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Summary 
 
 
 The New York Power Authority (NYPA), the New York City Housing Authority (NYCHA), and the 
U.S. Departments of Housing and Urban Development (HUD) and Energy (DOE) have joined in a project 
to replace refrigerators in New York City public housing with new, highly energy-efficient models.  This 
project laid the ground work for the Consortium for Energy Efficiency (CEE) and DOE to enable housing 
authorities throughout the United States to bulk-purchase energy-efficient appliances. 
 
 DOE helped develop and plan the program through the ENERGY STAR  Partnerships program 
conducted by its Pacific Northwest National Laboratory (PNNL).  PNNL was subsequently asked to 
conduct the savings evaluations for 1996 and 1997.  PNNL designed the metering protocol and occupant 
survey, supplied and calibrated the metering equipment, and managed and analyzed the data. 
 
 The 1996 metering study of refrigerator energy usage in New York City public housing (Pratt and 
Miller 1997) established the need and justification for a regression-model-based approach to an energy 
savings estimate.  The need originated in logistical difficulties associated with sampling the population 
and performing a stratified analysis.  Commonly, refrigerators(a) with high representation in the popula-
tion were missed in the sampling schedule, leaving significant holes in the sample and difficulties for the 
stratified analysis.  The justification was found in the fact that strata (distinct groups of identical 
refrigerators) were not statistically distinct in terms of their label ratio (ratio of metered consumption to 
label rating).  This finding suggested a general regression model could be used to represent the 
consumption of all refrigerators in the population.  In 1996 a simple two-coefficient regression model, a 
function of only the refrigerator label rating, was developed and used to represent the existing population 
of refrigerators. 
 
 A key concept used in the 1997 study grew from findings in a small number of apartments metered in 
1996 with a detailed protocol.  Fifteen-minute time-series data of ambient and compartment temperatures 
and refrigerator power were analyzed and demonstrated the potential for reducing power records into 
three components.  This motivated the development of an analysis process to divide the metered 
consumption into baseline load, occupant-associated load, and defrosting load.  The baseline load is the 
consumption that would occur if the refrigerator were on but had no occupant usage load (no door-
opening events) and the defrosting mechanism was disabled.  The motivation behind this component 
reduction process was the hope that components could be more effectively modeled than the total.  We 
reasoned that the components would lead to a better (more general and more significant) understanding of 
the relationships between consumption, the characteristics of the refrigerator, and its operating 
environment. 
 
 The 1997 metering study was directed at developing the data reduction and modeling procedures 
conceived in 1996.  The objective of the 1997 metering study was to achieve a more complete 
understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and 

                                                      
(a) As distinguished by manufacturer and model numbers. 
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compartment temperatures, and characteristics (such as size, defrost features, and age).  Ideally the 
regression models would be applicable to future project years and potentially other sites and cities. 
 
 A durable six-sensor metering protocol was implemented to collect detailed time-series data on 
ambient and compartment temperatures, compartment door-opening activities, and power usage.  Meter-
ing and demographic data were collected and reduced from 120 NYCHA apartments.  Regression models 
were developed from this database.  These models were then applied to the population of refrigerators 
removed and installed in NYCHA housing in the 1997 project year (Pratt and Miller 1997). 
 
Conclusions 
 
 Key conclusions of the analysis are summarized below. 
 

• The baseline component correlates strongly with label rating and the age of the refrigerator.  
Evidence of refrigerator degradation is significant in the baseline data.  Older refrigerators are more 
degraded.  (See Section 3.3.) 

 
• A categorical variable, which indicates if the apartment building is predominately populated by 

elderly occupants, was shown to be significant in the correlation with the baseline component, 
indicating that refrigerator degradation is related to the age of the occupants.  Apparently the 
refrigerators in the elderly apartments are better maintained.  (See Section 3.3.) 

 
• Occupant activity strongly affects the magnitude of the occupant component.  A categorical variable 

that describes whether the apartment buildings are predominantly populated by elderly occupants was 
found to be an adequate indicator of refrigerator usage.  (See Section 3.3.) 

 
• Refrigerators with automatic defrost have higher occupant consumption (on a label-normalized 

basis) per unit of occupant activity than refrigerators with manual defrost.  The fans in refrigerators 
with automatic defrost appear to significantly increase air exchange with the room during times that 
doors are open.  This effect is not represented in label ratings determined from closed-door testing.  A 
categorical variable that represents whether the refrigerator is automatic or manual is critical to account 
for variance in the occupant component.  (See Section 3.3.) 

 
• The propensity for occupant consumption per unit of occupant activity was expected to be primarily 

driven by the volume of the refrigerator and the characteristics of its compressor.  The aggregate of 
these characteristics is indirectly represented in the refrigerator’s label rating.  But in terms of 
explaining variance in the sample data, the baseline component itself appears to be the best funda-
mental characteristic, perhaps because it better reflects the vapor-compression cycle’s degradation 
with age.  Volume may appear in future studies as a more significant descriptive variable if there is 
more diversity in refrigerator volume in the population (and sample).  (See Section 3.3.) 

 
• The defrost component correlates well with the sum of the baseline and occupant components.  (See 

Section 3.3.) 
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• Accounting for differences between the characteristics of the metered sample and the general 
population is important for the accuracy of the savings estimate.  Significant differences were found 
in several characterizing parameters:  age of existing refrigerators, concentration of manual-defrost 
refrigerators, building characteristics (e.g., whether predominantly occupied by elderly or nonelderly 
occupants).  All of these effects contributed to significantly higher modeled savings for the population 
in comparison to the metered sample averages.  (See Section 3.4.) 

 
• For refrigerators metered in the summer, the peak load occurred at 9:00 p.m.  The load at summer 

peak was 13% higher than the average load.  For refrigerators metered in the winter, the peak load 
occurred at 4:00 p.m.  The load at winter peak was 9% times higher than the average load.  (See 
Section 3.5.) 

 
• The regression models can be applied to future program years in New York City.  If future replace-

ment units are significantly different in design or volume it is recommended that the regression 
models be applied only to the existing units and that a sample of replacement units be monitored (see 
Section 4.0). 

 
• The regression models should not generally be applied to other cities.  Constraints in application 

originate in the limited capabilities of the regression models to represent effects driven by occupant 
usage and refrigerator volume.  With caution, the models can be applied in sites characterized as 
similar to NYCHA housing in New York.  Similarity needs to be judged based on demographics, 
apartment building characteristics and operation, refrigerator volume, and weather (see Section 4.0). 
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1.0 Introduction 
 
 
 The New York Power Authority (NYPA), the New York City Housing Authority (NYCHA), and the 
U.S. Departments of Housing and Urban Development (HUD) and Energy (DOE) have joined in a project 
to replace refrigerators in New York City public housing with new, highly energy-efficient models.  This 
project laid the ground work for the Consortium for Energy Efficiency (CEE) and DOE to enable housing 
authorities throughout the United States to bulk-purchase energy-efficient appliances (Wisniewski and 
Pratt 1997).  This document describes the analysis of annual energy cost savings achieved from replacing 
20,000 refrigerators in 1997, the second year of the program. 
 
 DOE helped develop and plan the program through the ENERGY STAR  Partnerships program 
conducted by its Pacific Northwest National Laboratory (PNNL).  PNNL was subsequently asked to 
conduct the savings evaluations for 1996 and 1997.  PNNL designed the metering protocol and occupant 
survey, supplied and calibrated the metering equipment, and managed and analyzed the data. 
 
 The 1996 metering study of refrigerator energy usage in New York City public housing (Pratt and 
Miller 1997) established the need and justification for a regression-model-based approach to an energy 
savings estimate.  The need originated in logistical difficulties associated with sampling the population 
and performing a stratified analysis.  Commonly, refrigerators(a) with high representation in the popula-
tion were missed in the sampling schedule, leaving significant holes in the sample and difficulties for the 
stratified analysis.  The justification was found in the fact that strata (distinct groups of identical 
refrigerators) were not statistically distinct in terms of their label ratio (ratio of metered consumption to 
label rating).  This finding suggested a general regression model could be used to represent the 
consumption of all refrigerators in the population.  In 1996 a simple two-coefficient regression model, a 
function of only the refrigerator label rating, was developed and used to represent the existing population 
of refrigerators. 
 
 A key concept used in the 1997 study grew from findings in a small number of apartments metered in 
1996 with a detailed protocol.  Fifteen-minute time-series data of ambient and compartment temperatures 
and refrigerator power were analyzed and demonstrated the potential for reducing power records into 
three components.  This motivated the development of an analysis process to divide the metered 
consumption into baseline load, occupant-associated load, and defrosting load.  The baseline load is the 
consumption that would occur if the refrigerator were on but had no occupant usage load (no door-
opening events) and the defrosting mechanism was disabled.  The motivation behind this component 
reduction process was the hope that components could be more effectively modeled than the total.  We 
reasoned that the components would lead to a better (more general and more significant) understanding of 
the relationships between consumption, the characteristics of the refrigerator, and its operating 
environment. 
 
 The 1997 metering study was directed at developing the data reduction and modeling procedures 
conceived in 1996.  The objective of the 1997 metering study was to achieve a more complete 
                                                      
(a) As distinguished by manufacturer and model numbers. 
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understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and 
compartment temperatures, and characteristics (such as size, defrost features, and age).  Ideally the 
regression models would be applicable to future project years and potentially other sites and cities. 
 
 A durable six-sensor metering protocol was implemented to collect detailed time-series data on 
ambient and compartment temperatures, compartment door-opening activities, and power usage.  Meter-
ing and demographic data were collected and reduced from 120 NYCHA apartments.  Regression models 
were developed from this database.  These models were then applied to the population of refrigerators 
removed and installed in NYCHA housing in the 1997 project year (Pratt and Miller 1997). 
 
 The remainder of this report includes five sections and appendices.  Section 2.0 discusses the data 
collection efforts and other data sources used in this analysis.  Section 3.0 describes the analysis proce-
dure and discusses the results.  Section 4.0 discusses the application of the regression model in future 
years and other cities.  Section 5.0 highlights the conclusions drawn from the analysis.  Section 6.0 con-
tains a list of references cited in this report.  Appendix A discusses the method used to monitor power 
consumption, occupant door events, and ambient and refrigerator compartment temperatures in 121 apart-
ments.  Appendix B is a discussion of the survey of information relating to refrigerator performance taken 
in each monitored apartment.  The method used to process time-series data is outlined in Appendix C.  
The method used to determine the age of high duty cycle refrigerators is discussed in Appendix D.  
Appendix E contains the metered and surveyed field data for each metered refrigerator.  Appendix F 
provides a summary of occupant density in NYCHA housing developments. 
 
 Figures 1.1 through 1.5 illustrate the installation of the new refrigerators and the recycling of the 
existing refrigerators. 
 

 
 

Figure 1.1.  Typical New York City Housing Authority Development 
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Figure 1.2.  Unloading New Refrigerators 
 

 
 

Figure 1.3.  New Refrigerators Outside Development Waiting for Installation 
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Figure 1.4.  Removing Refrigerant from Existing Refrigerators 
 

 
 

Figure 1.5.  Draining Oil from Existing Refrigerators 
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2.0 Data Collection 
 
 
 PNNL’s development of the regression-model tools for calculating the program energy savings 
involved the integration of several data sources: 
 

• detailed 15-minute time-series metering of power usage, ambient and compartment temperatures, and 
occupant door-opening activity for refrigerators in the field over about a one-week period for a 
sample of new and existing refrigerators 

 
• infrared-scanner measurements of ambient indoor-air temperature and fresh-food and freezer 

compartment temperatures at the beginning and end of the monitoring period 
 

• a survey of occupant, apartment, and refrigerator characteristics 
 

• a database of refrigerator characteristics including model numbers, DOE-label rating test results, rated 
volumes, defrost features, and year of production as reported by refrigerator manufacturers 

 
• daily outdoor temperatures (during field testing) and long-term-average monthly outdoor 

temperatures for New York City from National Weather Service data posted on the Internet 
 

• occupant data (numbers by four age categories) for each of the NYCHA housing developments 
involved in 1997. 

 
 The following sections describe these different types of data and how they were obtained. 
 
2.1 Refrigerator Label Ratings and Characteristics Data 
 
 A database of refrigerator characteristics was used to find DOE-label ratings for refrigerators replaced 
by the program.  For many years manufacturers have been required to provide DOE the results of energy 
consumption tests conducted in an environmental chamber for use as consumer label ratings 
(10 CFR 430).  The label rating test consists of placing the refrigerator in a chamber maintained at an 
elevated temperature (90°F) to simulate door openings.  After repeating the test at two control settings 
and measuring the resulting energy consumption and freezer temperatures, the results are interpolated to 
estimate annual consumption at a freezer temperature of 5°F.  After testing several refrigerators off the 
production line, the average of their annualized consumption is issued as the label rating for a given 
refrigerator model.  DOE sets standards for maximum label ratings as a function of refrigerator volume.  
The Association of Home Appliance Manufacturers (AHAM) maintains an appliance database listing 
each refrigerator by brand and model, DOE-label rating, rated volume, year of production, and the 
refrigerator’s defrost features (AHAM 1990). 
 
 All possible model numbers do not appear in this database.  Manufacturers use parts of model 
numbers to specify submodel information like color, which side of the door is hinged, and place of 
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production.  A lapse also occurred in federally mandated reporting of label ratings in the late ‘70s, and 
labels were not required at all prior to 1975.  Some manufacturers produce refrigerators that are 
essentially identical but are sold under a variety of brand names with different model numbers.  These 
refrigerators appear separately in the database. 
 
2.2 Field Data Collection 
 
 PNNL developed and managed the data collection process.  PNNL designed the metering protocol 
and occupant survey, supplied and calibrated the metering equipment, and managed and analyzed the 
data. 
 
 Planergy installed meters on 104 existing refrigerators and 17 new Maytag high-efficiency 
replacement refrigerators.  These meters recorded energy consumption, ambient and compartment 
temperatures, and occupant door-opening activity over a period of approximately one week (see 
Appendix A).  The monitoring produced detailed time-series data at 15-minute intervals.  This data was 
collected to form the basis for understanding variations in consumption data as affected by operating 
conditions.  The time-series data also served to quantify peak-load impacts. 
 
 For each metered refrigerator, Planergy collected a variety of characteristic information (see 
Appendix B).  This information included refrigerator model number and manufacturer, relative condition 
(state of repair) of the refrigerator, apartment characteristics, and the number and age of occupants.  
Snapshot data, at the beginning and end of the monitoring week, were recorded based on observations of 
the refrigerator control settings, visual estimates of the degree of food loading in each compartment, and 
infrared scanner (radiometer) measurements of ambient and compartment temperatures.  These data 
quantify the state of the refrigerator and establish the nature of its operating environment. 
 
 No formal sampling scheme was established; residents were recruited for metering on an informal basis 
by knocking on doors or talking to residents, resident association leaders, or superintendents.  Apartments on 
various floors in the buildings were sampled because ambient temperatures may be higher on the upper 
floors.  Although the sample is not random in a formal statistical sense, a reasonably representative sample of 
occupant refrigerator usage was achieved. 
 
 After screening for data quality problems, some metered records had to be eliminated.  Eight sites 
showed extremely low (near zero) energy usage during the week, indicating an instrumentation sensor 
problem or a malfunctioning refrigerator (either unplugged or not operating).  These power records were 
not included in the analysis. 
 
 Various other logger failures were documented for each site (see comment code in Appendix E).  The 
degree to which missing data affected the analysis depended mainly on whether the refrigerator was 
performing within normal bounds or was showing signs of malfunction (see Appendix C).  Data 
requirements for malfunctioning refrigerators were lower because they could not be processed with the 
normal approach.  These refrigerators were processed with a simplified analysis depending only on 
temperature and total power measurements (see Section 3.4).  After considering missing data, the power 
records from all but eight sites were used in the savings estimate. 
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 The label for one of the 104 existing units monitored by PNNL could not be identified.  This 
unidentified refrigerator, along with eight sites with missing power data, resulted in 95 (103-8) existing 
refrigerators for use in the savings analysis. 
 
 Two new refrigerators were malfunctioning.  These refrigerators had high consumption and detailed 
records clearly indicated high duty cycle behavior.  It appeared that the controls on these refrigerators had 
failed and they were running continuously.  The occupants complained of freezing problems in the fresh-
food compartment (based on the occupants’ complaints, these refrigerators were replaced after the 
monitoring period).  These refrigerators were excluded from both the normal and simplified analysis 
process paths.  This handling contrasts with that of the malfunctioning existing refrigerators.  It is asserted 
that the malfunctioning behavior of the new refrigerators would not be allowed to persist.  For this reason, 
Table 2.1 shows 15 (out of 17 monitored) new refrigerators used in the savings analysis. 
 
