Hanford Site Environmental Surveillance
Master Sampling Schedule

L. E. Bisping

January 2001

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RL01830
HANFORD SITE ENVIRONMENTAL SURVEILLANCE
MASTER SAMPLING SCHEDULE

L. E. Bisping

January 2001

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Richland, Washington 99352
SUMMARY

This document contains the CY 2001 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2001 in which case the anticipated year for collection is provided. In addition, a map showing approximate sampling locations is included for each media scheduled for collection in 2001.

SESP SAMPLING

The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media and assess the integrated effects of these materials on the environment and the public. Project staff collect samples of air, surface water, agricultural products, wildlife, and sediments. In addition, soil and natural vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, and volatile organic compounds. In addition, the project includes the capability to measure ambient external radiation.

DRINKING WATER MONITORING PROJECT SAMPLING

The responsibility for monitoring onsite drinking water falls outside the scope of the SESP. The operator of the onsite drinking water systems (DynCorp Tri-Cities Services, Inc.) is responsible for monitoring drinking water quality as defined in the National Drinking Water Standards and Washington Administrative Code WAC 246-290. PNNL conducts radiological monitoring of onsite drinking water for DynCorp concurrent with the SESP to promote efficiency and consistency, utilize expertise developed

\(^{(a)}\) Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.
over the years, and reduce costs associated with management, procedure development, analytical contracting, data management, quality control, and reporting.

DATA MANAGEMENT

The Hanford Environmental Information System (HEIS) database is used as a repository for data gathered during environmental surveillance activities at the Hanford Site. For ease in retrieving these data from the HEIS database, the location names in this document reflect the exact location names used in the HEIS.

SCHEDULED CHANGES

This schedule is subject to modification during the year in response to changes in site operations, program requirements, and the nature of the observed results. Operational limitations such as weather, mechanical failures, sample availability, etc., may also impact scheduled sampling. Therefore, this document may not be an accurate record of samples collected during the year.

COSAMPLES

Samples that are cosampled and analyzed by both PNNL and the Washington State Department of Health (DOH) are indicated in the schedule as are samples that are cosampled and analyzed by both PNNL and the U.S. Food and Drug Administration (FDA).

ADDITIONAL INFORMATION

Questions relating to the content of this document can be directed to T. M. Poston, Manager, Surface Environmental Surveillance Project, (509) 376-5678 or R. W. (Bill) Hanf, Manager, Drinking Water Monitoring Project, (509) 376-8264.
CONTENTS

SUMMARY ... iii
FIGURES .. vi
ABBREVIATIONS ... vii

1.0 AIR SURVEILLANCE ... 1
 1.1 AIR – PARTICULATE FILTER .. 1
 1.2 AIR – TRITIUM AND IODINE .. 3

2.0 SURFACE WATER SURVEILLANCE ... 5
 2.1 WATER – COLUMBIA RIVER .. 5
 2.2 RIVERBANK SPRINGS .. 7
 2.3 ONSITE PONDS ... 8
 2.4 OFFSITE IRRIGATION WATER .. 8
 2.5 ONSITE DRINKING WATER ... 8

3.0 BIOTA .. 10
 3.1 FOODSTUFFS AND FARM PRODUCTS ... 10
 3.1.1 Whole Milk ... 10
 3.1.2 Leafy Vegetables .. 10
 3.1.3 Vegetables ... 10
 3.1.4 Fruit .. 11
 3.1.5 Wine ... 11
 3.1.6 Alfalfa ... 12
 3.2 WILDLIFE ... 14
 3.2.1 Aquatic Biota ... 14
 3.2.2 Geese .. 15
 3.2.3 Game Birds ... 15
 3.2.4 Rabbits .. 16
 3.2.5 Deer ... 16

4.0 SOIL AND VEGETATION .. 18
 4.1 SOIL .. 18
 4.2 VEGETATION ... 19

5.0 SEDIMENT .. 21

6.0 EXTERNAL RADIATION .. 23
 6.1 THERMOLUMINESCENT DOSIMETERS (TLDS) ... 23
 6.1.1 Terrestrial Locations ... 23
 6.1.2 Columbia River Shoreline Locations .. 27
 6.2 COLUMBIA RIVER SHORELINE RADIATION SURVEYS .. 27
FIGURES

Figure 1.1. 2001 Air Sampling Locations ... 4
Figure 2.1. 2001 Surface Water and Drinking Water Sampling Locations 9
Figure 3.1. 2001 Food and Farm Product Sampling Locations 13
Figure 3.2. 2001 Wildlife Sampling Locations ... 17
Figure 4.1. 2001 Soil and Vegetation Sampling Locations .. 20
Figure 5.1. 2001 Sediment Sampling Locations ... 22
Figure 6.1. 2001 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Site ... 25
Figure 6.2. 2001 Thermoluminescent Dosimeter (TLD) Locations for Perimeter, Community, and Distant Sites ... 26
Figure 6.3. 2001 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Reach of the Columbia River ... 28
ABBREVIATIONS

FREQUENCY SYMBOLS USED

A annually
BE biennial (every 2 years)
BW biweekly (every 2 weeks)
M monthly
M Comp. monthly composite
Q quarterly
Q Comp. quarterly composite
SA semianually
TE triennial (every 3 years)

ANALYTICAL SYMBOLS USED

Generally, standard element, chemical, and isotope designations are used to indicate the analyses performed. Other analytical designations used are:

Alpha gross alpha activity of sample
Anions major anions—generally chloride, fluoride, nitrate, nitrite, sulfate
Beta gross beta activity of sample
Gamma Scan analysis of photon energy spectrum for individual photon-emitting radionuclides
HTO tritiated water (³H²H¹⁶O)
ICP-u, ICP-3 major metals by inductively coupled plasma spectrometry—samples unfiltered unless otherwise noted
Lo³H analytical procedure includes electrolytic enrichment
Pu Isotopic plutonium (²³⁸Pu, ²³⁹/²⁴⁰Pu)
SEM/AVS Simultaneously Extracted Metals/Acid Volatile Sulfide
TOC Total Organic Carbon
U Isotopic uranium (²³⁴U, ²³⁵U, ²³⁸U)
VOA Volatile Organic Compounds

INSTRUMENT SYMBOLS USED

BICRON Microrem meter
GM Geiger-Müller counter
PIC Pressurized ionization chamber
1.0 AIR SURVEILLANCE

