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Summary

The representation of small-scale features can be a challenge when attempting to model
unsaturated flow in large domains. Upscaling methods offer the possibility of reducing the
amount of resolution required to adequately simulate such a problem. In this report, the various
upscaling techniques that are discussed in the literature are reviewed. The following upscaling
methods have been identified from the literature: 1) stochastic methods, 2) renormalization
methods, and 3) volume averaging and homogenization methods; in addition, a final technique,
full resolution numerical modeling, is also discussed. Each of these techniques has its
advantages and disadvantages. The trade-off is a reduction in accuracy in favor of a method that
is easier to employ. For practical applications, the most reasonable approach appears to be one
in which any of the upscaling methods identified above may be suitable for upscaling in regions
where the variations in the parameter fields are small. For regions where the subsurface structure
is more complex, only the homogenization and volume averaging methods are probably suitable.
With the continual increases in computational capacity, full-resolution numerical modeling may
in many instances provide a tractable means of solving the flow problem in unsaturated systems.
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1.0 Introduction

The stochastic description of flow and transport in the subsurface is now a mature area of
research in hydrology, and the subject is represented by an extensive literature. Remarkably,
many of the established methods pertain primarily to a subset of possible subsurface structures,
specifically those that can be represented by normal or lognormal parameter distributions. Also
remarkable is the fact that, although many mathematically rigorous methods have been
developed, only a relatively small subset of these has been adopted for use in practice.

One of the needs for the immobilized low-activity waste (ILAW) project is the ability to
predict the performance of containment trenches over long periods of time. Numerical
simulations of fluid flow and dissolved species transport are necessary for these performance
assessments. Because the construction of waste isolation trenches may contain several disparate
characteristic length scales (e.g., the thickness of the materials between waste containers may be
on the order of centimeters, whereas the trench may be hundreds of meters long), the
computational costs for conducting high-resolution numerical simulations may be prohibitive.
The purpose-of this report is to summarize some of the upscaling methods that may be suitable
for use in ILAW design simulations. Upscaling methods can allow accurate simulations to be
conducted with reduced computational costs by reducing the resolution required. This is done by
replacing the fine-resolution description of the problem by a more coarsely resolved one; in these
methods, the coarse grid properties have been determined from the fine grid properties through a
formal upscaling procedure.

This report is organized as follows. In Section 2, the literature is reviewed, and various
methods for upscaling flow in the unsaturated zone are identified, summarized, and compared.
In Section 3, recommendations for particular methods most suitable for ILAW design purposes
are made. Finally, in Section 4, a brief summary is provided. Although the transport of both
fluids and dissolved solutes are pertinent to these design calculations, for this report only the
upscaling of fluid flow is considered; the upscaling of solute transport will be considered in a
future report.

The development of upscaled flow parameters and upscaled solute transport parameters may
require very different perspectives. The importance of this point is that upscaled representations
for the flow problem will provide the correct coarse-grid flow field only; such a flow field will
not provide useful information for predictions of solute transport.







2.0 Literature Review of Methods

The literature describing upscaling flow in heterogeneous media is enormous, and the variety
of methods appears to be substantial. In fact, there are only a handful of methods that are
actually used in these developments. In the broadest terms, the methods that are used can be.
grouped into the following categories: 1) stochastic (regular perturbation) methods,
2) renormalization theory, and 3) volume averaging/homogenization methods. In this section,
the literature for each of these methods will be reviewed briefly, and additional commentary for
the methods will be added when appropriate. In addition to the previously mentioned categories,
a non-upscaling method will also be discussed. This method will be referred to as full-resolution
numerical modeling. In the discussion that follows, two definitions for upscaled properties will
be used (following Renard and de Marsily 1997): equivalent properties and effective properties.
Although this division is somewhat tenuous, it is useful for our discussion.

