PNNL-13486

Characterization Activities Conducted at the 183-DR Site in Support of an In Situ Gaseous Reduction Demonstration

E. C. Thornton, Project Manager T. J Gilmore K. B. Olsen R. Schalla K. J. Cantrell

March 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

(8/00)

Characterization Activities Conducted at the 183-DR Site in Support of an In Situ Gaseous Reduction Demonstration

E. C. Thornton, Project ManagerT. J GilmoreK. B. OlsenR. SchallaK. J. Cantrell

March 2001

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830

This work is funded by the Office of Science and Technology, within the U.S. Department of Energy's Office of Environmental Management, under the Subsurface Contaminants Focus Area

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

In Situ Gaseous Reduction (ISGR) is a technology currently being developed by the U.S. Department of Energy for the remediation of soil waste sites contaminated with hexavalent chromium, Cr(VI). This approach involves the injection of a treatment gas mixture into a subsurface zone of contamination, resulting in the reduction and immobilization of chromium. The primary beneficial result of treatment is the elimination of a vadose zone source of contamination, thus potentially leading to the decline in hexavalent chromium concentration levels in local groundwater.

Prior work suggests that a candidate for application of this approach is the 183-DR site at Hanford, which is associated with a significant groundwater contaminant plume and was formerly a water treatment facility that utilized chromate as a corrosion inhibitor. This document presents the data collected during the excavation of trenches and the drilling of two vadose zone boreholes (C3040 and C3041) at the 183-DR site to obtain information regarding distribution of hexavalent chromium and other chemical and geological data that could support an ISGR demonstration. Laboratory geotechnical and treatment tests were also conducted to obtain information needed to support the design of an ISGR demonstration, if undertaken at the site.

Sediment samples obtained from the trenches and from nearly continuous split spoon cores from the boreholes were submitted for physical and chemical analysis. Although elevated total chromium was detected in sediment collected from one of the trenches and from the first borehole (C3040) at 68 ft depth, only trace levels of hexavalent chromium were detected in all other sediment samples. Hexavalent chromium was detected at elevated levels in groundwater samples obtained from the boreholes, as was expected. It is concluded that the two boreholes missed the vadose zone contaminant source that is responsible for the hexavalent chromium groundwater plume located downgradient of 183-DR. The well-defined nature of the groundwater plume suggests that an active vadose zone source may still exist in the vicinity of 183-DR, however. Borehole C3040 was completed as groundwater monitoring well 199-D2-8, which will help further define the upgradient configuration of the plume.

Further work is needed before a vadose zone source for the groundwater plume can be identified. The installation of additional groundwater wells in the vicinity of 183-DR could help to define the source. Split spoon core should be obtained from the vadose zone during the drilling of these wells and sediment samples collected and analyzed for hexavalent chromium. The chromate transfer lines and drain lines may also be sources of hexavalent chromium contamination. If a region of hexavalent chromium is identified at 183-DR, local excavation activities could be undertaken to define the source of contamination and potentially remove it. If contamination extends to significant depths, In Situ Gaseous Reduction can then be utilized for vadose zone treatment.

Acknowledgments

This work is funded by the Office of Science and Technology, within the U.S. Department of Energy's Office of Environmental Management, under the Subsurface Contaminants Focus Area. The authors wish to acknowledge the contributions of a number of individuals who participated in or supported the preparation of this document: Bill Bonner, Jim Bush, Joe Devary, Mark Freshley, John Fruchter, Mart Oostrom, and Bruce Williams of Pacific Northwest National Laboratory; Ron Jackson, Greg Mitchem, and Scott Petersen of Bechtel Hanford Inc.; and Jim Hanson, Scott McMullin, and Arlene Tortoso of the U.S. Department of Energy.

Contents

Sum	nmary	iii								
Ack	nowledgments	v								
1.0	0 Introduction and Objectives									
2.0	Summary of Site Characterization Activities. 2.1 Sampling Summary 2.2 Geophysical Logging Summary. 6									
3.0	Site Geology	6								
4.0	Vadose Zone Sediment Chemistry and Physical Properties	9								
	4.1 Sediment Analysis	9								
	4.2 Moisture Content Measurements	10								
	4.3 Grain Size Analyses and Estimation of Vadose Zone Permeability	11								
5.0	Groundwater Chemistry and Well Development	12								
	5.1 Groundwater Chemistry Summary	13								
	5.2 Well Development Activities	13								
6.0	Laboratory Treatment Tests	16								
7.0	Conclusions and Recommendations	18								
8.0	References	18								
Арр Арр	endix A – Well Construction Summary Report and Borehole Log for Borehole C3040 endix B – Well Construction Summary Report, Borehole Log, and Geophysical Logs	A.1								
App	for Borehole C3041	B .1								
11	C3040 and C3041	C.1								

Figures

1	Conceptual Model of the In Situ Gas Treatment System and Wellfield Network	2
2	Layout of the 183-DR Facility	3
3	Location of Boreholes C3040 and C3041 and Excavation Trenches	4
4	Generalized Geologic Logs and Cr Concentration versus Depth for Borehole C3040 and Trench	7
5	Generalized Geologic Logs and Cr Concentration versus Depth for Borehole C3041	8
6	Grain Size Distributions of Less than 3/8 inch Fraction of Excavated Sediment Samples	12
7	Facilities and Cr(total) Groundwater Plumes in the 100-D Area in mid-Calendar Year 2000	14
8	Cr(VI) Concentration in Development Water from Boreholes C3040 and C3041	15

Tables

1	Drilling Summary	5
2	Moisture Content of Sediment Samples Collected from Boreholes C3040 and C3041	10
3	Weight Percent of Size Fraction Greater and Less than 3/8 inch for Excavated Sediment Samples	11
4	Sieve Analyses of Less than 3/8 inch Fraction for Excavated Sediment Samples	11

1.0 Introduction and Objectives

This document describes field activities associated with excavation of trenches and installation of two boreholes to evaluate the distribution of hexavalent chromium, Cr(VI), in the vadose zone at the former location of the 183-DR facility in the 100-D/DR Area of the U.S. Department of Energy (DOE) Hanford Site, Washington. If a source of contamination can be identified in the vadose zone at 183-DR, treatment by injection of a reactive gas has been proposed, which would chemically reduce hexavalent chromium (Thornton et al. 2000a). This approach to remediation is referred to as In Situ Gaseous Reduction or ISGR (see Figure 1). The ISGR technology is expected to have a significant beneficial effect on local groundwater by immobilizing chromium in the vadose zone and thus eliminating the source responsible for contamination of the unconfined aquifer.

The 183-DR facility was constructed in 1950 to treat water from the Columbia River that was used for cooling water in the 100DR Reactor (WHC 1993). Primary treatment operations included coagulation/flocculation of sediment and chlorination (Figure 2). This facility stockpiled sodium dichromate solution, which was delivered by rail to a dichromate transfer station and transferred to 183-DR by chemical lines. Sodium dichromate was added to the processed cooling water as a corrosion inhibitor (Richards 1953) at concentrations of several parts per million (ppm or mg/l) after filtering and before going into clear wells. The treatment plant was decommissioned in 1978. This involved removal of surface structures and filling the sedimentation basins with debris and backfill. No significant contamination of soil by hexavalent chromium was described in historical reports. A large groundwater chromate plume presently exists downgradient of the 183-DR site, however, suggesting that the area around 183-DR is the source of the plume (Rohay et al. 1999, Thornton et al. 2000a). Thus, if a vadose zone source of hexavalent chromium can be identified and treated at 183-DR, it is anticipated that the groundwater plume will eventually dissipate.

The development and deployment of the ISGR technology has been funded by the U.S. Department of Energy's Office of Science and Technology Subsurface Contaminant Focus Area under Technical Task Plan (TTP) RL38SS42, In Situ Chemical Treatment of Soils by Gaseous Reduction, to Pacific Northwest National Laboratory (PNNL). This approach involves the preparation of the reactive gas mixture (diluted hydrogen sulfide in air or nitrogen) by a skid-mounted gas treatment system and injection of the treatment gas into chromate-contaminated soil through a borehole, as illustrated in Figure 1. The mixture is drawn through the soil by a vacuum applied to extraction wells situated at the periphery of the flow cell. As the gas mixture contacts the contaminated soil, hexavalent chromium is reduced to the trivalent oxidation state, which results in immobilization and detoxification of the chromium. Residual hydrogen sulfide is then scrubbed from the extracted gas mixture by the gas treatment system.

A small-scale field demonstration of this approach was previously completed by PNNL at a waste site located at the U.S. Department of Defense (DOD) White Sands Missile Range, New Mexico (Thornton et al. 1999). This pilot demonstration was effective in treating hexavalent chromium at the test site and was successfully completed without any measurable release of treatment gas to the environment.

Figure 1. Conceptual Model of the In Situ Gas Treatment System and Wellfield Network

A larger scale demonstration of the ISGR technology within the 100 Areas at the Hanford Site could be utilized to support DOE's remediation goals and would represent the initial deployment of the ISGR technology at a DOE site. The need for the ISGR technology at the Hanford Site is formally recognized in Site Technology Coordinating Group (STCG), Need #RL-SS11, Cost-Effective, In Situ Remediation of Hexavalent Chromium in the Vadose Zone. The ISGR approach to soil remediation has been presented to stakeholders in meetings with the Hanford STCG and the performance of a treatability test at the Hanford Site has been endorsed by the STCG Management Council, provided a suitable demonstration site can be identified. A draft treatability test plan has also been prepared that describes technical activities and requirements associated with the gas treatment demonstration if it is undertaken.¹

¹ Thornton, E.C., K.B. Olsen, T.J Gilmore, R. Schalla, K. Cantrell, S.W. Petersen, and M. Oostrom. 2000. *Treatability Test Plan for In Situ Gaseous Reduction at the Hanford 183-DR Site*. Unpublished report, Pacific Northwest National Laboratory, Richland, Washington.

Figure 2. Layout of the 183-DR Facility. Coordinate System: State Plane NAD83 (meters).

English units are used in this report because they are used by drillers and geologists to measure and report depths and well construction details. The conversion to metric can be made by multiplying feet by 0.3048 to obtain meters or by multiplying inches by 2.54 to obtain centimeters.

2.0 Summary of Site Characterization Activities

Vadose zone characterization has been undertaken recently at 183-DR using GeoprobeTM and cone penetrometer equipment and by track hoe trenching (Thornton et al. 2000b). This work provided shallow (\leq 20 feet) stratigraphic information, but very little hexavalent chromium contamination was identified. However, minor levels of hexavalent chromium and high levels of total chromium (~650 ppm) were

detected in soil samples collected in a trench on the northeastern corner of the head house and just north of the chromate storage tanks (see Figures 2 and 3). This area was characterized by soil discoloration (i.e., a slightly orange coloration suggestive of oxidation).

The characterization approach utilized in the evaluation of hexavalent chromium in the vadose zone at 183-DR by borehole drilling has been presented in a drilling description of work (DOW) prepared by PNNL (Thornton et al. 2000a) and implemented under a Bechtel Hanford Inc. drilling contract. The area of contamination north of the 183-DR head house was identified as the location for the first exploration borehole (C3040; Figure 3) needed to determine if hexavalent chromium contamination is present deeper in the vadose zone at 183-DR. Secondary drilling options specified by the DOW included a location near the former 183-DR filter plant and a location near a bend in the chromate chemical lines to the west of the 183-DR head house. Based on the results of drilling borehole C3040, which suggested that the source could be located downgradient of C3040, it was determined to drill the second borehole, C3041, near the bend in the chromate chemical lines (Figure 3). A detailed discussion of the criteria employed in determining the location of the second borehole is presented in the DOW. The DOW also indicated that geophysical logging would be performed in one of the boreholes.

Figure 3. Location of Boreholes C3040 and C3041 and Excavation Trenches

2.1 Sampling Summary

The top 20 feet of sediment was sampled in the vicinity of the 183-DR head house in trenching operations conducted in January 2000 (Thornton et al. 2000b). This led to the discovery of an area of discolored soil at the northern end of the head house. Borehole C3040 was subsequently drilled at this location. The drilling of the two boreholes (C3040 and C3041) at 183-DR was initiated on July 20, 2000 (Table 1). Nearly continuous sediment core samples were collected from the boreholes for chemical and physical analysis from 20 feet to just below the water table at approximately 85 feet. The opportunity was taken during this work to complete one of the two boreholes, C3040, as a groundwater monitoring well, 199-D2-8.

Well ID	Well Name	Start Date	Finish Date	Northing (m)	Easting (m)	Ground Surface Elevation (m)	Total Depth (ft)
C3040	199-D2-8	7/11/00	8/7/00	151208.864	573263.623	143.605	100.9
C3041	Abandoned	7/20/00	8/1/00	151191.699	573216.127	142.863	86.5

 Table 1. Drilling Summary

The boreholes were drilled from the surface to 20 feet using an air rotary drilling method and from 20 feet to the final depth using the cable tool method. The top 20 feet at the site contains areas of concrete and debris from the demolition of the former 183-DR water treatment facility. Air rotary drilling was determined to be the most efficient method of drilling this zone, because the debris made drilling conditions relatively difficult. Samples were not obtained in the top 20 feet; however, this interval has been previously sampled by trenching (see Thornton et al. 2000b). Continuous split spoon cores of sediment were collected from a depth of 20 feet in the boreholes to just below the groundwater table. The primary goal for the boreholes was to sample the unsaturated zone for chromium concentrations, but they also provided the opportunity to obtain groundwater data in an area of high chromium concentrations. For this reason, each borehole was advanced to approximately 10 feet into the upper unconfined aquifer. A temporary well screen was then installed with a sand pack, and a groundwater sample collected. The temporary well completion consisted of installing a 2-inch diameter PVC wire-wrap screen with casing. The 5-foot screen was placed approximately 5 feet below the static water level, and the annulus outside the casing was backfilled with filterpack sand. The temporary well was then pumped with a Grundfos Redi-Flo-2TM variable speed submersible pump until groundwater parameters stabilized. Groundwater samples were then collected (see Section 5.0).

Based on the analytical results for chromium, it was determined that borehole C3040 be deepened and completed as a RCRA groundwater well (199-D2-8) and C3041 be abandoned. Summary of the completion details are included in Appendixes A and B. Additional site-specific geologic descriptions are presented in Section 3.0.

2.2 Geophysical Logging Summary

Geophysical logging was conducted through the casing in borehole C3041 on July 25, 2000. Total gamma-ray and neutron moisture logs are included in Appendix B.

A total gamma survey was performed using a NaI (sodium iodide) spectral logging tool, which helped identify stratigraphic changes in the borehole. An increase in total gamma activity was detected at a depth of about 47 feet, near the base of the Hanford formation. The gamma ray response was somewhat erratic from a depth of 47 feet to about 60 feet. This may be a reworked zone at the top of the Ringold Formation and was characterized as a silty sandy gravel during geologic logging (see Section 3.0). A more stable total gamma-ray baseline below 60 feet suggests that this is the top of undisturbed Ringold Formation sediments. The total gamma response was judged to be related to concentrations of natural radionuclides.

Neutron moisture logging was also performed in borehole C3041. The neutron count rate was relatively constant through the vadose zone, although values decreased in a zone between 40 and 50 feet depth. The water level in the casing was evident at a depth of 76 feet on the log. A static water level depth of 78.2 feet was recorded during drilling activities (Appendix B).

3.0 Site Geology

The stratigraphic units associated with the vadose zone and unconfined aquifer in the vicinity of the 183-DR site in descending order from the surface to depth are: localized Holocene surficial deposits and backfill, the informally defined Hanford formation, and the Rin gold Formation. Based on geological logging performed during the drilling of groundwater monitoring wells in the 100-D Area, the Hanford formation is generally present to a depth of about 55 feet; a coarse-grained unit of the Ringold is present from 55 to 98 feet; and a fine-grained unit of the Ringold Formation is present below 98 feet. Hanford formation sediment consists of 2 to 11 foot-thick interbedded sand and sandy gravel layers. Coarse-grained Ringold Formation Unit E deposits underlie the Hanford formation in the vicinity of 183-DR; these deposits consist of sandy gravels to sandy silty gravels. The Ringold Upper Mud Unit occurs locally at a depth of about 105 feet and acts as an aquitard that forms the base of the unconfined aquifer.

The specific geology at the 183-DR site is summarized in Figures 4 and 5 and detailed geologic log descriptions are presented in Appendixes A and B. The interval from the surface to 15 to 20 feet depth at the site is composed of backfill material containing broken concrete, piping, and reinforcing steel near the former location of the 183-DR facility with areas of relatively undisturbed sandy gravel, as determined by track hoe trenching activities. In some areas around the demolished facility, a 3 foot-thick reinforced concrete floor is still intact at a depth of approximately 23 feet. In areas away from the facility at depths between 16 to 20 feet, the sediments consist of large cobbles in a clast-supported matrix (i.e., lacking a finer grained matrix). Between 23 to 32 feet, the sediments are predominantly sandy gravel with a layer

Figure 4. Generalized Geologic Logs and Cr Concentration versus Depth for Borehole C3040 and Trench

7

Figure 5. Generalized Geologic Logs and Cr Concentration versus Depth for Borehole C3041

 ∞

of sand between 32 to 36 feet. It is then silty sandy gravel to approximately 46 feet with a sand layer just above the contact with the Ringold Formation at 50 feet. The Ringold Formation was differentiated from the Hanford during logging by the higher percentages of silica-rich minerals. The sediment between 50 feet and the final depth of 100.9 feet in well C3040 was predominantly silty sandy gravel. The top of the unconfined aquifer was located at about 80 feet below ground surface within the Ringold Formation. The Upper Mud unit was not encountered in drilling borehole C3040 (well 199-D2-8) probably because drilling was terminated at 100.9 feet (see Figure 4), whereas the Upper Mud unit should occur near 105 feet.

4.0 Vadose Zone Sediment Chemistry and Physical Properties

Sediment samples collected at 183-DR during trenching and borehole drilling activities were analyzed for chemical constituents and underwent selected geotechnical tests, primarily measurement of moisture content and performance of grain size analyses. The chemical analytical data were utilized primarily to determine the distribution of hexavalent chromium at the site. Moisture content is useful from the standpoint of identifying zones that may contain higher levels of saturation. The grain size analyses are useful in providing estimates of permeability, which is an important consideration in the design of a potential future ISGR demonstration at the site.

4.1 Sediment Analysis

Analytical data for hexavalent chromium is available for vadose zone sediment samples collected using GeoprobeTM and cone penetrometer equipment at 183-DR from July through October 1999 (Thornton et al. 2000b). All data obtained indicated hexavalent chromium concentrations at or below 0.5 ppm. Additional sampling was undertaken in January 2000 during the excavation of the two trenches along the head house foundation (see Figure 3). A total of 50 samples (including duplicates) were analyzed for hexavalent chromium with generally no significant concentrations detected, though an area of discolored soil located at the northern end of the head house contained a trace of hexavalent chromium in one sample collected. Ten of the soil samples collected by excavation were analyzed for total metals by x-ray fluorescence (XRF). Most were uncontaminated with a total chromium concentration of 20 to 30 ppm (i.e., background). However, a discolored soil sample collected at the northern end of the head house at a depth of 3 feet contained about 650 ppm total chromium, and was depleted in iron, manganese, and calcium and slightly enriched in lead. This area could have become contaminated as the result of drainage of water off the concrete slab associated with the chromate stock solution storage tanks. Another sample collected north of the head house at a depth of 15 feet had similar chemical characteristics and a total chromium content of 43 ppm, slightly above local background. This sample appeared to be associated with an area of alteration around a broken drain pipe.

The high level of total chromium content of the discolored soil thus suggests that chromium-bearing solutions may have entered the soil at the northern end of the head house, where chromate stock solution

was stored in tanks, or by leakage of subsurface drainage pipes immediately to the north of the head house. Hexavalent chromium was apparently reduced to the trivalent oxidation state upon entering the soil and precipitated as Cr(III) oxyhydroxides (Rai et al. 1987) or other solid Cr(III)-bearing phases. This reaction could have been promoted by an acidic character of the solutions, which would have tended to accelerate reduction by ferrous-iron or organic matter in the soil and could also account for the slight orange-colored discoloration of the soil.

Borehole C3040 was drilled at the discolored soil location based on the evidence of release of chromium-bearing solutions from the head house. Continuous split spoon coring was conducted from a depth of 20 feet below the surface to 5 feet below the groundwater table in this borehole (see Figure 4 and Appendix A). Analysis of sediment samples from these cores was conducted for a variety of constituents as indicated in Appendix C for characterization and for waste designation purposes. In general, no significant indication of contamination was detected. However, a total chromium concentration of 132.8 ppm and a hexavalent chromium concentration of 130 ppb was reported for a sample collected in the depth interval of 68 to 68.5 feet in borehole C3040.

The second borehole, C3041, was located downgradient of C3040 because less than 2 ppm hexavalent chromium was detected in a groundwater sample collected from C3040 (Section 5; Thornton et al. 2000a). Specifically, C3041 was positioned at a bend in the chemical transfer lines coming into the head house (Figure 3). Split spoon sampling was conducted in this borehole and the sediment samples analyzed (Appendixes B and C). No indication of contamination was identified in the sediment samples from C3041 and all total chromium concentrations were near background levels (Figure 5).

4.2 Moisture Content Measurements

The moisture contents of vadose zone sediment samples obtained from cores retrieved during drilling of boreholes C3040 and C3041 are presented in Table 2. Values ranged from 2.6 to 4.6 wt% and averaged 3.3 wt% for C3040 and 3.7 wt% for C3041. No discernable trend with depth is apparent, although the moisture content of samples collected in the interval of 41.5 through 47 feet were highest in both boreholes. This corresponds to an interval of sand located at a depth of about 40 to 50 feet and could reflect an increase in saturation near the contact of the Hanford and Ringold formations.

Borehole ID	Depth, ft	Moisture Content, wt%
C3040	24.5	3.50
C3040	46.5-47	4.40
C3040	68-68.5	2.60
C3040	80.5-81	2.60
C3041	25	3.40
C3041	41.5-42.5	4.60
C3041	61.5-62.5	3.10
C3041	77-78	3.60

 Table 2. Moisture Content of Sediment Samples Collected from Boreholes C3040 and C3041

4.3 Grain Size Analyses and Estimation of Vadose Zone Permeability

Three 5-gallon buckets of sandy gravel were collected at different locations during the trenching operations in intervals that were judged to be native undisturbed sediments. Grain size analysis by sieving (PNL 1993) was performed with this material, and the results were utilized to obtain estimates of permeability. This information is useful in ISGR design activities because vadose zone permeability determines gas flow rates.

Prior to the sieve analysis, the >3/8 inch fraction was removed from each sample and a portion of the <3/8 inch fraction submitted for analysis. The wt% greater than and less than 3/8 inch is indicated in Table 3 for each sample. The results of the sieve analysis for the <3/8 inch fractions is presented in Table 4. Grain size distribution plots of the three samples are presented in Figure 6.

Sample ID	Wt% > 3/8 Inch	Wt% < 3/8Inch
N130 E130, depth = 15 feet	43.9	56.1
N131 E130, depth = 15 feet	62.3	37.7
N136 E130, depth = 25 feet	76.7	23.3

Table 3. Weight Percent of Size Fraction Greater and Less than3/8 inch for Excavated Sediment Samples

Table 4. Sieve Analyses of Less than 3/8 inch Fraction forExcavated Sediment Samples

Diameter (µm)	N130 E130 % < diameter	N131E130 % < diameter	N136E130 % < diameter			
4,000	79.46	84.66	73.68			
2,000	70.49	75.93	63.78			
1,000	61.56	64.87	52.09			
500	31.52	26.99	22.02			
250	12.46	4.62	3.27			
125	7.06	2.59	1.78			
63	3.46	1.41	1.13			
45	1.70	0.74	0.78			

Figure 6. Grain Size Distributions of Less than 3/8 inch Fraction of Excavated Sediment Samples

Estimates of hydraulic conductivity of the samples were obtained from the grain size analyses using several theoretical models. An estimate of 700 m/day was obtained when the >3/8 inch fraction was included, and 200 m/day was obtained when only the <3/8 inch fraction was considered. This corresponds to intrinsic permeabilities of about 8.3 x 10^{-10} m² and 2.4 x 10^{-10} m², respectively, and provides a preliminary estimate of the range of permeabilities that could exist in the Hanford formation at the site. This information has been utilized to support initial modeling activities in support of a possible ISGR demonstration at 183-DR. Numerical simulations with the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom 1996) suggest that a high flow rate should be achievable (200 cfm at 2 psig pressure) owing to the high permeability of the vadose zone at the site. Good gas capture characteristics have been indicated with respect to STOMP pressure field and tracer simulations for an extraction to injection flow rate ratio (Q_{out}/Q_{in}) of 1.1 or greater.

5.0 Groundwater Chemistry and Well Development

Groundwater samples were collected from boreholes C3040 and C3041 for chemical analysis. Borehole C3041 was abandoned, but borehole C3040 was completed as a monitoring well. Presented below are aspects of the groundwater chemistry, especially chromium concentration levels, and information associated with development of the temporary and permanent well completions.

