	750	£945				
Glass Scale	Kg	< 10	7.58	8.61	8.42	0.5				1000
Alarm Condition	On/Off	off	04	086	off	off	440,44			
tir	me hh:mm		17:11	1413	1906	2007	1000			

Date: <u>4/23/0</u>/

sheet <u>/3</u> of <u>/3</u>

Off Gas Sampling Data Sheets

Off-Gas Sampling Data Sheet

Date: Time: units	1/30/01	150						
	リフェフ					11.0		1
units	1423							
					-			
The state of the		and the second		-				
ppm	1054	1033	1073	1065	955			
ppm	0	0	· ·	0	G			
ppm	44.700	45,000	114.200					-
ppm								++
	740755							
	190							
								
								
	63.2	0			124			
ppitt								
	1200	1000						
nom								
					99			1 1 1 1 1 1 1
VOILS	1.15	1.94	1.8839	0.4199	3.328			
0/.EC	1.00	/						
						5 1 1 5 15		
								A Control of
								1.00
					4.0			
								141.1
sccm	106.4	106.4	106.4	106.4	102-112			
	/ 63							
					1.98			
		1.99				1.7.		
		2.28						1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
N/A	4.02	4.02	4.02	4.02	4.02	1, 111		
10.1		<u>. 1,1, • 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,</u>						
psig								
				Arrive Land	4. 4. 4.	2011		
		1.00				100		- E - E - E
				5				
				2.12.1				
								10000
psig								
psig					" "			
	2 4 5							
value	8	16	6.1	-1.6			The second	
value	4	4	ч					1
psig	4.3	4.3						
psig	80	8.0						
psig	4.0	41.0						
psig	1.7	111		-7.				1 1 2
	ppm	ppm	ppm	ppm	ppm	PPM	ppm	Depth 168,000 168,000 168,000 168,500 168,500 168,00

^{*}Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter # Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

Reviewed and Approved:

RSM-01-1

	Ву:	(mg)		1/1	well	1500	WOB	1000	
	Date:	1-31-11	1/3/101	1131101	113161	1/34/81	1/3/101	1/31/21	
gradient of the second	Time:	0027	dit	0217	0300	03:55	0637	6722	
DESCRIPTION	units	(notfeeding)	(inot stouted feeder)				-	T
as Chromatograph		0,		7					1
He	ppm	1168	199	984	969	987	1385	1097	1
H ₂	ppm	8.	Ö	o'	0	0	68	0	1
O ₂	ppm	51,293	42933	42457	41791	42,572	66505	43,759	
N ₂	ppm	192,108	162,246	160,392	158000	160,661	249558	165,362	_
NO	ppm	0	-1	-1	-1	21,661	271050	-5	
CO	ppm	0	356	328	368	181	0	297	-\/
CO ₂	ppm	1167	1378	1453	1544	1262	378	1033	-11
N ₂ O	ppm	0		224	239	240		1/2	-+
NOv.	ppm	0	195	664	a.51	270	106	116	—₩
Ox Analyzer Computer	DOI:								- 1 -
Time		86:33			6301	03:56	0637		- /\
NOx	ppm	0.94361	125	123	133		.68	87522	$-\mu$
NO.	ppm	0.92414	120	163	118-	207		0.6 6	-+
NOx Voltage	Volts -	0.43716	9.99	2.5	9, 5	2.37	30	0.628	/-\
Ox Instrument	VOIIS :	0.73 ***	1.77	213	<i>3</i> . ·	2.31	-50	DILIE	$-\!$
Analog Reading	%FS	0	46	49	48	35	0	0	$-\!$
Range selector	value	A 1	Anto	Auto	auto		auto		$-\!$
Mode selector	value	N. 0. № 7. > 4	Nox	NOK	Nox	Auto	NOX	ante	+
Sample Pressure	psig	827.74	4	Nu	10074	13 ×	1001	NEX	
Sample Pressure Sample bypass flow	sccm	7-7-7	6	6		/	1 3	i	
Ozone Pressure	psig	30	30	30	30	30	30	30	+-
Sierra Mass Flow: Flow#2	sccm	100 11	1064 steady	166.4	106.4	106	200 Flad		
MKS Mass Flow	Secim	4	TOTAL STOCK	1002		1,00	900 TWIL	3 200 ming	
Ar Carrier, Chan-1	lpm	1.98	1,48	1,98	(198	138	1.98	1.98	+
He Tracer, Chan-2	Ipm	1.99	1,99	1,99	1,99	299	1.59	1.49	+
Total Sample , Chan-3	lpm	2.28	2.18	2.28	2,28	7.78	5.38	228	
N/A, Chan-4	N/A		~	AV		2,00		- C	+
Sample Pump*	1000	2							
Vac Gauge	cm/Hg	1.5	1.5	115	45	15	8	U	
Pres Gauge	psig	10	16.2	10.2	710,2	7	9	4	
Sas Cylinders Tank Pres*	وقعالنا				7,	 			,
O ₂	psig	6521500,000	650	650	640	400	575	510	
Ar GC	psig	175	2 500	2500	2500	175	3450	170	
Ar Sweep #1	psig	550	500	500	200	500	300	500	
Ar Sweep #2	psig	1300	(300	1280	1200	1200	1000	950	-
He GC	psig	1650	1650	1650	1640	1640	1630	1650	
He Tracer #1	psig	2260	1260	2260	2580	2270	2360	2240	
He Tracer #2	psig	1550	1530	1500	1500	1450	1300	1250	
id Analyzer (in Hood)	23 4 3	1750	الادرا	1370	1-00	1,7,0	1300	1230	
Conc. (multi-digit display)	value	-1.7	varies 8-12	VATIES 9-13	13-24	- 7	6+10	5-10	
Range (single digit display)	value	4	YM 103 0 12	VILTIVO 4- 15	12754		10 710	110	
Pump Outlet Pres	psig	4.3	4.3	4.3	4,2	4.2	4.2	42	
Air Pres (reg next to pump)	psig		2			8		7-	
Smple Pres, (Internal reg)	psig	8		<u> </u>	4.0	2	8	0	
Fuel Pres, (internal reg)	psig	24	24	24	23.5	24	24	24	
	e hh:mm	DA!44	6132		0309 ~		0639	0730	
*Located on floor between the				422		84:01	GC -	0/20	

Reviewed and Approved: Whole

Multiple tanks (Ar Sweep #s 182 and He Tracer #s 1,2) can be switched by manual valving if need be.

(220 on GC screen)

Approved:

Date: 4/23/01

Off-Gas Sampling Data Sheet

	Ву:	RWN	nr.s	Jan	KWA	RUS	JMG	nrs	INPS.
	Date:	1/31/01	Jan 31 201	1131101	1/3/101	1/3/101	1/31/01	1/31/01	1/31/01
DECODIDATION	Time:	0935	1300	14206	1500	1600	17:08	1800	1926
DESCRIPTION	units	Filter	ļ					1	
Sas Chromatograph		pluggeds	1336	72.0					
He	ppm	1348.8	1308	1298	1225.5	1254	1232	4225	1715
H ₂	ppm	0	0	0	0	0	0	0	0
O ₂	ppm	41304	49,000	48534	46460	47920	46324	46,112	47,400
N ₂	ppm	156240	187,000	183200	179118	178,091	175,032	174,183	180,000
NO	ppm	-1	7	-1/1	1 37	1 - P	~ 1	-/187	-1
CO	ppm	39.92	286	368	349	327	299	250	250
CO ₂	ppm	414.6	1,320	1318	1294.7	1467	1316	1,308	1/125
N ₂ O	ppm	119 97	148	150	76.6	165	195	195	1435
<u>←NO</u> *~	ppm	1	1.2	730	1014	* * /	7.73	177	22/
Ox Analyzer Computer		177.55							
Time	0	0939	1300	14-107	1500	1602	1709	1800	1928
NOx	ppm	2.5	111	111	119	122	123	110	
NO	ppm	24	109	109	117	114	121	1/09	121
NOx Voltage	Volts	1.28	10.0	2.24	2,40	2.47	2.21	2,37	2.48
NOx Instrument		1	100		2,40		4.21	2.32	1,48
Analog Reading	%FS	10%	110	112	50	بران	43	110	119
Range selector	value	NOX	auto	auto	Auto	AUTO	Auto	auto	auto
Mode selector	value	AUTO	Nox	NO	Nox	NOX	NO	0000 0000	NOX
Sample Pressure	psig	u	4.0	4,3	4	NOX	9	4.6	
Sample bypass flow	sccm	14.	5	4-8	1	3	5	7.0	4.0
Ozone Pressure	psig	30	30	30	30	30	30	30	2
Sierra Mass Flow: Flow#2	sccm	100	107	107.2	107.2	1004	106.4		106
MKS Mass Flow				70 7.2	10/12	10017	706.7	106	100
Ar Carrier, Chan-1	lpm	1,98	7.98	1,98	1.98	497	1,98	1 00	1.92
He Tracer, Chan-2	lpm	3,99	1.99	199	1,99	1199	1.99	1,99	1 360
Total Sample . Chan-3	lpm	2,28	2.31	2,32	7,32	7.37	2.32	2,32	7,79
N/A, Chan-4	N/A	~			446	1.32	×15×	a,52	2,32
Sample Pump*	10000	~~~							
Vac Gauge	"Hg	12		$\overline{}$	RENT 1	7	7	4	4
Pres Gauge	psig	5	11	- 77	12	17	10	18	
Gas Cylinders Tank Pres#		\sim	1800			<i> -</i>	70	-/0	(Ò
02	psig	400	1800	1300	1800	244	1800	.000	1800
Ar GC	psig	2500	3500	2500	2500	1790		1800	1800
Ar Sweep #1	psig	400	2700	2700	2700	2500	2500	2500	2500
Ar Sweep #2	psig	900		770	950	2700	2700	2650	2650
He GC	psig	1600	1880	1650		£ 100	700	75°0 7600	500
He Tracer #1	psig	2300	2 300	2260	2300	2200160		1600	1650
He Tracer #2	psig	7000	1050	1020		2300	2300	2300	2250
id Analyzer (in Hood)	paig	3	1030	1020	1000	900	800	701	700
	value	7) 1	9			70 TO			
Conc (multi-digit dienlay)		K	//	4	1,4	3.8	8.5	16	18
Conc. (multi-digit display)	value				4	1 4	4	///	ĬL.
Range (single digit display)	value	4	11/10	77	11/2	112		7, 6	
Range (single digit display) Pump Outlet Pres	psig	4.2	44	4.4	4.2	4.2	4.2	4.2	44
Range (single digit display) Pump Outlet Pres Air Pres (reg next to pump)	psig psig	4.2	8.6	7,8	7.9	7,9	7.9		
Range (single digit display) Pump Outlet Pres	psig	4.2		4.4	4.2			4.1 6.0 4 24	44

*Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter # Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

