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Executive Summary

One goal of hyperspectral imagery analysis is the detection and characterization of plumes.
Characterization includes identifying the gases in the plumes, which is a model selection prob-
lem. Two gas selection methods compared in this report are Bayesian model averaging (BMA)
and minimum Akaike information criterion (AIC) stepwise regression (SR).

Simulated spectral data from a three-layer radiance transfer model were used to compare the
two methods. Test gases were chosen to span the types of spectra observed, which exhibit
peaks ranging from broad to sharp. The size and complexity of the search libraries were varied.
Background materials were chosen to either replicate a remote area of eastern Washington or
feature many common background materials.

For many cases, BMA and SR performed the detection task comparably in terms of the receiver
operating characteristic curves. For some gases, BMA performed better than SR when the size
and complexity of the search library increased. This is encouraging because we expect improved
BMA performance upon incorporation of prior information on background materials and gases.
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Abbreviations and Acronyms

SYMBOL DEFINITION
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
BMA Bayesian Model Averaging
BMS Bayesian Model Selection
GTK Gas Tool Kit
HIP Hyperspectral Image Processing
IR-SAGE Infrared Systems Analysis in General Environments
KLI Kullback-Liebler Information
LANL Los Alamos National Laboratory
LLNL Lawrence Livermore National Laboratory
MCMC Markov Chain Monte Carlo
MC3 Markov Chain Monte Carlo model composition
NEFDS Nonconventional Exploitation Factors Data System
N/FAPs Nuisance/False Alarm Probabilities
PDs Probabilities of Detection
PMP Posterior Model Probability
PNNL Pacific Northwest National Laboratory
ROC Receiver Operating Characteristic
SR Stepwise Regression
SSVS Stochastic Search Variable Selection
WMF Whitened Matched Filter
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1.0 Introduction

One goal of hyperspectral imagery analysis is the detection and characterization of plumes.
Examples include detection of sulfur dioxide plumes (Marino 1999) and general effluent detec-
tion (O’Donnell et al. 2004). Characterization includes identifying and quantifying the gases in
the plumes. In data analysis terms, identification of gases is a model selection problem; what,
if any, gases in a given chemical spectral library are present in the pixel of interest? Techniques
for solving the model selection problem include using banks for whitened matched filters and
stepwise regression, both of which involve linear modeling of the spectral data.

A valuable model selection methodology is Bayesian model averaging (BMA), (Hoeting et al.
1999a).The most attractive feature of BMA is that it provides explicit estimates of the proba-
bilities and uncertainties that the gases in the given chemical spectral library are present in the
pixel of interest. This is in contrast to the more dichotomous results of stepwise regression tech-
niques; in which a list of gases is included in the model, explicitly excluding the remainder of the
library.

The goal of this report is to compare BMA with minimum Akaike information criterion (AIC)
stepwise regression (Venables and Ripley 2002) for detecting optically thin plumes with small
spatial coverage (plume pixels are few in comparison to the whole image). We analyzed sim-
ulated hyperspectral datasets based on the physical radiance transfer modeling and whitened
matched filtering of Villeneuve and Stocker (2000) and Stocker (2000). Simulated datasets
were used so that ground-truth was available, with known gases present, gas concentration, and
background materials.

In Section 2, we present the physical radiance transfer model used in our study. The two model
selection methodologies are described in Section 3, with great detail on the development of the
BMA algorithm used. Section 4 details the results of two simulation studies comparing BMA
and minimum AIC stepwise regression across various background materials, chemical gases
and concentrations, and chemical spectral library size and complexity. Conclusions are given
in Section 5, and possible directions for future work are given in Section 6. References are in
Section 6.2.2, and supplemental material is provided in the appendices.
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2.0 Model Setup

The plume analysis problem can be divided into three stages: detection, identification, and
quantification. Each stage in the process is conditional, based on the prior stages and may make
use of spectral, spatial, and temporal information. The spectral information is used to select a
small number of pixels that differ from the general spectral behavior of other pixels in the image
or from other pixels with similar background characteristics. The spatial information is used to
further identify small sets of neighboring pixels that appear to be plume shaped. In many cases,
a sequence of images through time can help in selecting organic shapes that move through time
as the wind moves the plume.

The traditional technique for plume detection consists of applying a set of whitened matched fil-
ters to an image or subset of an image (Young 2002). A common method for chemical identifi-
cation is to compare the spectral information in a whitened plume pixel (or small set of neighbor-
ing pixels) to a chemical library using a χ2 test. Finally, the chemical concentration is quantified.
One technique for quantification is to compare model coefficients from the whitened matched
filter results for the selected gas when there are multiple gases in the plume.

There may be significant interaction between and within stages, modifying the information
required for detection to improve results. In each stage, the methods used in identification
provide a measure of the strength of one individual conclusion using standard mathematical and
statistical methods. One major challenge in this process is that the strength of each decision
does not account for any of the other decisions that have been made during the process or the
iterative nature of plume detection. Therefore, decision strength may be overestimated, leading
to incorrect decisions.

Estimation, model selection, and the assessment of errors are often the primary goals in many
areas of statistics. The modeling paradigm typically involves the following four steps. First, a
class of candidate models must be selected. In general, the modeler will select a set of explana-
tory variables and a model class such as regression models, linear models, or nonlinear models.
After the set of potential explanatory variables has been chosen, the analysis proceeds without
considering other sets of explanatory variables that may fit the data equally well. For example,
in a general linear model framework, this would include the choice of explanatory variables and
decisions about how the explanatory variables will be included in the model, including trans-
formations, interactions, and model size. The second stage involves selecting the best model
using one or more of a suite of measures of model fit, including Mallow’s Cp, R2, adjusted R2,
BIC, and AIC to name a few. The third stage is estimation of the parameters in the best model.
Finally, the model is used to provide an assessment of model error.

Bayesian methods have the potential to provide a more “honest” assessment of uncertainty in
the decision-making process by incorporating additional information into the decision-making
process in a quantifiable way and reducing the amount of iteration. In this paper, we begin to
compare Bayesian procedures with traditional, quantifiable methods of plume detection, primar-
ily whitened matched filtering. The intended outcome of this analysis is defendable scientific
decisions that better assess the confidence in the decision made. This paper discusses the first
phases of Bayesian methods, examining the results of BMA applied to plume detection, and
looking into Bayesian clustering as a method for improving on and off-plume pixel identification.
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2.1 Background

This section discusses the construction of the modeling framework used in detection of chem-
ical plumes. Using first principles of atmospheric physics, the framework builds a three-layer
atmospheric model that includes aspects of the sensor used to measure the data, the platform the
sensor sits on (generally airborne or spaceborne), atmospheric layers, the plume, and the surface
of the ground in terms of both temperature and emissivity. This section introduces the model
one layer at a time.

2.2 Radiance Transfer Model

This section describes the physical radiance transfer model we use for remote sensing. A
general scene containing a plume is displayed in Figure 2.1. Lobs, the radiance or luminance
observed at the sensor, is a linear combination of the atmospheric upwelling radiance, down-
welling radiance, ground radiance, reflected downwelling, and plume radiance. All the radiance
measurements depend on wavelength (or wavenumber). Our model consists of three layers:
ground, plume, and atmosphere. The ground radiance is defined as

Lg(λ) = εg(λ)B(λ,Tg), (2.1)

where εg(λ) is the emissivity of the ground, and B(λ,Tg) is Planck’s Blackbody function evalu-
ated at the temperature of the ground. Reflected downwelling radiance is assumed to be negligi-
ble for this paper. The off-plume pixels have the following radiance:

Lo f f (λ) = Lg(λ)τa(λ)+La(λ), (2.2)

where τa(λ) is the upward transmissivity of the atmosphere and La(λ) is the atmospheric
upwelling radiance. On-plume radiance is modeled by having the ground radiance pass through
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Figure 2.1. Simple physical radiance model.
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the plume, which then passes through the atmosphere before reaching the sensor.

Lon(λ) =
(
Lg(λ)τp(λ)+Lp(λ)

)
τa(λ)+La(λ) (2.3)

=
(
Lg(λ)τp(λ)+

(
1− τp(λ)

)
B(λ,Tp)

)
τa(λ)+La(λ), (2.4)

where Lp(λ) is the plume radiance term and τp(λ) is the transmissivity of the plume. By Beer-
Bouguer-Lambert Law (Liou 2002),

τp(λ) = exp
(
−

J

∑
j=1

A j(λ)C j

)
, (2.5)

where A j(λ) is the absorbance for gas j, and C j is the burden (concentration times path length)
for the same gas, with J total gases to choose from.

When the plume is a thin layer of gas in the atmosphere, i.e., the path length is short and of
low concentration, the τp term can be expanded via a Taylor series expansion, keeping just the
first order approximation, (Salas and Hille 1995). This linearization results in Equation (2.5)
becoming

τ̂p(λ) = 1−
J

∑
j=1

A j(λ)C j . (2.6)

2.2.1 Development of the Whitening

For this report, we will be applying the spectral matched filter techniques in conjunction with
the model to detect and estimate the gas burdens. Spectral matched filtering is a specialized
application of unconstrained multivariate regression. In order to apply this technique, we must
first rearrange our model into a linear form, similar to Stocker (2000).

The pixel contrast will be defined as the difference between the on-plume and off-plume radi-
ance, given as

Lon(λ)−Lo f f (λ) = τa(λ)(1− τp(λ))(B(λ,Tp)−Lg(λ)). (2.7)

The above equation is exact, whereas in the real world we cannot know the on and off-plume
radiance of each pixel at the exact same time.