5.1 Groundwater Chemistry Summary

Groundwater samples were collected from temporary completions in boreholes C3040 and C3041 and analyzed for cations and anions and organic and radionuclide constituents. The results of these analyses are presented in Appendix C. The only contaminant noted was hexavalent chromium, which was reported at a concentration of 1,490 μ g/L (ppb) in the sample collected from C3040 and 87 μ g/L in the sample from C3041. Total chromium concentrations of 1,600 μ g/L and 93.7 μ g/L were reported for the C3040 and C3041 samples, respectively. Hexavalent chromium concentrations in the 100-D Area are commonly similar to total chromium concentrations, indicating that most of the dissolved chromium is in the hexavalent oxidation state as the chromate anion, $\text{CrO}_4^{2^-}$.

The groundwater data for total chromium concentrations at 183-DR and other groundwater monitoring wells in the 100-D Area are presented in Figure 7, which illustrates the configuration of two major chromium plumes in mid-calendar year 2000. The configuration of the plume in the vicinity of 183-DR is generally similar to earlier interpretations (Rohay et al 1999 and Thornton et al. 2000a). However, this more recent data plus the information from C3040 and C3041 indicates that the center of the plume is displaced slightly to the north relative to earlier work. This suggests that the vadose zone source of hexavalent chromium at 183-DR could be associated with the chromate chemical transfer lines to the west of the head house or a drainline located north of the head house. Analyses of soil samples collected at the 100-D Sodium Dichromate Transfer Station (Figure 7) suggest that significant concentrations of hexavalent chromium are not present at that location (Thornton et al. 2000b).

Hexavalent chromium concentrations in the 100-D Area groundwater plumes approach maximum values of about 2 mg/L (ppm) as indicated in Figure 7. This observation suggests that the aquifer may be saturated with respect to a chromate mineral phase that has previously precipitated and is now redissolving (i.e., hexavalent chromium concentrations may be solubility controlled). To assess this possibility, the analytical data presented for the C3040 groundwater sample was utilized to determine solution speciation and to calculate the saturation indices for various mineral phases. The MINTEQA2 geochemical equilibrium speciation model developed by EPA was employed for this purpose (Allison et al. 1991). In these calculations, alkalinity of the sample was calculated to be approximately 100 mg/L CaCO₃ based on charge balance considerations. Results obtained by the model indicated the sample was highly undersaturated with respect to nine different chromate minerals. The solid phase closest to saturation was BaCrO₄ (saturation index = log Q/K = -1.529). Thus, no common chromate mineral phase has yet been recognized that could provide a solubility control for hexavalent chromium concentration levels present in the aquifer. Solid solution of chromate in mineral phases such as calculate or gypsum could provide a solubility control but it is not possible at present to assess this potential mechanism.

5.2 Well Development Activities

There were two stages of well development at 183-DR. The first stage was to develop the well using a temporary well screen after the borehole was advanced 10 feet into the unconfined aquifer; this activity was undertaken for both boreholes. The second stage, installation of a permanent monitoring well, was conducted only in borehole C3040 after the well was completed at a depth of 20 feet into the unconfined aquifer.

sen_ther00_D1 Dowler 19, 2000 4/91 PM

Figure 7. Facilities and Cr(total) Groundwater Plumes in the 100-D Area in mid-Calendar Year 2000

The first stage of development was conducted after a temporary PVC well casing and screen were placed in the borehole and then backfilled with filterpack sand after the borehole was advanced 10 feet into the aquifer. The temporary steel casing was then pulled back above the water table to expose the PVC well screen. Each well was pumped using an electric submersible pump until the groundwater parameters specific conductance, pH, and hexavalent chromium concentrations stabilized, and turbidity decreased to below 5 NTU. Additional groundwater samples were collected for chemical and radiological analysis after the groundwater parameters stabilized (Appendix C). The results for hexavalent chromium as determined in the field using Hach Method 8023, which is equivalent to EPA Method 7196 (EPA 1992), are shown in Figure 8. A total of 900 gallons of water were pumped in 180 minutes from borehole C3040 during development and a total of 583 gallons were pumped in 180 minutes from borehole C3041. The drawdown in C3041 was 1.2 feet after 180 minutes while pumping at 3.3 gallons per minute. Although an accurate drawdown was not measured in C3040, it can be qualitatively stated that the drawdown was less in C3040 in comparison to C3041 even while pumping at a higher discharge rate of 5 gpm. This indicated borehole C3040 was a better water producer.

Figure 8. Cr(VI) Concentration in Development Water from Boreholes C3040 and C3041

Owing to its higher potential flow rates, borehole C3040 was completed as a permanent groundwater monitoring well. The hole was deepened to 100.9 feet to accommodate a 20-foot well screen. The well was again developed after the final completion with stainless steel well casing and screen. During this second stage of development, sand was placed around the screen, and the well was initially developed using a bailer to settle the sandpack. After the annulus was backfilled with bentonite and grout to the surface, the well was developed using an electric submersible pump. A total of 1,882 gallons of water were pumped in 174 minutes. The total drawdown after 174 minutes of pumping at 10.8 gpm was 12 feet. The development proceeded in steps where the flow rate was slowly increased to 10.8 gallons. At this flow rate the water level was approximately 1 foot above the pump intake. The pumping continued until the groundwater temperature, pH, specific conductance, and the concentration of hexavalent chromium stabilized and the turbidity decreased to below 5 NTU. The well fully recovered to static water level approximately 30 minutes after the pump was turned off.

6.0 Laboratory Treatment Tests

A number of laboratory treatment tests have been conducted to date that indicate diluted hydrogen sulfide is very efficient in reducing hexavalent chromium in soil. However, it is important to conduct site-specific treatment tests for each location where ISGR may be applied. The objectives of these site-specific treatment tests are to verify that an acceptable level of reduction can be achieved and to obtain an estimate of treatment gas consumption that is expected as hydrogen sulfide interacts with site sediment. These tests typically involve packing contaminated soil into columns and passing a diluted hydrogen sulfide gas mixture through the column at a known flow rate and concentration. Treatment progress can be monitored by recording the concentration of hydrogen sulfide at the column exit (i.e., the degree of breakthrough achieved). After treatment is complete, leaching of the column is undertaken and the mass of hexavalent chromium recovered is determined by analysis of leachate samples. An untreated soil column is also leached to determine the total mass of hexavalent chromium originally present. Comparison of the degree of immobilization achieved during the gas treatment test.

Early experimental activities conducted during the development of the ISGR approach included treatment of sediments from the Hanford formation that were spiked with hexavalent chromium at the 200 ppm level (Thornton and Jackson 1994). Treatment with 2,000 and 100 ppm hydrogen sulfide treatment gas mixtures were undertaken and the treated soil columns leached with groundwater. Leachate analyses indicated that 94.6% and 98.4% immobilization of chromium was achieved, respectively. More recently, a sample of soil from the 183-KW site at Hanford has been tested that contains about 203 ppm hexavalent chromium, as determined by leaching of an untreated soil column. Leaching of the soil after treatment with a 200 ppm hydrogen sulfide mixture indicated essentially 100% reduction of hexavalent chromium in the soil. The higher degree of immobilization observed in this test compared to earlier tests can be attributed to a longer period of treatment. These results thus indicate that a minimum of 95% immobilization should be achievable by gas treatment at 183-DR under ideal conditions. Treatment operations may be less effective in the field in many cases, depending on gas flow characteristics and the

extent of stratigraphic heterogeneity. As indicated in Section 4.3, however, the high permeability of this site makes it an ideal candidate for the ISGR approach.

Drilling activities at several Hanford Site locations have indicated that generation of hydrogen gas can occur (e.g., Bjornstad et al. 1994). This appears to result from the reduction of water. This may be attributed to the breakage of basalt cobbles, with resulting exposure of ferrous-iron bearing surfaces, or by introduction of metal shavings from a drill bit or drive casing. It has been suggested that hexavalent chromium in the vadose zone at Hanford may be reduced during drilling as the result of hydrogen generation or by direct reduction by basalt or shavings. The split spoon sediment sampling undertaken in the vadose zone at 183-DR was conducted ahead of the cable tool drive casing, however, and thus reduction of hexavalent chromium by broken rock or metal shavings would not be expected. However, the potential for the diffusion of hydrogen ahead of the drive casing should be considered as a possible mechanism for reduction of hexavalent chromium. To test this hypothesis, two more columns were packed with the Cr(VI)-contaminated soil collected at the 183-KW site. One of these columns was treated with a mixture of 4% H₂ in N₂ at a flow rate of 100 cc/min for more than 29 hours. The treated and untreated columns were then leached with deionized water and the leachate samples analyzed for hexavalent chromium. No significant difference in hexavalent chromium concentrations were observed between the two sets of leachate samples, indicating that H₂ did not reduce any of the chromate present in the treated column. Thus, it is concluded that hydrogen generation by drilling is probably not an important process for reducing hexavalent chromium in the vadose zone. It is concluded that the cored sediments recovered at 183-DR were probably not significantly altered by drilling activities.

Gas treatment tests have also been completed on the <3/8 inch fraction of soil collected during the trench excavations (Section 4.3). The purpose of these tests was to determine the extent of treatment gas consumption by the soil matrix and to obtain information regarding the specific reactions between H₂S/N₂ and H₂S/air gas mixtures and soil components. Mixtures of 200 ppm hydrogen sulfide in nitrogen and in air were employed in two column treatment tests. Both tests were run until a high degree of breakthrough was achieved (C/C_o > 0.8). The consumption ratio of hydrogen sulfide to soil by mass was determined to be 1.0 x 10⁻³ for the H₂S/N₂ test and 0.3 x 10⁻³ for the H₂S/air test. However, as indicated above, the >3/8 inch fraction of the soil was removed before packing into the columns. This gravel-sized material would likely consume less hydrogen sulfide on a mass basis owing to the lower specific surface area. A breakthrough of less than 80% should also be adequate for reduction of hexavalent chromium by hydrogen sulfide at the site, since the rate of this reaction appears to be fast (i.e., most of the treatment gas is consumed by slower reactions of hydrogen sulfide with soil iron oxides). Thus, a consumption ratio of about 1 x 10⁻⁴ should be adequate for the application of ISGR at 183-DR.

The time required to achieve treatment during an ISGR demonstration at 183-DR can be estimated on the basis of the mass associated with the treatment zone, the mass of hydrogen sulfide required per unit mass of soil, and the concentration and flow rate of treatment gas through the site flow cell. Assuming the zone targeted for treatment is 15 feet thick and 60 feet in diameter, the volume of soil involved is 42,412 cubic feet. Based on a bulk density of about 100 lb/ft³ measured in laboratory column tests, approximately 4.24×10^6 pounds of soil is located in the treatment interval. As indicated above, a gas consumption ratio of 1×10^{-4} should be adequate to treat hexavalent chromium within the flow cell. Thus, approximately 424 pounds of hydrogen sulfide will be needed to treat the zone. If the treatment gas

is injected into the site as a 200 ppm hydrogen sulfide mixture at a flow rate of 200 cfm, the time required to achieve a moderate level of breakthrough is expected to be roughly 78 days. However, because the treatment time required is inversely proportional to gas concentration and flow rate, the time associated with amount of time needed for treatment could be reduced by increasing the hydrogen sulfide concentration of the injection gas stream or by injecting at a higher flow rate.

7.0 Conclusions and Recommendations

Characterization activities conducted at 183-DR in the course of this study did not locate the vadose zone source of hexavalent chromium that has contaminated the underlying aquifer. Thus, it is not possible to proceed with an ISGR demonstration at 183-DR at this time. However, the groundwater data collected from boreholes C3040 and C3041, combined with that available from other monitoring wells in the area, has provided a better understanding of the geometry of the groundwater plume. The chromate chemical transfer lines located to the west of the 183-DR head house or a drainline north of the head house could be areas for future site investigations and a potential ISGR deployment.

Additional upgradient groundwater monitoring wells could help to identify the vadose zone source of hexavalent chromium at 183-DR. In particular, completion of a monitoring well near the former 183-DR filter plant would be useful in helping to establish the upgradient configuration of the plume. It is recommended that split spoon sampling of vadose zone sediments be undertaken as described in this study during installation of wells and sediments be analyzed for hexavalent and total chromium in the event that the source is encountered during drilling.

One or more vadose zone sources of hexavalent chromium may be discovered in the future at 183-DR. If a region of hexavalent chromium is identified, excavation can be undertaken to define the source and potentially remove it. Application of ISGR can then be considered for remediation of hexavalent chromium contamination if it is present above action levels at significant depths in the vadose zone.

8.0 References

Allison, J.D., D.S. Brown, and K.J. Novo-Gradac. 1991. *MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User's Manual.* EPA/600/3-91/021. Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia.

Bjornstad, B.N., J.P. McKinley, T.O. Stevens, S.A. Rawson, J.K. Fredrickson, and P.E. Long. 1994. "Generation of Hydrogen Gas as a Result of Drilling within the Saturated Zone." *Ground Water Monitoring and Remediation*, p. 140-147. Pacific Northwest Laboratory (PNL). 1993. *Procedures for Groundwater Investigations*. PNL-MA-567, Rev. 1, Pacific Northwest Laboratory, Richland, Washington.

Rai, D., B.M. Sass, and D.A. Moore. 1987. "Chromium Hydrolysis Constants and Stability of Chromium(III) Hydroxide." *Inorganic Chemistry*, v.26, p. 345-349.

Richards, R.B. 1953. *Process Specifications Reactor Cooling Water Treatment*. HW-28505, General Electric, Richland, Washington.

Rohay, V.J., D.C. Weekes, W.J. McMahon, and J.V. Borghese. 1999. *The Chromium Groundwater Plume West of the 100-D/DR Reactors: Summary and Fiscal Year 1999 Update*. BHI-01309 Rev. 0, Bechtel Hanford, Inc., Richland, Washington.

Thornton, E.C. and R.L. Jackson. 1994. *Laboratory and Field Evaluation of the Gas Treatment Approach for In Situ Remediation of Chromate -Contaminated Soils*. Proceedings of the 33rd Hanford Symposium on Health and the Environment, Pasco, Washington, p. 949-963.

Thornton, E.C., J.T. Giblin, T.J Gilmore, K.B. Olsen, J.M. Phekn, and R.D. Miller. 1999. *In Situ Gaseous Reduction Pilot Demonstration – Final Report*. PNNL-12121, Pacific Northwest National Laboratory, Richland, Washington.

Thornton, E.C., K.B. Olsen, and R. Schalla. 2000a. *Description of Work for Drilling at the 183-DR Site in Support of the In Situ Gaseous Reduction Test*. PNNL-13261, Pacific Northwest National Laboratory, Richland, Washington.

Thornton, E.C., K.J. Cantrell, J.M. Faurote, T.J Gilmore, K.B. Olsen, and R. Schalla. 2000b. *Identification of a Hanford Waste Site for Initial Deployment of the In Situ Gaseous Reduction Approach*. PNNL-13107, Pacific Northwest National Laboratory, Richland, Washington.

U.S. Environmental Protection Agency (EPA). 1992. *Test Methods for Evaluating Solid Waste - Physical/Chemical Methods, 3rd ed. SW-846*. U.S. Environmental Protection Agency, Washington, D.C.

White, M.D., and M. Oostrom. 1996. *STOMP Subsurface Transport Over Multiple Phases, Theory Guide*. PNNL-11217, Pacific Northwest National Laboratory, Richland, Washington.

Westinghouse Hanford Company (WHC). 1993. *100-D Area Technical Baseline Report*. WHC-SD-EN-TI-181, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

Appendix A

Well Construction Summary Report and Borehole Log for Borehole C3040

					Start D-	to: hub. 44	2000			
					Start Da		, 2000			
WELL CONS	RUCHU	N 50	WIWAF	REPORT	Finish Date: August 7, 2000					
	-			400 70 0						
Specification No.:	Rev. No.:			Well Name: 199-D2-8 Temp. Well No.: C3040						
ECNs: N/A				Approximate Location: Near de	molished	183DR Fac	ility, D Are	ea		
Project: In Situ Gaseous Reduction	on			Other Companies: Pacific NW	National L	aboratory a	and Becht	el		
Drilling Company: Resonant Sonic	c International			Geologist(s): Tyler Gilmore, Ro	on Schalla,	, Ed Thornt	on			
Driller: Morris Wraspir	A ST THE COMPANY STATES			an ang ang ang ang ang ang ang ang ang a	10) 10)		and the second	a na stali		
TEMPORARY CAS	ING AND DRILL DE	PTH	g Na NA MARIANA NA MARA Ang Pangana na Kara	DRILLING MET		E DIAMETE	:R			
*Size/Grade/Lbs. Per Ft.	Interval	Shoe	D.D./I.D.	Auger:	r From	to				
Nominal 14-in. Steel	surface - 20 ft			Cable Tool: 20 ft - 104.7 (TD)	11" Dian	neter From	<u>20</u> to	100.9		
Nominal 11-in. Steel	<u>20 ft – 100.9 ft</u>			Air Rotary: Surface – 20 ft	14" Dian	neter From	<u>0</u> to	20		
				A.R. w/Sonic:	Diamete	r From	to			
Temporary PVC 2-in. casing	<u>+5.4 ft – 89.2 ft</u>				Diamete	r From	to			
Temporary PVC 2-in. screen	<u>69.1 ft – 89.2 ft</u>				Diamete	r From	to			
*Indicate Welded (W) - Flush Join	t (FJ) Coupled (C) &	Thread	Design		Diamete	r From	to			
Note: Temporary PVC casing use removed. Final Stainless Steel ca casing and drilling an additional	d to obtain water s asing placed after r 15.5 ft	amples ar emoving	nd then PVC	Drillion Fluid: Water						
T () D () () D () () (400.0.4		1-4		Tetal Amt, Of Water Added Duri	na Drillina:	120 polls				
I otal Drilled Depth: 100.9 ft	Hole Dia @ TD: 11-	in		Chattin Michael augh 84.25	Deter I	~130 gailo	ons			
Well Straightness Test Results:				Static Water Level: 81.25	Date: J	uly 18, 2001				
		GEG	OPHYSICA	Sondae (time)						
Sondes (type)	Interval	D	ate	Sondes (type)	Int	Interval		te		
No Geophysical Logging	*									
and a state of the						• 	l Alfanta an			
	<u>in diad sin</u>	nd fin e lake	COMPLETE	D WELL.			1 <u>911</u>			
Size/Wt./Material	Depth	Thread	Slot Size	Type	Annual Se	Annual Seal/Filter Pack		Mesi Size		
(sump)							0.5 11	11/4		
316 SS screen; 20 slot wire wrap	<u>97.08</u> - <u>77.1</u>		20 slot	Silica Sand; 10-20 mesh	100.25	- 71.66	31.03 ft ³	10-2		
316 SS casing 20 ft (3 pieces)	<u>77.1</u> - <u>17.06</u>		N/A	Bentonite Crumbles	71.66	- 10.0	41.89 ft ³			
304 SS casing 20 ft (1 piece)	<u>17.06</u> - <u>+2.96</u>		N/A	Cement Grout	10.0	 _surface 	10.69 ft ³			
	langan di seri di sina. Ni dan kecaratan kerajaraha		DTHER AC	TRUTICO CONTRACTOR DE LA C						
			e en an la ante	11411169			10030304 - 111			
temporary PVC installed, and one stainless steel casing installed.	sts; one after e after final	Date:July	/ 26, 2000	Well Abandoned:	Yes:	No: X	Date:			
Aquiter Test: (2) Development Test temporary PVC installed, and one stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) In time series; 1882 gal in 174 minutes.	sts; one after e after final umped 900 gallons ; Stainless steel der	Date:July in 180 mi velopmen	/ 26, 2000 nutes; t, pumped	Well Abandoned: Description:	Yes:	No: X	Date:			
Aquirer fest: (2) Development fest temporary PVC installed, and one stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) in time series 1882 gal in 174 minutes.	sts; one after e after final umped 900 gallons ; Stainless steel de	Date:July in 180 mi velopmen	/ 26, 2000 nutes; t, pumped VELL SURV	Well Abandoned: Description:	Yes:	No: X	Date:			
Aquirer rest: (2) Development re- temporary PVC installed, and one stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) In time series 1882 gal in 174 minutes.	sts; one after e after final umped 900 gallons ; Stainless steel der	Date:July in 180 mi velopmen	y 26, 2000 nutes; t, pumped YELL SURV	Well Abandoned: Description: FEY DATA Protective Casing Elevation:	Yes:	No: X	Date:			
Aquirer Test: (2) Development Test temporary PVC installed, and one stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) In time series 1882 gal in 174 minutes. Date: Washington State Plane Coordinate	sts; one after e after final umped 900 gallons ; Stainless steel der es:	Date:July in 180 mi velopmen	/ 26, 2000 nutes; t, pumped /ELL SURV	Well Abandoned: Description: Protective Casing Elevation: Brass Cap Elevation:	Yes:	No: X	Date:			
Aquirer rest: (2) Development rest temporary PVC installed, and one stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) In time series: 1882 gal in 174 minutes. Date: Washington State Plane Coordinat	sts; one after e after final umped 900 gallons ; Stainless steel der es:	Date:July in 180 mi velopmen W	/ 26, 2000 nutes; t, pumped /ELL SURV	Well Abandoned: Description: Protective Casing Elevation: Brass Cap Elevation: REMARKS	Yes:	No: X	Date:			
Aquirer rest: (2) Development rest temporary PVC installed, and once stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) In time series: 1882 gal in 174 minutes. Date: Washington State Plane Coordinat Well completed as a RCRA well	sts; one after e after final umped 900 gallons ; Stainless steel der es:	Date:July in 180 mi relopmen W	/ 26, 2000 nutes; t, pumped /ELL SURV	Well Abandoned: Description: Protective Casing Elevation: Brass Cap Elevation: REMARKS	Yes:	No: X	Date:			
Aquiter Test: (2) Development Test temporary PVC installed, and one stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) In time series 1882 gal in 174 minutes. Date: Washington State Plane Coordinat Well completed as a RCRA well Reported By: Tyler Gilmore	sts; one after e after final umped 900 gallons ; Stainless steel der es:	Date:July In 180 ml velopmen W	/ 26, 2000 nutes; t, pumped /ELL SURV	Well Abandoned: Description: Protective Casing Elevation: Brass Cap Elevation: REMARKS Reported By:	Yes:	No: X	Date:			
Aquirer rest: (2) Development re- temporary PVC installed, and one stainless steel casing installed. Description: PVC development; P Sampled for Cr(VI) In time series 1882 gal in 174 minutes. Date: Washington State Plane Coordinat Well completed as a RCRA well Reported By: Tyler Gilmore Title: Senior Research Scientist	sts; one after e after final umped 900 gallons ; Stainless steel der es:	Date:July In 180 ml velopmen V CC Date: At 2000	/ 26, 2000 nutes; t, pumped /ELL SURV /MMENTS/	Well Abandoned: Description: Protective Casing Elevation: Brass Cap Elevation: REMARKS Reported By: Title:	Yes:	No: X	Date:			

1					Page <u>1</u> of (
WEL	L SUMMARY SH	HEEI Date: Aug 27 2002					
		Well Name: 199 - D2 - 8					
Location: 100 DAvea near demolish	ed 183 DR	Project: In Situ Gaseous Reduction					
Prepared By: Typer Galmore	Date: Aug 22, 2000	Reviewed By: Ronald Scholla Date: 8-31-2000					
Signature: Jahn dluno2	•	Signature:		<u>.</u>			
/ CONSTRUCTION DATA	1	Depth in	GEOLOGIC/HYDROLOGIC DATA				
Description	Diagram	Feet	Graphic Log	Lithologic	Description		
(removed from ground)		0	0,000,000	Backfill Son	dy Gravel		
Temporary 11" Carbon Steel Casing 2044 - 101.01 (removed from ground)		- 25		Gravel; brige Sandy Grave	Cobbles el		
316 Stainloss Steel 4" dia Cosira 77.1 - 17.064(20 ft lensilias)	Q	-	0000 0000 000 0000 0000	Sand (Bould 5:14 Sourty (levat 37(+) Ivave(
304 Stainless Steel 4" dia casino 17.06 - + 2.964+		50	00000	Sand Ring Silty Sandy	dd contact 50.54 Gravel		
316 Stainless Steel Wire Wrap screen 20 slot 97.08-77.1ft 316 Stainless Steel tail pipe 100.1 - 97.08 ft			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		· · · · · · · · · · · · · · · · · · ·		
Sond pact 10-20 silica sand 100,25-71.660 Bendonite Coundles 71.660-1004+ Cement Gront 10.0-Surface		100 -		TD 100.9 ft			

