Skip to Main Content U.S. Department of Energy
Science Directorate
Page 224 of 640

Atmospheric Sciences & Global Change
Research Highlights

December 2014

The Bright Side of Arctic Clouds

Atmospheric particles can brighten cold clouds as well as warm ones

journal cover
The paper is included in a special issue of Philosophical Transactions of the Royal Society A, compiled and edited by John Latham, NCAR; Philip J. Rasch, PNNL; and Brian Launder, University of Manchester. Cover image courtesy of the journal. Enlarge Image.

Results: For the first time, modeling research led by Pacific Northwest National Laboratory found that atmospheric particles can brighten cold clouds in the Arctic. Using simulations, they showed that low clouds over the Arctic may be brightened by deliberately injecting small particles known as aerosols. It's already well known that injecting aerosols into low clouds over the warm ocean can, in some circumstances, reduce the amount of sunlight that reaches the surface. The concept, untested in modeling over the Arctic until now, is called marine cloud brightening, and it can also happen when ships send exhaust into the atmosphere.

The modeling simulations by PNNL and collaborators at the National Center for Atmospheric Research (NCAR) and the National Oceanic and Atmospheric Administration (NOAA) used computer modeling to show that Arctic cloud brightening could have considerable local climate effects, but likely would not substantially alter the global energy balance.

Why It Matters: Propositions to shoot sea salt or other tiny particles into low clouds over the ocean have been tested in computer models over temperate regions. Brighter clouds reflect more of the sun's energy back into space, shading and cooling the surface. The concept would amp up a process that happens naturally when sea spray is lofted into the atmosphere from ocean waves. The research team wanted to know, would the same concept work over the Arctic? The answer could matter for the climate, if geoengineering techniques—proposed by some as a temporary way of reducing the climate effects of greenhouse gases while mitigation is in progress—are ever put into practice.

Arctic aerosols from ship plumes
"This work is also relevant if Arctic sea ice melts and more ships pass through the Arctic," said Dr. Ben Kravitz, atmospheric scientist at PNNL and lead author. "Because ship plumes—instigated by particles from diesel engine exhaust—can also generate trails of bright clouds." [pictured above]

This is the first study to look at process modeling of marine cloud brightening in the Arctic.

Methods: PNNL researchers and their collaborators used the Weather Research and Forecasting Model (WRF), a leading community atmospheric model that can resolve clouds and represent many of the complex microphysical interactions between clouds and aerosols. They ran eight cases, in clean to polluted atmospheres, and simulated injection of aerosol particles into the atmosphere. Their simulations showed the particle impacts in a wide variety of background conditions.

What's Next? In this study, the researchers looked at idealized cases. For example, they did not allow for initial wind, which would blow clouds and particles around, although wind was allowed to develop over the course of the simulation. But the Arctic is windy, so how did that choice affect the results? What happens if the wind blows the particles across the entire simulation area and doesn't keep them in a straight line? The next few studies will look at the impacts of these and other research assumptions.

Acknowledgments

Sponsors: This research was supported by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research's Earth System Modeling program. Additional support was provided by the Fund for Innovative Climate and Energy Research (FICER). 

Research Team: Ben Kravitz, Hailong Wang, and Philip J. Rasch, PNNL; Hugh Morrison, NCAR; Amy B. Solomon, University of Colorado and NOAA.

Research Area: Climate & Earth Systems Science

Reference: Kravitz B, H Wang, PJ Rasch, H Morrison, and AB Solomon. 2014. "Process-Model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic." Philosophical Transactions of the Royal Society A 372(2031). DOI: 10.1098/rsta.2014.0052

Related Research:

Geoengineering: Opening a Dialog on the Future

Computer Simulations Show Effects of Engineering the Climate

When Clouds Hang Out with Pollution

Dimming the Sun's Light


Page 224 of 640

Science at PNNL

Core Research Areas

User Facilities

Centers & Institutes

Additional Information

Research Highlights Home

Share

Print this page (?)

YouTube Facebook Flickr TwitThis LinkedIn

Cloud Brightening

Deliberately altering clouds to increase their reflectivity could be a useful technique to purposefully cool the climate. Known as marine cloud brightening, it is one of several techniques proposed by some to mitigate the climate warming effects of increased greenhouse gas levels in the atmosphere. Merely theoretical now, scientists are working to understand how these techniques—called geoengineering—would alter clouds and the energy balance of the climate.

Contacts