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Project Description 
 
The objective of this project is to define the architecture of 
a dynamic prognostic system for enhancing the operating 
envelope of target systems.  This includes defining the 
constituents of and developing a generalized methodology 
for predicting the remaining useful life of systems or 
products. 
 
Prognostics is the process of predicting the future state of a 
system.  Prognostics systems comprise sensors, a data 
acquisition system, and microprocessor-based software that 
perform sensor fusion, analysis, reporting and interpreting 
of results with little or no human intervention in real time.  
It offers the promise of minimizing failures (especially 
failures in the field), extending the time between 
maintenance overhauls, and reducing life-cycle costs.  
Prognostics is still in a research and development phase, 
and implementing it is a monumental task on several 
levels:  the technical challenges involving hardware and 
sensor technologies, the analytical challenges involving 
predictive methods, and the logistical challenges centering 
on how to make use of prognostic information.  Through 
this research, we are developing approaches that that will 
foster more efficient operations of complex systems and 
machinery with an associated decrease in pollution and fuel 
consumption. 
 
Advancements in electronics, sensors, computer processing 
speed and memory, and communications are enabling more 
reliable and less expensive field data collection to support 
diagnostics and prognostics.  Some examples of such 
advancements are smart microsensors, ultrasonic sensors, 
acoustic emission sensors, smart memory cards, radio-
frequency tags/multisensor modules, and cellular data 
links.  With control microprocessors, these sensors and 
instrument packages may be fabricated within a size, cost, 
weight, and power requirement that will allow deployment 
directly on host equipment. 
 
The approach will be to apply a systems engineering 
methodology to define requirements and conduct 
exploratory analyses to determine methodologies that hold 
promise for developing a prognostics framework.  We will 

then develop a demonstration prototype for a target 
application. 
 
The research employs a variety of technologies and 
scientific disciplines: 
 

advanced sensor technologies to provide accurate 
operational data that supports analysis of system status 
 

• 

• 

• 

artificial neural network systems to conduct sensor/ 
data fusion that supports prognostics 
 
advanced statistical methods to enhance predictive 
capabilities. 

 
Technical Accomplishments 
 
The three main thrusts of the first-year effort were to define 
a high-level prognostics architecture, develop a 
demonstration system in a real application domain, and 
explore statistical prediction techniques for prognostics.  
The demonstration system provides an opportunity to 
collect data from the field that will be used in the second-
year effort of developing and refining advanced 
prognostics techniques.  Non-LDRD funding was used to 
procure the hardware required to assemble a demonstration 
system. 
 
Prognostics Architecture 
 
Traditional maintenance practice is either a function of a 
somewhat arbitrary rule of thumb (maintenance every 
90 days or 1000 hours of operation) or a reactive process 
(equipment is not fixed until it breaks, and parts, supplies, 
personnel, and tools required for maintenance are not 
placed in the pipeline until maintenance is scheduled).  As 
a result, when the actual demand is greater than expected 
and parts begin to fail early, the ramp-up time for 
maintenance may be steep and inefficient; particularly 
when personnel, parts, materials, or other resources are not 
available or located nearby.  If parts do not exist, a large 
production deficit and substantially increased delays and 
costs can result.  When the actual demand is less than 
expected however, a traditional maintenance and 
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acquisition system may suffer unnecessary costs associated 
with idle personnel and surplus parts. 
 
Traditionally, scheduled maintenance based on mean-time-
between-failure (MTBF) statistics attempts to reduce this 
problem, but this typically results in equipment being 
replaced before it is necessary or (more typically) is 
ineffective when equipment breaks before the expected 
time.  Inevitably, over time, both will happen.  When a 
schedule is based on averages (in this case, MTBF), it will 
be too high about half the time and too low about half the 
time.  As a consequence, either too few or too many 
repair/maintenance activities will be scheduled.  To 
minimize the impact of failures, maintenance must be 
scheduled early, which incurs unnecessary costs. 
 
In contrast, prognostics can impact the process of 
scheduling maintenance, ordering parts, and using 
resources.  Included is the prognostics framework for 
predicting future wear.  Although data may be collected in 
real time, many months of data from many pieces of 
equipment are required to develop accurate and 
comprehensive wear models.  Once these models are 
developed, they are downloaded to each piece of 
equipment for use in the real-time prognostics module.  
On-board the system, data from sensors, current usage, and 
the environment are used in conjunction with the wear 
models to predict performance and wear in real time.  Once 
a failure or excessive degradation is predicted, data about 
the impending event may be forwarded to a central 
logistics system.  There, maintenance is scheduled based 
on these data, and necessary equipment and parts are 
ordered to arrive just in time for the maintenance. 
 