The term equivalent properties is usually used to indicate a property that has been averaged
over a subdomain (often referred to as a block), where some constraints have been imposed for
calculating the equivalent property. For the example of saturated conductivity, the constraints
are that the mean boundary fluxes must be the same and the energy dissipated is equivalent
(Renard and de Marsily 1997). For equivalent parameters, no statistical constraints are imposed
upon the medium, so the equivalent properties of the medium may depend on the particular
conditions that are imposed on the block boundaries. Equivalent parameters are generally sought
when upscaling a fine-grid parameter field for calculating a numerical solution on a coarser grid.

The term effective properties is generally reserved for media in which certain statistical
constraints have been imposed. The most common constraints are spatial stationarity and
ergodicity in the mean and covariance structure. Generally, such constraints are imposed so that
one can obtain the asymptotic behavior of the medium. This means only that the statistics are
sufficiently sampled by the method that the effective parameter being determined is a function of
only the parameter field statistics (and not of the particular physical distribution that would be
implied by any particular realization of these statistics). Under these conditions, information
from the boundaries is either moot (i.e., the field is considered to be of infinite or semi-infinite
extent) or boundary information is lost so rapidly as one moves toward the interior of the domain
that the particular boundary conditions that are imposed do not affect the calculation of the
effective parameter. Effective parameters are useful because they are functions of only the
statistics of the field, rather than the particular details of any realization of a field.

For some applications, the division between equivalent and effective becomes meaningless
because a combination of volume averaging and statistical averaging techniques is used (e.g.,
Kitanidis 1990). Therefore, in the discussions that follow, these two terms will be used when
appropriate but with the caveat that the meaning may not always be precise.




2.1 Stochastic Techniques

Stochastic techniques are probably the most familiar methods for upscaling to hydrologists.
This method has been used extensively for determining the effective saturated conductivity of
heterogeneous porous media (e.g., Cushman 1990; Dagan 1989; Dagan and Neuman 1997,
Gelhar 1993); results for the effective saturated conductivity are summarized in detail in these
references. For unsaturated flow, the approach used to develop the effective conductivity usually
assumes that the conductivity-pressure relationship takes the form

K@.x) = K/(x)exp(-a(x)y) 6!

where K(1,x) is the hydraulic conductivity, K (x) is the saturated hydraulic conductivity, and -
a(x) is the slope of the unsaturated conductivity function. This functional form is chosen

primarily for tractability by analytical techniques rather than its applicability to the field. In

these analyses, the parameters K (x) and a(x) are treated as random fields with lognormal

statistics. This form for the conductivity-pressure relationship is combined with a first-order

perturbation analysis to yield estimates of the effective conductivity.

The first efforts for a stochastic perturbation analysis of unsaturated flow were developed by
Yeh et al. (1985a, 1985b, 1985¢) for steady flow conditions with anisotropic parameter field
statistics. The method involved a conventional linear perturbation analysis that was solved using
spectral representation techniques. Later, Mantoglou and Gelhar (1987a, 1987b, 1987c)
extended this approach to transient flows and developed representations for the upscaled soil
moisture content, soil moisture capacity, and conductivity. This analysis included an explicit
representation for the possibility of hysteresis induced by heterogeneity. Pollmann et al. (1991)
tested this theory through numerical experiments, and they agreed qualitatively with predictions
from the theory. They were able to carefully identify the limitations associated with the theory
developed by Mantoglou and Gelhar (1987a, 1987b, 1987¢). Russo (1992) was able to combine
the theory of Yeh et al. (1985a, 1985b, 1985c) with the concept of the equivalent block
permeability to explore how large a heterogeneous domain must be so that the equivalent
hydraulic conductivity converged to the effective hydraulic conductivity. In this work, it was
determined that the diagonal components of the equivalent conductivity tensor converged with
those for the effective conductivity tensor when more then 20 integral scales were included.
Finally, Mantoglou (1992) was able to extend his previous analysis of unsaturated flow to
conditions of nonstationary statistics. This theory was tested by applying it to field observations
(Jensen and Mantoglou 1992); the stochastic model was able to predict the average system
behavior reasonably well. ‘

