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Abstract:  The US Army Ordnance Center & School and Pacific Northwest Laboratory are
developing a turbine engine diagnostic system for the M1A1 Abrams tank.  This system
employs Artificial Neural Network (ANN) technology to perform diagnosis and prognosis of
the tank’s AGT-1500 gas turbine engine.  This paper describes the design and prototype
development of the ANN component of the diagnostic system, which we refer to as
"TEDANN" for Turbine Engine Diagnostic Artificial Neural Networks.
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Introduction:  The Army’s maintenance practice employs diagnostic procedures that are
generally performed manually.  Rather than using automated diagnostic and prognostic
paradigms, the current practice verifies only whether the operational states are within or out of
tolerance.  The paradigm does not reflect a real-time operational assessment, nor can it be
readily modified to predict failures (perform prognostics).

Technology currently exists to markedly improve both the  accuracy and timeliness of the
current diagnostic paradigm.  These improvements will not require an inordinate expenditure in
either development or fielding costs.  The purpose of this paper is to discuss improvements to
the current maintenance practices and describe a prototype system that employs a real-time
automated diagnostic paradigm.  The prototype system will be referred to as the Turbine
Engine Diagnostic Artificial Neural Networks (TEDANN).  TEDANN is being developed to
evaluate the feasibility of using Artificial Neural Networks (ANNs) to monitor turbine engine
performance and diagnose failures in real-time.  In addition, TEDANN will provide a testbed to
evaluate the feasibility of developing a real time prognostics capability.
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Background:  Because the current Army maintenance process is reactive (dependent upon a
failure to occur before its initiation), it is incapable of predicting failures.  The current
diagnostic process depends upon humans to integrate, categorize and analyze currents and
voltages.  Diagnostics are based on individual experience, heuristics and rules of thumb.  After
the mechanic arrives at an initial diagnosis, he must analyze his initial hypothesis using a suite
of analog and/or digital Test Measurement or Diagnostic Equipment (TMDE).  The resultant
analysis will either support or refute his hypothesis.  The mechanic repeats this iterative
process until it produces an accurate diagnosis.

For example, troubleshooting the AGT-1500 gas turbine engine requires the mechanic to take
separate Digital Multimeter (DMM) readings at the Electronic Control Unit (ECU).  This is
accomplished by inserting test probes into an ancillary breakout box (BOB) attached to the
ECU’s diagnostic connector.  Once the mechanic takes the required voltage readings he must
manually analyze their significance through a manual computation and compare the results to
diagnostic flow charts.  This practice is time consuming and error prone due to the dependence
upon proper application of mathematical conversion factors and correct placement of test
probes into the BOB.

A suggested improvement to current maintenance practices is to automate diagnostics in a real-
time system and to use prognostics to detect equipment faults before they occur.  This would
reduce the occurrences of No-Evidence-Of-Failure (NEOF) outcomes in diagnosing component
failures.  The NEOF occurs when a component is incorrectly diagnosed as faulty and is
evacuated to a maintenance facility for repair.  The receiving maintenance facility will, as a
matter of course, verify the initial diagnosis.  When the defective component is diagnosed as
functional, a NEOF is initiated.  At the present time certain electronic components exhibit a
NEOF rate of approximately 60%.  Hence, the requirement for an improved diagnostic and
prognostic paradigm.

Objective:  The technical objectives of this research are to

• explore improvement opportunities in turbine engine fault diagnosis through
 application of ANN technology;

• examine the application of ANN technology to an automated diagnostic and
 prognostic system for turbine engine maintenance.

The long-term operational objectives of this research are to achieve a reduction in NEOF, to
reduce maintenance costs, and to increase operational readiness.

Approach:  We chose Artificial Neural Network (ANN) technology for our prototype because
it is well suited for diagnostics in real-world applications (see the box on Artificial Neural
Networks).  Each turbine engine is unique in its behavior as a result of its age, manufacturing
tolerances, and the environment in which it is operated.  All sensors are unique in their
response and calibration.  A diagnostic system using ANNs can automatically adapt to these
individual variables for each turbine engine.  Most conventional technologies such as expert
systems would monitor each individual turbine engine as a generic engine.  These generically-
based diagnostic systems will not be as sensitive to individual turbine engines as an ANN-
based system.

The TEDANN prototype demonstrates how current practices of manual diagnosis can be
replaced by automated diagnostics and prognostics.  The prototype analyzes values from on-
board sensors in real-time.
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Artificial Neural Networks

A brief description of Artificial Neural Networks (ANNs) is given here to help readers who are unfamiliar
with this technology to appreciate the computational capabilities of ANNs.