We can only measure one radiance per pixel, and in practice the pixel contrast will include δ(λ)
as the residual error. If we then substitute τ̂p, the estimate of τp, for τp and bring the off-plume
radiance back to the right side of the equation, (2.7) becomes

Lon(λ) =
( J

∑
j=1

A j(λ)C j

)
τa(λ)(B(λ,Tp)−Lg(λ))+Lo f f (λ)+δ(λ). (2.8)

In the case of spectral matched filtering, there is only one basis vector for the off-plume radiance,
Lo f f (λ), the spectral mean of the off-plume pixels. Off-plume pixels are found either by having
an a priori mask where the plume pixels are (as in simulated datasets), or by applying some
method (like principal component analysis) to the whole scene to make a first estimate at a
plume mask. One can use the whole image to find the mean and covariance structure of the
off-plume wavelengths, provided the image is dominated by the off-plume pixels. Let β j be a
rearrangement of some terms in the above equation defined and approximated as

β j = τa(λ)C j(B(λ,Tp)−Lg(λ))≈C j(B(λ̄,Tp)−Lg(λ̄)), (2.9)
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where λ̄ is the average wavelength. If τa(λ) is approximately one, given the height above the
ground that the data were taken at, then the final linear model is put in standard regression form.
Let Q denote the cube of hyperspectral data that is an NxMxΛ dimensional array, where N and
M are spatial dimensions and Λ is the spectral dimension. Given that Qnm(λ) is one pixel’s
measured value of Lon(λ), then

Lon(λ) =
( J

∑
j=1

A j(λ)β j

)
+Lo f f (λ)+δ(λ) or, (2.10)

Qnm(λ)−Lo f f (λ) =
( J

∑
j=1

A j(λ)β j

)
+δ(λ). (2.11)

Putting the same equation into matrix notation with λ as the row dimension, we have for a pixel
column of data,

(Qnm−Loff) = Aβββ+δδδ. (2.12)

For the linear regression to have a variance equal to a diagonal matrix σ2I, the final step of
whitening, we must “divide by the square root” of the spectral covariance, ΣΣΣ(λ), of either the
whole image or the off-plume pixels.

ΣΣΣ
−1/2(Qnm−Loff) = (ΣΣΣ−1/2A)βββ+ΣΣΣ

−1/2
δδδ. (2.13)

The final whitened linear regression model in standard statistical notation takes the form

Z = Xβββ+ξξξ, (2.14)

where Z = ΣΣΣ
−1/2(Qnm−Loff), X = (ΣΣΣ−1/2A), and the error is ξξξ = ΣΣΣ

−1/2
δδδ.

Examples of the whitening of a gas absorbance spectrum and a background pixel are given in
Figures 2.2 and 2.3. Figure 2.2 shows the differences in the gas ethene between raw spectra and
whitened spectra. On the left is the gas ethene at airborne sensor resolution and range, and on
the right is the column of the X matrix that corresponds to the whitened ethene spectra. For the
background, a sample pixel going through the whitening process is displayed in Figure 2.3.

2.3 Chemicals of Interest

A wide variety of chemicals can be detected in plumes or in the atmosphere. Much of the cur-
rent research in detecting chemicals in the atmosphere focuses on estimating the major con-
stituents such as nitrogen, oxygen, argon, water, and carbon dioxide (Aires et al. 2002) or pol-
lutants such as sulfur dioxide (Marino 1999). As discussed earlier, we are most interested in
detecting low-concentration gases present in optically thin plumes.

The full gas library that we consider in this effort for Study 2 is the intersection of the standard
sets in Gas Toolkit (GTK) from Lawrence Livermore National Laboratory (LLNL), Hyperspec-
tral Image Processing (HIP) from Los Alamos National Laboratory (LANL), and Infrared Spec-
tral Library from Pacific Northwest National Laboratory (PNNL). The library for Study 1 was
taken entirely from the PNNL spectral library. Table A.1 of Appendix A contains a complete
listing of chemicals.
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Figure 2.2. Raw and whitened ethene absorbance spectra.
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Figure 2.3. Raw and whitened background spectra.
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3.0 Model Selection

The radiance modeling described in Section 2.2 produced a linear regression model for a
whitened spectrum from a cube of hyperspectral data. Fitting the model, that is, estimating
βββ, is a simple least squares optimization. However, determining which J gases to include in the
X matrix is not so simple. In the typical application, the goal of model selection is to find the
best-fitting model that can be used to explain the behavior of the data, or occurrences of future
observations. For our remote sensing application, the goal is to detect the plume and determine
the gases present; are any gases present, and, if so, which ones?

The general statistical problem of selecting the “best” linear regression equation has a long
history. Many algorithms and criteria have been proposed for the selection of the variables to
include in the X matrix. These include all possible regressions, best subset regressions, back-
ward elimination, and stepwise regression, with various criteria: correlation coefficient (R2),
mean squared error, and Mallow’s Cp, to name a few (Draper and Smith 1981). All methods
have advantages and disadvantages due to their measurement of different aspects of model misfit.
For example, the correlation coefficient measures the linear relationship of the model errors with
the response vector. If there is a strong nonlinear response, it may not be reflected in R2. One
recent method that has become widely accepted is minimum AIC stepwise regression (Akaike
1983, Venables and Ripley 2002).

Another approach to model selection is Bayesian model averaging (BMA). Instead of selecting
the best model, the idea is to average over a set of models. The goal of this paper is to compare
BMA to minimum AIC stepwise regression (SR). In this section we describe these two methods
and their advantages and disadvantages.

3.1 Select Single Model

The concept behind minimum AIC SR is to penalize a proposed model (a particular set of vari-
ables) for its complexity (the number of variables used). So while a model with a large number
of variables will fit better (in terms of increased multiple correlation coefficient and reduced sum
of squared error values), we are searching for the simplest model that can adequately describe
available data. Thus, an information criterion is used that combines the fit and the penalty. The
SR algorithm finds the set of variables that minimizes the information criterion in a stepwise
approach, adding and removing variables from the regression equation. Information criteria take
the form

IC(c) =−2log(L(MJ))+ cJ , (3.1)

where MJ represents a model with a particular set of J gases, log(L(MJ)) is the maximized
log likelihood for that model, and c is the penalizing parameter. For the Akaike Information
Criterion (AIC), c = 2 (Akaike 1983). While other penalizing parameters have been proposed,
model comparisons based on AIC have a number of optimal properties related to prediction,
including asymptotic equivalence to cross-validation methods and Bayesian methods (based on
Bayes factors).

The SR algorithm used in this research was written by Ripley (2002) in the R language and
environment for statistical computing and graphics. R is available as Free Software under the
terms of the Free Software Foundation’s GNU General Public License (see www.r-project.org).
The biggest advantage of SR is its computational efficiency compared with other regression
model selection methods.
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Another single model method is Bayesian model selection (BMS). BMS selects models based
on the posterior distribution of the data. This metric differs from stepwise regression in that
it allows for the inclusion of prior distributions on the model parameters. This method does
not incorporate uncertainty in model selection, but serves as a technique for selecting a set of
explanatory variables.

Bayesian model selection is similar to the methodology of Bayes Factors (Kass and Raftery
1995, Raftery 1995) where models are chosen based on the ratio of the posterior distributions. A
Bayes factor comparing model M1 and model M0 is defined to be

B1,0 =
pr (Z |M1 )
pr (Z |M0 )

, (3.2)

where pr (Z |Mk ) is the integrated likelihood for model Mk. Bayes factors provide a method for
model comparison. Kass and Raftery (1995) provide a framework for evaluation of the evidence
for model M1 fitting the data better than model M0. These criteria help to quantify decisions
made about explanatory variables. Bayes factors have been used for model selection in a large
variety of statistical models, including linear models, stochastic processes, survival analysis, and
multivariate analysis.

For BMS, the model with the largest posterior model probability (PMP) is selected for further
examination. BMS forms a middle ground between stepwise model selection (no prior distribu-
tions) and BMA (prior distributions on both model parameters and the models themselves) that
incorporates parameter uncertainty into the selection of the model and parameter estimation, but
does not take model uncertainty into account.

BMS is a building block in performing BMA. When uninformative prior distributions are used,
BMS reduces to the BIC model criteria. For chemical plume detection, we will incorporate
informative prior distributions on the model parameters in future model construction.

3.2 Incorporate Multiple Models

BMA provides a framework where the results from many models can be combined and the uncer-
tainty in the selection of explanatory variables can be included in the prediction intervals. BMA
has been applied to general linear models (Hoeting et al. 1999b) and to survival analysis models
(Volinsky 1997). This report applies to the plume detection, identification, and estimation prob-
lem BMA methodology to provide more accurate assessments of the probability of a plume, the
particular gases in the plume, and their concentrations.

3.2.1 History of Model Averaging

Volinsky (1997) is a good source on the history of combining models. The origins of combining
models can be found in “Laplace’s Deuxieme Supplement a la Theorie Analytique des Proba-
bilities” (1818). Stigler (1973) provides the translation of Laplace (1818), showing how “two
estimators could be combined to provide a new estimator which would be better than either.”
This is not model averaging but formed a basis for future work. Cochran (1937) established
the foundation for incorporating estimators from multiple samples. In the quality control lit-
erature, Bates and Granger (1969) were the first to combine results from different models fit to
the same data. Articles on combining predictions from different models soon followed. Bates
and Granger (1969) demonstrated that the weighted average of two-model forecasts is better
than forecasts from the individual models as long as each model contains some “independent
information.”
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The philosophy of BMA and model uncertainty can be traced to two articles from the statistical
community. Roberts (1965) proposed a distribution that combines the results of two models,
foreshadowing the development of BMA for multiple models. Volinsky (1997) credits Leamer
(1978) with addressing the idea that “averaged estimators incorporate the ambiguity about the
correct model into the posterior distribution,” verifying the philosophy that averaging over mod-
els can account for model uncertainty.

3.2.2 Current Methods for Model Averaging

A variety of articles have reviewed methodology for BMA and have addressed some of the
problems with selecting one “true model.” Draper (1995) focuses on Bayesian hierarchical
models, building an expanded modeling structure where the highest level of structure corresponds
to the probability of a specific model. Chatfield (1995) challenges the statistical community
to account for model uncertainty, stating that failure to do so may be “more serious than other
sources of uncertainty.” Kass and Raftery (1995) focus on Bayes factors, the ratio of posterior
odds of a model to its prior odds, as a tool for comparing and combining models. Hoeting et al.
(1999b) summarize BMA methodology.

Burnham and Anderson (1998) detail a frequentist model averaging framework that uses the AIC
statistic to estimate the Kullback-Liebler Information (KLI) to provide model weights. This
framework does not average over all models but focuses on “good” models and incorporating
expert opinion.

In the last decade, a variety of methods, both Bayesian and frequentist, have been proposed that
average the results from multiple models. Implementation of BMA for plume detection will be
described in the following sections.

3.2.3 How to Address Large Model Space

Although this report focuses on averaging over all possible models, there are situations where the
number of models in the model space M is so large that averaging over all models is not viable.
Methods for either reducing the model space or approximating variable posterior distributions
have been developed. Some of the methods include Occam’s window (Madigan and Raftery
1994, Hoeting 1994), leaps and bounds (Volinsky et al. 1997, Volinsky 1997), Markov Chain
Monte Carlo model composition (MC3) (Madigan and York 1995, Hoeting 1994) and stochastic
search variable selection (SSVS) (George and McCulloch 1993). The following discussion
focuses on the model space defined as the set of all possible explanatory variables.