2.2 Renormalization Techniques

Renormalization techniques have become a popular method of determining the equivalent
permeability because they can be very easy and computationally inexpensive to implement.
There are in fact two distinct approaches that are called “renormalization” techniques. The first
technique (which will be referred to in the remainder of the discussion as “renormalization-field
theory™) uses elements of field theory to develop series solutions for the effective parameter of




interest (usually the hydraulic conductivity). In essence, this technique can be viewed as an
improved version of the linear perturbation expansion technique; however, it also suffers from
many of the same limitations as the perturbation expansion technique. The second technique
(which in the remainder of the discussion will be referred to as “standard renormalization™) can
be viewed as a solution obtained via a finite difference scheme. Each of these techniques is
described in more detail below.

In the renormalization-field theory techniques, the methods of field theory (originally
developed for applications to quantum electrodynamics) are used for development of a
perturbation expansion. In essence, the method consists of developing a Green’s function
solution to the governing differential equation (e.g., the flow equation), and then splitting this
solution up into a random part and a constant part. The solution is iterated, yielding a series
- expansion for the Green’s function. After some algebraic manipulation, the (averaged) Green’s
function is related to the effective conductivity, and the problem is closed by finding suitable
approximations for the Green’s function expansion. It should be noted that this approach is
generally only useful for determining the effective hydraulic conductivity, and the approach
requires that one adopt a field with a small variance in the parameter of interest (i.e., the so-
called small perturbation assumption). To date this technique has been applied only to the
estimation of effective saturated hydraulic conductivities, but there is no reason to expect that it
would not also be suitable for the development of the effective hydraulic conductivity function
for unsaturated conditions, since it has been shown that regular perturbation techniques will
work.

Despite its seemingly complex mathematical approach, the renormalization-field theory
technique has been explored by many researchers. The first application of this technique was by
King (1987), who approached the problem using the tools and notation borrowed directly from
theoretical physics. A more recent application developed by Christakos et al. (1995), who used
Feynman diagrams for expansion of the perturbation series, puts the problem in a more strictly
hydrologic context. This method has been reformulated somewhat by an approach that uses an
approximation to the series representing the Green’s function (Hristopulos and Christakos 1997),
thus making evaluation of the solution easier.

In the standard renormalization technique, a sequential process of upscaling is used to
translate fine-grid information up to coarse grids. At each level of upscaling, grid blocks from
the previously defined level are grouped, and upscaled parameter properties are determined using
finite difference-like techniques. At each step in the upscaling, particular conditions must be
imposed at the boundaries of large-scale blocks; it is not always clear what the proper boundary
conditions should be for the upscaling process, and this poses one of the primary difficulties in
this method. However, because this method is generally simple to implement (with analytical
methods available for the successive upscaling in many cases), it has been implemented
frequently.

The standard renormalization technique also has its roots in theoretical physics, but the first
application to subsurface hydrology is generally attributed to King (1989), who used the method
for calculating the equivalent permeability for saturated flow. Explicit calculations of the error
terms that might be involved in this technique have been explored by King and Williams (1994).




Gautier and Naetinger (1994) have proposed a method for developing the equivalent
conductivity tensor by imposing periodic boundary conditions. A related method based on a
percolation theory applied to random resistor networks has been developed by Hunt (1998). In
this approach, the effective conductivity is determined on the basis of ensemble statistics of
infinitely large networks. Gavrilenko and Guéguen (1998) have developed a similarly posed
renormalization method for fractured media.

It may be possible in principle to use standard renormalization to develop an upscaled
description of the hydraulic parameters that pertain to multiphase flow. However, there may be
problems in making this application, and this technique has been applied to very few studies of
multiphase flows (King et al. 1993). Standard renormalization techniques have been applied
successfully to unsaturated zone flow problems (where water forms one phase and air forms the
second phase), and some examples are provided by Rockhold (1999) and Rockhold et al. (1999).

