PNNL-13507

Assessment of Code Officials' Needs in Tri-Cities, Washington, to Accelerate Permitting Process for Fuel Cells in Buildings

T.C.C. Hillman A. P. Melendez J. J. McCullough A. M. Borbely-Bartis

April 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

(8/00)

PNNL-13507

Assessment of Code Officials' Needs in Tri-Cities, Washington, to Accelerate Permitting Process for Fuel Cells in Buildings

T.C.C. Hillman A. P. Melendez J. J. McCullough A. M. Borbely-Bartis

April 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Preface

The U.S. Department of Energy (DOE) has sponsored an annual Fuel Cells Summit since 1997 to help eliminate institutional barriers and foster a receptive codes and standards environment for fuel cell technologies. These summits bring together fuel cell manufacturers, code body representatives, insurance organizations, government representatives, and many others with an interest in fuel cells and their implementation.

An issue raised at these summits concerns the level of knowledge local code officials have related to fuel cell technology; i.e., what level of familiarity with fuel cell technology will the person(s) have who will be responsible for actually approving the installation of a fuel cell in an individual setting? The assessment discussed in this report was done to "test the waters" on a relatively small scale. The Tri-Cities (Richland, Kennewick, and Pasco) in Washington State were selected because of their proximity to the Pacific Northwest National Laboratory and because they cover multiple-city and -county jurisdictions, and thus a variety of building codes and regulations in a fairly small area. While the results of this assessment are not of sufficient statistical validity to be extrapolated to the United States as a whole, they do provide a useful starting point for considering various actions that may be undertaken to address problems or gaps in knowledge suggested herein.

Summary

Fuel cell technologies originally developed for space applications are now being developed to provide electricity and heat to buildings. Although most fuel cell products will not be fully commercialized until at least 2005, prototypes and some earlier commercial rollouts are currently being introduced to the market. Local building inspectors and fire marshals must be prepared to permit these new technologies.

Very few approved and adopted building codes and standards reference fuel cells. Some codes and standards are currently being modified and adopted, but this process is often on a three-year cycle (e.g., most national model codes). Because most current building codes and standards do not address fuel cells, permitting these systems is a slow or circuitous process that may ultimately seriously hinder the market penetration of fuel cells and other distributed energy resource (DER) technologies. (See Section 2.0 for the status of fuel cell requirements in codes and standards.)

To promote market penetration of fuel cells, the U.S. Department of Energy (DOE) has expressed interest in developing an education and outreach program for building code officials across the United States. To help develop an effective agenda for this national education program, Pacific Northwest National Laboratory (PNNL), under DOE's direction, assessed the needs of building code officials and code inspectors in Tri-Cities, Washington, to effectively and efficiently permit fuel cell systems.

During this assessment, each participant completed a questionnaire and participated in a group interview. (See Appendix A for a copy of the questionnaire and Appendix B for a list of code officials who participated.) The questionnaire was designed to assess participants' current knowledge of fuel cells. The interview included a brief introductory presentation on fuel cells, a fuel cell demonstration, and a discussion on potential issues. The group interview helped identify the participants' major issues if required to inspect a fuel cell installation in local jurisdictions, and determine the most effective training tools to educate participants on fuel cells and assist them in code compliance.

The code officials identified several issues related to permitting a fuel cell installation (see Table 4.1). The three most urgent and potentially hindering issues that must be addressed are

- fuel supply and storage, as it relates to the type of fuel being used and storage location
- utility interconnect, as it relates to requirements for connecting and supplying electricity back to the local power grid
- fire fighter intervention when responding to a fire with a fuel cell installed in or around the building.

Our assessment indicates that code officials will need a great deal of education to become "up to speed" on fuel cells and their relevant codes and standards. None of the code officials participating in this study had previous knowledge of fuel cells or of relevant codes and standards.

Based on our findings, incorporating a half-day workshop into regularly scheduled conferences would be the most effective and efficient way to reach and educate code officials throughout the United States. Not only do code officials attend conferences across the country, but these conferences were also rated the highest and most beneficial training tool. A sample half-day education agenda that could be used at one of these conferences is provided in Appendix C. In addition, reference materials, such as a field guide and an educational video, should be available at these workshops so that code officials can take the information back to their respective jurisdictions.

To develop and implement the most effective national education program, we also recommend that:

- similar evaluations be conducted in larger metropolitan areas to provide more comprehensive results at the national level
- appropriate agenda items be developed by assessing
 - the type of information the particular group needs to receive
 - the most effective way to get that information to the participants.

Acknowledgments

This study was supported by the U.S. Department of Energy, Office of Power Technologies. Assistance from several key individuals with experience and expertise in building codes and standards contributed to the completion of this assessment. We wish to acknowledge the contributions and valuable input provided by the building code officials in the Tri-Cities, Washington. Specifically, we would like to thank the following individuals:

Rick Hopkins	Building Inspector Supervisor, City of Richland
Mitch Nickolds	Inspection Services Manager, City of Pasco
Rick Wright	Building Official, City of Kennewick
Daryl Brown	Building Official, Franklin County Building Department
Steve Brown	Building Official, Benton County Building Department
Joe Terpenning	Fire Inspector, Kennewick Fire Department
Dene Koons	Electrical Field Supervisor, Washington Department of Labor and Industries

We appreciate their patience and willingness to help with our assessment.

In addition, we would like to thank the Chief Electrical Engineer for the city of Richland, Wayne Collop, for his time and support.

Contents

Pref	ace		iii
Sum	imary	·	v
Ack	nowl	edgments	vii
1.0	Intro	oduction	1.1
2.0	Stat	us of Fuel Cell Technology in Codes and Standards	2.1
	2.1	Description of Fuel Cells	2.1
	2.2	Fuel Cell Codes and Standards	2.1
3.0	Cod	e Officials	3.1
	3.1	Code Compliance	3.1
	3.2	Certification Requirements	3.1
	3.3	Educational Requirements	3.1
4.0	The	Tri-Cities Building Code Environment	4.1
	4.1	Code Officials in the Tri-Cities	4.1
	4.2	Permitting Process	4.1
	4.3	Zoning Ordinances	4.1
	4.4	Installation Requirements	4.2
5.0	Ass	essment of Code Officials in Tri-Cities	5.1
	5.1	Questionnaire	5.1
	5.2	Group Interview	5.1
	5.3	Major Issues	5.2 5.2 5.2

	5.3.3 Fire Fighter Intervention	5.3
	5.4 Training Tools	5.6
6.0	Conclusions and Recommendations	6.1
7.0	References	7.1
A	and in A Freed Cell Contained Cells Official Constitutions	A 1
App	endix A - Fuel Cell Systems Code Official Questionnaire	A.I
Appendix B - List of Participants H		B.1
Appendix C - Sample Half-Day Agenda for Fuel Cell Workshop		C.1

Figures

4.1	Typical Installation Requirements for a Fuel Cell in a Commercial Building	4.2
5.1	Participant's Rating of Training Tools	5.6

Tables

2.1	Codes and Standards that Relate to Fuel Cells	2.2
5.1	Code Officials' Issues and Concerns Relating to Fuel Cells	5.3

1.0 Introduction

Very few approved and adopted building codes and standards reference fuel cells. Some codes and standards are currently being modified and adopted, but this process is often on a three-year cycle (e.g., most national model codes). Because most current building codes and standards do not address fuel cells, permitting these systems is a slow or circuitous process that may ultimately seriously hinder the market penetration of fuel cells and other distributed energy resource (DER) technologies.