Occam’s window is built on two ideas. First, a typical situation is that most of the models in the
model space M do not predict as well as a smaller subset of models in M . These poor-fitting
models can be removed from the model space. Therefore, the posterior predictive distribution
does not average over any models whose fit is inadequate. The second idea is Occam’s Razor:
if the probabilities of two models given the data are equal, then the simpler model is better and is
therefore used. These two principles can reduce the model space significantly depending on the
user’s definition of poorly fitting and equivalent models.

Leaps and bounds (Furnival and Wilson 1974) is an algorithm for linear regression that reduces
the model space by “trimming” sections of model space that do not fit well. Leaps and bounds is
used by Volinsky et al. (1997) to quickly identify a subset of models to be used in the posterior.

On the other hand, some methods approximate the posterior distribution of interest using a
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stochastic search algorithm. For example, MC3 builds a stochastic process that travels through
model space. In this approach, the proportion of time spent at each model should approximate
the posterior model probability (PMP). Furthermore, an approximation of the average of the
posterior predictive distribution is the average posterior prediction for each step in the stochastic
process.

Another method that uses a stochastic search methodology is SSVS. SSVS embeds the regression
setup into a hierarchical Bayes normal mixture model. In this framework, a set of latent vari-
ables specifies the inclusion of explanatory variables. As the chain progresses, the frequency of
specific sets of latent variables is useful in identifying promising models. Sets of explanatory
variables that appear often fit the data better.

A more complete description of methods to use when the model space is large can be found
in Hoeting et al. (1999b). In summary, both the Occam’s window and leaps and bounds
approaches average over a smaller subset of the models that are upheld from the data. When
the number of explanatory variables is large, i.e., K > 30, these methods “are too expensive
computationally or do not explore a large enough region of the model space” (Clyde 1999).

The last two methods require Markov chain Monte Carlo (MCMC) or importance sampling
techniques to travel through the model space. Clyde (1999) points out that these methods “can
be viewed as special cases of reversible jump MCMC algorithms.” In these algorithms, the chain
travels through model space as well as parameter space of potentially different dimensions.

To address the problem of large model space, this report fits all possible models up to a fixed
number of parameters. The leaps and bounds function “leaps” coded in R is also incorporated
into the code to allow for easy expansion. Fitting all possible models up to a fixed size will miss
models that include a larger number of chemicals than the maximum allowed in our code.

3.3 Bayesian Theoretical Development

In this section, we describe constructing a Bayesian model around the model described in Section
2. This will include selection of priors and the derivation of terms needed in development of
model selection and model averaging techniques.

3.3.1 Bayesian Model

A first step in accounting for model uncertainty is to define a set of models, M , for prediction.
Let M be the “model space,” the set of models under consideration, where M = {M1,M2, . . . ,MK}.
The models Mi in this set M may differ by including different sets of explanatory variables, auto-
correlation functions, or transformations on the response Z. The set of models is determined by
a variety of methods, including all possible models given the explanatory variables and models
deemed important by previous studies or other scientific considerations.

The second step is to compute the BMA posterior predictive distribution. Define ∆ to be a
quantity of interest, such as a quantity proportional to plume gas concentration. Note that ∆

must have the same meaning for all models.

In performing BMA for remote sensing, the formulation of the problem follows the standard
regression setup described in Hoeting et al. (1999a).

Z(s) = X(s)β + ε(s),
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where ε(s) is assumed to have mean zero and variance σ2. Standard Bayesian methods incor-
porate uncertainty of the parameters of the model into the analysis. The parameters are seen as
random variables. To accomplish this, prior distributions will be placed on the parameters. If
f
(
Z

∣∣β ,σ2,θ
)

is the likelihood equation and f
(
β ,σ2,θ

)
is the prior distribution on the parame-

ters, then using Bayes rule the posterior distribution of the parameters given the data Z is

f
(
β ,σ2,θ |Z

)
=

f
(
Z

∣∣β ,σ2,θ
)

f
(
β ,σ2,θ

)R
···

R
f (Z |β ,σ2,θ) f (β ,σ2,θ)dθdσ2dβ

. (3.3)

The prior distribution represents knowledge and uncertainty about the parameters, while the
posterior distribution represents the updated distribution of the parameters after observing the
data. Equation 3.3 is referred to as the posterior model probability (PMP).

Prior distributions are typically classified according to several characteristics. The term “proper”
prior refers to a prior distribution that integrates to 1. An improper prior distribution integrates
to infinity.

Prior distributions can be further classified as informative or noninformative. An noninformative
prior contains no information about the parameters and therefore does not favor any value over
any other. For example, f (β) = c > 0, for −∞ < β < ∞, is both improper and noninformative
because

R
∞

−∞
f (β)dβ = c

R
∞

−∞
dβ = ∞, and f (bi) = f

(
b j

)
for all bi,b j ∈ IR. A frequently used

noninformative prior for scale parameter σ is f (σ) = σ−1. In general, noninformative priors can
be chosen via Jeffreys method (Berger 1985, p. 87-88) where

f
(
β,σ2,θ

)
=

∣∣I (
β,σ2,θ

)∣∣ 1
2 , (3.4)

where I
(
β,σ2,θ

)
is the expected Fisher information matrix. Noninformative and improper prior

distributions are acceptable prior distributions as long as the resulting posterior distribution is
proper.

Calculation of the posterior distribution can be simplified by the use of conjugate priors. Certain
likelihood functions and prior distributions result in closed-form posterior distributions. When
using conjugate priors, it is not necessary to calculate the denominator in Equation (3.3) because
the posterior distribution can be identified from the form of the numerator. For example, if the
likelihood function of a linear model is Gaussian, then the conjugate prior distribution on (β ,σ2)
is Gaussian and inverse gamma distributions, respectively, with β and σ2 independent. The
resulting posterior distribution is also Gaussian.

One of the challenges in performing BMA is determining both prior structure and prior parame-
terization. The results of analysis can be sensitive to the prior distributions.

3.3.1.1 Priors

For determining prior structure, in many cases the conjugate family structure can be used to
adequately describe the underlying behavior. The conjugate family of priors for standard linear
regression uses a multivariate normal distribution on the regression coefficients β, and the prior
distribution on σ−2 is gamma distributed. β is normally distributed with mean µ and variance
σ2V , while νλ

σ2 is distributed χ2 with ν degrees of freedom.

There are a wide variety of methods for determining hyperparameters for the kth model. Deter-
mination of hyperparameters used in our code for the two distributions follows the recommen-
dations of Fernandez et al. (2001), where they formulate a benchmark set of priors for linear
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regression models. This corresponds to setting µk equal to the sample mean of the data and let-
ting Vk, the correlation matrix of the parameters, equal g0kX ′

kXk with g0k > 0. Determination of
hyperparameters of σ can be difficult and have significant impact on the results of the analysis.
For this reason, we use a non-informative prior on σ such that p(σ) ∝ σ−1. The last hyperpa-
rameter, g0k = 1

n2
k

if n ≤ n2
k , otherwise g0k = 1

n , where n is the number of observations and nk is
the total number of gases.

The other commonly used prior distribution assumes the same distributions but assumes that
the regression coefficients are uncorrelated, so Vk is a diagonal matrix as indicated above. The
correlations between variables better reflect the reality of gas identification, where many of the
gases of interest are highly correlated.

The resulting Bayes factor, in closed form, comparing model i to model j, is

Bi, j =
(

g0i

g0i +1

)(
ni+1

2

) (
g0 j

g0 j +1

)(
−

n j+1
2

)  1
g0 j+1y′MX jy+ g0 j

g0 j+1

(
y−µ j

)′ (y−µ j
)

1
g0i+1y′MXiy+ g0i

g0i+1 (y−µi)
′ (y−µi)

(n−1)/2

,

(3.5)
where y′MX jy = y′y− y′X j(X ′

jX j)−1X ′
jy .

3.3.1.2 Priors on the Models

The specification of a prior distribution on the model space is the last step in BMA. Like the
prior distributions described in Section 3.3.1 both noninformative and informative priors can be
used. The inclusion of informative priors on the model space has been successful in improving
predictive performance (Spiegelhalter et al. 1993, Lauritzen et al. 1994). When the models
include different numbers of explanatory variables, it is possible to place a prior on the model
space that will assign different probabilities on models with specific variables. For example, let

f (Mi) =
p

∏
j=1

π
δi j
j

(
1−π j

)1−δi j , (3.6)

where p is the total number of explanatory variables, π j ∈ [0,1] is the prior probability that
the coefficient for predictor j, β j, does not equal 0, and δi j equals 1 if explanatory variable
j is in model Mi and zero otherwise (Hoeting et al. 1999b). If π j = 0.5 for all j, this prior
corresponds to the uniform prior described above. If π j > 0 for all j, models with a large number
of explanatory variables have less weight. Expert opinion can also be included by using different
values of π j for different j, such as if π j = 1, explanatory variable j is forced to be included in all
models. This prior does assume that the inclusion of each explanatory variable is independent
of other explanatory variables, although a more complex prior distribution could be created if
necessary.

The prior distribution on the model space used in this paper is the assumption that all models are
equally likely, so that p(Mi) = 1

K , where K is the number of models. Draper (1999) suggested
a potential problem with this uniform prior for model space. If two explanatory variables are
highly correlated, there may be some duplication in the models; a model is essentially counted
twice by the prior. There are two potential outcomes from including models that have correlated
variables (Hoeting et al. 1999b). First, the two explanatory variables could have significantly
different interpretations and mechanisms and therefore describe the process from different points
of view. In this instance, both models are useful and should be included. Second, if the two
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explanatory variables measure the same mechanism, more thought is required in the determina-
tion of M . In this instance, either one of the models should be removed to reduce the double
counting or the prior distribution on the model space should take into account the correlation
structure.

In the context of detecting chemical plumes, many of the chemicals in the library are highly
correlated. The presence of the two or more highly correlated gases may have dramatically
different interpretation and implications. Furthermore, knowing that two gases fit the process
near equally well, and knowing the uncertainty in the decision can be vitally important.