2.3 Volume Averaging and Homogenization Techniques

By far the most extensive literature regarding the upscaling of saturated and multiphase flow
parameters involves two methods known as volume averaging and homogenization. Both spatial
homogenization and the method of volume averaging function on the basis of disparate length
scales, and both methods produce essentially the same results. The similarity is often ignored by
proponents of one method or the other, and that led Bourgeat et al. (1988) to identify the
similarities between the two techniques. If any general observations can be made about these
two approaches, it is possibly best to say only that homogenization theory tends to appeal more
to those with a background in applied mathematics, whereas the method of volume averaging is
used frequently by those with an applied science or engineering background.

The method of spatial homogenization was established as a powerful tool for analyzing
multiphase systems by the publication of monographs by Bensoussan et al. (1978) and Sanchez-
Palencia (1980), and more recently by Jikov et al. (1994). In this method, one conducts a
perturbation expansion in terms of the ratio of two disparate length scales. The method has been
applied successfully to a wide range of problems such as diffusion and reaction in porous media
(Chang 1982, 1983), flow in deformable porous media (Auriault 1987; Auriault and Boutin
1992), single- and two-phase transport in a double-porosity model of a heterogeneous porous
medium (Amaziane 1993; Amaziane and Bourgeat 1988; Arbogast 1993; Bourgeat 1984;
Douglas and Arbogast 1990), and many others.

In volume averaging approaches, one seeks to describe the behavior of a system averaged
over a particular volume of a porous medium (Whitaker 1999). The approach can be applied in
two distinct modes. In the first mode, the method is used to develop equivalent parameters
(Ahmadi and Quintard 1996) to upscale structures defined at a fine mesh for use on a coarser
mesh. In the second mode, the method is used to develop the effective parameters associated
with a representative volume. In this sense, a representative volume can be loosely interpreted as
a condition of ergodicity defined earlier; that is to say, a representative volume is defined when
an effective parameter for a single realization is the same as the effective parameter averaged
over the ensemble of all such volumes. The concept of a representative volume has been recast




in the framework of representative measurements or representative instrument response
_functions (Baveye and Sposito 1984; Cushman 1984; Quintard and Whitaker 1994a, 1994b,
1994c.). This extension proposed that properties of porous media should be more generally
interpreted in the context of distribution theory, where the distributions employed can be given
the physical interpretation of being an instrument response function. In both modes it is
necessary to apply boundary conditions on the averaging volume (as it is in homogenization
theory), and these boundary conditions are usually chosen to be periodic (for more information
about the robustness of this assumption, see the discussion by Pickup et al. (1994).

Two-phase flow and solute transport have been studied extensively from the perspective of
volume averaging. A recent review article by Quintard and Whitaker (1999) summarizes much
of the work that has been done on the two-phase flow problem in homogeneous and
heterogeneous media. Some of the early applications to this problem include the works of
Hassanizadeh and Gray (1979a, 1979b), Marle (1982), Cushman (1983), Baveye and Sposito
(1984), and Gray and Hassanizadeh (1991a, 1991b). These studies developed the macroscopic
conservation equations for mass, momentum, and energy through the use (and development) of
formal volume averaging theory (other averages are also defined in some of these works). The
goal of these efforts was to identify the macroscopic equations that pertained to transport in -
porous media and to define the effective parameters in terms of those equations. The explicit
representation of the effective parameters in terms of the heterogeneous structure of the porous
media and in terms of a closure problem was not emphasized. However, closure problems are
the means by which statistical quantities can be incorporated into the prediction of effective
parameters such as permeabilities and dispersion coefficients. The effective parameters defined
in terms of these statistical quantities provide an explicit connection between the heterogeneous
structure in a representative region and the effective parameters. Although these initial studies
were important for understanding many issues associated with the complexities of multiphase
flows, they were focused primarily on developing the relevant conservation and constitutive
equations for homogeneous porous media. '