To promote market penetration of fuel cells, the U.S. Department of Energy (DOE) has expressed interest in developing an education and outreach program for building code officials across the United States. To help develop an effective agenda for this national education program, Pacific Northwest National Laboratory (PNNL),^(a) under DOE's direction, assessed the needs of building code officials and code inspectors in Tri-Cities, Washington, to effectively and efficiently permit fuel cell systems.

During this assessment, each participant completed a questionnaire and participated in a group interview. The questionnaire was designed to assess participants' current knowledge of fuel cells. The group interview helped identify the participants' major issues if required to inspect a fuel cell installation in local jurisdictions, and determine the most effective training tools to educate participants on fuel cells and assist them in code compliance.

Section 2.0 provides information on the fuel cell technology and the status of fuel cell requirements in current building codes and standards. Section 3.0 contains a brief overview of the requirements to become a code official in the state of Washington, their responsibilities, and the educational resources available to them. An overview of the Tri-Cities building code environment is provided in Section 4.0. Our assessment of participants' knowledge of the fuel cell technology and major issues if required to inspect a fuel cell installation, as well as a rating of the most effective training tools to help educate participants, are provided in Section 5.0. Section 6.0 contains our conclusions and recommendations. Section 7.0 contains a list of the references cited in this report. Appendix A contains a copy of the questionnaire used on our assessment and Appendix B contains a list of the code officials who participated in the assessment. A sample of a half-day education agenda that could be used at conferences to help educate code officials on the fuel cell technology is provided in Appendix C.

⁽a) The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

2.0 Status of Fuel Cell Technology in Codes and Standards

Currently, only a few codes and standards directly reference fuel cells, and other codes and standards that contain information about fuel cells are still being modified and adopted (this process is often on a three-year cycle; e.g., most national model codes). Because most current building codes and standards do not address fuel cells, permitting these systems is a slow or circuitous process that may ultimately seriously hinder the market penetration of fuel cells and other DER technologies.

This section provides a brief description of fuel cells and lists the current codes and standards that relate to fuel cells.

2.1 Description of Fuel Cells

Fuel cells are electrochemical devices that convert a fuel's energy directly to electrical energy. They have two oppositely charged electrodes that produce electricity, water, and heat from a fuel and an oxidant. Fuel cells operate much like continuous batteries when supplied with fuel to the anode (negative electrode) and oxidant (e.g., air) to the cathode (positive electrode). Unlike batteries, fuel cells do not store energy but rather convert energy as long as reactants are being supplied. Fuel cells chemically combine the molecules of a fuel and oxidizer without burning, eliminating the inefficiencies and pollution from traditional combustion. Thus, fuel cells are a high-efficiency, low-emission alternative to conventional combustion.

The operating conditions for a fuel cell are largely determined by the electrolyte (fuel cells are classified by the type of electrolyte). Several fuel cell technologies are currently being developed: Phosphoric Acid (PA), Solid Oxide (SO), Molten Carbonate (MC), Proton Exchange Membrane (PEM) or Polymer Electrolyte (PE), and Alkaline Cells Membrane (ACM).

2.2 Fuel Cell Codes and Standards

In the United States, three model code organizations develop and maintain building codes for use by local jurisdictions-the International Conference of Building Officials (ICBO), the Building Officials and Code Administrators International (BOCA), and the Southern Building Code Congress International (SBCCI). These organizations also provide technical, educational, and administrative support to governmental departments and agencies engaged in building codes administration and enforcement.

Historically, ICBO, BOCA, and SBCCI have operated regionally with states within their regions adopting their model codes. In 1994, these three organizations worked cooperatively to form the International Codes Council (ICC) to develop nationwide codes to help create consistency across the country. Each jurisdiction must adopt the ICC codes before they can be implemented, which is a slow process. Thus, many jurisdictions will continue to use existing codes until a need for change exists or they must adhere to specific code-adopting schedules. Table 2.1 lists the codes and standards that relate to fuel cells, the status of each code and standard, and a brief description of each fuel cell requirement.

ANSI Z 21.83-1998/CSA The first edition of the standard was The standard applies to packaged, self-contained	Title and Contact	Status	Description
	ANSI Z 21.83-1998/CSA	The first edition of the standard was	The standard applies to packaged, self-contained
12.10 published in 1998. It is a harmon- or factory-matched packages of integrated	12.10	published in 1998. It is a harmon-	or factory-matched packages of integrated
"Fuel Cell Power Plants" ized standard between the United systems of fuel cell power plants for use with	"Fuel Cell Power Plants"	ized standard between the United	systems of fuel cell power plants for use with
States and Canada. A fuel cell natural or LP gas, having a maximum output		States and Canada. A fuel cell	natural or LP gas, having a maximum output
Steven E. Kazubski technical working group is revising voltage of 600 VAC and power output of	Steven E. Kazubski	technical working group is revising	voltage of 600 VAC and power output of
Project Manager, Stds. the standard to address comments 1,000 kW operating at no less than -20°F	Project Manager, Stds.	the standard to address comments	1,000 kW operating at no less than -20°F
CSA International from fuel cell manufacturers. (-29°C). Criteria are provided for both con-	CSA International	from fuel cell manufacturers.	(-29°C). Criteria are provided for both con-
8501 E. Pleasant Valley Rd. struction and performance of applicable fuel	8501 E. Pleasant Valley Rd.		struction and performance of applicable fuel
Cleveland, OH 44131-5575 cells. The following construction issues are	Cleveland, OH 44131-5575		cells. The following construction issues are
(216) 524-4990 x 8303 addressed:	(216) 524-4990 x 8303		addressed:
steve.kazubski@csa- • materials	steve.kazubski@csa-		• materials
international.org • general construction and assembly	international.org		• general construction and assembly
enclosures and associated construction			• enclosures and associated construction
www.csa-international.org • heaters and vessels	www.csa-international.org		• heaters and vessels
• piping systems			• piping systems
• drain, venting, and ventilation exhaust			• drain, venting, and ventilation exhaust
systems			systems
• automatic ignition systems and gas-air			• automatic ignition systems and gas-air
control			control
• flame safeguards			• flame safeguards
• fuel gas controls and equipment			 fuel gas controls and equipment
 air/fluid handling and moving equipment 			 air/fluid handling and moving equipment
all/fitted handling and moving equipment			 electrical equipment and wiring
protection of service personnel			 protection of service personnal
protection of service personner			protection of service personner
• safety circuit analysis			• safety circuit analysis
• instructions and marking.			• instructions and marking.
Performance issues are addressed, such as ultimate strength, allowable lookage, protection			Performance issues are addressed, such as
amissions hurner operation, automatic ignition			amissions burner operation automatic ignition
emissions, burnet operation, automatic ignition, exhaust gas and surface and component tem			exhaust gas and surface and component tem
perstures, electrical tests, rain and wind, and			paratures electrical tests rain and wind and
adhesion/legibility of markings			adhesion/legibility of markings
adhesion regionity of markings.			denesion regionity of markings.

