Skip to Main Content U.S. Department of Energy
PNNL News Central

Computational actinide chemistry: Are we there yet?

August 21, 2007 Share This!

Recent progress is revealing the secrets of heavy elements

RICHLAND, Wash. – Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory. Computational actinide chemistry may bring that goal closer to achievement.

PNNL scientist Jun Li will provide an overview of developments in computational actinide chemistry at the national meeting of the American Chemical Society.

Progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry.

“These discoveries will have deep impact for heavy-element science and will greatly improve the fundamental understanding of actinides essential to develop advanced nuclear energy systems, atomic weapons and environmental remediation technologies,” Li said.

Li’s presentation will focus on applications of relativistic ab initio and density functional theory (DFT) methodologies to actinide complexes. Special emphasis will be given to applications of DFT methods to the geometries, electronic structures, spectroscopy and excited-state properties of various actinide compounds, from small actinide-containing molecules to large organoactinide systems.

Li also was an organizer of the three-day ACS symposium Computational Actinide and Transactinide Chemistry: Progress and Perspectives.

# # #

Jun Li made his presentation at the 234th American Chemical Society National Meeting in Boston, Mass., on Tuesday, Aug. 21, at 1:20 p.m., in the Boston Park Plaza's Franklin Room.

A key resource for this research is the William R Wiley Environmental Molecular Sciences Laboratory, a Department of Energy national scientific user facility located at PNNL.

Tags: Energy, Environment, Fundamental Science, EMSL, Environmental Remediation, Chemistry

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of about $950 million. It is managed by Battelle for the U.S. Department of Energy’s Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

News Center

Multimedia

Additional Resources