Reviewed and Approved: Swisse

Off-Gas Sampling Data Sheet

	By:	148	ans	an	M	was	3	1 2 2 2 3 3 3 3 3	1 1
	Date:	1-31-01	1/31	1/3/101	1/31/01	2/0//01	1		
	Time:	2008	2108	2215	2317	1009	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DESCRIPTION	units						1		1 1 1 1 1 1 1
Gas Chromatograph					The State Williams		1	3.	
He	ppm	1475	1435	1207	13/7	1390	\		
H ₂	ppm	0	0	0	0	Ó	\		1
O ₂	ppm	55502	51576	485 79	56901	57882	1		1 /
N ₂	ppm	209218	194705	183700	214013	2/7667			
NO	ppm	-1.0	-1.0	-1.0		0	- 		+
CO	ppm	744	313	363	0	ő			
CO ₂	ppm	1536	1371	1619	96-1	938)	-	1 /
N₂O	ppm	220	200	224	76-7			\	+/-
NOX-	nnm		100	224		0		\	+I
NOx Analyzer Computer								\	+I
Time		2015	2109	2217	2319	0010	<u> </u>	 \ 	H
NOx	ppm	115	H3 120		2.03			\	/
NO .	ppm	114	110	116	1-95	1,59		1	1
NOx Voltage	Volts	2.3	2.43	2.3	0.9	1,60		$-$ \	/
NOx Instrument	1 7010	 	5.77	 	J.7.	0.71		I	
Analog Reading	%FS	47	431./1102	43		75.		$$ \ I	
Range selector	value	auto	B 1132	AUTO	AUTO	Auto	4	-11	
Mode selector	value	NOX	No.x	70×	NOX			<i>\</i> /-	
Sample Pressure	psig	14	4.0	4.0	41.0	NOX		- X -	
Sample bypass flow	sccm	1-2-	5	5	5	575		/1	
Ozone Pressure	psig	30	30	30	30			-1	
Sierra Mass Flow: Flow#2	sccm	106	106.4	106-4	106.4	30,		$-I \rightarrow$	
MKS Mass Flow	- COUNT		100 1	106.7	106.4	106,4		- $+$ $+$	-
Ar Carrier, Chan-1	lpm	1.98	1.98	1.48	1.98	1.98		-+	
He Tracer, Chan-2	Ipm	1.99	1.99	1.99	1.49	1.99	4 3 3 3 3 3 3		V .
Total Sample , Chan-3	Ipm	2.31	2.31	2.31	2.31	2,31		-t	\
N/A, Chan-4	N/A	1-2-	- 1	7.31	<u> </u>	0.21		-I	+
Sample Pump*	1395334					7 2 64 2 7		-1	H
Vac Gauge	"Hg	3	3	3	7.				+ \
Pres Gauge	psig	10	9.3 9.5	a	9.5	5,2		1	1
Gas Cylinders Tank Pres#				- <i>'</i>	1:7	\"		+	+-1
02	psig	1700	1700	1700	1700	1686		1	+-1-
Ar GC	psig	2500	2500	2500		1000		 	+ 1
Ar Sweep #1	psig	2700	2700	2700	2500	2640		<u> Paris Maria Paris Paris I</u>	+-+
Ar Sweep #2	psig	4/00	400	350		300	I		1 - \
He GC	psig	1600	1600	1600	750 1600	1620	/I		1 1
He Tracer #1	psig	2300	2 320	2300		2260			1 1
He Tracer #2	psig	700	650	650	2300 600	530			- - 1
id Analyzer (in Hood)		100		220	000	224			1
Conc. (multi-digit display)	value	15	13.8	12	-0.9	-113	/-		+ $+$
Range (single digit display)	value	(4) 8-100	4	4	-0.7	- 4 ²			1
Pump Outlet Pres	psig	4.4	4,4	4.3			- $+$ $+$		
Air Pres (reg next to pump)	psig	3	8	8	4.3	7.9	-/-		
Smple Pres, (Internal reg)	psig	4	4		-8	7,8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Fuel Pres, (internal reg)	psig	24	24	9	4	_4	-I		
	hh:mm	2027	2117	24225	2325	50/8 3/1			

*Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter # Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

Geclock

Reviewed and Approved: & Suls

	By:	sono.	was	1/1/1	with	1500		157).	RUL
	Date:	2/01/01	2/1/01	12/11	2/1/1	2/1/01	470		
	Time:	1,00	201	0304	0417	0507	1 21,10	02/01/01	02/01/01
DESCRIPTION	units	/	- 201	0307	1971	10201	0609	7:13	909
Gas Chromatograph	unito					+ 3		-	<u> </u>
He	ppm	1389	1087	94(806	1421	582	798	1064
H ₂	ppm	0	103	5	0	0 3			
02	ppm	56893	44984	4463(45857	54488	44745	36,870	0
N ₂									49369
NO	ppm	213972	2 179299	168933	173,367	205,191	169,292	139,760	186683
CO	ppm	0	-/	7.	-1'	0 0	-1	-1'	1
	ppm		332	237	269,97	0,00	149.9	62.96	214.4
CO ₂	ppm	94.4	1448	1155	1123	105	853	715.8	1288
N₂O	ppm	0	309	0	0	10	Ð	0	247
NOx	ppm					1 %			
NOx Analyzer Computer	. 65.55					6		Page No. 12 House	
Time		0:59	0203	0 2 04	04:18	5:08	0611	7:14	09:11
NOx	ppm	1-19	114.38	93.0	82.3	3.12	63	44,86	73
NO	ppm	1.22	111:06	a),7	80.45	2.98	60	43.06	77
NOx Voltage	Volts	0.528	a.34	1,88	4.22	1,39	3.2	2.37	3,75
NOx Instrument		$A \in A \setminus A$							
Analog Reading	%FS	12%	46	58	34	2	25	20	75%
Range selector	value	auto	auto	Anto	Auto	Auto	Anto	auto	Auro
Mode selector	value	Nox	Nox	Nor	N/Gk	Nex	Nox	NOx	Nox
Sample Pressure	psig	<i>al</i>	7	4	4	5	Ч	4'	14
Sample bypass flow	sccm	4.5	Ь 6	5.5	5	5	5.5	3	2
Ozone Pressure	psig	30	30	30	30	30	.36	30	30
Sierra Mass Flow: Flow#2	sccm	106.4	106.4	10604	104	106	166.4	106.4	1100
MKS Mass Flow								700	-
Ar Carrier, Chan-1	lpm	1-98	1.98	198	1-98	1.98	198	1.98	1.98
He Tracer, Chan-2	lpm	1:99	1,99	199	1.99	499	1.99	199	1.99
Total Sample , Chan-3	lpm	2.32	2.31	スパレ	2.32	2.32	2.32	2.31	2,37
N/A, Chan-4	N/A				1 13 150		71.75		1772
Sample Pump*									
Vac Gauge	"Hg	3	3	6	7.5	2.5	16,2	10.5	0
Pres Gauge	psig	5.5	9	6.5	42	7.5	1.5	2	(0
Gas Cylinders Tank Pres#								-	7.0
O ₂	psig	1700	1680	620	1600	1600	(600)	1560	1500
Ar GC	psig	8270 2480	2480	2500	2500	2500	2500		2500
Ar Sweep #1	psig	2640	2580	2550	2500	2500	2.420	2480	2300
Ar Sweep #2	psig	300	380	320	300			2370	
He GC	psig	1640	1630	1/30	1630	1630	320	240	240
He Tracer #1	psig	2280	33.80	1180	2280	2280	1630	1630	1630
He Tracer #2	psig	510	500	410	400		2250	2260	2260
Fid Analyzer (in Hood)	Poig	7 10		910	400	350	310	190	100
Conc. (multi-digit display)	value	~1. 4	10-713	16 - 11	10	8	- 0		100
Range (single digit display)	value	4	· · · · · · ·		4		8	2-3	15,0
Pump Outlet Pres	psig	4.2	4.2	4. Z		4	<u> </u>	4	14_
Air Pres (reg next to pump)		2			4,2	9.2	4.2	4,2	4.12
Smple Pres, (Internal reg)	psig	- 4	1.8	า.ๆ	7.9	7-9	7.9	7.9	7.9
Fuel Pres, (internal reg)	psig		4	<u> </u>	9	4	Ч.	4	4',
i uci i ico, (iliterrial reg)	psig	24	24	14	24	24	24	24	24

^{*}Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter # Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

Reviewed and Approved: Reviewed

Feeding 1025 Off-Gas Sampling Data Sheet Rus RSM-01-1 RW9 2/1/01 1305 By: 31m Jan 2/11/1 ami Date: 1035 2/1/1 Time: 12:25 11:03 2/1/014 DESCRIPTION units Gas Chromatograph He ppm 1023 982 1014 1119 ppm 0 0 0 0 0 46172 02 ppm 52153 59600 43 900 46863 47914 N₂ ppm 197,010 224,400 166 440 177144 182000 NO ppm 279 ANT 290 NOI 178 CO ppm 272 250 CO2 ppm 92 125 1185 1397 N₂O 16 ppm 0 0 57 196 NOx ppm NOx Analyzer Computer Time 1631 12:27 11:05 17:13 14.20 NOx ppm 16.3 108 36 7.188 1.43 110 NO ppm 3.4 1,39 108 101 NOx Voltage Volts 0.63 2,17 NOx Instrument Analog Reading %F\$ Auto 48/250 Auto 111 ALLO 42 Range selector value Auto AUT 6 Mode selector value MOX NOX 4 NOX Mox NON Sample Pressure psig 5,5 30 106,4 Н 20 23 20 Sample bypass flow 5.5 sccm Ozone Pressure psig 30 30 Sierra Mass Flow: Flow#2 sccm 77,0 72,2 106.4 1064 MKS Mass Flow Ar Carrier, Chan-1 lpm 198 1.98 1.98 1,98 He Tracer, Chan-2 lpm 2,31 1.99 1.97 2.99 Total Sample, Chan-3 2.32 lpm 2.32 N/A, Chan-4 N/A Sample Pump* Vac Gauge "Hg 1.5 1-2 10,5 10 Pres Gauge psig 10.4 10.5 10 Gas Cylinders Tank Pres* 1490 2450 2100 4604T 1490 2450 2200 O2 psig 1486 1450 2400 2050 2000 1490 Ar GC psig 2450 Ar Sweep #1 psig 2210 2140 Ar Sweep #2 300 300 1630 2170 psig 370 1630 He GC 1630 psig 1000 1600 2230 He Tracer #1 psig 2240 2700 CHC out 2000 He Tracer #2 psig كلا 210 2460 Fid Analyzer (in Hood) 10-20 pg Conc. (multi-digit display) value 13,2 4 4.2 6 ~ 13 Range (single digit display) value 4 4 Pump Outlet Pres psig 4,5 4.3 Air Pres (reg next to pump) psig 7,8 7.9 Smple Pres, (Internal reg) psig 4 H

Still no feed

*Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter # Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

psig

time hh:mm

Reviewed and Approved: Russel

Fuel Pres, (internal reg)

Date: 4/23/0/

24

1037

24

11:17

13:20

14:39

RSM-01-1	In		- (A)	-	pata Sheet Cool		.,		
	By: Date:	2/1/01	12/1/01	2/1/01	1/211/01	21101	2/1/0/	118	MILS
	Time:	15:20	1816	1717	1481	1903	2001	2/1/01	2/1/0/
DESCRIPTION	units	17.7-0	1.470	1 / / /	1 201	1709	1201	2017	2057
Gas Chromatograph						· · · · · · · · · · · · · · · · · · ·	 		
He	ppm	1072	1211	1281	1403	1097	1161	1100	1105
H ₂	ppm	٥	0	0	0	0	0	0	10
O ₂	ppm	46 640	51154	58000	50700	47650	48,000	48.000	47,000
N ₂	ppm	174 830	193908	220000	192000	181000		18200	17800
NO	ppm	-1	-1	0	6	- 1013	1 -1	-1	The second secon
CO	ppm	252	۵	0	8	242	116	516	570
CO₂	ppm	1200	1196	72	4	1188	955	1370	1.400
N₂O	ppm	204	194	0	D	177	0	150	157
NOx	ppm			2.1.2				170	10/
NOx Analyzer Computer							₹		
Time			1617 94 98	1716	1802	1904 86,0	S	2017	2059
NOx	ppm	97	विष	1.8	2.7		85 >-	63	66
NO NO	ppm		98	1.8	7,6	\$3,7	47 5	62	3.40
NOx Voltage NOx Instrument	Volts	5,13	1,99	0.8	2.7	4.4	4.3 3	3.25	3,40
Analog Reading	%FS	99	99	120	1. A	25	7	200 / 200	10 las
Range selector	value	auto	Ante		40	90		27/65ppn	28/70 ppv
Mode selector	value	Nox	Nox	NOX	Nox	Nox.	1 8	100×	- //
Sample Pressure	psig	4	4	4.0	4.60	4.0	A Mas		4.8X
Sample bypass flow	sccm		4,4	5.0	DIL 5.0	7:0	12 1/2	4.0 5.0	7:0
Ozone Pressure	psig	30	30	30	30	30	(1) (1)	30	30
Sierra Mass Flow: Flow#2	sccm	97,6	96.0	96.8	94.4	94,4	1,11,3	70	
MKS Mass Flow	1 1 1						34/23		
Ar Carrier, Chan-1	Ipm	1,98	1,94	1.98	1.98	1.98	3.1 8	1.98	1.48
He Tracer, Chan-2	Ipm	1,99	199	1-99	1,99	199	λ . ξ	1.99	1.98
Total Sample , Chan-3	Ipm	2.31	2.31	2.32	2:35	2.31	. \ \ &	2-37	ຊ.37
N/A, Chan-4 Sample Pump*	N/A				No. 10 July 1	A 17 A 17	V 3 1		
Vac Gauge	"Hg						12		
Pres Gauge	psig	16	10	10	2	10	2	2	
Gas Cylinders Tank Pres*	paig		10		10		V & E	/0	10
O ₂	psig	1420	1400	1400	1400	1400			1200
Ar GC	psig	2450	2450	2450	Z450		4	1350	1350 2450
Ar Sweep #1	psig	2050	1950	1950	1905	1850	1/2 / D	2450	9450
Ar Sweep #2	psig	7976	1950	2000	1950	1950	· ~ 3	1800	1800
He GC	psig	1620	1600	1600	1600	1600	D 7 3	2000 1650	7600
He Tracer #1	psig	2030	1900-20		1900	1850	3 1 IL	1800	1,800
He Tracer #2	psig	2450	2450	2400	2450	2450	4.0% E	2508	2500
id Analyzer (in Hood)					1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 4 5	~~~	~ ~ ~ ~
Conc. (multi-digit display)	value	14	17.2	-0.5	3.5	5.1	12 1 19	17	23
Range (single digit display)	value	4	4	U	4	4	3 1 1	4	
Pump Outlet Pres	psig	4.3	4.3	4.4	4.2	412	7.00 5	4.4	44.4
Air Pres (reg next to pump)	psig	477.8	7,9	- 8	8	8	J.N.C	8	8
Smple Pres, (Internal reg)	psig	4	4	4.0	4	4	\$1.5	4.0	24
Fuel Pres, (internal reg)	psig	24	24	24	24	24	ZIZ		24
	hh:mm	15 : 33	1621	1719	1805	1907	문호물	2021	2103
*Located on floor between the o	computer ta	ble and the GC/N	Ox analyzer rack c	onnected to MKS	mass flowmeter				
# Multiple tanks (Ar Sweep #s 1	&2 and He	Tracer #s 1,2) car	n be switched by n	nanual valving if n	eed be.		7 8 S		