Table 2.1. (contd)

Title and Contact	Status	Description
ASME Boiler and Pressure Vessel Codes The American Society of Mechanical Engineers Three Park Ave. New York, NY 10016 (800) 843-2763	Regularly maintained and updated.	Fuel cell power plants that employ pressure vessels or power piping may be subject to the ASME Boiler and Pressure Vessel Codes, as well as regular inspections of those components.
ASME PTC 50 "Performance Test Code for Fuel Cell Power System Performance" Jack Karian, Staff Secretary ASME (212) 591-8552 (212) 591-8501 Fax karianj@asme.org Frank Holcomb, Army Corps of Engineers, CERL (217)-352-6511x7412 f-holcomb@cecer.army.mil http://www.dodfuelcell.com Mark Williams (chair) U.S. Department of Energy Federal Energy Technology Center (304) 285-4747 mwilli@fetc.doe.gov	The Object and Scope have been completed and approved by ASME. A first draft was completed in April 1999. Work continues with a tar- geted date of 2002 for completion and publication.	 Outline of the standard: Object, Scope, and Measurement Uncertainty Definitions and Descriptions of Terms Guiding Principles Instruments and Methods of Measurement Calculations and Results Report of Results Uncertainty PTC 50 covers PA, PEM, MC, and SO fuel cells for all applications. Test procedures, methods, and definitions are provided to address the performance characterization of fuel cell power systems (overall) with respect to inputs and outputs at steady-state conditions.

Table 2.1. (contd)

Title and Contact	Status	Description
2000 International	The 2000 International Mechanical	Section 924 of the IMC covers stationary fuel
Mechanical Code	Code (IMC) has been published and	cell power plants as follows:
	provides criteria for the installation	
International Code Council	and use of mechanical equipment	"924.1 General. Stationary fuel cell power
5203 Leesburg Pike	and appliances.	plants having a power output not exceeding
Suite 708		1,000 kW, shall be tested in accordance with
Falls Church, VA 22041		ANSI Z21.83, and shall be installed in accord-
(703) 931-4533		ance with the manufacturer's installation
`´´		instructions."
Larry Simpson P.E.		
(Secretariat)		Fuel cell power plant installations greater than
(205) 591-1853		1.000-kW output would have to be approved
(under a section of the IMC on alternative
lsimpson@sbcci.org		methods and materials wherein the technology
		proponent would have to provide test data.
www.intlcode.org		calculations, and other documentation showing
		that what they proposed was "equivalent in
		performance from a safety and health stand-
		point" to other technologies specifically
		provided for in the code.
		r
International Standards	ISO/TC 197 is preparing the	Published international standards:
Organization Technical	international standards, mainly the	
Committee (ISO/TC) 197	safety standards that are required to	ISO 13984: "Liquid Hydrogen - Land Vehicle
	ensure a worldwide dissemination	Fueling System Interface"
Dr. Tapan Bose (chair)	of hydrogen technologies. The	ISO 14687: "Hydrogen Fuel - Product
(819) 376-5139	scope of ISO/TC-197 is,	Specification"
(819) 376-5164 Fax	"Standardization in the field of	L
`´´	systems and devices for the	International standards under development:
Silvie Gringas, Secretary	production, storage, transport,	L
	measurement and use of hydrogen."	ISO/CD 13985: "Liquid Hydrogen - Land
		Vehicle Fuel Tanks"
		ISO/WD 13986: "Tank Containers for
		Multimodal Transportation of Liquid
		Hydrogen"
		ISO/WD 15594: "Airport Hydrogen Fueling
		Facility"
		ISO/WD 15866: "Gaseous Hydrogen Blends
		and Hydrogen Fuel - Service Stations"
		ISO/WD 15869: "Gaseous Hydrogen and
		Hydrogen Blends - Land Vehicle Fuel Tanks"
		ISO/WD 15916: "Basic Requirements for the
		Safety of Hydrogen Systems"
		ISO/AWI 17268: "Gaseous Hydrogen - Land
		Vehicle Fuelling Connectors"

Table 2.1. (contd)

Title and Contact	Status	Description
NFPA 70	A proposal to add a new Article 691	The NEC provides criteria that would apply to
"National Electric Code"	to the "National Electric Code"	certain electrical installations related to fuel cell
National Fire Protection	(NEC) dealing with fuel cells has been submitted to NEPA for con	power plants. Currently, it does not contain any fuel cell specific criteria
Association	sideration and approved in princi-	nuer cen-specific efficita.
1 Batterymarch Park	pal. Public comment will be	The draft Article 691 covering self-contained
Quincy, MA 02269-9101	solicited on the proposal and it will	fuel cells addresses the following:
(617) 770-3000	be considered for final action in	
	May 2001 by the NFPA.	• installation requirements
Jean O'Connor (recording		• circuit requirements
secretary for Code Making		• overcurrent protection
Panel #3) (617) 984-7421		 wiring requirements associated with and outside the fuel cell
		• grounding
		• marking
		• connections to other systems.
		Fuel cells with outputs over 600 volts AC are
NEDA 852	The standard has been acconted by	The scope of the standard is the design con
"Standard for the Installation	the National Fire Protection Asso-	struction and installation of stationary
of Stationary Fuel Cell	ciation and is available to the	(nonportable) fuel cell power plants with a gross
Power Plants"	public.	electrical generation that exceeds 50 kW;
		including 1) a singular prepackaged, self-
Rich Beilen		contained power plant unit, 2) any combination
(or Jackie Beard, Secretary)		of prepackaged, self-contained power plant
National Fire Protection		units, 3) power plant units comprised of two or
Association		more factory-matched modular components
Duinov MA 02260 0101		(1) angineered and field constructed power
(617) 770-3000 x 7279		a) engineered and neid-constructed power
(017) 770-3000 X 7277		plants that employ fuel cens.
www.nfpa.org		Chapter 2 provides a description of various
		configurations of fuel cells, to which various
Donald Drewry (chair)		criteria are applied. These configurations
Hartford Steam Boiler		include prepackaged, self-contained; pre-
Don Drewry@hsb.com		engineered; and engineered and field-
		constructed fuel cell power plants.
		Chapter 3 provides criteria related to the site for
		fuel cells in all locations, as well as specific
		indoor, outdoor, and rooftop installations and
		interconnections with other building systems.

	(1)
Table 2.1 .	(contd)

Title and Contact	Status	Description
NFPA 853 continued		Chapter 4 covers fuel supplies, including natural gas, LPG, biogas, fuel oil, and hydrogen.
		Chapter 5 addresses ventilation and exhaust of the installation.
		Chapter 6 covers fire protection.
		Chapter 7 lists other referenced publications; include other NFPA standards, ANSI Z21.83, and certain ASME pressure and process piping standards.
National Hydrogen Association 1800 M Street NW, Suite 300 Washington, DC 20036- 5802 Karen Miller, Program Director (202) 223-5547 (202) 223-5537 Fax email: kmiller@ttcorp.com	 The National Hydrogen Association, in cooperation with the U.S. Department of Energy Hydrogen Program, has the following seven working groups, in various stages of activity: 1) WG1: Connectors 2) WG2: a. Containers; b. Hydrides 3) WG3: Refueling Stations 4) WG4: C&S for using electrolysers and fuel cells at customer sites, including homes 5) WG5: C&S for safe selfservice refueling of vehicles with H₂ 6) WG6: Certification program for hydrogen vehicle fuel systems (SAE coordination) 7) WG7: C&S for maritime unique applications of hydrogen (identify unique applications). 	A draft standard has been developed by WG1 for gaseous hydrogen connectors. It was accepted by ISO/TC-197 and is undergoing international development. Related to WG2, the initial NHA draft standard for tanks included only materials used in CNG that were compatible with hydrogen. The international standard does not exclude compo- sites and other materials, as long as they meet a stated performance standard. The NHA encourages members to join the ISO/TC-197 WG 5 and continue to advance the item internationally. WG3 (ISO/TC-197 WG5) is looking at the remaining technical questions, and determining a process or approach for resolving them and coordinating them with the other standards bodies. WG4 is charged with developing a standard for installation, safety, and use of electrolyser hydrogen generators in end-use applications, including residential, commercial, and industrial.
		WG5 is reviewing existing draft standards for refueling stations and connectors to identify any deficiencies for public use.