3.3.2 Derivation of Posterior Model Probability

The computation of the PMPs (see Equation 3.3) plays a key role in calculating the posterior
predictive distribution. The PMPs are found by first integrating out the parameters, and then
using Bayes’ rule to find the probability of a model given the data. For simplicity, the following
derivations are assumed to be for a model Mk and notation specifying the model Mk has been
dropped.

Estimating the PMP requires computing the integrated likelihood. Under a given model, Mk, the
marginal likelihood is given by

f (Z) =
Z Z Z

f
(
Z|β ,σ2,θ

)
f
(
β ,σ2,θ

)
dβ dσ

2dθ, (3.7)

where, for notational simplicity, f (Z) = f (Z |Mk ). This computation will be done in several
steps, evaluating one integral at a time.

First, the calculation of

f
(
Z|σ2,θ

)
=

Z
f
(
Z|β ,σ2,θ

)
f
(
β

∣∣σ2,θ
)

dβ

is considered. Write Z = Xβ + ε, where ε and β are independent with ε ∼ N
(
0,σ2Ψ

)
,

(β |σ2,θ
)
∼ N

(
µ ,σ2V

)
, and µ , and V are as defined in Section 3.3.1.1. The covariance of the

noise ε is σ2Ψ and Ψ is assumed to be diagonal. Then E [Z] = Xµ and Var [Z] = σ2 (XV X ′+Ψ).
Because β and ε are both normally distributed, (Z|σ2,θ

)
∼ N

(
Xµ ,σ2 (XV X ′+Ψ)

)
.

Next, integrating out σ2 gives

f (Z|θ) =
Z

f
(
Z|σ2,θ

)
f
(

σ
2∣∣θ

)
dσ

2 (3.8)

=
Z

(2π)−n/2 un/2 ∣∣XV X ′+Ψ
∣∣−1/2 (3.9)

exp
{
−u

2

{
(Z−Xµ )′

(
XV X ′+Ψ

)−1 (Z−Xµ )
}}

(
νλ

2

) ν

2

Γ
(

ν

2

) (u)
ν

2−1 exp
{
−νu

2

}
du.
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Therefore,

f (Z|θ) =
(

1
2λ

{
(Z−Xµ )′

(
XV X ′+Ψ

)−1 (Z−Xµ )+νλ

})− n+ν+1
2

(2π)−n/2 (λ)ν/2 ∣∣XV X ′+Ψ
∣∣−1/2

(
ν

2

) ν

2

Γ
(

ν

2

) Z
exp{−s}s(

n+ν

2 −1)ds

= (π)−n/2 (νλ)ν/2 ∣∣XV X ′+Ψ
∣∣−1/2

Γ

(
ν

2

)−1
Γ

(
n+ν

2

)
(3.10)({

(Z−Xµ )′
(
XV X ′+Ψ

)−1 (Z−Xµ )+νλ

})−(n+ν)/2
.

This is a multivariate noncentral Student’s t distribution with mean Xµ , variance νλ

ν−2 (XV X ′+Ψ),
and ν degrees of freedom.

The PMP is determined using Bayes’ rule from the product of the prior model probability f (Mk)
and the integrated likelihood,

f (Mk |Z ) =
f (Z |Mk ) f (Mk)

∑
K
l=1 f (Z |Ml ) f (Ml)

. (3.11)

3.3.2.1 Approximations

In many cases, the integration of Equation (3.7) is difficult to compute in closed form. Two
approximations are commonly used to evaluate the marginal distribution for Z, a Laplace approx-
imation and the “Bayesian information criterion” (BIC) approximation. The Laplace approxima-
tion is defined by Z

exp{L(θ)}dθ ≈ (2π)b/2 |ΣΣΣ|1/2 exp
{

L
(
θ̂
)}

(3.12)

where L(θ) = log f (Z|θ,Mk)+ log f (θ|Mk) is the product of Equation (3.10) and the prior dis-
tribution for θ given the model, b is the dimension of θ, θ̂ maximizes L(θ), and ΣΣΣ is the negative
inverse Hessian of L(θ) evaluated at θ̂. This approach was used for generalized linear models by
Raftery (1996), and for censored survival models by Volinsky (1997).

The Bayesian information criterion (Raftery 1996) is an approximation to the Laplace approxi-
mation, incorporating log |ΣΣΣ| ≈ b logn. Both the BIC approximation and the Laplace approxima-
tion improve as the distribution of the vector θ approaches normality, and the approximations are
exact when θ is normally distributed.

In this application, we are using the priors developed in Section 3.3.1.1 for two primary reasons.
First, one of the features of this set of priors is that we can calculate the posterior model proba-
bility in closed form. Second, current model development does not include prior information
about the chemicals under investigation. Future work will investigate exactly what sort of prior
chemical information should be incorporated into the model.

3.3.3 Derivation of Quantity of Interest Distribution

Let us consider the distribution of a general variable, ∆. In many examples, ∆ can represent
a quantity proportional to the gas concentration. ∆ can also represent the probability that the
concentration is not zero.
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The posterior distribution of ∆ given data Z is

f (∆ |Z ) =
K

∑
k=1

f (∆ |Mk,Z ) f (Mk |Z ) , (3.13)

where f (Mk |Z ) is the PMP for model Mk and f (∆ |Mk,Z ) is the predictive distribution of the
quantity of interest given the data under a specific model Mk. This BMA posterior distribution is
a weighted average of the posterior predictive distributions for each model, where the weights are
specified by the PMP.
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4.0 Simulation

To compare the two methodologies, we need a test where the truth is known. Therefore, datasets
were simulated using research software that combines an instrument model, physical radiance
model, and standard atmospheric model to simulate a hyperspectral image. Noise is then added
to the image before outputting the simulated signal. The first study set of images was created
with four distinct stripes of background materials. The second study set was created with ran-
dom assignment of 100 different background materials. Both sets were overlaid with the plume
gases in distinct bands of constant concentrations. A description of how the simulated datasets
were created follows.

4.1 Description

Infrared Systems Analysis in General Environments (IR-SAGE), which was authored at PNNL,
is the research software that was used to create the simulated datasets. IR-SAGE has a built-
in sensor noise model because it was developed to test different sensor configurations before
building new sensor systems. IR-SAGE uses Monte-Carlo techniques to combine multiple
sources of variability from the instrument, ground, atmosphere, and plume into a simulated
instrument response. It can create atmospheric terms using FASCODE or input them from a
measured response. IR-SAGE incorporates a physical radiance model similar to but distinct
from the model described in Section 2.2. All sources of variability are incorporated into the
received pixel value at the same time. This is done by adding noise, N(0,nesr2), where nesr is
noise equivalent concentration path length (please see Appendix A of Sheen et al. (2001)).

4.1.1 Wavelengths and Instruments

We used IR-SAGE to simulate images from a generic infrared spectrometer with 126 equally
spaced bands covering the range of 750 to 1250 inverse centimeters. IR-SAGE automatically
convolves the library spectra (both gas and background material) to the resolution of the sup-
posed instrument using a linear interpolation. The generic spectrometer is a passive Fourier
Transform Infrared (FTIR) instrument. For this simulation, we used a standard US76 atmo-
sphere from file instead of generating one using the FASCODE bundled with IR-SAGE. The
complete list of sensor error model parameters and their levels for this simulation is available in
Table A.2 of Appendix A.

4.1.2 Background Materials Available

Background materials were all chosen from the Nonconventional Exploitation Factors Data Sys-
tem (NEFDS), which is a database of reflectance spectra, as well as surface reflection parameters
used for computer rendering of objects (NIST 2001).

For Study 1, backgrounds were chosen that might resemble a scene from an rural highway in
eastern Washington. The four backgrounds used were:

1. Grey paint on thin metal,
2. Matte side of black construction tar,
3. Light red/brown clay soil,
4. Reddish brown fine sandy loam soil.

Figure 4.1 shows their relative emissivities. These backgrounds were spatially distributed in

4.1



equal width stripes to form a scene. As can be seen in Figure 4.2, pixels vary due to the noise
term within a concentration by material type.
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Figure 4.1. Relative emissivities of four background materials for simulated scene.

For the second study, 100 backgrounds chosen from NEFDS were randomly distributed to form
a scene. Because the analysis does not use spatial information, there is no information lost by
randomly assigning background materials to pixels. Table A.3 in Appendix A is a list of the
backgrounds for Study 2.

4.1.3 Gases Available

The initial set of gases was chosen to represent the extremes in spectral shapes. Ethene and
ammonia both have very sharp peaks that can make them easy to identify. However, if the
instrument resolution is too coarse, those sharp peaks turn into broad peaks. Freon-113 and
furan have much broader peaks, and could be harder to detect. Those four gases were used in
Study 1. Freon-114 was included in Study 2. Figure 4.3 displays their relative shapes at the
resolution of the simulated instrument.
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Figure 4.2. A generic scene from Study 1.

Constant concentrations of gases were implemented over a gradient addition because of ease of
calculation. The metric and display that were used for detection of the gases must have repeated
measures at the same concentration level. Constant concentrations allowed us to control how
many pixels were available at a given level.

In Study 1, a search library was used that consisted of 14 gases in addition to the four test gases.
The “confounding” gases in the search library have been used by others within the community.
For Study 2, we wanted to add more complexity to the search library. Specifically, we asked
whether increasing the number of gases in the library would affect which gases are detected. To
assess this, we increased the number of gases to include search libraries of size 5, 10, 25, and 55
gases in addition to the five plume gases.

To further confuse the searching algorithms, we introduced two categories of search libraries:
correlated and uncorrelated. The superset of 93 gases available for the search library was taken
from the intersection of the LLNL, LANL, and PNNL databases. From this superset, the cor-
relation between all gases was obtained based on their instrument resolution. The highest cor-
relation between the plume gases and the superset was 0.59. The correlated and uncorrelated
libraries are nested in that five additional gases in the C 5 library (as labeled in Table A.1 of
Appendix A) are contained in the C 10 library, which is contained within the C 25 library, and
those are contained in the C 55 library. The same holds true for the uncorrelated libraries. The
superset is not large enough to have mutually exclusive correlated and uncorrelated full libraries,
so there are some gases that are present in both the C 55 and UnC 55 libraries. Table A.1 of
Appendix A has a full listing of the “confounding” gases and which libraries they belong to.
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Figure 4.3. Chemical spectra for five gas plumes at instrument resolution.