 In addition, NYPA collected simple total energy data on 51 new Maytag refrigerators.  The data was 
not detailed 15-minute interval data but rather lumped weekly totals.  These data could not be directly 
used in the primary analysis process but were used as a secondary check against totals derived from the 
detailed PNNL data. 
 
 The disposition of all the metered data is summarized in Table 2.1. 
 

Table 2.1.  Metered Data Collected and Used in the Savings Analysis 
 

Metered Data 
Existing Refrigerators 

Removed, (various models) 
New Refrigerators 
Delivered (Maytag) 

PNNL, total 104 17 
 Data used, total 95 15 
NYPA, total 0 51 
 Data used, total 0 0 

 
 Also, PNNL noted early in the metering effort that the infrared radiometer used to take the snapshot 
temperature measurements produced consistently warmer readings than those from a thermistor, 
particularly at the low temperatures in the freezer compartment.  A correction relationship was produced 
based on these measurements, as discussed in Appendix B.  The corrected radiometer measurements were 
only used at those sites where thermistor-based time-series readings were not available. 
 
2.3 Occupant Data 
 
 Occupant data was provided by NYCHA for each of the housing developments involved in the 1997 
project year.  The average number of occupants per apartment for each development was provided for 
each of four age categories:  children (0-9), teenagers (10-20), adults (21-61), and elders (62 and older). 
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3.0 Analysis 
 
 
 The objective of the 1997 analysis was to develop tools for estimating the annual energy and demand 
savings associated with replacing refrigerators in NYCHA housing.  The 1997 analysis also provided a 
more complete understanding of savings as a function of refrigerator label ratings, occupant effects, 
indoor and compartment temperatures, and refrigerator characteristics (such as size, defrost features, and 
age). 
 
 PNNL’s analysis had to account for two effects not directly represented in the raw data: 
 

• Ambient indoor-air temperatures during week-long metering periods do not generally represent 
annual average conditions.  It is important to account for this effect in estimating annual savings 
because refrigerator energy consumption is largely proportional to the temperature difference between 
the compartments and the ambient temperatures. 

 
• Many more existing refrigerator models were replaced than could be metered with any meaningful 

sample, and the efficiency of existing refrigerators, as evidenced by their DOE-label ratings, varies 
widely (by more than a factor of two). 

 
 To conduct the analysis, PNNL performed the following steps: 
 
1. Analyze the raw data to determine the components of total consumption: 
 

• Baseline:  energy conducted through the walls of the refrigerator when the door is closed 
 

• Occupant:  energy from warm food or air entering through the compartment doors 
 

• Defrost:  energy injected into and subsequently removed from the refrigerator for melting ice 
buildup on the coil 

 
2. Adjust the metered consumption of each refrigerator from the temperature conditions during the 

metering period to that which would occur under annual average conditions. 
 
3. Construct a relationship between the components of refrigerator energy consumption and site/ 

refrigerator characteristics so that consumption could be estimated for refrigerator models not 
represented in the metered sample. 

 
4a. Use the relationship developed in Step 3 to estimate energy savings for each model of refrigerator 

replaced. 
 
4b. Use the records of the number of refrigerators of each model demanufactured to compute an average 

total per-unit savings for the program in 1997. 
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5. Estimate the electricity consumption of refrigerators during the hours of peak building demand.  
 

Details of these analysis steps are presented in the corresponding subsections (3.1−3.5) which follow. 
 
3.1 Determining Components of Total Consumption 
 
 To improve the modeling effort used in the 1996 analysis, a significant step was added to the analysis 
process (see Appendix C).  This step allowed the results to be generalized and potentially applied to 
future project years and other sites and cities.  Fundamental to this new approach was the division of 
refrigerator energy usage into three primary components of thermal load:  baseline (conduction through 
the shell), occupant door-opening activity and associated food and air cooling, and defrosting.  Detailed 
metering of the refrigerator supported component-wise division of total consumption.  These components 
led to a better (more complete and more significant) understanding of the relationships between consump-
tion, the characteristics of the refrigerator, and its operating environment. 
 
 To illustrate the advantage of working with components instead of total consumption, consider the 
contrast between the baseline load and the occupant load.  The baseline energy flows through the walls of 
the refrigerator shell.  The occupant energy comes in through the open door.  While both loads are 
essentially driven by the temperature difference between the interior set point and the room temperature, 
the similarities nearly stop there. 
 
 The baseline load has little, if any, relationship to the number of occupants or their food usage 
patterns.  The baseline load is strongly related to the label rating because both are indicators of the 
refrigerators’ ability to resist (with insulation) and remove (with the compressor) energy flowing in 
through the shell.  State-of-repair issues related to refrigerator age and the condition of the shell and seals 
will be reflected in a higher baseline load. 
 
 The occupant load has little, if any, relationship to the shell (and its insulation) but rather is a 
reflection of occupant usage and how efficiently the compressor can remove the associated food and 
door-opening energy.  Occupant characteristics, such as age and number, that affect usage patterns should 
correlate with the occupant load. 
 
 Defrost events occur in response to the baseline and occupant loads.  Defrost events are triggered by 
the accumulation of compressor run time, and so the defrost load is expected to correlate strongly with the 
sum of the baseline and occupant loads. 
 
 The process of separating these three load types begins with identifying the baseline load.  At any 
given point in time, the refrigerator may be responding to one or all three of these load types.  However, 
in the early morning hours of each day before the occupants begin to use the refrigerator, the refrigerator 
will remove all occupant-related loads and reach a steady state.  Consumption will be at a minimum 
(except for the occasional defrost event).  At these times the consumption is purely in response to the 
baseline load and is roughly proportional to the temperature difference across the refrigerators shell. 
 



  3.3

 Using this information, a time-series for the baseline load can be established using monitored 
compartment and ambient temperatures.  A time series of the temperature difference (∆T) across the shell 
is calculated.  Then the ∆T record is simply scaled with a proportionality constant until it coincides with 
the total power records during these times of pure baseline load (see Figure C.4). 
 
 Defrost periods are identified by analyzing the time-series records of freezer temperature and total 
power usage (see Appendix C.2).  Sudden rises in freezer temperature and power usage are generally a 
clear indicator of the start of the defrost period. 
 
 The components of energy usage are then calculated by time-based integration of the total and 
baseline components.  The total energy usage is the integral of the total power time series.  The baseline 
energy is the integration of the baseline time series.  The defrost energy is calculated from a time series of 
the difference between the total and the baseline load, and knowledge of the start and end times for each 
defrost event (see Section C.5).  After the baseline and defrost components have been identified, the 
remaining component of the total is the occupant load. 
 
3.2 Adjusting Metered Consumption for Annual Average Conditions 
 
 To best determine the savings that would occur under annual average conditions in New York City 
public housing, the metered consumption recorded at each site was adjusted using a correction factor (see 
the linear adjustment method in Section B.2 of the first project-year report [Pratt and Miller 1997]). 
 

 
           site      

rageannual ave
siterageannual ave T

T
EE

∆
∆

=  (3.1) 

 
where ∆T = Tamb - Tint 
 Tamb = room temperature 
 Tint = surface area-weighted average of the two compartment temperatures. 
 
Annual average ambient and compartment temperatures are estimated and then subtracted to form an 
annual average temperature difference (∆Tannual average).  Consumption at sites with ∆T conditions higher or 
lower than the annual average is adjusted by the ratio of the annual-average ∆T to the site’s measured ∆T.  
Consumption at sites with unusually warm room temperature is reduced and consumption at mild sites is 
increased by this adjustment factor. 
 
 To estimate annual average ambient condition (Tamb annual average in Equation 3.1), a relationship 
between indoor and outdoor temperatures for public housing in New York City is established.  This 
relationship is based on measurements of indoor temperature and the daily outdoor temperature records 
from the National Climate Data Center (see Figure 3.1 and Section 4.2 of the 1996 project-year report 
[Pratt and Miller 1997]).  The data used here include the snap-shot scanner measurements made in 1996 
and the detailed logger measurements made in 1997.  As shown in Figure B.1, in measurements of room 
temperature, snapshot scanner data correlates well with the daily averages produced from the logger data. 
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Figure 3.1.  Relationship Between Indoor and Outdoor Temperatures 

 
 This relationship between indoor and outdoor temperature is used to produce a long-term average 
indoor temperature for the typical public-housing apartment in New York City.  This average temperature 
is determined by driving the relationship with long-term average monthly outdoor temperature data (see 
Outdoor trace in Figure 3.2).  The results are predictions of the indoor temperature by month (see Indoor 
trace in Figure 3.2).  These 12 indoor points are then averaged to produce an annual average indoor 
temperature of 79.3°F. 
 
 The annual average interior temperature was set to 28.1°F (Tint annual average in Equation 3.1).  This value 
is derived from a surface area weighted average of a 38°F fresh-food temperature and a 5°F freezer 
compartment temperature (0.7*38 + 0.3*5).  These compartment temperatures are common set points 
used in testing (10 CRF 430).  This interior target is very close to the average of the interior temperature 
recorded for the existing automatic-defrost refrigerators, excluding malfunctioning refrigerators (28.3°F = 
39.16*0.7 + 3.1*0.3).  It is assumed that the controls in the refrigerators keep the interior temperatures 
relatively constant throughout the year. 
 
 The ambient and internal annual targets are combined to produce a target ∆T of 51.2°F.  For site ∆T 
near 50°F, a 1°F change in target ∆T results in approximately a 2% change in savings (1 part in 50). 
 

! 1996 
• 1997 
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Figure 3.2.  Response of Indoor Conditions to Outdoor Conditions 
 
3.3 Constructing Relationships Between Consumption and Site/Refrigerator 

Characteristics 
 
 The development of consumption models starts with analyzing patterns and relationships in the 
metered sample.  These relationships are needed so that consumption can be estimated for refrigerator 
models not represented in the metered sample. 
 
3.3.1 Categorical Effects 
 
 Total consumption, components of consumption, and various parameters that describe the operating 
environment are presented in Table 3.1.  This summary is organized to illustrate differences in 
consumption as affected by two key categorical variables(a)—the type of refrigerator (manual or 
automatic) and the type of occupants (elderly or not). 
 

                                                      
(a) Continuous variables represent quantitative data having a continuous range of values.  Categorical 

variables, by contrast, represent qualitative data and are discrete, meaning they can assume only 
certain fixed numeric or nonnumeric values. 



  3.6

Table 3.1.  Summary of Field Data by Defrost Characteristics and Occupant Age 
 

  Existing 
Automatic Manual 

Parameter 
 

New Existing Young Elderly E&Y(a) Young Elderly E&Y 
Label, kWh/yr 437 792 715 646 709 887 919 898 
Year 1997 1987 1992 1993 1992 1980 1980 1980 
Age 0 10 5 4 5 17 17 17 

Label 
data on 
sample 

Volume, cft 15.0 13.1 13.8 13.6 13.8 12.1 12.0 12.1 
Food [1-4] 1.73 1.52 1.68 1.40 1.66 1.47 1.13 1.34 Misc data 
Frost, in. 0.00 0.20 0.00 0.00 0.00 0.48 0.39 0.45 
Total usage 1.11 1.10 1.20 1.11 1.19 1.11 0.72 0.96 
Occupant 0.41 0.28 0.38 0.26 0.37 0.19 0.11 0.15 
Baseline and 
defrost 

0.70 0.72 0.71 0.85 0.73 0.83 0.61 0.71 

Usage as 
fraction 
of label 

Defrost 0.087 0.048 0.078 0.082 0.079 0.00 0.00 0.00 
Total usage, 
kWh/yr 

484 859 876 715 862 961 664 850 

Occupant, kWh/yr 179 215 280 167 267 169 98 131 
Baseline, kWh/yr 270 543 457 496 461 750 566 661 

Usage 

Defrost, kWh/yr 38 35 56 52 56 0 0 0 
Ambient, °F 80.9 80.3 80.7 77.6 80.4 80.4 79.7 80.1 
Fresh Food, °F 38.7 40.5 40.1 37.2 39.8 40.2 43.1 41.3 

Temps 

Freezer, °F 1.3 6.1 5.0 -2.5 4.3 7.5 10.1 8.4 
Frig counts/day (n) 33.4 

(9) 
46.7 
(71) 

51.5 
(40) 

48.8 
(2) 

51.3 
(42) 

44.3 
(20) 

28.6 
(8) 

39.8 
(28) 

Frez counts/day (n) 10.1 
(11) 

14 
(70) 

15.8 
(41) 

5.9 
(3) 

15.1 
(44) 

16 
(17) 

4.8 
(9) 

12.1 
(26) 

Frig open time, % 
(n) 

0.94 
(9) 

0.9 
(71) 

0.97 
(40) 

0.86 
(2) 

0.96 
(42) 

0.92 
(20) 

0.44 
(8) 

0.78 
(28) 

Door 
openings 

Frez open time, % 
(n) 

0.21 
(11) 

0.31 
(71) 

0.26 
(42) 

0.09 
(3) 

0.25 
(45) 

0.4 
(17) 

0.45 
(9) 

0.42 
(26) 

Sample 15 103 53 5 58 29 16 45 Count 
High duty cycle 0 14 7 0 7 7 0 7 

(a) Elderly and young. 
 
 The elderly classification is determined at the development level and is an indicator of whether the 
development is predominately elderly or not.(a)  The elderly classification was assigned to all housing 
developments with an elderly/total count ratio greater than 0.25 and total/family count ratio less than 2.0.  
These developments include Laguardia, Haber, and Wise. 
 

                                                      
(a) Data on the number of occupants and their ages were collected at each apartment in the sample.  

These data were not used in this analysis because the quality of the data was questionable based on 
difficulties in data collection. 
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 The effects of refrigerator type and occupant age are seen clearly in both total consumption and the 
occupant-consumption component when expressed as consumption ratios (fraction of label rating).  The 
existing automatic refrigerators show a 24% ((1.19-0.96)/0.96) higher total-consumption ratio when 
compared with the existing manual-defrost refrigerators.  The existing automatic refrigerators show a 
150% ((0.37-0.15)/0.15) higher occupant-consumption ratio when compared with the existing manual 
refrigerators.  For automatic refrigerators, the apartments in buildings populated mostly by nonelderly 
occupants showed a 46% ((0.38-0.26)/0.26) higher occupant-consumption ratio when compared with 
those populated mainly by elderly occupants.  For manual refrigerators, the apartments in buildings 
populated mostly by nonelderly occupants showed a 73% ((0.19-0.11)/0.11) higher occupant-
consumption ratio when compared with those populated mainly by elderly occupants. 
 
 Higher consumption ratios for automatic refrigerators and nonelderly occupants are also reflected in 
the food-loading and door-opening activity data.  Higher occupant activity for the nonelderly is indicated 
in all the activity variables except for freezer door-open time for manual refrigerators.  Higher consump-
tion for automatic refrigerators, independent of occupant age, is shown by the higher consumption for the 
automatic refrigerators compared with the manual refrigerators in the nonelderly-occupied apartments. 
 
3.3.2 Continuous Effects 
 
 The refrigerator’s label rating is expected to be the strongest predictor of consumption among the 
variables describing the operating environment or characteristics of the refrigerator.  However, as seen in 
Figure 3.3, the label rating is not, by itself, an excellent predictor of total consumption.  The label rating 
fails to account for most of the large amount of variation in total consumption.  Seventy-five percent of 
the variation is unaccounted for with the R2 of 0.25 achieved with this simple relationship.  This is 
expected because occupant activity is not at all represented in the label rating but is known to strongly 
affect total energy consumption. 
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Figure 3.3.  Total Consumption Modeled by Label Rating 
 
 A plot of the baseline component by itself yields a much stronger correlation (R2 = 0.56) with the 
label rating (Figure 3.4).  A large reduction in scatter is seen when Figure 3.3 is compared with 
Figure 3.4.  This reduction is especially distinct when considering the new refrigerators plotted in each 
figure at a label rating of 437 kWh/yr. 
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Figure 3.4.  Baseline Component Modeled by Label Rating 
 
 The age of the refrigerator is also expected to account for part of the variation in the baseline 
component.  Older refrigerators are more likely to have damaged seals or walls, or wet insulation.  The 
prediction lines in Figure 3.4 result from including age in a regression model of the baseline component 
(see Section 3.3.4).  The top line is a prediction for refrigerators 13 years of age.  The lower line is a 
prediction for new refrigerators (age 0 years). 
 