Table 2.1. (contd)

Title and Contact	Status	Description
NHA continued		WG6 is assisting the SAE in their efforts to
		specify design criteria (e.g., vehicle grounding,
		venting fuel lines, eliminating ignition sources,
		and other safety precautions) for refueling with
		gaseous hydrogen or liquid hydrogen.
		WG7 is identifying maritime-unique applica-
		tions of hydrogen.
P1547, "Standards for	The IEEE SCC has several different	P1547 provides a uniform standard for inter-
Distributed Resources	projects underway and is responsi-	connection of distributed resources with electric
Interconnection with Electric	ble for standards associated with	power systems, and requirements relevant to the
Power Systems"	fuel cells, photovoltaics, dispersed	performance, operation, testing, safety conside-
	generation, and energy storage.	rations, and maintenance of the interconnection.
IEEE Standards Coordi-	SCC 21 reports directly to the IEEE	
nating Committee (SCC) 21	Standards Board.	The criteria and requirements in P1547 are
		applicable to all distributed resource (DR)
IEEE Standards Department	P1547 is a very active and fuel cell-	technologies and to the primary and secondary
445 Hoes Lane	relevant standard. Currently, a third	voltages of the electric power distribution
P.O. Box 1331	draft of this standard is out for	systems. Installation of DRs on radial primary
Piscataway, NJ 08855-1331	review and comment. Meetings of	and secondary distribution systems are the main
(800) 678-4333 (IEEE)	the P1547 subcommittees are	emphasis, although primary and secondary
(617) 770-3500 Fax	scheduled about every two months.	network distribution systems are considered.
	The standard is slated for	The second in D1547 and the second state
Richard DeBlasio (chair SCC	completion in 2001.	The requirements in P1547 are to be met at the
21) National Danawahla Enangy		point of common coupling, although the
Lab		location of the protective devices may not
(303) 384 6400		necessarity be at that point.
dick_deblasio@tenlink_prel		Chapter 2 covers classification of the inter
dick_deblasio@teplilik.illel.		connection problem being considered so the
gov		appropriate provisions of the standard can be
T Basso (secretary of P15/17		appropriate provisions of the standard can be
Working Group)		applied.
National Renewable Energy		Chapter 3 covers universal technical require-
Laboratory – MS3411		ments associated with items such as voltage
1617 Cole Blvd.		regulation, power quality, and abnormal
Golden, CO 80401-3393		operation.
(303) 384-6765		
, ,		Chapter 4 provides criteria for common tests.
thomas basso@nrel.gov		degree of protection tests, and low and high
		voltage tests.
		-
		Chapter 5 provides a summary of interconnec-
		tion requirements.

Table 2.1 .	(contd)
--------------------	---------

Title and Contact	Status	Description
Underwriters Laboratories,	Underwriters Laboratories, Inc., has	Stationary Engine Generator Assemblies,
Inc.	several product safety standards	UL 2200:
333 Pfingsten Road	available and under development	
Northbrook, IL 60068	that would have some bearing on	• Covers assemblies not exceeding 600 volts
Thad Bukowski	fuel cell technology:	intended for installation and use in ordinary
(847) 272-8800 x 42948		locations meeting NFPA standards 70, 37
	• UL 2200 – "Stationary Engine	(stationary combustion engines and gas
Harry P. Jones	Generator Assemblies"	turbines), 99 (health care facilities), and 110
harry.p.jones@us.ul.com	• UL 674 – "Electric Motors and	(emergency power).
	Generators for Hazardous	• Not covered are generators for use in
Tim Zgonena	(Classified) Location"	hazardous locations, which is covered by
(847) 272-8800 x 43051	• UL 1778 – "Uninterruptible	UL 674, and uninterruptible power supply
	Power Supply Equipment"	equipment covered by UL 1778.
	• UL 1741 – "Static Inverters	
	and Charge Controllers"	Division 1 Herendous Locations III 674:
	III 1741 Lee Lee Lee	Division 1 Hazardous Locations, UL 074.
	UL 1/41 has been harmonized with	• Electric motors and generators in hazardous
	harmonization with IEEE 1547 after	locations are covered, as well as explosion-
	IEEE 1547 has been published	proof equipment. Use is limited to certain
	TELE 1347 has been published.	atmospheric conditions (minimum -70° C
		oxygen concentration by volume of not
		over 21%, and one atmosphere barometric
		pressure).
		Uninterruptible Power Supply (UPS)
		Equipment, UL 1778:
		• Applies to AC or DC not over 600 volts
		intended for installations meeting NFPA 70.
		• The UPS allows primary or normal power
		to deliver AC power to the protected load
		through either the power conversion portion
		of the UPS or a bypass source. The UPS
		power conversion components consist of a
		rectifier and/or an inverter.
		• Some of the products used with a UPS and
		covered by the standard include remote
		battery supply cabinets, bypass switches,
		and remote panel switches.
		• A battery supply used with a UPS may
		consist of: a battery supply integral to the
		UPS, a battery supply in a remote cabinet,
		bettery room
		UPS, a battery supply in a remote cabinet, or a battery supply contained in a separate battery room.

Table 2.1. (contd)

Title and Contact	Status	Description
UL continued		 Static Inverters and Charge Controllers, UL Subject 1741: Inverters used with photovoltaic systems are covered, as well as inverters with charge controllers that convert AC power from a generator or electric utility to DC power for charging batteries. Inverters, AC modules, and charge controllers that are covered are rated to up to 600 volts and intended for installation in accordance with NFPA 70. Inverters include standalone units and utility interactive inverters for use in parallel with an electric utility to supply common loads. The AC modules are intended to be installed on dedicated branch circuits in parallel for use with an electric utility. The charge controller may be separate or incorporated with the inverter.
National Evaluation Service	The National Evaluation Service	The NES is developing an evaluation protocol
Suite 708	(NES) is continuing development of the evaluation protocol	by which stationary fuel cell power plants can be evaluated and a National Evaluation Report
Falls Church, VA 22041	the evaluation protocol.	(NER) issued on a subject technology. An NER
Dave Conover		verifies and supports compliance with adopted
703-931-2187		codes and standards, and is used by state and
		local code officials to enforce building
dconover@nateval.org		regulations.
www.nateval.org		

3.0 Code Officials

Code officials are responsible for addressing the life, health, and safety issues of every individual that enters, works, or resides in a building. Typically, their job involves site plan reviews, as well as on-site inspections to ensure compliance with the adopted codes of that jurisdiction.

This section briefly describes the hierarchy for code compliance, the requirements for becoming a code official, and the educational resources available to code officials in the state of Washington. In this report, the term code official includes building officials, code enforcement officials, and code inspectors.

3.1 Code Compliance

In most states, a hierarchy exists to create code compliance for every jurisdiction within that state. In the state of Washington, codes are adopted at the state level and are enforced at the local level. Each jurisdiction may make slight modifications to the adopted code, but it must first get approval from the state. Currently, the state of Washington has adopted the ICBO model codes, with applicable amendments at the local level.

3.2 Certification Requirements

A code official must be certified by the model code organizations responsible for developing the codes enforced by the official's jurisdiction. To become certified, code officials must pass an exam showing a certain level of proficiency in areas of building construction (e.g., electrical, mechanical, envelope). In addition, code officials' must be recertified in these areas after a given period of time. (The appropriate model code organization for a jurisdiction can provide more information about specific certification processes.) Code official certification in the state of Washington follows guidelines from ICBO.