4.1.4 Whitening

There are several methods for whitening an image. They all differ on which pixels are used
to find the spectral covariance matrix. One method is to use all the pixels in an image. This
assumes that the plume pixels are small in comparison to the non-plume pixels, and therefore
contribute very little to the covariance. Another method uses a mask of some sort to pick only
the non-plume pixels to calculated the covariance. This mask can be known a priori, as in
simulated datasets, or can be found through an iterative process with an algorithm.

For this simulation, we used the knowledge of where the plume pixels were located within an
image so that we used only the non-plume pixels in the calculation of the spectral covariance
matrix. This is the best possible case because in practice we will not have a known mask to
apply to an image.

4.1.5 Gas Concentrations

Through this simulation study we found that the concentrations of plume gases that can be
detected are much lower than our initial guess. We first used a set of parts per million (ppm)
(1, 26, 51, 75, 100). These levels were too high, dwarfing the background and confusing both
algorithms, and most likely were very unrealistic. We lowered the levels to (1, 7, 13, 19, 25),
which encompasses the lower limit of detection capabilities with our simulated instrument and
wavenumbers. Indeed, for Study 1, F-113 required even lower concentrations (1, 3, 6, 8, 10)
to not reach saturation on probability of detection. See Figures B.3 and B.4 in Appendix B for
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visual display.

4.2 Comparison Metrics

Comparing the two gas selection methodologies, Bayesian model averaging and minimum AIC
stepwise regression, is the main goal of this report. When analyzing a hyperspectral image, both
methodologies determine the subset of gases present in a pixel-by-pixel approach. Such deter-
mination of a particular gas of interest is a decision process. The BMA and SR decision rules
may be compared through their receiver operating characteristic curves, which use nuisance/false
alarm probabilities and probabilities of detection as the metrics, as discussed in the following
section.

4.2.1 Receiver Operating Characteristic Curve

Receiver operating characteristic (ROC) curves are used to graphically display the performance
characteristics of a statistical decision rule. Such curves plot the nuisance/false alarm probabil-
ities (N/FAPs) versus the probabilities of detection (PDs) associated with the decision rule. In
the simplest decision applications, the decision is based on whether a scalar test statistic exceeds
a given scalar threshold. ROC curves are calculated by varying the threshold, each setting of
which determines an associated N/FAP and PD point on the ROC curve. They aid the decision
maker in setting the threshold for a decision rule by deciding a tolerable N/FAP and a necessary
PD, or vice versa.

Decision rules may be compared through their ROC curves. A rule whose PDs are always
greater than those of another rule over the domain of acceptable N/FAPs is preferred. The best
possible ROC curve would be a straight horizontal line from (PD,N/FAP)=(1,0) to (PD,N/FAP)=(1,1),
corresponding to perfect chemical detection.

Unlike other SR procedures, the minimum AIC SR procedure does not involve a threshold that
determines when a variable (a gas in our application) enters or leaves the model. This means
that only one point in a ROC curve is produced: that point for the resulting (N/FAP, PD) pair for
whether the gas of interest is included in the final model or not. Because the procedure provides
a t-statistic that may be used to assess the significance of the gas of interest’s coefficient, we
may apply a second-stage decision on whether to remove the gas of interest from the model (if
the t-statistic is too small). In this way we may set a threshold on that t-test and produce part
of a ROC curve for the minimum AIC SR. It is just part of a ROC curve because we may only
consider N/FAPs less than the single (N/FAP, PD) point discussed above. This second-stage
ROC curve does allow us to compare the minimum AIC SR procedure with BMA, which was
our research goal. As an example, Figure 4.4 plots the ROC curve for an ethene plume over a
background of gray paint on thin metal.

4.2.2 Other Metrics

Once a model is selected, the fitting of the WMF produces regression coefficients that provide
quantifications of the selected gases. BMA and SR could be compared through these quantifica-
tions in terms of bias (accuracy) and uncertainty (precision). However, because any analysis of
quantification must always be conditional on detection, we chose to consider and compare only
the detection capabilities of BMA and SR in this report. A comparison of their quantification
capabilities can be addressed in a future study.
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Figure 4.4. Receiver operating characteristic curve.

4.3 Simulation Study Results

The ROC curves from the two studies are presented in Appendix B. These ROC curves are
graphical representations of the detection capabilities of the two gas selection methodologies,
BMA and SR. All results and conclusions derive from these ROC curves.

4.3.1 Study 1

The study consisted of injections of four gases over four different background materials at six
known gas concentrations (including no gas) that simulated ground truth. All 16 ROC curves
suggest that BMA does slightly better than SR in detecting the four test gases, ammonia, ethene,
Freon-113, and furan. For example, Figure 4.4 shows the ROC curves for ethene against the
first background, grey paint on thin metal. The uncertainties in the empirical probability of
detections is approximately ±0.04, so only the 19-ppm curve has BMA statistically significantly
better than SR. In general, there is no significant difference in the BMA and SR ROC curves, but
the BMA curves usually plot just above the SR curves.
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Of the four test gases, Freon-113 is the most easily detected and furan is the hardest to detect in
terms of concentrations required to achieve the same PDs. The four backgrounds show similar
ROCs within each gas, indicating no effect in detection capability for the four test gases. Figure
4.5 gives approximate 2-sigma uncertainties as a function of the probability of detection in the
ROC curves.
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Figure 4.5. 2-sigma uncertainties for ROC curves.

4.3.2 Study 2

Forty ROC curves are presented in Figures B.6 - B.15 in Appendix B. These curves give the
detection capabilities averaged across the 100 background materials considered. For ethene
and furan, the BMA and SR ROC curves are similar across library size and complexity. For
ammonia, Freon-113, and Freon-114, the BMA and SR ROC curves are similar for the smaller
libraries. However, for the larger and more complex libraries, BMA does increasingly better
than SR. This is most evident with Freon-113 and Freon-114.
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5.0 Conclusions

Bayesian model averaging and minimum AIC stepwise regression were compared using sim-
ulated datasets. Bayesian model averaging did not incorporate gas information (informative
priors) in the analysis. Test gases were chosen to span the types of spectra available from
the PNNL library, broad peaks to sharp peaks. The size and complexity of the search library
were varied. Background materials were chosen to either replicate a remote area of eastern
Washington or feature many common background materials. We selected the off-plume whiten-
ing information from the same background materials as the corresponding plumes to replicate
the iterative nature of off-plume pixel selection. Typically, an image analyst iteratively identifies
on-plume and relevant off-plume pixels to obtain the best detection.

For many cases, BMA and SR performed the detection task comparably in terms of the ROC
metric. Background materials did not affect the performance because the off-plume whitening
information was selected from the same materials. For some gases, BMA did perform better
than SR when the size and complexity of the search library increased.

One advantage of BMA over SR is the ability to incorporate other sources of information into
the prior distributions and therefore into the decision process. For example, by using more
informative priors developed for background materials collected through persistent surveillance,
we expect improved BMA performance. Incorporation of prior information on gases developed
through clustering the gas libraries should also lead to improved performance. Both of these
sources of prior information, as well as others, have the potential to increase automation of plume
detection.
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6.0 Future Work

6.1 Statement of Work - FY 2006

In FY 2006 we will work in the following areas: 1) BMA, 2) prior distributions of nuisance
parameters, 3) chemical universe, 4) algorithm development, 5) temporal change analysis for
persistent monitoring.

6.1.1 Investigate Bayesian Model Averaging

BMA has been studied in the context of plume gas identification/quantification in hyperspectral
image analysis, and significant progress has been made. The next step is to write a journal
article documenting this research. Specifically, this article will address how BMA can be used to
identify and quantify the composition of gases in a plume. It will also compare the performance
of BMA with stepwise regression.

6.1.2 Explore Prior Distributions of Nuisance Parameters

In the hyperspectral image context, nuisance parameters refer to the image background and the
other parameters in the Radiance Transfer Model. This is the part of the image that is not due
to plume gases. To produce good estimates of nuisance parameters, several issues must be
considered.

• How to integrate a time series of images of the same scene.
• How to combine images from different sources/sensors.
• How to perform image segmentation and what is the advantage of segmenting the image into

nearly homogeneous regions.

The outcome of this research will have significant impact on algorithm development.

6.1.3 Chemical Universe

This task will continue development of methods to identify groups of gases with similar spectra.
These results will be combined with sensor characteristics to construct a chemical triage method
that produces a hierarchy of chemical groupings based on measured hyperspectral data.

6.1.4 Algorithm Development - Image Clustering

A critical initial step in this project is to identify the pixels where the plume is present. Typically
a matched filter is used to detect a weak target signal in hyperspectral images. This requires an
estimate of the spectral covariance of the image. In most cases the image will not be homoge-
neous, meaning that it will consist of regions that have distinct spectral statistics. If the image
can be segmented or clustered into statistically homogeneous regions, a matched filter optimized
for the individual regions can be constructed. These filters are based on the covariance matrix
approximated only by the pixels in the region. In general, the local matched filter is no worse
than the matched filter based on the whole image and may produce considerably better results.

Clustering results in a set of matched filters for an image, one for each region or cluster. We
then apply the cluster-specific matched filters to detect the target signal. This approach has been
shown to improve detection of weak target signals significantly compared with using a matched
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filter based on the covariance of the whole image (Funk et al. 2001).

The image clustering problem is nontrivial. Common approaches include k-means, fuzzy c-
means, hierarchical, and mixture of Gaussian. Each approach has strengths and weaknesses.
We propose developing Bayesian image segmentation techniques similar to the work by Neher
(2004). He used spatial statistics including image gradients in a Markov random field setting to
label or classify image regions.

To emphasize the advantage of accurately segmenting the image, we provide the following
discussion and example. We begin by outlining the match filter signal detection approach for a
nonsegmented image. We model the image as a linear combination of a target signal s multiplied
by strength α and a background that consists of a constant u (the mean radiance over the entire
image) and a zero-mean noise term ε. Then the radiance of an image pixel can be written as the
sum:

r = αs+u+ ε .

The random background noise term ε represents all sources of noise in the image, including sen-
sor noise, background variation, inhomogeneous atmospheric effects, etc. We want to determine
the linear filter q that will maximize the signal-to-noise ratio. The linear filter q is applied to
each pixel r in the image to produce a scalar filter image by taking the inner product of q with
each pixel r:

qT r = αqT s+qT u+qT
ε .

The first term is proportional to target signal strength α, the second term can be subtracted out
given an estimate for u, and the variance of the third term is qT E[εεT ]q. So the signal-to-noise
ratio for the filter q is

S
N

=
αqT s√

qT E[εεT ]q
.