Paci	fic Nor	thwes	t	۵	DAILY			Boring/Well No: $C3040$	Dept	:h:	+ 24' Sheet of $+$ 6			
Natio	nal Lal	oorato	ry BC	DRE	HOLE	LO	G	_ocation: 100-D Area, 183-DR i	in 1007	<u>o</u> Proje	ct: <u>I 3 6-I</u> <u>R</u> <u>H</u> <u>L</u> <u>J</u>			
Log	ed by	R	mald.	ìch	alla	1	2000	$D = \frac{1}{2} Date 7-1$	1-2000	Drilli	ng Contractor Resonanta Sonia			
Reviewed by Ronald Schalle Date 8-31-2000 Driller Kelly Cowden											er Kelly Cowden Internations			
Litho	logic	Class	. Scheme		Usco	5		Procedure Re	•v	Rig/N	Rig/Method XT TOF /Air Rotangt Cable			
Stee	Таре	/E-Tap	oe		_ /		Fiel	d Indicator Equip. 1)2)		Dept	h Control Point Ground Surface			
DEPTH	тіме	S		CONT		MOIS- TURE	GRAPH LOG	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCL etc.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)			
T O	0930	्व	thecdur		Nana	NA	Fill	Sandy Frankel with capples	1+2 apm	·14-in.	Began Driving casing at 0970 hrs			
Ŭ			0		I VORE	17/1		and a few small bouldery. Som		Steel.	drove casing to feat then drilled			
								concrete dobris steel parts +		Actual 13 3/9 00	To fact by air notary with #20			
								insulated electrical wire (Fill).		12 3/010	added to raduce dust a cyclone			
								Wire from approximately 16 feet			separator. Problems with threading			
								indepth. Boulders or concrete			second 5 sectional caving, Stoppedal			
				 	<u> </u>			From 18 to 19.5. Drilling			1200hrs for lund; then resource air			
	¥							ensientran 19.5 to 20- Cuttings			rotan drilling@ 1235hr.			
20	1335	<u> </u>	uly 11.	200	<u> </u>	 		From O-16 contained in drum 100H-00-0079			Actual Drill rule 10 to hour or less,			
	0620	J	vly 12,	20	00			Driller informed me that he think			Telescoping with 11 4 0. D.d			
								Some c uttings were lost to the formation			10 1/4 I.D. threaded caring tor			
			=					inthe first 20 feet of drilling The			cable tool drilling.			
								14 borehole should create about 7 cut			Mucked outdwill hale using			
								pertoot or 20 cubic toot tawever			Core barrel drivenby Cable			
								only & 8 cubic test we re collected						
	(200			<u> </u>				to drymed. Water 65Talso						
20	0700						l	Silty Sandy GRAVEL (GII)			Promp callings in to			
								40 to gravel, 50 to sand, 10 705117			aron mort - 00 - 0018 - 100			
								gravelis 20% v.cs-cs, 20% med, 40%			10 102L in acpin			
								tine, 2010 VT Dand) is 10 10 USC-CS						
								2010 ments suprime, dark grayits						
				-				porter control a prival a provide of the control of the						
220	094	5						75% baset 25% anonitiz + quarte						
<u> </u>	00			i	1	L								

W = Wet, M = Moist, D = Dry

												· · · · ·		
Paci	fic No	rthwes	st]	DAILY		E	oring/Well No: <u>C304(</u>)	Dep	th: <u>2</u>	4 18 32, 5 Sheet 2 of 16		
ivation	iai La	Dorato	"" BC	RE	HOLE	LO	G	ocation: 100-DArea, 18	3-DR in 100	-HOU	Proje	$ct: \underline{TSGR}$		
Logg	Logged by Ronald Schalle							Lond Dolla	Date <u>7-1</u>	2-200	o Drilli	ng Contractor International		
Reviewed by Ronald Salalla						<i>a</i>	<u> </u>	Somel Solly	Date <u>8~_</u>	31-200	۵ Drille	Fr Kelly Courden & Mae Wruspir		
Lithologic Class. Scheme 11 S C S								Procedure	R	ev	Rig/M	lig/Method Dresser XT 70E. Calle Tool		
					_ /		Field	ield Indicator Equip. 1) 2) [Dept	epth Control Point Ground Surface		
			SAMPLES	CONT	AMINATION	MOIS-	GRAPHIC	LITHOLOGIC DESCRIPTIO	N	WATER	Driven	DRILLING COMMENTS		
F+	TIME	TYPE	ID NUMBER	INSTR	READING	TURE	LOG	(particle size distribution, sorting, m roundness, color, reaction to HC	lineralogy, 21, etc.)	ADDED	CASING	(drilling rate, down time, blow counts, water level, drill fluid, etc.)		
24.0	6900	SPUON	C3040-24,5	GM	Buckgro	dry	ō;ō;	Sandy GRAVEL (GW)	w: 4, 5%	None	11,750.]	Drave sampler from 24 ft to		
24.5		VOA	C 3040-295	GM	11		0.00	orless sitt. 50% gr	au1, 45%	1	10,2 5 I,[26.5Ft, % recovery was 40%,		
24.5-25.0		1 6" Liner	C 3040-24	GM	п		0.00	sand and 5 %sitt, Gi	ravel ts			Casing advanced attor samples		
25 to		010	Recover	4			0.000	similar in particled si	2045			+ borohale cloand out to 265		
265			F	`			0.000	above. darkaroy (10	YR-4/1)			All drilling by carebarry		
26.5	0940	split Sporn	C 3040-265	6m	buckand	dry	- <u>></u> 0	dry to slightly n	arist			cable tools		
27.02	J	Logan	⊂3040-27	и		0	ē.0.	@ 26.5 similar t	Dabove			Nort sample, 26.5 to 29.0'		
27.55	1	Liver	C 30 ft -27.5	1.14	7		00°0	but somewhat con	anser and			only recovery 1.5 of sample		
28.05							0.0-0	slightly more ma	ist			or 60% Large colla		
28		No	Recoven	-			000	0 0				probably blocks out		
24							0.00							
29-	017	Solit	C 3040-29	GM	Buckan	, O	0.00	Silty Sandy GRANEL	(GM)			Sampled at 29.0 +0 31.5		
29,5	27	Spro	C 3€40-29	F 11			0.0.7	40% gravel, 40% so	und, 20%5ilt			Only recourd 1. 5 strangele		
20 .0	2	Liver	C3040-30	ų	٠,		0.0	silt decreasing to 10	664			or 60% recovery. Some sand		
30.5	5						00	30.5 At. gravelis 102	O Y. CSC - CS.			follost of bottomof the 4"		
30,5-		No	Recover				.000	30% med. 40 Lotine, 2	-0% vf.			Lexan linen at the bottom.		
315			1					Sand is generally fin.	er thou					
31.5	120	ر» لويسم	C3040-31.	GM	Buckyr	and	0.00	above samples Large 1	ncrease			Sampled from 31.5 to 34A		
32.0	2	Ling	<u>C3040-32</u>	4	4		2.00.	in sitt content from 2	9.5 to			recovered 1.8 ft or 70%.		
32.5	5		C3040-32	5 1.	•4			30,5feet Dry, gray (10YR-5/1)					
33,0	5						0,0,0	70% basalt, 30% other	rincluding					
3370		No	Rocover	1			.0.j.	about 10% quartz, cher	tete.					
34							0.00	same to 32.5ft.	-					
							0.0.0	32.5		V				

A.4

Pac	ific No	rthwes	st -	Ľ	DAILY		E	Boring/Well No: <u>C3040</u>		Depth	:	2,5 - 41 Sheet 3 of 46
Natio	nal La	borato	ry BC	DRE	HOLE	LO	G	Location: 100-DArea, 183DR in 100H OU Project: IS GR 23				
Log	jed by	R	onald	Sa	hall	a	1	Pmp & la Date 7-12-2000				ng Contractor Resonant Sonic Internation
Reviewed by Ronald Salalla							T	and Illa Da	te_ <u>8-3/-</u>	-2000	Drille	r Kelly Counter Moe Wrusper
Lithologic Class. Scheme USGS								Procedure	Rev		Rig/N	lethod Dresser XT-70E, Cable Tool
Steel Tape/E-Tape /F							Field	Indicator Equip. 1) 2)			Depti	Control Point Ground Surface
DEPTU	79145		SAMPLES	CONT	AMINATION	MOIS-	GRAPHIC	LITHOLOGIC DESCRIPTION	w	ATER	ASING	DRILLING COMMENTS
DEPTH	IIME	TYPE	ID NUMBER	INSTR	READING	TURE	LOG	roundness, color, reaction to HCI, etc.)	AI	DDED	ASING	water level, drill fluid, etc.)
325	1120	SBe	previous					Sand (Se) and (SW) sand	98%, N	one io	750.D 151.D	Dumped waste soil into
			0					2% silt, no 0% gravel.	1			drum 100H-00-00 # 80
								Sandie 15% xcs-c, 60% h	nede,			fromsamples to 34 indopth
								20% fine. 5% veryfine. d	ryto			Arom contains cottings from
								slightly moist, gray (10YR-	5/1)+			22 to 34 indepth.
								dark gray with white spek le	15			·
								(104R-4/1), 60% basalt 4	0%		[
	100							other minerals primarily SU	bround			· · · · · · · · · · · · · · · · · · ·
34.0	5	P)	tosub angedor.				Sampled from 34 to 365
34-							0,0	Gravelly SAND (SW) SO	and			recoved nearly 2.0ft, or 80%.
35	1320	1211 Lexan	C 3040-34	GM	Backgr	_Q ⁵⁵)4		is 20% ves - cs, 50% med	15%			<i>v</i>
36	1320	12.4 Lexos	C-3040-35	GM	Buckgin	<u> </u>		fine, 5% of Traces of sitt	<u></u>			
T		No	Recovery				0.0	slightly moist, darkgray (10	1YR-4/1)			
I			1				00	Gravel 50% fine 40% m	.~d,			· · · · · · · · · · · · · · · · · · ·
36,5	1415						0.0	10% course, Basalt tau	ravtz,			
36.8	H15	64 Leita	c3040-36,5	6M	Backgro	Q	·0.00.	Coarsening with depth,				Sample Afrom 36,5 to 39A.
	Bo	Ider	damas	ed 5	tecl		$\langle \ \rangle$	Boulder composed of bo	salt.			recoved only 3" or about 10%,
	d	vive	shoe,	NOR	ecover	2	م <u>به به</u>	Estimated to be 8 to 12-in	dia.			Boulder at 36.8 test prevent
390	Ŧ	ron	. 36,84	03	9-							additional recovery
39,5	1515	6 Logo	C3040-395	6M	Bucky	Slight		Silty Sundy GRovel (GM) 50%	gravel			Samphalfrom 39 to 41,5 PJ,
\$0.0	1515	- <u>5</u>	< 3040- 40	4	- U-	meist	0.3	-40% sand, 10% silt orless. G	rand			recovered 2.0thor 80%.
40,5	1515	4	C3040-40	5 4			*000 O	is 40% v.cs - cs, 40% med., 20%	Hon-vf.			
41.0	1515	ų	C3040-41	બ			400°	darkgroy (10YR-4/1). 75% base	itt /	\ <u></u>		· · · · · · · · · · · · · · · · · · ·
							0.0	25% other (Quartz foldspar) (4		

W = Wet, M = Moist, D = Dry

A.5

Pacific Northwest DAILY					DAILY	,		E	Boring/Well No: <u>C3040</u> Depth: <u>41-49ft</u> , Sheet <u>4 of $\frac{76}{22}$</u>					
National Laboratory BOREHOLE LOG						E LO	G	L	ocation: 100-D Area, 183DR in 100 H ou Project: ISG-R 23					
Log	ged by	y_6	Ponald	Sc.	halla			12	Date 7-12-00			Drilling Contractor Resonant Sonic International		
Rev	Reviewed by Ronald Schulla								Romal Schalla Date 8-31-2000			Driller Kelly Coundary Moe Wraspeir		
Lithologic Class. Scheme									Procedure Rev			Rig/Method Dresser XT 70E, Cable Tool		
Steel Tape/E-Tape /Fie								Field	d Indicator Equip. 1)2)			Depth Control Point <u>Ground Surface</u>		
DEPTH TIME SAMPLES CONTAMINATION MOIS- PT TYPE ID NUMBER INSTR BEADING TURE LOG						MOIS	GR/	APHIC OG	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.) WATER ADDED			DRILLING COMMENTS SING (drilling rate, down time, blow counts, water level, drill fluid, etc.)		
41.0	160	N	Recover	44	++++1.5	5	:0:	0.	Same as above	N.	ne (a. 2	Stel Samplathon 41.5 to 44Pt		
41.5	1610	64	C3040-42	GM	Buck]; <u>;</u>	Ő.	which is Sandy Gravel but	1		Vacoural 2.0 - or 80%		
42.0	Lever	lina	C 3040-42	Г <u>і</u> ,	о _ч	SI. Na	. o	0.0	1050 silt ~ 5%					
42.5	· 1)		C3640-43	"	ι,		0	\mathcal{D}_{0}	Gravel is nounded to well					
43.0	"		C2040-435	5	•		0	o.	roundal for very coarse and			0n 7-12-00		
49,5	1	No	Recove	ry_		ļ		2	subneyed to subangular torfiner.			Drilling crased @ 630hrs		
44.0			V V	ľ			.°.	00	Same as			Cleaned + 10ad of up + leftsite D 1650hop		
44.5	'						ဂိုင်	SQ:	above, but			7-13-00 Drilling resumedat		
44,5	08/0	1:40	C3040-44	5GM	Bucka	and	1.6.	30	1053 5ilt ~2%			0745 this morning.		
45.0	080	ų	C3040-45		<i>"</i>		0.0	20	Graves (G-W) fine to coarse.			Sampled from 44 to 46.5		
45.5	0 810	4	C3040-45.	<u>t</u>			00	20	coarser gravels igheous grani	tic		Recovered 2.0 Htor 80% recover		
46.0	0810	ł	C3040 46	2 20/	unple Moist	aist			SAND (SP) sand 98%, 2%	1		Collected Moisture Samples + 2		
46.0-		1	lo Recon	lery			:		silt. 0% gravel. Sandis			VOA VIALS C 3040-46.		
46,5				0					25 Lov. CRS focrs., 60 % mad, and					
									15 % fine to v. fine, moist			· · · · · · · · · · · · · · · · · · ·		
									sample darkovar (10YR-4/1)					
46,5	0930								80% basatt 20 to other (quart)					
47.0	690	5-1) i 4	C3040-47			hois	5		gravelly SAND (SP-SM)	1		Sampled from 465 to 49		
47.5	0930	u	= 3646 - 479	1		to	0.0	6	with silt at certain layers upto			Recovered 2.0ft or 80% recover		
48.0	0930	ч	C3040-48			U. t	10.0	,÷:	20%, gravel 30%, Sand 5000	70		4 6"long 4-in die Lexan		
48.5	6930	ч	C3040-48,5				2	; ē:]	sandy cs to cs 20%, 60% mos			Liner Cappedtsealed		
485	N	10	Recove	~~			•		20% firsty f. (10YR-4/1) dark	Τ				
49.0			V				e .o	<i>o.</i>	gravel both roundalto subrowd	8				
							::0	- 8	ibusalt toranitic gravel. Sand 80% base	AV				
						W = V	Net.	M = 1	Aoist. D = Dry					

W = Wet, M = Moist, D = Dry

Pacific Northwest DAILY National Laboratory BOREHOLE LOG						LO	G L	Boring/Well No: <u>C3040</u> Depth: <u>49'to</u> Sheet <u>5</u> of <u>760</u> Location: <u>1000 Area</u> , 183 DR in <u>1004 00</u> Project: <u>ISGR</u> 23				
Logged by Ronald Schalla Reviewed by Ronald Schalla								mell Schell Date 7-	Drillin	Drilling Contractor <u>Resonant Sonic Int.</u> Driller <u>Morris</u> "Moe" Wrasper		
Litho	logic Tape	Class /E-Ta	. Scheme pe		<u>scs</u>		Field	Procedure F	Depti	Depth Control Point Ground Surface		
DEPTH	PTH TIME SAMPLES		ID NUMBER	CONT.	READING	MOIS- TURE	GRAPHIC LOG	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCl, etc.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)	
49.0	1118					不		Som same as above, bot	None	11,75 "A	Sampled from 49 to 51.5	
49.5	1118	6 !!	C 3040 -495	FM	Backer	IT	• •	a navel very fine and	1		Recoveral # 2.0 Hor 80% of	
50.0	1118	u	C3040-50			Hot		less than 10%0. +>2% silt			Sample, 4 6" long, 4-in.	
50.5	1/18	11	C3090-50.5	Ha	utad	+		Possible contact with Hautan			dia tomar Loxan lines were	
51.0	1118	**	C3040-51	Rin	ald .	Dry	00	Ringold Pormation, silty		1	Capped tsealed.	
515	No	Re	covery	fm	, ·		000	GRAVEL with some Saul 60			All sampling from 24 test to	
			0				0.00	on GM. Incustained quante			to taldepth or water is to	
51.5							00	gravel prominant tothe			be done by splits pour only.	
52.0	1155	6"	C3040-52	GM	None	Dy	00	minorola, very dry color			Sampled from 51.5 to 54	
52.5	1155	lines	C 30 40-525	60	**	Do	0,00	light gray (10YR-7/2)			Recovered 2 ft or 80% but	
52.5-	N	0	Recover	bes	aw. of		00	Rounded to Well wounded			1 foot was sediment that	
54.0	Sar	Asl	oughing	from	abou	e.	300	quarte gravel & subrounded			fall in from above. Princip	
							0 0.00	to wounded basaltgravely			dark gray sand.	
							0.000	colored sediments someting			0 0	
							030	light brownish gray (10YR; 6/2).				
54.0	13/0	Ener				Sligh	0.00	Silty Sandy GRAVEL (G-M)			Splitspoon Sampletton	
54.5	1310	4	C3040-545	GM	Nove	Mait	0000	50% log merel, 40% sand 10%	+)		54 to 56.5 - Recoveral 4	
55,0	1310	v	C 3040-55		1	Moit	::0	Qravel 5% ouless crs, 20% medium			6 Hong 4" dia Lexan Linn	
55,5	13/0	.,	C 3040 -55J	4	4		0.0	35% fine and 40% very fine.			full, ~ 80% recovery. 547056!	
56.0	1310	11	C3040-56	1			1000	gravel subrounded to well rounded	2			
56.5	No	Re	covery,				0.00	In fine to coase size Primary				
							00.0	colorging (10YR-6/1) bot small				
							000	powdered silt colored reddish				
							00.00	yellin 6(7.54R-6/8).	¥			

A.7

Pacific Northwest	t D	AILY	Boring/	Well No: <u>C30</u>	3 4 0	Depth	:	Sheet 6 of the		
National Laborator	BOREH	IOLE LOG	Location	Location: 100 D Area, 183 DR in 100 4 00				ct: <u>ISGR</u> 23		
Logged by	Sonald S	challa	p	Ponel Sella Date 7-13-00			Drilli	Drilling Contractor Resonant Sonic Internet		
Reviewed by	Ronald S	Schalla	te	Romel Schelle Date 8-31-2000			Drille	Driller Morris "Mae" Whaspin		
Lithologic Class.	. Scheme	VSCS		Procedure Rev			Rig/N	Rig/Method Dresser XT 70E, Calle Tur		
Steel Tape/E-Tap		/	_Field Indica	ield Indicator Equip. 1)2)			Dept	Depth Control Point Ground Surface		
	AMPLES CONTA	MINATION MOIS- GI	RAPHIC LOG	LITHOLOGIC DESC (particle size distribution, so roundness, color, reactio	RIPTION ting, mineralogy, n to HCI, etc.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)		
56.5 1450		0.1 • 0	÷	Same as a	Lboye.	None		Selit spoon samplestrom 56:5'		
57.0 1450 fina	C3040-57	slind - mout-	0.0	but mores	ilt perhaps			to 58.0% Recoveral four		
57,5 1450 × 1	C 3040-575	on to	0.0	as much as	30% at			6 -in. Long Lexan liners fully		
58.0 1:50 " 0	3040-58	an -0	000	certain Loyer	May be			~ 80% ve covery 56.5 to 58.5		
58.5 1450 4 0	C 30 40 - 585		00.0	Slightly c	curciter	<u> </u>				
59.0 No Rec.	000-258 570	59		· · · ·						
59.0 1520		@								
59,5 1520 6"	C 3040-60		0.00	Same us ab	ome but	<u> </u>		Sample by split spean 4"		
60.0 1520 Line	C3040-605	<u></u>		less silt po	10%	-		dia. 6" long Lox an lines.		
60.5 1520 11 0	30 40-61	0.150M	\$0. \$0.	orless				Collected Four 6-in cample		
61.0 12	C3040-612							or 80% vecoury.		
615 No Kach	very 61 To 4					<u> </u>				
61.5	C 2 6110 (0		້ອີບ		1-0					
62.0 6 C	C 3040-62		0	sana as a	isoul,					
02.0 Linige	2040 1 2		G. 0			+				
635	2040-625		0.0							
64.0 NA	Paralle		0.00							
	Recovery	•	-, -,		· }. • •					
				· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·						
		W = Wet	t, M = Moist, I	D = Dry						

A.8

Pacific Northwest National Laboratory	E BORE	DAILY HOLE LO	DG	Boring/Well No: $C3040$ Depth: $64 + 074'$ Sheet $70f + 62a$ Location: $100 DArca, 183 - DR$ Project: $ISGR$ 23					
Logged by Edw	ourd C. Th	cornton	٤	Edward C. Thornton Date 7.14.00			Drilling Contractor Resugant Son is International		
Reviewed by Ro	nald s	challa		Ronal Schella	Date 8-31-20	Drill	Driller Morris " Mae" Wras Pir		
Lithologic Class. S	cheme	Part	-	Procedure Rev			Rig/Method Dresser XT TOF Cableton		
Steel Tape/E-Tape		_ /	Fie				Depth Control Point Ground Surface		
DEPTH TIME SAM	IPLES CONT	AMINATION MO	S- GRAPH	IIC LITHOLOGIC DESCRIPTIO (particle size distribution, sorting, n roundness, color, reaction to H	N nineralogy, ADDED Ci, etc.)	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)		
64.0 700			0.0	o same as above but	57. None		on site at 700 split spoon		
64.5 700 6"1. 100	040-64.9 30			or less silt			obtained from 64-65.5'		
65.0 700 " 30	40.65.0			o			Recovered four 6- in Lexan		
65.5 700 " C30	40.655						1: vers full ~ 80% recovery		
66.0 700 . 30	040-66.		- 2.	•			from 64.0 to 66.0'		
66.5 No recover	<u>ry 66.0-66</u>	5'	0.0	·			Dumped was to soil into drom		
66.5 0850			.00	:			100H-00-0077 (59-67)		
67.0 0850 6" C3	040-67		0.0	Same as above but	-		Split spoon obtained		
67.5 0850 1:40 (3)	040-67.5		0.	more remented			from 66.5-69.0		
68.0 0850 " (3.	040.68	0 A - AN	10.0	o			Recovered four 6-in Lexan		
68.5 0850 ·· C3	040-68.5 ZV	× Moist	00	u			1: news full ~80% recovery		
69.0 No recover	<u>n 68.5-69</u>	.0'		·[from 66.5 - 68.5		
69.0			0.0	:					
69.5 0950 (30	40-61.5			- Same as above but u	nore		split spoon obtained		
70.00450 (3	040-70-0		. 0 :	: gravel 60-65 70,			from 69.0-71.5		
70.50950 30	40-70.5 S.m	o:ct	0.0	more comentation me	re		Recovered four bin lexan		
71.00950 (30	40-71.0 GM	background	000	· light-colored maters	als		liners full ~8075 recovery		
71.5 No recover	m74.0-71	.5'		· especially in fone .	irained		from 69.0-71.0		
71.5	<u>ر</u>		0.0	(quartzite & graniti	(2)				
72.0 (8	1040-72			· [`` · · · · · · · · · · · · · · · · ·			split spoon obtained		
72.5 3	040-72.5		.0.0	· Same as above			from 71.5 - 73.5' 74.0' cet		
73.0 630	40-73 GM	backersund	0.0	. hit large rock ?			Recovered four 6in lexan		
735 13	040-73-5	sl. most	0.0	bent end of shoe			Liners ~ 702 recovery		
74.0 No recove	my 73.5-	14.0'	<i>D.</i> ,	Majah Du Dat			from 71.5-73.5'		