 The response of the occupant-consumption ratio to door-opening events is shown in Figures 3.5 
through 3.9.  These plots show the occupant-consumption ratio increasing with door-opening counts or 
door-open duration.  Figure 3.5 shows the occupant-consumption ratio’s relationship to the sum of the 
fresh-food and freezer door-opening counts.  The points in Figure 3.6 are a subset of those in Figure 3.5 
and represent only refrigerators with automatic defrost.  The points in Figure 3.7 are a subset of those in 
Figure 3.5 and represent only the refrigerators with manual defrost. 
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Figure 3.5.  Occupant Component for Automatic and Manual Refrigerators 
 
 The automatic refrigerators have a higher response to occupant activity than do the manual 
refrigerators.  This result further supports observations made in the previous section.  Even when 
normalized by the label ratings, the automatic refrigerators show higher occupant loads than manual 
refrigerators at the same level of occupant activity.  This difference in occupant load is evidence of a 
physical difference between the manual and automatic refrigerators that is not represented in the label 
rating. 
 
 Improved correlation between the occupant-consumption ratio and the occupant activity variables can 
be achieved by regressing against combinations of the occupant activity variables.  Through regression 
techniques, the best fit can be found and insignificant variables (those that do not help account for 
variance in occupant-consumption ratio) can be dropped.  The best fits for automatic and manual 
refrigerators are shown in Figures 3.8 and 3.9, respectively.  The improvement in correlation can be seen 
when these two plots are compared with Figures 3.6 and 3.7.  Again, evidence of a physical difference 
between the manual and automatic refrigerators exists that is not represented in the label rating.  The 
automatic refrigerators show a significant response to door-open duration that is not seen in the manual 
refrigerators.  The manual refrigerators respond mainly to the number of freezer-door openings.  A 
discussion of the differences between refrigerators with manual and automatic defrost is given in 
Section 3.3.3. 
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Figure 3.6.  Occupant Component for Automatic Refrigerators 
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Figure 3.7.  Occupant Component for Manual Refrigerators 
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Figure 3.8.  Occupant Component and Model of Automatic Refrigerators 
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Figure 3.9.  Occupant Component and Model of Manual Refrigerators 
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 The defrost component relates strongly to the sum of the baseline and occupant components.  This 
relationship is shown in Figure 3.10, and reflects the fact that the defrost events are triggered by a 
compressor run-time accumulator.  Defrost events are initiated whenever the accumulator reaches a set 
threshold.  The duration of the defrost event is determined by a coil-temperature sensor that terminates the 
event when the temperature reaches a target level.  If there is no ice to melt, the duration will be relatively 
constant from one event to the next.  The remaining variance in Figure 3.10 is probably due to differences 
in manufacturers’ defrost hardware and variations in the amount of humidity (and associated propensity 
for ice accumulation) in different apartments. 
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Figure 3.10.  Defrost as Modeled by Sum of Baseline and Occupant Components 
 
3.3.3 Discussion:  Differences Between Manual and Automatic Defrost 
 
 As is seen in the summaries of the categorical data (Table 3.1) and the plots of the continuous data 
(Figure 3.5 through 3.9), the manual refrigerators appear to have less of an energy penalty (per unit of 
label) associated with opening the fresh-food compartment than the automatic refrigerators.  A 
manufacturer of refrigerators was presented with these observations and PNNL requested an 
interpretation.  In discussions with the manufacturer, several physical differences generally found 
between manual and automatic refrigerators, that are not accounted for in normal label rating testing, 
were identified: 
 
1. Manual refrigerators have no fan.  Automatic refrigerators have a fan that blows air over the 

evaporator coil and distributes air to the fresh-food and freezer compartments.  When the doors are 
opened, this fan will continue to run if the compressor is on, or will start to run as warm room air 
comes into contact with the thermostat control.  No feature exists to disable the compressor and fan 
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when the door is open.  As a result, the fan operation greatly increases the heat exchange through the 
open door.  Basically, cold air is being blown out into the room.  It was suggested that the strength of 
this effect may be proportional to the volume of the refrigerator (the larger automatic refrigerators 
have more cold air to exchange). 

 
2. Newer automatic refrigerators tend to have larger light bulbs than older manual refrigerators. 
 
3. Ice accumulation in the manual refrigerators may be causing an artifact interaction with the analysis 

process.  If manual refrigerators have some ice accumulation, this accumulation may reduce their 
capacity and raise the fraction of the total consumption that is identified as baseline because quiet 
times (time of equilibrium) are less likely to be reached during the night (see Appendix C, 
Section C.3).  The potential result is an overestimate of the baseline load and an equal underestimate 
of the occupant load.  Some evidence of this effect is apparent in Table 3.1 when comparing the 
automatic-young category with the manual-young category:  the manual refrigerators have lower 
occupant load (as fraction of label) but higher baseline load.  However, when the automatic-elderly 
and young (E&Y) category is compared with the manual-E&Y category, this pattern is not seen—the 
occupant load is significantly lower for the manual refrigerators and the baseline load is 
approximately the same.  This effect appears to be secondary to effects 1 and 2 above. 

 
 The manufacturer observed that the metered estimates of defrost energy appeared somewhat low.  
The difficulties associated with identifying the defrost component are discussed in Appendix C.  At sites 
with high occupant usage, the estimated defrost component is probably lower than the actual defrost 
component [and the estimate of the occupant component is higher than actual].  If process bias were the 
major cause of the higher occupant component for the automatic refrigerators, the effect would not be 
seen strongly in the totals.  However, the behavior is clearly seen in the label-normalized usage totals in 
Table 3.1 (the total consumption ratio was 1.19 for automatic refrigerators and 0.96 for manual 
refrigerators). 
 
 Section C.5 discusses a test that was run to estimate the sensitivity of the savings estimate to the split 
between the occupant and defrost components.  The sensitivity test showed the modeled-savings estimate 
to be very insensitive to the split between defrost and occupant components.  A 50% increase in the 
defrost component caused a relatively small 1% increase in the savings estimate. 
 
3.3.4 Regression:  Model Structure and Constants 
 
 Observations discussed in Sections 3.3.1 and 3.3.2, along with an additional exploratory regression 
analysis, led to the functional form for a consumption model shown in Equation 3.2 and Table 3.2.  This 
functional form reflects the key findings from the analysis of the metered sample: 
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Table 3.2.  Summary of Model Coefficients 
 

Variable Coefficient t-value 
L a1 = 0.589 15.9 
L*Nage a2 = 0.0137 4.1 
L*Celderly a3 = -0.0844 NA 

Baseline 

L*Nage*Celderly a4 = -0.00196 NA 
Intercept a5 = 169 5.7 
Cdefrost a6 = -222 -4.2 
Ebaseline*Cdefrost a7 = 0.750 7.5 
Celderly a8 = -66.7 NA 
Cdefrost*Celderly a9 = 87.7 NA 

Occupant 

Ebaseline*Cdefrost*Celderly a10 = -0.296 NA 
Defrost (Ebaseline+Eoccupant)*Cdefrost a11 = 0.0714 21.4 

 
Baseline Component 
 

• The baseline component correlates well with label rating. 
 

• Evidence of refrigerator degradation is significant in the baseline data.  Older refrigerators are more 
degraded. 

 
• Refrigerator degradation is also related to the ages of the occupants, indicating the refrigerators in the 

elderly apartments are better maintained. 
 
Occupant Component 
 

• The propensity for occupant consumption per unit of occupant activity is expected to be primarily 
driven by the volume of the refrigerator and the characteristics of its compressor.  The aggregate of 
these characteristics is indirectly represented in the refrigerator’s label rating.  But in terms of 
explaining variance in the sample data, the baseline component itself appears to be the best 
fundamental characteristic, perhaps because it better reflects the vapor-compression cycle’s 
degradation with age. 

 
• The propensity for occupant consumption per unit of occupant activity is also strongly affected by 

whether the refrigerator automatically or manually defrosts.  This effect is distinct from the label 
rating (or baseline component) because the behavior is more clearly seen in label-normalized data.  A 
categorical variable that represents whether the refrigerator is automatic or manual is critical to 
account for variance in the occupant component. 
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• Occupant activity strongly affects occupant consumption.  A categorical variable that describes 
whether the apartment buildings are predominantly populated by elderly people is a good indicator of 
refrigerator usage. 

 
Defrost Component 
 

• The defrost component correlates well with the sum of the baseline and occupant components. 
 
 defrostoccupantbaselinetotal EEEE ++=  (3.2) 
 
where Ebaseline = f(label rating, refrigerator age, elderly) 
 Eoccupant = f(Ebaseline, defrost type, elderly) 
 Edefrost = f(Ebaseline + Eoccupant) 
 
or more explicitly 
 
 Ebaseline = L ! (a1 + a2Nage + a3Celderly + a4NageCelderly) 
 Eoccupant = a5 + a6Cdefrost + a7EbaselineCdefrost + a8Celderly + a9CdefrostCelderly + a10EbaselineCdefrostCelderly 
 Edefrost = a11 ! (Ebaseline + Eoccupant) 
 
where Etotal = total annual energy consumption, kWh/yr 
 Ebaseline = baseline component of total energy consumption, kWh/h 
 Eoccupant = occupant component of total energy consumption, kWh/h 
 Edefrost = defrost component of total energy consumption, kWh/h 
 L = label rating, kWh/yr 
 Nage = age of refrigerator, years 
 Celderly = categorical variable [elderly(1), nonelderly(0)] 
 Cdefrost = categorical variable [automatic(1), manual(0)]. 
 
 The categorical variables Celderly and Cdefrost are binary.  For example, Cdefrost is 1 for refrigerators with 
automatic defrosting and 0 for manuals.  The contribution from a model term with categorical variables is 
zero unless all the categorical variables in that term are 1.  For example, the last term in the occupant 
component model, Econd*Cdefrost*Celderly, is zero for apartments with manual refrigerators or apartments in 
buildings with primarily elderly occupants. 
 
 The model is structured so that each term with a Celderly categorical variable has a corresponding term 
but without the Celderly variable.  Because of this parallel structure, the terms with Celderly act as modifiers 
to their corresponding nonelderly terms.  For nonelderly cases the elderly term drops out; for elderly cases 
the elderly term acts as a modifier to the nonelderly term.  For example, the second and forth terms in the 
baseline model are a pair of this nature.  This parallel structure is used to accommodate elderly effects in 
the baseline and occupant models. 
 
 The coefficients for all terms that include the Celderly categorical variable are derived from the 
regression coefficients for the nonelderly sites and field component data observed at the elderly sites.  
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This method was used in part to resolve regression difficulties resulting from the small number of elderly 
sites that had automatic refrigerators.  It is applied to both the baseline and occupant component models. 
 
 The approach is to model the elderly sites by applying a correction factor to the form regressed from 
the nonelderly sites.  The correction factor is simply the mean of the ratio of the observed field 
component data to the predicted component data at the elderly sites: 
 

 





=

)x(F
C

G
i

i
correction !  (3.3) 

 
where F = model of energy component (based on nonelderly sides) 
 Ci = metered component of consumption at elderly site i 
 ix!  = model input parameters at elderly site i. 
 
For example, for the baseline model the correction factor is 0.857 and for the occupant model the 
correction factor is 0.605.  Correction factors less than 1 indicate that models based purely on the 
nonelderly sites overestimate the consumption observed at the elderly sites. 
 
 The coefficients of the terms with the Celderly categorical variable can then be derived using the correc-
tion factor.  It is assumed that the model terms with the categorical variable Celderly are linearly related, 
though a factor “k,” to those derived using nonelderly sites.  Then the additive modifiers of the categori-
cal terms must equal the product of the correction factor and nonelderly model. 
 
 )x(Fk)x(F)x(FG iiicorrection

!!!
⋅+=⋅  (3.4) 

 
Reducing the equation gives the result for the term factor that will derive elderly coefficients from the 
nonelderly coefficients. 
 
 1Gk correction −=  (3.5) 
 
For example, the coefficient of the term LCelderly in the baseline model is calculated from the coefficient 
on the L terms as follows (see Table 3.2): 
 
 -.084 = (0.857 – 1) ! 0.589 (3.6) 
 
3.4 Estimating Energy Savings 
 
 This section illustrates how the regression relationships of Section 3.3.4 can be applied to estimate the 
energy savings in a replacement program.  The example presented here uses the 1997 replacement 
program in NYCHA housing. 
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 The regression models predict the total annual consumption of each existing and corresponding new 
refrigerator in the replacement program, which includes refrigerator models not represented at all in the 
metered sample.  The relationship for total annual energy consumption (Equation 3.2) is evaluated for the 
population of refrigerators; i.e., for all distinct models of existing refrigerators found in each housing 
development.  The characteristics of each distinct refrigerator model and the type of occupants in the 
building in which the refrigerators are located (dominated by elderly or nonelderly occupants) are inputs 
to the regression models.  Sample and population average values of these parameters are shown in 
Table 3.3. 
 

Table 3.3.  Sample and Population Average Modeling Parameters 
 

Sample 
Existing Population 

Parameter 
New 

Automatic All Manual Automatic All Manual Automatic 
Label, kWh/yr  437  792  898  709  862  910  728 
Age  0.0  10.1  16.7  5.0  13.0  15.5  5.8 
Volume, ft3  15.0  13.1  12.1  13.8  12.7  12.4  13.6 
Count  15  103  45  58  14,080  10,401  3679 
Part of total  100%  100%  44%  56%  100%  74%  26% 
Elderly Count  0  21  16  5  748  682  66 
Part of subtotal  0%  20%  36%  9%  5%  7%  2% 
 
 For each distinct model of refrigerator (j), the corresponding counts, nj of that refrigerator, are used to 
produce a count-weighted average for existing and new refrigerators (Equations 3.7 and 3.8).(a) 
 

 
total

j

j
j@newnew n

n
EE ⋅= ∑  (3.7) 

 

 
total

j

j
j@existingexisting n

n
EE ⋅= ∑  (3.8) 

 
 Refrigerators in the population with high duty cycle behavior (malfunctioning) cannot be represented 
with the component models.  As discussed in Section C.6, the components of energy consumption for 
these refrigerators could not be established in the metered sample, and therefore the component models do 
not in any way represent the higher consumption levels of these malfunctioning refrigerators. 
 
 Rather, high duty cycle behavior is accounted for by estimating the consumption level of typical high 
duty cycle refrigerators in the population and the high duty cycle refrigerator fraction of the population.  

                                                      
(a) When either a model number was unknown or a label rating could not be found for an existing 

refrigerator, the refrigerator is excluded from the savings analyses (4% are excluded in 1997). 
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Their consumption level is estimated as the product of their label ratio in the sample and the average label 
of the existing refrigerators in the population (Equation 3.9). 
 

 
samplehdc

total
existinghdc R

ERE
−
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
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⋅=  (3.9) 

 
Their fraction in the population (xhdc=0.173) is estimated by scaling the fraction found in the metered 
sample (xhdc-sample=0.135) with age (Equation 3.10).  If the population is older than the sample, the high 
duty cycle fraction in the sample is scaled up by the age ratio to represent the population. 
 

 


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The overall average consumption for the existing refrigerators is then calculated with the high duty cycle 
fraction for the population.  It is represented as the blended average of those existing refrigerators having 
high duty cycle behavior and those that do not (Equation 3.11, and the column titled “Blend” in 
Table 3.4). 
 
 ( ) hdchdcexistinghdcexisting ExEx1E +−=′  (3.11) 
 
 The estimated per-unit savings is then calculated as the difference between the average consumption 
for the existing refrigerators and the average consumption for the new refrigerators (Equation 3.12).  The 
results for 1997 are given in Table 3.4. 
 
 newexistingsavings EEE −′=  (3.12) 

 
Table 3.4.  Energy Savings Estimate for the Population 

 

Existing
High Duty Cycle Normal Blend

Fraction of population 17% 83% 100% 100% 0%
Label, kWh/yr 862 862 862 437 425
Baseline, kWh/yr NA 664 NA 256 NA
Occupant, kWh/yr NA 203 NA 136 NA
Defrost, kWh/yr NA 15 NA 28 NA
Total, kWh/yr 1351 882 963 420 543
Label Ratio 1.57 1.02 1.12 0.96 0.16

Parameter New Difference
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 Differences between the characteristics of the sample and the population are summarized in 
Table 3.3.  The sample consisted of 56% automatic refrigerators while the population actually had only 
26% automatic refrigerators.  Of the apartments sampled with existing refrigerators, 20% of the 
refrigerators were in buildings classified as elderly, while in the population only 5% were classified as 
elderly.  The average age in the sample was 10.1 years but was significantly higher at 13.0 years in the 
population. 
 
 The average label for the existing refrigerators in the sample was 792 kWh/yr but was significantly 
higher in the population at 862 kWh/yr.  The higher average label in the population mainly reflects the 
higher concentration of older manual refrigerators, but also the manual and automatic label averages in 
the population are slightly higher than their corresponding averages in the sample. 
 
 These differences between the characteristics of the sample and the characteristics of the population 
are the fundamental reason why the modeled result for the population savings (543 kWh/yr) is 
substantially different than the savings indicated directly in the sample data (361 kWh/yr, raw with no ∆T 
adjustment; 375 kWh/yr, ∆T adjusted).  Higher refrigerator age and a lower concentration of elderly in the 
population will increase the modeled estimate of consumption (and corresponding savings) for the 
population. 
 
