PNNL-13198

Borehole Data Package for the 216-S-10 Pond and Ditch Well 299-W26-13

D. G. Horton B. A. Williams C. S. Cearlock

May 2000

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RLO 1830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

PNNL-13198

Borehole Data Package for the 216-S-10 Pond and Ditch Well 299-W26-13

D. G. Horton B. A. Williams C. S. Cearlock^(a)

May 2000

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory Richland, Washington 99352

⁽a) CH2M Hill Hanford, Inc., Richland, Washington.

Contents

1.0	Intro	oduction	1
2.0	Wel	1 299-W26-13	1
	2.1	Drilling and Sampling	1
	2.2	Well Completion	3
	2.3	Well Development and Pump Installation	4
3.0	Vad	ose Zone Sampling and Analysis	4
	3.1	Sampling3.3.1Field Screening3.1.2Borehole Sampling3.1.3Geophysical Logging	4 4 5 5
	3.2	Results	7 7 8 8 8 8 9
4.0	Refe	erences	9
App	endix	A - Well Construction and Completion Documentation	A.1
App	endiz	B - Sediment Samples Physical and Chemical Properties Data	B.1
Арр	endix	C - Borehole Geophysical Logs	C.1

Figures

1	Map of 216-S-10 Pond and Ditch and Locations of Wells in the Groundwater Monitoring Network	2
2	Well Summary and Sampled Vadose Zone Intervals	6

Table

1 S	yey Data for Wells 299-W26-13 at the 216-S-10 Ponds and Ditch 4
-----	---

1.0 Introduction

One new Resource Conservation and Recovery Act (RCRA) groundwater monitoring well was installed at the 216-S-10 pond and ditch during November and December 1999 in fulfillment of Tri-Party Agreement (Ecology 1996) milestone M-24-42. The well is 299-W26-13 and is located at the northeast corner to the 216-S-10 pond, southwest of 200 West Area. The well is a new downgradient well in the monitoring network. Figure 1 shows the locations of all wells in the 216-S-10 pond and ditch monitoring network.

The new well was constructed to the specifications and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303, the groundwater monitoring plan for the 216-S-10 pond and ditch (Airhart et al. 1990), and the description of work for well drilling and installation.¹ During drilling and construction of well 299-W26-13, sampling and analysis activities were done to support remedial action, closure decisions at treatment, storage and disposal facilities, and to confirm preliminary site conceptual models developed in the 200-CS-1 Work Plan (DOE/RL 1999).

This document compiles information on the drilling and construction, well development, pump installation, and sediment and groundwater testing applicable to well 299-W26-13. Appendix A contains the Well Summary Sheet (as-built diagram), the Well Construction Summary Report, and the geologist's log. Appendix B contains results of field and laboratory determinations of physical and chemical properties of sediment samples. Appendix C contains borehole geophysical logs. Additional documentation concerning well construction is on file with Bechtel Hanford, Inc., Richland, Washington.

English units are used in this report to describe drilling and well completion activities because that is the system of units used by drillers to measure and report depths and well construction details. Conversion to metric is made by multiplying feet by 0.3048 to obtain meters or multiplying inches by 2.54 to obtain centimeters.

2.0 Well 299-W26-13

2.1 Drilling and Sampling

Well 299-W26-13 was drilled with a cable tool drill rig and drive barrel between 0 and 52 ft, 90.7 and 152 ft, and 170 to 240.7 ft below ground surface (bgs). Air rotary was used to drill between 52 and

Letter from R. M. Smith, Pacific Northwest National Laboratory, Richland, Washington, to G. C. Henckel, Bechtel Hanford, Inc., dated May 26, 1999, "Description of Work for Drilling of CY 1999 RCRA Groundwater Monitoring Wells."

Figure 1. Map of 216-S-10 Pond and Ditch and Locations of Wells in the Groundwater Monitoring Network

90.7 ft and between 152 and 170 ft bgs. Temporary 11 ³/₄-in.-outside-diameter, carbon steel casing was placed from 0 to 36.3 ft bgs and temporary 8 5/8-in.-outside-diameter, carbon steel casing was used between 0 and total depth (240.7 ft bgs).

Grab samples of sediment for geologic description and archive were collected at approximately 5 ft intervals from 40 ft to total depth. Also, nine 2-ft-long spoon samples were collected for chemical and/or physical properties analyses. Section 3.0 describes the details of sampling and analysis of vadose zone sediments in support of the 200-CS-1 Operable Unit. The results of laboratory analyses are in Appendix B.

Sediments encountered during drilling were predominantly silty to slightly silty sand with minor sand and gravelly sandy silt of the Hanford formation from the surface to about 110 ft bgs; Plio-Pliestocene sandy silt and calcareous sandy silt and silty sand from about 110 to 139 ft bgs; and gravelly sand and sandy gravel of the Ringold Formation from 139 to 240 ft bgs (total depth). A geologist's log is included in Appendix A. The groundwater monitoring plan for the 216-S-10 pond and ditch (Airhart et al. 1990) describes the hydrogeology of the 216-S-10 pond and ditch area.

The borehole and drill cuttings were monitored regularly for organic vapors and radionuclide contaminants. No man-made contamination was noted. The well was geophysically logged using high resolution, spectral gamma-ray and neutron-neutron moisture instrumentation. No man-made radio-nuclides were detected. The geophysical logs are in Appendix C.

2.2 Well Completion

The permanent casing and screen were installed in well 299-W26-13 in December 1999. A 4-in.inner-diameter, stainless steel, continuous wire-wrap (0.01-in. slot) screen was set from 237.3 to 202.2 ft bgs. The permanent casing is 4-in.-inside-diameter, stainless steel from 202.2 ft bgs to 2.9 ft above ground surface. The bottom of the screen has a 4-in. PVC end cap to facilitate later deepening of the well if necessary.

The filter pack is 20 to 40 mesh silica sand from 237.3 to 190.7 ft bgs. The annular seal is bentonite crumbles from 190.7 to 10.3 ft bgs and Portland cement from 10.3 ft to the surface. A 4 ft by 4 ft by 6 in. concrete pad was placed around the well at the surface. A protective casing with locking cap, four protective steel posts, and a brass marker stamped with the well number were set into the concrete. The Well Construction Summary Report and the Well Summary Sheet (as-built) are included in Appendix A.

The vertical and horizontal coordinates of the well were surveyed in March 2000. The horizontal position of the well was determined by Global Positioning System observations referenced to horizontal control stations established by Rogers Surveying, Inc., Richland, Washington. The coordinates are Washington Coordinate System, South Zone, NAD83(91) datum. Vertical datum is NAVD 1988 and is based on existing bench marks established by the U.S. Corps of Engineers. Survey data are included in Table 1. The static water level was 200.05 ft bgs on December 13, 1999.

Well Name	Easting m (ft)	Northing m (ft)	Elevation m (ft)	
	566,424.387 (1,858,342.122)	133,293.598 (437,313.635)		Center of Casing
299-W26-13			199.815 (655.559)	"X" on Casing
	566,424.589 (1,858,342.784)	133,293.974 (437,314.869)	199.037 (653.007)	Brass Cap

Table 1. Survey Data for Well 299-W26-13 at the 216-S-10 Pond and Ditch

2.3 Well Development and Pump Installation

Well 299-W26-13 was developed in December 1999. A temporary, submersible pump was used to remove approximately 9,850 gal of formation water from the well at an initial rate of 18 gal/min and a final rate of 11 gal/min. The pump intake was at 227.9 ft bgs. The approximate drawdown was 12 ft and the final turbidity was 11.5 NTU.

A dedicated Hydrostar sampling pump was installed in well 299-W26-13 in January 2000. The sampling pump intake is at about 205 ft bgs or about 5 ft below the water table.

3.0 Vadose Zone Sampling and Analysis

3.1 Sampling

This section describes the collection and analysis of vadose zone samples from well 299-W26-13 in support of the 200-CS-1 Operable Unit.

3.1.1 Field Screening

Soil samples were screened in the field prior to sample collection for indications of contamination and to assist with the determination of sample points during drilling. Samples were screened for volatile organic contamination, beta-gamma activity, and alpha activity. Radiological screening was performed by radiation control technicians with an E-600 ratemeter using a SHP380-A/B scintillation probe. Beta-gamma activities during drilling were at or below background (200 to 300 counts per minute) for all sampled intervals. However, a zone of natural occurring radiation was encountered at approximately 197 ft bgs. Radiological field screening indicated a reading of 1,400 cpm of beta-gamma activity. A sample of the material (sample number RCF6872) was sent to the Radiological Counting Facility for analysis. The results indicated that the activity was associated with naturally occurring short-lived

daughter products of uranium-238 and thorium-232. Volatile organic screening was performed with a photoionization detector. No volatile organics were detected during drilling.

3.1.2 Borehole Sampling

Soil samples were collected for analysis of chemical and radiological constituents and for determination of physical properties. The chemical and radiological analyses were done to assess the nature and vertical extent of chemical and radiological contamination. Analyzed constituents included volatile organic and semi-volatile organic compounds, including polychlorinated biphenyls (PCBs), inorganics (metals), total petroleum hydrocarbons, anions, and radionuclides. Physical properties analyses were done to provide input parameters for flow and transport models. Sample collection was guided by the sample schedule in DOE/RL 1999, Appendix B, Tables B.3 to B.5. Samples were analyzed selectively for the following physical properties: field bulk density (using the Bechtel Hanford, Inc. procedure EIP 3.9, Determination of Field Bulk Density Using a Split-spoon Sampler), particle size distribution (by the method ASTM D422), and moisture content (by the method ASTM D2216).

All soil samples were collected with a split-spoon sampler according to BHI-EE-01, Procedure 4.0, "Soil and Sediment Sampling."¹ A total of 10 soil samples were collected from the borehole including 3 quality control samples. The sample locations with respect to ground surface are shown in Figure 2. All analytical results are in Appendix B.

3.1.3 Geophysical Logging

Spectral gamma-ray and neutron-neutron geophysical surveys were conducted in borehole 299-W26-13. Logging was performed between December 9 and 10, 1999. The spectral gamma-ray and neutronneutron tools were used to determine the concentration of individual man-made and naturally occurring gamma-emitting radionuclides and the volume fraction of moisture (volume of water/volume total) in the soil column. The spectral gamma-ray tool was run from ground surface to a depth of 240.5 ft bgs. Data were collected in four log runs within the temporary, 11- and 8-in.-diameter casings. Two of these log runs were repeat sections to assess repeatability of measurements. Measurements were made at a movestop-acquire mode and at a rate of 100 seconds per 0.5 ft.

The moisture tool was run from the bottom of the 11-in.-diameter casing to groundwater (36.3 ft to ~200.5 ft). Data were collected in two log runs that include a repeat section. Moisture data were acquired at a continuous logging speed of 1.0 ft per minute. Ground surface to 36.3 ft was not logged with the moisture tool because it is not calibrated for an 11-in. casing. A detailed report of logging operation is provided in Appendix C. The report describes calibration requirements, data processing, and log plots.

¹ Bechtel Hanford, Inc., Richland, Washington.

E0001120.2

Figure 2. Well Summary and Sampled Vadose Zone Intervals

3.2 Results

Results from the soil sampling and analyses phase of the 299-W26-13 borehole are described in this section. The section includes a discussion of chemical and radiological analyses, physical property testing, geophysical logging data, and quality control.

3.2.1 Chemical Analyses

Samples for chemical analyses were sent to an offsite laboratory. All of the analytical results are provided in Tables B.1 through B.7 of Appendix B.

Metal analyses were conducted on all samples and the results are provided in Table B.1. Silver was the only metal not detected in any sample. Arsenic, barium, beryllium, cadmium, total chromium, copper, mercury, nickel, lead, vanadium, and zinc were detected in most of the samples. The concentrations of these metals are generally near or below the Hanford Site background concentrations (DOE/RL 1995). Cadmium and selenium were detected in four samples from 135 to 199 ft bgs with maximum concentrations of 0.5 mg/kg and 1.9 mg/kg, respectively. Hexavalent chromium was detected only in the 197 to 199 ft bgs interval (directly above the water table) at a concentration of 0.97 mg/kg. Hexavalent chromium is present in the aquifer at this location, and its occurrence in the deepest sample may represent residual contamination in the vadose zone as the aquifer drops.

No polychlorinated biphenyls or diesel range organic compounds were found in any of the samples (Table B.2 and Table B.3, respectively).

Analyses for the anions ammonia, chloride, cyanide, fluoride, nitrate, nitrite, phosphate, sulfate, and sulfide were conducted for the majority of samples and are presented in Table B.4. Cyanide, fluoride, and nitrite were not detected in any sample. The concentrations of the remaining anions were generally less than 5 mg/kg with a maximum concentration of 12.4 mg/kg for sulfate.

Analyses for semivolatile organic compounds were conducted on all samples with the exception of the 135 to 137 ft bgs interval. The only contaminant detected was bis (2-ethylhexyl) phthalate with concentrations ranging from 24 to 230 μ g/kg (Table B.5). Bis (2-ethylhexly) phthalate is a common laboratory contaminant and was also detected in the quality control blank for the detected maximum value. No other semivolatile organic compounds were detected in any of the samples.

Analyses for volatile organic compounds were conducted on all samples with the exception of the 135 to 137 ft bgs interval. Three target volatile organic contaminants including acetone, 2-butanone, and methylene chloride were detected (Table B.6). Of these, acetone, and methylene chloride were also detected in the quality control blanks and are likely the result of laboratory cross-contamination. 2-butanone was detected once at a concentration of $12 \mu g/kg$. No other volatile organic compounds were detected in any of the samples.

The laboratory reported a limited number of volatile and semivolatile tentatively identified compounds. No compounds of significant concern were identified as tentatively identified compounds.

3.2.2 Radiological Analyses

Samples for radiological analyses were sent to an offsite laboratory. All of the results for the radionuclide analyses are provided in Appendix B.

Analyses for both man-made and naturally occurring radionuclides were conducted on all radiological samples. The man-made radionuclides strontium-90, nickel-63, and plutonium-239/240 were each detected once at concentrations of 1.57 pCi/g, 2.46 pCi/g, and 0.117 pCi/g, respectively (Table B.7). The nickel-63 and strontium-90 were detected in the duplicate sample at the 50 to 52 ft bgs interval and the plutonium-239/240 was detected in the 99.5 to 101.5 ft bgs interval. No other man-made radionuclides were detected.

The concentration of total uranium was determined for each sample and ranged from 0.46 to 2.14 μ g/g (Table B.7). Isotopic analysis for uranium-234, uranium-235, and uranium-238 was conducted for two samples that contained total uranium concentrations above the background level. The concentrations of isotopic uranium compounds detected were less than 0.5 pCi/g.

The concentrations of uranium-238 are generally consistent with those of total uranium (when converted to activity units of pCi/g). The presence of uranium-238 daughter products thorium-230 and radium-226 throughout the vadose zone indicates that the majority of the uranium-238 present is a result of natural rather than nuclear waste disposal processes. Other naturally occurring radionuclides (potassium-40 and thorium-232 plus decay products thorium-228, radium-228, and radium-224) were also detected throughout the vadose zone.

3.2.3 Physical Properties

Samples for determination of pH, particle size distribution, and gravimetric moisture content were sent to an offsite laboratory. Bulk density was calculated for three samples based on field measurements. All of the results are provided in Appendix B.

The field pH measurements ranged from 8.61 to 8.85 (Table B.8). The laboratory pH measurements ranged from 8.1 to 9.1 (Table B.4). The gravimetric moisture content ranged from 2.5 to 11.6%; and bulk density ranged from 1.48 to 2.07 g/cm³ (Table B.8). Volumetric moisture was also calculated by multiplying the bulk density with the moisture content and dividing by the density of water. Calculated volumetric moisture content ranged from 4.9 to 24.1 (Table B.8). Particle size distribution data are provided in Appendix B.