W = Wet, M = Moist, D = Dry

Dumped wastes.: 1 into drum 100 H - DO - 00 87 (67- 47) 74 ECT
Deal	6- N-			r	ע ווער	,	T	Boring/Well No: C304-0	Der	oth: 7	4 to 84' Sheet 8 of the
Natio	nal La	borato	ory BC	DRE	HOLE	LO	G	-ocation: 100 DArea 18.	==, 3 - DR	Proje	ect: ISGR 23
Logo	ed by	, E	luxered C	Th	arnton		ر ج	and C Thorn for	 Date 7-14-00	Drill	ing Contractor Resonant Sonic Information
Bevi	awed '	 bv 5	2000	1	Sch	<u>, 11</u>	<u> </u>	Prove OD Sech OD	ate 8-31-201	Drill	er Mauric "Map" Wraspir
Lithe	Ingia		Seheme	<u> </u>	Párt Párt	<u>a 11</u>	<u>u. </u>	Procedure	Rev	- Bia/	Method Decise XT TOF Calla Tool
Charl	Tomo	Cidos	s. Scheine		,		Fie	d Indicator Equip. 1)	nev	- Deni	th Control Point (2 and 1 Sturfage
Stee	Таре	/E-1a	pe	T			Fie		<u>/</u>	- Depi	
DEPTH	тіме		SAMPLES	CONT			GRAPH	(particle size distribution, sorting, mineral	gy, WATER	CASING	(drilling rate, down time, blow counts,
		TYPE	ID NUMBER	INSTR	READING			roundness, color, reaction to HCI, etc.)			water level, drill fluid, etc.)
74:0						-	00	gravely sand, It.)ray		split spoon ubtained
74.5	1300		C 3040-79	<u>4.5</u>			0.0	w/mino-silt cobble	<u>s/ -</u>		from 74.0-76.5
150	1300		3040 - 75.	<u>.</u>			00	peoples of quartzite E	nal		Recovered tour 6 in lexan
755	1300		C3040-75	5	╂────		. 25	metermorphics, rust			liners NOG vecovery
76.0	1500		C3040-76.	<u>þ</u> (G)	M1 badeg	and	6.0	or oxide matings we	<u>لــــــــــــــــــــــــــــــــــــ</u>		tron 74.0-76.0
76.5	No	re	every 7	6.0-	76.5'		00	unsol:dated			
76.5	1403	·	2010	-	<u> </u>		0.0				split spoor obtained
77.0	1405		C3040-77	<u>, o</u>	ļ		0:0	cemented / consolidate	ek		from 76.5 - 79.0
77.5	1400	-	(3040-77.	5			<i>.</i>	gravel			Recovered from 6 in lexan
78.0	1405		<u> C3040-78</u>				. 0				linurs 70-802 recovery
78.5	1400	-	(3040-78.	5			0.0				from 76.5-78.5' J
19.0	N.	o rea	covery 78	<u>1.5 ·</u>	79.0		·0 :	· · · · · · · · · · · · · · · · · · ·			
79.0							00	·			
79.5	1505		C3040-74.	5			2.0	same as above		ļ	split spoon obtained
80.0	1505		<u>C3040-80</u>	<u>,</u>		ļ	:00				from 79:0-81.5
80.5	1505		C3040.80.	<u>.</u>	<u> </u>		00				Recovered four bin lexan
81.0	1505		C3040-81	2 Vo.	As \$ mo	sture	0.0				liners ~ 80% recovery
81.5	N	re	covery	8	1.0-81	5 '	.0 .				From 79.0-\$1.0
825			,					brownish sand at 82, mila	es of		100H - 00 -00 82 (74-80)
82.0	1620		<u> C3040-87</u>	2	wet		0	so with gravel			split cpoon obtained
82.5	1620		3040-82	5	<u> </u>		ت ،	water level at ~82'			from 81.5 - 84.0'
83.0	1620		6 3040-8	\$	wet	İ	. 0	82.5-83.5 gravely			recovered four 6 in lexan
835	1620		C3040-8	3.5			"	Sand wet		ļ	liners full ~80 % ve covery
84.0	No	re,	covery	83.9	<u>‡ -84</u>	0'		l			from 81.5-83.5'
			0			W = V	Vet, M	: Moist, D = Dry			

Paci Natio	fic No nai La	rthwe borate	st pry BC	E DRE	DAILY	LO	G L	oring/Well No: <u>C 30,40</u> ocation: <u>100 - D Azea</u>	Dept	h: <u></u> Proje	4 - 89(70) Sheet 9 of 2+4 ct: <u>T56R</u> P-23
Logg	jed by	/	Tyles	_Gu	mon		\sqrt{k}	In Dilmon Date 7/1	17/00	Drilli	ng Contractor <u>Resonant Smic Internetsal</u>
Revi	ewed	by _	Ronal	d	Sigha	lla	. /	Date 8-3	31-200	⁰ Drille	er Marvis Moe Wraspir
Litho	logic	Clas	s. Scheme					Procedure R	ev	Rig/N	Nethod Diresser XT JOF Cable ton
Steel	Tape	e/E-Ta	pe		_/		Field	Indicator Equip. 1) 2)		Dept	h Control Point Ground Surpe
			SAMPLES	CONT	AMINATION	MOIS-	GRAPHIC	LITHOLOGIC DESCRIPTION	WATER	OACING.	DRILLING COMMENTS
DEPTH	TIME	TYPE	ID NUMBER	INSTR	READING	TURE	LOG	(particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	ADDED	CASING	(drilling rate, down time, blow counts, water level, drill fluid, etc.)
81' 0	600							We tar estimated at 81-82 ft will			At duill site; discuss work;
								take e-tope reading this month			Sately meeting.
	1733							Masure depth to water			/ 0
								when at 81.0 (w chalted to)			Drive bowel dvilling
								Casing at 80.37 Bottom of			hole stonched in about 3 air
								hole but 81.2 : just below			weekend
								Casha			
81 1	757	-						Add is ft piece of casilian			
(830							0			Drilling out cove-in backto
86	695	Soil	C.3040 84.4	Gm	Wegend	wet		Sundy Gravel 65% gravel 32% Sund			84 will split spoon after
		5:1	C340 85	UDA	Ucarnel			37 Silt/Mup populy Sut balts			Split spoon driven from 84-86.5
		50.1	C 30 40 855		U			atzites sl consol			
		50:1	C3040 86					+(4) 6" laran liners ~ 80% recover	¥		
								durave Splitspoon to Ble - very diffing	<u>_ +</u>		
								to open splitspoon lexan liners.	full		
	955										Dvilling chanout hole to
								Dump waste into drum 100-H-	00-00	86-9	next splitspor
									00	83	Splitspoon driven from 86.5-89
89	1020	501	C34097.5	Gm	bkgnd	vet		Growelly Sound 30% Guerol 658 San	(Will clow hale and to 82
			88	JOA	bland			5% Mud Nice Sand looks poincoble	le		T.D at 89 drive casily to
			88.5		0			poor-mod Ent st consol H color	red		90' to allow some sectimants to
		511	C340 89					gtz and gtzites + bsl+ 72%	recomm		come-up inside hele then will
								inste to thrun 100H - 00-0	083		set casing - will not bail due to
			ŀ								Sloughing Sands
						W = V	Vet, M =	Moist, D = Dry			v v

Paci	ic Nor	thwes	t	C	AILY		В	oring/Well No:	C.3040		Depth	n:	89-90 Sheet 210 of 275
Nation	nal Lat	oorato	^{ry} BC	RE	HOLE	LO	G	ocation:	100-DArea			Proje	ct: <u>J56R</u> <u>P223</u>
Logg	ed by		Tyler. G	Iwon	e Pára	(\]	n Delmo	<u>~</u>	Date <u>7/</u>	17/00	Drilli	ng Contractor Regonant Sonic
Revie	wed l	by	Ronal	d :	Schal	La_	<u> </u>	Zonald l	<u>clalla</u>	Date <u>8-</u>	31-200	d Drille	er Marris Wraspi
Litho	logic	Class	. Scheme					Pro	cedure	R	lev	Rig/N	Nethod Dresser XT70 E/Cabletool
Steel	Таре	/E-Taj	pe		. /		Field	Indicator Equip. 1)	2)		Dept	h Control Point _ Grand sur faca
DEPTH	TIME	S	AMPLES	CONT	MINATION	MOIS-	GRAPHIC	LITHC (particle size di	LOGIC DESCRIPTION	eralogy.	WATER	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts,
		TYPE	ID NUMBER	INSTR.	READING	TURE	LOG	roundness,	color, reaction to HCl,	etc.)	ADDED		water level, drill fluid, etc.)
	/050	`					- -						Drive Casing to 9044 and
			-	<u> </u>			•						drill casing out
	12:00	<u>, - 1</u> 2	50					Add Day	Liter	to Keep			Soude convince in to casing
								Sound ont	at Dipe	v Fup			continue to clean out
90'		1430)										Down to 90 ff will stop
													for day. whit to determine
								· · · · · · · · · · · · · · · · · · ·	·				it we need to beg, the well
													(Geophysical Logs)
								<u> </u>					
						·							
			820										
										<u> </u>			

E tape add 0.27 Steel tape 0.7

D	AILY BOREHOLE/ COMPLETION LO	WELL G	Bori Loca	ng or We tion(11 Numl 1304	per <u>C 3040</u> 0 100-D Au	ree		Date Proje	HIS/00 Sheet No. // of 3/10 ct ISGR m223
Log Rev Mea	ged by <u>Ty(</u> iewed by <u>Rona</u> suring Equip.	er C Id Sc Silni	ailure halle st 300	Ponl ETope	Pro	Date $\frac{7}{200}$ Date $\frac{7}{8-3}$	18/00	Drillin Drillen Rig/Equ	ng Cou r <u>A</u> u uipmen	ntractor <u>Resonant Sour</u> bris Whaspir nt <u>Dresser</u> XT 70E
Time	Туре	Casin Dia	g/Screen Length	n Stickup	Depth	Annul Type	ar Fill Quantity	y Depth	Over lap	Comments
830	Temporary		95.4	5,41	90		 		 	$D_{LU} = 86.65 - 5.4 = 81.25'$ $D_{B} = 94.5 = 5.4 = 89.1'$
0957	 	- <u> </u>	 				 			Pull pipe off; stickyp will change
12-1	2:30	1			1		1			Lunch
PUC .	Rosht Screen	12.1	10.22			PVC			l 1	Measure casing PUC
<u> </u>	5 Casing	- · 	4.95			1				DB = 89.22
	10' Casilna		r 9.95				 	I		will set casing on bottom and
		1	9.95				 	 _		then pull up approx 0.5
	I	1	9,95		ı ı 		 			
	l 1	 	9,95		l 		 	۱ ۱	 	Temporony casing still at 95,4'
		 	9.95	 	۱ ۱		1		 	stick-up
		1	9.95	l			1 1			l (
		1	9.95				1 1		 	l L
	1	1	9.95		 				 	I . L
			9,95				1			
PVZ	10' Casina		9.95		 	PUL	 		 	PUC , Set at 88.17
1	0		94.47			· · · · · · · · · · · · · · · · · · ·	 		6.8	Top of PUC 6.3 above ground
			95,4	5.4	90	Notwal Fill	-	 	154	Add sand (0.7 add on to tope)
Bac	2	 	l 	l 	 	10-20 Sand	1bay	189,2	29	(2.1 ft came up & from 1 bag
 	l 1	<u>'u"</u>	95,4	7.3	87.2	Colo Silica Sand	0	8	 	
	I		۲ ۲ ۱	l l	ا ــــــــــــــــــــــــــــــــــــ	•	1bag	 _l	I	I L
							U			

DAIL) COM	Y BOREHOLE/WI	ELL	Bori Locat	ng or We tion	11 Numl <i>100-</i> J	ber <u>C3040</u> Area			_ D _ P	ate rojec	<u>7/18/00</u> Sheet No. <u>12</u> of ct <u>ISGR</u> 4
Logged Reviewe Measuri	by <u>Tyle</u> ed by <u>Ronald</u> ing Equip	G	Luore	Rond	Pro	Date <u>7(()</u> <u>LOL</u> Date <u>8-3)</u> pcedure	2 <u>00</u> -2.000	Dri Dri Rig,	llin ller /Equ	g Cor ipmer	Morris Wraspir Morris Wraspir ItRig
Time	Са Туре	asin Dia	g/Screer Length	n Stickup	Depth	Annula Type	ar Fill Quantit	y Dej	pth	Over lap	Comments
1349		11"	95.4	7.3	88.1	 		42	5)8	22	9 Pull casing
1353		11*	95.4	8.8	8610	l 	9	45	857	0.9	(2.47' Screen covered)
		f("	91,4	4.6	86.8		· 	- - 			Take piece casing of 4' PUC stickup 6.4: 88.07
1416					 	6 10-205md	(90	5/8	59	0.9	
		 				Colo Silica Sand	1 bag	<u> 34(c)</u>	<u>84a</u>	2.8	Add Sand; Pull casing
i			9,4	6.	\$5.3		4		844	0.9	Add Sand; Pull casing
1429		 	91.4	4.95	94.45	10-20 June	10ag (1) (0)	00	830 830 73.3	a. 51.4 05	Pipe "poped" did it break
	<u> </u>		91.4	7.(0	\$38]]	1.756	\$ 4.4)	29.8	4.0	Add sound
1453			91,4	10.1	81.3	<u> </u> 	1	ind i	80.7	0.6	Remove Casiba
	· · · · ·	۱ ("	85.4	٩.١	81.3	10-20 Sand	1 brg (832)	79.1	2.2	Add Sand (lost end of 4
			85.4	1.0	788	10-20 Send	1/200 18	$\frac{\mathbf{q}}{2}$	703 74	325	Add Sand Los at 76
1538			\$5.4	7.1	78.3		- (8	5 4) 7	6.3	2	Stop
				ļ		• • •					Total 5 of 7.75 bas
			 1		 1	 	 				www.vance. III - and
			 	 		Set up to	pin:		ve	(
				 			i (T		· · · · · · · · · · · · · · · · · · ·

Pacif Nation	fic Nor nal Lat	thwes porator	t ry BC	C RE	AILY	LO	G	Boring/Well No: <u>C3040</u> pocation: <u>100 - DAveo</u>	Dept	th: Proje	$\frac{89}{TD}$ Sheet 13 of $\frac{32}{22}$
Logg Revie Litho	ed by wed l	by <u></u>	Tyley Ronald . Scheme	Gi IS	Print Print Print		for the second s	Date 7 Date 7 Date 8-1 Date 8-1 Procedure F	(8/00 3) - 2.00 Rev	Drilli () Drille Rig/N	ng Contractor <u>Resonant Smit</u> er <u>Movis Wraspir</u> Method <u>Dresser XT 70 E</u>
Steel	Tape	/E-Tar	De		1		Field	Indicator Equip. 1)2)2		Dept	h Control Point Growing Surface
DEPTH	тіме	s	AMPLES	CONT	AMINATION	MOIS- TURE	GRAPHIC	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy,	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)
200		TYPE	ID NUMBER	INSTR.	READING			Driller setting up to pull			
							- - -	Casing and complete well Deads casing ignes, materials to			
	830							0,1- /			Water level 81.25
								Driller will more drill vig		<u>_</u>	
								off and complete with shalls		··	
										<u> </u>	
								from a local GPS grid N129 E71			
								(whore E100 is almost in line with			
								2 proves dated 7/18/00			
X40								Set" Prod: Sla," pump in well			Set pump 244 off bottom
								and legih pumping at 4:25 to			ot well at 86
								to time soris sampling samp for conductivity and Crui	ing		
) - -				

Pacif Nation	ic Noi Iai Lai	thwes porator	t ry BC	D REI	AILY	LO	G	Boring/Well No: $\underline{C3040}$ Depth: <u>88</u> ft Sheet <u>244</u> of <u>mathetics</u> ocasion: <u>100-D</u> Area Project: <u>TSGR</u> $\underline{N23}$
Logg Revie Lithol Steel	ed by wed i logic Tape	by <u>(</u> Class /E-Tap	Tylez Ronald . Scheme De	Gî Sa	parte ((مــــــــــــــــــــــــــــــــــــ	Field	Date 7/18/00 Drilling Contractor Date 7/18/00 Drilling Contractor Date 8-31-2.000 Driller Procedure Rev Rig/Method 1 Indicator Equip. 1) 2) Depth Control Point
DEPTH	TIME	S	AMPLES			MOIS- TURE	GRAPHIC LOG	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.) WATER ADDED CASING CASING CASING CASING CASING Water level, drill fluid, etc.)
	183	5						Sompled citeder at Time= 1004hh
		wata	/					(1) 500m (P) Metals (1) 500 m (G) Mercury
								(1) Som (GP) Her (1) Sam ontside Lob
								(1) 4000ml (P) Gamma (1) 20ml (P) Atwity Scan
								(2) 40 ml (a) VOA PNL (1) 500ml (p) Lab
								Coc × 00-021-2
								X 00 - 021 - 1
	<u></u>							No claim for PNL Labs other than this document
								Will Leave well to dvill next
								well C3041
							Ar-A 84	

Paci	lic Nor	thwes	t	0	DAILY		E	loring/Well No: <u>C3040</u> Depth: <u>90-1035</u> Sheet <u>15</u> of <u>H6</u>
Natio	nal Lal	borato	<u>א</u> BC	RE	HOLE	LO	G ۱	ocation:Project:
Logg	ed by		Tylor	G	nimo	e	$\overline{\bigcirc}$	Tigh Chluis Date 7/31/00 Drilling Contractor Alor Respond Sonic Lite
Revie	wed	ьу 🔓	Sanald	S.	hall	L		the Por lelle Date 8-31-2000 Driller Morris utspir
Litho	logic	Class	. Scheme		Para			Procedure Rev Rig/Method Bucyrus Erie 22W/Collator
Steel	Таре	/E-Taj	oe		_ /		Field	Indicator Equip. 1) 2) Depth Control Point grownol Surface
		s	AMPLES	CONT	AMINATION	MOIS	GRAPHIC	LITHOLOGIC DESCRIPTION WATER CASING DRILLING COMMENTS
DEPTH	TIME	TYPE	ID NUMBER	INSTR	READING	TURE	LOG	(particle size distribution, sorting, mineralogy, roundness, color, reaction to HCl, etc.) ADDED CASING (dimining rate, down time, blow counts, water level, drill fluid, etc.)
	1400	- 1531	2					Drilling out casing very difficult Decision made to complete this
								used to get back to original depth well (c3040) as RCRA well; will
							ļ .	89.14+ deepen and complete.
	0615			· · ·		ļ	8/1/00	Continue drilling; use sond pump Note: No activity (or Longs)
								still difficult. Detween 7/19 and 7/30/00
	1000						ł	Switch to hard tool drill
	1130				<u> </u>	10/	}	Approx 91 but have not bailed
95	1430	5:1	<u>C3040-95</u>	ų —		MA_	 }	Gravelly Sand - Sample trom
							ł	bord tool and is crushed; drilled
							l	Wory bord texture and South Clerk total
						1	ł	is not applicable to be given blocking
3			A 2.11		<u> </u>	NIS	1	builting of bass of and ghorie minerals
100	I VIZ	51	C-1040-11	<u>p</u>		74		Gravelly sama description as
								above. Sitte and a state
							-	Sude not still graters and whater added want times for deil
1077	1; 2						ł	1 sande still Sude and Grant Dell to 103,5
w.S	Jase						1	se almost soffling back to 102
]]	how of cosing at 101.5
							1	
						<u> </u>		
		ليسبي		1		L		

Pacif Natior	ic Nor nal Lat	thwest porator	t ry BC	D	AILY	LO	в G Ц	oring/Well No: <u>C3040</u> pocation: <u>100 DArea</u> (83 DR	Dept	h: <u> </u>	103.5 Sheet 16 of 16 ct: F5GR 23_{42}
Logg	ed by	4	Tyler	Gil	more	\cap	Jul 1	Date_8/	2/00	Drilli	ng Contractor Resonant Soniz
Revie	wed l	by <u>R</u>	onald	Sc	hallo	-	V the	onald lalal Date 8-3	1-2000	Drille	r Morris Nespi
Litho	logic	Class	. Scheme		2004			Procedure F	lev	Rig/N	Nethod Bucyrus Erie 22W/chletal
Steel	Таре	/E-Tap	De		1		Field	Indicator Equip. 1) 2)		Dept	h Control Point Gwand Sortace
DEDTU	779.07	S	AMPLES	CONT	MINATION	MOIS-	GRAPHIC	LITHOLOGIC DESCRIPTION	WATER	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts,
DEPTH	TIME	TYPE	ID NUMBER	INSTR.	READING	TURE	LOG	roundness, color, reaction to HCI, etc.)	ADDED		water level, drill fluid, etc.)
cler	doo							Clean hole out with biles			Casing moterials have not envive
							•	Prepare to set casing			yot "
	• <i>D</i> ¥(-							DB - 100 Q (1) la Gillin			Wait on Coelman
	0840 in40							DD = 100.9 47 atter strong			Coshe Arrived
	μ						1				
								· · · · · · · · · · · · · · · · · · ·			
										· ········	
										_	
			· · · · · · · · · · · · · · · · · · ·								
							•				
							V.A. 84	Maint D. Day			

W = Wet, M = Moist, D = Dry

D	AILY BOREHOLE/W COMPLETION LOG	ELL	Borin Loca	ng or We	11 Numl	ber <u>C3040</u> Areo, 183 i	2 2	[)ate Projec	<u> 5/2/00</u> Sheet No. <u>17</u> of <u>23</u> ct <u>T56</u> R
Log Rev Mea	ged by <u>Tyler</u> iewed by <u>Ronald</u> suring Equip	Gil	more (alla	then	Pro	<u>an Date 87</u> Date <u>87</u> Docedure	2/00	Drillin Drillen Rig/Equ	ng Cor <u>M</u> a ipmer	ntractor <u>Resonant Somic International</u> Inis Wespir It Braynes Erie 23 al Calle Tool
Time	С Туре	asing Dia	g /Scree Length	n Stickup	Depth	Annul Type	ar Fill Quantity	Depth	Over lap	Comments
115	Stainless Steel	5	1 055	316	Cen	valizers weld	ied at	bottom	mail	6
1	side of each	h	a 51/09	1: Ser	ten i	s 20 slot M	instatives	Rosio	e Mo	۶ ۵
	We are shor	$\frac{1}{1}$	204 -	Diece, h	oill no	red to find one	and/ar 1	nate C	hance	Regressest
 	55316 Sump	4	3.02	Contraliz	ei		1		0	7
 	155 316 205/of Sor	4	19.98	Screw	ino cei	itralizar (blante)	l			
1	155 316 Casing	4"	20.02	Centraliz	1	· · · · · · · · · · · · · · · · · · ·	l 1			· · · · · · · · · · · · · · · · · · ·
	155 3110 Constant	4	20.01	blant	1		1			
	15 31/2 (asing	4	20.01	Contraliz	rev		1			
	155.304 Cables	4"	20.02	blank	1		 	1		Note 364 55 20 fort casilor
		- - 	103.06	Total	1		 			0
1249	Tentorony Steel		105.46	445	101.01	Natura EII	1	1	0.76	DB 104.7 - 4.45 = 100.25
		 		1		l		1		Pun 4" Stahless Steel in Well
1441	1	 1	105.46	4,45	101.01	GloSilico Sourd 10-2	to 1 bas (10	1 97.55	3.46	Holl stainless at 2. 81 above ground
<u>/</u>	1	 	105.46	5.89	99.61	 		150)99.61	0.0	J
						Gla Silica Sound	1) has (10	DR 112 96.	13.3	
}	1		105.41.	755	9791			4 5819702	0.88	
<u> </u>	1					Colo Silica Sand	11 000 (10)	139495	296	Take off 4.0' casing
US IC	Town Sheel		161 dl.	<u> </u> 4.२	9211		1 0 (99	5)952	196	Stainless casing at 2.8 abureared
1014	I IEMP DIED	<u>├╹<u>└</u>─┤</u>	101.10	 	1	Colo Silica Sand	1/200 (96	3 94	3.16	Stulid id not more)
				1 (0.7	95.26	Colo Silica	1 hacl9	19914	.38	
				8.25	9321		- Jim	3 92.75	096	
}			 				uu	4~+ ····		

199-02-8

							<u> </u>	-1.1	H.		old Sheet No provider 07
D/	VILY BOREHOLE/W	ELL	Borin Locat	n <mark>g or We</mark> tion <u>lo</u>	II Numt	ber	<u>C3040</u> 183 DR	Mph.	<u> Mur</u>	pate Projec	812/00 Sheet No. 23
Logo Revi Meas	ewed by <u>Tyler</u> ewed by <u>Rope</u> suring Equip.	Gilu Id S	ine Schall	e Ro	 Pro	<u>_</u> Q <i>Q</i> ocedur	Date <u>8/</u> Date <u>8-</u>	2/00 31-2000	Drilli Drille Rig/Eq	ng Cor r uipmer	Atractor Reserved Sonic Morris Wespix It BE \$2 W Cable Top]
Time	С Туре	asing Dia	/Screen Length	n Stickup	Depth		Annul Type	ar Fill Quantit	y Depth	Over lap	Comments
1525	Temp Steel		101.46 ar. 44	8.25 4.2	93.21	Colp	Silica Sand	1 bag (9	412 90.4	3.16	Target for Sand = 72,25 for 5 abree
			96.44	4.8	91.64	01.5	1.6.1	(9 16 (92	5.5)90.7 5.882	0.94	Stainless casing holding at 2.8 above good
 		<u> </u> - - -			 			(<u>9</u>	514)	1.0	100 16 bags Some
 		├ ── ┼ ├──┼				Colo 5	ilico Dourt	1 bag (0	(175) 75.58)	0.86	
1600	Temp Stel		91.42	4,3	87.12	<u>()</u> 10 S	ilica Sand	1 brag (<u>98.25)</u> <u>96.25)</u>	1.19	Remove 5.02 casing
1625		┨╌╌╌┤ ┨╶───┤ ┨────┤			 					 	Quit for Day
		}} }}			 	 		- 		 	
 	· · · · · · · · · · · · · · · · · · ·	}}		 		 		 			
		┼──┼ ┼──┤			 	 		 		 	
 	· · · · · · · · · · · · · · · · · · ·	<u>}</u> } }}			 	 		 	- 	 	
					 L			 1		1	