3.3 Educational Requirements

Code officials regularly attend training activities, such as seminars, conventions, and technical courses, which are organized by national and state programs. These training activities allow code officials to stay up to date on new information, to be certified and recertified, and to network among peers.

Code officials in the state of Washington attend both national and state conventions. Once or twice a year, regional ICBO Chapters offer a four-day workshop to bring local code officials and inspectors up to date on recent code changes and to refresh their knowledge of existing code requirements. The

Washington Association of Building Officials (WABO) is one group that organizes two workshops per year for code officials. In addition to these two conferences, several other associations and organizations provide information and support to local code officials:

- International Conference of Building Officials (ICBO)
- International Association of Plumbing and Mechanical Officials (IAMPO)
- American Association of Code Enforcement (AACE)
- International Fire Code Institute (IFCI)
- International Association of Electrical Inspectors (IAEI)
- Building Officials and Code Administrators International, Inc. (BOCA).

Code officials also receive information through several publications:

- *Official, Standards*, and *Code Official* all three publications published by the International Association of Plumbing and Mechanical Officials, Walnut, California.
- *Building Code Standards* published by the International Conference of Building Officials, Whittier, California.

The following organizations publish newsletters related to code compliance:

- WABO
- IAPMO
- ICBO
- Underwriters Laboratories, Inc. (UL)
- IAEI
- Washington Association of Code Enforcement (WACE).

4.0 The Tri-Cities Building Code Environment

The metropolitan area known as the Tri-Cities is located in south-central Washington and is composed of the cities of Richland, Pasco, and Kennewick. The Tri-Cities has five code-enforcing jurisdictions—the three cities and two counties (Benton and Franklin). Kennewick is the largest city with a population of 50,390, while Richland and Pasco have a population of 36,860 and 26,090, respectively. Combined with nearby communities, the population of the greater Tri-Cities area is in excess of 150,000.

4.1 Code Officials in the Tri-Cities

Each city and county has its own organization responsible for enforcing codes. Appendix B provides a list of the code officials in the Tri-Cities who participated in our evaluation.

4.2 **Permitting Process**

The process for requesting a permit is similar throughout the United States. However, differences exist in the process for requesting and attaining a permit in each jurisdiction. These differences must be considered when addressing fuel cell and other DER technology installations across the country.

The following steps are required for a typical permitting process:

- The party interested in using the technology requests a permit by submitting plans and specifications covering the installation of the technology to the agency or agencies having jurisdiction.
- The plans and specifications are approved based on specific conformance to codes and standards provisions or, where they do not provide specific requirements for the technology, are approved based on equivalency with the intent of adopted codes and standards.
- The technology is installed and inspected for compliance with the approved plans and specifications, and the conditions of the permit covering the installation.
- The party must comply with any order by the inspector requiring corrections.
- The project receives final approval.

4.3 Zoning Ordinances

In most areas of the country (and in the Tri-Cities), local zoning ordinances strongly influence the permitting requirements for a fuel cell installation. Local zoning ordinances dictate specific guidelines for classification of land use and requirements placed upon them (some degree of variability exists in

local ordinances that is expected to increase on the national level). The most apparent influence of these ordinances on fuel cell installations relates to the location of fuel storage tanks within the premises of the structure and within the property lines setback.

4.4 Installation Requirements

Several issues related to fuel cells may attract the attention of code officials, including fuel supply and storage, electrical interconnection to the power grid, ventilation, and fire protection and intervention. Figure 4.1 shows the most common installation requirements for a fuel cell in a commercial building.

Figure 4.1. Typical Installation Requirements for a Fuel Cell in a Commercial Building

Requirements for Figure 4.1

- 1. Component Relevant standards from ANSI, ASME, IEEE, UL.
- 2. NFPA 853, Chapters 4-6 Automatic and control shutdown for fuel, ventilation, and fire protection systems.
- 3. NFPA 853, Chapter 4 Unattended fuel cell units shall have shutoff valve installed ahead of any flexible connector to other controls.
- 4. Oil lubrication system consists of a sealed system; does not require manufacturer's installation instructions.
- 5. NFPA 853, Chapter 5 All fuel piping outside the fuel cell power plant shall be marked or identified in accordance with ANSI A13.1. The design, location, and installation of piping valves and fittings from the outlet of the point of delivery from the supply to the inlets of the equipment shutoff valves for the case of 1) natural gas (in accordance with NFPA 54), 2) liquefied petroleum gas (in accordance with NFPA 58), 3) hydrogen (in accordance with ASME/ANSI B31.3), 4) biogas (in accordance with NFPA 54), and 5) liquid fuels (in accordance with NFPA 30). Piping protection is outlined in MSS SP-69, Pipe Hangers & Supports Selection and Application.
- 6. ASME Boiler and Pressure Vessel Code, where fuel cell power plants employ pressure vessels or power piping.
- 7. NFPA 70, Article 691- All wiring and batteries must be protected from arcing and shorting. Fire protection installation process of electrical equipment and components in accordance with NFPA 853, Section 6.1.4.
- 8. NFPA 853, Section 3.3.1 A fuel cell installation should meet the following conditions: 1) The room shall be separated from the remainder of the building by floor, wall, and ceiling construction that has at least a 1-hour fire resistance rating in accordance with NFPA 251, 2) electrical, piping penetrations, and joints associated with the room shall be sealed with approved materials that have a fire resistance rating of 1-hour, and openings between the room and other occupied spaces shall be protected by fire doors (installed in accordance with NFPA 80) and fire dampers (installed in accordance with NFPA 80), and 3) each room shall be provided with egress (in accordance with NFPA 101). Unit and auxiliary equipment must be protected from natural elements (wind, sun, precipitation, detritus) and vehicular impact.
- 9. NFPA 853, Sections 3.1, 3.2, & 3.4 (outdoor location) Unit must be anchored properly and placed on a firm foundation. Unit must be above the base flood elevation and sited in a manner that permits service, maintenance, and emergency access. Unit must be located away from hazardous materials and building openings. Foundation to be made of noncombustible materials. Air intakes to a fuel cell power plant shall be located so that other exhausts, gases, or contaminants do not adversely affect the plant.
- 10. NFPA 853, Sections 3.1 & 3.3 (indoor) Same foundation requirements as outdoor installations, as each apply. Must be located away from hazardous materials and building openings.
- 11. NFPA 853, Section 3.2.3 and Chapter 5 The exhaust outlet(s) from process areas that contain fuel-bearing components of a fuel cell power plant shall be located at least 15 ft (4.6 m) from HVAC air intakes, windows, doors, and other openings into buildings. For design of ventilation and exhaust system,

All fuel cell power plants shall be provided with a source of ventilation, exhaust, and makeup air in accordance with this chapter (exception: fuel cell power plants installed outdoors and listed prepackaged or pre-engineered and match modular fuel cell power plants that have a sealed, direct ventilation, and exhaust system installed in accordance with manufacturer's installation instructions.

The ventilation exhaust system shall be design to provide a negative or neutral pressure in the room. For ventilation system, separate mechanical ventilation is required, a control interlock shall be provided to shutdown the unit upon loss of ventilation. For exhaust system, the exhaust rate from the room shall not be less than 1 cfm/ft² of floor area and not less than 150 cfm of total floor area.