3.2.4 Geophysical Logging

No man-made radionuclides were detected in borehole 299-W26-13. Plots of naturally occurring radionuclides indicate there are several distinct activity changes at depths of about 50, 102, 133, 195 and 237 ft. Major changes correlate to stratigraphic features and with the moisture log data. Potassium-40 activities typically ranged between 5 and 21 pCi/g; however, a maximum of 34 pCi/g was detected at a

depth of 237 ft. Uranium-238 and thorium-232 activities ranged between 0.5 to 1.8 pCi/g and 0.3 to 1.5 pCi/g, respectively. Background values of potassium-40, uranium-238, and thorium 232 are 16.1, 1.1 and 1.32 pCi/g, respectively (DOE/RL 1996).

Volumetric moisture content ranged between 2 and 15% throughout the logged interval. The maximum value was measured at a depth of 134 ft and correlates to the top of a carbonate-rich zone (caliche). The most obvious features on the moisture plot are the fluctuating values between depths of 90 and 130 ft. These depths correlate to a zone of sand with 1 to 2 in. thick beds of silt to slightly silty sand. Peaks of high moisture are indicative of the finer grained material within the sand.

3.2.5 Quality Control Samples

Quality control samples were collected to evaluate the cross-contamination and laboratory performance. One trip blank and equipment rinsate blank was collected during the field activities.

The trip blank was analyzed only for volatile organics for which no contaminants were detected. The equipment blank was analyzed for volatile and semivolatile organic compounds, anions (except cyanide), metals (excluding hexavalent chromium and mercury), pH, gross alpha and gross beta. One semivolatile compound, di-n-butylphthalate, was detected at an estimated concentration of $1 \mu g/L$. Barium and zinc were also in the equipment blank at concentrations of $1.1 \mu g/L$. No other contaminants were detected.

Comparison of the analytical results for the sample and the field duplicate were acceptable (relative percent difference values within 35%) for most chemical and radiological constituents.

4.0 **References**

Airhart, S. P., J. V. Borghese, and S. Dudziak. 1990. *Interim-Status Ground-Water Monitoring Plan for the 216-S-10 Pond and Ditch*. WHC-SD-EN-AP-018, Westinghouse Hanford Company, Richland, Washington.

DOE/RL. 1995. *Hanford Site Background: Part 1, Soil Background for Inorganics*. DOE/RL-92-24, Rev. 3, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE/RL. 1996. *Hanford Site Background: Part 2, Soil Background for Radionuclides*. DOE/RL-96-12, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

DOE/RL. 1999. 200-CS-1 Operable Unit RI/FS Work Plan and RCRA TSD Unit Sampling Plan. DOE/RL-99-44, Draft B, U.S. Department of Energy, Richland, Washington.

Ecology - Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy. 1996. *Hanford Federal Facility Agreement and Consent Order*. Document No. 89-10, Rev. 4 (The Tri-Party Agreement), Ecology, Olympia, Washington.

RCRA - Resource Conservation and Recovery Act. 1976. Public Law 94-580, as amended, 90 Stat. 2795, 42 USC 6901 et seq.

WAC 173-160, Washington Administrative Code. *Minimum Standards for Construction and Maintenance of Wells*. Olympia, Washington.

WAC 173-303, Washington Administrative Code. *Dangerous Waste Regulations*. Olympia, Washington.

Appendix A

Well Construction and Completion Documentation

Vell ID:	B8817		Well Name	e: 2	99-W26-13	
Location:	216-5-10 Poul		Project:	200-0	S-1/RCRA	
Prepared By:	T.A. Lee	Date: 14 Dec9	P Reviewed	ву: DC	Weekes	Date: 12/29/9
Signature:	Junos Az		Signature	, DCa	yeepes_	/ / /
	CONSTRUCTION DAT	A	Denth in	-	GEOLOGIC/HYDRO	
1999 - A.	Description	Diagram	Feet	Graphic Log	Litholog	ic Description
	•		-0 Ja		0.0'- 7.5' Sligh	tly Silly SAN
55 304	Riser Pipe, 42"0D.		X -	0.0.00	7.5'- 12.0' Grav	elly SAND
4" ID	from +2.9 to 202.2 ft		- 1		12.0'-22.0' 5;11	-y SAND
bas.	······································		31 -		22.0'- 36.5'	SAND
Emporary cas	sings : 11 4 carbonstel 0-36.3		11 -		36.5'- 47.0' Si	Ity SAND
8%	" carbon steel 0-240.0"		50-		47.0'- 51.0' Gra	velly Sandy S
Portland	ement from o'to 10-		-	<u> </u>	51.0' - 110.0' Sil	Hy SAND
Ben tou: to	complex from 103					· · ·
To 185	2 ft bac		_			
/	<u></u>		100-			
					1100-1340 50	may SILT
Be to at to	hole alua from 1857					1
to 190.	7 ft has	TI KA IPE			134.0-139.0 0	ALICHE ZON
	<u> </u>	7 1 1 1 1 1 1		1.1.1.1		
20-40 (Charle Silie Soul		150	0.0 0.0	139.0 - 234.0	Silty Sandy GR
<u> </u>	19 + 237.9 ft has			8.0.0	148 . 234. 0' 5	and, GRAVE
	<u>[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]</u>			3000		
	CO. 1 / Lac 13 Da. 99 6800			0.000		••••••••••••••••••••••••••••••••••••••
W.L 0	U 033, 13 VECT, COLO			0,80		· · · · · · · · · · · · · · · · · · ·
45 2-11 S.	4=" -> 4"TD 0 >10"		V .	0200	Water level =	=70005 /12/13/
1 + F.	2-22 + 2372 ft has					
7101, 110M	10112 10 CT. 1 11 195.			0.00	,	· · · · · · · · · · · · · · · · · · ·
2.6 60	10 the talls			00.00	734 2770	SAND
Fr. 22	1 0 + 237 8 ft 1 -			00000	737 0' - 2+07.	Sandy GRAV
LION CO	11. p 10 201.0 11 095.		250-		T.D. = 240	7' bax
All Jack	he i ft belau an		250-			<u> </u>
pil depl	n I row grow	억			•	
TAIL	a Cacillación a la D					······································
lenporar	y casingstemoved.					

						10	1	/
	WELL CONS	RUCTIO	N SU	MMA	REPORT	Finish Date: 12	/21/99	
						Page 1	of	
Specificat	ion No.: V 0002	Rev. No.: O			Well Name: 299- N26 - 13	Temp. Well No .:	B8817	
ECNs:	NA				Approximate Location: 216 -	5- 10 Par	a	
Project:	RCRA Resource	Autection (Well		Other Companies: CHI			
Drilling Co	ompany: RSI				Geologist(s): B. Raid		·····	
Driller:	Mac	· · · · · · · · ·			T. Lee			
	TEMPORARY CAS	ING AND DRILL DE	РТН 🔌	1.255	DRILLING MET	HOD/HOLE DIAMETE	R (1997)	1000
*Size	/Grade/Lbs. Per Ft.	Interval	Shoe O	.D./I.D.	Auger	Diameter From	to	202200-2620
1.34	" Carbon Steel	0' - 36-3'	1134"	/11 **	Cable Tool:	Diameter From 2	2' to	52'
27/0"	Carbon Steed	0' - 240.0'	23/00	120	Air Rotary:	Diameter From 5	* to	90.7'
	0.0		0/6	/ 8	A R w/Sonic	Diameter From	to	
					Caller for	Diameter From ?	7' 10	152'
					As P.L.	Diameter From 15	<u>, 10</u>	170
*Indicate	Welded (M) - Elush Jou	t (E.I) Coupled (C)	& Thraad	Design	All L	Diameter From 15	- 10	211
molcale	The could be and the could be a could be could be a could be could be a could be a could be a could		a mead	Design	Lable Tool	Diameter From	10	\$40.7
			03/1					
Total Drill	led Depth: 2 40.7	Hole Dia @ TD:	8 /8		Total Amt, Of Water Added Durin	g Drilling: -		
VVell Stra	ightness Test Results:	<u> </u>	en a contra	स्टर्म्स् महत्वा हेस्ट्रियम्	Static Water Level: 200.05	Date: 12 - 13	-99	in the second second
			GEC	PHYSIC				
	Sondes (type)	Interval	Da	ate	Sondes (type)	Interval	Dat	te
game	1/nuetron moisture	36.3 - 240.7	12-10	-99		<u> </u>		
	<u> </u>					- <u></u> -		
antikan seria da kerika	Construction and the address of the second	-		nandonas analogo as da ma	and the second secon	• <u> </u>		and the second last
12,000		*1.233.000	(1.3°) (OMPLET	ED WELL	<u> </u>	199 S.S.	12.1
s	Size/Wt./Material	Depth	Thread	Slot Size	Туре	Interval Annual Seal/Filter Pack	Volume	Mesh Size
6"ID	Tailpipe 53554 "	237.8 - 237.3	F480	NA	Colorado Silica Saul	190.7 . 237.3	20 5Ks	20-4.
6"20	Screen 55 304	202.2 - 237.3	F980-	0.010	Bentonite Crumbles	10.3 - 185.2		
6"ID	Riser 55 304	+2.9 - 202.2	F480	NA	Bentonte hole plug	185.2 - 190.7	Z sks.	
· .					Portland cement	<u> </u>		
	•					•		
factor.			E-LE	THER A	CTIVITIES		. Second Line	18:19).
Aquifer T	est: Final Well L	Development	Date: 12	16-120/99	Well Abandoned:	Yes: No:	Date:	
Descripti	on: Well Nov	eloped by a	vmoin	19.	Description:			
Fina	(rate was 11.	ppm with ~	12.4	f.				
drau	Jown.			·				
12051	Contraction of		Ň	ELL SUR	VEY DATA		ek kurek	
Date:				en por la _{la} change (plan	Protective Casing Elevation:	and a star of the		ent apprending solaris.
Washing	ton State Plane Coordina	tes:			Brass Cap Elevation:			
739182	S(19月4日日本(1947)			MMENT	S/REMARKS	A State Back	an a	
- JOH KUZATITAK			internet in the second second	Contraction of the log			20.30 9 00 90 90 90 90 90 90 90 90 90 90 90 90 9	al Carlotta
<u> </u>	· ·							i
 			÷		<u>ι , η ,</u>	· · · · · · · · · · · · · · · · · · ·		
Reported	By: T.A.le	e			Reviewed By: J Juri Ism			
Title:			Date: n	- 13-99	Title: Sr Eminur	· · ·	Date: /8	fn 0
Signatur	e: U Sume	1 Am			Signature: (MMule			

			В	DREHOLE LOG	6		Page <u>1</u> of <u>9</u> Date: 18 NOV 1999
Well ID:	B 8817		Well N	ame: 299-626-13	3	Location: 216-5-10	Pond
Project:	200	.cs-1/	RCRA			Reference Measuring Point	Ground surface
	Sai	mple		Samp	ple Desci	iption	Comments:
Depth <u>(Ft.)</u>	Type No.	Blows Recovery	Graphic Log	Group Name, Grain Size D Moisture Content, Sorting, Size,	Distributio Angulari Reaction	n, Soil Classification, Color, y, Mineralogy, Max Particle to HCl	Depth of Casing, Drilling Method, Method of Driving Sampling Tool, Sampler Size, Water Level
0			000	0.0 - 1.5' FILL ;	Impor	led angular	Cable tool . Using
-				gravel mixed inf	6 san	d for drilling	drive barrel inside
_	· ·			pad. Max. size	4"	j	11314 CS temp rasing
				1.5'-7.5 ft SAND	TLY SILT ; (m5). fine to med,	0
_				very slight moist,	appro	ximately 95%	
10 ⁵				sand, 10% fines ((sil+);	no cohesiveness.	
_				well sorted out an	g. gra	yish brn 10YR 5/2	
. –				7.5 - 12 (95) Gravelly 5	Sand;	fine to coarse	
_				wltrace very fine	pebbl	es: 75% basaltic	
_				sand which is f-m	red an	d 25% gtzand	
10				felsic frags. which	are m	ed-crse, dry, trace	
• _				subang-subrd., dar	Kgra	4 2.5Y N4	
				12-19 ff Stightly	5:14 5	and (m) S; Fine -	
· _		· · · ·		to med a and well :	sorted	95% sand,	
-				5% silt (fines, no	on whe	aive), subang to	
15 —				subrounded, sl. 1	mo ist	, Max size + Cree	19 NOV 99
• _				sand, non reactive	11 0	live brn 2.58 = /4	
_				19-22 ++ SILT	Y SANI	MS Fine to	
_				med sand, well sort	ted , st	. moist w/ 10-15%	
_				fines (non cohesive)), lense	s of silt and fine	
20-				sand react, w/HCl.	subrd	- subang. Max size	
	· ·			3-4 in , rounded grav	, , 1+ k	orngray 2.54 6/2	
-				22 . 36.5 ft SAND	(6);	fine to medium	
-				sand, well sorted, sl	l. moist	, subrd - subans	
				very clean , max si	20 . 0	-se sand, slive brn	
25-				2.58 4 13			
-					· .		
				-			
-							
_							
Reported	d By: R	F Raid	1		Reviewe	By: DCWeeke	
Title: G	eoloci	st			Title:	Scolagist,	
Signatur	e: 17	Raid	R	Date: 18 10v9	Signatur	SC Monton	Date: 17 /2 /20

			D /		m.	Page <u>2</u> of <u>9</u>
				DREHULE LUG		Date: 19 Nov 1999
Well ID!	B8817		Well N	ame: 299- W26-13	Location: 216-5-10 Po	nd
Project:	200-0	<u>cs-1/1</u>	ZCIZA		Reference Measuring Point:	Ground surface
	Sar	nple		Sample Desc	cription	Comments:
Depth <u>(Ft.)</u>	Type No.	Blows Recovery	Graphic Log	Group Name, Grain Size Distributi Moisture Content, Sorting, Angula Size, Reactio	ion, Soil Classification, Color, rity, Mineralogy, Max Particle n to HCl	Depth of Casing, Drilling Method, Method of Driving Sampling Tool, Sampler Size, Water Level
30						
· ·						
· _						
-	.		0.5			
	_					
20				365-41 A SLIGHTLY S	ILTY SAND (M) S	35-37: SPT sampler
22	Split	100%		90% fine med sand sy	brd to subans well	4*
	Jupe			control non particle aire	crice and ~ 10%	
				handlacher Frank buch	silt) mad reaction	
				L Her I hat Cur	111 Jun 7.54 5/2	
				TO ILCI , SI. MOIST , OPAU		
10	Archive (Grab)			HI-HU RE CHITY COND	(~5) 75% fine-	
	_			mad cand which he	where well and al	
	-			med suito, sobra to s	al cohering and	
-				Max particle size + 14 14	27 % fine	
	-			HUL WE FIL EL THE SALE	- ASTO MADE	
45-	- Archive	·		14-41 Ft Sinit SAM	I WAY BONHALL SIL	
-				6010 Fine - Crise peppins	d inter particle size	
-	-			13-414, 20 % +- C+ 24 34	no 10 to sa conseive	
-	-	1.0		The poory source, or	Y MOD HELVERCHEN	
	- Archive (Grab)			gray 10716 6/1		1.1.2
50 -	Spli+	264 blue	\$	43-51 GRAVELLY SAN	DY SILT (gsm)	A7n ·
	- Tube	2.5 4+		1010 dry powdery, nonce	phosive silt 2010	
•		- 10070 Fec		+- crse sand, 10 0 ang	grav to tin mostly	
-	-			1-Z In. dry gray 101		
	-			51-85 ft 51. silty	sand (M) >	
55 -	- Archive			95% 4-med sand,	subangular to	· · · · · · · · · · · · · · · · · · ·
	- (Grab)			subrided very well :	sorted max particle	
· ·	-			size 1/2 inch v sl	. milist, st reaction	
	-			to He1: 10% non	cohesive times	
· · ·				olive brn 2.57 4/3	3	
Report	ed By: R	FRaid	1	Review	wed By: DCWeeke	5
Title:	6	losist		Title:	Geologist,	
Signati	ure: R7	Kaidl		Date: 22 Nov 99 Signat	ture: Melles	Date: /2/28/99