1.1 AIR – PARTICULATE FILTER

<table>
<thead>
<tr>
<th>Location</th>
<th>Location Number</th>
<th>Frequency</th>
<th>Analyses</th>
<th>Comosited Location</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 K Area</td>
<td>1</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>100 Areas Q</td>
<td>90Sr, Pu, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>100 N-1325 Crib</td>
<td>2</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Hanford Townsite Q</td>
<td>90Sr, Pu, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>100 D Area</td>
<td>3</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>N of 200 E Q</td>
<td>Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>100 F Met Tower</td>
<td>4</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>200 E Area Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>Hanford Townsite</td>
<td>5</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>200 West Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>B Pond</td>
<td>10</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>B Pond Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>Army Loop Camp</td>
<td>11</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>200 W South East Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>200 Tel. Exchange</td>
<td>12</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>200 W South East Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>SW of B/C Cribs</td>
<td>13</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>200 West Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>200 W SE</td>
<td>14</td>
<td>BW (2nd Q)</td>
<td>Beta, Alpha</td>
<td>200 West 2nd Q</td>
<td>Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>300 Water Intake</td>
<td>15</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>300 Area Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>300 South Gate</td>
<td>16</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>300 NE Q</td>
<td>90Sr, Pu</td>
<td></td>
</tr>
<tr>
<td>300 South West</td>
<td>17</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>400 Area Q</td>
<td>90Sr, Pu, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>Wye Barricade</td>
<td>24</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Wye Barricade Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>Perimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringold Met Tower</td>
<td>25</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Ringold Met Tower Q</td>
<td>90Sr, Pu, Gamma Scan</td>
<td></td>
</tr>
<tr>
<td>W End of Fir Road</td>
<td>26</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>W End of Fir Road Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
<td></td>
</tr>
</tbody>
</table>
1.1 AIR - PARTICULATE FILTER (contd)

<table>
<thead>
<tr>
<th>Location</th>
<th>Location Number</th>
<th>Frequency</th>
<th>Analyses</th>
<th>Composite Group</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogwood Met Tower</td>
<td>27</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Dogwood Met Tower</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
<tr>
<td>Byers Landing</td>
<td>28</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Byers Landing</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
<tr>
<td>Byers Landing (c)</td>
<td>28</td>
<td>BW (4<sup>th</sup> Q)</td>
<td>Beta, Alpha</td>
<td>Byers Landing</td>
<td>4<sup>th</sup> Q</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td>Battelle Complex (b)</td>
<td>29</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Battelle Complex</td>
<td>Q</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td>Horn Rapids Substa</td>
<td>30</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Prosser Barricade</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
<tr>
<td>Prosser Barricade</td>
<td>31</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yakima Barricade</td>
<td>32</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Yakima Barricade</td>
<td>Q</td>
<td>90Sr, Pu, Gamma Scan</td>
</tr>
<tr>
<td>Rattlesnake Springs</td>
<td>33</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahluke Slope</td>
<td>34</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Wahluke Slope</td>
<td>Q</td>
<td>90Sr, Pu, Gamma Scan</td>
</tr>
<tr>
<td>S End Vernita Bridge</td>
<td>35</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community (d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin City School</td>
<td>36</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Basin City School</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
<tr>
<td>Leslie Groves-Rchlnd</td>
<td>37</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Leslie Groves-Rchlnd</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
<tr>
<td>Leslie Groves-Rchlnd (c)</td>
<td>37</td>
<td>BW (1<sup>st</sup> Q)</td>
<td>Beta, Alpha</td>
<td>Leslie Groves-Rchlnd</td>
<td>1<sup>st</sup> Q</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td>Pasco</td>
<td>38</td>
<td>BW</td>
<td>Beta</td>
<td>Tri Cities</td>
<td>Q</td>
<td>90Sr, Pu, Gamma Scan</td>
</tr>
<tr>
<td>Kennewick-Ely Street</td>
<td>39</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benton City</td>
<td>40</td>
<td>BW</td>
<td>Beta</td>
<td>Benton City</td>
<td>Q</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td>Edwin Markham School</td>
<td>41</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Edwin Markham School</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
<tr>
<td>Mattawa</td>
<td>42</td>
<td>BW</td>
<td>Beta</td>
<td>Mattawa</td>
<td>Q</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td>Othello</td>
<td>43</td>
<td>BW</td>
<td>Beta</td>
<td>Othello</td>
<td>Q</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td>Distant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yakima</td>
<td>44</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Yakima</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
<tr>
<td>Yakima (c)</td>
<td>44</td>
<td>BW (3<sup>rd</sup> Q)</td>
<td>Beta, Alpha</td>
<td>Yakima</td>
<td>3<sup>rd</sup> Q</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td>Toppenish (d)</td>
<td>45</td>
<td>BW</td>
<td>Beta, Alpha</td>
<td>Toppenish</td>
<td>Q</td>
<td>90Sr, Pu, U, Gamma Scan</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 1.1, 2001 Air Sampling Locations.
(b) Washington State Department of Health air sampler also at this location.
(c) Sample is collected biweekly for one quarter and composited for the quarter indicated.
(d) Community-operated environmental surveillance station.
1.2 AIR – TRITIUM AND IODINE

<table>
<thead>
<tr>
<th>Location</th>
<th>Number</th>
<th>Frequency</th>
<th>Analysis</th>
<th>Frequency</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 K Area</td>
<td>1</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>100 N-1325 Crib</td>
<td>2</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>200 ESE</td>
<td>8</td>
<td>Q Comp</td>
<td>129I</td>
<td>M</td>
<td>3H</td>
</tr>
<tr>
<td>200 Tel. Exchange</td>
<td>12</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>300 Water Intake</td>
<td>15</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>300 South Gate(d)</td>
<td>16</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>300 South West</td>
<td>17</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>300 Trench</td>
<td>18</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>300 NE(e)</td>
<td>19</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>400 E</td>
<td>20</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Perimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringold Met Tower</td>
<td>25</td>
<td>Q Comp</td>
<td>129I</td>
<td>M</td>
<td>3H</td>
</tr>
<tr>
<td>Dogwood Met Tower</td>
<td>27</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Byers Landing</td>
<td>28</td>
<td>Q Comp</td>
<td>129I</td>
<td>M</td>
<td>3H</td>
</tr>
<tr>
<td>Battelle Complex(e)</td>
<td>29</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Prosser Barricade</td>
<td>31</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Wahluke Slope</td>
<td>34</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Community(f)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin City School</td>
<td>36</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Leslie Groves-Rehln</td>
<td>37</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Edwin Markham School</td>
<td>41</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
<tr>
<td>Distant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yakima</td>
<td>44</td>
<td>Q Comp</td>
<td>129I</td>
<td>M</td>
<td>3H</td>
</tr>
<tr>
<td>Toppenish(f)</td>
<td>45</td>
<td>M</td>
<td></td>
<td>3H</td>
<td></td>
</tr>
</tbody>
</table>

(a) Refer to Figure 1.1, 2001 Air Sampling Locations.
(b) Samples are collected monthly and composited for quarterly analyses.
(c) As HTO.
(d) Two silica gel samples are collected from this location.
(e) Washington State Department of Health air sampler also at this location.
(f) Community-operated environmental surveillance station.
Figure 1.1. 2001 Air Sampling Locations
2.0 SURFACE WATER SURVEILLANCE