Now let R = E[εεT ]. To find q we solve the following optimization problem:

max
q

S
N

= max
q

αqT s√
qT Rq

. (6.1)

We assume R is symmetric and that it can be factored as R = R
1
2 R

1
2 . Letting y = R

1
2 q, the

objective function in Equation (6.1) becomes

αqT s√
qT Rq

=
αyT R

−1
2 s√

yT y

= αŷT R
−1
2 s ,

where ŷ is a unit vector. So the optimization problem (6.1) becomes

max
‖y‖=1

αyT R
−1
2 s .

Thus, y is the unit vector in the direction of R
−1
2 s. Or

y =
R

−1
2 s√

sT R−1s
,
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and

q = R
−1
2 y =

R−1s√
sT R−1s

. (6.2)

The usual estimate for R is

R ≈ 1
N

N

∑
i=1

(ri−u)(ri−u)T .

If the signal is absent, this is exactly what is needed because R is the covariance of the noise.
On the other hand, if the signal is present, it will degrade the approximation. Because we are
interested in detecting weak signals, we will assume the effect of the signal is not significant.
The q given in Equation 6.2 is then used to construct the matched filter image. Due to numerical
instabilities, care must be taken when constructing R−1s.

If the image is clustered or segmented into k nonintersecting regions, a matched filter qi is con-
structed for each region:

qi =
R−1

i s√
sT R−1

i s
i = 1, · · · ,k. (6.3)

Then the matched filter image is constructed by taking the inner product qT
i r over each region.

To illustrate the advantage of this approach, we perform a simple experiment. The test image
is one spatial dimension with a spectral vector of length 4 at each of 256 pixels. The image
consists of two clusters with a weak plume present in the region where the two clusters meet,
which is illustrated in Figure 6.1. In Figure 6.2 the ROC curves are given for matched filter
detection on the unclustered versus the clustered image. We see the significant advantage of
clustering the image before applying the matched filter. This emphasizes the importance of a
robust image-clustering algorithm.
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Figure 6.1. 1D image with four spectral bands, and weak plume at intersection of regions.

6.3



0.2 0.4 0.6 0.8 1
PFA

0.2

0.4

0.6

0.8

1
PD ROC Curve

Figure 6.2. ROC curves for clustered (solid line) and unclustered (dashed line) matched filter
detection.

6.1.5 Temporal Change Analysis for Persistent Monitoring

The goal of this task is to use a sequence of images of the same scene taken over time to improve
the ability to detect, track, and quantify gas plumes. Issues such as image registration, approx-
imating prior distribution of the image background, image segmentation, and change detection
will all be considered.

6.2 Long-Term Planning

Even though the project SOW for FY 2006 does not address these issues, we propose they be
given preliminary attention and planning. These include validation and testing as well as code
prototype development.

6.2.1 Model Validation/Testing

Obtaining a high-fidelity ground truth dataset for plume detection is probably not possible. As
a result, our current approach is to use synthetic data. Most journal articles in this area also rely
on synthetic data. We would like to go beyond synthetic images if possible and propose a two-
pronged approach. First, to find out what validation data are available. Efforts have been made
to produce actual test images, and we need to take advantage of this progress.

6.2.2 Prototype Development

Now is a good time to initiate prototype development so that algorithm development and testing
can be done in a way that supports the final product as much as possible. Several issues must be
addressed to guide this process. These include development language/environment, computer
platform, intended end user, throughput requirement, etc. We would like to clarify these issues
and initiate prototype development in FY 2006.

6.4



pnnl]

6.5





7.0 References

Aires F, W Rossow, N Scott, and A Chedin. 2002. . “Remote sensing from the infrared atmo-
spheric sounding interferometer instrument 2. Simultaneous retrieval of temperature, water
vapor, and ozone atmospheric profiles.” Journal of Geophysical Research 107(D22).

Akaike H. 1983. . “Information measures and model selection.” Bulletin of the International
Statistical Institute 50:227–290.

Bates JM and CWJ Granger. 1969. . “The combination of forecasts.” Operational Research
Quarterly 20:451–468.

Berger JO. 1985. . Statistical Decision Theory and Bayesian Analysis, second edition.
Springer-Verlag: New York.

Berger JO, VD Oliveira, and B Sanso. 2000. . Objective Bayesian Analysis of Spatially Corre-
lated Data. 00-12, Institute of Statistics and decision Sciences, Duke University.

Burnham KP and DR Anderson. 1998. . Model Selection and Inference: A Practical Informa-
tion Theoretic Approach. Springer: New York.

Chatfield C. 1995. . “Model Uncertainty, Data Mining and Statistical Inference.” Journal of the
Royal Statistical Society, Series A 158:419–466.

Clyde M. 1999. . “Comment on ‘Bayesian Model Averaging: A Tutorial’.” Statistical Science
14:401–404.

Cochran WG. 1937. . “Problems in the analysis of a series of similar experiments.” Journal of
the Royal Statistical Society (supplement) 4:102–118.

Draper D. 1995. . “Assessment and Propagation of model uncertainty.” Journal of the Royal
Statistical Society, Series B 57:45–97.

Draper D. 1999. . “Comment on ‘Bayesian Model Averaging: A Tutorial’.” Statistical Science
14:405–409.

Draper N and H Smith. 1981. . Applied Regression Analysis, second edition. John Wiley &
Sons, New York.

Fernandez C, E Ley, and M Steel. 2001. . “Benchmark priors for Bayesian model averaging.”
Journal of Econometrics (100):381–427.

Funk C, J Theiler, D Roberts, and C Borel. 2001. . “Clustering to improve matched filter detec-
tion of weak gas plumes in hyperspectral thermal imagery.” IEEE Transactions on Geoscience
and Remote Sensing 39(7).

Furnival GM and RW Wilson. 1974. . “Regression by leaps and bounds.” Technometrics
16:499–511.

George EI and R McCulloch. 1993. . “Variable selection via Gibbs sampling.” Journal of the
American Statistical Association 88:881–889.

Hoeting J, D Madigan, A Raftery, and C Volinsky. 1999a. . “Bayesian Model Averaging: A
Tutorial.” Statistical Science 14(4):382–417.

Hoeting JA. 1994. . Accounting for Model Uncertainty in Linear Regression. PhD thesis,
University of Washington.

7.1



Hoeting JA, D Madigan, AE Raftery, and CT Volinsky. 1999b. . “Bayesian Model Averaging:
A Tutorial with Discussion.” Statistical Science 14:382–417.

Kass RE and AE Raftery. 1995. . “Bayes Factors.” Journal of the American Statistical
Association 90:773–795.

Laplace PS. 1818. . Deuxiem Supplement a la Theorie analytique des Probabilities. Gauthier-
Villars: Paris.

Lauritzen SL, B Thiesson, and DJ Spiegelhalter. 1994. . “Diagnostic systems created by model
selection methods: a case study.” Uncertainty in Artificial Intelligence, Cheeseman P and
W Oldford, eds., pp. 143–152. Springer: Berlin.

Leamer EE. 1978. . Specification Searches. Wiley: New York.

Liou K. 2002. . An Introduction to Atmospheric Radiation, second edition. Academic Press,
California.

Madigan D and AE Raftery. 1994. . “Model Selection and accounting for model uncertainty
in graphical models using Occam’s Window.” Journal of the American Statistical Association
89:1535–1546.

Madigan D and J York. 1995. . “Bayesian graphical models for discrete data.” International
Statistical Review 63:215–232.

Marino SA. 1999. . “Operation and Calibration of the NPS Ultraviolet Imaging Spectrometer
(NUVIS) in the Detection of Sulfur Dioxide Plumes.” Master’s thesis, Naval Postgraduate
School.

Neher RE Jr.. 2004. . A Bayesian mrf framework for labeling terrain using hyperspectral
imaging. PhD thesis, Florida State University.

NIST. 2001. . Nonconventional Exploitation Factors Data System. National Institute of
Standards and Technology, http://math.nist.gov/ FHunt/appearance/nefds.html.

O’Donnell E, D Messinger, C Salvaggio, and J Schott. 2004. . “Identification and detection
of gaseous effluents from hyperspectral imagery using invariant algorithms.” In Proceedings
of the SPIE, Sensor Data Exploitation and Target Recognition, Algorithms and Technologies for
Multispectral, Hyperspectral, and Ultraspectral Imagery X, Vol. 5425.

Raftery AE. 1995. . “Bayesian Model Selection in Social Research (with Discussion).” Socio-
logical Methodology 25:111–196.

Raftery AE. 1996. . “Approximate Bayes factors and accounting for model uncertainty in
generalized linear models.” Biometrika 83:251–266.

Roberts HV. 1965. . “Probabilistic prediction.” Journal of the American Statistical Association
60:50–62.

Salas S and E Hille. 1995. . Calculus: one and several variables, seventh edition. John Wiley
& Sons, New York.

Sheen D, B Wise, N Gallagher, S Sharpe, P Heasler, K Anderson, and J Schultz. 2001. .
Infrared Chemical Detection Systems Modeling and Advanced Chemometric Analysis. PNNL-
13737, Pacific Northwest National Laboratory, Richland, WA.

7.2



Spiegelhalter DJ, A Dawid, S Lauritzen, and R Cowell. 1993. . “Bayesian analysis in expert
systems.” Statistical Science 8:219–283.

Stigler SM. 1973. . “Studies in the History of Probability and Statistics. XXXII: Laplace,
Fisher and the Discovery of the Concept of Sufficiency.” Biometrika 60:439–445.

Stocker A. 2000. . HIRIS Baseline Algorithms for Level 3 Analysis, Version 2.0. UCRL-CR-
140736, Lawrence Livermore National Laboratory, Livermore, CA.

Venables W and B Ripley. 2002. . Modern Applied Statistics with S, fourth edition. Springer
Verlag, New York.

Villeneuve P and A Stocker. 2000. . HIRIS Algorithm Physics Model Description, Version 2.3.
UCRL-CR-141865-B346001, Lawrence Livermore National Laboratory, Livermore, CA.

Volinsky CT. 1997. . Bayesian Model Averaging for Censored Survival Models. PhD thesis,
University of Washington.

Volinsky CT, D Madigan, AE Raftery, and RA Kronmal. 1997. . “Bayesian model averaging
in proportional hazard models: assessing the risk of a stroke.” Journal of the Royal Statistical
Society, Series C 46:433–448.