			B	OREHOLE LOG		Page P of 7
Well ID:	B88	17	Well N	ame: 299-W26-13	Location: ZIG-S-10	o Pond
Project:	200-	cs-1/1	RCRA	· · · · · · · · · · · · · · · · · · ·	Reference Measuring Po	int: Ground surface
	Sa	mple		Sample D	escription	Comments:
Depth <u>(Ft.)</u>	Type No.	Blows Recovery	Graphic Log	Group Name, Grain Size Distrib Moisture Content, Sorting, Angu Size, Reac	ution, Soil Classification, Col ularity, Mineralogy, Max Partic tion to HCl	or, Depth of Casing, Drilling Method, Method of Driving Sampling Tool, Sampler Size, Water Level
60-	Archive			Slightly Silty Sar	id (h) S	
-	(grab)			described abo	ove	
-					· · · · · · · · · · · · · · · · · · ·	
-						
-				·		
65-	Archive	-			· · · ·	
-	(glab)				· · · · · · · · · · · · · · · · · · ·	
				······································		
_						
_						
1n —	Nucl.			· · · · · · · · · · · · · · · · · · ·		
10	(Grab)					
-				······································	· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·
-						
-					· · · · · · · · · · · · · · · · · · ·	
75—	Archive				:	_
-	(6440)					
-				• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
-						
-						
80-	Archive				· · · · · ·	
	(6mb)					
	•					-
				······································		
_	•			85-92 5400 14	1 Allow Take all In	ch
05	A. 11			95% for and	except for All	···/
0	(and)			1-7" Mar 1, 111	1 at 141 14	
	Als.			- THICK SILT, OV S	anoy SIT Deas,	
. —				JUDIA to SUBANC We	il sorte , max partic	e
-				zize 14 dry st-	mod HCI reac.	
				silty intervals ar	e approx 50%	
тинк С	<u>⊳y:</u> Kt	- Kaidi		Revie	wed By: UCWeeke	<u></u>
1 me: (seoloe	15+	2	Title:	Geologist	
Signature	<u> </u>	Raiou		Date: 1944 Signa	ture: /X Upetter	Date: /2/28/99

			B	OREHOLE LOG		Page <u>4</u> of <u>9</u>
Well ID:	B8817		Well N	ame: 299.w26-13	ocation: 216-5-10	Pand
Project:	200-	-CS-1/	RCRA	7 F	Reference Measuring Point:	Ground Surface
	Sa	mple		Sample Descri	ption	Comments:
Depth (<u>Ft.)</u>	Type No.	Blows Recovery	Graphic Log	Group Name, Grain Size Distribution Moisture Content, Sorting, Angularity Size, Reaction to	, Soil Classification, Color, v, Mineralogy, Max Particle o HCl	Depth of Casing, Drilling Method, Method of Driving Sampling Tool, Sampler Size, Water Level
90 —	Archive			f-med sand 1 50%	noncohesive	
. —	(grob)			fines Grayish bra	2.51 5/2	
· .				92 ft-98 ft 51	Ity Sand ms	· · · · ·
				65% fined sand, suban	a-subrd, slmard	· · · · · · · · · · · · · · · · · · ·
-	÷			Max particle size evices	sand 35% han	Start 23 MDIL 0 0
የ፡ና —	Archine			Kohesive to al cohesive	frees el-mad	<u> </u>
-	(Grab)			HCI reaction light han	7.540 (14	
_	1			not thenon, tight pro		· · · · · · · · · · · · · · · · · · ·
_			<u> </u>	80 C. 1011		
				10++-10+ SLIGHTL	LT SILTY SAND	
·	Archive	- 01		(m) D. 90% +- ned sa.	nd, subang-sobrd	
100	split Span	100 % rec		51. mist, max particle si:	ze . V. Crse sand,	
	(chan)	17561005		10% non cohectro fine	s, al Helreac.	
-				light bra 7.548 6/3		
-				104 - 110 ft SANDY SI	ILT / SILTY SAND	
-				INTERBEDS; grodes in and	out between	
105 —	Archive			silt dominated and fine	sand dominated;	
	(grab)			bcelly more indurated whe	ere silt dominated	
-				massive. Sandy gilt is 60	0-70% silt (fines)	
-				and 30% f-sand; silty,	send is prosite	
_				in avain size distributed HCL	Lreec al moint	
10	Archive			1+. brn 7.578.6/2	a contraction of the second seco	
_	(qub)			10-124 05-1 (1) - 1 - 1 - 1 - 1	0.01 0.001	
				110-151, USandy SILI (SM).	1010-1576	
		-		<u>Si cohosive tinos indurated</u>	s sl. moist	
		F		locally of fine sand , max	particle size	
	D. J. Im	Ė		med sand mod HCI reach	ion, yellowish brn	
ю —	(arb)			1048 5/6, iron stammy	at the base	
· -	-J/		물물관			
·—						
				·		
eported	By: RF	Raidl		Reviewed E	By: DCWeekes	
itle: (٥ ٢٠ ١٥٢	ist		Title: Ge	eologist.	
	. Dr	A 0		Data 23 NOU Circuture	Minit loa	

Vell ID:	BØ	2/3	Well N	lame: 2 99	Location	<u> </u>	Date.	<u> </u>
roject	200	-05-1	IRC.	0A		616 - S.	. 10	Found
	20		<u> </u>		Reference M	easuring Point:	Gro	nd Surtace
-	Sa	mpie		Sam	ple Description			Comments:
Depth <u>(Ft.)</u>	Type No.	Blows Recovery	Graphic Log	Group Name, Grain Size Moisture Content, Sorting Size,	Distribution, Soil Classi , Angularity, Mineralogy , Reaction to HCl	fication, Color, /, Max Particle	Depth Method Sampl Siz	of Casing, Drilling , Method of Driving ling Tool, Sampler e, Water Level
20	Archive			134 ft - 139 f	+- CALICHE	ZONE.		
-	(grab)			sandy silt/c calcareous, 8	;;/ty Sank (S 80-85% fines	m/ms) 15%		
-				. v t.t sand, <s< td=""><td>1. occassional</td><td>gravel,</td><td></td><td></td></s<>	1. occassional	gravel,		
-		ĺ		strong HCL 1	exa white	10 y R 8/1		· · · · · · · · · · · · · · · · · · ·
125 —	Archive			to yellowish	brown 10 VA	2 5%	star	+ 29 Nov99
-	(grab)			gravel in creasin	y toward base	د		
· _				13961	/			
_								
_				•				
	Archive							
·>•	(. h		;	· · · · · · · · · · · · · · · · · · ·	· · · · ·			
-	1grau)		<u></u>	· · · · · · · · · · · · · · · · · · ·				··· ··· ··· ··· ··· ··· ··· ··· ··· ··
-								
-					· · · · ·			
_	dire.		· · · · · ·				Calic	he at 134'-13
35 —	(quad		· · · · · · · · · · · · · · · · · · ·			······································	eta.t	- 30 Nov 99
_	Split	100%. Kec.		· · · · · · · · · · · · · · · · · · ·			5.40	
	(cherlos)	N 175 DIOWS				· · · · · · · · · · · · · · · · · · ·		
				<u> </u>				
-				139++ 148 -	SILTY SANDY	GRAVEL	·	
-				(msG) 80% ba	saltic gravely	sbrnd-		· · · ·
40-	socher 1		0000	shang : fine - n	ed grand San	I well -		•
-	(grav)		-0:0:0	sorted: silt n	on-colosuo " m	of RXJ		
			<u>.</u> <u>.</u>	to Her. dalk	Opende Kan	INVO VI		
_	-			interest alled a	f + + ·	<u>~ 107~ 74</u>		
			÷=•=	IN IEV BEDGED CONF	es of thre from	s aned,		
				hand matrix, ver	y colosive			
45	Cull		·····	·				
-	(find		20				star	t 1 Dec 99
-					· · · · · · · · · · · · · · · · · · ·			
_		· · · ·				•		
eported	By:	TAL	<u>, , , , , , , , , , , , , , , , , , , </u>		Reviewed By: DO	loobos		
itle:	60	01.	£		Title:	veres		
lianoture	<u>.</u> K	a logic	· /	D. 3 1 00	THE Geologi	3(
gnature		moy A	u_	Date: Jo Nov 99	Signature: /X/C 6	elle		Date/2/28/99

Well ID: 28817 Well Name: 299. W26. 73 Locator: 216. 5. 10 Parl Project: 200-CS-1/RCRA Reference Measuring Point: Grand Surface Depth Tree Blows Comments: Comments: Depth Tree Blows Componence: Depth of Casing, Drilling Tool, Sample 180 No. Recovery Log Moissure Content, Saring, Angularity, Mineralogy, Max Paricle Sample Casing, Drilling Tool, Sample 180 No. Recovery Sample Casing, Drilling Tool, Sample Sample Casing, Drilling Tool, Sample 180 No. Recovery Sample Casing, Drilling Tool, Sample Sample Casing, Drilling Tool, Sample 180 No. Sample Casing, Drilling Tool, Sample Sample Casing, Drilling Tool, Sample 180 No. Sample Casing, Drilling Tool, Sample Sample Casing, Drilling Tool, Sample 180 No. Sample Casing, Drilling Tool, Sample Sample Casing, Drilling Tool, Sample 180 No. Sample Casing, Drilling Tool, Sample Sample Casing, Drilling Tool, Sample 180 No. Sample Casing, Drilling Tool, Sample Sample Casing, Drilling Tool, Sample <t< th=""><th></th><th></th><th></th><th>B</th><th>OREHOLE LO</th><th>G</th><th></th><th>Page <u>6</u> Date:</th><th>of <u>9</u></th></t<>				B	OREHOLE LO	G		Page <u>6</u> Date:	of <u>9</u>
Project 200-CS-/ RCRA Sample Sample Graphic Log Graphic Log King Point Graund Surfice Comments: Depth Type Blows Graphic Log King Point Graphic Log King Point Graphic Log King Point Graphic Log King Point Size Distribution, Soil Classification, Color, Depth Action, Method, Method Dir Size, Reaction to HCI Sampling Tool, Sampling Too	Well ID:	B88	17	Well N	lame: 299- W26-	13	Location: 216-5-	10 PA	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Project:	200	-CS-1	/ RCR	'A		Reference Measuring Point	Ground	Surface
Depth feld Type. No. Recovery No. Recovery No. Recovery No. Recovery Size, Reaction to HCI Size, Size, Size, Size, Size, Size		Sa	mple		Sam	ple Desc	ription	Cor	nments:
150 - Might Inv / Re 0	Depth (Ft.)	Type No.	Blows Recovery	Graphic Log	Group Name, Grain Size Moisture Content, Sorting Size	Distributio , Angular , Reactior	on, Soil Classification, Color, ity, Mineralogy, Max Particle n to HCl	Depth of (Method, M Sampling Size, V	Casing, Drilling ethod of Driving Tool, Sampler Vater Level
- Archive	50 —	Archite (and)			148ft -157ft.	- GRAN	HELLY SAND (45)	•	
	-	Spoon	100 1. Kec	0	80% Sand , 15 ;	1. ana	vel, Sand 90%		
155 - hiline - (gol) - (gol)	- - -	(cham/Rap)		<i>.</i> 	fine to cause	Sub trace	(felsie / Baselt), r.nd - sit ang,	<u>end</u> c begin ai	able tool ~ rotary
- (gold) - (gol	55 —	Andre		.0	To HCL lig	ht ne	llowish prova		
- Archive (gub) - Archive (gub) 	·	(marce)		. · · · <i>i</i>	loyr 54	0			
100 - Archive (April) 100 - Archive	-			00.10.	157 ft 170 ft	- 60	ANELIN CAUDEO		
Lo - Nrthill (quit) - - - - - - - - - -				00:0	Boolo Sand a	where Ze	>% annuel Sand		· · · · · · · · · · · · · · · · · · ·
- Archine	60	Notice		00	in 80% gtz	and to	% other (felsic)		
- Archive Sold and is gravel is predominately baselt, sub rnl - SJb and ; slightly - Archive (and) Sold and yellowish more 10 yr 4/4 - (and) Sold and yellowish more 10 yr 4/4 - (and) Sold and yellowish more 10 yr 4/4 - (and) Sold and the yellowish mo	-	(Jun)		000	basalt), fine	to co	ance, subrad-		
- Archive (grad) - (G	-		·	°	Sub and; gra	vel is	pre dominately		
67 - hichine (qub) 67 - hichine (qub) 68 word; have silt; vo (CXn to HCL) 69 - (qub) 69 - (qub) 60 -	-			.0.0	basalt, sub r	<u>nd - 5</u>	ib any; shightly		
end an inter of the context of th		A. line		0.0	mont; Trace 4	<u>alt; n</u>	w KXn to HCL		
	•7	(qub)		0.00	unite yellowis	n no	~ 10YK 1/4		
- Archive (grad) - (_	•		000			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
70 Archive 600 end an intar - (gub) 000 170 ft - 179 ft - SANDY GRAVEL (sG) begin Cable toe - (gub) 000 50% Samk ad 50% gravel, sand in brigin 2 Dec 9 - (gub) 000 50% Samk ad 50% gravel, sand in brigin 2 Dec 9 - (gub) 000 50% Samk ad 50% gravel, sand in brigin 2 Dec 9 - (gub) 000 gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 Gub angla, cse - Vicse; gravel in pre- - (gub) 000 From Io YR Y6, trace cobble - (gub) 000 From Io YR Y6, trace cobble 000 000 Gub angla, cse	-			0.0 0			,		
70 — Archivel (grad) 10 — (grad) 110 ft - 179 ft - SANDY GRAVEL (sG) begin Cable toe 10 — (grad) 10 — (grad) 10 — Archivel (Grad) 11 — Archivel (Grad) 12 — Archivel (Grad) 15 — Archivel (Grad) 16 — (Grad) 16 — (Grad) 17 — Archivel (Grad) 18 — Archivel (Grad) 19 — Archivel (Grad) 19 — Archivel (Grad) 10 — (Grad) 10 — (Grad) 10 — (Grad) 11 — (Grad) 12 — (Grad) 12 — (Grad) 13 — Archivel (Grad) 14 — (Grad) 15 — Archivel (Grad) 16 — (Grad) 17 — Archivel (Grad) 18 — (Grad) 19 — (Grad) 19 — (Grad) 10 — (Grad) 11 — (Grad) 11 — (Grad) 12 — (Grad) 13 — (Grad) 14 — (Grad) 14 — (Grad) 15 — (Grad) 16 — (Grad) 17 — (Grad) 18 — (Grad) 18 — (Grad) 19 — (Grad) 19 — (Grad) 19 — (Grad) 10 — (Grad) 10 — (Grad) 10 — (Grad) 10 — (Grad) 11 — (Grad) 12 — (Grad) 13 — (Grad) 14 — (Grad) 14 — (Grad) 15 — (Grad) 16 — (Grad) 17 — (Grad) 18 — (Grad) 18 — (Grad) 19 — (Grad) 19 — (Grad) 19 — (Grad) 10 — (Grad) 10 — (Grad) 10 — (Grad) 10 — (Grad) 11 — (Grad) 12 — (Grad) 13 — (Grad) 14 — (Grad) 14 — (Grad) 15 — (Grad) 16 — (Grad) 17 — (Grad) 17 — (Grad) 18 — (Grad) 18 — (Grad) 19 — (Grad) 19 — (Grad) 19 — (Grad) 19 — (Grad) 10 — (Grad) 11 — (Grad) <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>· · ·</td> <td></td> <td></td>				0.00			· · ·		
- (Gril) - (Gri	70	Ardure		0. 0.	<u> </u>			end a	in rotany
- Archive 0:00 50% Sound and 50% gravel, sand in bryin 2 Dec 90 0:0: 80% felsic and 20% other, for submit- in and angular, cse - V cse; gravel is pre- - dominitely buselt, sub romaded; trace - (grad) 0:0: Gilt; no RXN to HeL; dark gellowich 0:0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	-	(grow)		0.0.	170++ - 179++ -	- 5AM	IDY GRAVEL (SG)	begin (able tool
- Archive - Archive - (grad) eported By: T. A. Lee Reviewed By: DCWeekes - C: O: 80% tel51c and to the other, for submitted 	-			00 <u>0</u>	50% Sound and	1 50%	gravel sand n	begin	2 Dec 99
15 - Archive				0.0	80% tel616 du	<u>a 10 1</u>	other, for subme-		
- (grad)	זק	Adme		0.	domental la la co	Of AL	Se, gravel is pre-		
eported By: T. A. Lee Reviewed By: DCWeekes	_	(grad)			ilt. no RXA	76 HC	1. dask willowich		
eported By: T. A. Lee Reviewed By: DCWeekes	_			0.0	from 10YR	1/6 ta	ace cobble		· · · · · · · · · · · · · · · · · · ·
eported By: T. A. Lee Reviewed By: DCWeekes	_			8.0					<u></u>
Reviewed By: D. Weekes				0.0			······································		••••••••••••••••••••••••••••••••••••••
Title: Ded Down	eported	By:	<u>T. A. I</u>	lee	· · · · · · · · · · · · · · · · · · ·	Reviewe	d By: DCWeekes		
	itle:	ga	logist	<u> </u>	······	Title: C	Geologist,		