ANNs are algorithmic systems implemented in either software or hardware.  The concept of ANNs was
inspired by the way the biological brain processes information.  ANNs, like people, learn by example.
Learning in the biological brain occurs in a network of neurons, which are interconnected by axons.  A point
of contact (actually most often a narrow gap) between an axon from one neuron to another is called a
synapse.  Learning is a matter of adjusting the electro-chemical connectivity across these synapses.

An ANN is a network of neurons or Processing Elements (PEs) and weighted connections.  The connections
correspond to axons and the weights to synapses in the biological brain.  A PE performs two functions.  It
sums the inputs from several incoming connections and then applies a transfer function to the sum.  The
resulting value is propagated through outgoing connections to other PEs.  Typically these PEs are arranged
in layers; with the input layer receiving inputs from the real world and each succeeding layer receiving
weighted outputs from the preceeding layer as its input. Hence the creation of a feed forward ANN, where
each input is fed forward to its succeeding layer.  The first and last layers in this ANN configuration are
typically referred to as input and output layers.  (Input layer PEs are not true PEs in that they do not perform
a computation on the input.)  Any layers between the input and output layers (usually 0-2 in number) are
called hidden layers because they do not have contact with any real world input or output data.

Back propagation is one of several possible learning rules to adjust the connection weights during learning
by example.  Learning occurs when the network weights are adjusted as a  function of the error found in the
output of the network.  The error is the difference between the expected output and the actual output.  The
weights are adjusted backwards (back-propagated) through the ANN network until the error is minimized for a
set of training data.

A trained ANN, i.e., a network that has learned by example, can be applied to real world problems of
considerable complexity.  Their most important advantage is in the ability to process data that are too
complex for conventional technologies––problems that do not have an algorithmic solution or for which an
algorithmic solution is too complex to be found.  In general, because of their abstraction from the biological
brain, ANNs are well suited for problems that people are good at solving, but for which computers are not.
This class of problems includes pattern recognition and forecasting or recognizing trends in data.  ANNs have
been applied successfully to hundreds of applications.

Figure 1 portrays the major components of the prototype diagnostic system.  Initially, the
TEDANN prototype will analyze AGT-1500 fuel flow dynamics, that is, fuel flow faults
detectable in the signals from the ECU’s diagnostic connector.  These voltage signals represent
the status of the Electro-Mechanical Fuel System (EMFS) in response to ECU commands.  The
EMFS is a fuel metering device that delivers fuel to the turbine engine under the management of
the ECU.  The ECU is an analog computer whose fuel flow alorithm is dependent upon throttle
position, ambient air and power turbine inlet temperatures, and compressor and power turbine
speeds.  Each of these variables has a representative voltage signal available at the ECU’s J1
diagnostic connector, which is accessed via the Automated Breakout Box (ABOB).
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Figure 1.  System Design of the TEDANN Maintenance System Concept

The ABOB is a firmware program capable of converting 128 separate analog data signals into
digital format.  The ECU’s J1 diagnostic connector provides 32 analog signals to the ABOB.
The ABOB contains a 128 to 1 multiplexer and an analog-to-digital converter, both operated by
an 8-bit embedded controller.  Army Research Lab (ARL) developed and published the
hardware specifications as well as the micro-code for the ABOB Intel EPROM processor and
the internal code for the multiplexer driver subroutine.  Once the ECU analog readings are
converted into a digital format, the data stream will be input directly into TEDANN via the
serial RS-232 port of the Contact Test Set (CTS) computer.

The CTS computer is a ruggedized IBM compatible personal computer designed for tactical use
on the battlefield.  The CTS has a 50MHz 32-bit Intel 80486DX processor.  It has a 200MB
hard drive and 8MB RAM.  The CTS also has serial, parallel and SCSI interface ports.  The
CTS will also host a frame-based expert system for diagnosing turbine engine faults (referred
to as TED; not shown in Figure 1).  Eventually TEDANN will be integrated with the TED
expert system, which will receive inputs from TEDANN.

TEDANN was developed using the NeuroWindows ANN simulator software and Visual Basic
as a user/computer interface development tool.  Both of these software packages run in the MS-
Windows environment.

Results:  For the prototype development of the TEDANN system, we concentrated on three
fuel flow faults: Bouncing main valve metering, stuck main valve metering and fuel flow
errors.  All three problems are difficult to diagnose and lend themselves to real-time analysis
using ANNs.   The analysis of fuel flow problems is based on an understanding of the
operation of the EMFS, which is summarized in the box entitled “Fault Detection in the AGT-
1500 Turbine Engine Electromechanical Fuel System.”