2.1 WATER – COLUMBIA RIVER

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priest Rapids-River</td>
<td>Cumulative</td>
<td>Q Comp. (b)</td>
<td>Alpha, Beta, Lo 3H, 90Sr, 99Tc, U, DOH$^{(c)}$, 129I</td>
</tr>
<tr>
<td></td>
<td>Particulate (filter)</td>
<td>M Comp. (b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soluble (resin)</td>
<td>M Comp. (d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soluble (resin)</td>
<td>M Comp. (d)</td>
<td></td>
</tr>
<tr>
<td>Rich.Pmphs HRM 46.4</td>
<td>Cumulative</td>
<td>M Comp. (b)</td>
<td>Alpha, Beta, Lo 3H, 90Sr, 99Tc, U, DOH$^{(c)}$, 129I</td>
</tr>
<tr>
<td></td>
<td>Particulate (filter)</td>
<td>M Comp. (d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soluble (resin)</td>
<td>M Comp. (d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grab</td>
<td>Q</td>
<td>USGS-NASQAN$^{(e)}$</td>
</tr>
<tr>
<td>Rich.Pmphs-1 HRM46.4</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs-2 HRM46.4</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs-3 HRM46.4</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs-5 HRM46.4</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs-7 HRM46.4</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs-10 HRM46.4</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs HRM 43.5</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs HRM 43.9</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs HRM 45.0</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Rich.Pmphs HRM 45.8</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>Vernita</td>
<td>Grab</td>
<td>Q</td>
<td>USGS-NASQAN$^{(e)}$</td>
</tr>
<tr>
<td>Vernita-1 HRM 0.3</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions</td>
</tr>
<tr>
<td>Vernita-2 HRM 0.3</td>
<td>Transect</td>
<td>Q</td>
<td>Lo 3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions</td>
</tr>
</tbody>
</table>
2.1 WATER – COLUMBIA RIVER (contd)

<table>
<thead>
<tr>
<th>Location(a)</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernita-3 HRM 0.3</td>
<td>Transect</td>
<td>Q</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) Cyanide, VOA</td>
</tr>
<tr>
<td>Vernita-4 HRM 0.3</td>
<td>Transect</td>
<td>Q</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) Cyanide, VOA</td>
</tr>
<tr>
<td>100 N -1 HRM 9.5</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N -2 HRM 9.5</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N -3 HRM 9.5</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N -5 HRM 9.5</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N -7 HRM 9.5</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N -10 HRM 9.5</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N Shore HRM 8.4</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N Shore HRM 8.9</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N Shore HRM 9.2</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 N Shore HRM 9.8</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F -1 HRM 19.0</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F -2 HRM 19.0</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F -3 HRM 19.0</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F -5 HRM 19.0</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F -7 HRM 19.0</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F -10 HRM 19.0</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F SHORE HRM 18</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F SHORE HRM 22</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>100 F SHORE HRM 23</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd TS-1 HRM 28.7</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd TS-2 HRM 28.7</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd TS-3 HRM 28.7</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd TS-5 HRM 28.7</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd TS-7 HRM 28.7</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd TS-10 HRM 28.7</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd Twnsite HRM26</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd Twnsite HRM27</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd Twnsite HRM28</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>Hanfrd Twnsite HRM30</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions})</td>
</tr>
<tr>
<td>300 Area-1 HRM 43.1</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) DOH(^{(f)})</td>
</tr>
<tr>
<td>300 Area-2 HRM 43.1</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) DOH(^{(f)})</td>
</tr>
<tr>
<td>300 Area-3 HRM 43.1</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) DOH(^{(f)})</td>
</tr>
<tr>
<td>300 Area-5 HRM 43.1</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) DOH(^{(f)})</td>
</tr>
<tr>
<td>300 Area-7 HRM 43.1</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) DOH(^{(f)})</td>
</tr>
<tr>
<td>300 Area-10 HRM 43.1</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) DOH(^{(f)})</td>
</tr>
<tr>
<td>300 Area Shr HRM41.5</td>
<td>Transect</td>
<td>A</td>
<td>(^3 \text{H}, ^{90} \text{Sr}, \text{U}, \text{ICP-3, ICP-3 Filtered, Anions}) DOH(^{(f)})</td>
</tr>
</tbody>
</table>
2.1 WATER – COLUMBIA RIVER (contd)

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Area Shr HRM42.1</td>
<td>Transect</td>
<td>A</td>
<td>3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>300 Area Shr HRM42.5</td>
<td>Transect</td>
<td>A</td>
<td>3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
<tr>
<td>300 Area Shr HRM42.9</td>
<td>Transect</td>
<td>A</td>
<td>3H, 90Sr, U, ICP-3, ICP-3 Filtered, Anions, DOH$^{(f)}$</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 2.1, 2001 Surface Water and Drinking Water Sampling Locations. HRM is referenced to Hanford River mile.
(b) Cumulative sample is collected weekly and composited for analysis.
(c) Cosample provided to the Washington State Department of Health (January and June only).
(d) Sample is collected biweekly and composited for analysis.
(e) Analyses are performed by the United States Geological Survey (USGS) in conjunction with the National Stream Quality Accounting Network (NASQAN) Program, and includes: conductance, pH, temperature, turbidity, dissolved oxygen, hardness, Ca, Mg, alkalinity, carbonates, sulfate, Cl, solids, NH_4-N, NO_3+NO_2, N-Kjeldahl, P, Cr, Fe, dissolved organic carbon.
(f) Cosample provided to the Washington State Department of Health (September).

2.2 RIVERBANK SPRINGS

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-B Spring 38-3</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, 99Tc, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, VOA</td>
</tr>
<tr>
<td>100-B Spring 39-2</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, 99Tc, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, VOA, DOH$^{(b)}$</td>
</tr>
<tr>
<td>100-K Spring 63-1</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, VOA</td>
</tr>
<tr>
<td>100-K Spring 77-1</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, VOA</td>
</tr>
<tr>
<td>100-N Spring 8-13</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, Gamma Scan, ICP-3, ICP-3 Filtered, Anions</td>
</tr>
<tr>
<td>100-N Spring Near 199N-46</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, DOH$^{(b)}$</td>
</tr>
<tr>
<td>100-D Spring 110-1</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, Gamma Scan, ICP-3, ICP-3 Filtered, Anions</td>
</tr>
<tr>
<td>100-D Spring 102-1</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, Gamma Scan, ICP-3, ICP-3 Filtered, Anions</td>
</tr>
<tr>
<td>100-H Spring 152-2</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, 99Tc, U, Gamma Scan, ICP-3, ICP-3 Filtered, Anions</td>
</tr>
<tr>
<td>100-H Spring 145-1</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, 99Tc, U, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, DOH$^{(b)}$</td>
</tr>
<tr>
<td>100-F Spring 207-1</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, U, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, VOA</td>
</tr>
<tr>
<td>Hanford Spring 28-2</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 99Tc, U, 129I, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, DOH$^{(b)}$</td>
</tr>
<tr>
<td>Hanford Spr DR 28-1</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 99Tc, U, 129I, Gamma Scan, ICP-3, ICP-3 Filtered, Anions</td>
</tr>
<tr>
<td>300 Area Spring 42-2</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, U, 129I, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, VOA, DOH$^{(b)}$</td>
</tr>
<tr>
<td>300 Area Spr DR 42-2</td>
<td>Grab</td>
<td>A</td>
<td>Alpha, Beta, 3H, 90Sr, U, 129I, Gamma Scan, ICP-3, ICP-3 Filtered, Anions, VOA, DOH$^{(b)}$</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 2.1, 2001 Surface Water and Drinking Water Sampling Locations.
(b) Cosample provided to the Washington State Department of Health.
2.3 ONSITE PONDS

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Lake</td>
<td>Grab</td>
<td>Q</td>
<td>Alpha, Beta, 3H, 99Tc, U, Gamma Scan</td>
</tr>
<tr>
<td>FFTF Pond</td>
<td>Grab</td>
<td>Q</td>
<td>Alpha, Beta, 3H, Gamma Scan</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 2.1, 2001 Surface Water and Drinking Water Sampling Locations.