	By:		1/10	ion	15350	മാമ	19-5)	1/11	7420
	Date:	2/1/01	2/1/01		2/2/4	2/20/01	2/2/01	2/2/1	2/2/01
	Time:	2201	2303	2/2/61	1:03	62.06	6:47	dyon	05:09
DESCRIPTION	units				1			1 0 10 1	103-01
Bas Chromatograph					. 4 7				
He	ppm	1093	1071	1247	1309	1287	954	1193	105%
H ₂	ppm	٥	0	0	0	3	0	0	0
O ₂	ppm	47138	44007	55,916	56.856	57.091	42.002	305/5	42,645
N ₂	ppm	179198	182701	210521	214.171	215,069	159 476	116/408	162,107
NO	ppm	~1	-1	0	0,11	0	737,6.8		21
CO	ppm	519	628	0	-	8	357	234	244
CO ₂	ppm	1303	1394	93.1	88.0	89,4	1382		1432
N₂O	ppm	147	0	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0	1 3		1756	
NOx	ppm		1-0	0	-	+	264	229	152
Ox Analyzer Computer	DOM:					+			
Time		2203	2305	1:37	01:04	62:06	3:12	0405	05:06
NOx	ppm	65	62	7.13	1.18	1-4	92.8		05109
NO	ppm	64	60	1.08	1,20	1,367		768	1075
NOx Voltage	Volts	3.4	3.2	1-08 0.503	0.525	0.622	1.87	785.9	105.5
IOx Instrument			1 7:2	7-0-0 0.307	0,323	9.00	1.81	7/1	2-17
Analog Reading	%FS	70	26	1 7	 	0-100	38	42	42
Range selector	value		A	Á	Δ	A	38	1 A	A
Mode selector	value	Nox	NOX	NA.	Nax	NB.	Na	Nox	NOX
Sample Pressure	psig	4	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111	4	~~	H	4
Sample bypass flow	sccm	3	5	5	7	3		5.5	5
Ozone Pressure	psig	30	30	30	30	30	70	30	30
Sierra Mass Flow: Flow#2	sccm	4,11	- 1 <u>-</u>		87	102.4	102.4	101.6	100.8
MKS Mass Flow	1,000	Service of the service of				100.	1001	1011.6	100-0
Ar Carrier, Chan-1	lpm	198	1.98	1.98	1.98	1.98	1.98	198	1.98
He Tracer, Chan-2	lpm	195	1.99	1.99	1.49	1,99	1.99	1,97	199
Total Sample , Chan-3	lpm	2,32	2.32	2.32	2.32	2.31	2-3/	2,32	2.32
N/A, Chan-4	N/A	-	7.7		0.1			1 2775	2.,,-
ample Pump*				11. 4				A Maria	
Vac Gauge	"Hg	2	2	1.5	1-5	1.5	15	15	
Pres Gauge	psig	10	10	/0	10	10.3	10.5	10.2	
as Cylinders Tank Pres*			12.17	The same			70-7		
O ₂	psig	1350	1300	1300	1300	300	1260	1760	1240
Ar GC	psig	2500	2500	2470	2560	7500	2470	2470	2470
Ar Sweep #1	psig	1750	1700	1260	1450	1600	1520	1510	1470
Ar Sweep #2	psig	2000	2000	2000	2000	2000	2000	2000	2000
He GC	psig	660	1600	1/20	1620	1620	1620	1620	1620
He Tracer #1	psig	1700	1700	1680	1660	1630	1586	1520 mura	1500
He Tracer #2	psig	7560	2500	2500	2520	2520	2520	2500	2500
id Analyzer (in Hood)		The second second						1000	2300
Conc. (multi-digit display)	value	29.3	25	-1,5	-1.4	6	25	19-22	2
Range (single digit display)	value	4	4	4	4	4	4	ч	4
Pump Outlet Pres	psig	4,2	4.2	4,2	4.2	4.2	4.2	4.4	4.2
Air Pres (reg next to pump)	psig	8	8	8	8	8	8	7.9	
Smple Pres, (Internal reg)	psig	ц	ब	4	4	4	4	4	3
Fuel Pres, (internal reg)	psig	24	24	24	24	24	24.	24	24
time	hh:mm	2207	23/0	80:41		02:10	3:15	0414	05:13

^{*}Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter # Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

Reviewed and Approved: & Sul

Date: <u>4/23/6</u>/

RSM-01-1	<u> </u>			ff-Gas Sampling Da					
	Ву:	000	RWS		WES	IRUR	TUR	W	nes
	Date:	2/2/01	2/2/01	9:00,10:00	2 Feb 01	2/2/01	272/61	2/2/01	2/2/0)
	Time:	0126	0811		1200	1259	2:00pm	1500	1530
DESCRIPTION	units						Δ		
Gas Chromatograph									
He	ppm	987	1043		1,024	1031	818	0	1107
H ₂	ppm	0	0	1000	<u> </u>	0	0		0.0
O ₂	ppm	44.485	43097		43,000	141.618	44710	43,000	43,000
N ₂	ppm	168,866	163794		161,000	15.8460	169874	163000	167,000
NO	ppm	~/	1 -1		~~	1271	-1	707,00	10700
CO	ppm	390	483		646	431	461	549	685
CO₂	ppm	13/8	1575		1.626	1548	1312	1696	1366
N ₂ O	ppm	0	180		144	100	202	248	7000
NOx	ppm	1	1.00		- 1-1-1	 / 	ava	10	
NOx Analyzer Computer						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Time	The state of	7:27	08:13		1200	160	2:01		1530
NOx	ppm	101.6	103.89		113	111,99	87-4	113	1530
NO	ppm	94.3	102.38		177	110.85	85.7	112	707
NOx Voltage	Volts	2.05	2.0987	1.14.41	27.39	2.30	4.36	7.2	122
NOx Instrument							7.83	1	
Analog Reading	%FS	40	42		47 (1/8	Dem 46	35		44/110
Range selector	value	L A	A		A	IA	35 A	1	
Mode selector	value	NOX	Alox		Uox	XXX	NOX		Nox
Sample Pressure	psig	4	4		40	14	4		1 11/2
Sample bypass flow	sccm	5	5		'ζ	5	5 30		1 6
Ozone Pressure	psig	30	30	17	>>	30		1	30
Sierra Mass Flow: Flow#2	sccm	100	100	٧- ا		106,4	106.4		106
MKS Mass Flow				70					
Ar Carrier, Chan-1	Ipm	1.98	1.98	7	1,98	1,98	1.97	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,98
He Tracer, Chan-2	lpm	1.99	2:32	- 7	1.99	1.99	1,99)	1,99
Total Sample , Chan-3	lpm	2.32	2:32		2,32	2.32	2.32		1 232
N/A, Chan-4	N/A							1	
Sample Pump* Vac Gauge	-		<u>-</u>	20					
Pres Gauge	"Hg	8.5	3_	7	3	<u> </u>	4.5	/2	10
	psig	8.5	8.5	_ `	10	10	12	- 2	$\perp \lambda$
Gas Cylinders Tank Pres#	_	1							
O ₂	psig	1200	1200	>_	1100	1100	1100		1100
Ar GC	psig	2490	2500	\sim	5200	2500	a500		2500
Ar Sweep #1	psig	1320	1300	A	1150	1100	1050		1,000
Ar Sweep #2	psig	2000	2000	3	2000	2000	2000		2000
He GC	psig	1630	1630	6,	1800	1600	1600	(1600
He Tracer #1	psig	1400	1390		1200	1200	1150)	1/00
He Tracer #2	psig	2510	2550	0	3500	2500	2500	1,74	2500
Fid Analyzer (in Hood)									
Conc. (multi-digit display)	value	21	30	-2	36	35	24.6	40	46
Range (single digit display)	value	4	-4	7	. 4	4	4	1	14
Pump Outlet Pres	psig	4.2	4.2		43	4.2	4:2	5	4.3
Air Pres (reg next to pump)	psig	8	7.9		$\overline{}$	7.9	7.9	7	7.9
Smple Pres, (Internal reg)	psia	4			. 71	144	4		776

*Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter # Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

time hh:mm 07:31

Fuel Pres, (internal reg)

Date: 4/23/6/

1311 added 10 55 ugar/ & feed sheet 9 of 60

C.51

Off-Gas Sampling Data Sheet

	Ву:	JAM	JWA	SAM	JAM	SAM			100 miletar
	Date:	2/2/1	2/2/1	2/2/1	2/11	2/2/1			
	Time:	16:10	1729	1809	19:11	2004	New York Control		
DESCRIPTION	units			14 - 9/AL TO 1749					3 7 8 8
Gas Chromatograph									
He	ppm	1139	1059	1127	1098	1076	4		4
H ₂	ppm		0	0	٥	0			
O ₂	ppm	44 736	41764	43 290	42 006	40 900			
N ₂	ppm	170 515	159,285	167 950	160 200	156 020			
NO	ppm	-1	-1		-i	-1			
CO	ppm	630	632	253	535	552			
CO ₂	ppm	1876	1740	1734	1664	1787	San Service NAV		
N ₂ O	ppm	0	0	6	0	178	The Property of		
∠NÖ×	ppm.	12	ANG		-	1110		-	
NOx Analyzer Computer			1 - NA						
Time	F 438 1.5	4:12	1728	-926:09	7312	8:05			
NOx	ppm	1/2	100-3	93	83	83			
NO	ppm	109	99	90	80	83			
NOx Voltage	Volts	2,26	2.02	1,37	4,25	4.27			1
NOx Instrument	1	1 6 6 6	7.02	- 01	7.21	T. T.			-
Analog Reading	%FS	(11	39	94	25	91			
Range selector	value	Cutis	Auto	Anto	245	Auto			
Mode selector	value	NOX	NOV	NOY	NOX	Nox			
Sample Pressure	psig	14	4	4	4	4			
Sample bypass flow	sccm	(6	6	6	1 7 1			
Ozone Pressure	psig	30	30	30	30	30			
Sierra Mass Flow: Flow#2	sccm	106.4	106.4	106.4	106.4	106-4			
MKS Mass Flow						1000			
Ar Carrier, Chan-1	ipm	1.98	1.98	1.98	1.92	1,98			
He Tracer, Chan-2	Ipm	1159	1.99	1,99	1.99	1.99			
Total Sample , Chan-3	lpm	2.82	a.32	2,32	2,32	2.32		1 Sec. 10 Sec. 1980, 50	1
N/A, Chan-4	N/A		10-14-57-57						
Sample Pump*									
Vac Gauge	"Hg		8,5	1	1			1 1 1 1 1 1 1 1 1 1	1
Pres Gauge	psig	10.5	3.5	10,5	10.5	10.5			
Gas Cylinders Tank Pres#	1 68						- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
02	psig	1100	1080	1070	1050	1020			
× Ar GC	psig	2600	2500	2500	2500	2500			
Ar Sweep #1	psig	930	910	900	860	810			
Ar Sweep #2	psig	2000	2000	2000	2000	2000		100	
Hé GC	psig	1620	1620	1620	1620	1620	-	 	
He Tracer #1	psig	1060	1020	990	950	9/0		 	
He Tracer #2	psig	2530	2530	2520	2530	2570	and the state of		
Fid Analyzer (in Hood)			\						
Conc. (multi-digit display)	value	44	45	40	35	45			
Range (single digit display)	value	^ 4	4	4	4	4			
Pump Outlet Pres	psig	4,3	4.3	4.3	4.3	4.3			1
Air Pres (reg next to pump)	psig	7.8	7,9	7.9	7.9	7.9			
Smple Pres, (Internal reg)	psig	+	4	4	4	4	**************************************		
Fuel Pres, (internal reg)	psig	24	2.4	24	2.4	24		2.0	
	e hh:mm	4119	5:39	6:14	7:16	8:08			—

^{*}Located on floor between the computer table and the GC/NOx analyzer rack connected to MKS mass flowmeter

Reviewed and Approved: **Quality**

[#] Multiple tanks (Ar Sweep #s 1&2 and He Tracer #s 1,2) can be switched by manual valving if need be.