DA	ILY BOREHOLE/W COMPLETION LOG	ELL	Bori Loca	ng or We tion <u>lo</u>	1] Numl o D An	per <u>C3040</u>	(199-D	<u>2-8)</u> [)ate Projec	<u>8/3/00</u> Sheet No. <u>19</u> of <u>23</u> ct <u></u>
Logg Revi Meas	ed by <u>Tyle</u> ewed by <u>Ron</u> uring Equip.	Gil	Schall	Jihn MP2	Pro	Date 8/ 2000 Date 8-3 Docedure	3/00	Drillir Driller Rig/Equ	ig Cor <u>M</u> ipmer	itractor <u>Resonant Simiz</u> Jorris Wespin It_BE 22W / Cable top 1
Time	С. Туре	asinq Dia	g /Scree Length	n Stickup	Depth	Annul Type	ar Fill Quanti	ty Depth	Over lap	Comments Inside Stainless Steel
0615	Temporary Steel	<u> </u> ("	91.42	4.3	87.12	Sollo bags	1 	(90.25)85.99 (01.0) 94 7	1.17	DW = 838 - 2.8 = 81.0'
┌ 		 	91.42	5.7	85.72			(905) 84/8	0.92	5016 bags today
				7.4	 	Colo Silico Sand	2 brus	(88.6) 82.9 (90150)	2.82	Target to Sand 72.2
		 	91.42	7.4	84.02	Colo Silica Sand	3 bries	(870) 79.6 (89 6 2) 90.20	4.42	PIL 502 Casing off
0702	Temp Steel	114	86.4	4,3	82.27	Colo Silica Some	3 bags	(81,50)7722	4.9	
 		• 	86.4	7.4	79	Clasilie Saul	3/200	(83 5)748	0.9	
 	······································	 ("	81.38	4,2	77.18		1	(84,50)	1.9	Pull 5.02 Casing off
	· · · · · · · · · · · · · · · · · · ·				 	Colo Silico Sourt	3 bags ((79.50)753 (76.05)72.09	1.88 [513	Hold sand - will surge block
0730-	930	 	 	 				77 02 72 0	11 - 5	Break for Driller's inty
1000		 			5.64	plat 24 bars and	<u> </u>	18.3)7213	9.05. 3.05.	dropped ~ 1.ft after 10min Surging
 		 	 	1 	 	· 		78.5)		dropped ift after 1/2 hour
1135		<u>├</u>	 	 		l	``` (`	78.6)		dropped 0.1 after (5min
					 		<u> </u>		1	dropped maybe 0.15 ft
1200		†******	l	4.2		 	(:	18.75) 74.5	5	dropped 0.15 after +25min

								< l>		
D	AILY BOREHOLE/W COMPLETION LOG	ELL	Bori Loca	ng or We tion∥	11 Numl たっ D	ber <u>C3040</u> (199 - D2 - 1	<u>8)</u> I	Date Projec	$\frac{8/3}{20}$ Sheet No. 20 of 13 t
	and by Tr	21		1	J)]	Date of	2/22	Drillir		atractor Aresonationic
Rev	iewed by Robal	2 Sc	Lalla !	A fame	DL	200_ Date		Drille		
Meas	suring Equip			,	Pro	ocedure		Rig/Equ	uipmer	it BE IIN Cable tool
Time	С	asing	g/Scree	n		Annul	ar Fill		0ver	Comments
	Туре	Dia	Length	Stickup	Depth	Туре	Quantity	Depth	lap	
11240	Temp Steel	1,1	81.38	4.5	77.18	l 	1	74.55	2.63	Need 72.2ft for Savel
			1	l I	1	Colo Silica Surd	3 bass (76	150) 723		Solb boxs bentanite
	l	111	81.38	17.6	73.78		(8	10)734	0.38	, , , , , , , , , , , , , , , , , , ,
1301	1		l 1	l 1	[]	Colo Silica Sand	aboas (7)	13)71.23	 	29 bags Sand total
			81.38	9.84	71.54		(81	50)7166	-0.12	Switch to Bentonite: Aug 1.34/bag
1/341		(1		 	I	Casing-Soal bardante	10/00005 (61	05616	15,38	on well C3041
	Tenno Steel	1 () 1 ()	71.35	4.4	66.95		(62	75)583	\$ 8.6	Rempte 10.03 Casiling
		ا ا ا	71.35	4,4	66.95	Cosing-Seal bentonite	10 bags (4;	5)43.1	23.85	0
1403	Temp Steel	n	61.33	4,4	58.93	U	<u>(51</u> ,	1)46.7	12.23	Remove 10.02 Casing
	1			 	I I	Casing-Son bontonite	6 mgs (42	0 37.6	21.33	
	1	1.1("	51.32	4,35	46.97	l V	(4)	(1)4.77	6.2	Ranove 10.01 casing
1442	Temp Steel	$\frac{1}{1}$	l 1	l 	ļ · · · · ·	Casing-Seal bestmile	11 bags 62	9)23.55	23,45	
1	t	l ll	41.31	4,4	36.91			1017.7	9.15	Romane 10.01 Casing
1501			l	l I		Casing-Soal bentonite	8 bags (19.	9) 15.5	21.41	0
	Tomo Steel Casing	1	31,30	4.5	26.8	1 0	(24	5)20	6.8	Remove 10.01 Casing
1527	l		1	1	1	Gronular Bentonite	12 bass (5.4	6) 0.95	125.85	5016 bas CETCO
1		1		Ø	1		(9.)	\$) 9.15'		inside 14° casing ~11'
	1	1	[I			1			All 11" out of well
1605	1		 	 	1	1	1			End of Dav
	1			I	1		1			
	1			 	1	l		I		
	1	1	; !	1	1	1	1	1	 	

D	AILY BOREHOLE/W COMPLETION LOG	ELL	Boring or Well Number <u>C 30 40</u> Location <u>100D</u> Date <u>8/4/00</u> Sheet No. 21 of Project								
Logg Rev Meas	ged by <u>F</u> A T iewed by <u>Rona</u> suring Equip.	horn. Ul S	ton	a Re	Pr	Date Date Date Docedure	<u>/4/00</u> 7 <u> -2_60</u> 0	Drillin Drillen Rig/Equ	ng Cor r uipmen	ntractor <u>Resonant Souic</u> Morris Wespir nt <u>Cable foul</u>	
Time	С Туре	asing Dia	/Scree Length	n Stickup	Depth	Annul Type	ar Fill Quantity	/Depth	Over lap	Comments	
700	temporary surloce casing	14"		10.00	 21.5 19.5	bentor ile	Zbgs		 	fulling temp every surface casing	
735				l	1		1	10'	 	measured depth to banton te	
										pour comment in annular space this afternoon will return Monday du development 59 bags of buildnite	
	<u> </u>			<u> </u>	<u> </u>	ļ					
		<u></u> 			} 1		- -	1	} I		
 	1	<u>+</u> ── □ □		1	 	I	1		 		
	[· · · ·	[I 	1	- 			
[I [. <u></u>	 	 	l 	, 		 	l	
 	I 					• •				·	
·						• 	-	-		l	
	- 	1-1			<u> </u>	 					
	 										
		- 							 		

Pacific Northwest DAILY BOREHOLE LOG Boring/Well No: <u>C 30 40 199 - D2 - 8</u> Location: 160 D										th: <u>De</u> Proje	ect: ISGR
Logg Revie	ed by wed l	by <u>R</u>	Tyler. onald	G; Sc	hallo	$\overline{\left(\begin{array}{c} \\ \end{array}\right)}$	H	Date 8 mil Solalla Date 8-3	7 00 1-2000	Drilli Drille	ing Contractor <u>Resonant Sonic</u> or <u>Morris Wespilr</u>
Litho	logic 	Class	. Scheme	<u> </u>				Procedure I	Rev	Rig/I	Method Pump Rig
Steel	lape	/E-Tap		00117	. /		Field		1 1	Dehr	
DEPTH	TIME	TYPE		INSTR	READING	MOIS- TURE	GRAPHIC LOG	(particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	WATER ADDED	CASING	(drilling rate, down time, blow counts, water level, drill fluid, etc.)
	6700		10 HOMOLI		112/10/114			whit has to set up well			Well Development / Step dirent-
								development test			dam
									<u> </u>		
								Funp Intake at 3 th			
								off bottom - base of well		****	
						{		Screen - Wonschier at	<u> </u>		
								prints inteke			
								DW= 83.98 -2.965 = 81.015			T=0
								Transducar = 12,721			
106								Start pump - Leaks Stop; Repa	div- La	aks	
								let récover to static			
								878 - 6016 - 011675			E > 1 1 last
								8 60 Tre Adver			Dul Tang
							•	BIOF HUMSMILLEN			
								88.03 - 2.965= 85.065			Τ= (,
								8.104 Transduce			Flow rate = 5gal/mill by bucket
]						{		at T=15 Sample then mer (bo)	frow do	212 +	0254+ approx 15gpm (by flow moth
1143								then book off at T=17 to a	Kong	10ggan	(by bucket) bolon & (m) weber range
								Cloudy water atter incr 4000 ve	rte		

W = Wet, M = Moist, D = Dry

Pacif Nation	lic Nor nal Lai	thwest porator	t y BC	DREI	AILY	LO	в G L	oring/Well No: <u>C3040 (199-D2-8)</u> ocation; <u>/00D1</u> 183DE	Dept	h: <u>De</u> Proje	telegement sheet 2-3 of 23 ct: ISGR
Logg Revie	ed by wed	by Tyler Gilmone ed by Ronald Schulla gic Class. Scheme upe/E-Tape /					Te	Procedure Date 9/	7100 1-200 ev	Drilli Drille Rig/N	ng Contractor <u>Responset Soniz</u> or <u>Monris Wespir</u> Nethod <u>Pump Ris</u>
Steel	Tape	ogic Class. Scheme/ Tape/E-Tape/ TIMESAMPLES CONTAMINATION MOIS- GR. TURE						Indicator Equip. 1) 2)		Dept	h Control Point Ground Surface
DEPTH	тіме	S	AMPLES	CONT		MOIS- TURE	GRAPHIC LOG	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)
	1151	ITPE	ID NUMBER	INSTR.	READING			$D_{10} = 9341 2.965 = 90.495$			T=28
								Trans = 3.220			
								DW 93,58-2965=90.61 T=1:40			Samples at T= 0,5,10,15,20,25
								Trans 3.13			30, 40,60,80,100,120
	1306							A+ T=100 (atta sample)			
								incr flow - Water turied brow		•··	FT. La C / 27. 11 / a /
	13/1							W 96.05 - 2965= 45.085			to late oga (atsec II) gal
								10450.657			CWORN OF TT
	15/8							Dh 13,43-2,103 - 11.48-			
			<u></u>	<u> </u>				100m3 [.] 70			
	1416							T= 174			Recovery Dolla
								Note no chock value but all			
								values shut down looks like its			
								holding			
								N			
								DW 84.28 - 2.965 = 81.315			T= 3 Kecovery
					<u> </u>			Tions 12.41			
								DW 84.05-2965 = 81.085			1=12
								Trans 12,458			NT-30 Eddaet
	1452							Kormaned to static			
								· · · · · · · · · · · · · · · · · · ·			

	G	RC	UN	IDWA	TER	SAM	PLE	REPO	RT			
Project: 183-DR G	W, Drilling Sa	amples,	July					Date:		Page	l of 1	
Task Order/Month:	JULY 200	00		QC Type:				Calculations:				
Well Number: C304	+0-GW			A# :								
Total Purge Volume	(gal): 5	00		Purge Flow	Rate (gal/m	1in): 591	m					
Pump Type: Redu	flow		ime on:	: Water:	Purge:	Samp.: "	Off:					
B0YN88	Severn Tre	nt Incorp	oorated	SA I	MPLES (COLLECT	ED -021-1					
1;500mL;G/P B0YN89	7196_CR6: H Severn Tre	lexavaler nt Incorp	nt Chron porated	nium (1) (Cool 4 I	c) CC	DC No.: X00	-021-2					
1;20mL;P 1;4000mL;G/P 1;1000mL;P B0YN92	Activity Scan GAMMA_GS 9310_ALPHA Severn Tre	(None) : List-1 (9 \BETA_G nt St. Lo) (HNO: IPC: Alp Juis	3 to pH <2) oha + Beta (2) (ł	HNO3 to pH < CC	:2))C No.: X00	-021-5					
1;20mL;P 1;500mL;G 1;500mL;P	Activity Scan 7470_HG_C\ 6010_METAI	(None) /AA: Mer _S_ICP: I	cury (1) List-1 (1)	(HNO3 to pH < 9) (HNO3 to pH	2) <2)							
Total No. Bottles: 7 Containment Code: Collector.												
FIELD MEASUREMENTS												
Water Level (TOC):				Drawdown (1	FOC):		Oil Sheer	n Yes		No 🗆		
vvater Level (TOC): Drawdown (TOC): Oil Sheen Yes No Prev. pH: Prev. DTW: E-Tape No.:												
Time												
рН												
Temp. (°C)												
Cond. (µs/cm)	550											
Turb. (NTU)												
D. O. (mg/L)												
				Fil	ELD OBS	ERVATIO	NS					
Weather:	<u>tot</u>											
Pre Check: Post Check:												
Comments: GROL	JNDWATER	- C3040										
Well capped and loc	xed: 🗌 Y	'es 🗌	No		Logbo	ok/Pg# :						
Samples Surveyed	for Gamma F	adiation	1 by RF	PTs: 🗆 ye	s J. M	· · ·						
Data Recorded by:	Print and sign r		nne	Jyn.	XMAn ~	$\frac{1}{2}$	0.00	<u>a</u>	ate	2		
Data Checked by:	Print and sign	<u>d S</u>	ch	alla 9	Lona	ll.	LUL	<u> </u>	8-31	-2.000		

PNNL				(CHAIN OF (CUSTODY/	SAMPLE	ANALYSI	S REQUEST	C.O.C. #	X00-021-2
Collector	<u></u>				Contact/Re	quester			Telephone No.	MSIN FAX	
	v (aila	More	·		DL STEV	VART			(509) 376-5056		
SAF No. '					Sampling C HANFO	Drigin RD SITE			Purchase Order/Charg	e Code	
Project Title					Logbook N	"E-aldlard	Theles	03. UL	Ice Chest No.	Temp.	
183-DR GW, Dri Shipped To (Lab)	lling Samples	July 2	000		Method of	Shipment	TINOD		Bill of Lading/Air Bill ?	No.	
Severn Trent Inco	orporated				GOVT. \	/EHICLE					
Other					Uata Turns 45 Days	iround			Olisite Property No.		
POSSIBLE SAMPLE HAZARDS/REMARKS •• •• SPECIAL INSTRUCTIONS Hold Time Total Activity Exemption: Batch all samples submitted under this SAF into one SDG, not to exceed SDG closure of 14 days. Submit in DL Stewart, PNNL.									Yes 🗹 No 🗔 voices & deliverables to		
Sample No.	Lab ID	•	Date	Time	No/Type Container		1	Sample A	nalysis		Preservative
BOYN89		w			1x1000-mL P	9310_ALPHABETA_	GPC: Alpha + Beta	(2)			HNO3 to pH <2
BOYN89		w		· · · · · · · · · · · · · · · · · · ·	1x4000-mL G/P	GAMMA_GS: List-1	(9)				HNO3 to pH <2
B0YN89		w			1x20-mL P	Activity Scan					None
Relinquished By	Print		Sign	£1	Date Tinge (00	Received By	Print	Sign	Date/Time	Matrix	*
Relinquished By	er Oil	mol	offn	ynyw	Date/Time	Received By			Date/Time	S = Soil SE = Sediment SO = Solid	DS = Drum Solid DL = Drum Liqui T = Tissue
								·····	T	SL = Sludge W = Water	WI = Wipe L = Liquid
Relinquished By					Date/Time	Received By			Date/Time	O ≖ Oil A ≖ Air	v = vegetation X = Other
Relinquished By					Date/Time	Received By			Date/Time		
FINAL SAMPLE	Disposal M	Acthod (e	e.g., Return to c	ustomer, per l	ab procedure, used in proc	i css)		Disposed By		Date/Time	
	1								·		

CrVI Groundwater 7/18/00 Pump Test 03040 - read 0.45 mg/l 4:30 pm ran 0.5 mg/l Crv1 std (filtered 0.01 mg/l CrVI 4:32 To no surledidy 70.66 mg/l f: Itered 55 0.00 filtered Iox dilution 0.10 × 10 - 1.0 mg/2 GVI 15 f: I tered 5x d: Lution T10 028×5-140 mg/l CrV1 :25 pm 0.29×5= 1.45 filtered 5× dilution ;:30pm T20 0.26 × 5 = 1.30 5:45pm T40 f: Hered 0.26× 5= 1.30 5x dilution 0.27×5= 1.35 f: Hered $0.28 \times 5 =$ 1.40 5× d: lution :00 pm 765 filtered 0.30x5 = 1.50 5× dilution T80 :20pm Filtured dilution U.30 X 70 = 1.52 20.3 X T100 ,:40 0.6 × filtered 4.0 × didution 0.32× 20.6 = 1.65 20.6 T120 ,: 55p M filtened T140 0.32 × 5 = 1.60 1:10pm dilution filtered T-180 1:45pm 0.32 × 5 = 1.60 5× delution filtered sx dilution 0.32 × 5= 1.60 7:55 pm T180

PNNL				<u> </u>	CHAIN OF (CUSTODY/	SAMPLI	EANALY	SIS RE	QUEST		C.O.C. #	X00-	-021-1
Collector			l		Contact/Re	quester			Tele	phone No.	MSIN	FAX	<u> </u>	
Ty	er ad	luso	e-		DI. STE	WART			(09) 376-5056	rae Code		·•	
SAF No. X00-021					HANFO	RD SITE			run	enase of dericita				
Project Title	Ilino Cometor	Inter	000		Logbook N	" Fieldualos	7/18/00	C3040	Ice	Chest No.	•	Гетр.		
Shipped To (Lab)	ming samples				Method of	Shipment	- 1.v a.v.u.		Bill	of Lading/Air Bi	ll No.			
Severn Trent Inc	em Trent Incorporated GOVT. VEHICLE Offsite Property No.													
Other	er 45 Days													<u> </u>
POSSIBLE SAMPLE HAZARDS/REMARKS •• •• SPECIAL INSTRUCTIONS Hold Time Total Activity Exempti Batch all samples submitted under this SAF into one SDG, not to exceed SDG closure of 14 days. Subm DL Stewart, PNNL.										days. Submit ir	Yes 🖭 woices & de	لسيا NO tiverables to		
						*	·							
Sample No.	Lab ID	•	Date	Time	No/Type Container			Samp	ple Analysis				Prese	rvative
B0YN88	1	w			1x500-mL G/P	7196_CR6: Hexaval	ent Chromium (1)	1					Cool 4C	
									11 H - 1/ H					
							- . .							
											Y			
			-					· · · · · ·						
			· · ·											
									····					
	1													
				Λ										
			4	1 n	R					<u> </u>				
Relinquished By TV le	Print Giluro	~	Sign	prit	18 Date/Time	Received By	Print	Sign		Date/Time	S = S	Matriz	* DS = I	Drum Solid
Relinquished By		(JN-		Date/Time	Received By				Date/Time	SE = S SO = S SL = S W = W	ediment blid udge fater	$\begin{array}{rcl} DL &= I \\ T &= T \\ WI &= V \\ L &= I \end{array}$	Drum Liqui Fissue Wipe Liquid
Relinquished By					Date/Time	Received By				Date/Time	0 = 0 A = A	il ir	V = \ X = (Vegetation Other
Relinquished By					Date/Time	Received By				Date/Time		-		
FINAL SAMPLI DISPOSITION	E Disposal N	Aethod ((e.g., Return to	customer, per	lab procedure, used in proc	css)		Disposed By				Date/Time		

PNNL					CHAIN OF (CUSTODY/S	SAMPLE	ANALYSIS	REQUEST		C.O.C. # Page	X00-	- 021-5
Collector	1. G-	1			Contact/Re	quester			Telephone No.	MSIN	FAX		
SAF No.	w On	μω	<u>NE</u>		Sampling C	YARI			Purchase Order/Char	ge Code			
X00-021 Project Title					Logbook N	ND SITE	AT 1/2		Ice Chest No.	т	emp.		
183-DR GW, Dr	illing Samples	July	2000		Method of	7/18/00 Shipment	<u>C 30 40</u>		Bill of Lading/Air Bill	No.	-		
Severn Trent St.	Louis				GOVT. V	EHICLE							
Protocol Other	r 45 Days												
POSSIBLE SAMPLE HAZARDS/REMARKS •• •• SPECIAL INSTRUCTIONS Hold Time Total Activity E Batch all samples submitted under this SAF into one SDG, not to exceed SDG closure of 14 day DL Stewart, PNNL.										v Exemption: Jays. Submit in	Yes ⊠ voices & de	No 🗀 eliverables to	
Sample No.	Lab ID	•	Date	Time	No/Type Container		A	Sample An	alysis			Prese	rvative
B0YN92		w			1x500-mL P	6010_METALS_ICP:	List-1 (19)					HNO3 to	o pH <2
B0YN92		w			1x500-mL G	7470_HG_CVAA: Me	rcury (1)		· · · ·			HNO3 to	pH <2
B0YN92		w			1x20-mL P	Activity Scan				· · · · · · · · · · · · · · · · · · ·		None	
										-			
			,	. ^									
Relinquished By	Print		- Ten	Elmo	Date/Time	Received By	Print	Sign	Date/Time	S = 50	Matrix	* DS = D	Drum Solid
Relinquished By		(Date/Time	Received By			Date/Time	SE = SciSO = SciSL = ShiW = Wi	diment lid ldge ster	$\begin{array}{rcl} DL &= D\\ T &= T\\ WI &= V\\ L &= I \end{array}$	Drum Liqui Fissue Wipe Jauid
Relinquished By					Date/Time	Received By			Date/Time	$\begin{bmatrix} 0 \\ A \end{bmatrix} = Oil \\ A \end{bmatrix}$		$\overline{V} = \overline{V}$ X = C	egetation/ other
inquished By					Date/Time	Received By			Date/Time				
F AL SAMPLI Disposition	E Disposal I	Method	(e.g., Return to	customer, per	lab procedure, used in proc	ess)		Disposed By	······		Date/Time		• ····· • ···

Appendix B

Well Construction Summary Report, Borehole Log, and Geophysical Logs for Borehole C3041

					Start Da	ate: July 2(), 2000	
WELL CON	ISTRUCTIC	ON SU	IMMAF	RY REPORT	Finish D	Date: Augu	st 1, 2000	
		-				Page 1	of 1	
Specification No.:	Rev. No.:			Well Name: N/A	Temp. \	Vell No.: C	3041	
ECNs: N/A	· · · · · · · · · · · · · · · · · · ·			Approximate Location: Near de	emolished	183DR Fac	cility, D Ar	ea
Project: In Situ Gaseous Redur	ction			Other Companies: Pacific NW	National L	aboratory	and Bech	tel
Drilling Company: Resonant Sc	onic International			Geologist(s): Tyler Gilmore, R	on Schalla			
Driller: Morris Wraspir								
TEMPORARY C	ASING AND DRILL D	EPTH		DRILLING ME	THOD/HOL		ER	
*Size/Grade/Lbs. Per Ft.	Interval	Shoe	O.D./I.D.	Auger:	Diamete	er From	to	<u> </u>
Nominal 14-in. Steel	surface - 20 ft	1		Cable Tool: 20 ft - 86.5 (TD)	11" Diar	meter From	20 to	86.5
Nominal 11-in. Steel	<u>20 ft - 87.36 ft</u>	1		Air Rotary: Surface - 20 ft	14" Diar	meter From	0 to	20
		1		A.R. w/Sonic:	Diamete	er From	to	
Temporary PVC 2-in. casing	+3 ft - 76.1 ft			· · · · · · · · · · · · · · · · · · ·	Diamete	er From	to	
Temporary PVC 2-in. screen	76.1 ft - 86.42 ft	1		1	Diamete	er From		
*Indicate Welded (W) - Flush J	oint (FJ) Coupled (C)	& Thread	Design		Diamete	er From	to	
Note: Temporary PVC casing u removed	ised to obtain water s	samples a	nd then					
				Drilling Fluid: Water				
Total Drilled Depth: 86.5 ft	Hole Dia @ TD: 11	-in.		Total Amt. Of Water Added Dur	rina Drilling:	30 gallon	5	
Well Straightness Test Results: (Good			Static Water Level: 78.2	Date: J	ulv 26, 200	<u>,</u>	
		GE	OPHYSICA			ury 21,		
Sondes (type)	Interval	T r	late	Sondes (type)		torval	l Da	
Pelative Moisture (Nuetron)	0 - 76	7/25/00		Condes (SEA)		ervar		he
Total Gamma-Ray		7/25/00		<u> </u>			 	· · · · ·
Total Gamma-Nay	<u> </u>	1120100				· •	 	
		aling, conjet			<u> </u>			
n - se di se gin di di ser tre s S	<u>n la Contrat Valgino, en</u> T	iĝesi - in T		ED WELL officers consideration of a		kr - Conge	<u>r</u>	Τ
Size/Wt./Material	Depth	Thread	Slot Size	Туре	Int Annual Se	ierval al/Filter Pack	Volume	Mesr Size
N/A		·	<u> </u>	N/A	_	. -	 	
	_ <u></u>	-		1			<u> </u>	
		·	<u>_</u>				 	
		·					ļ	ļ
	-	<u>.</u>		Constant of Million (Million (1996)		•	And and a star stars	
			OTHER AC	TIVITIES	$\sum_{i=1}^{n-2i} (i) = \sum_{i=1}^{n-2i} (i) = \sum_{i=1}$	100 - 100 -		
Aquifer Test: Development Test	t .	Date:July	y 26, 2000	Well Abandoned:	Yes: X	No:	Date:Aug 2000	just 1,
Description: Pumped 577 gallon time series	ıs in 180 minutes; Sa	mpled for	Cr(VI) in	Description: Abandoned after never completed as a well. Sa Bentonite crumbles 74.6-9.3 ft	developme and (from I t; and Cem	ent test. Bo PVC casing ent Grount	orehole wa j) 86.5-74.4 t 9.3 ft-sur	as 6 ft; face.
		स्वति दृष्ट्रा, १४			na w		an a station of	
	Strate Carling Solition and	翻题的。	ELL SURY	EY DATA	landel (Carlor)		gi ne (press)	<u>in tra</u> di
Date:				Protective Casing Elevation:				
Washington State Plane Coordina	ates:	फीलस्ट्राइल्ड्राइट्राइ	4-96-9-97-0	Brass Cap Elevation:	Sector Control of the	as o page	Presidentia	
		CL	DMMENTS/	REMARKS		Salasi kung Salasi salahisi Salasi salahisi	la contra da la cont La contra da la contr	<u>.</u>
Well abandoned	A			,,,,,				
	-//-// -			T				
Reported By: Tyler Gilmore	hadling	n-		Reported By:				
Title: Senior Research Scientis	·/	August 2	23, 2000	Title:			Date:	
Signature:				Signature:				