 The higher representation by the manual refrigerators in the population impacts the modeled savings 
estimates in two opposing ways.  The higher label ratio of the existing manual refrigerators increases the 
savings estimate but the lower occupant consumption associated with manual refrigerators decreases it.  
However, the label effect is more dominant.  The higher concentration of manual refrigerators in the 
population is responsible for part of the higher (than the sample) modeled-population consumption (and 
corresponding savings). 
 
 The new refrigerators are significantly larger than the average replaced refrigerators (15.0 ft3 
compared to 12.7 ft3), providing considerable added amenity for the residents.  Because refrigerator heat 
loss and hence energy consumption are directly proportional to surface area, savings would be even 
higher if the new refrigerators were the same size as the existing refrigerators.  A simple estimate of the 
extra energy savings that would have occurred had the existing refrigerators been as large as the new 
refrigerators (based on the ratio of the volumes) is 174 kWh/yr. 
 

=−





= 963

ft7.12
ft0.15963effectvolume 3

3

174 kWh/yr 

 
3.5 Demand Savings by Time of Day and Year 
 
 This section describes the development of the time-of-day load-shape curves from refrigerators 
monitored in New York City in 1997.  It also presents an example (NYCHA Housing 1996) of how these 
load curves can be used with building peak data in estimating demand savings. 
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3.5.1 Demand Savings and Load Shapes 
 
 Coincident peak demand for the refrigerators in this project are calculated based on their contribution 
to the building load at the time of building-peak power usage: 
 
 )t(FPP coincidentaverage/peakaveragepeak =  (3.13) 

 
where Ppeak = annual average power at time of building peak, kW 
 Paverage = annual average refrigerator power consumption, kW 
 Fpeak/avearage = ratio of hourly average to total average (by time of day) 
 tcoincident = time of day for building peak (coincidence information). 
 
Paverage is based on gross power-usage records (either metered or modeled) for each model of refrigerator 
and is simply the annual load estimate divided by the number of hours in a year. 
 

 
8760

EP annual
average =  (3.14) 

 
where Eannual = annualized energy consumption (kWh/yr). 
 
 The Fpeak/average is determined from detailed field monitoring on 94 refrigerators (each logged at 
15-minute intervals for approximately six or more days).  A plot of Fpeak/average is shown in Figure 3.11 as a 
function of time of day.  Each point on this plot is determined by the average consumption for a specific 
hour divided by the average consumption for all 24 hours. 
 
 To remove cycling variations (and anomalous contribution to the load shape), the individual time-
series data are first smoothed by substituting the average values resulting from a moving window (see 
Section C.1).  Each of the 94 time series is averaged by hour of day.  These 94 load shapes are then given 
equal weight in determining the overall average load shapes.  This averaging of the averages is necessary 
to avoid giving higher weight to the refrigerators with longer monitoring periods. 
 
 The refrigerators were monitored for a week each during the period January to September.  If the 
results are separated into two seasons, winter and summer (summer start dates ranging from 5/15 to 9/15), 
the load shapes appearing in Figure 3.11 result.  For refrigerators metered in the summer, the peak load 
(maximum value of Fpeak/average) occurred at 9 p.m.  The load at summer peak was 1.132 times higher than 
the average load.  For refrigerators metered in the winter, the peak load occurred at 4 p.m.  The load at 
winter peak was 1.094 times higher than the average load. 
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Figure 3.11.  Seasonal Variations in Coincident Demand Peak 
 
3.5.2 Summer and Winter Coincident Peak 
 
 Fpeak/average (tcoincident) is then determined as the value of F peak/average at the time of building peak 
consumption.  For example, this can be done for both summer and winter periods using the average of 
building peak-time data from 10 buildings in New York City.  (See Table C.1 on building data in the final 
report from project year 1996 [Pratt and Miller 1997].) 
 
 The building summer peak (8:58 p.m.) and the building winter peak (6:48 p.m.) are shown with 
vertical lines in Figure 3.11.  The coincident peak in the refrigerator’s seasonal-load shapes is marked 
with an X.  The time-weighted average of these two F values, 1.095, is used to represent the whole year. 
 

 
12

)4132.18077.1(095.1 ⋅+⋅=   

 
 The annual average demand power at building peak is then the product of F peak/average and the annual 
average refrigerator wattage (annual kWh/8760).  These demand power values are calculated and shown 
for both existing and new refrigerators in Table 3.5. 
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Table 3.5.  Energy and Demand Consumption and Savings 
 

Existing, Consumption 862  1.12 963  0.120
New, Consumption 437  0.96 420  0.053

Savings 543  0.068

Label 
kWh/yrRefrigerator Group Energy 

kWh/yr
Demand 

kW
Label 
Ratio
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4.0 Future Applications of the Regression Models 
 
 
 The following sections discuss the application of the regression models in estimating savings in future 
years in New York City and in other cities.  Limitations of the models are identified and discussed.  These 
sections also serve to point to future work that could extend the applicability of the regression models. 
 
4.1 Primary Limitations 
 
 The regression models have only very simple demographic capabilities.  The most significant 
shortcoming in the data collection process was in characterizing the occupants in the metered apartments.  
As was mentioned in Section 3.3.1, the quality of the survey of occupant characteristics, in the metered 
apartments, was determined to be low.  Mainly for this reason, only a gross categorical variable was used 
to describe the demographics of the sample and population: predominately elderly or not.  This funda-
mentally limited our capability to model the occupant component of the load.  A consequence, likely 
related to the demographic issue, is the lack of significance of the volume characteristic in the regressions. 
 
 Refrigerator volume did not appear significant in our analysis.  This might be expected because of the 
relatively small spread in refrigerator sizes in the population (constrained by kitchen size and layout).  A 
more diverse population of refrigerator sizes would likely give added strength to volume terms in the 
regression models.  However, it is expected that volume and demographic variables interact (high-volume 
refrigerators, per unit of label, with high door-opening usage will have a higher occupant component, per 
unit of label, than a corresponding smaller refrigerator).  And so it is thought that the lack of significance 
of the volume terms may be partially caused by variance left in the regression model due to the weak 
demographics. 
 
 An obvious action to improve the occupant characteristics in the metering database is to either 
re-survey those apartments using different survey methods or to use existing NYCHA demographic data 
on those apartments.  As time goes by, an after-the-fact survey will deviate from the actual demographics 
existing during the 1997 metering.  The NYCHA demographics records hold the most promise for better 
representation. 
 
 Moisture (humidity) is not accounted for in the regression models.  Discussions with refrigerator 
manufacturers informed us that high humidity could significantly increase the defrost component.  
However, this study shows the defrost component to be less than ten percent of the totals in New York 
City and therefore, a significant change in the defrost component might be expected to cause as much as a 
ten percent increase or decrease in bottom-line savings. 
 
 The regression models do not account for significant design changes whose impact might not be seen 
in standard label testing procedures.  A design change that affects field performance but does not affect 
label testing (no door openings) performance, would not be accounted for in these models.  For example, 
if a switch was installed to disable the fan and compressor when the door is open, this would reduce the 
occupant component but would have no impact on the label rating. 
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4.2 New York City in Future Years 
 
 If the replacement refrigerators are identical to those used in the 1997 project year, there are no 
significant changes that would diminish the validity of the models.  The existing refrigerators that are 
removed may be somewhat different in age and model type than those removed in 1997.  But it is thought 
that subtle changes in the characteristics of population (as the program moves on to different NYCHA 
developments) can be accounted for in the regression models. 
 
 If the compartment-to-ambient temperature difference is significantly different in subsequent years, 
the models’ outputs must be adjusted.  For example, if in some future year air-conditioning is installed in 
all apartments, the target ∆T1997 used in this analysis would not be appropriate; the savings estimate would 
be too high.  The regression model estimate of savings should be corrected by the following factor: 
 

 
1997

future

T
TF

∆
∆=  (4.1) 

 
 If the replacement refrigerator has a significantly different design or volume (from the replacement 
refrigerator in 1997) then the model should be applied only to the existing units.  The least costly 
approach, in this case, is to meter a small sample of new units (20 to 30) and use a simple temperature-
corrected average of their annualized total energy usage.  Caution should be used in selecting the apart-
ments for monitoring; the apartments selected should be those that best represent the population.  For 
example, if the population is not predominately elderly, do not meter units that are occupied by elderly 
people. 
 
4.3 Other Cities 
 
 The regression models should only be applied in another city if it can be characterized as similar to 
New York.  The similarity must be in the areas where the model is the weakest: demographics and 
refrigerator volume.  Some changes in climate can accommodated. 
 
 If the monthly outdoor temperatures are significantly different from New York, but the apartment 
buildings and their operation are similar, the relationship shown in Figure 3.1 could be used to develop a 
new annual average kitchen temperature. 
 
 There is no method at this time to estimate the impact of a change to a high- or low-humidity climate. 
 
 It is thought that a calibration/test exercise would be a prudent first step before applying the 
regression models to other sites.  In this exercise, the model is compared to the results of a metering study 
in another city. 
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5.0 Conclusions 
 
 

• The baseline component correlates strongly with label rating and the age of the refrigerator.  
Evidence of refrigerator degradation is significant in the baseline data.  The magnitude of the effect is 
related to the age of the refrigerator.  (See Section 3.3.) 

 
• A categorical variable, which indicates if the apartment building is predominately populated by 

elderly occupants, was shown to be significant in the correlation with the baseline component, 
indicating that refrigerator degradation is related to the age of the occupants.  Apparently the 
refrigerators in the elderly apartments are better maintained.  (See Section 3.3.) 

 
• Occupant activity strongly affects the magnitude of the occupant component.  A categorical variable 

that describes whether the apartment buildings are predominantly populated by elderly occupants was 
found to be an adequate indicator of refrigerator usage.  (See Section 3.3.) 

 
• Refrigerators with automatic defrost have higher occupant consumption (on a label-normalized 

basis) per unit of occupant activity than refrigerators with manual defrost.  The fans in refrigerators 
with automatic defrost appear to significantly increase air exchange with the room during times that 
doors are open.  This effect is not represented in label ratings determined from closed-door testing.  A 
categorical variable that represents whether the refrigerator is automatic or manual is critical to account 
for variance in the occupant component.  (See Section 3.3.) 

 
• The propensity for occupant consumption per unit of occupant activity was expected to be primarily 

driven by the volume of the refrigerator and the characteristics of its compressor.  The aggregate of 
these characteristics is indirectly represented in the refrigerator’s label rating.  But in terms of 
explaining variance in the sample data, the baseline component itself appears to be the best 
fundamental characteristic, perhaps because it better reflects the vapor-compression cycle’s 
degradation with age.  Volume may appear in future studies as a more significant descriptive 
variable if there is more diversity in refrigerator volume in the population (and sample).  (See 
Section 3.3.) 

 
• The defrost component correlates well with the sum of the baseline and occupant components.  (See 

Section 3.3.) 
 

• Accounting for differences between the characteristics of the metered sample and the general 
population are important for the accuracy of the savings estimate.  Significant differences were 
found in several characterizing parameters:  age of existing refrigerators, concentration of manual 
refrigerators, building characteristics (predominantly occupied by elderly or nonelderly occupants).  
All of these effects contributed to significantly higher modeled savings for the population in 
comparison to the metered sample averages.  (See Section 3.4.) 
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• For refrigerators metered in the summer, the peak load occurred at 9:00 p.m.  The load at summer 
peak was 1.132 times higher than the average load.  For refrigerators metered in the winter, the peak 
load occurred at 4:00 p.m.  The load at winter peak was 1.094 times higher than the average load.  
(See Section 3.5.) 

 
• The regression models can be applied to future program years in New York City.  If future replace-

ment units are significantly different in design or volume it is recommended that the regression 
models be applied only to the existing units and that a sample of replacement units be monitored (see 
Section 4.0). 

 
• The regression models should not generally be applied to other cities.  Constraints in application 

originate in the limited capabilities of the regression models to represent effects driven by occupant 
usage and refrigerator volume.  With caution, the models can be applied in sites characterized as 
similar to NYCHA housing in New York.  Similarity needs to be judged based on demographics, 
apartment building characteristics and operation, refrigerator volume, and weather (see Section 4.0). 
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Appendix A 
 
 
 

Monitoring Equipment 
 
 
 Detailed monitoring of power consumption, occupant door events, and ambient and refrigerator 
compartment temperatures was done in each of 121 apartments.  Instrumentation included seven sets of 
data loggers.  Each of the seven sets of loggers was deployed weekly.  Each set includes six loggers: 
 
1. power 
2. room temperature 
3. fresh-food compartment temperature 
4. freezer compartment temperature 
5. fresh-food door events 
6. freezer door events. 
 
After four rounds of deployment (4 weeks, 28 apartments), the loggers were shipped to Richland, 
Washington for downloading and analysis of the data.  The empty loggers were then returned to New 
York City for another month of monitoring.  This process was repeated five times throughout a period 
starting in April 1997 and ending in November 1997. 
 
 Each logger is set to record a sample average every 15 minutes.  The result from each logger is a time 
series of 15-minute averages (96 points per day). 
 
 All loggers can operate off internal batteries.  This feature offers protection from the somewhat 
irregular power in the public housing apartment buildings in New York City and insures a continuous 
time series record even in the case of a power outage. 
 
A.1 Power Consumption 
 
 The power logger records a time series of voltage, current, true power, and power factor (Pacific 
Science and Technology; Elite-1 Logger).  Voltage and current are sampled at a rate of 7.68 kHz 
(128 points per waveform).  Sampled data are used to calculate true power and power factor.  Data are 
averaged and recorded every fifteen minutes.  The result is a time series with four averages recorded 
every hour (96 points per day). 
 
 The power logger has 12-bit resolution (1 part in 4096), corresponding to a resolution of 0.1 volts on 
the voltage measurement.  A 20-amp current transformer (CT) is used with the logger yielding a 
0.005-amp resolution (0.5% on a 1-amp load). 
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 The power logger is powered by either a D.C. transformer (wall plug-in) or on its internal batteries.  If 
wall power fails, the refrigerator continues to sample, but at a reduced rate, using its internal battery.  In 
either mode, the refrigerator yields a 15-minute average. 
 
 The power loggers can take 32000 readings.  In each 15-minute period, one reading is logged for each 
of four elements of the data record (voltage, current, power, power factor), yielding 96, 15-minute records 
in a day.  In this configuration the logger can make a continuous time series with a maximum length of 
83.3 days (32000/96/4). 
 
 The power instrumentation consists of two elements:  the logger electronics (right side in Figure A.1) 
and the CT box, power strip, and D.C. power supply (left side in Figure A.1).  The refrigerator is plugged 
into the CT box, which in turn is plugged into the power strip.  The CT box contains a CT and electrical 
connections for the line voltage sampling.  Current measurements are made on the power lines that pass 
through the CT.  Data is recovered from the logger via an RS-232 interface seen on the front edge of the 
logger box. 
 
A.2 Occupant Door Events 
 
 The event loggers make a time-stamp record of contact openings and closings in a reed switch 
(Brultech Research Inc; EL-100 Event logger).  The reed switch is mounted on the main body of the 
refrigerator and the magnet is mounted on the door (Figure A.2).  When the door opens (Figure A.3) and 
the magnet separates from the switch, the contact state of the switch changes.  Each opening or closing 
produces a time-stamp record in the logger.   
 
 This log of transitions can be post-processed to develop a time series of door events.  The time series 
can be binned at 15-minute intervals to give a time series of door-opening counts and door-open time. 
 
 The event loggers have internal memory sufficient to hold up to 8000 transitions.  For a high rate of 
transition, 800 per week (refrigerator door opened 400 times in a week), the logger memory would 
support 70 days of monitoring (8000/(800/7)). 
 
A.3 Compartment Temperature 
 
 The electronics for each temperature logger is contained in a small matchbox-size shell (Onset 
Computer Corporation; StowAway XTI logger).  An external thermistor is plugged into the logger.  The 
thermistor is then attached to the inner surface of a moisture-proof canister (Figure A.4).  Before sealing 
the logger inside the canister, desiccant is enclosed.  The size of the sealed canister is slightly smaller than 
a small soda can (Figure A.5). 
 