Appendix D

Colorimetric Procedure for Determining Fe(II) to Total Iron Ratio

Iron II and Total Iron Ratio

1.0 APPLICABILITY

This procedure is applicable for the determination of Iron II by completing the ferrous ion with 1, 10-phenanthroline. The concentration of the orange-red complex id determined spectrophotometrically at 510 nm.

2.0 <u>DEFINITIONS</u>

- 2.1 1,10-phenanthroline (phenanthroline) The organic chelating agent that forms an orange-red complex with ferrous ion (Iron II).
- 2.2 Hydroquinone An organic reducing agent that will reduce ferric ion (Iron III) to ferrous ion Iron II in an aqueous solution at room temperature.
- 2.3 Standard blank The Total Iron (Iron II + Iron III) concentration in all the reagents and the water used in this method.
- 2.4 Reagent blank The Iron II concentration in all the reagents and the water used in this method.

3.0 RESPONSIBLE STAFF

- 3.1 Responsible Scientist.
- 3.2 Cognizant Staff.

4.0 PROCEDURE

4.1 Summary of the method

Samples are dissolved in a non-oxidizing condition using a mixture of sulfuric and hydrofluoric acid. Boric acid is added to complex the excess fluoride ion. The ferrous ion in the solution is-chelated by three molecules of phenanthroline forming an orangered complex. The colored solution obeys Beer's law; its intensity is independent of pH from 3 to 9. A pH between 2.9 to 3.5 insures the rapid color development in the presence of an excess of phenanthroline. The total iron in the sample is determined by reducing the ferric ion to a ferrous ion with Hydroquinone at room temperature. The orange-red color of 'the complex is stable for up to six -months.

Technical Reviewer	Approval Authority		Project Mgr		
Date	Date		Date		
	(Line Manag	ger)			
Author	Project Quality Engineer		Other		
Date	Date		Date		
Procedure No:	REVISION	EFFECTIVE	Page	of	
	NO.	DATE:			

4.2 Reagent

- 4.2.1 Iron Standard Solution A 100 ppm certified iron solution is used to prepare the calibration curve.
- 4.2.2 0.25% Phenanthroline Solution Weigh 0.25 ± 0.05 gram of phenanthroline and dissolve in 100 ml of iron free water.
- 4.2.3 4% Boric, Acid Solution Weigh 40 ± 4 grams of orthoboric acid and transfer the orthoboric acid into a 1 liter plastic bottle. Fill the bottle with iron free water.
- 4.2.4 Potassium Hydrogen Phthalate (KHP) Weigh 100 + 10 grams of KHP and transfer the KHP into a 1 liter plastic bottle. Fill the solution with iron free water and shake the solution to form a saturate the solution (Note: Since the solution is a saturated, some undissolved KHP is present in the bottom of the bottle).

4.3 Equipment

- 4.3.1 pH Meter The pH meter used in this procedure is the-Corning Model 240-pH meter. Refer to APSL-08, CALIBRATION of PH METER, technical procedure to calibrate the pH meter
- 4.3.2 Spectrophotometer The spectrophotometer used in this procedure is the Milton Roy, "Spectronic", model 601 spectrophotometer. Refer to APSL-09, USING THE "SPECTRONIC," MODEL 601 SPECTROPHOTOMETER, technical procedure for the set-up of the spectrophotometer.

4.4 Safety

- 4.4.1 Eye protection required in the laboratory.
- 4.4.2 Rubber or plastic cloves must be worn when working with concentrated acids.

4.5 <u>Calibration</u>

The spectrophotometer is calibrated with a certified iron solution at seven different calibration points. A linear regression is performed on the seven calibration points and the estimate of the slope (m), the y intercept (b), and the correlation coefficient (r) are calculated. If the calculated correlation coefficient is greater than 0.999, the calibration curve is closely approximated by a linear function. The closer the correlation coefficient approaches unity, the closer all the points used to establish the calibration curve falls on a straight line.

- 4.5.1 Dilute the 1000 ppm iron standard solution to a 100 ppm (0.1 mg/ml) solution by pipetting 10 ml of the 1000 ppm solution into a 100 ml volumetric flask. Add about 5 ml of concentrated HCL and dilute to volume with iron free water. Thoroughly mix the solution in the flask.
- 4.5.2 Prepare a 100 ml disposable plastic beaker for the standard blank and each of the seven points used to calibrate the <u>IRON II CALIBRATION CURVE</u> (Figure 1). Mark the 8 plastic beakers as Std Blk, 0.005 mg Fe, 0.01 mg Fe, 0.05 mg Fe, 0.10 mg Fe, 0.20 mg Fe, 0.30 mg Fe, and 0.40 mg Fe.
- 4.5.3 Pipet the required volume of the 0.10 mg/ml Fe standard solution prepared in step 4.5.1 into the 7 beakers from step 4.5.2. Since no Fe is added to the Std Blk, this beaker will be empty.

- 4.5.4 Prepare a second set of disposable plastic beakers for the Std Blk and each of the 7 Fe calibration points. Each of the beakers with a capacity greater than 50 ml shall contain;
 - a) a glass covered magnetic stir-bar,
 - b) 25 ml of boric acid solution,
 - c) 7 ml of KHP solution,
 - d) 6 ml of phenanthroline solution.
- 4.5.5 Transfer the beakers from 4.5.4 to a fume hood and add 2 ml of concentrated ammonium hydroxide to each of the beakers. Swirl each of the beakers to mix the solution.
- 4.5.6 Slowly dispense 0.5 ml of concentrated sulfuric acid dropwi8e to each of the beakers containing the Std Blk and the 7 Fe standards prepared in step 4.5.2 using a 500 microliter pipet. After the sulfuric acid has been added to each of the beakers, add 1.5 ml of concentrated hydrofluoric acid to each of the beakers.
- 4.5.7 Pour one beaker of the buffer solution prepared in step 4.5.5 into each of the beakers from step 4.5.6.
- 4.5.8 After mixing the two solutions in step 4.5.7, place each of the beakers on a magnetic stirrer. Using a calibrated pH meter, adjust the pH of each of the solutions to a pH between 3.3 and 3.5 with either dilute sulfuric acid or dilute ammonium hydroxide.
- 4.5.9 Transfer the solution to a 100 ml volumetric flask. Add 20 ± 10 mg of Hydroquinone to each of the flasks. Using a small amount of iron free water, wash the adhering Hydroquinone from the neck of the volumetric flask. Swirl the solution to dissolve the Hydroquinone and let the solution stand for at least 30 minutes.
- 4.5.10 After letting the solution stand for at least 30 minutes, dilute the solution to volume with iron free water. Thoroughly mix the solution in the flask.
- 4.5.11 Set the absorbance of the spectrophotometer to 510 nm and zero the instrument with iron free water in the sample cell.
- 4.5.12 Read the absorbance of the standard blank and each the seven iron standards. Record the absorbance reading from each of the solutions onto a Xerox copy of the <u>IRON II CALIBRATION CURVE</u> sheet (Figure 1).
- 4.5.13 Once all the absorbance readings have been taken, using a linear regression calculation, calculate the slope (m), the γ intercept (b), and the correlation coefficient(r) for the calibration data. If the calculated correlation coefficient is less than 0.999, notify the Responsible Scientist. If the correlation coefficient is greater than 0.999, enter the slope, the intercept, and all the absorbance readings onto the IRON II CALIBRATION CURVE using the Excel program called "FERCAL.XSL". The Excel program will calculate the values for the 7 calibration points using a linear curve with the estimated slope and intercept values determined above. The 0.005 mg Fe/100 ml of solution must have a calculated value between 0.003 and 0.007 mg Fe/100 ml. The mid-range values of the calibration curve must be within ± 5% of the true values. If the calculated values are not within these limits, notify the Responsible Scientist.

4.5.14 This completes the calibration of the spectrophotometer for the Iron II analyses. A copy of the signed and approved <u>IRON II CALIBRATION CURVE</u> shall be pasted into the notebook assigned to the Milton Roy, "Spectronic" model 601 spectrophotometer.

4.6 Sample Log-In Procedure

Refer to APSL-01.

4.7 Sample Preparation

The sample taken in the laboratory for the final grinding will depend upon the appearance and the size of the sample submitted by the customer. If a large sample (greater than 100 grams total) is submitted by the customer and the sample is not homogeneous, the sample will be ground to a particle size of less than approximately ¼ inch. This ground sample will then be reduced to a manageable sample size using the quartering method. If the sample is an homogeneous glass sample, between 5 and 10 grams of sample will be broken from the sample for final sample preparation.

- 4.7.1 Large non-homogeneous sample.
 - 4.7.1.1 If the total sample weight is greater than 100 grams, grind the sample to less than ½ inch particle size.
 - 4.7.1.2 Place the sample in a pile on a clean sheet of paper. Using a flat spatula, quarter the sample into four equal parts.
 - 4.7.1.3 Using alternate quarters of the sample in step 4.7.1.2, separate sample into two equal parts.
 - 4.7.1.4 If one of the separated samples from step 4.7.1.3 is still greater than 40 grams, repeat steps 4.7.1.2 and 4.7.1.3 until the sample obtained by the quartering method weighs less than 40 grams.
 - 4.7.1.5 When the sample weight has been reduced to less than 40 grams, grind the sample so that the particle size is less than 1/8 inch. Quarter the sample using steps 4.7.1.2 and 4.7.1.3.
 - 4.7.1.6 Grind the sample from step 4.7.1.5 so that the particle size is less than 1/16 inch.
 - 4.7.1.7 Quarter the sample two times using step 4.7.1.2 and 4.7.1.3. At this point, the sample should be reduced to less than 5 grams.
 - 4.7.1.8 Grind the sample from step 4.7.1.7 using an agate or a porcelain mortar and pestle. Sieve the sample through a 140-mesh sieve. Repeat the grinding and sieving until all the sample has been ground and sieved to less than 140 mesh.

4.7.2 Homogeneous sample.

- 4.7.2.1 Cover the glass sample with a paper towel. Hit an edge of the sample to chip off pieces of glass. Collect the pieces of chipped glass from the larger sample.
- 4.7.2.2 Continue step 4.7.2.1 until approximately 3-5 grams of glass chips have been collected.

4.7.2.3 Grind the glass chips using an agate or a porcelain mortar and pestle. Sieve the sample through a 140-mesh sieve. Repeat the grinding and sieving until all the sample has been ground and sieved to less than 140 mesh.