TEDANN performs diagnostics using values from three fuel flow signals, ambient air and
power turbine inlet temperatures, and compressor and power turbine speeds.  For our
prototype, these signal data were sampled during the first minute of the engine start sequence.
Signal values are collected from the ECU's J1 diagnostic connector.  The three fuel flow
signals are referred to as: WF-request, WF-actual and WF-solenoid.  These values determine
the specific amount of fuel delivered to the engine according to the fuel schedule in the ECU.
WF-request is the ECU's request for fuel flow, WF-solenoid is an ECU signal that positions
the main metering valve in the EMFS in response to WF-request and WF-actual.  WF-actual is
the EMFS' feedback signal indicating the position of the main metering valve.
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Fault Detection in the AGT-1500 Turbine Engine
Electromechanical Fuel System

In the event a fuel flow fault occurs, the ECU initiates an engine protective mode.  A fuel flow fault during
the engine start sequence results in engine protective mode 1, which aborts the AGT-1500 start sequence.  A
fuel flow fault that occurs during normal operation results in protective mode 3, which causes the engine to
run at  a fixed, severely restricted power level.

AGT-1500 fuel delivery is accomplished by the main metering valve in the EMFS.  A Linear Voltage
Differential Transformer (LVDT) connected to the bottom of the main metering valve reports the valve's
position (WF-actual) to the ECU.  WF-request, the ECU’s request for fuel flow, controls the metering valve
by generating a WF-solenoid current that modulates the solenoid’s stem; movement of the solenoid’s stem
hydraulically positions the metering valve.  When WF-request and WF-actual are equal, a nominal null (WF-
solenoid) current of 275 milliamps is used to maintain the requested position of the metering valve.  When
WF-request increases (acceleration) or decreases (deceleration), WF-solenoid current increases or decreases
respectively, causing the metering valve to move to the new position.  The difference between WF-request and
WF-actual during this transition generates an error signal that is used to correct the position of the main
metering valve.  When WF-actual again equals WF-request, WF-solenoid current returns to its null value of
275 milliamps.

Sensor data for the ANN training and testing were collected from turbine starts by Textron, the
tubine engine manufacturer, and at Aberdeen Proving Ground by the U.S. Army Ordnance
Center & School.  The sensors were sampled at frequences ranging from 3 to 10 per second.
Initial data sets were collected from mostly fault-free starts.  These data were analyzed to
understand how the sensor values behave during fault conditions.  Our approach for training
the ANNs required the use of data from starts with faults.  Because of the difficulties in
generating such data with a real turbine engine, we translated some data sets from fault-free
starts to faulty starts.  Additional data sets from fault-free and faulty starts are being
incorporated into TEDANN.

Figure 2 shows the behavior of WF-request, WF-actual and WF-solenoid during a normal start
and during the three monitored fuel faults.  Normalized data are shown at a sampling rate of
three per second.  In general, the data tend to be quite messy; this underscores the advantage of
the ANN approach.  Figure 2a shows the normal condition in which actual fuel flow closely
tracks the requested fuel.  Figure 2b shows significant vertical motions in WF-actual.  This
condition of bouncing MMFV is caused by air penetration into the fuel system.  Figure 2c (in
the last 80 samples) shows a steady level on WF-actual caused by a stuck MMFV.  Figure 2d
shows irregular WF-actual motions that neither have significant vertical motions nor remain
steady on one level.  Also, the WF-solenoid varies substantially at several sampling times.  We
classify this fault type as a fuel flow error.  Thus, the sensor behavior during a fuel flow error
is characterized by data that cannot be attributed to the bouncing or the stuck MMFV.

TEDANN analyzes the sensor values in the form of "features" computed from the data.  During
development these features were recognized as discriminators among the three fault conditions.
The use of sensor values alone as the input to a simple feedforward ANN do not capture
information in the time domain.  Thus, to capture changes in individual sensor values over
time, we used first derivatives of sensor values and first derivatives of differences between
pairs of sensor values as input to the ANN.
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Figure 2.  Sensor data plots for three sensor inputs to TEDANN (normalized data) under four
engine status conditions:  (a) normal start;  (b) bouncing MMFV; (c) stuck MMFV; and (d) fuel
flow error.  Sensor data:  WF-Request (solid line); WF-Actual (dashed line); WF-Solenoid
(dotted line).
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Preliminary studies on recurrent ANNs were performed to determine their applicability to this
problem.  Recurrent ANNs are specifically suited to capture time dependent data in time series,
such as sensor values.  These ANNs have not yet been incorporated in TEDANN because they
require a large number of data sets for training, which was not available for the first prototype.
In the future, when sufficient data are available (e.g., through automatic data collection),
recurrent ANNs will be further evaluated for applicability to TEDANN.

Based on the analysis by the ANN system, TEDANN determines which fuel flow voltage
readings are out of tolerance with EMFS nominal operational parameters.  Having determined
the operational condition of the EMFS, TEDANN will display either a fault status message
identifying the EMFS faults or a message stating that the EMFS is fully operational.  At a
future date, when TEDANN and TED are integrated systems, the output of TEDANN will be
submitted to TED for further processing.