 The temperature loggers can hold 7944 records.  For a 15-minute interval time series, this memory 
capacity gives a maximum deployment time of 82.75 days (7944/96).  Accuracy is reported by the 
manufacturer to be better than ±1.0°C over its applicable range of –39°C to + 75°C. 
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Figure A.1.  Current Transformer Box and Power Logger 
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Figure A.2.  Event Logger, Magnet, and Reed Switch Mounted on Refrigerator 
 

 
 

Figure A.3.  Event Logger, Magnet, and Reed Switch Mounted on Refrigerator – Refrigerator Door Open 
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Figure A.4.  Temperature Logger, Moisture-Proof Canister, and Desiccant Bags 
 

 
 

Figure A.5.  Temperature Logger Inside of Closed Canister 
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Appendix B 
 
 
 

Occupant Survey 
 
 
 A survey of information relating to refrigerator performance was taken in each monitored apartment.  
Survey data were collected at the beginning and end of the monitoring period.  These data serve to 
quantify the state of the refrigerator and establish the nature of the operating environment of both the 
existing and replacement refrigerators.  Data were collected on the refrigerator, apartment characteristics, 
and occupants (see Figure B.1) 
 
B.1 Existing Refrigerator Data 
 
 Characteristics of the refrigerator were collected, including the manufacturer’s name and the 
refrigerator’s model number.  Also, data reflecting the relative condition of the refrigerator and the degree 
of food loading were recorded.  These data were collected through visual observation of the refrigerator’s 
shell, seals, state of defrost, and stacking of food on shelves. 
 
B.2 Infrared Scanner Measurements 
 
 Room and fresh-food and freezer compartment and temperatures were also measured with an infrared 
scanner (Exergen microscanner model D501).  These snapshot measurements were made at the time of 
installation and removal of the metering equipment.  For the compartment temperature measurements, the 
scanner was set to record the minimum temperature during a scan and hold that value in memory.  All 
exposed surfaces in each compartment were then scanned and the value for the lowest surface tempera-
ture was recorded. 
 
 These data served as a backup to the time-series logger measurements of the compartment tempera-
tures.  Logger measurements were made with thermistors and recorded every 15 minutes throughout the 
monitoring period (see Appendix A). 
 
 At sites where both snapshot scanner and time-series thermistor measurements were taken, a relation-
ship between the two types of measurements was developed (see Figure B.2).  Each point on the plot 
represents the average of the two snapshot scanner readings (x-axis) and the average of the roughly 672 
(4*24*7) thermistor readings (y-axis). 
 
 The compartment data points are regressed to form a linear correction relationship, to allow for a 
correction of the scanner readings so they can be used at sites where temperature logger data were 
unavailable.  This relationship is also useful in establishing compatibility with the data collected during 
the 1996 project year.  The fit is shown as the solid line in the plot.  The highest group of points is from 
room air measurements; the lowest group is from freezer compartment measurements.  The infrared 
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Figure B.2.  Comparison of Logger and Scanner Data (+Ambient, •Fresh-Food, and ΔFreezer) 
 
scanner shows good agreement with the thermistor for the room temperature measurements.  However, in 
the compartment measurements the scanner shows significantly higher readings than the thermistor.  This 
difference may result from a partial fogging of the refrigerator air and/or condensation on solid surfaces in 
the refrigerator compartments.  Better correlation might be achieved in future measurements if the 
scanner is placed in contact with an exposed surface.  Also, the infrared scanner is known to be biased by 
differences between the warm ambient kitchen temperature (with which the scanner electronics are in 
thermal equilibrium) and the cold surface temperature that it is measuring. 
 
B.3 Occupant Data 
 
 We originally planned to directly ask the occupants of each monitored apartment questions about the 
number and ages of occupants in the apartment.  Also, one question was designed to collect information 
on the number of people home during the day.  However, early in the project, the surveyor was uncom-
fortable with the nature of these questions (especially questions relating to when the apartments would be 
unoccupied).  As a result, the surveyor developed an indirect method of collecting this information.  
Indirect questions and observations were used to estimate the occupant data. 
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Appendix C 
 
 
 

Processing the Time-Series Data 
 
 
 Field measurements of refrigerator energy consumption, ambient conditions, and occupant usage are 
averaged (or summed) every 15 minutes to produce time-series records throughout a week-long period of 
monitoring.  These time-series records are processed to yield annualized estimates of total load and its 
three components:  baseline, occupant usage, and defrost. 
 
 The primary element of the process is establishing the baseline load.  The baseline load is the 
consumption that would occur if the refrigerator were on but had no occupant usage load (no door-
opening events) and no defrost load (defrosting features turned off).  The baseline load is roughly 
proportional to the temperature difference across the shell of the refrigerator.  It is essentially the load that 
is conducted through the shell of the refrigerator (the variations in efficiency of the vapor-compression 
cycle affect it somewhat).  Consumption at levels above the baseline is caused by occupant usage or 
defrost events. 
 
 An additional step is to distinguish between occupant usage and defrost load.  Defrost periods can be 
identified by analyzing sudden rises in freezer temperatures and power levels.  These processes are 
described below. 
 
C.1 Smoothing the Time Series 
 
 Interactions between the cycling frequency of the refrigerator and the logging frequency (once every 
15 minutes) cause artifact variations in the raw-power time series that are not due to variations in load.  
As shown in Figure C.1, the raw time series commonly varies from observation of zero wattage to 
wattage between 100 and 150.  A beat pattern in the raw-power time series can be clearly seen in the raw 
data after day 249. 
 
 To clearly observe variations in consumption that are due to variations in load, the time series is 
smoothed.  The smoothing process involves a running average where a point in the resulting smoothed 
time series is the average of a set of n points in the raw time series.  The set of n raw points is chosen to 
be centered around the time of the smoothed point.  The smoothing process is implemented so that it can 
be performed twice.  The heavy-line trace in Figure C.1 is a result of this double-smoothing operation on 
the raw time series.  An initial smoothing with a 7-point (1.75-hour window) running average is followed 
with a 5-point (1.25-hour window) smoothing operation.  The double-smoothing operation offers added 
flexibility in removing the artifact variations.  The degree of smoothing (size of the smoothing window) is 
chosen by increasing it until the fluctuations in plotted power usage, during times of low occupant 
activity, are small (compared to variations caused by occupant activity). 
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Figure C.1.  Raw and Smoothed Times Series Record of Refrigerator Power Usage 
 
 Smoothing is done on the temperature and power records.  Because the temperature data loggers are 
also recording at 15-minute intervals, the choice of window size in the running average is similar to that 
for the power records.  The choice of a smaller window size for the temperature data can be made to 
compensate for added thermal lag and natural smoothing resulting from the canisters that protect the 
temperature loggers.  In general, the choice of temperature window size tracks with the power window 
size and is only one step tighter.  In the example that follows, the temperature windows are 5 and 5 (one 
increment tighter than the 7 and 5 used on the power time series). 
 
 When observing the smoothed time series, consideration must be given to the fact that, in addition to 
removing artifact noise, the smoothing operation spreads out spike-like events.  Two very distinct defrost 
events can be seen in Figure C.1 (see times 248.8 and 249.8).  These events are by nature very much like 
a step function on the leading edge.  There is a sudden rise in power draw as the compressor timer triggers 
the beginning of the defrost action.  The trailing edge of the event has a more gradual slope as the 
defrosting terminates and is followed by cycling of the refrigerator to remove the injected defrost heat.  
The smoothing operation converts this raw step response with a sloping trailing edge into a triangle 
response.  The leading edge now has a noninfinite slope and the slope of the trailing edge is reduced.  
Also the duration of the smoothed defrost event (and associated cool-down period that follows) appears to 
be roughly twice as long as in the raw time series. 
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 The spreading of spike-like events in the smoothing operation is not a problem because the process of 
quantifying the three components of consumption involves integration of the time series data.  All of the 
analysis is done with smoothed data. 
 
C.2 Identifying Defrost Periods 
 
 Defrost events are identified by analyzing the freezer-compartment temperature data and the power 
data.  The onset of defrost is identified by the sudden rise in freezer-compartment temperature and the 
sudden rise in power draw.  The completion of the defrost event is identified when the injected heat has 
been removed from the compartment and the temperature and power return to predefrost levels.  The set 
of points in the temperature time series that falls between these two conditions identifies the defrost event 
(shown with box marks in Figure C.2).  This plot shows the smoothed freezer-compartment temperatures 
and the corresponding smoothed-power readings. 
 
 The particular site data presented here is instructive because it is known that the occupants had moved 
out of the apartment several days after the onset of the monitoring period.  As a result, several defrost 
events were observed without any complicating occupant activity.  Figure C.2 shows that the last defrost 
event (without occupants) is simpler to identify than the first one.  Coincidental door-opening or food-
loading activity can make it difficult to isolate the defrost spike.  However, using peripheral information, 
such as the fact that the onset of defrost is triggered periodically by accumulations of compressor run time 
and that the duration of defrost events is relatively constant throughout a week of monitoring, reasonable 
judgements can be made in defining the events. 
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Figure C.2.  Superimposed Freezer Temperature and Power Time Series 
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 The process of identifying the events is implemented using an automated onset detector and a manual 
defrost-set editor.  The onset detector looks for sudden rises in freezer-compartment temperatures.  It is 
controlled by chosen sensitivity and duration parameters that determine when the set of defrost points 
starts and how many points will be in the set.  These parameters are adjusted by site to best represent the 
varying characteristics of the refrigerators.  Finally, a manual screen-based editor is used to add or remove 
points from each defrost-event set. 
 
C.3 Establishing the Baseline 
 
 Temperature data from the room and the fresh-food and freezer compartments of the refrigerator are 
used to establish the baseline time series.  The baseline power usage is roughly proportional to the 
temperature difference across the shell of the refrigerator (Equation C.1).  A temperature difference 
(Equation C.2) is calculated using an effective internal temperature (Equation C.3).  This internal 
temperature is the surface-area-weighted average of the two compartment temperatures.  In most 
refrigerators 70% of the surface area is in the fresh-food compartment. 
 
 Pbaseline = k∆T (C.1) 
 
 ∆T = Troom – Tint (C.2) 
 
 Tint = 0.7 * Tfreshfood + 0.3 * Tfreezer (C.3) 
 
 The proportionality constant k (in Equation C.1) can be established by plotting the k∆T data (estimate 
of Pbaseline) with its corresponding power time series.  The k∆T time series is developed by combining the 
raw temperature time series in Figure C.3 using Equations C.2 and C.3.  The constant k can be determined 
by requiring that the power time series coincide with the k∆T time series during times when the 
refrigerator is not defrosting, there is no occupant usage, and after all occupant loads accumulated during 
the day have been satisfied.  Periods of this type, with pure baseline loads, often occur early in the 
morning just before the occupants start the day and make breakfast. 
 
 In Figure C.4, the constant k has been varied until the power series (thin line) coincides with the k∆T 
series (bold line) during “quiet times.”  Such periods of pure baseline load are clearly seen starting on 
day 249, the time that the occupants are known to have moved out of the apartment.  Additional “quiet 
time” is seen briefly, in the early morning periods, in each of the previous four days.  The time axis at the 
top of the plot shows local New York City time, the time axis at the bottom of the plot shows logger time 
(Pacific Standard Time).  Occupant behavior is best considered with respect to the local time axis.  Data 
from the event loggers, the sum of open-door time for the fresh-food and freezer compartments, during 
each 15-minute period, is represented by dots; open-door time is scaled on the right axis. 
 
C.4 Calculating the Components of Energy Consumption 
 
 After k has been determined, the three components of energy consumption can be calculated through 
integration of the power time-series data.  The baseline energy is the integral of the k∆T data, the area 
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Figure C.3.  Room, Fresh-Food, and Freezer Compartment Temperatures 
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Figure C.4.  Baseline, Occupant Usage, and Defrost Components 
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beneath the k∆T trace.  Energy associated with occupant activity and defrost events is represented by the 
area above the k∆T trace and below the total power trace.  The occupant usage is calculated by 
subtracting defrost energy from this occupant and defrost total. 
 
 The defrost periods are represented in Figure C.4 by the cross-hatched shading.  At the base of each 
shaded area is a line segment that defines the length of the defrost period.  The y coordinate of this 
horizontal line is determined by the average of the starting and ending wattage during the corresponding 
defrost period.  The area above this horizontal line and below the total-power traces is shaded.  The 
defrost energy is not simply an integration of this shaded area.  Nor is it the area, during defrost, under the 
total-power trace and above the k∆T trace.  Instead, consideration is given to the fact that occupant 
activity can occur during periods of defrost.  That is, defrost loads are often superimposed on top of 
occupant loads. 
 
 Defrost energy is calculated using the average occupant wattage during periods of no defrost.  This 
average occupant wattage is the average of the difference between the total wattage and the baseline 
wattage during periods of no defrost.  It is asserted that this level of occupant load has equal probability of 
occurring during periods of defrost as well during periods of no defrost.  As a result, the defrost wattage 
can be calculated during periods of defrost as the difference between the total wattage and the average 
occupant wattage.  Then the defrost energy is calculated as the time integral(a) of the defrost wattage. 
 
 In this way the time-series records from the six data loggers installed at each site are processed to 
determine total energy usage and its three components.  The results are then annualized based on the 
duration of the monitoring period.  Finally, the results are normalized to a target temperature difference 
(see Section 3.2). 
 
C.5 Sensitivity of Modeling Result to Estimates of Defrost Energy 
 
 As discussed in Section C.2, distinguishing defrost events from occupant activity can be difficult.  In 
sites where a very high level of occupant activity exists, the defrost spikes become less distinct and the 
identification process tends to underestimate the duration of the defrost event. 
 
 To quantify the impact of this uncertainty, a test was run to check the sensitivity of the savings 
estimate (see Section 3.4) to errors in estimating the defrost period by adjusting the defrost and occupant 
components with a correction factor: 
 
 defrostoccupantoccupant EdEE ⋅−=′  (C.4) 
 
 defrostdefrostdefrost EdEE ⋅+=′  (C.5) 
 

                                                      
(a) This is not the shaded area.  The shaded area visually highlights the defrost period.  As described 

above, the line segment under the shaded area identifies the starting and ending of the defrost period. 
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The adjustment takes a portion of the orginal defrost energy and subtracts that amount from the occupant 
component and moves it to the defrost component.  This redistribution process is applied to each site in 
the metered-sample database.  Then the regression models are reregressed with the adjusted data and the 
savings estimate is then recalculated. 
 
 The test showed that the savings estimate is quite insensitive to the accurcy of the split between the 
occupant and defrost components.  For d of 0.5 (50% increase in defrost component) the change in the 
savings estimate is only 1%. 
 
C.6 Processing Refrigerators with High Duty Cycle 
 
 The process of determining the three consumption components is dependent on successfully 
establishing the baseline power time series.  If no periods exist where the refrigerator appears to have 
satisfied the occupant load, the process fails.  In this case all that can be determined is the total energy 
usage. 
 
 Situations where the process fails can be classified as high load or low capacity.  In high-load cases 
the refrigerators may succeed in maintaining good control of the compartment air temperatures but never 
fully remove all the excess energy in the food during the week of monitoring.  They are controlling well 
but never quite reach equilibrium (all food cooled to set-point temperatures).  These cases were very rare. 
 
 In low-capacity cases the occupant load may be low or moderate but for some reason the refrigerator 
is malfunctioning.  Perhaps the refrigerant charge is low, the compressor is failing, or the refrigerator has 
severe ice accumulation.  Structural changes to a refrigerator, such as deteriorating seals or a damaged 
shell and resulting wet insulation, can also make the refrigerator appear low in capacity.  In these cases 
the refrigerator may run nearly continuously, referred to as high duty cycle operation:  high run-time, low 
off-time.  These cases were much more common. 
 
 When the refrigerator is running nearly continuously, unusual patterns appear in plots of total watts 
and k∆T (k and ∆T are defined in Section C.3).  As seen in the high duty cycle case in Figure C.5, the 
watts and k∆T traces appear to be nearly mirror images of each other. 
 
 For example, occupant usage in day 195 is indicated by dots of open-door events.  Because the 
refrigerator is running continuously it can no longer respond directly (by running more) to variation in 
load; it cannot run more than 100% of the time.  More load without more cooling causes higher 
temperatures at the evaporator coil (lower ∆T between room and compartment).  Higher temperatures at 
the coil increase power draw from the compressor.  The resulting power trace shows a symmetric increase 
with the corresponding decrease in ∆T.(a) 
 

                                                      
(a) The conclusion that these refrigerators are running nearly all the time is supported by observing that 

their time series plots look essentially the same whether the data is smoothed or in its raw form. 
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Figure C.5.  Malfunctioning Refrigerator with High Duty Cycle 
 
 In these high duty cycle cases, it is not possible to establish the baseline consumption levels in the 
way defined above.  Quiet times are never really achieved.  The occupant load is never quite satisfied, and 
if it is, it may be days after the time of the occupant activity.  This behavior makes any attempted 
estimates of baseline load artificially high and estimates of occupant load artificially low.  The occupant 
load is essentially smeared out over the whole time series.  There is relatively small variation in the total 
wattage throughout the monitoring week. 
 