2.4 OFFSITE IRRIGATION WATER

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverview Canal</td>
<td>Grab</td>
<td>3 (May-Sept)</td>
<td>Alpha, Beta, Lo 3H, 90Sr, U, Gamma Scan, DOH$^{(b)}$</td>
</tr>
<tr>
<td>Horn Rapids Area</td>
<td>Grab</td>
<td>3 (May-Sept)</td>
<td>Alpha, Beta, Lo 3H, 90Sr, U, Gamma Scan, DOH$^{(b)}$</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 2.1, 2001 Surface Water and Drinking Water Sampling Locations.
(b) One cosample provided to the Washington State Department of Health.

2.5 ONSITE DRINKING WATER

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 B Area - River</td>
<td>Grab</td>
<td>Q</td>
<td>Alpha, Beta, Lo 3H, 90Sr</td>
</tr>
<tr>
<td>100 D Area</td>
<td>Grab</td>
<td>Q</td>
<td>Alpha, Beta, 3H, 90Sr</td>
</tr>
<tr>
<td>100 K Area</td>
<td>Grab</td>
<td>Q</td>
<td>Alpha, Beta, Lo 3H, 90Sr, DOH$^{(b)}$</td>
</tr>
<tr>
<td>FFTF</td>
<td>Grab</td>
<td>Q</td>
<td>Alpha, Beta, 3H, 90Sr, DOH$^{(b)}$</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 2.1, 2001 Surface Water and Drinking Water Sampling Locations.
(b) During 2nd quarter, cosample provided to the Washington State Department of Health.
Figure 2.1. 2001 Surface Water and Drinking Water Sampling Locations
3.0 BIOTA

3.1 FOODSTUFFS AND FARM PRODUCTS

3.1.1 Whole Milk

<table>
<thead>
<tr>
<th>Location(a)</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Wahluke Area(b)</td>
<td>Q</td>
<td>Lo 3H, 90Sr, Gamma Scan 129I</td>
</tr>
<tr>
<td>Sagemoor Composite(b)</td>
<td>Q</td>
<td>Lo 3H, 90Sr, Gamma Scan 129I</td>
</tr>
<tr>
<td>Sunnyside Area</td>
<td>Q</td>
<td>Lo 3H, 90Sr, Gamma Scan 129I</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 3.1, 2001 Food and Farm Product Sampling Locations.
(b) Sample composited from multiple dairies in each area.

3.1.2 Leafy Vegetables

<table>
<thead>
<tr>
<th>Location(a)(b)</th>
<th>Frequency(c)</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverview Area</td>
<td>A</td>
<td>90Sr, Gamma Scan, FDA(e), DOH(e)</td>
</tr>
<tr>
<td>Sunnyside Area</td>
<td>A</td>
<td>90Sr, Gamma Scan, FDA(d)</td>
</tr>
<tr>
<td>Sagemoor Area</td>
<td>BE (2001)</td>
<td>90Sr, Gamma Scan, DOH(e)</td>
</tr>
<tr>
<td>East Wahluke Area</td>
<td>BE (2002)</td>
<td>90Sr, Gamma Scan, DOH(e)</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 3.1, 2001 Food and Farm Product Sampling Locations.
(b) Two samples collected within each area, one sample analyzed and one archived.
(c) Sample are collected in 2001 according to their specified frequency unless otherwise noted.
(d) Cosamples sent to U.S. Food and Drug Administration.
(e) Cosample provided to the Washington State Department of Health.

3.1.3 Vegetables

<table>
<thead>
<tr>
<th>Location(a)(b)</th>
<th>Sample Type</th>
<th>Frequency(c)</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverview Area</td>
<td>Potatoes</td>
<td>A</td>
<td>90Sr, Gamma Scan</td>
</tr>
<tr>
<td>Sunnyside Area</td>
<td>Tomatoes</td>
<td>A</td>
<td>90 Sr, 3H, Gamma Scan, DOH(d)</td>
</tr>
<tr>
<td>East Wahluke Area</td>
<td>Potatoes</td>
<td>A</td>
<td>90Sr, Gamma Scan, FDA(e)</td>
</tr>
<tr>
<td>Harrah/Wapato Area</td>
<td>Tomatoes</td>
<td>A</td>
<td>90Sr, 3H, Gamma Scan, DOH(d)</td>
</tr>
<tr>
<td>Horn Rapids Area</td>
<td>Potatoes</td>
<td>TE (2002)</td>
<td>90Sr, Gamma Scan, FDA(e)</td>
</tr>
<tr>
<td>Sagemoor Area</td>
<td>Tomatoes</td>
<td>TE (2003)</td>
<td>90Sr, Gamma Scan, DOH(d), FDA(e)</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 3.1, 2001 Food and Farm Product Sampling Locations.
(b) Two samples collected within each area, one sample analyzed and one archived.
(c) Samples are collected in 2001 according to their specified frequency unless otherwise noted.
(d) Cosample provided to the Washington State Department of Health.
(e) Cosamples sent to U.S. Food and Drug Administration.
(f) Samples provided to PNNL by Washington State Department of Health.
3.1.4 Fruit

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagemoor Area</td>
<td>Concord Grapes</td>
<td>TE (2001)</td>
<td>September</td>
<td>90Sr, Gamma Scan, DOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cherries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunnyside Area</td>
<td>Concord Grapes</td>
<td>TE (2001)</td>
<td>September</td>
<td>90Sr, Gamma Scan, DOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cherries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riverview Area</td>
<td>Concord Grapes</td>
<td>TE (2001)</td>
<td>September</td>
<td>90Sr, Gamma Scan, DOH, FDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cherries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Creek Area</td>
<td>Concord Grapes</td>
<td>TE (2001)</td>
<td>September</td>
<td>90Sr, Gamma Scan, DOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TE (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cherries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringold Area</td>
<td>Cherries</td>
<td>TE (2002)</td>
<td>June</td>
<td>90Sr, Gamma Scan</td>
</tr>
<tr>
<td>East Wahluke Area</td>
<td>Cherries</td>
<td>TE (2002)</td>
<td>June</td>
<td>90Sr, Gamma Scan</td>
</tr>
<tr>
<td>Mattawa Area</td>
<td>Apples</td>
<td>TE (2003)</td>
<td>September</td>
<td>90Sr, Gamma Scan, DOH</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 3.1, 2001 Food and Farm Product Sampling Locations.
(b) Two samples collected within each area, one sample analyzed and one archived.
(c) Samples are collected in 2001 according to their specified frequency unless otherwise noted.
(d) Concord grapes preferred; table grapes acceptable if concord grapes are unavailable.
(e) Cosample provided to the Washington State Department of Health.
(f) Cosamples sent to U.S. Food and Drug Administration.