					Page <u>1</u> of (
WEL	L SUMMARY SH	IEET			Date: Aug 22, 2000
Well ID: C3041		Well Name	: C 304	1	·
Location: 100 D Avea Near demol	ished 183 DR	Project:	Insitu (Gaseous Reduct	im
Prepared By: Tyler britmore	Date: August 22, 2000	Reviewed	By: Rong	ald Schalla	Date: 8-31-2000
Signature: The Soluto		Signature:	Pon	Il Schell	~
CONSTRUCTION DAT	A	Depth in		GEOLOGIC/HYDROL	OGIC DATA
Description	Diagram	Feet	Graphic Log	Lithologic	Description
Temporary 14" Carbon Steel Casine Surface - 20ft (removed from ground) Temporary 11" Carbon Steel casing 20ft - 87.36 ft (removed from ground) Cement Gront . 9.3 ft - surface Bentonite Crumbles 74.6-9.3 ft Sond 10-20 Mesh 86.5 - 74.66 Borehole Abandoned All depths measured from Ground Surface		0 		Silt 0-2. Sandy Guard Concrete debr Gravel - 20. Sandy Gravel Sand 39-41 Possible River Silty Sandy Gravel Sand 83-86 TD 86.5 W.L. = 78.0	5 ft 2.5-15 is 15-20 ft -25 to 50und 25-39 id contact at 39 avel 46-59 2 with Cobbles 60 - 83 5 5 5 5 5 5 5 5 5 5 5 5 5

Paci Nation	fic Nor nal La	rthwes borato	t ^{ry} BC	C RE	AILY HOLE	LO	G L	oring/Well No: <u>C3041</u> ocation: <u>100 D Avea</u> 183 DR	Dep	th: <u>0</u> Proje	-2044 Sheet _ of _ 1784
Logg Revie	ed by ewed	Ту by[`	ibr Gil Ponald	more Sc	-hall	\bigcirc	Ah Pp	Date 7/2 Date 7/2 Date 8-	20 100 31-200	Drilli Drille	ing Contractor <u>Resonant Smit</u>
Litho	logic	Class	. Scheme		/		Eiold	Procedure F	?ev	Rig/	Method Dresser XT 70E Air Robary
Steel	rape	s	AMPLES	CONT	AMINATION	MOIS-	GRAPHIC		WATER	Dept	DRILLING COMMENTS
DEPTH	IIME	TYPE	ID NUMBER	INSTR.	READING	TURE	LOG	(particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	ADDED	CASING	(drilling rate, down time, blow counts, water level, drill fluid, etc.)
	0680							Drill Gration is at borehole 26 West of Drived wood borated near		···· <u>·</u> .···	Rig over dvill location; preparing to
							Į.	turn in piping entoring 183 DR			
	0840									10_	Drilling Casing 10-
<u> </u>	0940							About 1044 - Rig head jumping	,		Water odded to c'lyclore
								up and down lite it is in cold	es		Add Cassing 10
								and Vor ders. Jone Water adda	¥		
					· · ·			Shamples and brown in Glor in			
								concrete or debris hit so by			
10	(120	Soil	C3041-10					10' Ground up sed inent brown			diver sedment them previous
							-	Sample 11:18 Pan Hach Kit br Cuth			less upter added
			A					and bed a o.ol mg/L result; no cisible prite	h		$i \int a + a + 12 \int a' d$
13	U9 D	المح	C3041-10					10 Ground Sectiment Clasts to			the for Stundet the Carrier
								Aut. could be source arounde			funces it inguit de saucee
								Sample 11:25		5'	Add casing 5
do	410	Soil	C7++(-20					Comment - no cobbles green cobr			
]		when wet - concrete gray when dy	<u> </u>		
								line grained			
	-							Will tear down Rotony Rig and		-5'	Take 5' off 20 ft of
								move cabletool on			Storter Casing

Paci Natio	fic No nal La	rthwes borate	st pry BC	E DREI	AILY	LQ	G L	oring/Well No: <u>C-304 (</u> ocation: 100 D 183 DR	Depth:	$\frac{\pi_{204} - 28}{\text{Project: } TSGR} \qquad \text{Sheet } 2 \text{ of } \frac{2}{7}$
Logg	ed by	,	Tyler G	ilmo	re ()	the	-D	$\int_{M} \nabla \mathcal{D}_{ate} = \frac{7/2}{2}$	loo	Drilling Contractor Reservent Source
Revi	ewed	by _(Ronald	5	shall	[a	4.	Long Coll Call Date 8-3	31-2.000	Driller Horvis lilvaspir
Litho	logic	Class	s. Scheme		Pant			Procedure R	lev	Rig/Method Bucyrus Erie 22W
Steel	Tape	/E-Ta	ре		./	<u>.</u>	Field	Indicator Equip. 1) 2)		Depth Control Point Grant Surface
DEPTH	ТІМЕ	:	SAMPLES	CONT	AMINATION	MOIS-	GRAPHIC	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy,	WATER CA	DRILLING COMMENTS ASING (drilling rate, down time, blow counts,
		TYPE	ID NUMBER	INSTR.	READING	TURE	LOG	roundness, color, reaction to HCl, etc.)	ADDED	water level, drill fluid, etc.)
	0630							New Rig - will need to fire tune	(20)	114 Cableton Set up over borehole, Will
			<u> </u>					sot up	´	need to drill mat ~ to test of stough
	0430							Drilling - use drive barrel to		Willer speculates other duiller may without
			· · · · · · · · · · · · · · · · · · ·		·····			Clean ont Casing		andled to do - wery verse weater it to
								Currente Carlos at a la clu		
	1950							At lathe of a course of the taxes		Marging DR = 19 2 ft
								Calables and Saddeniet at loss of Cause	е	Stup for Solitomia
	1020							boursed		the first
19-2	4.5	Sil	C3041-19			dru		Sandy Guavel 453 Gravel 4525m		drove splitspoon 19-21.5
	(4)	6"	Cone			1		10% and arevels to some would		117 blow count
								Smooth bolts w/ some quartite		
								by sediments, Field Suren al the		12" Carsing catching on 14" Casing
								Kit 0.00 Citle 70% Recovery		need to drill slongh out to ~22.5
1200	23.5	-25	\$1 0.30	(-2	5 /	Noist		Grovelly Sund Sound increased	(23.5-25 Splitspor
	(2)	VOA	+	PAIN	Blarved			not good vecovery ~25%		i (
	4)	Mo	bonne_					Sampled for tull suite Nort another		
	(1)	<u>C</u>						Čr.		Casing dropped in hole
- <u>\</u>	(1)	Co	re			ļ				di casine ina 25 hole
1400	<u> </u>	-28	Soil C30	4(-	28	my		Caravelly Sand Cayerat		25.5-28 Sp(it growing
	(4)	6"	Core.]		25.5 Grovel Support matrix;		
							ł	mostly sound at 210; Cobble forme	med	
								in bonnel at at about 27.5	,	
						w v	Vet M -	What Stopped more Sample 604 K	errory	
						·· - *			·	

Pacific Northwest National Laboratory			it DC					Boring/Well No: <u>C 30 4</u> Depth:						th: 2	: <u>28-35,5</u> Sheet <u>37</u> of <u>17</u>		
mation			BC	JKE	HOLE	LO	G		100		83-De	<		Proje			
Logg	ed by		Tyler	<u>G</u> X	more	\sum	Jup	LA	and the			Date 7	21/00	- Drilli	ng Contractor <u>Resonant Smit</u>		
Revie	wed	by <u></u>	Ronal	l_	Sala	lla	<u> </u>	Rong	LL.	chill	A	Date <u>8 - 3</u>	31-200	0 Drille	er Moe alaspir		
Litho	logic	Class	. Scheme	<u> </u>					Pro	cedure		I	Rev	. Rig/N	Method Buryous Erie 22W		
Steel	Tape	/E-Taj	pe		. /		Fiel	d Indicator	Equip. 1	I)		_2)		Dept	h Control Point Ground Surface		
DEPTH	тіме	S TYPE	AMPLES	CONT	AMINATION READING	MOIS- TURE	GRAPHI LOG	C (pa	LITHC rticle size d roundness,	LOGIC DESC istribution, so , color, reaction	CRIPTION orting, miner on to HCl, et	alogy, c.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)		
1430	28-	30.5	Soil C30	¥(Dry		Sand	y Gue	wel	lan	go Clasts			28-30.5 5plitspoor		
	(2)	12"	Core					com	na or	tot	dise	barne(only had 12" lexan liners' left		
	~							very	bose	_ like	ly mai	tri¥			(vo 6")		
								Suppo	sted	Grave	1-102	Recovery					
1 6 m	4.	- 27	5.10	21		Der		4	. (1	5 7					205-33 50 49000		
1300	201	2-21		1204	<u></u>	Dry		CWO1	elly .	long	Rand				$OD_{i} = OO OP(i) OP(i)$		
	<u>_</u>	14	Core			1.5.6	-	170	austra.		1 4200-			10.01	Add casive		
1555	33-	36.5	Soil C	3021		The state		Same	t: de	illed	tighte	N. Mare			33-35.5 Splitspor-		
	(2)	12	60			Æ	ł	Conso	litated	<u>d</u> moi	stig	ood veco	very		1		
	(4)	Ğa	Core					807			V				· · · · · · · · · · · · · · · · · · ·		
1630											<u> </u>				Endottay		
									,		-***						
										<u> </u>							
				l													

W = Wet, M = Moist, D = Dry

Pacific Northwest	C	DAILY		Boring/Well No: <u>C3041</u>	Dep	oth: <u>3</u>	5.5-45,5 Sheet 4 of A
National Laboratory	BORE	HOLE LO	DG	Location: 100 D - Area, 183-DR		Proj∉	ect: ISGR
Logged by Ro	nald S	challa	T.	Conald Scholla Date 7-	24-0	0 Drilli	ing Contractor Resonant SonicI
Reviewed by Re	mald s	Sahlla	Ţ.	Lond Selell Date 8-	31-20	Drille	er Morris Moe" Wraspir
Lithologic Class.	Scheme	JSCS		Procedure	?ev	_ Rig/I	Method Bucynus Erie 22W
Steel Tape/E-Tape		1	Fiel	d Indicator Equip. 1)2)2)		Dept	h Control Point <u>Ground Surfa</u>
	APLES CONTA		S- GRAPHI E LOG	C LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)
35.5 0740 8 elit	304 - 365 GM	51.		Gravelly SAND (SW) sand is	None	11.75 ° 0.D.	Sampled From 35.5 to 38
to36.5 11 12" of	•			30% vcs-cs, 50% mel 20 Fututo		10.251	recovered only 80 to ave
375 11 10ng C	3041-375			trace amounts of silt, Slighty		14	buterch 12" long tybe 9.
37.5 " Nor	ecourt Fr	on Sratio		moist, dark gray (10YR-4/1)			foll.
38.0. " of S	ampler belo	w busket		: Gravel 30% fine, 20% med.			
- dik				Basalt & guesta. no comentation			
38.0 0839 Sport C	3041-39			•			
39.0 "					$\left - \right $		C 1 A F 380-40
<u>39.0- " " C</u>	.3041-40	Mui	4	SAIND (SP-) 48 %, 2705.14		\vdash	Sampled Trom So.U-TU.
40				orless, 0 to gravel to traces of			Nearly FUE 10 recovery of
40.5 No recour	ery. 40 -4	0.5	-	time to very time gravely Less			No recovery rome to tois bi
Ha Stage Split		<u>sı.</u>	-{: · : · ;	PAR Stoves- Sana,			Sampled from 40.5-
10.5 10 150 Spoon	304-415 2 VO	Avial Mois	त्तेः ः	B. It to the stand Dalak			95% recovery from 40.3
11.5 h 10mg	40n	emoisture	-	Descrit CIDYP=4/1)			No Recever from 42,5 to 43.
42.5 1 C	3041-42.5	7.6	-	Nacanatta			2 VOA viale filled with mot
42.5 + 43.07 1	Vo RECOV	ery	1				+5 gram ofsoil. Also, moisture
							,
43.0-]	Slightly more silt about			Sampled from 43-45
44.0 1000 Spit C	3041-44	\$1,]	2-3% then above			95 to 100% recovery in twole
44.0- "		Moi	<u></u>	•			12" 4 in dia tuba. No Reco
45.0 1000 12" C	3041-45		:				From 45.0 to 45.5 (below but
45.0 - 45 5 No 1	Recover						
holder back	4		1			V V	

Pacific Northwest	DAILY	,	Boring/Well No: <u>C3041</u>	Depth	: 45,5'-55,5 Sheet 1745 of 170
National Laboratory	BOREHOLE	LOG	Location: 100 D , 183 - DR		Project: <u>ISGR</u>
Logged by Ro	nald Scha	lla	Ronald Schall Date 7-	-24-00	Drilling Contractor Resonant Sonic Int
Reviewed by <u>R</u>	nald Schal	La	pmal Jelilla Date 8-3	Driller Morris "Moe" Wraspir	
Lithologic Class. 9	Scheme <u> </u>	s	Procedure F	Rig/Method Bucynus Erie 22W	
Steel Tape/E-Tape	/	Fi	ield Indicator Equip. 1)2)2)		Depth Control Point Ground Surface
DEPTH TIME SAN	IPLES CONTAMINATION	MOIS- GRAF	PHIC LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	WATER ADDED	DRILLING COMMENTS CASING (drilling rate, down time, blow counts, water level, drill fluid, etc.)
45.5-1032 Split C	3041-149 GM	Sh	.: Lers sitt 0-2% and tracos	None	Sampled from \$\$.540 46.5 A.
46.5 12"			of very fine gravel		recoveral 45.5to 47,5A
46.5-1032 Lexic	3041-47,5	Moist	ST.S: 1ty, Sandy GRAVEL (GP-GM)		about 20%, No necovery from
47.5 Lines		9	a dark grow to gray (10 4R-4/1		47.5 + 48 feet.
475 1348.0 No	Recours_	0.00	10 to 5/1. 50% gravely 40% send		
			10% onless silt. Moist to		
48.0-		0 • 0	0 49 Feet. Fine tomed. gravel.		
49.0 1100 Spon C.	304-49	Moist 00:			
49.0 - Lexan		Dry	0: Silty Sandy G-RAVEL (G-M)		Sampled From 48-50.5
50,0 1100 ··· C	3041-50		60% gravel, 25 to 30 losand and		90% to 95% recovery in
50,0 to 50, 5 No	Rocoven		0 10-15% sitt. Gravel is 20%		two Lexan 12", 4-india tuber
		0	Of Coarse to very course, 40 20 + 40 %		No recovery from 50 to 50,5
505-1132 Split C	3041-51.5	0	Fireto v. fn anuel subrounder		Sampled from 50.5 to 53-
51,5 11 Drown		Dry 8 O.	0: to well nounded in allsizer.		90% recovery in two
515-1132 4 6	3041-52.5		Silight brownish gray (10YR-6/2)		12"long Lexan linen (tuba).
52.5 " "			O. same as above but only		No recovery from 52,5 to 534.
52,5to 53 NoR	ecovery		of slightly silty 2 to 5%.		
		ō 9 -	5 Same		
53 to 1205 Selit		Dry :0	Same as above, but		Sampled from 53.0to 555
54 11 Spur C.	3041-54	to -0°	5 to 10% sitt and small		70 to 80% recovery in two 12"
5470 1205		Sijua 0	-: siltrich areas colored		Lexan Linerofron 53 to 55 Ab
22 A C	3041-55	Mois	reddish yellow (7.5YR-6/8)		No Recovery from 55 to 55.5A
55-10555 No R	lecovery	0.50			· · · · · · · · · · · · · · · · · · ·
	ſ	10:0	20 200		

Pacific Northwest DAILY National Laboratory BOREHOLE LOG							G L	Boring/Well No: <u>C3041</u> .ocation: <u>100 D Area</u> , 1	83-DR	Dept	h: <u>5.</u> Proje	5.5~65.5 Sheet 6 of #817	
		D	1 0	<u>с</u>	1 11		70	00000	Date 7-1	14-00	Drilli	ng Contractor Reconnect Son is Int.	
Logg	eo by		naid	عد ا	المط:	<u>a</u>	<u>~_</u>	not service	Data 8	Drille	Mannie "Mae" Whaspite		
Revie	ewea :	о. Т Z	onaly	50	Francisco	<u>« </u>		Draadura	Date <u>6 -</u>	Big/	Method Bussienes Enje 224/		
Lithologic Class. Scheme <u>USCS</u>								Procedure	('		Dent	h Control Point Grand Sura Face	
Steel	Steel Tape/E-Tape /Fi										Depth control rom GFGOPIA SOFFACE		
DEPTH	TIME	<u>ڊ</u>	SAMPLES	CONT	AMINATION	MOIS-	GRAPHIC	(particle size distribution, sorting, mir	eralogy,	WATER ADDED	CASING	(drilling rate, down time, blow counts,	
		TYPE	ID NUMBER	INSTR	READING		00000	roundness, color, reaction to HCI,	eic.)			S 1 1 S S S L SPAL	
525-	1330	Split Split	<u>C304-565</u>	16M	Nothing	Slight	0.00	Jame as above	, <u>bu'i</u>			591-910% he callen in tur 1211	
76.5	1770	Spoon 4	C 204-575	PHP	Burkgh	to Mai	0.00	<u>Cementation evid</u>	ent.	<u> </u>		long levelinens than	
575	1330		C 3011 5 43			dry	00:00	······································				55.5 Pt to 57.5 Pt. No Rocover from	
525	$t_0 \leq$	8 N.	Prouter				0.0	•				57.5Pt to 58ft, exceptions	
5.15		/ / • •	Recourty				00.0					small jan.	
58+0	1410	Sdit	C 3041-59	GM		slight	0.0	Sameas above but	eus sitte			Sampled from 58 to 60.5th	
59	11	Spran				Moist	0,00	cementation.				0%+99% recovery in two 12"	
59%	1410	-0	C304-60 9	1		Dry	00	Cobbles Large to sma	llboublow			Long Lexan liners from 507060,	
60	4	**	NO RECOV	ery			<u>p</u>	gravel and sand				No recovery trom 38 to 60,5 hcap	
60+06	0.5 N	lo Re	Covery					0				of large couple up to Binde	
							0.5					Long & 6" in diameter.	
60.54	1440	Spin	C 3041-61.5			Dry	000	Sandy GRAVEL (GW-	GP) with			Sampled From 60.5 to 6344	
61.5	1440	τ _ι					0.0	minor amount offilt less	than 5% of			80 to recovery in two 12	
61,5ts	1440	37	C3041-625				$O^{\circ}Q$	Sand 30-50% and G-RA	VELMORE			Long Loxan lineartion 60.5762.5	
62.5	1440		200A5+1,	hoist	17	ļ	0.0	than 50%. GRAVEL	is 25%			Collecter 2 VOAst / moisture j'an	
62.5-	1063	10.	No Re	over	2		0000	coarse to very co, 40%	medium	┝		from 62.5ft,	
					1		0.0	35% fine gravel to utin	2. Gravel				
6370	1520	Selit	C 304-64			Dry		are Subrandel to well 4	unlal.			Sampleffrom 63 to 65.5 two	
64	4	Spur			<u> </u>	ļ	000	primarily light browning	Lgray_			12"Long tuber from 63 to 65; no	
6470	4	- 11	C 3041-65	·	<u> </u>		0.0	(104R-6/2) J.Fine gr	aves			recovery from 65.0to 65.5 At.	
65	14	<u>`</u>					0.0	may be subangulan	onbroka			80% togo love covery.	
657	65,5	No	Recovery	<u> </u>		ļ	0.0.	Progmant of langes	particles				
1	1				1		000	;					

Pacific Northwest DAILY National Laboratory BOREHOLE LOG							G L	Boring/Well No: C 304 Depth: 65,5-70,5 Sheet 7 of 7 7 of 7 7 0 1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>				
1.000	ad by	P.	10 - 10 -	5-1-	11.			$D_{1} O Q O Q Date 7-24$	Drilling Co	ontractor Resonant Sonie Int.		
Revi	ewed	by (f	Zonall	$\frac{3}{5}$	$\sim (1)$	1.	 1	2 00 00 Date 8-31-	Driller M	orris "Moe" Wraspir		
Lithologic Class Scheme USC S								Procedure Rev	,	Rig/Metho	Bucynus Ente 22W	
Steel	Tape	/E-Tai	be		1		Field	Indicator Equip. 1)2)		Depth Cor	ntrol Point Ground Surface	
DEPTH	тіме	s	SAMPLES	CONT	AMINATION	MOIS-	GRAPHIC	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy,	WATER C	ASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level. drill fluid, etc.)	
1000		TYPE	ID NUMBER	INSTR.	READING		· · · · • • • • •			S	10free 655 to 68ft	
65,2	1550	Spran	C 3041-(CS	<u>6-M</u>				same as asome			12 (2" Lana Lexan Linerstron	
66.3 ((SI	<u>((</u>	4	C3041-175				0.0			65	5 to 67.5. No recoveration	
60.75	li li	4	<u>c</u>				0.00			67.	5 to 68 post, 80% recover	
67.5+	o 68.	No	Recovery				0.8.6			01	both sample	
							•					
68 to		t:62	C.3041-69	GM						<u> </u>	mplod from 68 to 70,5	
69		Spoun								Tw	a 12" long, 4-in dia. Lexar Lina	
69+0		પ	C 3041-70								0 68 to 70 H. No necover	
70		"				<u> </u>				fro	~To to 70,5 fort, which is	
70%	70.5	No	Recover			<u> </u>				He	5" long sampling top below	
				L			ļ				cotch basket. Rocovenin	
						<u> </u>				- the	upper fout long lime was to	
				<u> </u>		ļ				and	Lin the Longer (68 to 70') %.	
						ļ						
											· · · ·	
L				<u> </u>		<u> </u>]					
		L				ļ					14.	
 				 		ļ						
		ļ		<u> </u>		 						
				<u> </u>	ļ							

Paci	Pacific Northwest DAILY							Boring/Well No: <u>C.3041</u> Depth: <u>70,5-78</u> Sheet <u>8</u> of <u>17</u>					
Natio	nai Lai	borato	ry BC	DRE	HOLE	LO	G ∫⊬	Cocation: 100 D 183 DR Project: 75GR					
Logg	jed by	,	Tyler	G	n: luore	\square	the	Dimin Date 7	25/00	Drilli	ng Contractor Resprend Sonic		
Revi	ewed	by 🕞	Zonal	0	Scha	lla	V	Pongel Schelle Date 8-	31-2.000	Drille	or Mornis "Moe" Wraspir		
Litho	logic	Class	. Scheme		Pont			Procedure	Rig/I	Rig/Method Bucyins Ene 224)			
Steel	Steel Tape/E-Tape / Fi							Indicator Equip. 1) 2)	Dept	Depth Control Point Ground Surface			
	SAMPLES		PLES CONTAMIN				LITHOLOGIC DESCRIPTION	WATER		DRILLING COMMENTS			
DEPTH	TIME	TYPE		INSTR	READING	TURE	LOG	(particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	ADDED	CASING	(drilling rate, down time, blow counts, water level, drill fluid, etc.)		
	Ann	1175	10 NOMBER		, nending			Last Sample internel was to 70,5	1				
	0638						1				Drilling		
705	0725	5.1	(3041-7	(71	72)		† .				Splitspoon 70.5-73		
1			(3041-7	14	2-73)]						
73	120	me	6''			10:9	F	Sandy Grave to Gravelly Sand	None	5'	Add Casily total casily now		
								Gravels to been in come			74.48' 0 0		
								30-50% Grovels 60-40% Durch					
]	Some silt - sediment binds togethe			Drilled 'Orsiver" between 70.5-73		
				L			Į	when volled gray colored blk bill					
					ļ			whit quartice Sand fronts	4				
								from u fine to ucourse					
·							-	Good recovery liners tilled 80% Ke	<u>cheny</u>		6 h) 72 76 C		
73	0800		<u>C3641-7</u>	<u> 8.5</u>	5	Mois	f	Gravelly Sand 40% Gravel	-		Jplit spron 13-73.5		
			<u>C3541-</u>	14.5		 		50% Sand 10% Silt poorly Sort	cđ				
75.5	(2)) Cor	261			<u> </u>		all tractions from 0 five and +	0				
								U Coarse sand perfoles to den	∼				
							<u> </u> 	avaries group Color Choo Record	Ψ				
								There's tull 80% peoplery	\				
							} 1	- I 255					
255	ama		r 2-41-7	Ka	n	h 1 h		Guarely Sand in Smind			Split 5000 75.5-78		
F†	VIA 1		C3n4(-7	Ĩ	51	an aire i	ł	at 78 Nice well Sonted Coa	Se .				
18	(2)	64	Cove	<u> </u>				Sand blt : whit (salt ! Perperida		*			
								Coloble at 77 v8cm nounded					
						144 1							