Efforts to relate the heterogeneous structure of the porous media to the definition of the
effective parameters (via volume averaging) for two-phase flows were initiated after the original
studies using volume averaging. Initial efforts in this area are represented by a sequence of
papers by Whitaker (1986, 1994), Quintard and Whitaker (1988, 1990a, 1990b), and Lasseux et
al. (1996). The study by Whitaker (1986) was the first to develop both the Darcy-scale volume-
averaged continuity and momentum equations (yielding Darcy’s law) and the associated closure
problem for two-phase flows. The closure problem was subsequently explored in more detail

(Whitaker 1994), and a useful transformation of this closure problem was given by Lasseux et al.
(1996).

The problem of developing upscaled descriptions for two-phase flows in macroscopically
heterogeneous media was explored by Quintard and Whitaker (1988). In that work, a one-
equation model is developed under the conditions of quasi-static flow and large-scale
mechanical equilibrium. Quasi-static flows were defined as flows where the following
conditions were satisfied: 1) the local capillary pressure everywhere in the representative region
could be set equal to the macroscopic capillary pressure evaluated at the centroid of the region,
and 2) the macroscopic capillary pressure could be set equal to the difference in the macroscopic




pressures in the two immiscible phases. Mechanical equilibrium means that the Darcy-scale
fluid pressure is determined by the pressure-saturation relationships rather than an evolutionary
equation. These conditions were relaxed somewhat in an extension of this analysis conducted by
Quintard and Whitaker (1990a); however, the effects of large spatial and temporal gradients were
not resolved by this work. Numerical experiments reported by Quintard and Whitaker (1990b)
have shown that existing one-equation models for two-phase flow in dual-media systems are
appropriate under some limiting conditions. However, their results indicate that a large number
of cases encountered in practice cannot be satisfactorily represented by a one-equation model.

An upscaling method has been introduced by Durlofsky (1991, 1992) and Durlofsky et al.
(1994, 1997) for multiphase flow that is technically neither volume averaging nor homo-
genization but does rely on the form of the macroscopic equations that can be derived from these
approaches. In this approach, the macroscopic form of the combined mass and momentum
conservation equations is posed; then one seeks to determine the macroscopic hydraulic
conductivity for a specified region at the coarse grid scale. This is accomplished by 1) assuming
that periodic boundary conditions can be imposed on the boundaries of the coarse-grid region,
2) solving for the pressure and velocity fields at the microscopic grid resolution, 3) averaging the
velocity field to determine the macroscopic velocity, and 4) calculating the effective hydraulic
conductivity on the basis of known average velocity and average pressure fields. Although this
method is heuristic in its formulation, it may be possible to show that it is formally equivalent to
the method of volume averaging with closure (although this correspondence has not yet been
made). Current implementations of this method do not allow for calculation of the off-diagonal
components of the hydraulic conductivity tensor, and this could be a limitation under certain
circumstances (e.g., see discussion in Pickup et al. 1994). One significant advantage to the
method is that it is readily adopted for use with existing computer codes that can solve for the
pressure (and velocity) fields for multiphase flows. Potentially, either equivalent or effective
conductivities could be determined by this method. Recently, this method has been extended to
include a more formal upscaling of the saturation equation, where it has been determined that the
saturation equation will contain a dispersion-like term that is caused by fine-scale variations in
the velocity field (Efendiev et al. 2000).

2.4 Full-Resolution Numerical Modeling

With advances in computational methods there are now cases where the ability to fully
resolve the flow problem in a complex heterogeneous media can obviate the need for upscaling.
When the fine-scale structure is known (or assumed to be known) deterministically, this
technique is particularly powerful because only a single realization of the parameter fields is
required. When the fine-scale structure is defined only statistically, it may be necessary to
conduct Monte Carlo simulations to determine some measure of the average flow field.
However, when there is sufficient separation between characteristic length scales of the fine-
scale heterogeneous structure and the simulation field dimensions, very few (or even one)
realizations may be required to achieve good results.