3.1.5 Wine

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia Basin</td>
<td>White</td>
<td>A</td>
<td>December</td>
<td>3H, Gamma Scan, DOH</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>A</td>
<td>December</td>
<td>3H, Gamma Scan, DOH</td>
</tr>
<tr>
<td>Yakima Valley</td>
<td>White</td>
<td>A</td>
<td>December</td>
<td>3H, Gamma Scan, DOH</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>A</td>
<td>December</td>
<td>3H, Gamma Scan, DOH</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 3.1, 2001 Food and Farm Product Sampling Locations.
(b) Two samples of each type collected within each area.
(c) Cosample provided to the Washington State Department of Health.
3.1.6 Alfalfa

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Type</th>
<th>Frequency</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagemoor Area</td>
<td>Alfalfa</td>
<td>BE (2001)</td>
<td>May</td>
<td>90Sr, Gamma Scan</td>
</tr>
<tr>
<td>Riverview Area</td>
<td>Alfalfa</td>
<td>BE (2001)</td>
<td>May</td>
<td>90Sr, Gamma Scan, FDA, DOH</td>
</tr>
<tr>
<td>Sunnyside Area</td>
<td>Alfalfa</td>
<td>BE (2001)</td>
<td>May</td>
<td>90Sr, Gamma Scan, FDA</td>
</tr>
<tr>
<td>Horn Rapids Area</td>
<td>Alfalfa</td>
<td>BE (2001)</td>
<td>May</td>
<td>90Sr, Gamma Scan, DOH</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 3.1, 2001 Food and Farm Product Sampling Locations.
(b) Two samples collected within each area, one sample analyzed and one archived.
(c) Cosamples sent to U.S. Food and Drug Administration.
(d) Cosample provided to the Washington State Department of Health.
Figure 3.1. 2001 Food and Farm Product Sampling Locations
3.2 WILDLIFE

3.2.1 Aquatic Biota

<table>
<thead>
<tr>
<th>Location</th>
<th>Species/ Sample</th>
<th>Number of Samples</th>
<th>Frequency(b)</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 N Area to 100 D Area(c)</td>
<td>Whitefish Fillet</td>
<td>5</td>
<td>BE (2001)</td>
<td>November</td>
<td>Gamma Scan, DOH(d)</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>BE (2001)</td>
<td>November</td>
<td>^{90}Sr, DOH(d)</td>
</tr>
<tr>
<td></td>
<td>Whitefish Fillet</td>
<td>5</td>
<td>BE (2002)</td>
<td>June</td>
<td>Gamma Scan, DOH(d)</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>BE (2002)</td>
<td>June</td>
<td>^{90}Sr, DOH(d)</td>
</tr>
<tr>
<td>Background</td>
<td>Whitefish Fillet</td>
<td>5</td>
<td>TE (2001)</td>
<td>Jan & Dec</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>TE (2001)</td>
<td>Jan & Dec</td>
<td>^{90}Sr</td>
</tr>
<tr>
<td>100 F Slough</td>
<td>Bass Fillet</td>
<td>5</td>
<td>TE (2002)</td>
<td>May-June</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>TE (2002)</td>
<td>May-June</td>
<td>^{90}Sr</td>
</tr>
<tr>
<td>Hanford Slough</td>
<td>Bass Fillet</td>
<td>5</td>
<td>TE (2002)</td>
<td>May-June</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>TE (2002)</td>
<td>May-June</td>
<td>^{90}Sr</td>
</tr>
<tr>
<td>300 Area(c)</td>
<td>Carp Fillet</td>
<td>5</td>
<td>BE (2002)</td>
<td>June</td>
<td>Gamma Scan, DOH(d)</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>BE (2002)</td>
<td>June</td>
<td>^{90}Sr, DOH(d)</td>
</tr>
<tr>
<td>Desert Aire</td>
<td>Bass Fillet</td>
<td>5</td>
<td>TE (2002)</td>
<td>June</td>
<td>Gamma Scan, DOH(d)</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>TE (2002)</td>
<td>June</td>
<td>^{90}Sr, DOH(d)</td>
</tr>
<tr>
<td>Vantage</td>
<td>Carp Fillet</td>
<td>5</td>
<td>BE (2002)</td>
<td>June</td>
<td>Gamma Scan, DOH(d)</td>
</tr>
<tr>
<td></td>
<td>Carcass</td>
<td>5</td>
<td>BE (2002)</td>
<td>June</td>
<td>^{90}Sr, DOH(d)</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 3.2, 2001 Wildlife Sampling Locations.
(b) Samples are collected in 2001 according to their specified frequency unless otherwise noted.
(c) If available, PNNL will collect one Squawfish sample and provide to the Washington State Department of Health.
(d) One sample provided to the Washington State Department of Health.
3.2.2 Geese

<table>
<thead>
<tr>
<th>Location</th>
<th>Species/Sample</th>
<th>Number of Samples</th>
<th>Frequency<sup>(b)</sup></th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Areas</td>
<td>Canada Goose</td>
<td>Muscle 5</td>
<td>BE (2001)</td>
<td>August</td>
<td>Gamma Scan, DOH<sup>(c)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone 5</td>
<td>BE (2001)</td>
<td>August</td>
<td>^{90}Sr, DOH<sup>(c)</sup></td>
</tr>
<tr>
<td>Hanford Townsite</td>
<td>Canada Goose</td>
<td>Muscle 5</td>
<td>BE (2001)</td>
<td>August</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone 5</td>
<td>BE (2001)</td>
<td>August</td>
<td>^{90}Sr</td>
</tr>
<tr>
<td>Vantage</td>
<td>Canada Goose</td>
<td>Muscle 5</td>
<td>BE (2001)</td>
<td>August</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone 5</td>
<td>BE (2001)</td>
<td>August</td>
<td>^{90}Sr</td>
</tr>
</tbody>
</table>

^(a) Refer to Figure 3.2, 2001 Wildlife Sampling Locations.
^(b) Samples are collected in 2001 according to their specified frequency unless otherwise noted.
^(c) One sample provided to the Washington State Department of Health.