		•	B(ORE	HOLE LOG			Date:		
Vell ID:	888	17	Well N	lame:	299- 26 - 13	Loca	tion: 216- 5	. 10	Pond	?
roject:	200	-CS-1	/RCI	RA		Refe	rence Measuring Point	grow	al c	ma
-	Sa	mple			Sample	Descriptio	n	C	ommer	nts:
Depth <u>(Ft.)</u>	Type No.	Blows Recovery	Graphic Log	Group Moist	o Name, Grain Size Dis ure Content, Sorting, A Size, Re	tribution, So ngularity, Mi eaction to H(il Classification, Color, neralogy, Max Particle Cl	Depth o Method, Sampli Size	of Casin Method ng Tool, e, Water	g, Drilling of Driving Sampler
\$o	Hichne (and)		20:	179	ft -195 ft .	SILTY	SANDY			
-	Split Sport	100% Rec	0 0	GR	AVEL (msG)	· 40 %	gravel			
	(chan /RA	>) ~ (no blows	0.0	40	1. Sand, 20%.	s:1+ ;	gravelis			
-			0.	50	ornd baselt	(50%) au	a granitics (50%	. start	ЗD	ec 99
-		а. С	о <i>О</i>	Sau	die 60% bas	alt and	40% other	·		
35	Archive		- O.	cse	2 - VCSE, and	ular - 5.	bang: frace			
-	(que)		<i>8</i> .:	Co	bbles; weak	RXN 4	· HCL; dark			
-			- 0-	ye	lough brown	- 10YA	e t/6. DRY.			
-			0		· · · · · · · · · · · · · · · · · · ·					
			0							
90	Archiel (arch)		0, -					start	6 D	ec 99
-	-g		<u>.</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·		·			
-			8						111	
-			0			· · · · · · · · · · · · · · · · · · ·				
-	i lug				()					
95	(quab)		0,0	195	$\frac{fT}{2}$ - $\frac{2}{2}$	<u>, 7</u>	NDY GRAVEL			
_	•		0.0		7) - Sand (60	<u>s%) and</u>	Gravel (40%)			
	Split	100% Rec	0.0	Grav	el a rouded	preder	mulaly	· start	70	Nec 99
	chem/AAL	5	0.0	gra	mitics; Sand	12 gra	mutics (70%)	-		
	pung prop	Scollect	0	and	<u>atter (30%)</u>	, time	To cse	wale	<u>x 1</u>	<u>99.5 +</u>
,00 OQ	(grab)	Geve supe	- 28- 28-	506	ang-subrad.	werde	RX to HCL;	end a	:-ble	100)
-				lig!	nt grey 3 44	2 /1. 1	<u>el al 199,5 tt.</u>	start	8 De	10 - 99
			0.0	(No	1E: AT 199.9	1 + t (a)	bottom of	begin	متبه	rotan
		1	0.	<u> </u>	it spoor game	<u>4), KCI</u>	datected			
	Archine	ļ	0. 0.	<u>p/1.</u>	$\frac{1}{n}$ $\frac{501}{n}$	0 + '	above back			
25	(Jup)		0	gu	mol). [was	delerm JP	and to be			
			00	mar	and occur	ing The	ilm.I			
			0.0		· · · · · · · · · · · · · · · · · · ·				<u> </u>	
						· · · ·				•
eported	By:	TA	1.0.		Rev	viewed By:	Delilaskas			
tle:	· · ·	6 ant	Lee_	<u> </u>		e: Good	viveeres	<u> </u>		
gnature:	: 7	Small	hol		Date: 100 499 Sig	nature.	An Tila a have		4-1-1	ha lac
		Silvi	·/ # ····		W/CCI 1019		rypereck	Da	ile: /2/	28/99

			В	ORE	HOLE LO	G				Page Date:	<u>& of 7</u>
Well ID:	BES	17	Well N	lame:	299- W26.	13	Location:	216.	5.) 0	Poud
Project:	200-	cs-1/1	ECRA				Reference	Measuring	Point:	gr	and surface
	Sa	mple			Sar	nple Desc	ription			U	Comments:
Depth <u>(Ft.)</u>	Type No.	Blows Recovery	Graphic Log	Group Moistur	Name, Grain Size e Content, Sortin Siz	e Distributio g, Angular e, Reactior	on, Soil Clas ity, Mineralo n to HCI	sification, C gy, Max Pa	Color, article	Der Mett Sar	oth of Casing, Drilling Nod, Method of Driving mpling Tool, Sampler Size, Water Level
210-	prehie		0.0	20.	3ft - 2	34 A-	SANDY	6 GRAV	EL		
-	gin		0.00 0.00 0.00 0.00	(se Gran	2) Gravel vel 10, pres thar (30%) itics (80)	(50%) boumed ; 500	and Sa ely gra	ntics (mtics (lonnated	7.); 70%) 2		
215 -	Archine		0.0	Com	D.D. Weck	- AX	5 HC	<u></u>		<i>e</i>	Rainel
-	(grade)	754 00	0	Qui	t vellowing	A bio	un_ 10	4R 5/	4	di	a calit cran
	GPOON	Ja to bla	0	Ver	r wet.				-	has	mais satas
-	- y- y- fe		0.0		0			e.		0	Ŭ
220 -	Archine (grob)		0 0 0								
-	yat Hate ke	syntion)	08	•			· · ·	· · · · · · · · · · · · · · · · · · ·			
- 225 — -	Archina (quate)		0.0				· · ·				
	-		0.0								
230 -	Archine		0.00				· · · ·				
-	aplit	too /. fee	0	'						er	an rotary
	(sieve)	~ 50 blow	0				· · · · · · · · · · · · · · · · · · ·			be	gin cable tob
-	-		0.0	234	+ ft - 237 ft	- 50	md (s),			· · · · · · · · · · · · · · · · · · ·
235-	- Archae	L		pr	edomite	ly gra	intres (l.	S	tart 10 Dec99
	0			0	ther; In	- md	, Suba	$\frac{1}{2} \frac{1}{2} \frac{1}{2}$	ornd		
	_		0	- w	care axa	NO FL	- very	met;		+	<u></u>
			.8		Jos greg	<u> </u>	<u> </u>			+	······································
Reporte	ed By:	1 A 1	<u> </u>	1	· · ·	Review	ed By: ル	11/00	kod	-	
Title:	, 	3 40 1.	<u></u> 1			Title:	Geolao	it	· ~	•	
Signatu	re:	m	1 Acres		Date: & Ther, 99	Signatu		- Teche	À		Date:/2/28/99
BHI-EE-1	83 (12/97)	<u> </u>				· •		• • .			<u> </u>

	B	ORE	EHOLE LOG	5		Date:
Vell ID: Bes 17	Well N	lame:	299- w26-1	3	Location: ZIG- 5-10	Poul
Project: ZOO-CS-1	/RC	RA			Reference Measuring Point:	group Sarface
Sample			Sam	ole Desc	ription	Comments:
Depth (<u>Ft.)</u> Type Blows No. Recovery	Graphic Log	Grou Mois	p Name, Grain Size I ture Content, Sorting, Size,	Distributic Angulari Reactior	on, Soil Classification, Color, ity, Mineralogy, Max Particle i to HCl	Depth of Casing, Drilling Method, Method of Driving Sampling Tool, Sampler Size, Water Level
2 to - Archive	0.8	2	37 ft - 24	<u>0.7Ft</u>	- SANDY	TD=240.7 ft
		6	RAVEL (S	<u>G) -</u>	Sand (60%) and	
·		G	ravel (40%)	gra	vel is rounded,	
			e donnatel	<u>γ</u> γ	ramities; traca	
		<u>'a</u>	bbles; Sa	2.4	granitics (70%)	•
		a	no officer	(pas	alt = 20%) cse	
	1	5	utrag - Sub	rud.	weak RXA to	
		-1	ci: wet:	ligh	t grey SYR 7/1.	
				<u> </u>	0 0 1	
-						
	·					
-			· •			
_						
. –						
			· ·		······································	
			· · · · · · · · · · · · · · · · · · ·			
				· .		
		<u> </u>				
			·			
			<u>. ,</u>			
					· · · · · · · · · · · · · · · · · · ·	
		·				
			-		· · · · · · · · · · · · · · · · · · ·	
						-
_	1.1		·			
Reported By: T.A	, cee	· ·	·	Reviewe	ed By: DCUkekes	•
Title: , Grs (or	tur			Title:	Geologist,	
Signature:	m		Date: 8 Dec 99	Signatu	re: NC Weeker	, Date/2/28/99
3HI-EE-183 (12/97)					-	

Appendix B

Sediment Samples Physical and Chemical Properties Data

Appendix B

Sediment Samples Physical and Chemical Properties Data

This appendix includes the results of laboratory testing for chemical and physical properties of sediment samples collected during drilling of well 299-W26-13. The analytical methods and the results are discussed in Section 3.0 of this report.

	SAF B	99-078											
									Total				
Sample				Silver	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Mercury	Nickel	Lead
Interval	HEIS	Sample	CAS	7429-90-5	7440-38-2	7440-39-3	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-97-6	7440-02-0	7439-92-1
(ft bgs)	Number	Date	Units	mg/kg									
35-37	B0X099	11/19/99		0.09 U	3	97.4	0.34	0.04 U	9.4	12.6	0.02 U	10.2	4.2
(Dup)	B0X0B0	11/19/99		0.08 U	3.1	87	0.28	0.04 U	7.9	11.3	0.02 U	9.3	3.9
(Split)	B0X0X4	11/19/99		0.09 U	2.5	45.1	0.30 B	0.03 U	8.9	12.6		9.3	3.3
50-52	B0X0B1	11/22/99		0.06 U	2.4	67.2	0.2	0.03 U	12.1	12.1	0.02 U	10.6	10.3
(Dup)	B0X0B2	11/22/99		0.06 U	2.6	52.4	0.2	0.03 U	11.9	10.6	0.02	10	7.2
99.5-101.5	B0X0B3	11/23/99		0.07 U	5.3	85.1	0.35	0.04 U	15.9	13.9	0.02	14	7.3
135-137	B0X0B4	11/30/99		0.07 U	4	95.7	0.3	0.23	7	12.1		9.4	3.2
150-152	B0X0B5	12/01/99		0.07 U	3.3	82	0.45	0.28	12.5	18.9	0.02 U	12.3	4.5
180-182	B0X0B6	12/02/99		0.07 U	2.2	124	0.43	0.5	15.5	18	0.02 U	14.7	3.3
197-199	B0X0B7	12/07/99		0.07 U	2.8	70.2	0.2	0.17	39	15.4	0.02 U	25.2	5.2

Table B.1. Results of Analyses for Metals in Soil Samples from Well 299-W26-
--

	SAF B99-078						
Sample				Selenium	Vandium	Zinc	Hexavalent Chromium
Interval	HEIS	Sample	CAS	7782-49-2	7440-62-2	7440-62-2	7440-47-3
(ft bgs)	Number	Date	Units	mg/kg	mg/kg	mg/kg	mg/kg
35-37	B0X099	11/19/99		0.45 U	63.7	42.7	0.45 U
(Dup)	B0X0B0	11/19/99		0.42 U	53.9	36.5	0.43 U
(Split)	B0X0X4	11/19/99		0.78	56.8	38.3	0.10 U
50-52	B0X0B1	11/22/99		0.30 U	41.9	31.8	0.41 U
(Dup)	B0X0B2	11/22/99		0.29 U	37.4	29.5	0.41 U
99.5-101.5	B0X0B3	11/23/99		0.38 U	36.9	42.8	0.44 U
135-137	B0X0B4	11/30/99		0.85	58.6	32.2	0.44 U
150-152	B0X0B5	12/01/99		1.9	87.5	49.6	0.47 U
180-182	B0X0B6	12/02/99		2	87.1	52.5	0.42 U
197-199	B0X0B7	12/07/99		1.1	25.4	201	0.97

- -- = Not analyzed.
- U = Analyzed for but not detected. Value reported is the quantitation limit.
- B = The analyte was detected in the associated QC blank and in the sample.
- SAF = Sample Authorization Form.
- CAS = Chemical Abstract Service registry number.
- Dup = Duplicate.
- Split = Duplicate sample for quality control purposes.

	SAF B99-078										
				Aroclor							
				1016	1221	1232	1242	1248	1254	1260	
Sample					11104-	11141-	53469-	12672-	11097-	11096-	
Interval (ft			CAS	674-1	28-2	16-5	21-9	29-6	69-1	82-5	
bgs)	HEIS Number	Sample Date	Units	µg/kg							
35-37	B0X099	11/19/99		49 U	99 U	49 U					
(Dup)	B0X0B0	11/19/99		36 U	72 U	36 U					
(Split)	B0X0X4	11/19/99									
50-52	B0X0B1	11/22/99		34 U	68 U	34 U					
(Dup)	B0X0B2	11/22/99		34 U	69 U	34 U					
99.5-101.5	B0X0B3	11/23/99		33 U	67 U	33 U					
135-137	B0X0B4	11/30/99									
150-152	B0X0B5	12/01/99		39 U	78 U	39 U					
180-182	B0X0B6	12/02/99		35 U	71 U	35 U					
197-199	B0X0B7	12/07/99		34 U	68 U	34 U					
= Not analyzed.											
U = Analyzed for but not detected. Value reported is the quantitation limit.											
SAF = Samp	SAF = Sample Authorization Form.										
CAS = Chen	nical Abstract Ser	vice registry nu	mber.								

Table B.2. Results of Analyses for Polychlorinated Biphenyls in Soil Samples from Well 299-W26-13

CAS = Chemical A

Dup = Duplicate.