The availability of prognostic information facilitates the 
development of a proactive acquisition process.  Failures 
can be predicted early so that maintenance and acquisition 
systems can be primed, significantly reducing maintenance 
ramp-up time because parts are available in the pipeline to 
meet projected demand.  The ability to benefit from 
prognostics requires proactive business practices.  
Organizations need to evolve beyond their reactive 
processes and adopt new proactive objectives. 
 
This project identified features of a logistics and 
acquisition organization that are necessary to capitalize on 
prognostics information.  A platform-level architecture for 
an onboard prognostics system is described.  Analysis 
proceeds through a series of stages or components, 
beginning with sensor validation and progressing through 
diagnostics and prognostics analyses.  The prognostics 
output is based on trending of parameters that are output 
from the diagnostic module. 

In Situ Oil Analysis System 
 
One of the most effective means of achieving prognostics 
for mechanical systems, particularly for engines and power 
units, is analysis of oil.  This project designed and 
developed a prototype onboard oil analysis system.  A 
target demonstration application is for the large diesel 
electric engine used in locomotives.  In designing the in 
situ system, we recognized that a central objective should 
be to provide maintenance technicians with the same 
information that has been traditionally used in laboratory-
based oil analysis:  oil condition, contamination, and wear 
materials.  These requirements and the need to minimize 
size, weight, complexity, and cost led to the selection of 
the analytical techniques used (elemental analysis, 
dynamic viscosity, infrared absorption, and ferromagnetic 
and non-ferromagnetic particulate). 
 
Determination of wear and contaminant elements in the oil 
(by elemental analysis) was accomplished using a specially 
designed x-ray fluorescence (XRF) spectrometer.  The 
XRF system uses a small amount of suitable radionuclide 
in a well-sealed, fail-proof container as a source of x-rays.  
The system was designed to operate using very little 
power.  XRF analysis can detect and quantitate wear 
metals such as iron, copper, chromium, aluminum, silver 
and lead as well as elements commonly used in lubricant 
additive packages such as zinc and molybdenum. 
 
Lubricant viscosity can be measured directly using 
specially designed capillary viscometers.  These are 
optimized for the range of viscosities associated with 
lubricants found in individual applications.  Determination 
of viscosity can help determine heat- and shear stress-
induced oil degradation and be used by the intelligent 
agent software to identify possible oil dilution by fuel or 
water or unintended addition of improper lubricants. 
 
As in the laboratory, infrared analysis is used to determine 
oil condition.  Non-dispersive infrared and visible band 
spectrometric instrumentation provides for in situ 
determination of oil quality indexes, including oxidation, 
nitration, turbidity, and (by inference) total acid number 
and additive package condition.  The non-dispersive design 
is rugged and resistant to shock and vibration. 
 
In gas turbine engine applications, ferromagnetic wear 
particles are collected and quantitatively determined by 
smart self-clearing magnetic chip detectors.  In engines 
where high oil flow rates are encountered, such as large 
diesels (with rates in excess of 300 gpm) for example, 
additional methods of detecting and quantitating 
ferromagnetic and non-ferromagnetic conducting particles 
are being developed in cooperation with private industry. 
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Together, these advanced sensors provide critical 
indications of the health and status of an engine that may 
be linked to specific fault or degraded conditions.  This 
fault analysis and interpretation is carried out by onboard 
software.  Microprocessors or gate arrays are used to run 
software for data acquisition, analysis, and interpretation.  
The analysis determines whether oil is within all flag and 
alarm limits.  Model-based techniques and artificial neural 
networks may be used to determine more subtle lube and 
oil conditions, identify developing faults, and provide 
statistical estimates of time to failure. 
 
Not all of the individual components of the system are as 
sensitive as their expensive counterparts in oil analysis 
laboratories (which require equipment investments in the 
hundreds of thousands of dollars).  However, this 
deficiency is more than compensated for by the fact that 
the tests may be conducted as frequently as desired.  
Conventional oil analysis programs conduct tests quarterly, 
semi-annually, or yearly.  Use of the in situ system on a 
weekly or monthly basis would provide more timely data 
that may be aggregated or averaged to yield comparable 
results. 
 