High-resolution modeling has been used extensively in the past to verify various stochastic

theories for saturated flow (e.g., Burr et al. 1994; Graham and McLaughlin 1991; Naff et al.
1998a, 1998b; Tompson and Gelhar 1990; Wood and Kavvas 1999a, 1_999b). For unsaturated
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flow, high-resolution modeling has been applied less frequently but has become more prevalent
with increasing computational capability (e.g., Harter and Yeh 1996a 1996b; Harter and Zhang
1999; Rockhold et al. 1996; Roth and Hammel 1996). In many ways, the connection between
high-resolution modeling and various upscaling methods has become inseparable, either because
high-resolution models are required to upscale deterministic information from a fine to a coarse
grid (e.g., the various volume averaging methods) or because high-resolution models provide one
of the few means for testing stochastic theories when only statistical descriptions are available.







3.0 Method Recommendations

Regardless of the methods used to conduct the upscaling, the end result of the upscaling
process for the problem of multiphase flows is 1) an upscaled version of the conservation of
mass equations and 2) an upscaled version of the conservation of momentum equations. For the
problem of flow of water and air in the vadose zone, the equations for water and air are assumed
to be fully decoupled. Thus, to predict the water flux in the vadose zone, macroscopic equations
of the form

50 ~ _
7 - V(@ @

q = K@hiA.) V@+2) )

are used. Here O is the macroscopic water content, q is the macroscopic flux, and K, is the
macroscopic (effective or equivalent) hydraulic conductivity function; H is the mean capillary
pressure, and z represents the gravitational component of the total hydraulic head. The function
K, depends on both the mean capillary pressure, ¥, and on the deviation from the mean capillary
pressure, 7. The deviation, A, is defined as the difference between the point value of the
capillary pressure, 1, and the mean value, ¥, as follows:

ho= y-w " 4)

~ In the general form given in Equation (3), the macroscopic flux still depends on the point
value of the capillary pressure through K,. The macroscopic problem, then, is essentially
specified once one has a representation for the macroscopic hydraulic permeability function, K,.
For the problem of determining the effective hydraulic conductivity, the hope is to reduce the
amount of information required by determining how K, depends on certain field statistics of #
rather than actual point values of the capillary pressure. For the problem of determining the
equivalent hydraulic permeability, the problem is to determine how the macroscopic value K,
can be determined with full knowledge of the point values of the capillary pressure (and any
other associated parameter fields that may depend on space).

All upscaling techniques will result in the loss of information; this is essentially the desired
effect of upscaling, and it is what leads to the potential for upscaling to improve the tractability
of complex problems. The difficulty is to select an upscaling method that preserves important
qualities of the problem under consideration. The particular upscaling method that is chosen
must be predicated on the basis of a well-posed question as to what information is desired. If, for
instance, spatial distributions of water contents around key features are required, methods that
" uniformly upscale the hydraulic conductivity to a coarse grid will probably not be satisfactory.
Such methods might be satisfactory, however, if the only information that is required is the total
fluid flux at a compliance boundary. Additionally, it should be noted that all of the upscaling
methods assume a priori that a single upscaled equation (with a single macroscopic hydraulic
conductivity function) provides an adequate representation of the physical process. However,
this kind of a model may not be valid under general conditions. In most of the methods, specific
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constraints have been developed that indicate the conditions under which the methods can be
considered valid. When the constraints are not met, it is an indication that the macroscopic
manifestation of the physical process is not well represented by the upscaling method and
suggests that a different kind of model may need to be applied (e.g., a multi-region model). The

development of more general models for upscaling multiphase flows is an area of continuing
research.