Split = Duplicate sample for quality control purposes.

Table B.3. Results of Analyses for Diesel Range Organic Components in Soil Samples from Well 299-W26-13

Sampla	SAF B	99-078		Diesel Range Organics						
Interval (ft bgs)	HEIS Number	Sample Date	CAS Units	DRO mg/kg						
35-37	B0X099	11/19/99		4.5 U						
(Dup)	B0X0B0	11/19/99		4.3 U						
(Split) B0X0X4 11/19/99										
50-52 B0X0B1 11/22/99 4.1 U										
(Dup)	(Dup) B0X0B2 11/22/99 4.1 U									
99.5-101.5	B0X0B3	11/23/99		4.4 U						
135-137	B0X0B4	11/30/99								
150-152	B0X0B5	12/01/99		4.7 U						
180-182	B0X0B6	12/02/99		4.2 U						
197-199	B0X0B7	12/07/99		4.1 U						
 = Not analyzed. U = Analyzed for but not detected. Value reported is the quantitation limit. SAF = Sample Authorization Form. CAS = Chemical Abstract Service registry number. Dup = Duplicate. Split = Duplicate sample for quality control purposes. 										

	SAFF	200 078												
Sample Interval (ft bgs)	HEIS	Sample	CAS Units	Chloride mg/kg	Fluoride mg/kg	Nitrite N02-N mg/kg	Nitrate N03-N mg/kg	Cyanide 57-12-5 mg/kg	Phosphate mg/kg	Sulfate 14808-79-8 mg/kg	Nitrate- Nitrite N02+N03- N mg/kg	Ammonia as Nitrogen NH3-N mg/kg	Sulfide mg/kg	pH -
35-37	B0X099	11/19/99		1.4 U	2.8 U	1.4 U	5.4	0.56 U	1.5	3.4	1.1	1.4 U	4.3	8.7
(Dup)	B0X0B0	11/19/99		2.3	2.7 U	1.4 U	4	0.54 U	1.4 U	3	0.73	1.3 U	4.1	8.7
(Split)	B0X0X4	11/19/99		2.0 U	1.0 U	0.2 U	0.98		5.0 U	5.73	0.5 U			8.88
50-52	B0X0B1	11/22/99		1.9	2.6 U	1.3 U	1.5	0.51 U	1.3 U	7.5	0.29	1.3 U	2.0 U	9.1
(Dup)	B0X0B2	11/22/99		2	2.6 U	1.3 U	1.3	0.52 U	1.3 U	9	0.31	1.7	2.2 U	9
99.5- 101.5	B0X0B3	11/23/99		1.7	2.8 U	1.4 U	1.4 U	0.55 U	1.4 U	2.6	0.27	1.4	4.3	8.8
135-137	B0X0B4	11/30/99		1.5	2.7 U	1.4 U	1.6		1.4 U	7.7				8.7
150-152	B0X0B5	12/01/99		1.7	2.9 U	1.5 U	2.3	0.58 U	1.5 U	2.4	0.64	1.4	4.3	8.5
180-182	B0X0B6	12/02/99		2	2.7 U	1.3 U	1.3 U	0.53 U	2.6	12.4	0.22 U	1.3 U	8.3	8.1
197-199	B0X0B7	12/07/99		2.5	2.6 U	1.3 U	1.3 U	0.51 U	1.4	8.2	0.22 U	1.3 U	4	8.6
= Not a U = Anal SAF = Sa CAS = C	 = Not analyzed. U = Analyzed for but not detected. Value reported is the quantitation limit. SAF = Sample Authorization Form. CAS = Chemical Abstract Service registry number. 													

Table B.4. Results of Analyses for Anions in Soil Samples from Well 299-W26-	-1.	.3
--	-----	----

Split = Duplicate sample for quality control purposes.

Sample	SAF	B99-078		Bis
Interval (ft bgs)	HEIS Number	Sample Date	CAS Units	(2-ethylhexyl) phthalate
35-37	B0X099	11/19/99		370 U
(Dup)	B0X0B0	11/19/99		370 U
(Split)	B0X0X4	11/19/99		
50-52	B0X0B1	11/22/99		24 J
(Dup)	B0X0B2	11/22/99		27 J
99.5-101.5	B0X0B3	11/23/99		370 U
135-137	B0X0B4	11/30/99		
150-152	B0X0B5	12/01/99		570 U
180-182	B0X0B6	12/02/99		260 J
197-199	B0X0B7	12/07/99		230 JB
= Not analyz	zed.	-		

 Table B.5. Results of Analyses for Semi-Volatile Organic Compounds in Soil

 Samples from Well 299-W26-13

J = Value reported is an estimate.

B = The analyte was detected in the associated QC blank and in the sample. U = Analyzed for but not detected. Value reported is the quantitation limit.

SAF = Sample Authorization Form.

CAS = Chemical Abstract Service registry number.

Dup = Duplicate.

Split = Duplicate sample for quality control purposes.

Table B.6. Results of Analyses for Volatile Organic Compounds in SoilSamples from Well 299-W26-13

	SAF B	99-078				
Sample Interval (ft bgs)	HEIS Number	Sample Date	CAS Units	Acetone 67-64-1 µg/kg	2-Butanone 78-93-3 μg/kg	Methylene Chloride 75- 09-2 µg/kg
35-37	B0X099	11/19/99		11 U	11 U	8 B
(Dup)	B0X0B0	11/19/99		6 J	11 U	10 B
(Split)	B0X0X4	11/19/99				
50-52	B0X0B1	11/22/99		30	10 U	6 B
(Dup)	B0X0B2	11/22/99		22	11 U	7 B
99.5-101.5	B0X0B3	11/23/99		33	12	19 B
135-137	B0X0B4	11/30/99				
150-152	B0X0B5	12/01/99		22 B	12 U	15 B
180-182	B0X0B6	12/02/99		6 JB	11 U	4 JB
197-199	B0X0B7	12/07/99		5 J	11 U	20 B

-- = Not analyzed.

J = Value reported is an estimate.

B = The analyte was detected in the associated QC blank and in the sample.

U = Analyzed for but not detected. Value reported is the quantitation limit.

SAF = Sample Authorization Form.

CAS = Chemical Abstract Service registry number.

Dup = Duplicate.

Split = Duplicate sample for quality control purposes.

	SAF B	00-006														
a l				T :4:		N	Total		Plutonium 239/240		Americium	Total	Thorium	Thorium	Thorium	1
Sample	HEIG	61-	CAR	10028 17 8	Technetium	Neptumun	n Uramum $7440.61.1$	Plutonium	PU-	Nickel 63	241	Strontium	228	230	232 TH 222	
(ft hos)	пеі5 Number	Date	Units	nCi/g	9914133-70-7	20-2 nCi/c	- /440-01-1 π μα/σ	250 15901- 16-3 nCi/g	239/240 nCi/g	13901-37-0 nCi/g	14390-10-2 nCi/g	nCi/g	142/4-02-3	nCi/g	nCi/g	'
35-37	B0X099	11/19/99	Omto	pers			0.460 I	0.033 U	0.014 U	peng	0.004 U	-0.057 II	0.87	peng	0.536	=
(Dun)	BOXOBO	11/10/00					2 14	0.035 U	0.009 U		0.004 0	-0.052 U	0.637		0.829	_
(Dup) (Split)	B0X0X4	11/10/00					0.614 I	0.0000	0.007 0		0.023 0	-0.052 U	0.037		0.027	_
(Spiit) 50_52	B0X0R1	11/22/00		0.064.U	-0.062 U	0.030 U	1.9/	0.00220	0.015 U	0.758 U	0.0074 0	-0.015 U	0.475 I	1.06	0.387 I	_
(Dun)	B0X0B1	11/22/99		0.004 U	-0.002 U	0.028 U	0.804 I	0.020 0	0.015 U	2 46 I	0.020 U	-0.013 0	0.473 J	0.432	0.367 J	_
(Dup) 99.5-	B0X0B2	11/22/99		0.040 U	-0.132 U	0.023 U	0.004 J	0.005 U	0.010 C	2.40 J	0.029 U	-0.065 U	0.504 J	0.432	0.534 I	_
101.5	Donobs	11/25/99		0.050 0	0.152 0	0.015 0	0.7723	0.005 0	0.1175	2.110	0.020 0	0.005 0	0.000 5	0.0123	0.5515	
135-137	B0X0B4	11/30/99					0.806 J	-0.006 U	0.006 U		0.019 U	-0.068 U	0.623		0.606	
150-152	B0X0B5	12/01/99		-0.046 U	0.118 U	0.004 U	0.589 J	-0.014 U	0.021 U	1.4 U	0.024 U	-0.027 U	0.484 J	0.436 J	0.390 J	
180-182	B0X0B6	12/02/99		-0.001 U	0.114 U	0.008 U	0.782 J	0.004 U	0.012 U	-0.088 U	0.007 U	-0.023 U	0.484 J	0.738 J	0.387 J	
197-199	B0X0B7	12/07/99		0.012 U	-0.049 U	-0.016 U	0.377 J	-0.007 U	0.007 U	1.41 U	0.033 U	-0.133 U	0.516 J	0.243 J	0.531 J	
J				I <u> </u>		-										
	SAF B	99-078														
												Uranium	Uranium		Gross	Gross
Sample				Potassium	Cobalt 60	Continue 127	Furanium	T •	Function	T 11	Radium	233/234	225	T T •		Data
Sampie					Cobuit 00	Cesium 157	Europium	Europium	Europium	Radium	Itaulum	255/254	235	Uranium	Alpha	Бега
Interval	HEIS	Sample	CAS	40 13966-	10198-40-	10045-97-3	152 14683-	Europium 154 15585-	155 14391-	Radium 226 13982-	228 15262-	U-233/234	235 15117-96-	Uranium 238 U-238	Alpha 12587-46-1	12587-4
Interval (ft bgs)	HEIS Number	Sample Date	CAS Units	40 13966- 00-2 pCi/g	10198-40- 0 pCi/g	10045-97-3 pCi/g	152 14683- 23-9 pCi/g	Europium 154 15585- 10-1 pCi/g	155 14391- 16-3 pCi/g	Radium 226 13982- 63-3 pCi/g	228 15262- 20-1 pCi/g	U-233/234 pCi/g	235 15117-96- 1 pCi/g	Uranium 238 U-238 pCi/g	Alpha 12587-46-1 pCi/g	12587-4 2 pCi/
Interval (ft bgs) 35-37	HEIS Number B0X099	Sample Date 11/19/99	CAS Units	40 13966- 00-2 pCi/g 13.7	10198-40- 0 pCi/g 0.12 U	10045-97-3 pCi/g 0.084 U	152 14683- 23-9 pCi/g 0.18 U	Europium 154 15585- 10-1 pCi/g 0.29 U	Luropium 155 14391- 16-3 pCi/g 0.11 U	Radium 226 13982- 63-3 pCi/g 0.589	228 15262- 20-1 pCi/g 0.536	U-233/234 pCi/g	15117-96- 1 pCi/g 0.19 U	Uranium 238 U-238 pCi/g 11 U	Alpha 12587-46-1 pCi/g 3.93 J	12587-4 2 pCi/ 12.8 J
Interval (ft bgs) 35-37 (Dup)	HEIS Number B0X099 B0X0B0	Sample Date 11/19/99 11/19/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4	Openation 10198-40- 0 pCi/g 0.12 U 0.071 U	Description Description 10045-97-3 pCi/g 0.084 U 0.062 U	Europhun 152 14683- 23-9 pCi/g 0.18 U 0.16 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U	155 14391- 16-3 pCi/g 0.11 U 0.16 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396	228 15262- 20-1 pCi/g 0.536 0.829	U-233/234 pCi/g 0.407 J	15117-96- 1 pCi/g 0.19 U 0.055 U	Uranium 238 U-238 pCi/g 11 U 0.434 J	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J	12587-4 2 pCi / 12.8 J 14.4 J
Interval (ft bgs) 35-37 (Dup) (Split)	HEIS Number B0X099 B0X0B0 B0X0X4	Sample Date 11/19/99 11/19/99 11/19/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 	IO198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U	Diodescription 10045-97-3 pCi/g 0.084 U 0.062 U 0.0326 U	Europhini 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U	155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 	228 15262- 20-1 pCi/g 0.536 0.829 0.834	U-233/234 pCi/g 0.407 J	15117-96- 1 pCi/g 0.19 U 0.055 U	Uranium 238 U-238 pCi/g 11 U 0.434 J 	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6	12587-4 2 pCi/ 12.8 J 14.4 J 22.1
Interval (ft bgs) 35-37 (Dup) (Split) 50-52	HEIS Number B0X099 B0X080 B0X080 B0X081	Sample Date 11/19/99 11/19/99 11/19/99 11/22/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9	10198-40- g 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U	Ioods-97-3 pCi/g 0.084 U 0.062 U 0.0326 U 0.047 U	Europhini 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U	Europhini 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566	U-233/234 pCi/g 0.407 J 0.452 J	15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J	Uranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J	12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup)	HEIS Number B0X099 B0X080 B0X080 B0X081 B0X082	Sample Date 11/19/99 11/19/99 11/19/99 11/22/99 11/22/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5	10198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U	Occurrent Ocurrent Ocurrent	Lite Difference 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U	Europhini 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492	U-233/234 pCi/g 0.407 J 0.452 J 	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U	Uranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J	12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup) 99.5- 101.5	HEIS Number B0X099 B0X080 B0X081 B0X082 B0X082	Sample Date 11/19/99 11/19/99 11/19/99 11/22/99 11/22/99 11/23/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5 13.1	10198-40- () 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U 0.030 U	Cestinin 137 10045-97-3 pCi/g 0.084 U 0.062 U 0.0326 U 0.047 U 0.043 U 0.029 U	Europhilin 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U	Europium 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907	U-233/234 pCi/g 0.407 J 0.452 J 	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U	Uranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J	beta 12587-4 2 pCi / 12.8 J 14.4 J 22.1 19.8 21.9 16.8
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup) 99.5- 101.5 135-137	HEIS Number B0X099 B0X080 B0X081 B0X082 B0X083	Sample Date 11/19/99 11/19/99 11/19/99 11/22/99 11/22/99 11/23/99 11/23/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5 13.1 9 14	10198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U 0.030 U	Cestinin 137 10045-97-3 pCi/g 0.084 U 0.062 U 0.0326 U 0.047 U 0.043 U 0.029 U	Europhilin 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U	Europuin 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907	U-233/234 pCi/g 0.407 J 0.452 J 	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.256 U	Oranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J	Beta 12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup) 99.5- 101.5 135-137 150.152	HEIS Number B0X099 B0X080 B0X084 B0X081 B0X083 B0X084 B0X084	Sample Date 11/19/99 11/19/99 11/19/99 11/22/99 11/22/99 11/23/99 11/30/99 12/01/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5 13.1 9.14 10.7	10198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U 0.030 U 0.092 U 0.014 U	October October <t< td=""><td>Europhilin 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U 0.20 U 0.29 U</td><td>Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U</td><td>Europium 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U</td><td>Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311</td><td>228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667</td><td>U-233/234 pCi/g 0.407 J 0.452 J </td><td>233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.26 U 0.36 U</td><td>Oranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U</td><td>Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J</td><td>Beta 12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E</td></t<>	Europhilin 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U 0.20 U 0.29 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U	Europium 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667	U-233/234 pCi/g 0.407 J 0.452 J 	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.26 U 0.36 U	Oranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J	Beta 12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup) 99.5- 101.5 135-137 150-152 180.182	HEIS Number B0X099 B0X080 B0X081 B0X081 B0X083 B0X084 B0X085 B0X085	Sample Date 11/19/99 11/19/99 11/19/99 11/22/99 11/22/99 11/23/99 11/23/99 11/30/99 12/01/99 12/01/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5 13.1 9.14 10.7 8.51	10198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U 0.030 U 0.092 U 0.014 U	October October <t< td=""><td>Europhilin 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U 0.20 U 0.29 U 0.41 U</td><td>Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U 0.91 U</td><td>Europuin 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U 0.30 U</td><td>Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311 0.515</td><td>228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667 1.2 U</td><td>U-233/234 pCi/g 0.407 J 0.452 J </td><td>233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.26 U 0.36 U 0.49 U</td><td>Uranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U 27 U</td><td>Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J 9.03 L</td><td>Beta 12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E 8.18</td></t<>	Europhilin 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U 0.20 U 0.29 U 0.41 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U 0.91 U	Europuin 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U 0.30 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311 0.515	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667 1.2 U	U-233/234 pCi/g 0.407 J 0.452 J 	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.26 U 0.36 U 0.49 U	Uranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U 27 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J 9.03 L	Beta 12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E 8.18
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup) 99.5- 101.5 135-137 150-152 180-182 197,199	HEIS Number B0X099 B0X080 B0X081 B0X081 B0X083 B0X084 B0X085 B0X086 B0X086	Sample Date 11/19/99 11/19/99 11/22/99 11/22/99 11/23/99 11/23/99 12/01/99 12/02/99 12/07/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5 13.1 9.14 10.7 8.51 13.9	10198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U 0.030 U 0.092 U 0.014 U 0.29 U	Cestimin 137 10045-97-3 pCi/g 0.084 U 0.062 U 0.0326 U 0.047 U 0.043 U 0.029 U 0.075 U 0.12 U 0.028 U	Europhilin 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.11 U 0.070 U 0.20 U 0.29 U 0.41 U 0.21 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U 0.91 U 0.39 U	Europium 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U 0.30 U 0.13 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311 0.515 0.344	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667 1.2 U 0.523	U-233/234 pCi/g 0.407 J 0.452 J 	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.26 U 0.36 U 0.49 U 0.21 U	Oranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U 27 U 14 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J 9.03 J 6.58 J	beta 12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E 8.18 J 33 L E
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup) 99.5- 101.5 135-137 150-152 180-182 197-199	HEIS Number B0X099 B0X080 B0X080 B0X081 B0X082 B0X083 B0X084 B0X085 B0X086 B0X086	Sample Date 11/19/99 11/19/99 11/22/99 11/22/99 11/23/99 11/23/99 12/01/99 12/01/99 12/02/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5 13.1 9.14 10.7 8.51 13.9	IO198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U 0.030 U 0.092 U 0.014 U 0.29 U	October October <t< td=""><td>Europhanis 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U 0.20 U 0.29 U 0.41 U 0.21 U</td><td>Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U 0.91 U 0.39 U</td><td>Europhim 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U 0.30 U 0.13 U</td><td>Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311 0.515 0.344</td><td>228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667 1.2 U 0.523</td><td>U-233/234 pCi/g 0.407 J 0.452 J </td><td>233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.26 U 0.36 U 0.49 U 0.21 U</td><td>Uranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U 27 U 14 U</td><td>Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J 9.03 J 6.58 J</td><td>12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E 8.18 J 33.1 E</td></t<>	Europhanis 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U 0.20 U 0.29 U 0.41 U 0.21 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U 0.91 U 0.39 U	Europhim 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U 0.30 U 0.13 U	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311 0.515 0.344	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667 1.2 U 0.523	U-233/234 pCi/g 0.407 J 0.452 J 	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.10 U 0.26 U 0.36 U 0.49 U 0.21 U	Uranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U 27 U 14 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J 9.03 J 6.58 J	12587-4 2 pCi / 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E 8.18 J 33.1 E
Interval (ft bgs) 35-37 (Dup) (Split) 50-52 (Dup) 99.5- 101.5 135-137 150-152 180-182 197-199 = Noi U	HEIS Number B0X099 B0X080 B0X080 B0X081 B0X082 B0X083 B0X084 B0X085 B0X086 B0X086 B0X087	Sample Date 11/19/99 11/19/99 11/22/99 11/22/99 11/23/99 11/23/99 12/01/99 12/02/99 12/07/99	CAS Units	40 13966- 00-2 pCi/g 13.7 12.4 12.9 12.5 13.1 9.14 10.7 8.51 13.9	10198-40- 0 pCi/g 0.12 U 0.071 U 0.0155 U 0.059 U 0.048 U 0.030 U 0.092 U 0.014 U 0.29 U	Cestinin 137 10045-97-3 pCi/g 0.084 U 0.062 U 0.0326 U 0.047 U 0.043 U 0.029 U 0.075 U 0.12 U 0.098 U	Europhanis 152 14683- 23-9 pCi/g 0.18 U 0.16 U 0.023 U 0.12 U 0.11 U 0.070 U 0.20 U 0.29 U 0.41 U 0.21 U	Europium 154 15585- 10-1 pCi/g 0.29 U 0.24 U 0.0839 U 0.17 U 0.15 U 0.10 U 0.26 U 0.34 U 0.91 U 0.39 U	Europium 155 14391- 16-3 pCi/g 0.11 U 0.16 U 0.0376 U 0.12 U 0.089 U 0.067 U 0.19 U 0.28 U 0.30 U 0.30 U 0.13 U SAF = Sar	Radium 226 13982- 63-3 pCi/g 0.589 0.396 0.428 0.362 0.564 0.533 0.311 0.515 0.344 mple Author	228 15262- 20-1 pCi/g 0.536 0.829 0.834 0.566 0.492 0.907 0.606 0.667 1.2 U 0.523 ization Form	U-233/234 pCi/g 0.407 J 0.452 J -	233 15117-96- 1 pCi/g 0.19 U 0.055 U 0.022 J 0.15 U 0.15 U 0.10 U 0.26 U 0.36 U 0.49 U 0.21 U	Oranium 238 U-238 pCi/g 11 U 0.434 J 0.381 J 5.4 U 3.8 U 8.7 U 15 U 27 U 14 U	Alpha 12587-46-1 pCi/g 3.93 J 7.2 J 10.6 5.61 J 7.62 J 9.15 J 10.7 3.02 J 9.03 J 6.58 J	12587-4 2 pCi/ 12.8 J 14.4 J 22.1 19.8 21.9 16.8 40.3 24.0 E 8.18 J 33.1 E