- 12. NFPA 853, Chapter 4 and Section 6.1.1.1, "Fuel Supplies and Storage Arrangements" This section applies to natural gas (also refer to NFPA 54), liquefied petroleum gas (also refer to NFPA 58), hydrogen (also refer to NFPA 50A and 50B), biogas (also refer to NFPA 54), and liquid fuels (also refer to NFPA 30). The Flammable and Combustible Liquids Code, API (American Petroleum Institute) 620, "Design and Construction of Large Welded Low-Pressure Storage Tanks," may also apply. Sites with fuel storage tanks shall have fire hydrants provided in accordance with NFPA 30 and NFPA 24. Hydrant shall have a water supply of at least 250 gpm for 2 hours.
- 13. Grid Interconnection for fuel cells in accordance with standard currently under development by IEEE SC 21, (Standard P1547), and NFPA 70, Article 691.
- 14. Local zoning ordinances (e.g., definition of hazardous materials and relation to residential zones, distance to property line and rights-of-way, access by local fire and safety authorities) may need to be consulted in some areas.
- 15. Fire Protection Local building inspectors will require a fire risk evaluation be performed for each installation with respect to design, layout, and operating conditions of the unit. From that analysis, the inspector may require any or several of a variety of fire protection systems (portable versus fixed systems, foam or gaseous extinguishers, automatic sprinklers or dry chemical fire suppression systems).

Note: Refer to ANSI Z21.83 for information regarding construction, performance, and testing of fuel cell power plants.

5.0 Assessment of Code Officials in Tri-Cities

To help develop an effective agenda for a national education program on fuel cells for code officials, we assessed the needs of building code officials and code inspectors in the Tri-Cities, Washington, to effectively and efficiently permit fuel cell systems.

During this assessment, each participant completed a questionnaire and participated in a group interview. (See Appendix B for a list of code officials who participated in the assessment.) The questionnaire was designed to assess participants' current knowledge of fuel cells. The interview included a brief introductory presentation on fuel cells, a fuel cell demonstration, and a discussion on potential issues. The group interview helped identify the participants' major issues if required to inspect a fuel cell installlation in local jurisdictions, and determine the most effective training tools to educate participants on fuel cells and assist them in code compliance.

5.1 Questionnaire

The questionnaire was sent to seven individuals—the building officials for the cities of Richland, Pasco, and Kennewick; the two building officials for Benton and Franklin counties; the city of Kennewick Fire Marshall; and the supervising electrical inspector, who covers all five jurisdictions as it applies to electrical inspections. (See Appendix A for a copy of the questionnaire.)

5.2 Group Interview

Our group interview was designed to educate participants about fuel cells and to work with them in an open forum format to identify the major issues they would face when permitting a fuel cell installation in their jurisdiction. We chose to use this format, or a group interview, over individual interviews for two reasons. First, the questionnaires indicated that every code official had very little to no knowledge of fuel cells. Second, the code officials emphasized that their input would be more comprehensive and complete if they could respond openly to each other's comments in an open forum format.

All code officials attended the group interview except for the supervising electrical inspector for the Tri-Cities. In addition to the code officials, the Chief Electrical Engineer for the city of Richland and a representative from IdaTech (fuel cell developer located in Bend, Oregon) attended the interview.

We identified several items during the facilitated group interview:

- 1. the concerns of local code officials in reference to a fuel cell installation
- 2. the major issues local code officials would face if required to inspect a fuel cell installation
- 3. what code officials would need to make the plan review process as easy as possible

4. the most effective training methods and tools for educating code officials on fuel cells and assisting them in code compliance.

5.3 Major Issues

Several issues or concerns were identified during the group interview. Table 5.1 lists and describes these issues and concerns, and provides related codes and standards or a potential action to resolve each issue or concern. The three most critical and potentially hindering issues identified in the interview were fuel supply and storage systems, utility interconnect, and fire fighter intervention.

5.3.1 Fuel Supply and Storage Systems

For fuel supply and storage systems, the following were noted as items that need to be addressed (note that storing liquid hydrogen on the premises did not raise any more issues beyond those that need to be addressed with storage of any other fuel on site):

- proximity of fuel storage tank to walls, doors, window openings, and public right-of-ways
- venting of storage containers
- secondary containment of fuel
- automatic shut-off valves at the storage container
- sight glass on the storage container
- appropriate signage.

5.3.2 Utility Interconnect

Grid interconnection with local electric utility companies is a critical issue involving the installation of onsite power sources such as stationary fuel cells. The IEEE Standards Coordinating Committee (SCC) 21 is developing P1547, "Standards for Distributed Resources Interconnection with Electric Power System." This standard will provide a uniform standard for interconnecting distributed resources with electric power systems, and requirements relevant to the performance, operation, testing, safety considerations, and maintenance of the interconnection.

The Washington Department of Labor and Industries requires that local regulations for grid interconnections be based on the following codes:

• *National Electrical Code* (NFPA 1999) - This code presents an installation procedure for one or more electric power production sources operating in parallel with a primary source(s) of electricity. Power sources include any system that produces electricity like utility sources, as well as on-premises

sources like rotating generators, solar photovoltaic systems, and fuel cells. Basic safety requirements are addressed, specifically related to parallel operation with application to power sources.

• *Washington Administrative Code* (Washington Department of Labor and Industries 2001) - This code is related to electrical inspection and permitting for the Department of Labor and Industries. Section 23001, "Service Requirements," states that the serving utility shall be consulted regarding the service entrance location and meter equipment before installing the electric power source service and equipment. It specifies firewall separation standards defined by the *Uniform Building Code* (ICBO 1997a), as well as firewall separation standards based on the *National Electrical Code* (NFPA 1999).

5.3.3 Fire Fighter Intervention

The major concern with fire fighter intervention is entering a building that is still powered by a fuel cell after the power is cut off from the electric power grid. To effectively address this issue, appropriate signs and/or labels should be in easy-to-see locations to make fire fighters aware of the presence of a fuel cell within the premises, the type of fuel used, the exact location of the unit, the location of emergency shut-off valves for fuel supply lines, and the direct power supply to fuel cell plant.

		Related Code or Standard ^(a) or
Issue	Description of Issue	Possible Action
Uniform Building Code (ICBO 1997a)		
Fuel and Fuel Storage	What fuel is used and where is it	NFPA 853, ASME Boiler and Pressure
	stored?	Vessel Codes, ISO/TC-197
Ventilation	How much ventilation is required?	NFPA 853, ANSI Z 21.83-1998/CSA 12.10
Structural Protection	Will an installation require any	NFPA 853, ANSI Z 21.83-1998/CSA 12.10
	particular structural protection?	
Fire Protection	What, if any, are the necessary	NFPA 853, ANSI Z 21.83-1998/CSA 12.10
	enclosures (1-h/2-h firewall)?	
Chemicals	What chemicals are being used? Are	Information to be provided by the
	potentially dangerous reactions taking	manufacturer
	place?	
Clearances	What are the necessary clearances,	NFPA 853, ANSI Z 21.83-1998/CSA
	especially pertaining to proximity of	12.10, manufacturer installation
	combustibles?	specifications
Weight of Fuel Cell Unit	What is the weight of a unit relating to	Information to be provided by the
	building structural concerns?	manufacturer
Indoor vs. Outdoor	The code officials were aware that	NFPA 853, ANSI Z 21.83-1998/CSA 12.10
	different codes will apply based on the	
	location of an installation.	
Safe Environments	It should be specified if certain	Information to be provided by the
	environments exist where a unit should	manufacturer
	not be installed.	