4.8 Iron II Analyses

- 4.8.1 Prepare a disposable plastic beaker (beaker volume of at least 50 ml) for the standard blank and the sample blank and a beaker for each of the samples, the 0.005 mg Fe standard, and the 0.20 mg Fe standard. Add to each of the beakers:
 - a) a glass stir-bar,
 - b) 25 ml of boric acid solution,
 - c) 7 ml of KHP solution,
 - d) 6 ml of 4% phenanthroline solution and in a fume hood, pipet,
 - e) 2 ml of concentrated ammonium hydroxide.
- 4.8.2 To a second set 100 ml disposable plastic beakers, weight 0.025 ± 0.010 gram of ground sample from step 4.7.1.8 or 4.7.2.3 into a disposable plastic beaker. Record the sample weight and sample identification on each of the beakers. Also record the laboratory number, the customer identification, and the sample weights on a Xerox copy of the <u>IRON II AND TOTAL IRON DATA SHEET</u> (Figure 2).
- 4.8.3 Prepare two 100 ml disposable plastic beakers for the standard blank and the sample blank as well as the two beakers for the 0.005 mg Fe and the 0.20 mg Fe standards. Pipet 50 microliter of the 0.10 mg/ml Fe standard prepared in step 4.5.1 into the beaker marked 0.005 mg Fe Std and 2.0 ml of the 0.10 mg/ml Fe standard into the beaker marked 0.20 mg of Fe.
- 4.8.4 Pipet 0.5 ml of concentrated sulfuric acid to each of the beakers from steps 4.8.2 and 4.8.3 in a fume hood. Swirl the beakers with the samples so the samples are mixed with the sulfuric acid.
- 4.8.5 Tip the beaker so the sulfuric acid/sample mixture moves the slurry to one side of the beaker. Set the beaker on the floor of the fume hood and gently pipet 1.5 ml of concentrated hydrofluoric acid into the beaker on the opposite side of the sulfuric acid/sample mixture. Gently tip the beaker so the two acids are mixed. Once the initial vigorous reaction between the hydrofluoric acid and the silicate in the glass has subsided, swirl the beakers so that the hydrofluoric acid is mixed completely with the glass sample in the beaker. (Note: The total time for hydrofluoric acid to dissolve the glass must be less than about 30 seconds to reduce the amount of air oxidation of the Iron II in the solution. Once the solution from step 4.8.1 containing the phenanthroline has been added to the solution in 4.8.5, air oxidation of Fe II is minimized. Each sample is carried through the pH adjustment steps 4.8.6, 4.8.7, and 4.8.8 before adding hydrofluoric acid to the next beaker.)
- 4.8.6 After the dissolution of the glass by the hydrofluoric acid, immediately transfer the contents of one of the beakers prepared in step 4.8.1 into the beaker containing the dissolved glass in step 4.8.5.

- 4.8.7 Mix the two solutions together from step 4.8.6 and using a calibrated pH meter, adjust the solution pH to between 3.3 and 3.5 using either dilute sulfuric acid or ammonium hydroxide. (Note: There should be no precipitate formed during the pH adjustment. If a precipitate forms, notify the <u>Responsible Scientist</u>.)
- 4.8.8 Transfer the pH adjusted solution into a 100 ml volumetric flask. Use a small volume of iron free water to rinse all the solution from the beaker into the volumetric flask.
- 4.8.9 Repeat steps 4.8.5, 4.8.6, 4.8.7, and 4.8.8 with each beaker one at a time until all the blanks, the two standards, and all the samples have been carried through the pH adjustment and solution transfer outlined in steps 4.8.7 and 4.8.8.
- 4.8.10 Set aside the flasks containing the standard blank, the 0.005 mg Fe and the 0.20 mg Fe standards. These solutions will be completed in the Total Iron analyses portion of this procedure.
- 4.8.11 Fill the remaining flasks to volume with iron free water. Cap and thoroughly mix the solution in each of the flasks.
- 4.8.12 Adjust the spectrophotometer to read zero absorbance with iron free water in the sample cell.
- 4.8.13 Transfer the sample blank to the sample cell and record the Fe II absorbance reading onto the Xerox copy of the <u>IRON II AND TOTAL IRON DATA</u>

 <u>SHEET</u> in the column marked Fe II Abs. Place the next sample from step 4.8.11 into the sample cell. Read the absorbance of the sample and record absorbance reading onto the Xerox copy of the <u>IRON II AND TOTAL IRON DATA</u>

 <u>SHEET</u>. Repeat reading and recording of the absorbance until all the samples in step 4.8.11 are completed.

4.9 Total Iron Analyses

Soluble iron in an acidic aqueous solution is present either as ferrous or ferric ion. Hydroquinone will reduce all ferric ion (Iron III) in the solution to a ferrous ion (Iron II). With the reduction of all the Iron III to Iron II, the analyses of Iron II in the solution with the phenanthroline are the Total Iron analyses.

- 4.9.1 Pipet 10 ml (or a suitable aliquot) of each the sample blank and the samples from step 4.8.13 into separate 100 ml volumetric flasks containing 4 ml of phenanthroline solution in each of the flasks.
- 4.9.2 Add 20 ± 10 mg of Hydroquinone to each of the flasks from step 4.9.1 and the three flasks containing the standard blank, the 0.005 mg Fe and the 0.20 mg Fe standards from step 4.8.10.
- 4.9.3 Wash down any Hydroquinone adhering to the neck of the flasks with a small volume of iron free water. Swirl the solution in the flasks to dissolve the Hydroquinone. Let the flasks stand for at least 30 minutes.
- 4.9.4 After 30 minutes, dilute the solution in the flasks to volume with iron free water. Cap the flasks and thoroughly mix the solution in each flask.
- 4.9.5 Adjust the spectrophotometer to read zero absorbance with iron free water in the sample cell.

4.9.6 Transfer each of the solutions from step 4.9.4 into the sample cell and read the Total Iron absorbance of the solution. Record the Total Iron absorbance on the Xerox copy of the <u>IRON II AND TOTAL IRON DATA SHEET</u> in the column labeled tot Fe Abs. Also record the volume of solution pipetted in step 4.9.1 (divided by 100) onto the IRON II AND TOTAL IRON DATA SHEET.

4.10 Calculation

The Iron II and Total Iron are calculated by entering the values from the <u>IRON II AND TOTAL IRON DATA SHEET</u> onto the first page of the Excel program labeled "FERATIO4.XLS" and titled <u>IRON II AND TOTAL IRON DATA ENTRY SHEET</u> (Figure 3). The Excel program will perform the required calculations using a linear equation, which is:

$$y = mx + b$$

where:

m = slope

x = mg Fe/100 ml of solution

b = y intercept of the calibration curve

y = sample absorbance - blank absorbance

The third page of the Excel program will generate the <u>ANALYSIS OF IRON II AND</u> TOTAL IRON report that is shown in Figure 4 and will be submitted to the customer.

For verification of the excel program labeled "FERATIO4.XLS", a set of sample data will be "hand" calculated and compared with the data generated by the "FERATIO4.XLS" will be pasted in the notebook for the Milton Roy, "Spectronic", model 601 spectrophotometer.

4.11 Calibration Acceptance Criteria

- 4.11.1 If there is more than 0.005 differences in the absorbance of the sample blank and the standard blank, notify the <u>Responsible Scientist</u>. A significant difference between the two blanks typically indicates a reagent contamination of ferric ion. This must be corrected before continuing with the analysis.
- 4.11.2 Check the calculated values for the 0.20 mg Fe standard. This value in the midrange of the calibration curve should read within 0.20 ± 0.01 mg of Total Iron /100 ml of solution. If the calculated value is not within the acceptable range, notify the Responsible Scientist.
- 4.11.3 Check the calculated value for the 0.005 mg Fe standard. This standard is at the lower end of the calibration curve. If the calculated value is not within 0.005 ± 0.002 mg of Fe/100 ml of solution, notify the Responsible Scientist.

4.12 Archiving of Data

4.12.1 A copy of all the <u>IRON II CALIBRATION CURVE</u> analysis performed on the Milton Roy, "Spectronic", model 601 spectrophotometer are posted in the notebook for this instrument. The calibration curve used for the Iron II analyses is identified by the slope (m), the intercept (y), and correlation coefficient (r) recorded on the <u>IRON II AND TOTAL IRON DATA SHEET</u>, the <u>IRON II AND TOTAL IRON DATA ENTRY SHEET</u>, and the <u>ANALYSIS OF IRON AND TOTAL IRON</u> forms.

- 4.12.2 The completed <u>IRON II AND TOTAL IRON DATA SHEET</u> is stored in the sample data file stored under <u>Laboratory Number</u>.
- 4.12.3 A copy of the completed and approved <u>ANALYSIS OF IRON II AND TOTAL</u> <u>IRON</u> form sent to the customer shall be stored in the sample data file stored under the <u>Laboratory Number</u>.

IRON II CALIBRATION CURVE

Analytical and Process Support Laboratory

1.0	Date	of Calibration				
2.0	Spec	trophotometer Used				
3.0	Cell	Used				
4.0	Iron	Standard Used				
5.0	Abso	orbance Readings:				
			Absorbance		Absorbance	Calculated
	5.1	Standard Blank	_	_		Fe Values
	5.2	0.005 mg Fe Std		Minus Blk		
	5.3	0.01 mg Fe Std		_ Minus Blk		
	5.4	0.05 mg Fe Std		_ Minus Blk		
	5.5	0.10 mg Fe Std		_ Minus Blk		
	5.6	0.20 mg Fe Std		_ Minus Blk		
	5.7	0.30 mg Fe Std		_ Minus Blk		
	5.8	0.40 mg Fe Std		Minus Blk		
6.0	Linea	ar Regression Analys	sis Calculatio	on:		
	6.1	Correlation Coeff	icient (r)			
	6.2	Slope (m)	<u>-</u>			
	6.3	Intercept (y)	_			
7.0	Calib	orated by and Date:				
8.0	Revi	ewed by and Date:				

IRON II AND TOTAL IRON DATA SHEET

Analytical and Process Support Laboratory

Custo	mer _							
Calibration curve used:					Slope (n	n) =		
				Intercept (y) =				
			C	Correlation	coefficie	nt =		
Low	and high sta	andard used to verify calibration	curve.					
		Standard blank		1	Absorbanc	ce =		
		0.005 mg Fe Std		1	Absorbanc	ce =		
		0.200 mg Fe Std		1	Absorbanc	ce =		
		Sample blank (Fell)		1	Absorband	ce =		
		Sample blank (Fe Tot)		1	Absorband	ce =		
Row	Laboratory	Customer's Sample ID	Sample Wt	Fe II Dil	Fe II Abs	Tot Fe Dil	Tot Fe Abs	
1	Number							
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								

IRON II AND TOTAL IRON DATA ENTRY SHEET

Analytical and Process Support Laboratory

Custo	omer _								
Calibration curve used			Slope (m) =						
				Intercept (y) =					
			Correlatio	n Coeffic	ient =				
Low	and high st	andard used to verify calibration	curve.						
		Standard blank	Absorbance =						
		0.005 mg Fe Std		I	Absorbano	ce =			
		0.200 mg Fe Std		I	Absorbano	ce =			
		Sample blank (Fell)		I	Absorbano	ce =			
		Sample blank (Fe Tot)		I	Absorbano	ce =			
Row	Laboratory	Customer's Sample ID	Sample Wt	Fe II Dil	Fe II Abs	Tot Fe Dil	Tot Fe Abs		
	Number								
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
		ļ		4	1	<u> </u>			

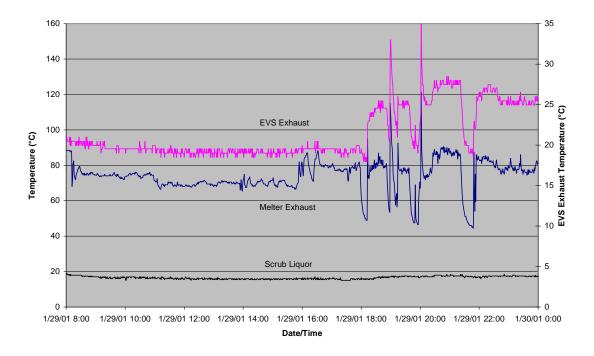
Data entered by and date

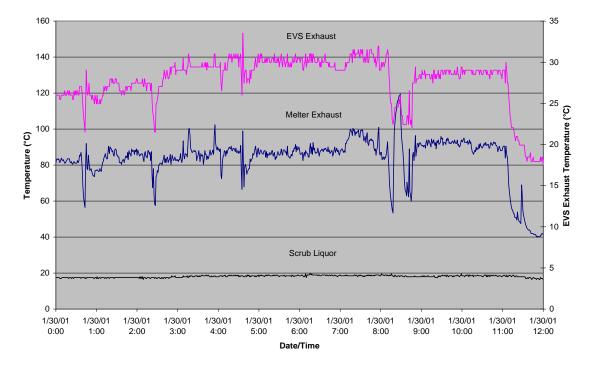
ANALYSIS OF IRON II AND TOTAL IRON

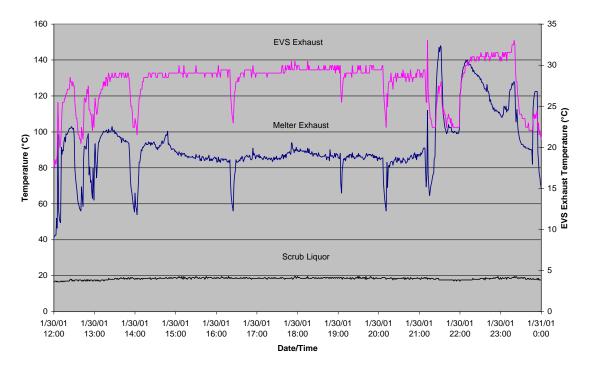
Analytical and Process Support Laboratory