Data Analysis Methods 
 
As hardware and sensor technologies make it more feasible 
to collect critically needed field data, interest has grown in 
improving analysis techniques.  One approach to 
prognostics uses linear regression to determine short- and 
long-term trends in predicting the time until components 
fail or fall below operational specifications.  We realize 
that more sophisticated analyses may enhance the value of 
the prognostics output.  The third objective of the project is 
to investigate more advanced approaches.  Prediction may 
be addressed using any of a variety of statistical 
techniques, depending upon the prognostic 
goals/requirements.  Examples of goals include predicting 
 

the value of parameter Y at time t • 

• 

• 

• 

 
the time t when system performance and efficiency 
will be at level Y 

 
the time until the next overhaul is needed 

 
the cost-benefit ratio of removing equipment from 
service at time t. 

 
The use of the term “time” may be misleading.  It is clear 
that elapsed time or calendar time is a poor unit of measure 
for a mechanical system.  Better manifestations of the 
variable “time” might be “running time,” or “cycles,” or a 
measure of work produced (e.g., joules or torque time). 

Candidate statistical methods include multivariate 
regression, Bayesian regression methods, time-series 
analysis, and discrimination or clustering analysis.  
Analysis may focus on single or multiple parameters.  For 
single parameter prognostics, statistical analyses may be 
performed simultaneously on each real-time data source.  
As data are collected, regression models are applied to the 
data to determine trends.  This value is compared, in real 
time, with a metric failure limit that is established offline.  
The point of predicted failure is calculated as the 
intersection of these two lines.  If an unexpected event 
occurs that dramatically increases degradation, it is 
immediately identified and addressed. 
 
For multivariate prognostics, interactions are sought 
among individual equipment parameters.  Separate 
analyses of each do not indicate a pending failure.  Taken 
together, however, failure is imminent because a slight 
degradation of both parameters is symptomatic of a drastic 
change in performance.  In certain cases, this could be 
described by a relatively simple algorithmic model that 
reflects the physics underlying the relationship among the 
parameters.  For example, engine efficiency is a common 
indicator of engine health that is calculated from multiple 
thermodynamic data sources.  In these cases, the data 
would be used to estimate the parameter values while still 
closely reflecting the physics-based model.  In other cases, 
however, the underlying physics model may be too 
complex to be determined by a simple algorithm.  Effective 
analytical approaches may require empirically driven, 
nonlinear, non-parametric regressions such as artificial 
neural networks or other multivariate statistical 
techniques—including partial least squares, seemingly 
unrelated regressions, and canonical correlation. 
 
In each of these cases, the response of the system depends 
on the severity and consequences of the impending failure.  
For example, if a failure is not estimated to affect 
immediate operations, the prognostics program may only 
notify the central scheduling process.  If the failure is 
estimated to affect immediate operations, the operator is 
notified, or in extreme cases, the machine may shut itself 
down to prevent catastrophic failure.  In general, to benefit 
from prognostics information, appropriate action must be 
taken. 
 
Conclusions 
 
Economic considerations may not allow owners to replace 
equipment in their aging fleets, and thus there may be 
pressure to extend the life of equipment well beyond the 
expected lifetime.  This is true for many kinds of complex 
mechanical systems, including military tanks, aircraft, 
ships, locomotives, and heavy earth-moving equipment.  
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Today, the focus is on high-value systems.  As technology 
is advanced to reduce size, weight, and cost and increase 
reliability of prognostics systems, the applications will 
migrate to more plentiful, lower-value systems with 
potential for greater cost savings. 
 
To extend the life of complex mechanical systems and to 
reduce operational/life cycle costs, solutions must be found 
that reduce or eliminate premature failures and associated 
collateral damage as well as the down time that results 
from an inefficient maintenance/resupply process.  Private 
industry and the military are realizing that 
maintenance/logistics systems must factor in the cost of 
“wait time” or “down time.”  This will increase emphasis 
on predictive maintenance, where parts, tools, and 
personnel are scheduled to be at the right place and at the 
right time to effect repairs.  This requires real-time, 
onboard prognostics systems that monitor the health of 
equipment, diagnose degradations in performance, and 
predict faults so appropriate upkeep can be scheduled.   

Equally important, it requires that organizations be 
responsive to available prognostics information.  For most 
organizations, achieving this proactive status amounts to a 
major transition that needs to be planned and managed.  
This will require workforce planning, training, scheduling, 
and deployment to meet the new needs of the organization.  
Logistics, maintenance, procurement, and acquisition 
systems must be re-engineered for proactive operations. 
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