Table 5.1. Code Officials' Issues and Concerns Relating to Fuel C
--

Table 5.1. (contd)

		Related Code or Standard ^(a) or	
Issue	Description of Issue	Possible Action	
Generated Waste	Need to be aware of all by-products	Information to be provided by the	
	and waste produced.	manufacturer	
Batteries	Will the batteries require specific	NFPA 853, ANSI Z 21.83-1998/CSA	
	ventilation or a possible metering	12.10, manufacturer installation	
	device to detect hazardous gases?	specifications	
Interface with Emergency	How does the unit react to water and	Should be safe, or properly noted by	
Equipment	possibly a fire extinguisher?	manufacturer	
Uniform Fire Code (ICBO 19	97b)		
Emergency Remote Shut-Off	Is it necessary to have a remote shut-	NFPA 853, manufacturer installation	
	off for both the fuel cell and its fuel?	specifications	
Signage	Needs an appropriate placard	To be provided by the manufacturer	
	describing the fuel used.		
Electro/Mechanical Shunt	Does the unit have the necessary	Included in life/health/safety codes	
	electro/mechanical shunts?		
Installation in Garages	Potential exposure issues and	NFPA 853, ANSI Z 21.83-1998/CSA	
_	chemical reaction related problems in	12.10, manufacturer installation	
	a garage.	specifications	
Explosion	Can the unit explode?	Information to be provided by the	
-	-	manufacturer	
Storage Tank	Clearance and proximity issues, as	NFPA 853, ANSI Z 21.83-1998/CSA	
	well as possible ventilation for leaking	12.10, manufacturer installation	
	gases.	specifications	
Site Plan	Necessary distances from house,	NFPA 853, ANSI Z 21.83-1998/CSA	
	property line, or building.	12.10, local zoning ordinances	
Fire Fighter Intervention	Is it necessary to have prior knowl-	Signage by electrical panel and at the	
	edge of a fuel cell located in a burning	connection to the power grid should notify	
	building?	fire fighters	
Necessary Detectors	Possible heat detectors, as well as	NFPA 853, ANSI Z 21.83-1998/CSA	
	additional fire and smoke detectors.	12.10, manufacturer installation	
		specifications	
Uniform Mechanical Code and Uniform Plumbing Code (ICBO 1997a, 1997b)			
Ventilation	How much ventilation is required?	NFPA 853, ANSI Z 21.83-1998/CSA	
		12.10, manufacturer installation	
		specifications	
Generated Waste	What are in the by-products? Can	NFPA 853, ANSI Z 21.83-1998/CSA	
	waste go down the drain? Can waste	12.10, manufacturer installation	
	be vented to DWV system?	specifications	
Drainage	Check with proper authorities (e.g.,	NFPA 853, ANSI Z 21.83-1998/CSA	
	Health Department, EPA ^(b)) for	12.10, manufacturer installation	
	permission to send drainage into the	specifications	
	sewer system or septic tank.		

Table	5.1 .	(contd)
-------	--------------	---------

		Related Code or Standard ^(a) or
Issue	Description of Issue	Possible Action
Effect on Existing Piping	Will a fuel cell unit or its generated	NFPA 853, ANSI Z 21.83-1998/CSA
	waste adversely affect the existing	12.10, manufacturer installation
	piping system?	specifications
Fuel Storage	What is the allowable storage amount	NFPA 853, ANSI Z 21.83-1998/CSA 12.10
	of fuel?	
Toxins	Are any toxins used or produced that	Information to be provided by the
	need to be monitored?	manufacturer
Disposal/Recycling	What are the proper methods of	Information to be provided by the
	disposing of or recycling fuel cell	manufacturer
	components?	
National Electrical Code (NF	-PA 1999)	
Utility Interconnect	What are the issues related to	IEEE SCC 21, NFPA 70 Article 691
	interconnecting to the local power	
	grid?	
Static Electricity	What are possible issues with	NFPA 70 Article 691, manufacturer
	generated static electricity, particularly	installation specifications
	with pace makers?	
Switchgear	Should the switchgear be automatic or	NFPA 70 Article 691, manufacturer
	manual?	installation specifications
Radio Frequency Signals	Will there be an issue with RF signals	Proper FCC code compliance listing
	produced by the unit?	provided by manufacturer
Grounding	Should there be additional grounding?	NFPA 70 Article 691, manufacturer
		installation specifications
Ground Fault Circuit	Will there be a need for a GFCI?	NFPA 70 Article 691, manufacturer
Interrupter (GFCI)		installation specifications
(a) Refer to Section 7.0 for reference information on codes and standards.		
(b) Environmental Protection	n Agency.	

Because most current building codes and standards do not address fuel cells, permitting these systems is a slow process. Therefore, to help expedite the permitting process, the participants recommended that building professionals include the following information on plans:

- a site plan with the location of the fuel cell
- manufacturer installation requirements, with the manufactures' standards approved by a quality assurance agency like UL
- the licensure that will be required to install a fuel cell system

- a complete wiring schematic showing all connection points
- all necessary clearances.

The participants also recommended that manufacturers consider over design (i.e., using larger pipes or greater clearances than required) to reconcile possible inconsistencies between jurisdictional requirements. In this case, the savings in installation costs will offset the higher manufacturing costs of a slightly over-designed product. Although these needs are typically met, the time and money saved by clearly addressing each of them could greatly increase the return on investment.

5.4 Training Tools

Several training tools are available to educate code officials on fuel cells. During our evaluation, we proposed 11 potential training tools to the participants. Each participant listed the top five choices. Figure 5.1 shows the 11 training tools and the number of votes given for each. The most popular training tools for code officials were conferences and field guides/checklists. The second highest rated tools included having a manufacturer's representative as part of a workshop and providing an educational video.

Note that although this evaluation identifies issues relating to fuel cell installations, it may not be representative of the country as a whole because the participants were from the Tri-Cities, Washington. These three cities are smaller and more rural than metropolitan areas that may extensively employ such DER technologies. A similar effort should be conducted in a larger metropolitan area to provide more comprehensive results on the national level.

Figure 5.1. Participant's Rating of Training Tools

6.0 Conclusions and Recommendations

During the group interview, the participants identified several issues related to permitting a fuel cell installation (see Table 4.1). The three most urgent and potentially hindering issues that must be addressed are

- fuel supply and storage, as it relates to the type of fuel being used and storage location
- utility interconnect, as it relates to requirements for connecting and supplying electricity back to the local power grid
- fire fighter intervention when responding to a fire with a fuel cell installed in or around the building.

Our assessment indicates that code officials will need a great deal of education to become "up to speed" on fuel cells and their relevant codes and standards. None of the code officials participating in this study had previous knowledge of fuel cells or of relevant codes and standards. Thus, developing and implementing a national education program is vital to ensure fuel cell penetration in the commercial market.

Based on our findings, incorporating a half-day workshop (see Appendix C for a sample agenda) into regularly scheduled conferences would be the most effective and efficient way to reach and educate code officials throughout the United States. Not only do code officials attend conferences across the country, but the participants of our evaluation also rated these conferences the highest and most beneficial training tool. In addition, reference materials, such as a field guide and an educational video, should be available at these workshops so that code officials can take the information back to their respective jurisdictions.

To develop and implement the most effective national education program, we also recommend that:

- similar evaluations be conducted in larger metropolitan areas to provide more comprehensive results at the national level
- appropriate agenda items be developed by assessing
 - the type of information the particular group needs to receive
 - the most effective way to get that information to the participants.

We recommend that the next step in this process be focused on developing the most effective plan for implementing a comprehensive national education program. To properly design such a program, we must identify what type of information these building professionals should receive and how to most effectively and efficiently deliver the information to them. Attending code officials' conferences seems to be the easiest way to reach the greatest number of individuals. However, we now need to identify how the material should be presented and how reference materials like a field guide and a video should be designed.

