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Introduction

This PNNL-SFA project is investigating the reactive transport of U and Tc in Hanford subsurface sediments
containing microenvironments or from transition zones. Here we present FY09 research results on the reductive
transformation of Te(VIl) in Ringold Formation sediments recovered from a redox transition zone in Hanford's

unconfined aquifer in the Columbia River corridor.
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» Adeep borehole (C6209) that sampled the entire
depth sequence of Hanford's Columbia River
corridor unconfined aquifer was completed in
August 2008 as part of the Hanford IFRC well
installation program.

Intact core samples were collected for
microbiologic characterization. Subsamples
were removed, handled, and stored under strictly
anaerobic conditions for geochemical studies.
Ringold Formation sediments at and below a
redox transition zone at 60’ were selected for
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= Sample masses adjusted to yield a common extractable Fe(ll)

concentration in suspension [e.g., mol/L Fe(I)].

+ All samples pasteurized at 80° C to suppress microbial activity.

= Aqueous Tc removed by reduction in five of six sediments.

» Difference in reduction rates indicates significant difference in Fe(ll)

reactivity.

» Reactivity sequence paralleled the total extractable Fe(l) concentration
inthe sediments [e.g., ug/g Fe(ll)].
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* No evidence for Fe(lll) oxides .

and Fe((ll) most likely associated with smectite.
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concentration showed high variabilty, indicating a controlling role
of Fe(l) speciation.
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