Decific N	orthwar	+			в	oring/Well No: C3041	Dep	th: 7 8	- 85.5 Sheet 29 of 317		
National L	aborato	v BC	REHOLE	LOG	Ļ	peation; 100D 183DR		Proje	ct: ISGR		
Logged b	by	Tyler	Gilmore	\cap	hh	Dimor Date_	7/25/00	Drilli	ng Contractor Responset Soniz		
Reviewe	d by 🕞	onald	Schull	ب	0-1	Con Ol Solo Date	n Drille	Driller Morris Wrasp.			
Lithologi	c Class	. Scheme	Part			Procedure	Rig/N	Rig/Method Bueyrus Erice 22W			
Steel Tap	e/E-Taj	pe			Field	Indicator Equip. 1) 2)		Dept	Depth Control Point Grand Sur face		
DEPTH TIM	E			MOIS- GI TURE	APHIC LOG	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)		
		10 NORIDEN	INGTH. NEADING			Cont at 77 more silt de	in		Solit spor 75.5-78 (coul)		
	_					Finole Some yel-bru Star	1.hp	4.95	Add 4,97 Casing \$1,45 total		
78 090	ø		<u>SI-</u>	noist		Water table 178.5-7	<u>14</u>	81.45	5plit grow 78-080.5		
1 (i)	Mose	sture	-10	Wet		Sampled works moisture jus			· (
80.5 (2) 10	A	<u> </u> \			above water table					
(a.	Cr	(ch ja	<u>k) </u>				pr (
<u> </u>)6"	core	<u>c3041-</u>	48.5		Sound Gravel 456 Gravel 45	Stand		plitspoon		
	/		C3041-	19.5		62 Silt/Mud clasts to 3cm			Water at ~ 18. 5 - 19 HF		
						well monded size break at	-Wota tolo	e			
				<u> </u>		Sand poorly sorted See Satu	ration pro	ile			
80.5 OR	391										
10		core	·			ϵ			6-110-0 80.5-83		
8 3	C50	41 - 81		WET		Duray Divale to June			JP117 5000 001 0 0		
	_C 30	41-10				Sanckat of Well Sortea Go	~~		Dally & Way 195		
						Source Grades to among Grad	a		10 dana		
						at DF CROTS to can was	ola		W/ C- mp		
						to have much and gra	Net J	502	Will dill to Note 5		
						POOL STATED OCT \$1-25		86.47	Add 502 mayhe: total 86.47		
07 104				a lat		Stonality Sunda - Samuela Ve	ما المل الحمد	54	Solit som \$3-85.5		
1 1	1.11	1		WC.		is a calle live light	ine and	5			
865	0	641-8	8.5			1			Drilling Difficult flowing Sand		
	12	41-84	5						will ⅆ/12 gal water		
		<u> </u>							add 10 gal work (2040ra)		
				W = We	t, M =	Moist, D = Dry			V C J		

Daali	ie Nor	thurac		<u>ח</u>			в	pring/Well No: C304 (Depth	: 8	5.5 Sheet <u>\$10</u> of <u>\$17</u>		
Nation	nal Lab	orato	BC	RE	HOLE	LO	G Ly	cation:, 100D (83DR		_Proje	n:		
			Tile	21				Date 7/2	5/00	Drillin	ng Contractor Korman Suit		
Logg			Di l			<u> </u>	-Vr	2 Date $8-3$	31-2.000	Drille	r Monris Wrospar		
Reviewed by Nonall Schalla I Conata Alexan										Rig/N	lethod Breveus Erie 221		
Litho	logic	Class.	. Scheme				Field	Indicator Equip. 1) 2)		Depti	Control Point Grand Surface		
Steel	Tape/	E-lap			. /		Field			L	DRILLING COMMENTS		
DEPTH	TIME		AMPLES	CONT/	AMINATION	MOIS- TURE	GRAPHIC LOG	(particle size distribution, sorting, mineralogy,	ADDED	CASING	(drilling rate, down time, blow counts, water level, drill fluid, etc.)		
		TYPE	ID NUMBER	INSTR.	READING						Add mad water (300tota)		
								Were the adaptic head			Put on smeller come boured begins		
	12:5							Locard on Site Diller need to atter	dates.	4,0	as Somple coming up; Differ & dilling		
	1012							D.B = 84.5	0	16,47	Total casing		
								will be well even though about	-		0		
								1.5 ft shat of TD			· · · · · · · · · · · · · · · · · · ·		
	1230							Set up to Log well w/ unetan					
								and gamma tools					
											Dilliculty up basing truck		
	0.0							E sale IV a la			Switch texetes		
	2130	2						- timish leging					
			. <u></u>										
			-					· · · · · · · · · · · · · · · · · · ·					
				<u> </u>									
				<u> </u>									
	!												
1						L	L						

D	AILY BOREHOLE/W COMPLETION LOG	ELL	Bori Loca	ng or We tion <u>l</u>	11 Num 00 D A	ber <u>C3041</u> rea 183DE	Facility		Date Projec	$\frac{1}{2600}$ Sheet No. 11 of 217 ct ISGR	
Log Rev Mea	ged by <u>Tyle</u> iewed by <u>Rin.</u> suring Equip	G:(more Schall	Alr 8-	<u>Din</u> 31-2 Pro	Date <u>7/</u> Date <u>Rui</u> Docedure	24/17 Q2-2002	Drilling Contractor Resonant Source Driller Morris Writerin Rig/Equipment Bucynus Erry 22W			
Time	С. Туре	asinq Dia	J/Scree Length	n Stickup	Depth	Annul Type	ar Fill Quantity	Depth	Over lap	Comments Begining depth 86.1 ft Taget 74.1	
0720	Temp Steel casily	μ	90,47	3,55	87.36		(87.8	\$4.3	3.11	(100 16 Bag Sand)	
			9-11		05117	10-20 Sand	j Ibra	2000	5.(1	Pull 1 toot carsing	
			10.77	1 2.0	0 5,44	10.225 1	1 6.	6)8575 11824	507	Pull Casilie	
			90.47	6.5	\$397	10-20 0000	1 (89)	6)85.1	0.87	Puell costing	
						10 20 Sand	1 bag (87.	6) 81.1	2.87		
		 	90.47	7.95	82.52	L 	1 0 (89.	981.65	0.87	Pull casing	
			0 7			10-20 Sand	1 bag (87	79.65	2.87		
			90.47	8.5	\$1.97		(88	4) 79,9	207	Remove 4:0 (+ Casing	
 	lemp Stell Casing		86.41	[<u> </u>	 		PUC Casing Stickup 4.14 was 4.4	
 	Temp Steel Costro		86.47	4.5	8197		1 (85	15m	 	Continue to pull	
	0		86,47	5,35	81.12	her='	(85	57 801	5 0.97	-	
 		 			 	10-20 Sand	1 bay (83	6 782	5 2.81		
 			86.47	6.8	71.6	L	685	7)789	0.77	Pull casing	
			<u> </u>	0	10	10-20 Samel	j 16ag (8.	89)77.(2.57		
	·		86.41	8.15	48.32	-	(9)	(5) H3	0.97	Pull casing	
			\$1.49	ตา	71)	10-20 Dand	1 bag (8.	1)+2+	2.57	911 0.11	
 	Tomo Shoel cash		81.45	4,75	77.1		1 (83	1) 40.		Roward 5.02' action -8145	
 	remp pice and	<u>}</u>	<u> </u>			· · · · · · · · · · · · · · · · · · ·	 	 	 	i wave sour casiver of the	
1						· · · · · · · · · · · · · · · · · · ·	1	1		· · · · · · · · · · · · · · · · · · ·	

D	AILY BOREHOLE/W COMPLETION LOG	ELL	Bori Loca	ng or We	11 Num OD D	ber <u>C3041</u>	Facility	<u> </u>	Date Projec	7/24/07 Sheet No. 12 of 2 t_ISGR			
Logg Rev Meas	ged by Tylen iewed by Rome suring Equip.	- G	ilmoné	Afr-	Pro-Pro	Date 7 OS OQDate <u>8</u> Deedure	- <u>/26/00</u> - <u>31-20</u> 00	Drilli Drille Rig/Equ	ng Cor r <u>M</u> uipmer	ntractor <u>Resonant Smic</u> nrois Whas plu It <u>Bucknus Erice 22 W</u>			
Time	С. Туре	asing Dia	/Scree Length	n Stickup	Depth	Annul Type	ar Fill Quantity	Depth	Over lap	Comments Toraet 74.4 ft			
	Temp Steel Cashs	r 1"	81.45	4,35	77.1	10-20 Sound	1 bag (7%.	6)74. <i>.</i> ;	5 2.95	Pull cache			
 	· · · · · · · · · · · · · · · · · · ·		\$1.45	6.05	75,4	10-205 1	(80)	674.5	5 0.8	<u> </u>			
 	TempSteel Casing		81.45	6.75	74,7	10-00 gund	1 000 10 1 (70	. <i>U T</i> 28 . 7) 729	5 <u>1.7</u> 5	End Puilling			
 	· · · · · · · · · · · · · · · · · · ·			 				 		9 Sacks Sands total			
1050	Temp Steel Carsing		76.48				 	 		Romane Casilia 4.97 Total 76,48			
 		├ 	76.11	- (.35	74,46	·····	 	 		Will not include 0.37 head			
 		 			 		• • •	 		Sound 74.2 Toc (in annu ha)			
					 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 		 				
 		{ {				·····	 	 		· · · · · · · · · · · · · · · · · · ·			
 		 [*****		 L	 1	· · · · · · · · · · · · · · · · · · ·			
	Pacific Northwest National Laboratory BOREHOLE LOG						ٿا /G	Boring/Well No: <u>C3041</u> Depth: <u>84,5 -</u> Sheet <u>13</u> of <u>Boring/Well No: <u>100 D Aven</u> <u>183DR Facility</u> Project: <u>LSGR</u></u>					
---------------------------	---	------------	---------	--------	-----------	---------------	----------------	--	----------------	------------------------------------	---	--	--
Logged by Tyla Gilmon Ala							In/	$Date = \frac{7}{100}$	<u>26/00</u>	Drilli	Drilling Contractor <u>Resonant Source</u>		
lithol	ogic (Class	Scheme	(_)(Para Para	-u		Procedure	Big/N	Big/Method Bucching Frie 200			
Steel Tape/E-Tape / F							Field	Indicator Equip. 1) 2)	Dept	Depth Control Point Ground Surface			
DEPTH	тіме	S. TYPE				MOIS- TURE	GRAPHIC LOG	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy, roundness, color, reaction to HCI, etc.)	WATER ADDED	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts, water level, drill fluid, etc.)		
	άК	1112	DHOMBEN	ingin.	NEADING				1		Drilling put last att: TD will		
1	700							Roth to bottom 86.5ft			be approp \$ \$ (0.5 - 57 ft		
								Depth to water 78.24. this may	,				
								the across static level, well was			Prepare to set sceen and Pre		
								advanced Past Casing			Cosing		
								0.)					
Ŷ	100							MC Casing!			Det Casing		
								Pue Seveen Joslot 10.25			Man I sha hall a cal-		
							,	Latrailey rue Casing 4.75			PUL 905 Casha in this		
								995			The win cashy tarry o		
								9.95					
								9,95					
								9,95	ļ				
								9.95					
								9,95	<u> </u>				
								4.95	┼──┦		HUCCE DE DE C		
								(reasured 90.5) 57.77 ft			4:4 Sticlup UD 86. Ht		
—								Secondaliza 1 Thil			- 411 JUCKUP VD 86.444		
<u> </u>							i	For To + Completion Log +146100	++		Salue to Sample Listan		
								(PUC) DB = 90.22			Contract Comperimente		
								<u> </u>					

Pacific Northwest National Laboratory BOREHOLE LOG							G L	Boring/Well No: <u>C 30 41</u> Depth: <u>TD - Welce</u> Sheet <u>1406</u> <u>247</u> Location: <u>100 D</u> Project: <u>Sempling</u> <u>ISGR</u>					
Logg Revie	ied by ewed l	by _{	Tyle Ronal	n (<u>Gim</u> Scl	.	Å	<u>Date 7/2</u> <u>Parcel Date 7/2</u> Date <u>8-</u>	26/00 31-201	Drillin	ng Contractor <u>Resonant Soniz</u>		
Litho	logic	Class	. Scheme					Procedure	Rev	Rig/N	lethod 22n)		
Steel Tape/E-Tape / Field Indicator Equip. 1)							Field	Indicator Equip. 1) 2)		Depti	Control Point Surface		
DEPTH	TIME	s	AMPLES	CONT		MOIS-	GRAPHIC	LITHOLOGIC DESCRIPTION (particle size distribution, sorting, mineralogy,	WATER	CASING	DRILLING COMMENTS (drilling rate, down time, blow counts,		
		TYPE	ID NUMBER	INSTR.	READING	10112		roundness, color, reaction to HCl, etc.)		Cr6t	water level, drill fluid, etc.)		
	عاره							Stant Impile	┨────	conc. U	Samples T=O (Start 2:16pm)		
								Flow vate from To - 10		10	tiogpor 1-3		
								- 1160 gelimin	(10	13. Spm T=15		
								1 - 3 33 col/ 1	¥	10	T= 20		
										20	T= 30		
								Draw down 0.74 of 3.300m	after Domins.	40	T=40		
								After 2 hrs drawdown 1.13 At		50	T=60		
								at 3.3 gpm,		50	7=80		
								After 3 mrs drawdown 1.20ft		40	7=100		
								at 3.3 gpm		70	T=120		
								0		60	<u>T=140</u>		
										60	1=160		
										60			
								Conoundwaler samples					
								tollecter while pumping		••••			
							ł	as sis gpm			· · · · · · · · · · · · · · · · · · ·		
								Total of 583. Facillars owned					
						i		in 180minutes					
							Î						
							Ι						

W = Wet, M = Moist, D = Dry

					4	18 bags on Pal	let			
						-2' from tape				
D/	AILY BOREHOLE/W COMPLETION LOG	IELL	Bori Loca	ng or We tion	11 Num 183	ber <u>C3041</u> DR			Date Proje	<u>_7/31/60</u> Sheet No. <u>15</u> of <u>17</u> ct <u>56</u> R
Logo Revi Meas	ged by <u>Ty(</u> iewed by <u>Rou</u> suring Equip.	Gi ald	Impre Sch	the Pr	Dfin Pro	Date <u>7</u> <u>0000</u> Date <u>8-7</u> ocedure	<u>silop</u> -) - 2.000	Drilli Drille Rig/Eq	ng Co r uipme	ntractor <u>Resonant Sonz</u> Wes Worth nt <u>Pump Rig</u>
Time	С Туре	asing Dia	g/Scree Length	n Stickup	Depth	Annul Type	ar Fill Quantity	/Depth	Over 1ap	Comments Hot 108°F
1430	Temporery Steel	11"	80,11	5.5	74.10			 	 	Add 4,0 Casing
				 		Volchy Rueb	4 1 backs	1(80) 729	2.3	Act 1/2 Butmile pellets Volcov
 		<u>↓</u> <u></u> ↓	80.11	7,1	73.0	5016 bog Baroit Cash	ysent 5 kan	(74)669	6.0	Dw= 78 DB was about 86
			76.40	455	193	 		22177	427	Bo there is +12 Dond (to above
		<mark>┼ </mark> ╷ ╷	70.10			Buroid Gesino Soal	15 has (69	715) 651	TIZZ	
			71.48	4.3	67.1	0	(67	63.3	4.0	Casing Seal Broid Solb Random Sized
I I 		। । ∔		ı 	 		(70	\$ 64.0	0.98	Pull
			71,48	6.5	64.98	Buroid Casing Soal	jsbogs (b	4338.0	6.0	5,02 Casing removed
ii	Tanpoory Steel	· · · · · ·	66.46	4.3	62.16		(6)	32/589	3.2	·
			66,46	1 3.8	60.66	Brind Carly S. I.	1 (6) 5 have (58	(0)57.2	1.46 7.5	
1 au		 	61.46	4.25	57.21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58	7)54.45	2.76	Remove S.D. Casilia
			61.46	5.8	\$5.66	1	(40	7) 55.8	0.2	l 6
				 	 	Baroid Cosine Seal	5 kng 5/5	47) 48.9	4,5	1
		 		 	 	Baroid Cosing Soul	3 bags (50	28 45.0	7,3	
			56.44	4.3	52.14		6	18)46.5	5.64	Remove 5.02 Casing
	·		56.44	7.5	48.9	Borro id Casily Seal	1 50005 (4	8.8)41.3	7.6	
			51.42	4.35	47.07	•	- 4	<u>65)42.15</u>	<u>4.9</u>	Kenne 5.02 Casing
1640			 			Total	33 bag	6	 !	End Day

1.3 bay / ft

										1.3 bay / St
DA	AILY BOREHOLE/ COMPLETION LO	WELL G	Bori Loca	ng or We tion <u>D</u>	11 Num Ivea	ber <u>3041</u> 183 DR			Date Proje	<u>8/1/00</u> Sheet No. <u>16</u> of <u>51</u> 7 ct <u>ISGR</u>
Logg Revi Meas	ed by Tyle ewed by Ron uring Equip.	r Gi ald Drille	Schull Schull	Juln Jape	Pro	Date 11 2000 Date 8-3 ocedure	100	Drilli Drille Rig/Eq	ng Com r uipmen	ntractor <u>Resonant Smic</u> <u>les Warth-</u> nt <u>Tump Rig</u>
Time	Туре	Casin Dia	g/Scree Length	n Stickup	Depth	Annula Type	ar Fill Quantity	Depth	Over lap	Comments
0615		- 11	51.42	4.25	47.17		(4)	42.04	5.12	Measure depth to Bentonito We-typo to
0755		111"	51.42	6.9	44.52		(50)	43,10	1.42	Build pullerhand
0806	······································		46,4	4.2	42.2	Baroid Cosing Son 1	5 bags (4: (44	(4)367 (15)403	7.8	Remove 5.02 Casing
 0810	·······		46,9			Broid Casily Seal	5 bags (30 5 bags (30	45/71.5 118)34.8 55.4)28.0	-0.1 6.6	Phill Cacine 48 bass Ida 1 pallet
			41,38	4.4	36.98	0		4)30	6.98	New Pallet of bentonite Remove 5.02 casing.
 			41.38	7.9	33,48	Boroid Casing Sal	(3) 10.5 bags(a) 30.1 17.9) 200	3.38 13,48	
├} -			31.36	4.6	26.76	Boroid Casing Sal	(2 10 bags (12	5.2)20.6 (6) 8	6.16 18.76	Remove 10,02 Casing. Remove 10,02 Casing.
0930	······································	/3 "	21.34 20'	4.5	2584 20'	R ((, ()		12.9	14.34	Juntace casing to 20 ft so pull rest
0952			20	4.4	15.6	Donoid lasing bal	<u>56785</u> (1)	6 11.6 12.4	4.0	
├ ────┤ ├────┤ └────┦			20	9,7	10.3	Borroid Casing Soul	46035 (16 (10	3)8.7	J.7 1.0	

D	AILY BOREHOLE/ COMPLETION LO	NELL	Bori Loca	ng or We tion	11 Num) <u>Avea</u>	nber <u>C3641</u> 183 DR				Date 8/100 Sheet No. Mar of Mar Project ISGR 17 17			
Log Rev Mea	ged by <u>Tyle</u> iewed by <u>Rob</u> suring Equip.	e Gi	Schal	An R.	Dim Pri	$\frac{1}{2000}$ Date <u>8</u> Docedure	1/00	Drilling Contractor <u>Resonant Son.</u> Driller <u>wes</u> Work Rig/Equipment <u>Pump Rig</u>					
Time	С Туре	asin Dia	g/Scree Length	n Stickup	Depth	Annul Type	ar Fill Quantity	Depth	Over lap	Comments			
1006	Tamp Steel	13	20'	10.7	9,3		(2	9.3	ø	Bentonite comples to 9.3			
 		-{ -{	·			Bentonile and Partle	nd cement 7	HPe I!	л. Л.	(94/6 bage (event)			
1103	· · · · · · · · · · · · · · · · · · ·			 		Mix 25% Bendo Blog bartonite	~80gal	pment;n	nix q	Calculate ~ 86 gent to till casing			
 		 			(7 bags Cement				Pull casing Growt to near surface			
 	1 			 	 	Growt		3	″∕₄	Pullall casing out of hole			
						Growt		N/	"/A	and put in hole - will let sottle out			
		<u>├</u> 						 	 	Comment sottled to ~ 2.5ft below			
	Note: PUC	-4	asing	used f	r Wg	ter Sampling	well	 	 	ground Surface			
	was 40	<u>re</u> 86	is f:	is botto	m of	hole from af	mit 74.4 Sand	 	 	Clean up Site			
	· · · · · · · · · · · · · · · · · · ·							 		monter is equived			
 	,	<u>├</u>						 	 				
 	······	<u>}</u> }		 	 	·····		 					
		i i []			i I			1 1					

RLS Total Gamma-Ray

Waste Management Technical Services

RLS Relative Moisture

Waste Management Technical Services

B.21

Appendix C

Sediment and Groundwater Sampling and Analysis for 183-DR Boreholes C3040 and C3041

Appendix C

Sediment and Groundwater Sampling and Analysis for 183-DR Boreholes C3040 and C3041

C.1 Sample Collection

Core Samples – Drilling of the characterization boreholes at the 183-DR site began on July 20, 2000. Drilling was initiated by air rotary, but sampling was conducted while drilling with a cable tool rig. Predrilling characterization was conducted at the C3040 borehole site previously (Thornton et al. 2000) to a depth of 20 feet below ground surface (bgs). Sampling during C3040 borehole installation was initiated at 20 feet bgs and continued to 5 feet below the water table. Sampling during C3041 borehole installation was initiated at 10 feet bgs and continued to 5 feet below the water table. All core samples were collected with a 2 feet by 4 inch diameter split spoon sampler equipped with either 6-inch or 12-inch long lexan liners and were collected ahead of the driven casing. Upon insertion of the split spoon sampler to its full length into the undisturbed subsurface sediment sampling interval, the sampler was removed from the borehole and opened. The lexan liners were transferred to a worktable and screened with a portable beta/gamma meter. If a sediment volatile organic sample was to be collected from a specific coresegment, the 1 to 5 gram sample was collected immediately from the core with a stainless steel spatula and deposited into a pre-weighed 40 ml volatile organic analysis (VOA) vial containing 10 ml of purge and trap grade methanol stored at or below 4°C. Immediately after sampling, the vials were stored into an ice chest with blue ice. The lexan liner core samples were capped and placed in an ice chest with ice bags. At the end of the day, the VOA vial and core samples were placed into a walk-in cooler at 4° C. Cores were stored at 4°C at all times, except when being processing.

Groundwater Samples – Groundwater samples were collected from a temporary well completion within the boreholes. The temporary well completion consisted of installing a 2-inch PVC liner with a 5-foot screened interval 5 feet below the groundwater table. Sand was backfilled around the screened interval and the wells pumped with a Grundfos Redi-Flo-2 variable speed submersible pump. Each well was purged for several hours until pH, conductivity, and hexavalent chromium concentrations stabilized and turbidity decreased to below 5 NTU. Groundwater samples were collected for VOA, filtered metals, hexavalent chromium, anions, gross alpha and beta, and gamma scans.

C.2 Sample Analysis

Table C.1 identifies the number of samples analyzed, the constituents analyzed, analytical methods used, and the laboratory conducting the analysis for the sediment and groundwater samples collected.