 High duty-cycle cases can not be processed into components as described above; instead they are 
processed as totals.  Their total wattage data is time integrated and projected to target ∆T conditions.  
Since we are unable to discern the three components of their load, these refrigerators cannot be 
represented in any of the component-modeling work (Section 3.3.3).  However, these malfunctioning 
refrigerators are included in the savings estimates through a performance indicator (the ratios of their 
average total consumption to label) and a simplified relationship between refrigerator age and the 
likelihood of malfunction (see Section 3.4 and Appendix D). 
 



D Level 1 Heading 
 
 

THIS PAGE CONTAINS A LEVEL 1 HEADING WHICH ACTIVATES THE 
APPENDIX LETTER IN THE PAGE NUMBER.  THE HEADING 1 STYLE MUST BE 

MODIFIED IN ORDER TO CHANGE THE APPENDIX LETTER. 
 

PLEASE RECYCLE THIS PAGE. 



 
 
 
 
 
 
 
 

Appendix D 
 
 
 

Age of High Duty Cycle Refrigerators 
 



   D.1 

Appendix D 
 
 
 

Age of High Duty Cycle Refrigerators 
 
 
 Of the 104 existing refrigerators monitored, 14 were identified as having unusual cycling behavior.  
These refrigerators appeared to be running nearly continuously and were failing to maintain compartment 
temperatures at set point.  These high duty cycle units (high on-time, low off-time) demonstrated reduced 
capacity and corresponding need for maintenance or repair. 
 
 The high run times of these refrigerators frustrated attempts to divide the consumption into baseline, 
occupant, and defrost loads.  Essentially the refrigerators never completely satisfy the occupant load that 
occurs during the day and as a result never operate purely on the baseline load (see Section C.6).  Without 
these quiet times, usually occurring early in the morning before any new occupant use at the start of the 
day, the baseline load cannot be established.  Consequently, the high duty cycle units were excluded from 
the mainstream analysis and modeling. 
 
 To represent the high duty cycle refrigerators in the savings estimate, a method was needed for 
establishing the probability that any given refrigerator in the population is afflicted by high duty cycle 
behavior and corresponding high consumption.  This probability would need to be represented as a 
function of the refrigerator’s age.  In an attempt to do this, an analysis was made of the age of the high 
outliers in the pooled collection of the 1996 and 1997 field data samples.  The 1996 data (Pratt and Miller 
1997) was included in this analysis in an effort to increase the significance of the derived probability 
relationships. 
 
D.1 Identifying High Outliers 
 
 A linear regression of total consumption against the label rating for consumption is used as the basis 
for establishing outliers.  If a unit’s consumption is higher than the product of the predicted value and an 
outlier threshold factor, it is considered a high outlier.  The set of high outliers can be thinned by using a 
more stringent (higher) threshold factor. Figure D.1 and Figure D.2 illustrate the identification process for 
the 1996 and 1997 data sets.  In these cases the threshold factor is set to 1.3.  Any site with consumption 
higher than the product of the factor 1.3 and the predicted value is included in the high-outlier set.  These 
high-outlier sites are plotted with an octagon. 
 
 The 1997 sites known to have high duty cycle refrigerators are shown in Figure D.2 (plotted with 
an X).  This identification can be made for the 1997 data because of the availability of compartment-
temperature time-series data. 
 
 The units that are common to both the high-outlier set and the high duty cycle set are marked with a 
superimposed X and octagon in Figure D.2.  The total count common to both sets, Nxo, can be expressed 
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Figure D.1.  High-Outlier Selection in 1996 Field Sample 
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Figure D.2.  High-Outlier Selection in 1997 Field Sample 
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as a fraction of the total count in either set: Nx high-duty cycle, or No high outliers.  As the outlier 
threshold factor becomes more stringent, the concentration of high duty cycle units in the high-outliers set 
becomes higher. 
 
 These fractions are indicators of how well the high-outlier set represents the high duty cycle set.  A 
high Nxo/No ratio is good because it indicates that most of the refrigerators in the high-outlier set are in 
fact high duty cycle refrigerators.  A high Nxo/Nx ratio is good because it indicates that a high percentage 
of the high duty cycle refrigerators are being found by the selection process; few are being overlooked.  
Values of these fractions for outlier thresholds ranging from 1.0 to 1.5 are found in Table D.1. 
 

Table D.1.  Outliers and Units with High Duty Cycles in the 1997 Field Sample 
 

Outlier factor Nx No Nxo Nx/No Nxo/Nx Nxo/No

1.0 14 40 12 0.35 0.86 0.30
1.1 14 29 12 0.48 0.86 0.41
1.2 14 22 8 0.64 0.57 0.36
1.3 14 17 6 0.82 0.43 0.35
1.4 14 11 5 1.27 0.36 0.45
1.5 14 9 5 1.56 0.36 0.56  

 
 No/Ntotal , a third parameter, is also used in determining the usefulness of the selected set.  This is 
simply an indicator of the relative size of the selected set.  The larger the set, the more likely a significant 
age relationship will be observed when counting high outliers in a sequence of age bins. 
 
 A calculation of these three parameters is made from the 1997 data set.  A plot of the results in 
Figure D.3 shows that it is not possible to select an outlier threshold factor where all the parameters are 
high.  This is because the high duty cycle refrigerators are not simply found to be extreme high outliers 
but rather are found throughout the high-outlier domain (outlier threshold factor greater than 1.0).  A few 
refrigerators are even found at consumption levels below the linear fit prediction.  This dispersion of the 
high duty cycle refrigerators reflects variations in the severity of the maintenance problems and the 
variability of the occupant load. 
 
D.2 Binning High Outliers by Date of Manufacture 
 
 To search for a relationship with age, the set of high outliers in the 1996 and 1997 data is binned by 
date of manufacture.  The high-outlier count in each date bin is divided by the total number of units in 
each bin.  This fraction is then normalized by the ratio of high duty cycle counts to high-outlier counts in 
the 1997 data.  The result is an estimate of the fraction of the population that will have high-duty cycle 
behavior.  This is calculated for each in a sequence of 5-year time bins, j (see Equation D.1). 
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Figure D.3.  Refrigerators Common to High-Outlier and High Duty Cycle Sets in 1997 Field Sample 
 
 These normalized-outlier fractions are plotted in Figure D.4 for outlier thresholds ranging from 1.0 to 
1.5.  The normalization factor, nx/no is shown in Table D.1.  If ntotal is less than 10 in a particular bin, the 
corresponding normalized fraction is not plotted. 
 
 As the outlier threshold is raised, the normalized-outlier fractions shift from decreasing with age to 
increasing with age (except for the 1990-1995 bin, which always appears high).  The increasing with age 
pattern seen with outlier thresholds greater than 1.3 is the expected behavior; however, at these higher 
thresholds the pooled outlier set is quite small (36 @ 1.3, 17 @1.5). 
 
D.3 Binning by Age Determined to be Inconclusive 
 
 Due to the severity of the thinning required to see the expected behavior in the outlier set (Sec-
tion D.2), the binning analysis is considered inconclusive as a quantitative indicator of the frequency of 
high duty cycling as a function of age.  A pattern described in Section D.1 is considered to be the 
underlying cause of this difficulty in the binning analysis:  “high duty cycle refrigerators are not simply 
found to be extreme high outliers but rather are found throughout the high-outlier domain.” 
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Figure D.4.  1996 and 1997 Normalized Outlier Fractions Binned by Production Date 
 
 Because of the difficulties in the binning analysis, a simplified relationship between age and high 
duty cycle behavior is assumed and described in the following section. 
 
D.4 Simplified Relationship Between Age and Likelihood of Malfunction 
 
 In an effort to develop a quantitative relationship that could be used on the general population of 
refrigerators, a simplifying assumption is used.  It is asserted that the likelihood of a refrigerator mal-
functioning is directly proportional to its age.  The proportionality factor is calculated as the ratio of the 
fraction of high duty cycle refrigerators in the 1997 sample of existing refrigerators to the average age of 
those refrigerators: 
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 Then the fraction of refrigerators in the general population that have high duty cycle behavior are 
calculated using this factor and the average age of the population: 
 
 ( )populationagetotalx Xfn/n ⋅=  (D.3) 
 



E. Level 1 Heading 
 
 

THIS PAGE CONTAINS A LEVEL 1 HEADING WHICH ACTIVATES THE 
APPENDIX LETTER IN THE PAGE NUMBER.  THE HEADING 1 STYLE MUST BE 

MODIFIED IN ORDER TO CHANGE THE APPENDIX LETTER. 
 

PLEASE RECYCLE THIS PAGE. 



 
 
 
 
 
 
 
 

Appendix E 
 
 
 

Site Field Data 
 



  E.1

Appendix E 
 
 
 

Site Field Data 
 
 
 Table E.1 contains the primary metered and surveyed field data collected by PNNL and Planergy in 
1997.  Each row represents a metered refrigerator.  The index in Table E.2 describes each of the columns 
in Table E.1. 
 
 The refrigerators are sorted by the date when data was downloaded, the logger name, and the site 
index.  All three of these parameters are contained in the “Site Code” field.  The first letter in this field 
identifies the logger, the next five numbers are the download date, and the last letter indicates which week 
the refrigerator was monitored.  For example, 70428 refers to 4/28/1997.  Monitoring was generally done 
in 4-week batches.  The site index ranges from a to d for weeks 1 to 4. 
 
 All columns in Table E.1 relating to either the total or the components of consumption are ∆T 
adjusted (except for the column labeled “Raw”).  Equation (3.1) was used to project the raw consumption 
to an annual average ∆T of 51.2oF.  The actual average ∆T recorded at the site is shown in the second to 
the last column in Table E.1.  For example, in the first row of the table, the raw consumption of 437 is 
projected to annual average conditions by multiplying by the ratio of target to actual ∆T [413 = 
437*(51.2/54.2)].  All consumption in the table (except for the single raw column) is calculated as if the 
refrigerator had been operating at a ∆T of 51.2oF. 
 
 The comment field indicates the success of the loggers, sensors, and the splitting process used in 
identifying the components of total consumption.  This field is seven characters long, with the first six 
characters referring to each of six data loggers at the site and the seventh character referring to the split 
process (see Table E.3).
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Table E.1.  Field-Monitoring Results 
 

      DOE
Develop Manufacturer Model Proxy Aut Days Raw Adj Label Cond Occup Defr Refg Frzr Refg Frzr Amb Refg Frzr Comment

      kWh/yr

1 b70428.a SMITH MAGIC CHEF CTN1511AEW CTL1511AEW 1 6.8 437 413 437 0.95 284 99 29 NA 9 NA 0.1% 82.2 39.2 1.8 54.2 NNNNbN1

2 g70428.a SMITH MAGIC CHEF CTN1511AEW CTL1511AEW 1 6.7 626 592 437 1.35 314 230 48 NA NA NA NA 83.5 41.1 1.9 54.2 NNNNbe1

3 k70428.a SMITH MAGIC CHEF CTN1511AEW CTL1511AEW 1 6.9 448 444 437 1.02 275 NA NA NA 8.3 NA 0.1% 78.5 41.7 -7.9 51.7 NeNesNz

4 m70428.a SMITH MAGIC CHEF CTN1511AEW CTL1511AEW 1 6.8 416 386 437 0.88 261 92 33 21 NA 0.6% NA 83.7 39.3 3.2 55.2 NNNNNb1

5 p70428.a SMITH MAGIC CHEF CTN1511AEW CTL1511AEW 1 6.7 451 423 437 0.97 258 121 44 30.5 NA 1.4% NA 83.1 38.4 5.5 54.6 NsNNNe1

6 r70428.a SMITH MAGIC CHEF CTL1511AEW CTL1511AEW 1 6.8 329 313 437 0.72 223 69 20 NA 0.6 NA 0.1% 78.2 33.8 2.3 53.9 NNNNbm1

7 s70428.a SMITH MAGIC CHEF CTL1511AEW CTL1511AEW 1 6.9 371 332 437 0.76 245 61 26 22 4.5 0.5% 0.1% 82.9 35.0 4.0 57.2 NNsNNN1

8 b71008.b SEDGWICK MAGIC CHEF CTN1511AEW CTL1511AEW 1 6.0 519 530 437 1.21 252 234 43 65.6 9.9 1.3% 0.1% 76.9 38.9 -1.5 50.1 NNNNNN1

9 b71008.c SEDGWICK MAGIC CHEF CTL1511AEW CTL1511AEW 1 5.8 627 635 437 1.45 293 311 32 NA 10.3 NA 0.1% 79.4 39.7 3.6 50.5 NNsNhN1

10 k71008.b SEDGWICK MAGIC CHEF CTN1511AEW CTL1511AEW 1 6.9 1015 924 437 2.11 NA NA NA 52.9 16.2 1.0% 0.1% 77.8 33.5 -6.3 56.2 NNNNNNx

11 k71008.c SEDGWICK MAGIC CHEF CTL1511AEW CTL1511AEW 1 5.0 472 457 437 1.05 271 148 37 33.2 11.3 1.0% 0.1% 80.7 39.3 1.0 52.9 NNNNNN1

12 m71008.c SEDGWICK MAGIC CHEF CTN1511AEW CTL1511AEW 1 5.5 430 393 437 0.90 238 119 35 22.7 NA 0.3% NA 80.0 34.1 0.2 56.1 NNNNNh1

13 p71008.b SEDGWICK MAGIC CHEF CTL1511AEW CTL1511AEW 1 6.0 573 573 437 1.31 273 255 45 22.4 5.1 1.5% 0.1% 79.3 41.0 -1.9 51.2 NNNNNN1

14 p71008.c SEDGWICK MAGIC CHEF CTL1511AEW CTL1511AEW 1 4.4 530 513 437 1.17 296 175 42 25.9 18.4 0.5% 0.1% 80.8 39.0 1.9 52.9 NNNNNN1

15 r71008.b SEDGWICK MAGIC CHEF CTN1511AEW CTL1511AEW 1 5.9 1137 803 437 1.84 NA NA NA 82.6 13.5 2.6% 0.1% 80.5 13.6 -5.2 72.5 NNNNNNx

16 r71008.c SEDGWICK MAGIC CHEF CTN1511AEW CTL1511AEW 1 5.9 772 764 437 1.75 284 438 43 57.2 17.9 1.5% 0.1% 81.0 41.1 1.7 51.7 NNNNNN1

17 s71008.c SEDGWICK MAGIC CHEF CTL1511AEW CTL1511AEW 1 5.9 525 494 437 1.13 289 153 53 NA 15.6 NA 0.1% 82.6 38.8 3.6 54.4 NNNNsN1

18 b70428.b SOUNDVIEW WHITE WESTINGHOUSE WRT15CGAZ WRT15CGA** 1 7.2 399 451 624 0.72 318 80 53 NA 2.7 NA 0.1% 76.0 40.2 8.5 45.3 NNNNbN1

19 g70428.b SOUNDVIEW WHITE WESTINGHOUSE RT114LLW5 RT114L 1 6.8 485 592 803 0.74 420 128 43 NA NA NA NA 77.1 46.3 9.1 42.0 NNNNbe1

20 k70428.b SOUNDVIEW WHITE WESTINGHOUSE MRT15CNBWO MRT15CNB** 1 6.9 921 1023 624 1.64 522 NA NA 23.7 NA 0.4% NA 72.5 38.1 -0.9 46.1 NeNeswz

21 m70428.b SOUNDVIEW WHIRLPOOL ET12PCXLWR0 ET12PCXL 0 6.9 782 910 885 1.03 855 56 0 45 6.1 0.5% 0.1% 77.3 44.5 7.2 44.0 NNNNNw1

22 p70428.b SOUNDVIEW WHITE WESTINGHOUSE WRT15CGAZ0 WRT15CGA** 1 6.6 700 733 624 1.17 404 274 56 62.1 NA 1.2% NA 74.4 37.8 -3.1 48.9 NsNNNe1

23 r70428.b SOUNDVIEW WHITE WESTINGHOUSE BA13000974 NA NA 6.8 1101 1102 NA NA 740 259 102 45.2 NA 1.7% NA 81.5 42.3 2.4 51.2 NNNNbw1

24 s70428.b SOUNDVIEW HOTPOINT CTXY14CMELWH CTXY14CM 1 6.8 878 776 736 1.05 504 188 84 49.4 NA 0.6% NA 79.9 31.2 0.4 57.9 NNsNNs1

25 b70624.a MITCHEL GENERAL ELECTRIC TA12SNB TA12SR 0 7.1 821 933 588 1.59 NA NA NA 78.7 NA 1.1% NA 74.6 36.7 12.9 45.0 NNNNNux

26 b70624.b MITCHEL HOT POINT CTH14CYXLRWH CTH14CYT 1 6.7 349 373 496 0.75 229 116 28 41.9 16.8 0.6% 0.1% 75.7 38.7 2.3 47.9 NNNNNN1

27 b70624.c SEDGWICK ROPER RT12VDKDW00 B0 RT12DK*A*0* 1 5.7 462 463 567 0.82 281 141 41 15.4 12.7 0.3% 0.1% 80.6 40.3 4.5 51.0 NNNNNN1

28 b70624.d SEDGWICK WHIRLPOOL EET122PTWOLO EET121DT 0 5.8 1231 1028 1080 0.95 848 180 0 38.2 NA 0.3% NA 86.3 38.9 -7.4 61.3 NNNNNu1

29 g70624.a MITCHEL GIBSON RD12C1WMGC RD12C1*MGC 0 6.9 865 898 824 1.09 709 189 0 22 NA 0.3% NA 77.6 40.9 -1.2 49.3 NNNNNe1

Duration TemperaturesOpenings
Label 
Ratio

Consump.

kWh/yr

Load Splits

New Refrigerators

Existing Refrigerators

kWh/yr 1/day (%) (oF)

Temp 
Diff 
(oF)

Site 
CodeNo.
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Table E.1.  (contd) 
 

      DOE
Develop Manufacturer Model Proxy Aut Days Raw Adj Label Cond Occup Defr Refg Frzr Refg Frzr Amb Refg Frzr Comment

      kWh/yr

Duration TemperaturesOpenings
Label 
Ratio

Consump.

kWh/yr

Load Splits

kWh/yr 1/day (%) (oF)

Temp 
Diff 
(oF)

Site 
CodeNo.