Young S. 2002. . Detection and Quantification of Gases in Industrial-Stack Plumes Using
Thermal-Infrared Hyperspectral Imaging. ATF-2002(8407)-1, The Aerospace Corporation, El
Segundo, California.

7.3





Appendix A

Simulation Variables





Appendix A – Simulation Variables

Full Gas Library

C refers to correlated and UnC refers to uncorrelated for Study 2.

Table A.1. Full gas library for Studies 1 and 2.

Gas Study1 UnC 5 C 5 UnC 10 C 10 UnC 25 C 25 UnC 55 C 55
ACETOIN X X
Acetone X
ACROL X X
ALLYLAM X X X
ASH3 X X
BENZENE X X X X
BPINENE X
BUTANE X X X X
BUTENE1 X X
BZALDEH X X
C13DCLP X X X
C2H2 X X
C3H8 X
C4F10 X X
C6H5BR X X
C6H5F
CCLF3 X
CH3CL X
CH4
CH4
CHBR3
CHCL2F X X
CHF3 X
CLACET X X X X X
CLETHOH
CLPICRIN X
CLTOL2 X X
CLTOL3 X
CLTOL4 X X
CUMENE X X X X X
CYCHEXE X X X
CYCLOHX
CYCLOPR
DCBZ12 X
DCBZ13 X X
DCBZ14 X X X
DCE11 X
DCLM X X X X
DCLP12 X X
DCLP13 X X
DEA X X

Continued on next page. . .
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Table A.1 – Continued
Gas Study1 UnC 5 C 5 UnC 10 C 10 UnC 25 C 25 UnC 55 C 55
DIETHANIL X X X X X
DIMAMINE X X
DMHYDRZ X X X X X X X X
DMMP X
DODEC X X X X
EDA X X X X
EDB X X X
EDC12 X
EPX12BUT X X
ETHENE X X X X X X X X X
ETNO2
F113 X X X X X X X X X
F114 X X X X X X X X X
F12 X X X
F125 X X X X
F218 X X X
FURAN X X X X X X X X X
HCFC124 X
HCFC142B X X
HCHO X X
HEPTENE X X X X X
HFC134 X
HNO3 X
HYDRAZINE X X
IBUTANE X X X X
ISBTENE X X
ISOOCT X
ISOPREN X X X
ISPROAM X
MBUTENE
MCDS
ME2PEN2
ME3BUT1 X X
ME3PEN X X X X X X
MENO2 X X
MEOH X X X X X X X
MMAM X X
N2O X
NBUTALD X
nButanol X X X
NCCN X X
NH3 X X X X X X X X X
NITROPROP X X
NO2 X
PERC X
PH3 X X
PHOSGENE X
PROPYNE
PRTHIOL1 X

Continued on next page. . .
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Table A.1 – Continued
Gas Study1 UnC 5 C 5 UnC 10 C 10 UnC 25 C 25 UnC 55 C 55
PRTHIOL2
SO2 X
T12DCE X X
T13DCLP X X X X
TBPscaledtoTIPP X
TCE X X X X
TCE1112 X X
TCE1122
TEA X X
TFAA X X
THF X
TMA X X
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IR-SAGE Information
Table A.2. Simulated sensor error model values

Parameter Value
spectrometer type dispersive of fts fts
modulation efficiency 1.0
jitter parameter 0.0
detector quantum efficiency 0.35
efficienty of the telescope 0.9
efficiency of the cold filter 0.9
efficiency of the spectrograph 0.8
pixel area in cm2 π

4 0.0052

F number 3.5
emissivity of the spectrograph 0.05
emissivity of the cold filter 0.05
emissivity of the cold shield 0.05
emissivity of the fore-optics 0.1
lowest wavenumber for detector response 750.0
low-frequency cuttoff cm−1 750.0
high-frequency cutoff cm−1 1250.0
cutoff for infinite black-body integration 10000.0
temperature of spectrograph body 10.0
temperature of coldshield 10.0
temperature of fore-optics 195.0
integration time (seconds) 0.004*128
resolution cm−1 1.0
instrument line shape triangular
electrons/sec due to 1/f noise 1.5
electrons/sec due to readout 5
electrons/sec due to ADC 5
daylight (1) or night(0) 1
solar zenith angle π

4
atoms tras from alt to grnd 0.0 con
atmos. transmissivity us76-nadir-01km-tr.spc
atmos. radiance us76-nadir-01km-ra.spc
ground reflectances refl-4
telescope diameter (m) 0.15
src types are ambient, heated, sender ambient
heated src diam or sender tel diam (m) 0.15
sender src elem diam (m) 1e-3
src or sender tel area cm2 0.8888
heated src brightness temp (K) 425.0
heated src with sender tel brightness temp (K) 1300.0
range to src or background 100.0
plume length (m) 1.0
temperature of the plume (K) 310.0
temperature of the scene (K) 300.0
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Study Background Information

Table A.3. Backgrounds for Study 2.

Filename Description
0002UUUPLS black plastic sheet
0005UUUFAB light-brown ripstop nylon fabric cloth, translucent
0011UUUFAB green fabric cloth
0014UUUALM gray oxidized metal aluminum plate
0015UUUCAM green/green plastic camouflage net
0020UUUCAM white/white coated fabric camouflage net, translucent
0028UUUCNT brown felt camouflage net, translucent
0034UUUCNT green cloth camouflage net, multiple layers
0039UUUCNT black plastic wire-like camouflage net, translucent
0050UUUPRI Yellow paint on metal
0059UUUPNP dark-green paint on thin metal
0069UUUPNT gray paint on thin metal
0075UUUPNT brown paint on thin metal
0081UUUPNT black paint on thin metal
0083UUUMTL gray metal aluminum
0085UUUPNT brown paint on metal
0086UUUABS absorber (tcmm) used for scattering of radar impulses
0101UUUCIN cinders from railroad bed
0103UUUSND [very dark brown] black? sand soil
0108UUUCLO brown metallized woven fabric cloth (clean)
0113UUUCNT green/brown rubberized fabric camouflage net (brown side)
0121UUUCNT camouflage netting of synthetic garnish
0123UUUCLO brown metallized woven fabric cloth (weathered)
0128UUUSOL brown fine sandy loam soil
0133UUUSOL reddish-brown fine sandy loam soil
0136UUUSOL brown to dark-brown loamy sand soil
0139UUUSOL brown silty loam soil
0145UUUSOL brown loamy sand soil
0148UUUSOL reddish-tan silty loam soil
0151UUUSOL light-tan fine silty loam soil
0205UUUCLO brown metallized woven fabric cloth (weathered)
0209UUUSOL very dark grayish-brown silty loam soil
0212UUUSOL brown loam soil
0215UUUSOL dark-brown fine sandy loam soil
0218UUUSOL very dark grayish-brown loam soil
0221UUUSOL reddish-brown fine sandy loam soil
0224UUUSOL dark grayish-brown & very dark brown stony coarse sandy loam soil
0227UUUSOL brown sandy loam soil
0332UUUMTL gray titanium, thick metal block, textured surface
0339UUUCBN dark-gray variegated carbon-teflon composite tile, grooved
0342UUURBR dark-red foam rubber tile, vesicular, bubbles
0343UUUCBN dark-gray carbon-phenolic composite tile, grooved
0345UUUEXY orange carbon-epoxy composite tile, grooved, translucent
0350UUUSIL white very translucent fused silica glass composite tile
0355UUUCBN dark-gray carbon-carbon composite tile, alternating dark/light bands
0357UUUGLS white fiberglass composite tile, slightly translucent, distinct pattern

Continued on next page. . .
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Table A.3 – Continued
Filename Description
0360UUUCBN dark-gray carbon-phenolic composite tile, wavy/linear pattern, threads
0366UUUCBN dark-gray carbon-carbon composite tile, small alternating dark/light bands
0374UUUEXY orange fiberglass-epoxy composite tile, pattern, slightly translucent
0377UUUSIL white rubber coating on yellow silica-silicone composite tile
0380UUUSIL orange rubber coating on orange-brown silica-phenolic composite tile,

glossy surface
0385UUUALM Green paint (1 coat) on aluminum
0388UUUALM gray uncoated weathered metal aluminum plate, grooved surface
0391UUUEXY very light brown translucent epoxy-fiberglass composite plate, grooved

surface
0394UUUEXY clear paint (1 coat) on translucent epoxy-fiberglass composite, uniform

coating
0398UUUCNC variegated light/dark gray construction concrete, smooth cut exposed

interior aggregate
0406UUUWOD black paint (2 coats) on construction wood, grain visible
0409UUUWOD light-brown uncoated clean wood board (ponderosa pine), distinct grain

visible
0413UUUBRK brick
0415UUUASP black construction asphalt core, exterior surface, weathered, soiled and

worn down
0417UUUASPi variegated black/dark gray construction asphalt core, exposed interior

aggregate
0419UUUIRN green paint (2 coats) on iron [steel] metal, translucent
0422UUUIRN black paint (1 coat) on iron [steel] metal
0424UUUCMT variegated light-brown/gray construction concrete, embedded rock aggre-

gate
0426UUUASP asphalt
0428UUUFIGl light-gray paint on fiberglass composite, 2-panels of large 4-panel checker-

board
0430UUUMTL light-gray paint on metal
0435UUUFIG light-green paint on fiberglass, weathered, originally bright green
0437UUUFAB light-gray, nearly white, metallized [plastic-coated?] fabric cloth, 60%,

translucent
0440UUUFAB dark-gray metallized fabric cloth, 12%, translucent
0443UUUCAMb green-brown rubberized camouflage net (brown side)
0444UUUFAB black plasticized [metallized] fabric cloth, old [calibration?] panel, orien-

tation arrow
0449UUUPNT dark-brown paint on metal, uniform surface, front/back indistinguishable
0451UUUPNT dark-green paint on metal, uniform surface, front/back indistinguishable
0453UUUFAB black plasticized [metallized] fabric cloth, new [calibration?] panel,

orientation arrow
0457UUUSOL light-brown, sandy, pebbly gravel soil, dirt from parking lot, Elephant

Butte Lake, NM
0459UUUPNT thin cardboard with green paint
0491UUUASP weathered asphalt from helipad
0495UUUSTD Plasmagold, part # ACT-02B
0498UUUSTD Plasmagold, part # ECF-035
0506UUUPNT aluminum painted with flat black paint
0521UUUPNT weathered, painted galvanized steel from rooftop

Continued on next page. . .
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Table A.3 – Continued
Filename Description
0522UUUTAR heavily weathered, tarred roofing paper from rooftop
0525UUUSTLb galvanized steel from rooftop, one side weathered
0534UUUIGN igneous rock from lava flow
0537UUUPNT aluminum painted low-emissivity green
0539UUUALM polished aluminum
0561UUUGRV weathered rock ground cover
0588UUUCNC weathered concrete outer wall
0591UUUCNC weathered concrete outer wall
0596UUUSTO weathered rock (fill material)
0598UUUCNC weathered concrete apron over aggregate base
0599UUUASP weathered asphalt over aggregate base
0627UUUCAMb weathered camouflage net with brown and green sides
0629UUUPNT weathered, green-painted plastic chip
0667UUUPNT unweathered steel painted two coats black
0674UUUASP weathered asphalt runway
0705UUUASP weathered asphalt shingle
0706UUUPNT unweathered black paint on plywood
0709UUUPNT dark-gray paint on aluminum - aircraft
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Appendix B – Study Figures

Study 1

Complete set of ROC curves from Study 1.
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Figure B.1. Receiver operating characteristic curve for ammonia.
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Figure B.2. Receiver operating characteristic curve for ethene.
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Figure B.3. Reciever operating characteristic curves for F-113 low concentration.