3.2.3 Game Birds

<table>
<thead>
<tr>
<th>Location</th>
<th>Species/Sample<sup>(a)</sup></th>
<th>Number of Samples</th>
<th>Frequency</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 D Area to</td>
<td>Pheasant</td>
<td>Muscle 4</td>
<td>BE (2002)</td>
<td>September</td>
<td>Gamma Scan, DOH<sup>(b)</sup></td>
</tr>
<tr>
<td>100 H Area</td>
<td></td>
<td>Bone 4</td>
<td>BE (2002)</td>
<td>September</td>
<td>^{90}Sr, DOH<sup>(b)</sup></td>
</tr>
<tr>
<td>100 H Area to</td>
<td>Pheasant</td>
<td>Muscle 6</td>
<td>BE (2002)</td>
<td>September</td>
<td>Gamma Scan, DOH<sup>(b)</sup></td>
</tr>
<tr>
<td>100 F Area</td>
<td></td>
<td>Bone 6</td>
<td>BE (2002)</td>
<td>September</td>
<td>^{90}Sr, DOH<sup>(b)</sup></td>
</tr>
<tr>
<td>Background</td>
<td>Pheasant</td>
<td>Muscle 5</td>
<td>BE (2002)</td>
<td>September</td>
<td>Gamma Scan, DOH<sup>(b)</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone 5</td>
<td>BE (2002)</td>
<td>September</td>
<td>^{90}Sr, DOH<sup>(b)</sup></td>
</tr>
</tbody>
</table>

^(a) Pheasant preferred; chukar or quail acceptable if pheasant is unavailable.
^(b) One sample provided to the Washington State Department of Health.
3.2.4 Rabbits

<table>
<thead>
<tr>
<th>Location</th>
<th>Species/Sample</th>
<th>Number of Samples</th>
<th>Frequency</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 N Area</td>
<td>Cottontail or Jack Rabbit</td>
<td>Muscle</td>
<td>4</td>
<td>BE (2001)</td>
<td>April</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>4</td>
<td>BE (2001)</td>
<td>Gamma Scan, DOH(^{(c)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90(^{Sr}), DOH(^{(c)})</td>
</tr>
<tr>
<td>200 E Area</td>
<td>Jack Rabbit</td>
<td>Muscle</td>
<td>4</td>
<td>BE (2001)</td>
<td>April</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>4</td>
<td>BE (2001)</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90(^{Sr})</td>
</tr>
<tr>
<td>200 West</td>
<td>Jack Rabbit</td>
<td>Muscle</td>
<td>4</td>
<td>BE (2001)</td>
<td>April</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>4</td>
<td>BE (2001)</td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90(^{Sr})</td>
</tr>
<tr>
<td>Background</td>
<td>Cottontail or Jack Rabbit</td>
<td>Muscle</td>
<td>5</td>
<td>TE (2001)</td>
<td>April</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>5</td>
<td>TE (2001)</td>
<td>Gamma Scan</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Refer to Figure 3.2, 2001 Wildlife Sampling Locations.
\(^{(b)}\) Samples are collected in 2001 according to their specified frequency unless otherwise noted.
\(^{(c)}\) One sample provided to the Washington State Department of Health.

3.2.5 Deer

<table>
<thead>
<tr>
<th>Location</th>
<th>Species/Sample</th>
<th>Number of Samples</th>
<th>Frequency</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 N Area</td>
<td>Mule</td>
<td>Muscle</td>
<td>2</td>
<td>BE (2002)</td>
<td>December</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>2</td>
<td>BE (2002)</td>
<td>December</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gamma Scan, DOH(^{(a)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90(^{Sr}), DOH(^{(a)})</td>
</tr>
<tr>
<td>200 Areas</td>
<td>Mule</td>
<td>Muscle</td>
<td>2</td>
<td>BE (2002)</td>
<td>December</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>2</td>
<td>BE (2002)</td>
<td>December</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gamma Scan, DOH(^{(a)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90(^{Sr}), DOH(^{(a)})</td>
</tr>
<tr>
<td>Road Kill at</td>
<td>Mule</td>
<td>Muscle</td>
<td>6</td>
<td>BE (2002)</td>
<td>As Available</td>
</tr>
<tr>
<td>Onsite Location</td>
<td></td>
<td>Bone</td>
<td>6</td>
<td>BE (2002)</td>
<td>As Available</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gamma Scan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90(^{Sr})</td>
</tr>
<tr>
<td>Background</td>
<td>Mule</td>
<td>Muscle</td>
<td>2</td>
<td>BE (2002)</td>
<td>October</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>2</td>
<td>BE (2002)</td>
<td>October</td>
</tr>
</tbody>
</table>

\(^{(a)}\) One sample provided to the Washington State Department of Health.
Figure 3.2. 2001 Wildlife Sampling Locations
4.0 SOIL AND VEGETATION

4.1 SOIL

<table>
<thead>
<tr>
<th>Location</th>
<th>Location Number</th>
<th>Frequency (b)</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 K Area</td>
<td>1</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>NE of 100 N Area</td>
<td>2</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>E of 100 N Area</td>
<td>3</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, DOH(d)</td>
</tr>
<tr>
<td>100N Shore Above HGP</td>
<td>4</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>100N Spring Shoreline</td>
<td>5</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>Above 100D Pumphouse</td>
<td>6</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>100 Area Fire Stat</td>
<td>7</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>200 ENC</td>
<td>8</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>E of 200 E</td>
<td>9</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>200 ESE</td>
<td>10</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>S of 200 E</td>
<td>11</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>SW of B/C Cribs</td>
<td>12</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>E of 200 W Gate</td>
<td>13</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>S of 200 W</td>
<td>14</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Rattlesnake Springs</td>
<td>15</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Yakima Barricade</td>
<td>16</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>400 E</td>
<td>17</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>SE Side of FFTF</td>
<td>18</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>North of 300 Area</td>
<td>19</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>South of 300 Area</td>
<td>20</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Hanford Townsite</td>
<td>21</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Wye Barricade</td>
<td>22</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Prosser Barricade</td>
<td>23</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>ALE Field Lab</td>
<td>24</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>N End Vernita Bridge</td>
<td>25</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Wahluke Slope</td>
<td>26</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Berg Ranch</td>
<td>27</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Ringold Area</td>
<td>28</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>W End of Fir Road</td>
<td>29</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Taylor Flats No. 2</td>
<td>30</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Sagemoor Farm</td>
<td>31</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Byers Landing</td>
<td>32</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Riverview-Harris</td>
<td>33</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Benton City</td>
<td>34</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Sunnyside</td>
<td>35</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>McNary Dam</td>
<td>36</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Walla Walla</td>
<td>37</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Washutucna</td>
<td>38</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
<tr>
<td>Toppenish</td>
<td>39</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 241Am, DOH(d)</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 4.1, 2001 Soil and Vegetation Sampling Locations.
(b) Samples are collected once every 3 to 5 years and will be collected in 2001.
(c) Samples will be collected and archived but may be submitted for analyses at a later date.
(d) Cosample provided to the Washington State Department of Health.
4.2 VEGETATION