 
30 g70624.b MITCHEL WHITE WESTINGHOUSE ATG15ONCW1 ATG150N**1 1 6.8 997 1099 697 1.58 789 231 80 69.4 NA 0.7% NA 77.1 40.3 8.2 46.4 NNNNNe1

31 g70624.c SEDGWICK WHIRLPOOL EET122DTWRO EET121DT 0 5.8 1101 1012 1080 0.94 924 88 0 NA 6 NA 0.1% 83.6 39.4 1.1 55.7 NNNNbN1

32 g70624.d SEDGWICK WHIRLPOOL EET122DTWRO EET121DT 0 5.8 1222 1091 1080 1.01 966 124 0 NA 8.1 NA 0.1% 83.9 37.6 0.7 57.4 NNNNbN1

33 k70624.a MITCHEL WHITE WESTINGHOUSE ATG150NLW2 ATG150N**2 1 6.9 1250 1265 697 1.81 719 487 59 43 NA 1.1% NA 75.5 35.9 -0.7 50.6 NNNNNb1

34 k70624.b MITCHEL GENERAL ELECTRIC TA12SRB TA12SR 0 6.6 502 595 588 1.01 441 154 0 88.4 NA 0.8% NA 75.5 39.4 15.7 43.2 NNNNNb1

35 k70624.c SEDGWICK WHIRLPOOL EET122DWR0 EET121DT 0 5.3 1037 1037 1080 0.96 913 NA NA 43.7 NA 2.5% NA 78.1 42.1 -8.6 51.2 NNNlNbz

36 k70624.d SEDGWICK GENERAL ELECTRIC TA12SLB TA12SR 0 5.8 752 786 588 1.34 577 NA NA 79.8 NA 1.5% NA 83.3 45.9 7.3 49.0 NNNlNbz

37 m70624.a MITCHEL GIBSON RD12C1WMGC RD12C1*MGC 0 6.9 1088 1083 824 1.31 NA NA NA 47.9 12.3 1.1% 0.1% 77.0 35.9 1.5 51.4 NNNNNNx

38 m70624.b MITCHEL WHITE WESTINGHOUSE MTR15CNBW1 MRT15CNB** 1 6.7 448 471 624 0.75 290 157 24 43.5 14.4 0.7% 0.1% 78.5 40.5 5.0 48.7 NNNNNN1

39 m70624.c SEDGWICK ROPER RT12DKXAWOO RT12DK*A*0* 1 5.8 646 626 567 1.10 367 NA NA 84.5 19.6 1.6% 0.1% 79.5 39.7 -3.8 52.9 NNllNNz

40 m70624.d SEDGWICK WHIRLPOOL EET122DTWRO EET121DT 0 5.8 1225 1160 1080 1.07 NA NA NA 47.1 19.9 1.3% 0.1% 85.3 41.6 7.1 54.1 NNllNNo

41 p70624.a MITCHEL GIBSON RD12C1WMGC RD12C1*MGC 0 7.0 633 900 824 1.09 606 NA NA 65.3 NA 2.1% NA 75.2 43.6 28.9 36.0 NNNlNez

42 p70624.b MITCHEL GIBSON RD12C1WMGC RD12C1*MGC 0 6.8 NA NA 824 NA NA NA NA NA NA NA NA 74.6 33.8 29.1 42.2 sNllhed

43 p70624.c SEDGWICK WHIRLPOOL 503621017.0 81362*0 1 5.8 1748 1745 945 1.85 NA NA NA 53.7 NA 1.3% NA 79.7 43.9 -7.7 51.3 NNllNhx

44 p70624.d SEDGWICK WHIRLPOOL ET12PCXLWLO ET12PCXL 0 6.0 1097 1048 885 1.18 NA NA NA 16.8 2.7 0.3% 0.1% 86.8 40.1 17.2 53.6 NNllNNx

45 r70624.a MITCHEL GIBSON RD12C1WMGC RD12C1*MGC 0 6.4 718 753 824 0.91 517 237 0 30 8.9 0.5% 0.1% 80.2 43.1 4.1 48.8 NNNNNN1

46 r70624.b MITCHEL WHITE WESTINGHOUSE WRT15CGAZO WRT15CGA** 1 6.8 752 819 624 1.31 NA NA NA 56.2 18 0.8% 0.1% 80.5 43.0 11.2 47.0 NNNNNNo

47 r70624.c SEDGWICK ROPER RT12DKYAWOO RT12DK*A*0* 1 6.0 854 772 567 1.36 NA NA NA 10.6 19.2 0.1% 0.1% 78.1 34.0 -7.7 56.6 NNNNNNx

48 r70624.d SEDGWICK WHITE WESTINGHOUSE ATG150NCW1 ATG150N**1 1 7.8 1731 1811 697 2.60 NA NA NA 11.6 3.2 0.1% 0.1% 83.4 43.5 13.4 48.9 NNNNNNx

49 s70624.a MITCHEL WHITE WESTINGHOUSE ATG150NLW2 ATG150N**2 1 6.8 367 445 697 0.64 292 114 38 NA 6.9 NA 0.1% 73.1 39.6 10.4 42.3 NNNNbm1

50 s70624.b MITCHEL WHIRLPOOL ET12PCXLWLO ET12PCXL 0 1.2 NA NA 885 NA NA NA NA NA 33.2 NA 0.1% 77.4 58.1 34.7 26.3 sNNNbmd

51 s70624.c SEDGWICK WHIRLPOOL EET122DTWL0 EET121DT 0 5.8 NA NA 1080 NA NA NA NA NA NA NA NA 85.6 41.1 10.0 53.8 slNNbbd

52 s70624.d SEDGWICK WHIRLPOOL ET12PCXLWRO ET12PCXL 0 5.8 NA NA 885 NA NA NA NA NA NA NA NA 84.9 38.1 -0.9 58.5 slNNbbd

53 b70815.a BARUCH WHIRLPOOL EFT121DTWRO EHT121DT 0 6.9 778 798 845 0.94 523 275 0 42 28.3 1.2% 0.1% 86.4 45.5 15.4 49.9 NNNNNN1

54 b70815.b BARUCH WHITE WESTINGHOUSE RT141GLWA RT141G**A 1 6.9 1507 1416 828 1.71 775 616 25 152.3 30.8 2.4% 0.1% 85.6 45.9 -3.4 54.5 NNNNNN1

55 b70815.c BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.7 1198 1339 828 1.62 593 644 102 NA NA NA NA 81.3 46.8 9.1 45.8 NNNNss1

56 b70815.d BARUCH HOT POINT CTH14CYLLWH CTH14CYS 1 6.8 414 397 496 0.80 261 92 43 27.3 4.4 0.8% 0.1% 83.2 40.3 5.2 53.4 NNNNNN1

57 g70815.a BARUCH WHITE WESTINGHOUSE WRT15CGAWO WRT15CGA** 1 7.0 1126 1030 624 1.65 496 474 60 69.8 34.6 2.3% 0.1% 87.3 39.7 11.8 56.0 NNNNNN1

58 g70815.b BARUCH WHITE CONSELID MRT15CNBWO MRT15CNB** 1 6.8 630 563 624 0.90 357 155 50 37.1 5.3 0.6% 0.1% 84.4 35.5 7.4 57.3 NNNNNN1

59 g70815.c BARUCH WHITE WESTINGHOUSE RT141GLWA RT141G**A 1 6.9 1255 1324 828 1.60 630 629 64 50.8 40.9 0.9% 0.1% 82.8 45.5 8.1 48.5 NNNNNN1

60 g70815.d BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.9 1012 897 828 1.08 535 297 65 53.1 14.2 0.9% 0.1% 84.9 39.2 -1.0 57.8 NNNNNN1  
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Table E.1.  (contd) 
 

      DOE
Develop Manufacturer Model Proxy Aut Days Raw Adj Label Cond Occup Defr Refg Frzr Refg Frzr Amb Refg Frzr Comment

      kWh/yr

Duration TemperaturesOpenings
Label 
Ratio

Consump.

kWh/yr

Load Splits

kWh/yr 1/day (%) (oF)

Temp 
Diff 
(oF)

Site 
CodeNo.

 
61 k70815.a BARUCH WHIRLPOOL ET12CCRSWOO ET12CC*S*0 0 6.8 1085 990 740 1.34 NA NA NA 34.8 6.4 1.6% 0.1% 88.1 46.7 -2.4 56.1 NNNNNNx

62 k70815.b BARUCH WHITE WESTINGHOUSE RT141GLWA RT141G**A 1 6.9 1750 1710 828 2.07 NA NA NA NA 25.3 NA 0.1% 85.1 46.0 1.7 52.4 NNNNsNx

63 k70815.c BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.8 932 882 828 1.07 450 334 98 NA 7.2 NA 0.1% 83.2 39.9 3.9 54.1 NNNNsN1

64 k70815.d BARUCH WHITE WESTINGHOUSE RT141GLWA RT141G**A 1 6.8 1008 888 828 1.07 509 315 65 NA 6.2 NA 0.1% 86.4 40.8 -0.9 58.1 NNNNsN1

65 m70815.a BARUCH HOT POINT CTX14CMCR CTX14CM 1 6.9 599 613 736 0.83 409 153 51 31.8 10.4 0.3% 0.1% 87.9 49.0 12.0 50.0 NNNNNN1

66 m70815.b BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.9 833 791 828 0.96 513 197 80 45.3 7.2 1.4% 0.1% 88.0 44.4 9.9 54.0 NNNNNN1

67 m70815.c BARUCH WHITE WESTINGHOUSE RT141GLHA RT141G**A 1 6.7 1113 1371 828 1.66 NA NA NA 47.1 12.4 0.6% 0.1% 83.8 49.0 26.4 41.6 NNNNNNx

68 m70815.d BARUCH WHITE WESTINGHOUSE RT141GLWA RT141G**A 1 6.9 841 774 828 0.93 539 188 47 40.8 2.5 0.3% 0.1% 84.8 40.7 2.3 55.6 NNNNNN1

69 p70815.a BARUCH KENMORE 106.866 (211) 86621** 0 5.8 1091 973 740 1.31 NA NA NA 18.4 8.3 0.4% 0.1% 85.5 42.2 -4.9 57.4 NNNNNNx

70 p70815.b BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.8 939 870 828 1.05 566 245 59 41.8 12 0.5% 0.1% 86.8 41.0 9.5 55.3 NNNNNN1

71 p70815.c BARUCH WHITE WESTINGHOUSE RT141GCNA RT141G**A 1 6.9 953 971 828 1.17 563 343 64 NA 11.7 NA 0.1% 79.0 41.7 -1.4 50.2 NNNNhN1

72 p70815.d BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.8 961 886 828 1.07 494 330 63 55 17.9 1.0% 0.1% 83.4 39.1 1.7 55.5 NNNNNN1

73 r70815.a BARUCH WHITE WESTINGHOUSE WRT15CGAWO WRT15CGA** 1 6.9 497 438 624 0.70 305 93 39 27.8 3.5 0.3% 0.1% 86.0 36.9 6.7 58.2 NNNNNN1

74 r70815.b BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.9 1432 1248 828 1.51 586 585 76 109.9 26 2.1% 0.1% 88.0 40.1 3.9 58.8 NNNNNN1

75 r70815.c BARUCH WHITE WESTINGHOUSE RT141GLWA RT141G**A 1 6.8 987 877 828 1.06 541 272 64 42 7.5 0.6% 0.1% 83.2 37.1 -1.2 57.6 NNNNNN1

76 r70815.d BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.7 1492 1354 828 1.64 NA NA NA 70.4 16.1 1.6% 0.1% 86.6 41.5 3.8 56.4 NNNNNNx

77 s70815.a BARUCH WHIRLPOOL ET12CCLSWOO ET12CC*W*0* 0 6.9 1078 926 732 1.27 NA NA NA 38.3 20.5 0.3% 0.1% 85.1 37.9 -3.5 59.6 NNNNNNx

78 s70815.b BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.8 1310 1225 828 1.48 508 636 81 101.3 43.5 1.9% 0.1% 83.5 38.7 5.5 54.8 NNNNNN1

79 s70815.c BARUCH WHITE WESTINGHOUSE RT141GLHA RT141G**A 1 6.9 953 932 828 1.13 434 359 139 110.8 34.5 1.2% 0.1% 84.4 40.4 12.5 52.4 NNNNNN1

80 s70815.d BARUCH WHITE WESTINGHOUSE RT141GCWA RT141G**A 1 6.8 1210 1121 828 1.35 530 575 16 70.1 22.1 3.6% 0.1% 83.8 40.9 -0.4 55.3 NNNNNN1

81 b71008.a SEDGWICK WHITE WESTINGHOUSE MRT15CNBW MRT15CNB** 1 7.9 907 806 624 1.29 408 366 32 37.8 9.1 0.7% 0.1% 78.4 33.1 -7.9 57.6 NNNNNN1

82 b71008.d SOUNDVIEW WHIRLPOOL ET12PCXLWLO ET12PCXL 0 7.8 1043 1178 885 1.33 810 369 0 NA NA NA NA 76.2 41.5 6.1 45.3 NNNNss1

83 g71008.a SEDGWICK ROPER RD12DKXAWOO RT12DK*A*0* 1 7.0 604 562 567 0.99 393 111 59 14.7 7.7 0.6% 0.1% 82.6 37.2 5.1 55.0 NNNNNN1

84 k71008.a SEDGWICK WHITE WESTINGHOUSE CTL11OWK1 CTN110 1 8.3 NA NA 759 NA NA NA NA NA NA NA NA 73.4 70.4 70.0 3.1 sNmmssd

85 k71008.d SOUNDVIEW WHIRLPOOL ET12PCXLWRO ET12PCXL 0 7.9 880 916 885 1.04 843 73 0 NA 3.8 NA 0.1% 76.0 36.7 3.7 49.2 NNNNhN1

86 m71008.a SEDGWICK ROPER RD12DKXAWOO RT12DK*A*0* 1 13.9 593 550 567 0.97 332 167 51 31.1 NA 0.3% 0.1% 76.1 32.0 -5.1 55.2 NNNNNN1

87 m71008.d SOUNDVIEW WHITE WESTINGHOUSE RT143SCWO RT143SC** 1 7.9 969 836 828 1.01 NA NA NA NA 7.5 NA 0.1% 77.3 28.4 -6.5 59.4 NNNNsNx

88 p71008.a SEDGWICK WHIRLPOOL EET122DTWRD EET121DT 0 7.8 1055 1020 1080 0.94 NA NA NA 17.2 11.9 0.1% 0.1% 75.6 32.9 -1.3 53.0 NNNNNNx

89 p71008.d SOUNDVIEW WHITE WESTINGHOUSE RT114LLH-8 RT114L 1 7.8 579 626 759 0.82 423 153 50 15.7 3.6 0.1% 0.1% 77.4 43.0 -0.2 47.4 NNNNNN1

90 r71008.a SEDGWICK ROPER RD12DKXAWOO RT12DK*A*0* 1 7.8 1002 881 567 1.55 542 287 52 NA 43.6 NA 0.1% 79.4 32.8 -5.9 58.2 NNNNsN1

91 r71008.d SOUNDVIEW WHIRLPOOL EET122DTWRO EET121DT 0 7.9 1007 1070 1080 0.99 NA NA NA 29.3 65.3 0.4% 0.1% 80.9 44.6 5.0 48.2 NNNNNNb  
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Table E.1.  (contd) 
 

      DOE
Develop Manufacturer Model Proxy Aut Days Raw Adj Label Cond Occup Defr Refg Frzr Refg Frzr Amb Refg Frzr Comment

      kWh/yr

Duration TemperaturesOpenings
Label 
Ratio

Consump.

kWh/yr

Load Splits

kWh/yr 1/day (%) (oF)

Temp 
Diff 
(oF)

Site 
CodeNo.