TEDANN displays diagnostic information for each of the three monitored fuel faults, using a
continuous severity scale from zero to one. Values close to zero indicate no fault, and values
close to one signify a severe fault.  We have arbitrarily assigned the following interpretation of
the severity values:

0.00-0.25 no fault (normal)
0.26-0.75 warning (fault)
0.76-1.00 critical (fault)

In the future, we expect that the TED expert system will provide a more realistic interpretation
using rule-based post-processing of TEDANN’s output.

Preliminary results indicate that TEDANN performs the correct diagnosis.  Table 1 shows a
confusion matrix that compares TEDANN’s output for the three fault diagnoses as a function
of actual conditions.  The tabulated results are TEDANN’s outputs (severity of the faults for
each type of fault, shown in the three columns), averaged over several start data sets.  The
rows represent the actual conditions under which the data were collected.  The correctly
diagnosed severity levels for the three faults are underlined.  For example, in an actual
condition of stuck MMFV, TEDANN diagnosed the fault to a severity of 1.0, and correctly
failed to find evidence for the other faults.  The bottom row shows the output for known no-
fault conditions:  in this case the diagnosed fault severity levels are appropriately low for the
three faults.

Table 1.  TEDANN’s Diagnostic Performance

Diagnosed condition:
Bouncing Stuck Fuel flow

Actual conditions: MMFV MMFV error
Bouncing MMFV 0.84 0.22 0.06
Stuck MMFV 0.03 1.00 0.00
Fuel flow error 0.10 0.09 0.47
No fault 0.06 0.19 0.41

The main TEDANN displays are summarized in Figure 3.  Two operational contexts are
supported in the prototype to demonstrate the proposed concepts.  First, a mechanic’s context
is supported in a simple display used to operate the system, summarize results, and access
diagrams, schematics, or instructions to aid the maintenance process.  Second, a
development/expert context is supported by additional windows that display detailed diagnostic
information (including the sensor data stream and continuous output of the ANN); an  ANN
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training window for defining the ANN configuration and setting up or executing the ANN
training phase; and a status summary window that provides status lights summarizing various
engine components or subsystems.  Available from most screens is an electronic maintenance
guide, implemented using a hypertext design that can incorporate graphics, schematics,
photographic images, and video.   For illustrative purposes, the Main Screen is shown in
Figure 4.
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Figure 3.  TEDANN prototype window/navigation summary.

Figure 4.  TEDANN Main Screen

Prognostic Capability:  ANNs are capable of recognizing trends in data.  This fact can be
exploited for prognostics.  In the short term, it would reduce the amount of man hours spent on
diagnosing de facto failures.  Further, it would decrease the requirement for ancillary TMDE as
the predictive maintenance system is driven by internal sensor information.  In addition, a
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robust predictive maintenance system would decrease the probability of erroneous replacement
of operational components due to poor initial diagnosis.  This would in turn reduce the number
of NEOFs reported at maintenance facilities due to  evacuation of operational components that
were erroneously removed from systems.

In the long term, predictive maintenance technology would be a powerful and valuable tool to
the design engineer as well as the system operator and maintainer.  Once a robust and viable
predictive maintenance system is developed, it would allow for a system design to be
qualitatively analyzed across a range of operational parameters.  This would enable design
flaws to be corrected before the system is fabricated.  In addition, it would enable the operator
and maintainer to query the system about its relative operational state prior to the onset of any
sustained operation.  Any identified flaws could be detected and corrected.  This capability
would enable combat commanders to evaluate their systems before an engagement and obtain
an accurate assessment of available combat power.  Probable system failures could be
transmitted through available communications media to support maintenance, and the required
maintenance assets and repair parts could be dispatched to the unit before the battle.  This
capability would be a radical departure from the current maintenance support structure that is,
by design, reactive in nature.

Conclusions:  Preliminary results indicate that our approach to maintenance diagnostics will
save time and improve performance.  The ABOB’s capability to automatically convert analog
voltage readings to digital format will save time and markedly increase diagnostic accuracy.
With the TEDANN/ABOB interface, a series of manual calculations and decisions may be
eliminated to yield further improvements.  The application of ANN technology appears to hold
great promise for enhancing the effectiveness of Army maintenance practices.

The future of Army Maintenance technology is not dependent upon improvements within our
current diagnostic's paradigm.  Rather, it lies with the development of a predictive rather than
reactive maintenance system.  The amount of time and money required to develop this
capability is arguably worth the investment, given the potential for reductions in both
maintenance man-hours and erroneous replacement of operational system components. In
addition, successful integration of predictive maintenance technology would result in the
introduction of a new term in the Army lexicon––prognostics rather than diagnostics.
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