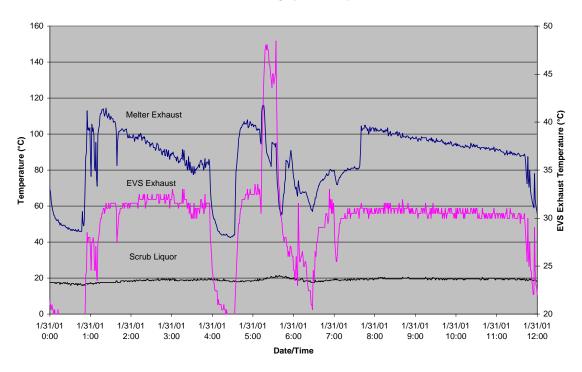
To:

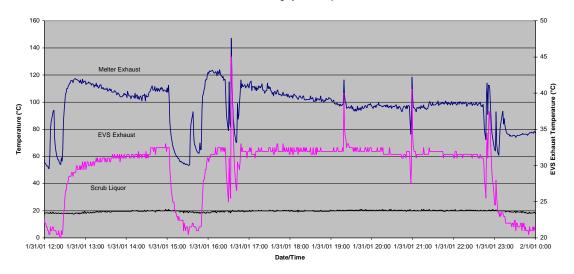
Calibration Curve Used.

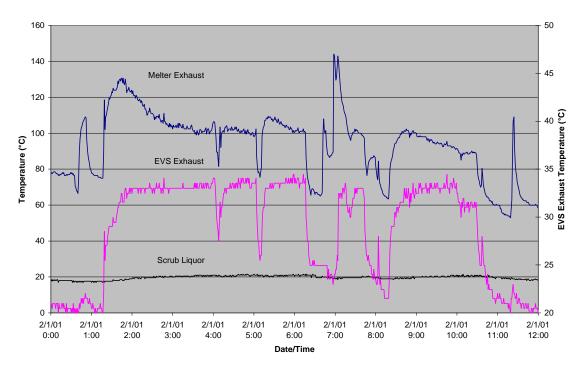

The Iron II (Fe II) and Total Iron (Fe Tot) have been analyzed in your samples. Two iron standards are analyzed with each set of samples to verify the slope and intercept of the linear calibration curve. The first standard containing 0.005 mg Fe/100 ml is near the detection limit of the colormetric method, while the second standard containing 0.20 mg Fe/100 ml is used to verify the mid-range of the calibration curve. The results of the two iron standards and your samples are tabulated below:

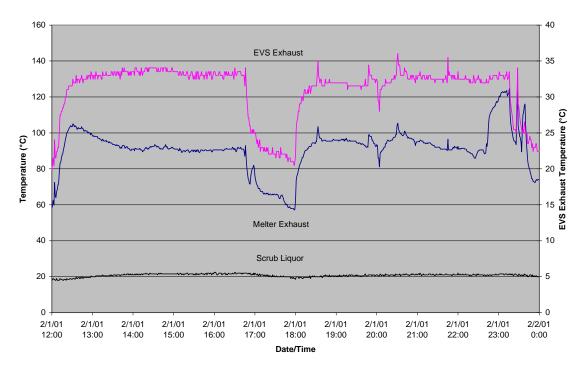

Slope (m) =

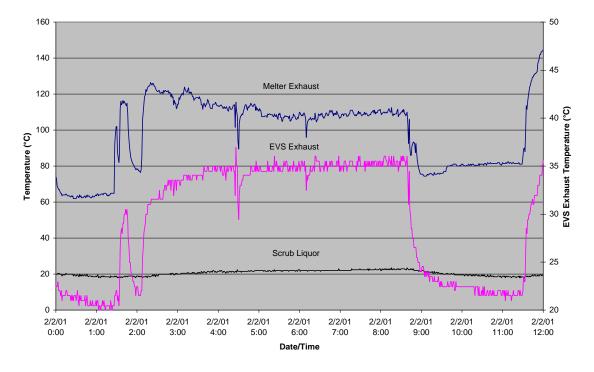

		Intercept (y) =						
			Correlation Coefficient =					
Low and	high iron standard analys	is to verify c	alibration cui	ve.				
0.0	005 Fe Std =	Lo	Lower Limit = 0.0025 Upper Limit = 0.0075 n					
0.2	200 Fe Std =	Lo	Lower Limit = 0.190			Upper Limit = 0.210 mg		
Sample A	nalyses							
Lab No	Lab No Customer's Sample ID				Preci Yes	Precipitate If yes, comment Yes No		
Comment	s: 1. Dark non-magne	tic precipitat	e.					
	2. Dark magnetic p	recipitate.						
	3. Light colored (w	hitish) precij	pitate.					
	4. Other							
Analyst si	ignature and date							
Approved	l by and date							