Table B.7.	Results of	Analyses	for R	Radionuclic	les in	Soil	Samples	from	Well	299-	W26-	·13

in the sample. The value reported as the result. B = The analyte was detected in the associated QC blank and in the sample. J = Concentration is estimated.

Dup = Duplicate.

Split = Duplicate sample for quality control purposes.

Sample	Interval				Calculated		
Top (ft bgs)	Bottom (ft bgs)	HIES umber	Field pH	Moisture Content (wt. %) ^(a)	Volumetric Moisture (vol. %)	Calculated Dry Bulk Density (g/cm ³)	Particle Size Analysis
35	37	B0X0C0	8.61	6.5	9.64	1.48	Yes
135	137	B0X0C1	8.80	11.6	24.1	2.07	Yes
197	199	B0X0C2	8.85	2.5	4.9	1.96	Yes
(a) Wat HEIS = I	er content i Hanford En	reported on a vironmental	gravimetric b Information S	asis: (mass of ystem	water/mass of c	lry soil x 100).	·

Table B.8. Soil Physical Properties for Three Samples from Well 299-W26-13

Figure B.1. Particle Size Distribution for the 35 to 37 ft Interval in Well 299-W26-13

Figure B.2. Particle Size Distribution for Interval 135 to 137 ft in Well 299-W26-13

Figure B.3. Particle Size Distribution for the 197 to 199 ft Interval in Well 299-W26-13

	· · ·	CI	12M Hill Hanf	ord, Inc.		······ · · · · · · · · · · · · · · · ·	
			SIEVE ANAL	YSIS			
					<u></u>		
WELL NAME	299-W26-13	DEPTH	199.5'-200.5'	SAMPLE#	B8817-1	WELL ID#	B8817
TESTED BY	JMF mt	CONTACT	Dave Weekes	PHONE	372-9582	DATE	12/28/1999
	00				· · · · · · · · · · · · · · · · · · ·		
SAMPLE	SIEVE	CUMULATIVE	% WEIGHT	%	Grain Size	COMMEN	TS
WT (g)	SIZE IN.	WEIGHT(g)	RETAINED	PASSING	(mm)		
703.50	2"	0.0	0.0	100.0	50.00	•	
	1.5"	94.5	13.4	86.6	38.10		
	3/4"	161.4	22.9	77.1	19.00		
	3/8"	236.9	33.7	66.3	9.50	[
	#4	310.9	44.2	55.8	4.75		
	#10	371.6	52.8	47.2	2.00	· · · · · · · · · · · · · · · · · · ·	
	#20	418.0	59.4	40.6	0.85		
	#40	449.0	63.8	36.2	0.43		
	#60	509.8	72.5	27.5	0.25	· ·	
	#100	556.5	79.1	20.9	0.150	[
	#200	595.4	84.6	15.4	0.075		

Checked By: / XC	Upeker	Date: /z/z	9/9	79
. /		7		

Figure B.4. Particle Size Distribution for the 199.5 to 200.5 ft Interval in Well 299-W26-13

		CI	H2M Hill Hant	ord, Inc.	<u></u>		<u> </u>
			SIEVE ANAL	YSIS			
	200 14/26 42	DEDTU	04610471				
VELL NAME	299-0020-13		210-217	SAMPLE#	B8817-2	WELL ID#	B8817
IESTED BY	JMF ////	CONTACT	Dave Weekes	PHONE	372-9582	DATE	12/28/1999
					· ·		
SAMPLE	SIEVE	CUMULATIVE	% WEIGHT	%	Grain Size	COMMEN	TS
WT (g)	SIZE IN.	WEIGHT(g)	RETAINED	PASSING	(mm)		
956.70	2"	0.0	0.0	100.0	50.00		
	1.5"	182.2	19.0	81.0	38.10		
	3/4"	440.0	46.0	54.0	19.00		
	3/8"	587.1	61.4	38.6	9.50		
	#4	653.2	68.3	31.7	4.75	1	
	#10	710.1	74.2	25.8	2.00		
	#20	749.2	78.3	21.7	0.85		
	#40	778.2	81.3	18.7	0.43		
	#60	822.6	86.0	14.0	0.25		
	#100	858.2	89.7	10.3	0.150	[
	#200	887 9	02.8	72	0.075		

Figure B.5. Particle Size Distribution for the 216 to 217 ft Interval in Well 299-W26-13

			Ci	HZM HIII Hani	ora, inc.			
				SIEVE ANAL	YSIS			
WELLI	NAME	299-W26-13	DEPTH	231'-233'	SAMPLE#	B8817-3	WELL ID#	B881
TESTE	D BY	JMF M	CONTACT	Dave Weekes	PHONE	372-9582	DATE	12/28/1999
		00						
SAMPL	.E	SIEVE	CUMULATIVE	% WEIGHT	%	Grain Size	COMMEN	TS
WT (g)		SIZE IN.	WEIGHT(g)	RETAINED	PASSING	(mm)		
1	209.60	2"	306.1	25.3	74.7	50.00	•	
		1.5"	420.7	34.8	65.2	38.10	·	
		3/4"	701.0	58.0	42.0	19.00		
		3/8"	949.6	78.5	21.5	9.50	ļ	
		#4	1008.2	83.3	16.7	4.75	·	
		#10	1021.3	84.4	15.6	2.00	·	
		#20	1026.9	84.9	15.1	0.85		
		#40	1042.6	86.2	13.8	0.43	ļ	
		#100	1121.9	92.7	7.3	0.25		
		#100	11/4.2	97.1	2.9	0.150		
		#200	1194.0	90.0	1.2	0.075	I	
	U.S. Std			Sieve Ar	12 IVS IS Data	for Sample	B8817-3	-
cent Passing	U.S. Std 100% 90% 80% 70% 60% 50%		3/4"	Sieve Ar	Allysis Data	Image: Constraint of the second se		
Percent Passing	U.S. Std 100% 90% 80% 70% 60% 50% 40%		144		Alysis Data	Image: Constraint of the second se	B881/-3	
Percent Passing	U.S. Std 100% 90% 80% 70% 60% 50% 40% 30% 20%		3/4 ⁴		Allysis Data	Image: Constraint of the second se	B881/-3	
Percent Passing	U.S. Std 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%			Sieve Ar	Allysis Data	Image: Constraint of the second se		

Comments:	Gravel		,
All data are acc	urately and completely recorded.		· · · · · · · · · · · · · · · · · · ·
Checked By:	Scafeener	Date: 12/29/99	· · · · · · · · · · · · · · · · · · ·

Figure B.6. Particle Size Distribution for the 231 to 233 ft Interval in Well 299-W26-13

Appendix C

Borehole Geophysical Logs

Appendix C

Borehole Geophysical Logs

This appendix contains the borehole geophysical logs obtained from borehole 299-W26-13. The gamma-ray log was run and analyzed by MACTEC-ERS, Inc. The neutron-neutron moisture log was run and analyzed by Waste Management Federal Services, Inc. Included with the logs are Log Header sheets and Log Analysis Summary Reports.

Spectral Gamma-Ray Borehole Log Data Report

Borehole 299-W26-13

Borehole Information							
Farm : <u>NA</u>	Tank : <u>NA</u>	Site Number : <u>B8817</u>					
N-Coord :	W-Coord :	TOC Elevation : <u>NA</u>					
Water Level, ft : <u>200.49</u>	Date Drilled : <u>12/8/99</u>						

Type : Steel thread	Thickness, in. : <u>0.500</u>	íD, in. : <u>11</u>	
Top Depth, ft. : <u>0</u>	Bottom Depth, ft. : <u>36</u>		
Type : <u>Steel thread</u>	Thickness, in. : 0,500	ID, in. : <u>8</u>	
Top Depth, ft. : <u>O</u>	Bottom Depth, ft. : 240		
Cement Bottom, ft. 0	Cement Top_ft.: 0		

Borehole Notes:

This borehole was drilled during December 1999 to a depth of 240.7 ft. A nominal 11-in.-diameter casing was used from the ground surface to 36.3 ft, with an 8-in.-diameter casing set from the ground surface to 240.0 ft. The casing strings used in the borehole were threaded and flush-jointed. The borehole was uncased from 240.0 to 240.7 ft. Measured wall thickness for both the 11- and 8-in.-diameter casings was 0.5 in. Grout was not present between the casings, which were set flush with the ground surface. The total depth achieved with the logging system was 240.5 ft. The ground surface was used as the zero reference (0 ft) for all logging depths. The ground water level was measured at 200.49 ft.