 
92 s71008.a SEDGWICK ROPER RD12DKXAWOO RT12DK*A*0* 1 7.0 615 530 567 0.93 336 179 15 18.3 5.7 0.4% 0.1% 86.5 32.5 14.7 59.3 NNNNNN1

93 s71008.d SOUNDVIEW WHITE WESTINGHOUSE RT114LLH-8 RT114L 1 7.8 675 676 759 0.89 483 151 41 40.2 12.1 0.7% 0.1% 75.5 33.9 2.1 51.1 NNNNNN1

94 b71202.a BETANCES WHIRLPOOL ETH141DTWRO EHT141DT 0 3.8 740 797 925 0.86 626 171 0 37.8 15.4 1.5% 0.1% 78.9 37.6 16.8 47.5 NNNNNN1

95 b71202.b WISE TOWERS WHIRLPOOL EET122DTWRO EET121DT 0 6.9 606 673 1080 0.62 529 145 0 NA NA NA NA 77.9 42.3 7.4 46.1 NNNNsh1

96 b71202.c WISE TOWERS WHIRLPOOL ET12PCXLWLO ET12PCXL 0 1.0 NA NA 885 NA NA NA NA NA NA NA NA 78.3 61.5 29.7 26.3 sNNNssd

97 b71202.d WISE TOWERS WHIRLPOOL EHT121PTWL0 EHT121PT 0 6.9 507 562 985 0.57 477 85 0 NA 5.4 NA 0.1% 82.3 47.5 9.6 46.2 NNNNhN1

98 g71202.a BETANCES WHITE WESTINGHOUSE WRT15CGAWO WRT15CGA** 1 3.8 419 554 624 0.89 261 242 51 95.7 24.8 1.4% 0.1% 71.8 43.1 9.7 38.7 NNNNNN1

99 g71202.b WISE TOWERS FRIGIDARE MTR13CRBW2 MRT13CRB** 1 6.9 606 533 587 0.91 315 177 42 47.6 6.2 1.1% 0.1% 79.0 31.2 -3.4 58.2 NNNNNN1

100 g71202.c WISE TOWERS WHIRLPOOL ET12PCXLWLO ET12PCXL 0 6.9 546 563 885 0.64 514 48 0 14.6 0.3 0.1% 0.1% 79.3 39.9 5.6 49.7 NNNNNN1

101 g71202.d WISE TOWERS WHIRLPOOL EHT121PTWLO EHT121PT 0 6.8 348 391 985 0.40 359 32 0 24.7 3.8 0.6% 0.1% 82.8 46.1 16.6 45.6 NNNNNN1

102 k71202.a BETANCES WHITE WESTINGHOUSE WRT15CGAZO WRT15CGA** 1 3.8 NA NA 624 NA NA NA NA 55.2 22.4 1.7% 0.1% 77.1 35.8 -5.1 53.6 sNNNNNd

103 k71202.b WISE TOWERS ROPER RT12DKYAWOO RT12DK*A*0* 1 6.9 613 617 567 1.09 344 212 61 NA NA NA NA 73.2 34.1 -5.1 50.9 NNNNss1

104 k71202.c WISE TOWER GENERAL ELECTRIC TA12SRN TA12SR 0 6.8 413 417 588 0.71 330 87 0 NA NA NA NA 78.7 32.7 16.9 50.7 NNNNbs1

105 k71202.d WISE TOWERS WHIRLPOOL EHT121PTWLO EHT121PT 0 6.0 1122 1157 985 1.17 1014 144 0 NA 10.6 NA 0.1% 86.3 45.4 16.3 49.6 NNNNbN1

106 m71202.a BETANCES WHITE WESTINGHOUSE WRT15CGAZO WRT15CGA** 1 3.8 368 413 624 0.66 289 85 40 NA NA NA NA 71.4 34.9 4.4 45.7 NNNNss1

107 m71202.b WISE WHIRLPOOL EET122DTWRO EET121DT 0 6.9 1104 973 1080 0.90 873 99 0 41.9 4.6 0.8% 0.1% 81.4 35.7 -5.7 58.1 NNNNNN1

108 m71202.c WISE TOWERS WHIRLPOOL ET12PCXLWLO ET12PCXL 0 4.9 402 437 885 0.49 367 70 0 NA NA NA NA 82.5 46.1 10.4 47.1 NNNNss1

109 m71202.d WISE TOWERS WHIRLPOOL EHT121PTWL0 EHT121PT 0 6.9 623 666 985 0.68 563 103 0 20.3 6.1 0.4% 0.1% 76.7 40.4 1.7 47.9 NNNNNN1

110 p71202.a BETANCES WHIRLPOOL EHT121PTWLO EHT121PT 0 3.9 1326 1395 985 1.42 1248 146 0 NA NA NA NA 76.9 30.0 24.1 48.7 NNNNss1

111 p71202.b WISE TOWERS WHIRLPOOL EET122DTWRO EET121DT 0 7.0 933 971 1080 0.90 852 119 0 34.3 5.6 0.4% 0.1% 78.0 39.9 2.9 49.2 NNNNNN1

112 p71202.c WISE TOWER WHIRLPOOL ET12PCXLWLO ET12PCXL 0 6.9 483 599 885 0.68 449 150 0 25.8 3.9 0.4% 0.1% 76.1 45.0 11.1 41.3 NNNNNN1

113 p71202.d WISE TOWERS WHITE WESTINGHOUSE WRT15CGAZD WRT15CGA** 1 6.9 431 478 624 0.77 306 121 51 NA 5.7 NA 0.1% 77.8 42.6 5.9 46.2 NlNNsN1

114 r71202.a BETANCES WHITE WESTINGHOUSE WRT15CGAWO WRT15CGA** 1 3.8 NA NA 624 NA NA NA NA NA NA NA NA 74.6 34.7 5.0 48.8 sNNNssd

115 r71202.b WISE TOWERS WHIRLPOOL EET122DTWRO EET121DT 0 6.9 577 638 1080 0.59 570 68 0 16.1 NA 0.2% NA 79.1 43.3 8.4 46.3 NNNNNs1

116 r71202.c WISE TOWER WHIRLPOOL ET12PCXLWLO ET12PCXL 0 6.9 660 717 885 0.81 629 88 0 NA NA NA NA 78.6 40.9 9.4 47.2 NNNNss1

117 r71202.d WISE TOWERS WHIRLPOOL EEL131CTWRO EEL131CT 0 6.9 393 473 540 0.88 362 111 0 51.2 NA 0.6% NA 78.5 41.4 23.3 42.5 NNNNNe1

118 s71202.a BETANCES WHIRLPOOL ETH141DTWLO EHT141DT 0 3.8 767 731 925 0.79 599 132 0 64.9 15.3 0.6% 0.1% 74.6 30.5 -1.5 53.7 NNNNNN1

119 s71202.b WISE TOWERS WHITE WESTINGHOUSE RT143SCWO RT143SC** 1 6.9 775 828 828 1.00 576 199 52 50 5.8 0.7% 0.1% 79.2 43.9 1.7 48.0 NNNNNN1

120 s71202.c WISE TOWER WHIRPOOL ET12PCXLWLO ET12PCXL 0 7.3 697 721 885 0.81 603 117 0 NA 2.5 NA 0.1% 78.3 41.9 -1.9 49.5 NNNNsN1

121 s71202.d WISE TOWERS WHITE WESTINGHOUSE WRT15CGAWO WRT15CGA** 1 5.9 1273 1117 624 1.79 937 126 53 NA NA NA NA 78.8 34.1 -11.4 58.4 NNNNss1  
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Table E.2.  Description of Columns in Field-Monitoring Results Table 
 

Column Heading Description 
No. Row number 
Site Code Logger name, download date, and site index 
Develop NYCHA development name 
Manufacturer Manufacturer of the refrigerator 
Model Model number recorded at the site 
Proxy Best match in the AHAM refrigerator database 
Aut Automatic defrost (1), manual defrost (2) 
Days Length of monitoring period, days 
Consumption-Raw Raw total consumption, kWh/yr 
Consumption-Adj ∆T-adjusted consumption, kWh/yr (see Section 3.2), ∆Tannual average = 51.2oF 
DOE-Label Label rating of annual consumption, kWh/yr 
Label-Ratio Ratio of adjusted consumption to label rating 
Load Splits-Cond Conduction component of the ∆T-adjusted total consumption, kWh/yr 
Load Splits-Occup Occupant component of the ∆T-adjusted total consumption, kWh/yr 
Load Splits-Defr Defrost component of the ∆T-adjusted total consumption, kWh/yr 
Openings-Refg Fresh-food compartment door-opening events, counts/day 
Openings-Frzr Freezer compartment door-opening events, counts/day 
Duration-Refg Fraction of time fresh-food door is open, % of total 
Duration-Frzr Fraction of time freezer door is open, % of total 
Temperatures-Amb Average ambient (room) temperature, oF 
Temperatures-Refg Average fresh-food compartment temperature, oF 
Temperatures-Frzr Average freezer compartment temperature, oF 
Temp Diff Difference between ambient and interior temperature, oF,  Tamb – (0.7*Trefg + 

0.3*Tfrzr) 
Comment Code describing the success of the loggers, sensors, and process (see 

Table E.3) 
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Table E.3.  Comment Key 
 

Character No:
1 Power Data
2 Ambient temperature logger
3 Frig compartment logger
4 Freezer compartment logger
5 Frig compartment event logger (door openings)
6 Freezer compartment event logger (door openings)
7 Splitting process

Letter Codes:

Power N Normal

s Sensor problem or logger not installed correctly at site (possible CT wire problem)

Temperatures N Normal

l File was low on data (stopped on its own before the download)

e Empty logger (appears to not have been launched)

m Logger moved or removed by occupant (e.g., logger removed from frig. or freezer and set in room)

s Thermistor cable must have been loose.  Raw temperature data shows repeated measurement over extended period

Events N Normal

w Frig. and freezer sensors appear to be switched
b Battery interruption, battery became disconnected

m Mild battery interruption, but end events are reconstructed from front time stamp to within 5 minutes of actual
s Sensor does not seem to be responding to door openings (set-up problem or defective sensor)

u The sensor was indicated by the logger to be unplugged for a significant portion of the week
e Empty:  logger not deployed (out for repair)

h Sensor problem causing very high door-opening durations

Split Process 1 Ok, process can be used to determine baseline, door-opening, and defrost consumptions

z Ok, but no freezer data:  baseline can be estimated, but split between door opening and defrost load cannot be estimated

x Failed:  Control or capacity problem

a Failed:  Difficult to establish baseline (high door-opening loads day and night)

d Failed:  Not enough data

o Failed:  Extended OFF periods  
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Appendix F 
 
 
 

Occupant Density in NYCHA Housing Developments 
 
 
 The New York City Housing Authority (NYCHA) provided occupant count data for each housing 
development in the 1997 project year in each of four age categories:  children (0-9), teenagers (10-20), 
adults (21-61), and elders (62 and older).  This data is summarized in Table F.1.  The column identified as 
“Elderly” has a value of 1 for those developments that are occupied mainly by elderly people (0 indicates 
not elderly).  To be assigned the elderly classification, the development must have an elderly/total fraction 
greater than 0.25 and a total/residence ratio of less than 2.0. 
 
 In a letter from NYCHA to Pacific Northwest National Laboratory (PNNL), the official count of 
people in all NYCHA developments was identified as 431,500 people living in 173,660 units (2.5 per 
unit).  However, this count is know to be conservative because it is estimated that roughly 105,000 
additional unofficial residents are in these apartments.  Therefore, the best estimate of the true occupant 
density in NYCHA developments is 3.1 [(431,500 + 105,000)/173,660] persons per dwelling unit. 
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Table F.1.  NYCHA Occupant Data for Each Development in the 1997 Project Year 
 

Count per Family Fraction of Total Development Size
Indexing Name Elderly Child Teen Adult Elders Total Child Teen Adult Elders Dev NYCHA Name Families

Albany 0 0.55 0.65 1.10 0.28 2.58 0.21 0.25 0.43 0.11 85 ALBANY I AND II 1135
Baruch 0 0.45 0.62 1.18 0.35 2.59 0.17 0.24 0.45 0.14 60 BARUCH 2134
Berry 0 0.34 0.38 0.88 0.47 2.06 0.16 0.18 0.42 0.23 52 BERRY 500
Betances 0 0.43 0.69 1.30 0.21 2.63 0.17 0.26 0.49 0.08 285 BETANCES VI 145
Campos 0 0.40 0.71 1.43 0.34 2.88 0.14 0.25 0.50 0.12 286 CAMPOS PLAZA II 223
Chelsea 0 0.35 0.55 1.12 0.44 2.46 0.14 0.22 0.45 0.18 134 CHELSEA 420
Clinton 0 0.49 0.63 1.10 0.39 2.61 0.19 0.24 0.42 0.15 123 CLINTON 742

0 0.47 0.69 1.09 0.33 2.58 0.18 0.27 0.42 0.13 69 COOPER PARK 697
Douglas-Add 0 0.37 0.47 0.98 0.45 2.27 0.16 0.21 0.43 0.20 148 DOUGLASS & ADDITION 1420
Douglas-Reh 0 0.37 0.47 0.98 0.45 2.27 0.16 0.21 0.43 0.20 148 DOUGLASS & ADDITION 1420
Gravesend 0 0.73 0.76 1.14 0.17 2.80 0.26 0.27 0.41 0.06 68 GRAVESEND 605
Haber 1 0.00 0.00 0.21 0.99 1.21 0.00 0.00 0.17 0.82 142 HABER 368
HarlemRiver 0 0.33 0.31 0.79 0.42 1.86 0.18 0.17 0.42 0.23 147 HARLEM RIVER I & II 634
HighBridge 0 0.57 0.67 1.19 0.25 2.68 0.21 0.25 0.44 0.09 HIGHBRIDGE 662
Hope 0 0.33 0.54 1.00 0.47 2.34 0.14 0.23 0.43 0.20 247 HOPE GARDENS 316
Langston 0 0.66 0.61 1.19 0.20 2.66 0.25 0.23 0.45 0.08 168 HUGHES 494
Independence 0 0.82 0.78 1.03 0.63 3.26 0.25 0.24 0.32 0.19 140 INDEPENDENCE 707
Isaacs 0 0.30 0.36 0.95 0.49 2.10 0.14 0.17 0.45 0.23 139 ISAACS 635
KingTowers 0 0.47 0.54 1.09 0.39 2.49 0.19 0.22 0.44 0.16 30 KING TOWERS 1332
LaGuardia-Add 1 0.00 0.00 0.11 1.06 1.17 0.00 0.00 0.09 0.91 152 LAGUARDIA ADDITION 140
SethLow 0 0.73 0.78 1.25 0.20 2.96 0.25 0.26 0.42 0.07 169 LOW, SETH 517
Melrose 0 0.52 0.68 1.06 0.30 2.56 0.20 0.26 0.42 0.12 28 MELROSE 951
Mitchel 0 0.46 0.50 0.93 0.36 2.25 0.20 0.22 0.41 0.16 145 MITCHEL 1603
Rangel 0 0.43 0.47 0.96 0.42 2.28 0.19 0.21 0.42 0.18 37 RANGEL(COLONIALPARK) 926
Richmond 0 0.93 0.80 1.16 0.13 3.01 0.31 0.27 0.38 0.04 117 RICHMOND TERRACE 468
Sedgwick 0 0.41 0.46 1.07 0.27 2.21 0.18 0.21 0.48 0.12 45 SEDGWICK 745
Smith 0 0.29 0.43 1.09 0.57 2.38 0.12 0.18 0.46 0.24 27 SMITH 1896

0 0.55 0.68 1.15 0.26 2.64 0.21 0.26 0.44 0.10 SOUNDVIEW 1204
SouthBeach 0 0.50 0.59 1.05 0.35 2.49 0.20 0.24 0.42 0.14 35 SOUTH BEACH 417

0 0.50 0.56 1.01 0.41 2.48 0.20 0.23 0.41 0.16 38 ST. NICHOLAS 1471
Wise 1 0.18 0.29 0.83 0.60 1.90 0.10 0.15 0.43 0.31 127 WISE 386

1 0.31 0.34 0.82 0.53 2.00 0.15 0.17 0.41 0.27 174 WSUR VEST POCKETS 383  
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