Sample Type	Number of Samples	Analytical Constituents	Laboratory	Laboratory Method
Borehole Sediments	10	NA	STL	EPA Method 1311 TCLP Leaching
TCLP Leachate	10	Metals	STL	EPA Method 6010
TCLP Leachate	10	Mercury	STL	EPA Method 7470
TCLP Leachate	10	Volatile Organics	STL	EPA Method 8260
Borehole Sediments	66	Chromium (VI)	In-House	Hach Method 8023
Borehole Sediments	66	РН	In-House	Electrometric
Borehole Sediments	7	Anions	In-House	PNL Method IC-1
Borehole Sediments	10	Chromium (VI)	STL	EPA Method 7196
Borehole Sediments	10	Total Metals	KLM	KLM-XRF Procedure XRF-1
Borehole Sediments	4	Soil VOA	In-House	PNL Method VOA-3
Borehole Sediments	10	Alpha, Beta, and Gamma	STL	STL-RC-5014 STL-RC-5017
Groundwater	2	Alpha, Beta, and Gamma	STL	STL-RC-5014 STL-RC-5017
Groundwater	2	Metals	STL	EPA Method 6010
Groundwater	2	Anions	In-House	PNL Method IC-1
Groundwater	2	VOA	In-House	PNL Method VOA-3
Groundwater	2	Chromium (VI)	STL	EPA Method 7196
In-House = Pa	cific Northwest	National Laborato	ory, Richland, W	ashington.
KLM = K	LM Analytical L	aboratory, Richlan	nd, Washington.	
SIL = Se	evern Trent Labo	matory, Kichland,	washington.	

 Table C.1. Groundwater and Sediment Analysis Associated with Borehole Installations at the 183-DR Site

Upon receipt of the sediment samples in the laboratory, hexavalent chromium analysis was conducted on aliquoted core samples at 2-foot intervals. These samples were leached with a sediment/distilled water ratio of 1:10. Extraction was accelerated with the aid of microwave heating. After cooling the leachate was analyzed for hexavalent chromium according to Hach Method 8023, which is based on EPA

Method 7196 (EPA 1992). pH was measured on each sample electrometrically. Anions were measured in the leachate solutions from 7 of the leachate samples according to procedure PNL-IC-1. This method is based on EPA Method 300.0 (EPA 1992).

After all sampling was completed from boreholes C3040 and C3041, core segments were selected and prepared for subsequent analysis. Each selected core segment was sieved through a 2 mm stainless steel sieve. The <2 mm sieved fraction was aliquoted into three sub-samples. One 500 ml aliquot was prepared for STL Laboratory for TCLP leaching, chromium(VI), and radiological analysis. In addition, two 60 ml aliquots were also prepared. One aliquot was sent for total metal analysis by x-ray fluorescence. The second 60-ml aliquot was retained as an archive sample for follow up analysis, if necessary.

Groundwater samples were collected in the field following development of the temporary wells. Filtered samples were collected for metals analysis. The remainder of the samples was collected unfiltered. PNNL conducted analysis for anions and volatile organic compounds. Severn Trent Laboratory conducted the remainder of the analysis.

Presented below is a summary of each analytical procedure used for the analysis of sediment and groundwater samples.

Sediment TCLP Leaching: The Toxicity Characteristic Leaching Procedure (TCLP) is a test designed to simulate the leaching a waste will undergo if disposed of in a sanitary landfill. The extraction fluid employed is a function of the alkalinity of the solid phase of the waste. A subsample of a waste is extracted with the appropriate buffered acetic acid solution for 18 ± 2 hours, as prescribed in EPA Method 1311 (EPA 1992). A solid/leachate ratio of 1:20 is used for the extraction. The extract obtained from the sediment material is then analyzed to determine if any of the thresholds values established for the 40 Toxicity Characteristic (TC) constituents have been exceeded or if the treatment standards established for the constituents specified by the Land Disposal Restrictions (LDR) program have been met. If the TCLP extract contains any one of the TC constituents in an amount equal to or exceeding the concentrations specified by the LDR program, the waste possesses the characteristic of toxicity and is a hazardous waste. The resulting TCLP extracts in this study were analyzed for RCRA Metals according to EPA Method 6010 (ICAP analysis), volatile organic compounds according to EPA Method 8260, and mercury according to EPA Method 7470. A total of ten sediment samples underwent TCLP leaching and subsequent analysis at Severn Trent Laboratory.

Sediment VOA: Refrigerated methanol preserved VOA samples were allowed to warm to room temperature. The 40-ml vial was centrifuged to settle the particles and a 0.5 ml aliquot was removed and diluted to 40 ml with boiled Mill-Q water in a VOA vial. The sample was then analyzed according to PNL Method VOA-3. PNL Method VOA-3 is based on EPA Method 502.2, which measures a total of 58 volatile and semi-volatile compounds using a tandem photoionization and electrolytic conductivity detector in series. A total of eight samples and two duplicates samples were analyzed from selected core segments at PNNL.

Sediment X-Ray Fluorescence: A sample aliquot was removed from the core segment and sieved to obtain the <2 mm fraction. An aliquot of this fraction was dried at 105°C, coned and quartered, and ground in a mortar and pestle. A 600-mg sample was analyzed using iron, zirconium, and silver second-ary sources according to KLM procedure XRF-1 (KLM 2000). A total of 31 elements were reported for each sample analyzed. KLM Analytical Laboratory, Richland, Washington, analyzed a total of ten samples by XRF corresponding to the same samples submitted to STL for TCLP analysis.

Sediment Chromium (VI): A sample aliquot was removed from the 500 ml aliquoted prepared for STL Laboratory for TCLP leaching. The sample was leached using a 1:10 sediment/distilled water ratio. The samples were analyzed according to EPA Method 7196 as independent verification of PNNL's in-house hexavalent chromium measurement. A total of ten samples corresponding to the same samples submitted for TCLP leaching were analyzed at Severn Trent Laboratory for hexavalent chromium.

Sediment Alpha, Beta, and Gamma: Sediment analysis for alpha, and beta emitting radionuclides were analyzed according to STL's method RC-5014. Sediment samples were digested with nitric acid and the digestates analyzed for alpha and beta radionuclides using appropriate alpha and beta counting techniques. Analysis of gamma emitting radionuclides was conducted according to STL's method RC-5017. Gamma emitting radionuclides were measured directly on aliquots of the sediment samples using high-resolution gamma-ray spectroscopy. A total of ten samples corresponding to the same samples submitted for TCLP leaching were analyzed at Severn Trent Laboratory for alpha, beta, and gamma.

Sediment PCB Screening: Screening of selected sediment samples was conducted using the SDI EnvironGard PCB test kit. This screening test is based on enzyme immunoassay that enables sediment samples to be screened reliably. The test method measures the concentrations of Aroclors 1016, 1242, 1248, 1254, and 1260 to 1 ppm in sediment. Sediment samples are extracted with methanol at a 1:1 soil/methanol volume ratio. An aliquot of the extract is exposed to a treated test tube, which is activated with an enzyme conjugate. The concentration is determined colorimetrically by comparing the absorption of the sample tube to known concentrations of PCBs. A total of ten samples corresponding to the same samples submitted for TCLP leaching were analyzed at PNNL for PCBs.

Groundwater Metals and Radiological Analysis: Groundwater samples were analyzed for filtered metal concentrations according to EPA Method 6010. Analysis of groundwater samples for alpha and beta emitting radionuclides were measured according to STL's method RC-5014. Analysis of gamma emitting radionuclides was conducted according to STL's method RC-5017. A total of two water samples were analyzed at Severn Trent Laboratory.

Groundwater Anions : Groundwater samples were analyzed for fluoride, chloride, bromide, nitrate, phosphate, sulfate, formate, and oxalate anions according to PNL Method IC-01. This analysis is based on ion chromatograph separations of anions according to EPA Method 300.0 (EPA 1992). Two groundwater samples were analyzed at PNNL.

Groundwater VOA: Groundwater samples were analyzed for volatile organic compounds according to PNL Method VOA-3. PNL Method VOA-3 is based on EPA Method 502.2 (EPA 1992), which

measures a total of 58 volatile and semi-volatile compounds using a tandem photoionization and electrolytic conductivity detector in series. Two groundwater samples were analyzed at PNNL.

C.3 Sample Results

Table C.2 contains field-screening results for selected C3040 and C3041 borehole sediment samples that were water leached and analyzed for hexavalent chromium, pH, and anion concentrations. Table C.3 contains the results of the TCLP leachate analysis for volatile organic compounds, TCLP RCRA metals, PCBs, total metal concentrations of the sediment samples by XRF for arsenic, chromium, lead, and selenium, and analysis of selected sediment samples for hexavalent chromium. Table C.4 contains the groundwater analytical results for anions, alpha, beta, and gamma emitting radionuclides, VOC, and filtered metal concentrations collected from borehole C3040 and C3041.

Reviewing the data present in Table C.2 revealed no hexavalent chromium to be present in any of the sediment samples. pH ranged from 8.8 to 9.2 in the sediment leachate samples. Anion analysis of selected sediments samples identified the presence of formate and oxala te. Other common anions identified in the leachate solutions included fluoride, chloride, nitrate, phosphate, sulfate, and traces of sulfite identified in one sample.

The TCLP leachate data presented in Table C.3 indicates that no volatile organic compounds were present above the detection limit of the method. This result was expected because of the sample preparation activities involved. In anticipation of this problem, sediment samples were also collected in the field using the methanol preservation method (Liikala et al. 1996). The results of this analysis found trichloro-ethylene (TCE), chloroform (CCl₃H), benzene, toluene, o-xylene, and ethylbenzene present in the samples. In all cases except for chloroform, there was a significant blank proble m within the methanol used to extract the samples. A "B" identifies analyte compounds suspected of have a significant blank contribution. There was a trace of chloroform identified in the methanol but this did not contribute significantly to the high concentrations measured in several samples. The high chloroform concentrations appear to be real. However, if 100% of the chloroform was extracted into the TCLP leachate solution, its concentrations.

Results of the RCRA metals analysis of the TCLP leachate solutions found all the target metals below the TCLP action levels. The results of the XRF analysis found total arsenic and selenium at or below the detection limit of the method. Total chromium and lead concentrations were observed at typical Hanford background concentrations for sediment samples with the exception of 132.8 ppm chromium found in sample C3040 68-68.5. This sample also had 130 ppb of leachable hexavalent chromium. All other hexavalent chromium concentrations were below the method detection limit.

Results of radiochemical analysis on the sediments found normal Hanford background activities. Total alpha activity ranged from below the method detection limit to 11 pCi/g. Beta activity ranges from 12.9 to 31.9 pCi/g. All the cobalt-60 and cesium-137 concentrations were below the method detection limits. Potassium-40 ranged from 10.1 pCi/g to 21.9 pCi/g, which is normal for Hanford sediments.

		Sediment										
		[Cr+6]		Fluoride	Chloride	Bromide	Nitrate	Phosphate	Sulfite	Sulfate	Formate	Oxalate
Sample ID	Depth (ft)	(ppm)	pН	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
C3040	24.5	0.00	9.1	2.5	11.3	0.2	7.5	0.3	nd	59	2.4	10.6
C3040	24.5dup	0.00	9.1									
C3040	26.5-27	0.00	8.9									
C3040	29-29.5	0.00	9.1									
C3040	31.5-32	0.00	9.0									
C3040	32-33	0.00	9.0									
C3040	34-35.1	0.00	9.1									
C3040	20 20 5	0.00	9.0									
C3040	40 5-41	0.00	9.1									
C3040	40.3-41	0.00	9.1									
C3040	44-44 5	0.00	9.0	0.8	10.4	< 0.05	52	< 0.05	< 0.05	16	12	37
C3040	46.5-47	0.00	9.0	0.0		10.00	0.2	4 0100	10.00			0
C3040	48-48.5	0.00	8.9									
C3040	48-48.5dup	0.00	8.8									
C3040	50-50.5	0.00	9.0									
C3040	52-52.5	0.00	9.0									
C3040	54-54.5	0.00	9.0									
C3040	56.5-57	0.00	8.9									
C3040	58-58.5	0.00	9.0									
C3040	60-60.5	0.00	9.0									
C3040	62-62.5	0.00	8.9									
C3040	62-62.5dup	0.00	9.0									
C3040	64.5-65	0.00	9.1	1.2	14.1	< 0.05	3	< 0.05	< 0.05	22.7	0.9	0.4
C3040	64.5-65dup	0.00	8.9									
C3040	66.5-67	0.00	8.8									
C3040	68-68.5	0.00	8.8									
C3040	70.5-71	0.00	8.8									
C3040	72-72.5	0.00	8.8									
C3040	74-74.5	0.00	8.8									
C3040	75.5-76	0.00	8.8									
C3040	77.5-78	0.00	8.8									
C3040	79-79.5	0.00	8.8									
C3040	80.5-81	0.00	8.9	0.16	1.12	< 0.05	0.45	< 0.05	0.03	3.42	0.1	0.03
C3040	82.5-83	0.00	9.2									
C3040	86	0.00	9.3									
C3040	88-87.5	0.00	8.9									
C3040	88.5-90	0.00	9.1									
C30/11	10-AP	0.00	02									
C3041	10-AR	0.00	9.2									
C2041	20 AP	0.00	9.2									
C3041	20-AN	0.00	9.0									
C3041	20	0.00	8.9									
C3041	25dup	0.00	8.9									
C3041	27-27.5	0.00	8.9									
C3041	29 5-30 5	0.00	9.0									
C3041	32-33	0.00	8.9									
C3041	35-35.5	0.00	9.0									
C3041	34-34.5	0.00	9.0									
C3041	36.5-37.5	0.00	9.0									
C3041	39-40	0.00	9.0									
C3041	39-40dup	0.00	9.0									
C3041	41.5-42.5	0.00	9.0	0.7	6.3	< 0.05	3.5	0.6	< 0.05	9.1	0.3	nd
C3041	44-45	0.00	9.0									
C3041	46.5-47.5	0.00	9.1									
C3041	49-50	0.00	9.1									
C3041	51.5-52.5	0.00	9.1									
C3041	54-55	0.00	9.3									
C3041	56.5-57.5	0.00	9.0									
C3041	58-59	0.00	9.0									
C3041	61.5-62.5	0.00	9.0	1.4	6.7	< 0.05	2.7	0.8	< 0.05	11.7	0.7	0.4
C3041	71-72	0.00	9.0									
C3041	73.5-74.5	0.00	8.9									
C3041	73.5-74.5	0.00	8.8									
C3041	77-78	0.00	9.1	1.3	18.8	< 0.05	3.2	0.7	< 0.05	8.8	4.3	0.2
C3041	79.5-80.5	0.00	8.8									
C3041	82-83	0.00	8.9									

Table C.2. Chromium (VI), pH, and Anion Results for Water Leachates of SedimentSamples Collected from Boreholes C3040 and C3041

		TCLP Volatiles												
		Vinyl				Carbon					Chloro-			
		Chloride	1,1 DCE	2-Butanone	Chloroform	Tetrachloride	1,2 DCA	Benzene	TCE	PCE	benzene	PCBs		
Sample ID	Depth (ft)	(ppb)	(ppb)	(ppb)	(ppb)	(dqq)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)		
Action Lev	/els	200	700		6000	500	500	500	500	700	100,000			
C 3040	24-24.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3040	44.0-44.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3040	68-68.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3040	80.5-81.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3040	82-82.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
											1			
C 3041	24-24.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3041	41.5-42.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3041	61.5-62.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3041	77-78	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm		
C 3041	84.5-85.5	< 14	< 12	< 25	< 8.2	< 12	< 9.8	< 13	< 12	< 15	< 17	< 1 ppm	ļ	
		-			ICLP Metals	i .				TIL	X-Ray Flu	Jorescenc	;e	
		Manauru	Areenie	Deriver		Charamium	اممط	Colonium	Cilver	Iotal	Total Cr	Total Dh	Total Ca	C1 · C
		Mercury	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver	AS	lotal Cr	Total PD	Total Se	Cr+6
		(ppb)	(ppb)	(000)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
Action Lev	/els	200	5,000	100,000	1,000	5,000	5,000	1,000	5,000	+				
C 3040	24-24.5	0.75 B	< 49	63.2 B	< 2.0	< 2.7	33.1 B	< 46	< 8.0	< 3.5	40.8	15.9	< 2.6	< 54
C 3040	44.0-44.5	0.54 B	< 49	279 B	< 2.0	< 2.7	41.0 B	< 46	< 8.0	< 3.6	41.5	9.7	< 2.7	< 54
C 3040	68-68.5	0.58 B	< 49	1080	< 2.0	3.2 B	68.4 B	< 46	< 8.0	< 3.1	132.8	8	< 2.4	130
C 3040	80.5-81.5	0.60 B	< 49	1210	< 2.0	< 2.7	48.8 B	< 46	< 8.0	< 3.2	51.6	10.8	< 2.4	< 54

< 2.7

< 2.7

< 2.7

< 2.7

< 2.7

3.5 B

195 B

69.5 B

68.5

101 B

108 B

208 B

< 46

< 46

< 46

< 46

< 46

46

< 8.0

< 8.0

< 8.0

< 8.0

< 8.0

: 8.0

3.9

< 3.6

< 3.6

< 3.5

< 3.5

2.7

33.4

37.3

29

36.6

30

35.8

9.9

5.2

5.3

5.7

13.3

15.7

< 2.0

< 2.6

< 2.6

< 2.5

< 2.5

: 2.0

< 54

< 54

< 54

< 54

< 54

54

Table C.3. Analytical Results for Sediment Samples Collected from 183-DR Boreholes C3040 and C3041

C 3041 84.5-85.5 TCE = Trichloroethylene PCE = Tetrachloroethylene

C 3040

C 3041

C 3041

C 3041

C 3041

1,1 DCE = 1,1 Dichloroethyene

1,2 DCA = 1,2 Dichloroethane B = Target Analyte found in blank

82-82.5

24-24.5

41.5-42.5

61.5-62.5

77-78

0.75 B

0.49 B

0.50 B

0.66 B

1.5

0.75 B

< 49

< 49

< 49

< 49

< 49

< 49

403 B

245 B

302 B

387 B

481 B

280 B

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

< 2.0

	1	Soil VOA							Radiochemical Analysis				
											Gamma		
							Ethyl-						
		TCE	CCI₃H	Benzene	Toluene	O-Xylene	benzene	Alpha	Beta	Co-60	Cs-137	K-40	
		(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(pCi/g)	(pCi/g)	(pCi/g	(pCi/g)	(pCi/g	
C 3040	24-24.5	129 B	4246	289 B	414B	3.5 B	111 B	< 7.73	17.3	< 0.08	< 0.08	15.6	
C 3040	44.0-44.5	91 B	888	182 B	319B	4.8 B	93 B	< 8.02	13.1	< 0.1	< 0.08	10.9	
C 3040	68-68.5	132 B	1151	313 B	509B	12.3 B	168 B	< 7.14	21.7	< 0.09	< 0.09	15.3	
C 3040	68-68.5 Dup	139 B	1171	296 B	473B	13.9 B	163 B	NM	NM	NM	NM	NM	
C 3040	80.5-81.5	167 B	2360	374 B	569B	15.9 B	206 B	< 7.76	20.3	< 0.1	< 0.09	14.1	
C 3040	80.5-81.5 Dup	257 B	2286	533 B	842B	17.2 B	303 B	NM	NM	NM	NM	NM	
C 3040	82-82.5	NM	NM	NM	NM	NM	NM	11.3	23.1	< 0.1	<0.09	16.8	
C 3041	24-24.5	< 29	38458	2342 B	< 29	< 29	< 29	< 8.85	15.7	< 0.1	<0.09	10.1	
C 3041	41.5-42.5	< 41	1286	<	< 41	< 41	< 41	< 9.73	12.9	< 0.1	<0.08	11.6	
C 3041	61.5-62.5	< 63	519	63 B	< 63	< 63	< 63	< 8.71	15	< 0.08	< 0.07	11.1	
C 3041	77-78	NM	NM	NM	NM	NM	NM	< 8.01	14.1	< 0.1	< 0.08	11.2	
C 3041	79.5-80.5	< 34	396	297 B	< 34	< 34	< 34	NM	NM	NM	NM	NM	
C 3041	84.5-85.5	NM	NM	NM	NM	NM	NM	< 9.74	31.9	< 0.1	< 0.07	21.9	

TCE = Trichloroethylene

 $CCI_3H = Chloroform$

B = Target Analyte found in blank

NM = Not Measured

					Anions								Gamma	
	Fluoride	Chloride	Bromide	Nitrate	Phosphate	Sulfite	Sulfate	Formate	Oxalate	Alpha	Beta	Co-60	Cs-137	K-40
Sample	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)
C3040	0.1	12.5	0.12	48.7	0.03	nd	113	nd	nd	2.88	5.77	< 3.28	< 4.16	< 91
C3041	0.12	11.3	0.11	46.4	0.02	nd	95.9	0.01	nd	4.16	7.38	< 5.58	< 5.18	< 130
							Filtered M	letals						
	Hg	AI	Sb				Ca			Co	Cu	Fe	Mg	Mn
Sample	(ppb)	(ppb)	(ppb)	Ba (ppb)	Be (ppb)	Cd (ppb)	(ppm)	Cr +6	Cr (ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(ppb)
C 3040	< 0.20	181 B	< 39	67.9 B	< 0.6	< 2.8	76.7	1490	1600	< 4.6	< 6.4	269	18.4	65.5
C 3041	< 0.20	2500	< 39	103	< 0.6	< 2.8	71.6	87	93.7	6.5 B	< 6.4	3950	17.3	184
	1							I						
				Filtered M	etals			Volatiles	Organics					
				Na				CCI₃H	Benzene					
Sample	Ni (ppb)	K (ppm)	Aq (ppb)	(ppm)	Sr (ppb)	V (ppb)	Zn (ppb)	(ppb)	(ppb)					
C 3040	< 13.3	5.7	< 7.4	10.4	441	12.5 B	< 4.2	9.33	0.05					
C 3041	15.6 B	7.8	< 7.4	13.7	417	17.3 B	10.3 B	1.01	< 0.05					

Table C.4. Results for Groundwater Samples Collected from 183-DR Boreholes C3040 and C3041

Reviewing the groundwater data presented in Table C.4 indicates elevated nitrate and background concentrations of the other common anions. Total alpha and beta activity were at background levels for the Hanford Site. Cobalt-60, cesium-137, and potassium-40 were all below the method detection limits. Results from filtered metals analysis found elevated chromium in the groundwater from C3040 and slightly elevated chromium in groundwater from C3041. The hexavalent chromium concentrations measured in the groundwater from both wells strongly suggest most if not all of the chromium measured by EPA Method 6010 was hexavalent chromium. Comparing the aluminum, iron, and manganese results from both groundwater samples suggest there may have been some fine particulate matter (sediment) present in the sample from C3041. Those aforementioned elements were significantly higher in C3041. Of the 58 volatile and semi-volatile compounds measured in two groundwater samples only chloroform and a trace of benzene were found in the samples.

C.4 References

KLM. 2000. Energy Dispersive X-Ray Fluoresence Spectroscopy Using the BFP Approach with the Kevex 0810A System. KLM Procedure XRF (PNL-AL0-266), KLM Analytical Laboratory, Richland, Washington.

Liikala, T.L., K.B. Olsen, S.S. Teel, and D.C. Lanigan. 1996. "Volatile Organic Compounds: Comparison of Two Sample Collection and Preservation Methods." *Environ. Sci. Technol.* 30, 3441.

Thornton, E.C., K.J. Cantrell, J.M. Faurote, T.J Gilmore, K.B. Olsen, and R. Schalla. 2000. *Identification of a Hanford Waste Site for Initial Deployment of the In Situ Gaseous Reduction Approach*. PNNL-13107, Pacific Northwest National Laboratory, Richland, Washington.

U.S. Environmental Protection Agency (EPA). 1992. *Test Methods for Evaluating Solid Waste - Physical/Chemical Methods, 3rd ed. SW-846*. U.S. Environmental Protection Agency, Washington, D.C.

K6-96

K6-81

K6-96

K6-81

K6-81

K6-81

K6-96

K6-96

K9-33

K6-96

K6-96

K6-96

K6-96

K6-96

K6-81

K9-36

P8-55

Distribution

No. of Copies

OFFSITE

No. of

Copies

J. S. Fruchter

T. J Gilmore

M. J. Hartman

D. G. Horton

G. V. Last

W. J. Martin

K. B. Olsen

M. Oostrom

R. Peterson

R. M. Smith

F. A. Spane

B. A. Williams

M. D. Williams

E. C. Thornton (15)

Hanford Technical Library (2)

R. Schalla

C. A. Newbill

OFFSITE	Flour Federal Services	Flour Federal Services				
3 U.S. Department of Energy Savannah River Operations Office	R. Khaleel	B4-43				
P.O. Box A	39 Pacific Northwest Nation	al Laboratory				
Aiken, SC 29802						
ATTN: T. Hicks	W. F. Bonner	K9-14				
S. R. McMullin	J. G. Bush	K6-96				
J. A. Wright	R. J. Cameron	K6-96				
	K. J. Cantrell	K6-81				
ONSITE	J. L. Devary	K6-96				
	M. D. Freshley	H0-21				
4 DOE Richland Operations Office	M. W. Fullmer	P7-28				

4 DOE Richland Operations Office

G. I. Goldberg	H0-12
J. P. Hanson	K8-50
K. M. Thompson	A5-13
A. C. Tortoso	H0-12

5 Bechtel Hanford, Inc.

K. R. Fecht	H0-02
R. L. Jackson	H0-19
G. B. Mitchem	H0-21
S. W. Petersen	H0-02
V. J. Rohay	H0-19

2 CH2M HILL Hanford Group

M. H. Sturges	X9-06
C. C. Swanson	H9-02