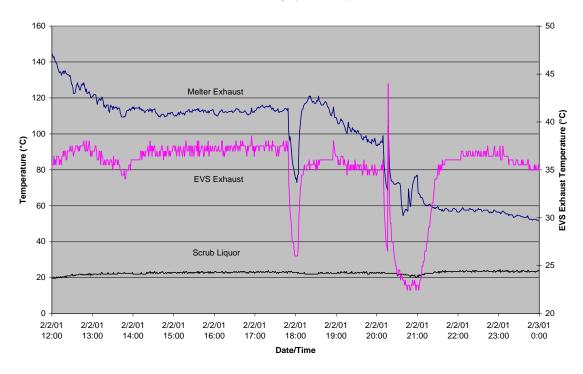

Appendix E

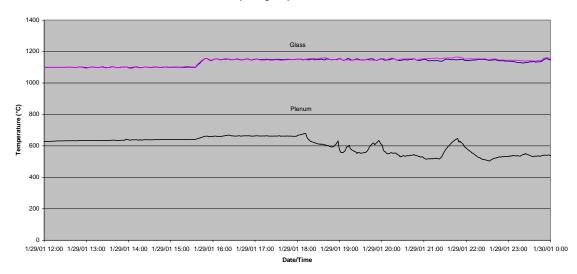

Variable Process-Temperature Data Collected During the SBW Flowsheet Evaluations

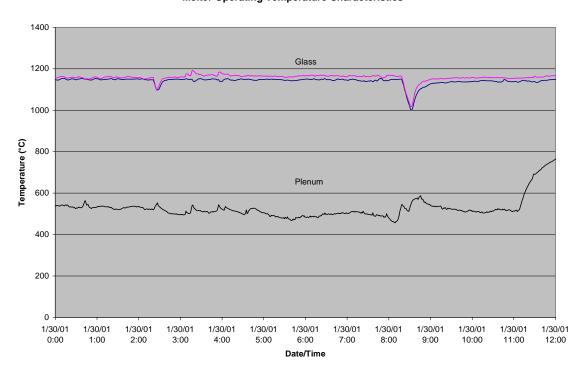


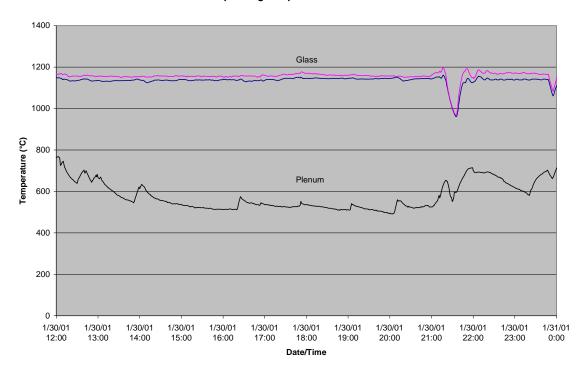


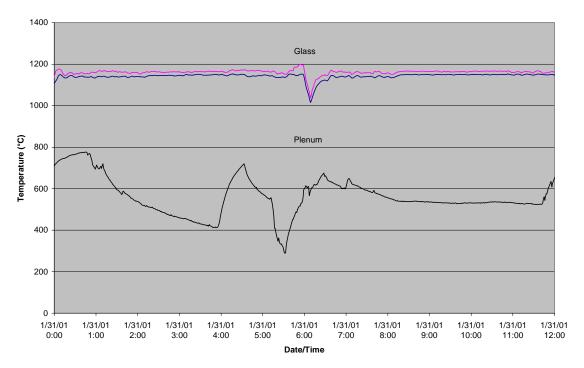


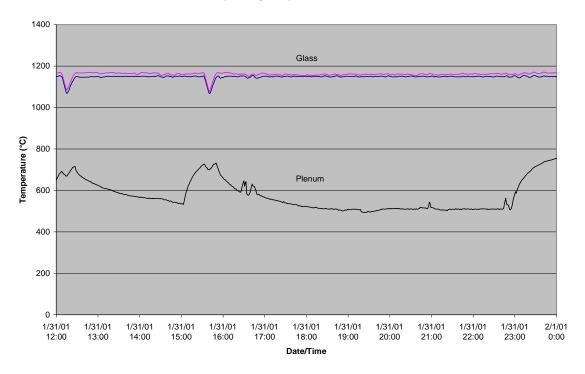


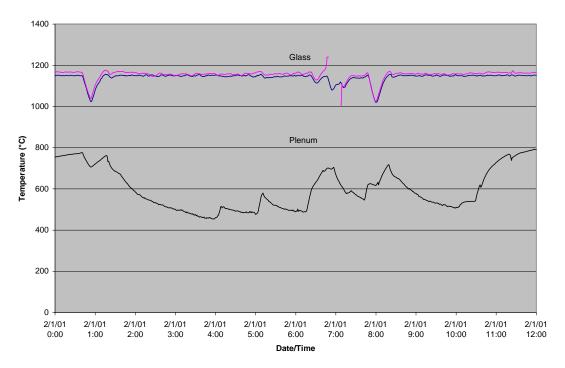


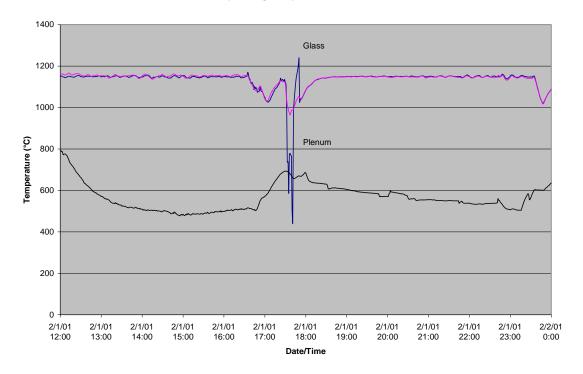


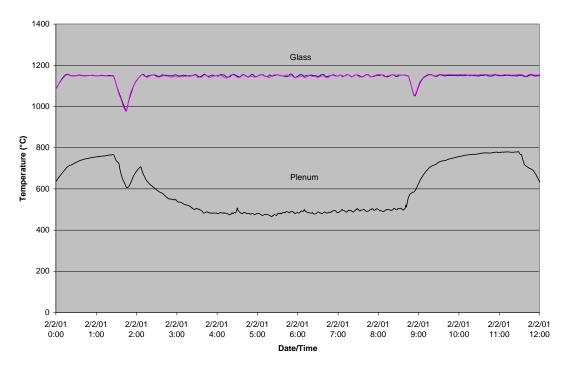


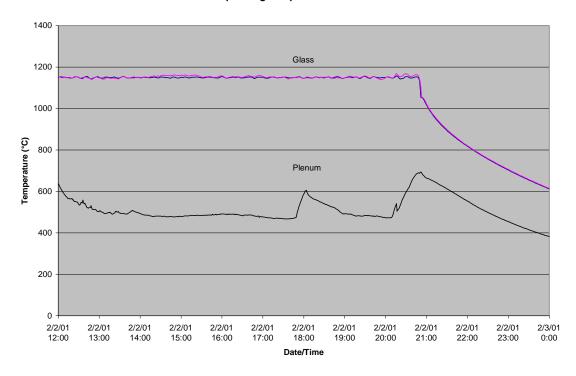


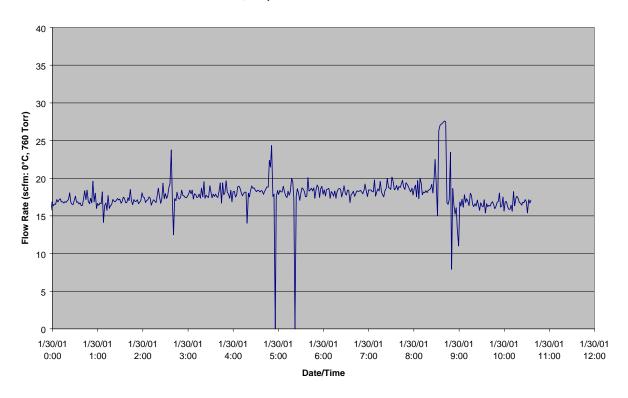


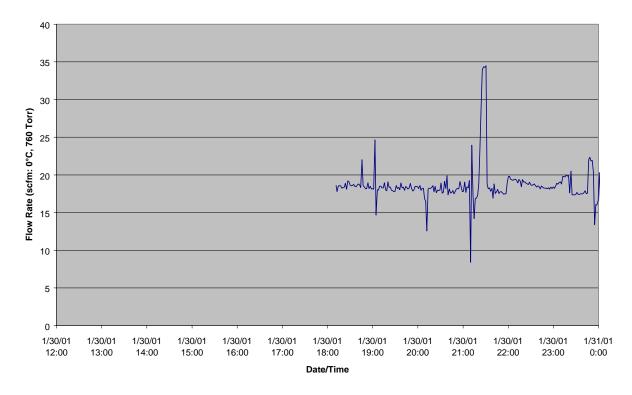




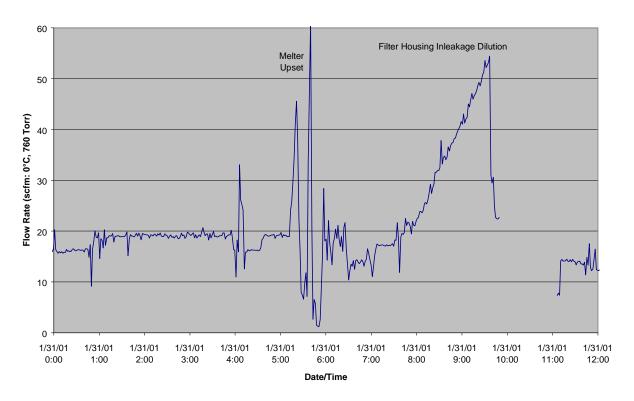


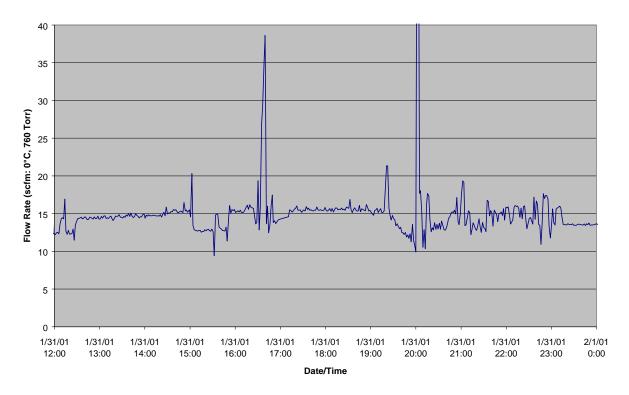


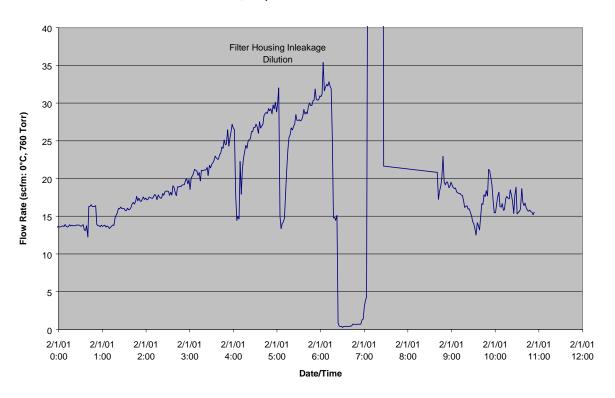


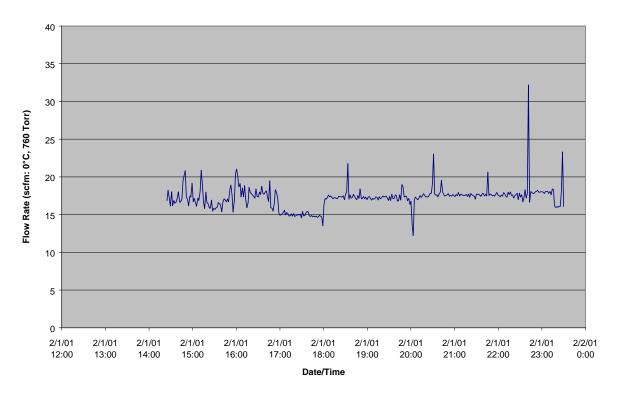


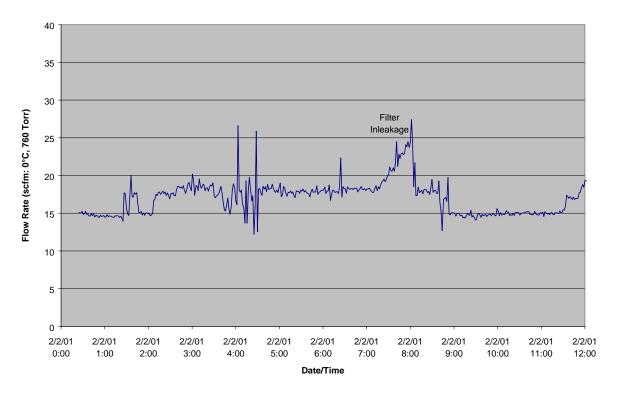
Appendix F Total Unquenched Melter Flow Rates