Equipment Information

Logging System: <u>2B</u>	Detector Type :	HPGe	Detector Efficiency:	<u>35.0 %</u>
Calibration Date : <u>10/1999</u>	Calibration Reference :	GJO-HAN-26	Logging Procedure : <u>M</u>	AC-VZCP 1.7.10-1

	Logging Inform	ation
Log Run Number : <u>1</u>	Log Run Date : <u>12/09/1999</u>	Logging Engineer: <u>Bob Spatz</u>
Start Depth, ft.: 240.5	Counting Time, sec.: <u>100</u>	L/R:LShield: <u>N</u>
Finish Depth, ft. : <u>119.0</u>	MSA Interval, ft. : <u>0.5</u>	Log Speed, ft/min.: <u>n/a</u>
Log Run Number : <u>2</u>	Log Run Date : <u>12/09/1999</u>	Logging Engineer: <u>Bob Spatz</u>
Start Depth, ft.: 205.0	Counting Time, sec.: <u>100</u>	L/R:LShield:N
Finish Depth, ft. : <u>193.0</u>	MSA Interval, ft. : 0.5	Log Speed, ft/min.: <u>n/a</u>

Spectral Gamma-Ray Borehole Log Data Report

Borehole 299-W26-13

Log Run Number :	<u>3</u>	Log Run Date : <u>12/10/1999</u>	Logging Engineer: <u>Alan Pearson</u>
Start Depth, ft.: Finish Depth, ft. :	<u>125.0</u> <u>0.0</u>	Counting Time, sec.: <u>100</u> MSA Interval, ft. : <u>0.5</u>	L/R: <u>L</u> Shield: <u>N</u> Log Speed, ft/min.: n/a
Log Run Number :	<u>4</u>	Log Run Date : <u>12/10/1999</u>	Logging Engineer: <u>Alan Pearson</u>
Log Run Number : Start Depth, ft.:	<u>4</u> 46.0	Log Run Date : <u>12/10/1999</u> Counting Time, sec.: <u>100</u>	Logging Engineer: <u>Alan Pearson</u> L/R : L Shield : N

Logging Operation Notes:

This borehole was logged in four log runs. Log runs 1 and 2 were completed on December 9, 1999 inside the 8-in.-diameter casing. Log run 1 covered the interval from 240.5 to 119.0 ft. Log run 2 was a repeat section from 205.0 to 193.0 ft. Log runs 3 and 4 were completed on December 10, 1999 inside the 8- and 11-in.- diameter casings. Log run 3 covered the interval from the ground surface to 125.0 ft. Log run 4 was a repeat section from 34.0 to 46.0 ft. In addition, there is a depth overlap of log data (6 ft) where log runs 1 and 3 were both conducted (119.0 to 125.0 ft). The total logging footage, including the repeat sections, measured 270.5 ft.

Analysis Information

Analyst: <u>R. R. Spatz</u>		
Data Processing Reference :	MAC-VZCP 1.7.9	Analysis Date: 01/13/2000

Analysis Notes :

The pre-survey and post-survey field verification for each logging run met the acceptance criteria established for peak shape and system efficiency. The energy calibration and peak-shape calibration from the accepted calibration spectrum that most closely matched the field data were used to establish the peak resolution and channel-to-energy parameters used in processing the spectra acquired during the logging operation.

The thicknesses of the different-sized casings were measured on site with a micrometer and are presented in the casing record. Casing corrections for each applicable thickness were determined and applied to the data at the appropriate depth intervals. In addition, a correction for water encountered in the borehole was applied to the data collected below 200.49 ft in depth. These corrections are applied to the raw data recorded in counts per second to derive final radionuclide concentrations.

Shape factor analysis was not applied to the SGLS data because man-made radionuclides were not detected in this borehole.

Log Plot Notes:

Separate log plots are presented to show the man-made (none detected) and naturally occurring radionuclides (K-40, U-238, and Th-232). These plots show the naturally occurring radionuclides which can be used for lithology interpretation and bed boundary identification. The headings of the plots identify the specific gamma rays used to calculate the concentrations. The naturally occurring radionuclide plots are composites of log runs

Spectral Gamma-Ray Borehole Log Data Report

Borehole 299-W26-13

gamma derived from the spectral data. This plot is a composite of log data collected from log runs 1 and 3.

On the repeat log plots, repeat log data from runs 2 and 4 are compared with runs 1 and 3, respectively.

For U-238 concentrations calculated between the ground surface and 36.5 ft, the 1764.51-keV bismuth-214 (Bi-214) gamma ray was substituted for the 609.32-keV Bi-214 gamma ray. For many of those spectra in that interval the 609.32-keV Bi-214 gamma ray was not detected because of heavy gamma-ray attenuation associated with the 1.0-in. double casing wall thickness.

Where shown, the error bars on the plots show the statistical uncertainties for the measurements as 95-percent (2-sigma) confidence intervals. Error bars shown on the log plot include the error associated with calibration measurements, and errors associated with the casing and water corrections, as well as counting error. Open circles on the plots give the minimum detection level (MDL). The MDL of a radionuclide represents the lowest concentration at which positive identification of a gamma-ray peak is statistically defensible.

Results/Interpretations:

Man-made radionuclides were not detected in this borehole.

The naturally occurring radionuclides show several changes in the KUT concentrations that indicate lithology changes and bed boundaries.

Error bars representing the 2-sigma uncertainty in the measurements increase above the 36-ft depth and below the 200-ft depth as a result of additional error introduced by the correction for double casing and the presence water, respectively.

The repeat log plots show good repeatability for the calculated concentrations and depth.

C.10

Waste Management Technical Services MACTEC

Report of Geophysical Logging for the 200-CS-1/RCRA Project

This report presents a summary of spectral gamma and neutron-neutron moisture logging that was conducted in borehole B8817 at the 216-S-10 Pond southwest of the 200 West Area. This borehole was utilized for characterization of this waste facility, and at the completion of drilling a monitoring well with the designation 299-W26-13 was constructed.

Summary of Logging Operations

Spectral Gamma Surveys

A spectral gamma survey was conducted in borehole B8817 utilizing a MACTEC operated logging unit designated Gamma 2B. The borehole was logged in four individual log runs in 11-in.- and 8-in.-diameter casings when drilling was complete. Two of these log runs were repeat surveys that were logged to assess the repeatability of the measurements. The depth intervals logged in each log run are indicated on the Spectral Gamma-Ray Borehole Log Data Report for borehole B8817.

All spectral gamma measurements were acquired in a move-stop-acquire mode, at a measurement acquisition rate of 100 seconds (s) live time per 0.5 ft of depth. In the move-stop-acquire mode the logging tool is stationary at each 0.5 ft depth increment throughout the depth interval logged. In the live time acquisition mode, system dead time is accounted for in the acquisition time for each spectrum, e.g., a 100 s live time acquisition with 50 percent dead time would result in a real time measurement of 150 s.

The zero depth reference for all the spectral gamma logging surveys is ground surface. The zero position of the logging is the center of the germanium detector, which is about 5 in. above the bottom of the logging tool. This location is scribed into the tool housing and ensures consistent tool positioning.

The pre- and post- survey field verification spectra met the acceptance criteria established for the peak shape and detector efficiency, confirming that the spectral gamma logging system was operating within specifications. The energy calibration and peak-shape calibration from these spectra were used to establish the channel-to-energy parameters that were used to process the spectra acquired during the log surveys.

Neutron-Neutron Survey

Neutron-neutron moisture logging was conducted in borehole B8817 utilizing a logging system operated by Waste Management Technical Services that is designated Radionuclide Logging System unit 1 (RLS-1). The neutron-neutron moisture-logging tool is calibrated in moisture models with 6-in.- and 8-in.- diameter casing configurations. Since there is no direct calibration standard for 11-in.-diameter casing, the section of well B8817 with 11-in.-diameter casing (ground surface to a depth of 36.3 ft) was not logged. The section of the borehole with 8-in.-diameter casing was logged with the moisture tool from the bottom of the 11 in.-diameter casing to groundwater (36.3 to 200.5 ft). The interval logged and the repeat survey interval are indicated on the Borehole Survey Data Sheet for borehole B8817.

The neutron-neutron moisture data were collected at 0.25-ft depth increments. The data were acquired in a continuous logging mode at a logging speed of 1.0 feet per minute (ft/min); this logging speed resulted

in a data sample time of 15 seconds real (clock) time. Given the count rate of the instrument and sample time, the statistical accuracy is within the specified precision. The guidelines for conducting the neutron-neutron survey are outline in WMNW-CM-004, *Operational Environmental Monitoring, Section 22.0, Rev. 0, Vadose Neutron Moisture Logging Procedure.*

The neutron-neutron moisture logging tool is depth zeroed at the top of the cablehead (the cable to logging tool connection) to minimize exposure to the logging operator or other personnel to the americium-beryllium (AmBe) neutron source. The distance from the top of the cablehead to the scribe line zero of the neutron instrument (half distance between the source and the detector) is entered for the depth datum of the borehole. The neutron-neutron log survey zero reference is ground surface.

The source shield is used as a pre- and post- survey field verification of proper instrument performance. Consistent results for the pre- and post-survey verifications that were conducted before and after the moisture survey was conducted in borehole B8817 indicated the system was operating properly.

Data Processing

The spectra acquired in borehole B8817 during the spectral gamma survey were processed utilizing a variety of software to calculate concentrations of individual gamma-emitting radionuclides. Details regarding the algorithms used to calculate the concentrations and their application are presented in the *Hanford Tank Farms Vadose Zone, Data Analysis Manual* (MAC-VZCP-1.7.9, Rev. 1).

Equipment calibrations are conducted annually and the data acquired during the calibrations are used to derive the factors that convert measured peak area countrate into radionuclide concentrations in picocuries per gram (pCi/g). The calibration dates and calibration reports that present the mathematical functions that determine the calibration factors for the logging unit utilized for logging for this project are referenced on the log headers for each borehole/well log. The details of the base calibration are discussed in Vadose Zone Characterization Project at the Hanford Tank Farms, Calibration of Two Spectral Gamma-Ray Logging Systems for Baseline Characterization Measurements in the Hanford Tank Farms (GJPO-HAN-1). The current calibration report for the logging tool utilized for logging borehole B8817 is *Hanford Tank Farms Vadose Zone, Sixth Biannual Recalibration of Spectral Gamma-Ray Logging Systems* (GJO-HAN-26).

Casing corrections were applied to the data to compensate for the gamma-ray attenuation by the casing. The wall thickness of each casing string utilized in borehole B8817 was measured with a micrometer. The resulting values were applied to correct the data at the appropriate depth intervals. Additionally, constants determined for casing corrections during calibrations are determined for a single-cased borehole/well configuration. In wells where there are depth intervals where more than one casing is in place, the wall thicknesses are assumed to be additive to derive the proper correction. Although this assumption approximates the proper correction, it is known this correction could be slightly in error. The exact casing configuration and wall thicknesses used during data processing are discussed later in this report.

Water corrections were applied to the log data where appropriate. Attenuation of gamma rays from water can be significant and corrections to log data are derived for various borehole/well diameters during system calibrations. This correction is applied to the log data during data processing.

Repeat sections were conducted during some log surveys to document the logging system repeatability. Additionally, there are depth overlaps of log data where separate log runs were conducted. These overlaps are also useful to evaluate system repeatability.

Neutron-Neutron Moisture Data

The neutron-neutron moisture data were acquired in spectral form and converted to gross counts for each 0.250-ft log interval. The counts for each log interval were converted to volume fraction moisture (volume water/volume total) using the calibration transform described in *Radionuclide Logging System In-Situ Vadose Zone Moisture Measurement Calibration* (WHC-SD-EN-TI-306, Rev. 1).

Descriptions of the accuracy and precision estimates for the neutron-neutron measurements are presented in the following discussions. Accuracy is the instrumentation response compared to the calibration model values. The precision is a function of the counting statistics and the instrument response. Both of these characterizations of the instrumentation utilized for this project are quantified and displayed.

Accuracy

The accuracy of the instrumentation as established by the Data Quality Objectives (DQO) for moisture logging instrumentation is to be determined by the comparison of calibrated instrument response to the assigned model values of moisture content as per PNNL assignment during construction PNL-10801, UC606, "*Calibration Models for Measuring Moisture in Unsaturated Formations by Neutron Logging*", Engleman, et al., October, 1995). The following table provides the results for the 8-in.-diameter casing calibration data that was collected on May 13, 1999 for the logging tool utilized for this project.

8-in. casing model moisture	Calibrated logging tool results	Percent difference between model
(volume fraction water in %)	(volume fraction water in %)	value and instrument measurement
19.7	19.66	-0.2
11.9	11.79	-0.9
5.0	5.01	+0.2

The largest difference between the moisture model values and the logging tool measurements in the three Moisture Models is less than 1% volume fraction of moisture. These observed deviations are within the limits of accuracy established by BHI for this project.

Precision

Precision is the ability of an instrument to reproduce a given measurement; therefore, the variance observed for a given repeat sequence is used to determine the system or instrument's precision. During model data collection, 10 samples or repeat measurements are acquired in each model. These data are then used to compute a root mean square or estimated observed standard deviation. These data are also used to compute a theoretical standard deviation based solely on counting statistics, and the comparison agreed within statistical limits of sample size.

The model data collected for the calibration demonstrated that the observed deviations for any model were the same as predicted by the counting statistics (i.e., no extraneous instrumentation error were introduced). Therefore it is possible to predict the statistical precision for any given logging condition. The total counts observed for each depth sample determine the statistical precision. Furthermore, because the countrate is a function of the observed moisture content, it is possible to derive the statistical precision as a function of moisture for either calibrated casing configuration.

The sample acquisition time per depth increment is multiplied by the projected countrate from the calibration coefficients. This results in the number of counts for each logging sample as a function of

moisture content. Since the moisture log countrate follows a Poisson distribution, the standard deviation for each sample location is equal to the square root of the number of counts measured in the sample. For the given borehole logging, the highest logging speed was 1.0 feet per minute (ft/min) with a sampling frequency of one sample per 0.25 ft. The resulting sampling time is therefore 15 seconds or more. The casing thickness correction for the 0.500-in. wall thickness casing is 0.833. The countrate to volume fraction of moisture content conversion is performed by the following equation:

$$V = FaC^{\alpha}$$
,

Where V is the instrument reading of volume fraction of moisture, F is the casing correction factor, C is the observed countrate, and the coefficients a and α are the calibration coefficients. For the logging tool utilized for this project, the calibration coefficients were determined to be:

F = 1.2a = 1.597E-05 $\alpha = 2.537$

The precision (or repeatability) of the neutron moisture measurements were determined for each of the measurements, and are indicated on the moisture plots as error bars showing the uncertainty at +/- 1 sigma (67 percent confidence interval). The values of volumetric moisture content in borehole B8817 range from less than 1 percent to as high as 15 percent at a depth of 132 ft. The neutron countrate increased sharply at a depth of 200 ft as groundwater was encountered. The calculated moisture values were not plotted at the bottom of the borehole since a higher scale would reduce the resolution of features for the rest of the moisture plot.

Bulk Density Effects

The assumed bulk density for the moisture log is the bulk density of the moisture calibration models and is 1.76 grams per cubic centimeter (g/cc).

Due to the lack of continuous measurements of bulk density over the interval logged bulk density corrections to the moisture data are not possible.

The document *Radionuclide Logging System In-Situ Vadose Zone Moisture Measurement Calibration* (WHC-SD-EN-TI-306, Rev. 1) provides a density correction curve in Figure 6 that is based on computer modeling. This data could be used to provide an estimate of how the density assumption affects accuracy but is not provided herein because accuracy and precision statements of recommendations made per the Geophysical Logging Master Agreement are for "performance under known conditions such as in calibration models."

Casing Thickness Corrections

A casing thickness correction for the 8-in.-diameter casing was applied to the moisture measurements in accordance with WHC-SD-EN-TI-306, Rev. 1. Since there was no direct calibration of the neutron moisture logging tool in 11-in.-diameter casing, the region of borehole B8817 with 11-in.-diameter casing was not logged.

Log Plots

Separate log plots show the man-made and naturally occurring radionuclides potassium-40 (40 K), uranium-238 (238 U), and thorium-232 (232 Th). The heading for each of the radionuclide log plots indicate the energy peak utilized to identify the specific radionuclide.

Various log plots show the concentrations of the individual radionculides, the total gamma count rate, and the volumetric moisture content. The total gamma count rate for each 0.5-ft depth increment is a sum of the counts from the spectrum for the particular depth increment divided by the counting time. However, the total gamma countrate is not corrected for water or casing, so a direct relationship between concentration and countrate does not exist. For example, in a borehole that was logged in two separate log runs, one run within a single casing and the other within two casings, the KUT concentrations will approximately repeat in both configurations as a result of the casing corrections. However, the total gamma rate will be much lower in the two-casing configuration run when compared to the single-casing log, because no casing correction is applied to the total gamma log data.