Each of the upscaling techniques described in Section 2 provides a method for determining
macroscopic expressions of the form given in Equations (2) through (4). In the comments that
follow, each of these upscaling methods are compared, and recommendations are given.

3.1 Stochastic Techniques

Stochastic techniques have the advantages of being the most familiar to hydrologists, and of
being relatively simple to implement (i.e., often analytical expressions are available). For the
problem of determining the effective saturated hydraulic conductivity, the stochastic techniques
are very well developed (e.g., Dagan 1989) but are generally limited to cases where the variance
of the structure is small (the so-called “small perturbation” assumption) and well approximated
by a log-normal distribution. The stochastic descriptions for flow under unsaturated conditions
is perhaps even more tenuous in that nearly all available approaches require that the local
hydraulic conductivity be described by an exponential expression of the form of Equation (1).
Because the stochastic techniques are applied over regions that are large enough that boundary
information of the region does not affect the upscaled parameters, this method is not suitable for
nonuniform upscaling (where it may be desirable to maintain certain fine-scale features). It may,
however, be combined with other methods to provide a nonuniform coarsening of the problem.
For this reason, it is suggested that stochastic techniques be used under only the following
limited circumstances:

* A description of the effects of mild heterogeneity is desired for regions that are far
from more highly structured regions.

* The characteristic length scale associated with the heterogeneities is small relative
to the characteristic length associated with the simulation region.

* An exponential model is an appropriate form for the hydraulic conductivity
function.

3.2 Renormalization Techniques

" Renormalization field theory techniques essentially represent an extended version of the
conventional perturbation techniques used in the stochastic theories described above. Therefore,
these techniques are applicable under the same circumstances as the stochastic techniques. They
have the added benefit that higher-order corrections may be added to the representations for the
effective hydraulic conductivity; whether these higher-order corrections are useful in practice has
not been addressed in significant detail.
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The standard renormalization techniques have been widely applied for upscaling saturated
flow problems and are generally very easy (and computationally inexpensive) to implement.
Very few studies (only one has been identified in this review) have been conducted on applying
renormalization to multiphase flows. Although standard renormalization techniques are easy to
implement, they are based on methods that can not be considered to be as rigorous as some of the
other available techniques; therefore, they must be considered to be semi-heuristic. It has been
suggested by one of the originators of the method that renormalization may not be a good
method when there is a large amount of anisotropy (King and Williams 1994). Unlike oil
reservoirs, where the renormalization method has been applied for upscaling multiphase flows,
soils tend to be highly anisotropic. Therefore, it is suggested that standard renormalization be
used only for the following limited conditions: -

* Itis necessary to have a fast and computationally nonintensive upscaling method.
e The parameter fields that are upscaled do not exhibit a high degree of anisotropy.

3.3 Volume Averaging and Homogenization Techniques

Volume averaging and homogenization methods have had tremendous success in
applications for upscaling multiphase flows. These methods generally have a more solid
theoretical foundation than the standard renormalization method, but they also tend to be more
computationally costly to implement. The tremendous flexibility of these methods generally
outweighs the added computational effort, and their ability to be used under very general
conditions is an additional advantage. Volume averaging techniques should be considered under
the following conditions:

» Itis important to obtain an accurate representation of the upscaled parameters.

* Moderate increases in computational effort (relative to standard renormalization)
are not prohibitive.

* The system under consideration exhibits a high degree of anisotropy.

* An explicit connection between the fine-scale structure and the macroscopic
behavior is desired.