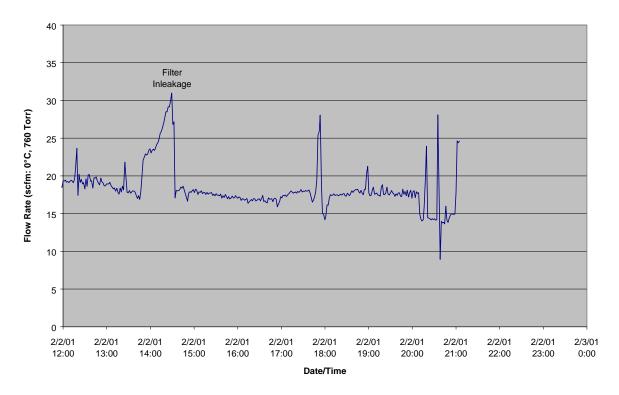

Total, Unquenched Off-Gas Flow Rate


Total, Unquenched Off-Gas Flow Rate

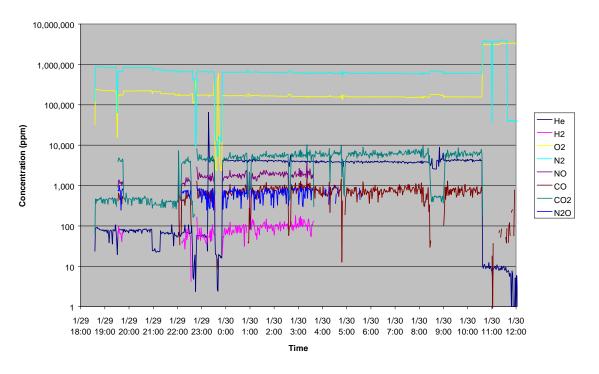

Total, Unquenched Off-Gas Flow Rate

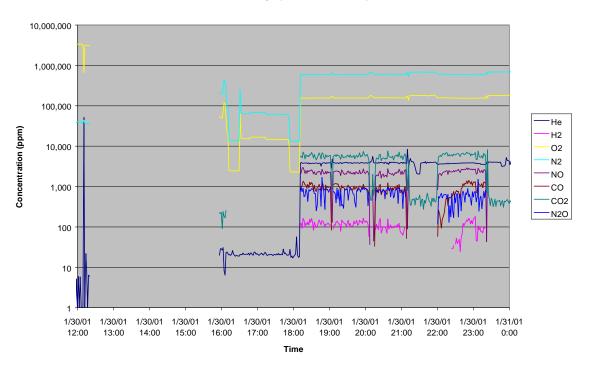

Total, Unquenched Off-Gas Flow Rate

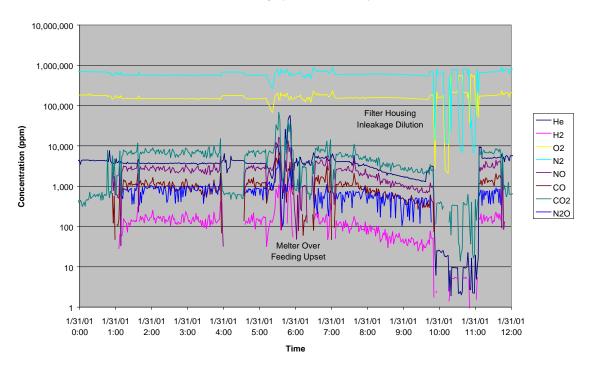

Total, Unquenched Off-Gas Flow Rate

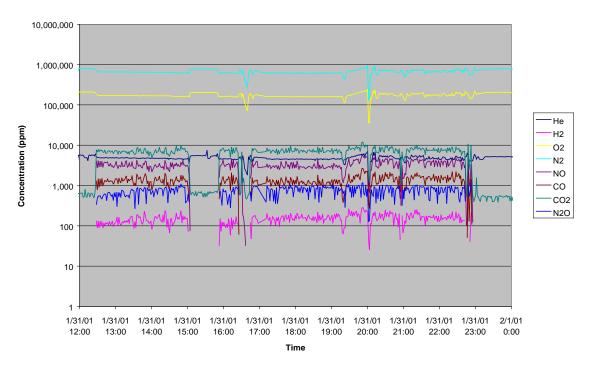

Total, Unquenched Off-Gas Flow Rate

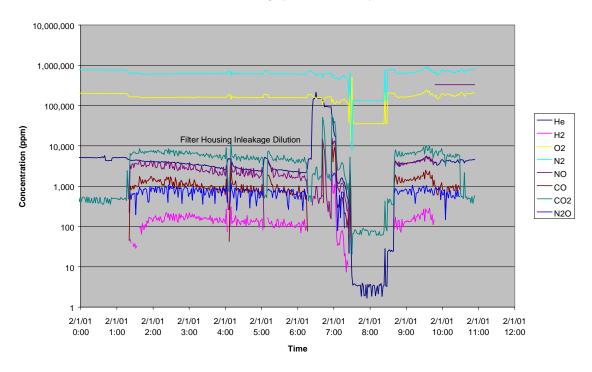
Total, Unquenched Off-Gas Flow Rate

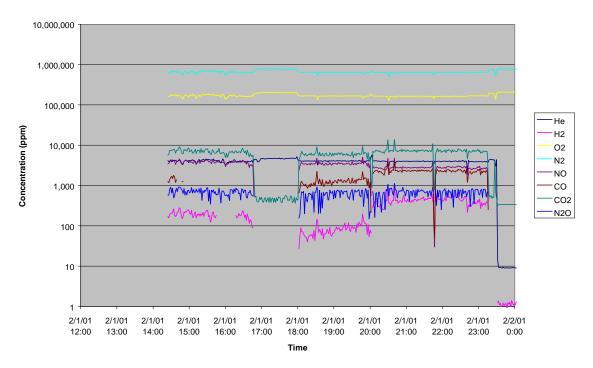


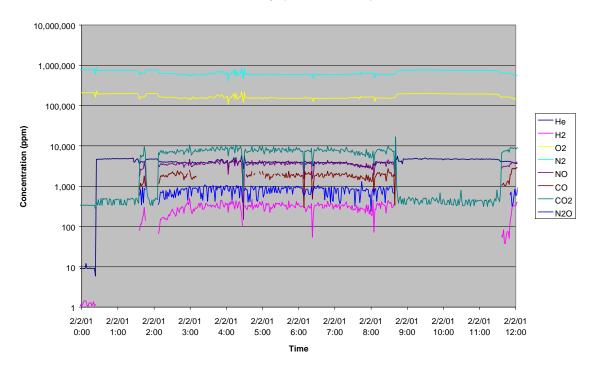

Total, Unquenched Off-Gas Flow Rate

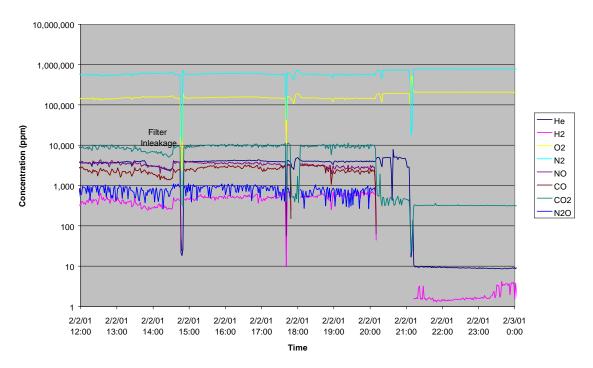


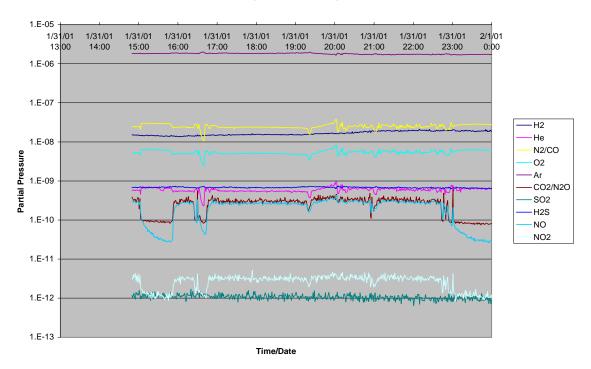

Appendix G

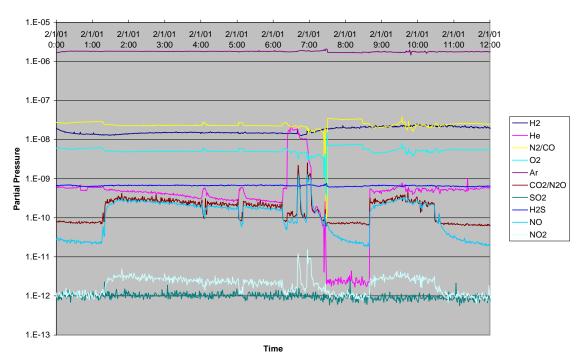

Temporal Behavior of Melter Off-Gas Effluents

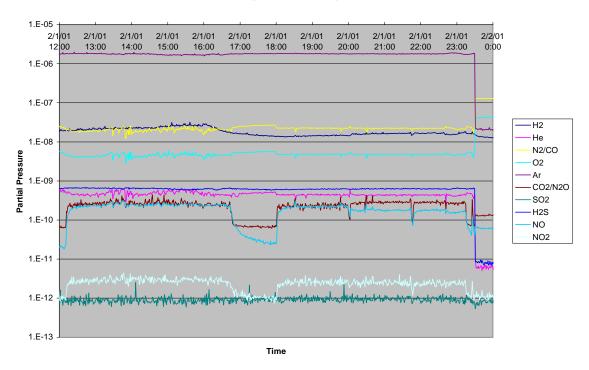


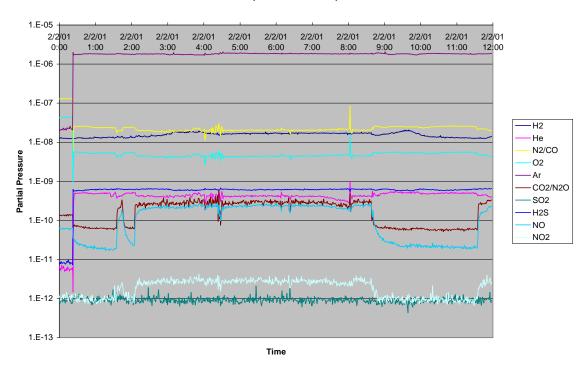


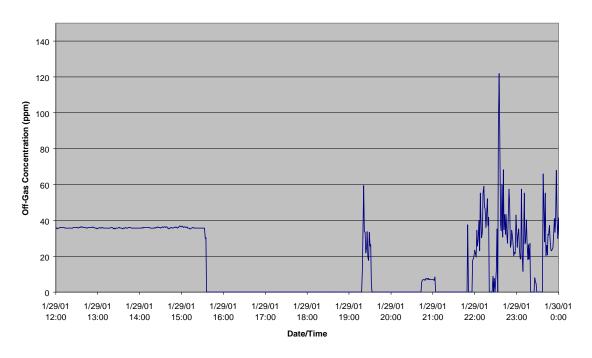


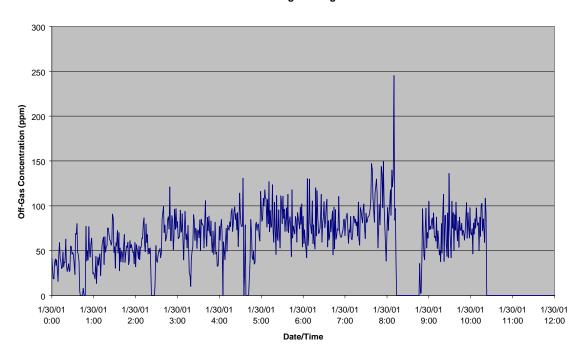


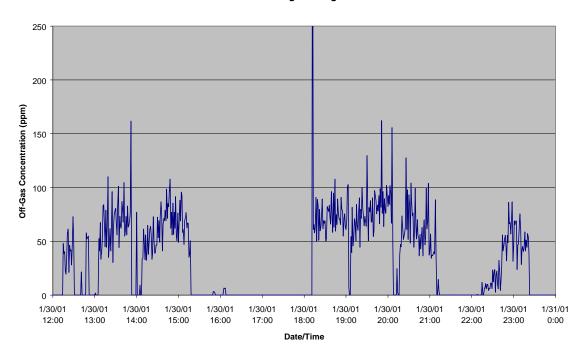


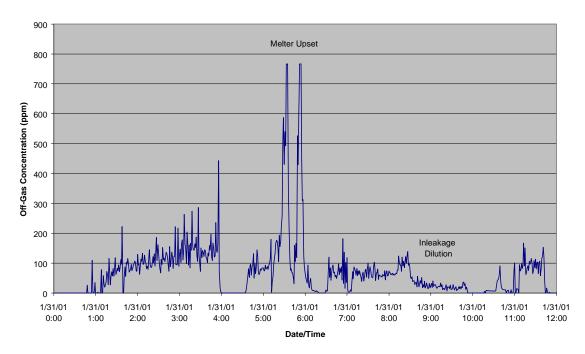

Quadrupole Off-Gas Response

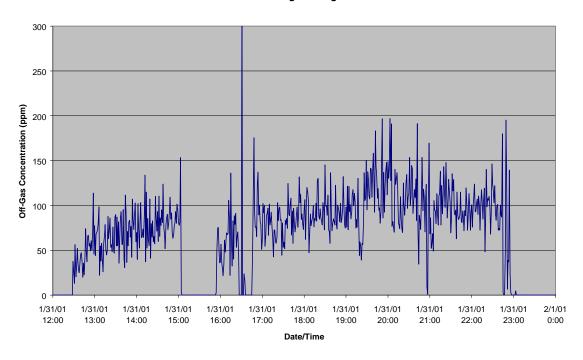

Quadrupole Off-Gas Response

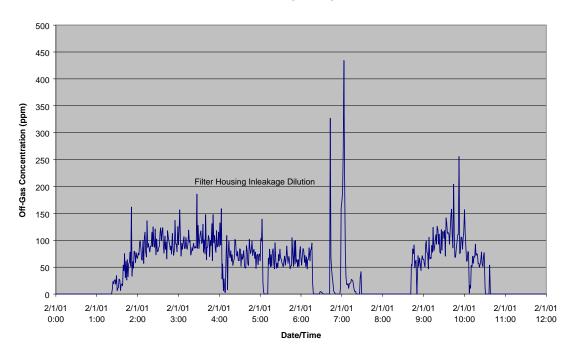

Quadrupole Off-Gas Response

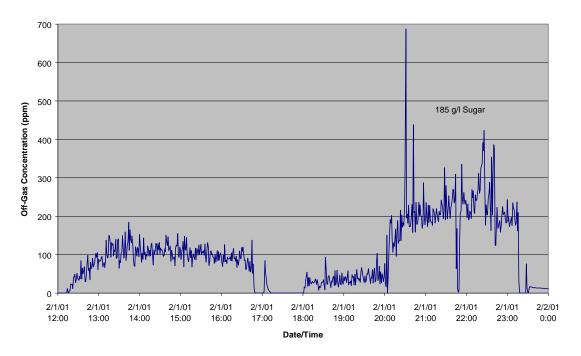

Quadrupole Off-Gas Response

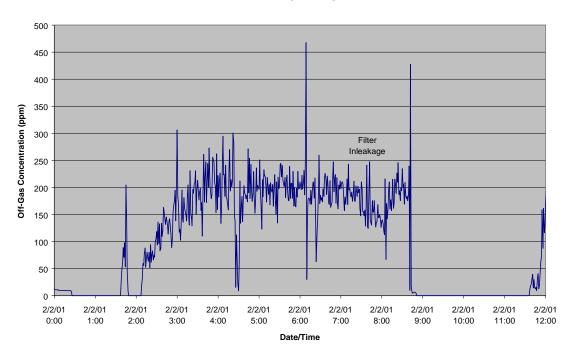

Total Hydrocarbon Analysis Waste Sugar: 135 g/l

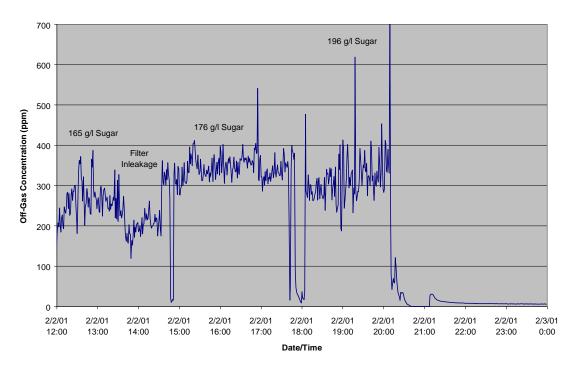

Total Hydrocarbon Analysis Waste Sugar: 135 g/l


Total Hydrocarbon Analysis Waste Sugar: 135 g/l


Total Hydrocarbon Analysis Waste Sugar: 135 g/l


Total Hydrocarbon Analysis Waste Sugar: 135 g/l


Total Hydrocarbon Analysis Waste Sugar: 135g/l


Total Hydrocarbon Analysis Waste Sugar 135 g/l

Total Hydrocarbon Analysis Waste Sugar: 168 g/l

Total Hydrocarbon Analysis

Appendix H Photographs of the Off-Gas Line Deposits

Appendix H: Photographs of the Film Cooler, the Off-Gas Jumper, and the EVS Inlet

Operational and Spare Film Coolers (left to right). Inlet in the Foreground

Inlet View Of RSM 1.5" IPS Film Cooler

2" IPS Film Cooler Outlet Adapter

Horizontal 2" IPS Off-Gas Pipe Run Between The Film Cooler and EVS

Horizontal 2" IPS to 3"IPS EVS Inlet adapter

3" IPS EVS Inlet Port

Encrusted EVS Spray Nozzle

EVS Outlet Port