7.0 References

International Conference of Building Officials (ICBOa). 1997. Uniform Building Code. Whittier, California.

International Conference of Building Officials (ICBOb). 1997. Uniform Fire Code. Whittier, California.

International Conference of Building Officials (ICBOc). 1997. Uniform Mechanical Code. Whittier, California.

International Conference of Building Officials (ICBOd). 1997. Uniform Plumbing Code. Whittier, California.

National Fire Protection Association (NFPA). 1999. *National Electrical Code*, NEC 705, "Interconnected Electric Power Production Sources." Quincy, Massachusetts.

Washington Department of Labor and Industries. 2001. *Washington Administrative Code*, Chapter 296-46A WAC, "Safety Standards, Installing Electric Wires and Equipment – Administrative Rules." Olympia, Washington.

Appendix A

Fuel Cell Systems Code Official Questionnaire

Appendix A

Fuel Cell Systems Code Official Questionnaire

Section I—Personal Background

- 1. What is your area of responsibility in building inspection? (electrical, mechanical, subsystems, energy efficiency, fire, plumbing, etc.)
- 2. How long have you been in this position?
- 3. What codes or standards do you most frequently consult? (If a standard, please give full name and number. If a code, please give code number and relevant articles.)
- 4. If you have a question, how do you research the answer? (who do you ask, what references do you use, is there a state code agency that can help, etc.)
- 5. Who do you report your findings to?
- 6. Is there a hierarchy within the state of Washington for code compliance, determining which codes will be used in a given jurisdiction, etc? _____ If yes, please explain briefly.
- 7. How long does a permit requestor have to comply with an order given by you?

Section II—Code Official Education

- 1. What are the requirements to become a code inspector?
- 2. Are there any state or national programs that code officials regularly attend? (please list)
- 3. Are there any on-going education requirements for code inspectors? (a specific number of hours of training annually or training sessions, specific courses).

If yes, who conducts these trainings?

- 4. What periodicals do you subscribe to for information in your field as a code inspector?
- 5. Do any associations related to codes and standards, inspectors, etc., have newsletters? _____. If yes, please list them:
- Do any associations related to codes and standards, inspectors, etc., have annual conventions?
 _____. If yes, please list them:
- 7. Are there any other sources of information available to you as a code inspector? (online sources, state agency information or hotlines, etc.)._____. If yes, please list them:

Section III—Inspection of a Fuel Cell Installation

The following questions will help us understand the current knowledge base of code officials and inspectors with respect to fuel cell installations. If you do not know the answer to a question, please mark "n/a" – **it is very important that you note this** so we can be sure to provide that information to officials in the future. If you refer to any source for an answer, would you please also note that source for the same reason.

- 1. Please explain, briefly, the fundamental differences between the following fuel cell technologies
 - a. PEM (polymer electrolyte membrane):
 - b. Phosphoric Acid:
 - c. Molten Carbonate:
 - d. Solid Oxide:
- 2. Please list all codes or standards that you are currently aware of that reference fuel cells or fuel cell systems, or the installation of fuel cell systems:
- 3. To inspect the fuel system (i.e., propane, natural gas, methanol or hydrogen production, distribution, and storage tanks) for a fuel cell installation, which codes or standards would you refer to?
- 4. To inspect the fire safety of a fuel cell installation, which codes or standards would you refer to?
- 5. Does the ASME Boiler and Pressure Vessel Code apply to fuel cell systems?

- 6. Is there a standard you would use to test and certify the safety and performance of a stationary fuel cell system?
- 7. Is there a third-party testing organization recognized to test and certify fuel cell power plants?_____. If yes, please give the name:
- 8. What are the utility interconnection requirements for connecting a fuel cell system to the local electricity distribution feeder?
- 9. Can a stationary fuel cell power plant be considered as meeting the building code requirement of providing a standby emergency power source for certain buildings?

Section IV—Recommendations

We are developing education training workshops and other education materials for code officials and fuel cell installations. Please rate each of the suggestions below on a scale of 1 to 10 for importance–with 1 being least important to you as a code official and 10 being most important. Please briefly describe why you gave the rating you did.

- 1. Bring products or systems to the code officials for hands-on training? Rate: _____
- 2. Bring manufacturers' representatives for Q&A? Rate: _____
- 3. Bring third-party experts for Q&A? Rate: _____
- 4. Develop a building code handbook for fuel cells and other DER technologies?
- 5. Develop a CD-ROM? Rate: _____
- 6. Develop a web site for updated information on codes and standards and fuel cell systems.
- 7. Distribute information on upcoming seminar and convention schedules related to the fuel cell technology?
- 8. Additional ideas or recommendations?

Appendix B

List of Participants

Appendix B

List of Participants

Contact information and responsibilities for code officials who participated in this study.

Dene Koons (not present for group discussion) Electrical Field Supervisor Washington Department of Labor and Industries 500 N. Morain St., Suite 1110 Kennewick, WA 99336-2683 (509) 735-0130

Responsibilities: Supervising field electrical inspections

Joe Terpenning Fire Inspector Kennewick Fire Department 600 S. Auburn Kennewick, WA 99336 (509) 585-4231

Responsibilities: Fire code inspections

Rick Hopkins Building Inspector Supervisor City of Richland 505 Swift Blvd. Richland, WA 99352 (509) 942-7568

Responsibilities: Building official, Administration of Bldg. Department, enforce all adopted model codes (building, plumbing, mechanical, and energy code)

Mitch Nickolds	as Managar
City of Passo	
$525 \text{ N} 3^{\text{rd}}$	
$\frac{525}{Pasco} = WA = 9930$	1
(509) 735-0109	1
(505) 755 0105	
Responsibilities:	Building official, Administration of Bldg. Department, enforce all adopted model codes (building, plumbing, mechanical, and energy code)
Steve Brown	
Building Official	
Benton County B	uilding Department
5600 West Canal	PI.
Kennewick, WA	99336
(509) 735-3500	
Responsibilities:	Building official, Administration of Bldg. Department, enforce all adopted model
	codes (building, plumbing, mechanical, and energy code)
Daryl Brown	
Building Official	
Franklin County	Building Department
$1016 \text{ N} 4^{\text{th}}$	Bunding Department
Pasco WA 9930	1
(509) 545-3523	•
(007)00000000	
Responsibilities:	Building official, Administration of Bldg. Department, enforce all adopted model
-	codes (building, plumbing, mechanical, and energy code)
Rick Wright	
Building Official	
City of Kennewic	·k
210 W . $6^{\text{th}} \text{ Ave}$	
Kennewick, WA	99336
(509) 585-4277	
Responsibilities	Building official Administration of Bldg Department enforce all adopted model
Responsionnes.	codes (building, plumbing, mechanical, and energy code)

Appendix C

Sample Half-Day Agenda for Fuel Cell Workshop

Appendix C

Sample Half-Day Agenda for Fuel Cell Workshop

Agenda	Fuel Cell Workshop
Type of meeting: Facilitator:	Workshop TBD
Attendees: Please bring:	TBD TBD
Time (minutes)	Agenda topics
5 10 45 30 15 60 20 60	Introductions Why We Are Here Introduction to Fuel Cell Technology Codes and Standards Related to Installation of Fuel Cells Break Codes and Standards Related to Installation of Fuel Cells Wrap-Up/Questions Manufacturer Representatives with Possible Demonstrations (Possibly set up booths for hands-on interaction with code officials after workshop.)