In particular, the semi-heuristic methods described above are very easy to implement, and
can be done immediately with minor changes to existing codes (e.g., the addition of periodic
. boundary conditions). However, with a small amount of additional effort, more formal methods
can be employed that have a more sound theoretical basis. With some additional research effort,
the volume averaging methods can be extended to cases where a single hydraulic conductivity
value is not readily defined (multi-region models) and to cases that improve on the application of
periodic boundary conditions. :

3.4 Full-Resolution Numerical Modeling

In the spectrum of the various methods considered, this method preserves the most
information (essentially all the structure is represented within the boundaries of the numerical




accuracy of the solution method) and is the most computationally intensive. However, with all
of the methods presented, there are compromises. The upscaling methods allow approximate
solutions to be determined from fine-scale descriptions with a corresponding reduction in cost
for calculation of the final coarse-scale solution. However, when one has deterministic structure
that must be upscaled by evaluation of the equivalent hydraulic conductivity function over
coarse-scale subdomains of the problem, the upscaling technique really represents a way of
breaking a large problem up into smaller pieces. The more demands that are placed on the .
accuracy of the coarse-scale solution, the more closely the computational effort required will
approach that of solving the fine-scale problem directly (this is not necessarily true of methods
where the effective permeability is needed, because certain statistical assumptions allow the
reduction of the total amount of information needed to obtain an accurate solution). This fact is
generally recognized, and it still may be necessary to solve a particular problem by an upscaling
method simply because it is not possible to solve the fine-scale problem directly (due to
computational limitations), whereas solving many smaller problems sequentially is feasible.

With these caveats aside, it should be noted that massively parallel computations are making
the fine-scale solution to the flow and transport problems faced by subsurface hydrologists more
routine. At Pacific Northwest National Laboratory, the STOMP code (Subsurface Transport
Over Multiple Phases [White and Oostrom 1997]) has been developed for massively parallel
computation. It has been coupled with a reactive transport code. In principle, this code does not
require much more effort or expertise to use than the conventional serial versions of the code.
The direct application of this code to a fine-scale (three-dimensional) representation of a
subsurface problem has been proven, and it represents a realistic method for the solution of
highly resolved flow and transport problems in the subsurface. Fully resolved numerical
simulations could be used under the following circumstances:

¢ Computational resources are not a limiting factor (e.g., massively paraliel
computational facilities and codes are available for use).

The physical system is one for which no appropriate upscaling techniques exist
(e.g., high contrasts in the fine-scale permeability make the constraints required
by the selected models invalid.)

* Detailed information about the field is required (e.g., if the absolute maximum
moisture content or flux rate were desired, an upscaling technique might not be
suitable because this information may be lost).




4.0 Conclusions

In any practical approach to complex subsurface problems, the methods that are chosen to
obtain a solution are always going to be governed by the specific physics of the problem at hand.
In many instances, the most practical solution will be one that incorporates one or more of the
methods that have been identified in this study. For practical applications, the most reasonable
approach is probably one that uses any of these upscaling techniques (provided that the
constraints for their validity are met) for upscaling in regions where the variations of the
parameter fields are small. For upscaling in regions where the structure is more complex, only
the homogenization and volume averaging approaches are probably suitable. Regardless of the
upscaling methods that are used, the approach to the problem should be one that allows for
nonuniform grid spacing for the final description of the upscaled parameter fields. This is a
function of the numerical simulator that is to be used rather than a function of the upscaling
method (all of the upscaling methods described could be used to develop coarse-scale
descriptions of parameter fields that result in nonuniform grids).

The demand for incorporating increasingly complex phenomena in our representations of
subsurface processes seems to be continually increasing (perhaps driven by more stringent
regulatory concerns). The need for high-performance computational tools for solutions to these
problems is almost inescapable, even with the simplifications that might be afforded by
upscaling. Therefore, the process of upscaling can never be fully decoupled from the advent of
more powerful computational techniques.

There are still many problems in upscaling that are areas of active research. In particular, the
problems associated with sharp contrasts in field properties is possibly the most difficult problem
extant. Currently, no techniques exist for upscaling the flow fields associated with multiphase
fluids in such high-contrast media. However, if effort were directed to this area of research, new
methods could be developed that would have immediate impact on our ability to better represent
complex subsurface flows.
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