<table>
<thead>
<tr>
<th>Location(a)</th>
<th>Location Number</th>
<th>Frequency(b)</th>
<th>Collection Period</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 K Area</td>
<td>1</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>NE of 100 N Area</td>
<td>2</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>E of 100 N Area</td>
<td>3</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, DOH(c)</td>
</tr>
<tr>
<td>100N Spring Shoreline</td>
<td>5</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>E of 200 W Gate</td>
<td>13</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>300 Area Shoreline</td>
<td>40</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, DOH(c)</td>
</tr>
<tr>
<td>Hanford Townsite</td>
<td>21</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>Hanford Townsite HRM28</td>
<td>41</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu, 99Tc, DOH(c)</td>
</tr>
<tr>
<td>Ringold Area</td>
<td>28</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>Sagenmoor Farm</td>
<td>31</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>Byers Landing</td>
<td>32</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>Riverview-Harris</td>
<td>33</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>Sunnyside</td>
<td>35</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
<tr>
<td>Toppenish</td>
<td>39</td>
<td>3 to 5 yrs</td>
<td>June-Sept</td>
<td>Gamma Scan, 90Sr, U, Pu</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 4.1, 2001 Soil and Vegetation Sampling Locations.
(b) Samples are collected once every 3 to 5 years and will be collected in 2001.
(c) Cosample provided to the Washington State Department of Health.
Figure 4.1. 2001 Soil and Vegetation Sampling Locations
5.0 SEDIMENT

<table>
<thead>
<tr>
<th>Location(a)</th>
<th>Frequency</th>
<th>Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNary Dam</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>McNary-OR. Side Near Dam</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>McNary-Wash. Side Near Dam</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>Priest Rapids Dam (PRD)</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>PRD-Grant Side Near Dam</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>PRD-Yakima Side Near Dam</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>White Bluffs Slough</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC</td>
</tr>
<tr>
<td>100 F Slough</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>Hanford Slough</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC</td>
</tr>
<tr>
<td>Richland</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, Pu, ICP-u, SEM/AVS, TOC, DOH(b)</td>
</tr>
<tr>
<td>Springs</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u, DOH(b)</td>
</tr>
<tr>
<td>100-B Spring 38-3</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
<tr>
<td>100-K Spring 63-1</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
<tr>
<td>100-K Spring 77-1</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
<tr>
<td>100-F Spring 207-1</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
<tr>
<td>Hanford Spr UR 28-2</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
<tr>
<td>Hanford Spr DR 28-2</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
<tr>
<td>300 Area Spring 42-2</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
<tr>
<td>300 Area Spr DR 42-2</td>
<td>A</td>
<td>Gamma Scan, 90Sr, U, ICP-u</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 5.1, 2001 Sediment Sampling Locations. UR and DR referenced to upriver and downriver.

(b) Cosample provided to the Washington State Department of Health.
Figure 5.1. 2001 Sediment Sampling Locations
6.0 EXTERNAL RADIATION

6.1 THERMOLUMINESCENT DOSIMETERS (TLDS)

6.1.1 Terrestrial Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Location Number</th>
<th>Frequency</th>
<th>Measurement</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 K Area (b)</td>
<td>1</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>100 D Area (b)</td>
<td>2</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>100 F Met Tower (b)</td>
<td>3</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Hanford Townsite (b)</td>
<td>4</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>N of 200 E (b)</td>
<td>5</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>B Pond (b)</td>
<td>6</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>E of 200 E (b)</td>
<td>7</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>200 ESE (b)</td>
<td>8</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>S of 200 E (b)</td>
<td>9</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>200 Tel. Exchange (b)</td>
<td>10</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>SW of B/C Cribs (b)</td>
<td>11</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>200 W SE (b)</td>
<td>12</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Army Loop Camp (b)</td>
<td>13</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>3705 Bldg. 300 Area</td>
<td>14</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>300 Water Intake (b)</td>
<td>15</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>300 Southwest Gate</td>
<td>16</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>300 South Gate (b)</td>
<td>17</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>300 Trench (b)</td>
<td>18</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>300 NE (b)</td>
<td>19</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>400 E (b)</td>
<td>20</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>400 W (b)</td>
<td>21</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>400 S (b)</td>
<td>22</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>400 N (b)</td>
<td>23</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>US Ecology NE Corner</td>
<td>24</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>US Ecology SE Corner</td>
<td>25</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>US Ecology NW Corner</td>
<td>26</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>US Ecology SW Corner</td>
<td>27</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>Wye Barricade (b)</td>
<td>28</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>WPPSS 1; S of WNP 2</td>
<td>29</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>Perimeter (d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringold Met Tower (b)</td>
<td>1</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>W End of Fir Road (b)</td>
<td>2</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>Dogwood Met Tower (b)</td>
<td>3</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Byers Landing (b)</td>
<td>4</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Battelle Complex (b)</td>
<td>5</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>WPPSS 4; WPS Warehse (b)</td>
<td>6</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>Horn Rapids Substa (b)</td>
<td>7</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Prosser Barricade (b)</td>
<td>8</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Yakima Barricade (b)</td>
<td>9</td>
<td>Q</td>
<td>Ambient Dose, DOH (c)</td>
<td></td>
</tr>
<tr>
<td>Rattlesnake Springs (b)</td>
<td>10</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Wahluke Slope (b)</td>
<td>11</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Mattawa (b)</td>
<td>12</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
</tbody>
</table>
6.1.1 Terrestrial Locations (contd)

<table>
<thead>
<tr>
<th>Location</th>
<th>Location Number</th>
<th>Frequency</th>
<th>Measurement</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community(d,e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Othello(b)</td>
<td>13</td>
<td>Q</td>
<td>Ambient Dose, DOH(c)</td>
<td></td>
</tr>
<tr>
<td>Basin City School(b)</td>
<td>14</td>
<td>Q</td>
<td>Ambient Dose</td>
<td>PIC</td>
</tr>
<tr>
<td>Edwin Markham School(b)</td>
<td>15</td>
<td>Q</td>
<td>Ambient Dose</td>
<td>PIC</td>
</tr>
<tr>
<td>Leslie Groves-Richland(b)</td>
<td>16</td>
<td>Q</td>
<td>Ambient Dose</td>
<td>PIC</td>
</tr>
<tr>
<td>Pasco(b)</td>
<td>17</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Kennewick-Ely Street(b)</td>
<td>18</td>
<td>Q</td>
<td>Ambient Dose, DOH(c)</td>
<td></td>
</tr>
<tr>
<td>Benton City(b)</td>
<td>19</td>
<td>Q</td>
<td>Ambient Dose</td>
<td></td>
</tr>
<tr>
<td>Distant(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yakima(b)</td>
<td>20</td>
<td>Q</td>
<td>Ambient Dose, DOH(c)</td>
<td></td>
</tr>
<tr>
<td>Toppenish(b)(e)</td>
<td>21</td>
<td>Q</td>
<td>Ambient Dose, DOH(c)</td>
<td>PIC</td>
</tr>
</tbody>
</table>

(a) Refer to Figure 6.1, 2001 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Site.
(b) Collocated with air sampling station.
(c) Washington State Department of Health TLD also at this location.
(d) Refer to Figure 6.2, 2001 Thermoluminescent Dosimeter (TLD) Locations for Perimeter, Community, and Distant Sites.
(e) Community-operated environmental surveillance station.
Figure 6.1. 2001 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Site
Figure 6.2. 2001 Thermoluminescent Dosimeter (TLD) Locations for Perimeter, Community, and Distant Sites
6.1.2 Columbia River Shoreline Locations