The KUT plots allow correlation of the log data with lithologic features, with intervals of man-made contamination, if it exists, and with moisture content. The statistical uncertainty for gamma-rays emitted from low-concentration radionuclides such as ²³⁸U and ²³²Th can be high for the 100-s acquisition time utilized for logging and the plots of the concentration of these radionuclides show high levels of uncertainty. This uncertainty is shown on the KUT plots by scattering of the data and large error bars. Nevertheless, these data are useful for correlation with geologic data or other borehole logs, e.g. moisture content, contamination intervals, etc.

Error bars shown on the log plots include the error associated with calibration measurements, and error associated with the casing and water corrections as well as counting error. Therefore, increased measurement error as shown on the log plots is the result of data collection that occurred in regions of boreholes containing water, containing casings of greater wall thickness (compared to conventional steel casing), and regions of boreholes where overlapping casings occur. This error is enhanced with increasing radionuclide concentrations.

The minimum detection limit (MDL) of a radionuclide represents the lowest concentration at which positive identification of a gamma-ray peak for that radionclide is statistically defensible. The spectral analysis program calculates the MDL for a particular peak on the basis of a statistical comparison with the background energy in the vicinity of the peak. An MDL for a particular radionuclide increases when additional gamma attenuation is introduced as a result of multiple casings or water in the borehole. Additionally, an MDL may increase with increasing radionuclide concentrations. The MDL's for the radionuclides are indicated on the plots by open circles.

The plots of the volumetric moisture content measured in borehole B8817 is provided with error bars for approximately every fifth moisture measurement. More frequent presentation of measurement error (error bars) obscures features of the log plot. The error bars represent the 68-persent confidence level (+/-1 standard deviation), which was determined by converting the square root of the counts in each interval to equivalent moisture content. The definition of "Detection Limit" or threshold limit is defined as the minimum concentration or level at which a contaminant or natural element can be positively be identified. Since moisture can be measured to zero volume fraction, threshold limit is not applicable to moisture measurements and is not indicated on the log plots.

Results

Borehole B8817 is located at the 216-S-10 Pond southwest of the 200 West Area. The borehole was drilled in November and December 1999 to a depth of 240.7 ft. A nominal 11-in.-diameter casing was used to advance the borehole from ground surface to a depth of 36.3 ft, and an 8-in.-diameter casing was used to drill to a depth of 240 ft. A short section of the borehole between depths of 240.0 and 240.7 was uncased. Casing wall thickness was measured in the field using a micrometer; the wall thickness of each of the casings is 0.5 in. At the time of logging, both casing strings were set approximately flush with ground surface. The depth to groundwater on the day the borehole was logged was measured at 200.49 ft.

Spectral gamma logging in borehole B8817 was conducted in four log runs. Log runs 1 and 2 were conducted on December 9, 1999 inside the 8-in.-diameter casing. Log run 1 covered the depth interval from 240.5 to 119.0 ft. Log run 2 was a repeat survey between depths of 205.0 and 193.0 ft. Log runs 3 and 4 were conducted on December 10, 1999 inside the 11-in.- and 8-in.-diameter casings. Log run 3 covered the interval between ground surface and a depth of 125.0 ft. Log run 4 was a repeat section between depths of 34.0 and 46.0 ft. In addition, a short overlap of data occurs between depths of 119.0 and 125.0 ft where the survey intervals of log runs 1 and 3 overlapped.

A generalized casing correction function was used to determine casing correction factors. Log runs 1 and 2 were analyzed using a correction for casing with a wall thickness of 0.5 in. Log runs 3 and 4 were analyzed using a correction for 0.5 in.-thick casing in the 8-in.-diameter section of the surveys (between depths of 36.3 and 125.0 ft); a correction for 1.0-in-thick casing was applied to the data acquired in the section of the borehole where both the 11-in.- and 8-in.-diameter casings were present (ground surface to a depth of 36.3 ft). With more than one casing in place, the wall thickness is assumed to be an additive of both casings to derive the proper correction factor. These corrections are applied to the raw data that are recorded in counts per second to adjust the countrates for the attenuation that is caused by the presence of the casing.

Water corrections were applied to the log data collected between depths of 200.49 (the measurement on the day of logging) and 240.5 ft. Attenuation of gamma rays by water can be significant, which is reflected by the sporadic uranium-238 (238 U) concentrations below a depth of 200.5 ft.

Separate log plots show the man-made and naturally occurring radionclides potassium-40 (⁴⁰K), uranium-238 (²³⁸U), and thorium-232 (²³²Th)(KUT); there were no man-made radionuclides detected in borehole B8817. For calculating ²³⁸U concentrations between ground surface and a depth of 36.5 ft, the 1764.51-keV bismuth-214 (²¹⁴Bi) gamma ray was utilized instead of the routinely used 609.32-keV ²¹⁴Bi gamma ray. For many of the spectra in this depth region of the borehole, the 609.32-keV 214Bi peak was not detected because of the attenuation resulting from the 1.0-in.-thick double casing. Although the yield (intensity) is lower for the 1764.51-keV peak, the higher energy level results in less attenuation by the double casing. The headings of the plots indicate the specific gamma peak that is used to determine the concentrations of the radionuclides. The error bars on the plots represent counting errors as well as errors associated with casing corrections, deadtime corrections, and the calibration function. The error bars represent the statistical uncertainties for the measurements as 95-percent (2-sigma) confidence intervals. Open circles on the plots indicate the minimum detectable level (MDL) of the particular radionuclide. The MDL for a specific radionuclide represents the lowest concentration at which positive identification of the gamma-ray peak is statistically defensible. MDLs generally increase in areas of higher gamma activity, and where additional gamma-ray attenuation occurs as a result of the presence of water or casing with greater wall thickness.

The standard combination log plot includes both the man-made and naturally occurring radionuclides, as well as a plot of the total gamma-ray activity as derived form the gamma spectra. The total gamma count

rate for each 0.5-ft depth interval is a sum of the counts from the spectra divided by the counting time. The combination plots are composites of data acquired in log runs 1 and 3.

Repeat log plots compare the repeat surveys from runs 2 and 4 with log runs 1 and 3, respectively. Repeat surveys were conducted to document the logging system's repeatability. These plots show good repeatability for the calculated radionuclide concentrations and depth control.

The plot of the naturally occurring radionculides shows several distinct concentration changes at depths of 50 ft, 102 ft, 133 ft, 195, and near the bottom of the borehole at a depth of 237 ft. Some of these changes correlate to lithologic features recorded on the borehole geologic log and with the moisture log data. Error bars representing the 2-sigma uncertainty in the measurements increase above a depth of 36 ft and below a depth of 200 ft as a result of additional error introduced by the corrections for double casing and the presence of water.

The combination plot is intended to show both the man-made and naturally occurring radionuclides (KUT), in addition to the total gamma countrate. Because the total gamma countrate is not corrected for casing or water, the total gamma decreases above a depth of 26 ft and below a depth of 200 ft where the double casing and water are present, respectively. The changes observed in the KUT concentrations are reflected in the profile of the gross gamma countrate in particular at the depths mentioned previously.

Moisture logging was conducted in borehole B8817 in the region of the borehole with 8-in.-diameter casing, below the 11- in. diameter casing (36.3 ft) and above the groundwater level (200.5 ft). The logging tool utilized for moisture logging for this project is not calibrated for use in 11-in.-diameter casing. Vigorous calibration has been performed with this logging tool in 6-in.- and 8-in.-diameter casings. A short interval of the borehole between depths of 34 and 36.3 ft was logged to identify the bottom of the 11-in.-diameter casing, and a repeat survey was conducted between depths of 100 and 121.5 ft to verify system performance.

The volumetric moisture content ranges between 2 and 15 percent throughout most of the logged interval. The highest moisture content value of almost 15 percent was measured at a depth of 134 ft. Error bars representing one standard deviation are presented for every fifth moisture measurement for clarity of data presentation.

A short interval was logged in both the 11-in.- and 8-in.-diameter casings (34 to 36.3 ft) to identify the bottom of the 11-in.-diameter casing. A decrease in the moisture content values should have been noticeable due to the attenuation resulting from the presence of both casings; however, a peak of elevated moisture content was observed at a depth of 35 ft. The reason for these elevated moisture values is unknown since the sediments at this depth are described as slightly moist.

The most obvious features on the moisture content plot are the fluctuating moisture values between depths of 90 and about 130 ft where several narrow peaks occur. In this region of the borehole, the moisture content values range between 2 and 14 percent. The geologic log for this borehole indicates the sediments in this region of the borehole range from mostly sand (95 percent) with 1 to 2 in.-thick beds of silt, to slightly silty sand, sandy silt, and silty sand. The peaks of higher moisture content are most likely indicating finer grained materials that retain moisture. There is a very distinctive increase in the KUT concentrations in this region of the borehole.

The highest volumetric moisture content value of almost 15 percent occurs between depths of 134 and 136 ft. A caliche zone is identified on the geologic log between depths of 134 and 139 ft. Sediments of elevated moisture appear to lie on top of this caliche zone. Below the caliche zone to the bottom of the borehole, the sediments are mostly silty sandy gravel, sand, gravelly sand, and sandy gravel. There are no

definitive lithologic features within this region of the borehole with which to correlate the features on the moisture plot, e.g. the peaks of elevated moisture content at depths of 151 and 176 ft, and the region of elevated moisture content between depths of 154 and 169 ft. The moisture content values increase at the bottom of the logged interval as groundwater is encountered.

Data

One compact disk is provided with this report and it contains the following data files:

B8817.JNB	SigmaPlot version 4.0 format of spectral gamma plots for data acquired in borehole B8817
B8817M.JNB	SigmaPlot version 4.0 format of neutron-neutron moisture and moisture-total gamma plots for data acquired in borehole B8817
B8817NNLH.DOC	Word 97 format of the neutron-neutron moisture log header for borehole B8817
B8817NNRpt.DOC	Word 97 format of the neutron-neutron moisture summary report for borehole B8817
B8817LH.PDF	Adobe Acrobat PDF format of the spectral gamma log header for borehole B8817
B8817ANA.XLS	Microsoft Excel 97 spreadsheet of analysis (spectral) data for borehole B8817
B8817MANA.XLS	Microsoft Excel 97 spreadsheet of analysis (moisture) data for borehole B8817
200-CS-1RCRARPT.D	OC Word 97 format of the report text

Neutron-Neutron Moisture Borehole Survey

Log Header

Project: RCRA Drilling 1999

Well: 299-W26-13

Well: # 299-W26-13	Water Depth: 2	<u>:00.49</u> ft	Tota	l Depth: 240.7 f	t
Elevation Reference:	n/a E	levation:	n/a	I	
Depth Reference: <u>G</u>	round surface Casing	Stickup:	11.75- in0 ft; 8.625	in0.1 ft	
Casing Diameter: 11	1.75 in Depth I	nterval:	0 to 36.3.0 ft	Thickness: 0	.5 in.
Casing Diameter: <u>8.</u>	<u>.625</u> in Depth In	nterval:	0 to 240 ft	Thickness: 0	.5 in.
	-				

Logging Information

Log Type:	Neutron-neutron me	oisture	
Company:	Waste Management Technical Services		
Date:	December 10, 1999		
Logging Engineer(s):	Steven Kos		
Instrument Series:	RLSM00.0		
Logging Unit:	RLS-1		
Depth Interval:	34 to 121.5 ft	Prefix A686	
	100 to 201.1 ft	A687	
Instrument Calibration Date	May 13, 1999		
Calibration Report:	WHC-SD-EN-TI-3	06, Rev.0	

Analysis Information

Company: Analyst: Date: Depth Reference: Waste Management Technical Services Steven Kos January 15, 2000 Ground Surface

Notes Measurements were acquired at 0.250-ft depth increments at a logging speed of 1.0 ft per minute. The borehole was logged in one log survey in the 8-in.-diameter casing. A short interval was logged in the 11-in.-diameter and 8-in.-diameter casings between depths of 34 and 36.3 ft. The survey was terminated when the logging tool reached groundwater at a depth of 201.1 ft. A repeat survey was conducted between depths of 100 and 121.5 ft.

Project: RCRA Drilling 1999 Log Date : December 10, 1999 Borehole: 299-W26-13 Depth Datum: Ground Level Moisture Vol. % 0 10 20 0 10 -Interval from ground surface to a depth of 36.3 ft was not logged in the double casings. 20 30 Depth (feet) 40 50 60 70

Neutron-Neutron Moisture Survey

Waste Management Technical Services

Neutron-Neutron Moisture Survey

Waste Management Technical Services

Project: RCRA Drilling 1999 Borehole: 299-W26-13

Log Date : December 10, 1999 Depth Datum: Ground Level

Neutron-Neutron Moisture Survey

Waste Management Technical Services

Project: RCRA Drilling 1999 Borehole: 299-W26-13 Log Date : December 10, 1999 Depth Datum: Ground Level

Moisture Vol. %

Neutron-Neutron Moisture Survey

Waste Management Technical Services

Project: RCRA Drilling 1999 Borehole: 299-W26-13

Log Date : December 10,1999 Depth Datum: Ground Level

Neutron-Neutron Moisture Borehole Survey

Waste Management Technical Services

Log Analysis Summary Report

Project: 200-CS-1/RCRA **Log Type:** Neutron-neutron moisture

Well: 299-W26-13 Log Date: December 10, 1999

General Notes:

All log data were collected relative to ground surface.

Logging was conducted in one log run in the 8-in.-diameter casing. Data were not acquired in the 11-in.diameter casing between ground surface and a depth of 36.3 ft since the logging tool utilized for this project is not calibrated for this size casing.

Measurement uncertainties of one standard deviation (1 sigma) were calculated for all moisture measurements; for clarity in presentation of the log data, error bars were plotted for every fifth data point.

System Performance Verify:

The pre- and post- survey calibrations indicated the logging system was performing within specifications outlined in the logging procedures.

Repeat Interval:

A repeat survey was performed between depths of 100 and 121.5 ft. The results of the repeat surveys indicate the logging system was operating within specifications.

Environmental Corrections:

The countrates measured with the neutron-neutron logging tool were corrected for the appropriate casing thickness.

Distribution

No. of Copies

OFFSITE

L. Seelatsee Wanapum Band Grant County P.U.D. 30 "C" Street S.W. P. O. Box 878 Ephrata, WA 98823

P. Sobotta

Nez Perce Tribe Environmental Restoration/Waste Management P.O. Box 365 Lapwai, ID 83540-0365

Confederated Tribes of the Yakama Nation Environmental Restoration/Waste Management 2808 Main Street Union Gap, WA 98903 ATTN: R. Jim

ONSITE

2 DOE Richland Operations Office

M.J. Furman (2) A5-13

2 CH2M Hill Group

A. J. Knepp	H0-22
D. C. Weekes	H9-02

No. of

<u>Copies</u>

4 CH2M Hill Hanford, Inc.

J. V. Borghese	H9-03
C. S. Cearlock (3)	H9-03

4 Washington State Department of Ecology

D. L. Becker-Khaleel	B5-18
D. Goswami	B5-18
A. D. Huckaby	B5-18
S. Leja	B5-18

U.S. Environmental Protection Agency

D. A. Faulk	B5-01

15 Pacific Northwest National Laboratory

D. G. Horton (3)	K6-81
S. P. Luttrell	K6-96
W. J. Martin	K6-81
B. A. Williams (3)	K6-81
Information Release Office (7)	K1-06