<table>
<thead>
<tr>
<th>Location(^{(a)})</th>
<th>Location Number</th>
<th>Frequency</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>S End Vernita Bridge(^{(b)})</td>
<td>1</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Above 100 B Area</td>
<td>2</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Below 100 B Ret Basin</td>
<td>3</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Above 1K Boat Ramp</td>
<td>4</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Below 100N Outfall</td>
<td>5</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Above Tip 100N Berm</td>
<td>6</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>100 N Trench Spring</td>
<td>7</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Below 100 D Area</td>
<td>8</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>100-D Island</td>
<td>9</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>100 H Area</td>
<td>10</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Lo End Locke Isl</td>
<td>11</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>White Bluffs Fy Lnd.</td>
<td>12</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>White Bluffs Slough</td>
<td>13</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Below 100 F</td>
<td>14</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>100 F Floodplain</td>
<td>15</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Hanford Slough</td>
<td>16</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Hanf Powerline Xing</td>
<td>17</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Hanford RR Track</td>
<td>18</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Savage Isl Slough</td>
<td>19</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Ringold Island</td>
<td>20</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Powerline Crossing</td>
<td>21</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>S End Wooded Island</td>
<td>22</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Island Above 300 Area</td>
<td>23</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Island Near 300 Area</td>
<td>24</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Port of Benton-River</td>
<td>25</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
<tr>
<td>Isl DS Bateman Isl</td>
<td>26</td>
<td>Q</td>
<td>Ambient Dose</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Refer to Figure 6.3, 2001 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Reach of the Columbia River.

\(^{(b)}\) Collocated with air sampling station.

6.2 COLUMBIA RIVER SHORELINE RADIATION SURVEYS

<table>
<thead>
<tr>
<th>Location(^{(a)})</th>
<th>Location Number</th>
<th>Frequency</th>
<th>Measurement</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>S End Vernita Bridge</td>
<td>1</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Above 1K Boat Ramp</td>
<td>4</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Below 100N Outfall</td>
<td>5</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Above Tip 100N Berm</td>
<td>6</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>100 N Trench Spring</td>
<td>7</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>100-D Island</td>
<td>9</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Lo End Locke Isl</td>
<td>11</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>White Bluffs Fy Lnd.</td>
<td>12</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Below 100 F</td>
<td>14</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Hanf Powerline Xing</td>
<td>17</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Hanford RR Track</td>
<td>18</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Ringold Island</td>
<td>20</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Powerline Crossing</td>
<td>21</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
<tr>
<td>Island Above 300 Area</td>
<td>23</td>
<td>Q</td>
<td>Exposure, Surface contamination</td>
<td>BICRON, GM</td>
</tr>
</tbody>
</table>

\(^{(a)}\) Refer to Figure 6.3, 2001 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Reach of the Columbia River.
Figure 6.3. 2001 Thermoluminescent Dosimeter (TLD) Locations on the Hanford Reach of the Columbia River
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name</th>
<th>Address 1</th>
<th>Address 2</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L. Albin</td>
<td>Division of Radiation Protection</td>
<td>Washington State Dept. of Health</td>
<td>Olympia, WA 98504-7827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 47827</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olympia, WA 98504-7827</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. Buck, Jr.</td>
<td>Wanapum Indian Band</td>
<td>P.O. Box 878</td>
<td>Ephrata, WA 98823</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R. A. Danielson</td>
<td>Washington State Dept. of Health</td>
<td>5508 Englewood Avenue</td>
<td>Yakima, WA 98908</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. L. Goldstein</td>
<td>U.S. Environmental Protection Agency</td>
<td>P.O. Box 550, MS B5-01</td>
<td>Richland, WA 99352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Harris</td>
<td>Confederated Tribes of the Umatilla Indian Reservation</td>
<td>P.O. Box 638</td>
<td>Pendleton, OR 97801</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. E. Jaquish</td>
<td>1232 Vintage Avenue</td>
<td>Richland, WA 99352</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Langford</td>
<td>Division of Radiation Protection</td>
<td>Washington State Dept. of Health</td>
<td>Olympia, WA 98504-7827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 47827</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Olympia, WA 98504-7827</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. McBaugh, Head, MS-7827</td>
<td>Environmental Radiation Section</td>
<td>Division of Radiation Protection</td>
<td>Olympia, WA 98504-7827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 47827</td>
<td>Washington State Dept. of Health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. E. McDonald, MD-1025</td>
<td>Environmental Scientist</td>
<td>Energy Northwest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 968</td>
<td></td>
<td>Richland, WA 99352</td>
</tr>
<tr>
<td></td>
<td>C. Palmer</td>
<td>Department of Natural Resources</td>
<td>Yakama Nation</td>
<td>Toppenish, WA 98948</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 151</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Powaukee</td>
<td>Environmental Restoration/Waste Management</td>
<td>Nez Perce Tribe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lapwai, ID 83540</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. R. Sherwood</td>
<td>U.S. Environmental Protection Agency</td>
<td>P.O. Box 550, MS B5-01</td>
<td>Richland, WA 99352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Van Verst</td>
<td>Division of Radiation Protection</td>
<td>Washington State Dept. of Health</td>
<td>Olympia, WA 98504-7827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 47827</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. R. Wilkinson</td>
<td>Special Science and Resource Program</td>
<td>Department of Natural Resources</td>
<td>Pendleton, OR 97801</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.O. Box 638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Name</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M. A. Wilson</td>
<td>Washington State Dept. of Ecology, 1315 4th Avenue, Kennewick, WA 99336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>G. A. Stoetzel</td>
<td>P7-78</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. L. Tiller</td>
<td>K6-85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Historical File—T. M. Poston</td>
<td>K6-75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Technical Report Files</td>
<td>K1-06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONSITE (67)

DOE Richland Operations (13)

- L. M. Bowers A2-15
- J. B. Hall A2-15
- R. D. Hildebrand A5-13
- M. Thompson A5-13
- A. C. Tortoso H0-12

DOE Public Reading Room H2-53

Bechtel Hanford, Inc.

- K. A. Gano H0-23

Fluor Hanford

- A.R. Johnson H5-26

Waste Management Technical Services (4)

- J. J. Dorian H1-11
- S. M. McKinney H1-11
- R. M. Mitchell H1-11
- C. J. Perkins H1-11

Pacific Northwest National Laboratory (48)

- E. J. Antonio K3-54

Distri. 2

30 L. E. Bisping K6-75
- R. L. Dirkes K6-75
- R. W. Fulton K6-75
- B. M. Gillespie K6-96
- R. W. Hanf, Jr. K6-75
- B. A. Napier K3-54
- B. E. Opitz K6-75
- G. W. Patton K6-75
- T. M. Poston K6-75
- B. A. Rathbone P7-02