B.3



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC for F113 and bkgrnd 1

BMA solid line, Stepwise dashed line.

False Alarm Probability

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

1 ppm
3 ppm
6 ppm
8 ppm
10 ppm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC for F113 and bkgrnd 2

BMA solid line, Stepwise dashed line.

False Alarm Probability

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

1 ppm
3 ppm
6 ppm
8 ppm
10 ppm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC for F113 and bkgrnd 3

BMA solid line, Stepwise dashed line.

False Alarm Probability

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

1 ppm
3 ppm
6 ppm
8 ppm
10 ppm

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC for F113 and bkgrnd 4

BMA solid line, Stepwise dashed line.

False Alarm Probability

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

1 ppm
3 ppm
6 ppm
8 ppm
10 ppm

Figure B.4. Receiver operating characteristic curves for F-113 very low concentration.
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Figure B.5. Receiver operating characteristic curve for furan.
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Study 2

Complete set of ROC curves from Study 2.
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Figure B.6. Receiver operating characteristic curve for correlated ammonia.
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Figure B.7. Receiver operating characteristic curve for uncorrelated ammonia.
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Figure B.8. Receiver operating characteristic curve for correlated ethene.
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Figure B.9. Receiver operating characteristic curve for uncorrelated ethene.
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Figure B.10. Receiver operating characteristic curve for correlated F-113.
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Figure B.11. Receiver operating characteristic curve for uncorrelated F-113.
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Figure B.12. Receiver operating characteristic curve for correlated F-114.
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Figure B.13. Receiver operating characteristic curve for uncorrelated F-114.
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Figure B.14. Receiver operating characteristic curve for correlated furan.
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Figure B.15. Receiver operating characteristic curve for uncorrelated furan.
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Appendix C – Simulation Code

BMA functions.R

#This file contains functions necessary for running the examples in
BMA.examples

#Functions include:
# BMAcalc - estimates posterior model probability for one model
# pmp.apply - estimates pmp for a list of models
# bic.parm.apply - estimates bic, estimates, and sd for a list of

models
# BMAfitting - does the whole shebang

BMAcalc <- function(Xmat, y, g="default"){
#This work uses the prior distributions described in Fernandez

et. al. 2001
#ie non-informative on sigma and non-informative on intercept

(ie sample mean)
k = ncol(Xmat) #number of regressors
n = nrow(Xmat) #number of samples
if (g=="default") {g=1/max(n,kˆ2)}

part1 = .5*k*log(g/(g+1))
Mx = Xmat%*%solve(t(Xmat)%*%Xmat)%*%t(Xmat)
yMxy = t(y)%*%y - t(y)%*%Mx%*%y
yybar = y-mean(y)
part2 = (1/(g+1))*yMxy
part3 = (g/(g+1))*t(yybar)%*%yybar
part4 = -.5*(n-1)*log(part2 + part3)
part5 = part1+part4
#output is log(bayes factor numerator)
return(part5)}

pmp.apply = function(variables,resp,Xmat){
pred=Xmat[,variables]
pmp=BMAcalc(pred,resp)
return(pmp)}

bic.parm.apply = function(variables,resp,Xmat){
pred=Xmat[,variables]
model.fits=ls.print(lsfit(pred,resp,int=F),print.it=F)$

coef.table
return(model.fits)}

BMAfitting <- function(resp,pred,nvmax){
#use leaps to calculate bic and all models
var.names= c("Int",colnames(pred))
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#constants
nvar =ncol(pred)
fake.models<-regsubsets(resp˜.,data=pred,intercept=T,method=

"exhaustive",
nbest=100,nvmax=nvmax,really.big=T)
#grab the matrix identifying variables
which.var=summary(fake.models)$which
#calculate number of models that were fit
nmodels=nrow(summary(fake.models)$which)
#divide the models into a list
var.nums = t(t(which.var)*(1:(ncol(which.var))))
modellist=split(var.nums,1:nmodels)
varlist= lapply(modellist,unique)
#add the mean vector to the predictor matrix
fullpred = data.frame(rep(1,nrow(pred)),pred)
#calculate the pmp
pmp.all=lapply(varlist,pmp.apply,resp=resp,Xmat=

as.matrix(fullpred))
logpmp=(unlist(pmp.all))
fullpostprob = exp(logpmp)/sum(exp(logpmp))

#calculate the bic approximation
bic = summary(fake.models)$bic-min(summary(fake.models)$

bic)
bicpostprob = exp(-.5*bic)/sum(exp(-.5*bic))

#calculate E(bi) and V(bi) for the standard(no prior) model
#goes with the bic approximation.
est.all=lapply(varlist,bic.parm.apply,resp=resp,Xmat=

as.matrix(fullpred))
Ebi <- matrix(NA,nrow=nmodels,ncol=(nvar+1))
SDbi <- matrix(NA,nrow=nmodels,ncol=(nvar+1))
for (i in 1:nmodels){
Ebi[i,varlist[[i]]] = est.all[[i]][[1]][,1]
SDbi[i,varlist[[i]]] = est.all[[i]][[1]][,2]
}

#calculate E(bi) and V(bi)
#goes with the Fernandez et. al. 2001
#needs to be calculated

#gather results
var.data=matrix(ncol=4,nrow=ncol(which.var))
dimnames(var.data)=list(var.names,c("BMApmp","bicpmp","E(b_i)",

"SD(b_i)"))
#note, we may want to include the other two approximations

mentioned by the LANL folk
#also need to calculate the estimates of Ebi_prior, V(bi_prior)
#cols are pmp, bic,E(bi),v(bi),E(bi_prior),v(bi_prior)
var.data[,1]=round(100*t(which.var)%*%fullpostprob,2)
var.data[,2]=round(100*t(which.var)%*%bicpostprob,2)
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var.data[,3]=apply(Ebi*bicpostprob,2,sum,na.rm=T)
SDvar = (SDbi*SDbi+ Ebiˆ2)*bicpostprob
var.data[,4]=sqrt(apply(SDvar,2,sum,na.rm=T)-var.data[,3]ˆ2)

#also return best bic model
best.bic=seq(1:nmodels)[bic==0]
best.var=unique(unlist(var.nums[best.bic,]))
best.var.names=var.names[best.var]
best.est=est.all[[best.bic]][[1]]
rownames(best.est)=best.var.names
return(list(bma.table=var.data,
best.est=best.est,best.var=best.var.names,best.bic=

min(summary(fake.models)$bic)))}

StepFitting <- function(resp,pred,trace=0) {
#use stepAIC to find best stepwise model via AIC

varNames = names(pred)
LM1 = lm(resp˜1)
attach(pred)
upperEq = as.formula(paste("upper=˜",paste(varNames,collapse="+")))
stepwise = step(LM1,scope=list(upper=upperEq,

lower=˜1),trace=trace,direction="both")
coefMat = summary(stepwise)$coefficients
variables = rownames(coefMat)
detach(2)
return(list(variables=variables,coefMatrix=coefMat))

}

StepTvalue <- function(StepResult,VarName){
varcheck <- StepResult$variables==VarName
tvalue <- ifelse(any(varcheck),

StepResult$coefMatrix[varcheck,3],0)
tvalue

}

sum.get <- function(x,a) sum(x>a)
sum.abs.get <- function(x,a) sum(abs(x)>a)

BMAPvalue <- function(BMAResult,VarNumber) {
BMAResult$bma.table[VarNumber,1]

}

# bkg.mean returns the Spectral-mean from an HS-image

bkg.mean <- function(img.data) apply(img.data,3,mean)

# bkg.vihalf returns the sqrt-inverse of the variance of
# the spectrum from an HS-image, used to whiten

bkg.vihalf <- function(img.data) {

C.3



dims <- dim(img.data)
sigma2 <- var(matrix(as.vector(img.data),dims[1]*dims[2],dims[3]))
ttt <- La.svd(sigma2)
vihalf <- t(ttt$u)/sqrt(ttt$d)
vihalf

}

# whiten.v whitens a vector using input mean and vihalf

whiten.v <- function(data.vec,meanvec,vihalf) {
as.vector(vihalf %*% (data.vec - meanvec))

}

# whiten.m whitens an HS-image using input S-mean and S-vihalf

whiten.m <- function(img.data,meanspec,specvhalf) {
aperm(apply(img.data,1:2,whiten.v,meanspec,specvhalf),c(2,3,1))

}

ExampleScript 2study.R

## Bring in the wavelengths and convert to correct units
dataNu <- as.vector(unlist(read.table("D:\\brs\\datasets2\\

NoGas126Bands100Bkgrnds\\nu_126bands.txt",sep="\t")))
## want things in lambda (nm), so will convert
dataWavelengths <- 1e4/dataNu
numWavelengths <- length(dataWavelengths)

#chemSpectra <- matrix(0,nrow = numWavelengths, ncol = numChems)
#for (k in 1:numChems)
#{
# ## bring in a chemical, along with it’s wavelength
# thisFile <- paste(chemDir,chemFiles[k,1],sep="\\")
# thisChem <- read.table(thisFile,sep="\t")
# thisLambda <- 1e4/thisChem[,1]
# chemSpectra[,k] <- LibConv(thisLambda,thisChem[,2],dataWavelengths)
#}
#dimnames(chemSpectra) <- list(NULL,chemFilesSplit)
#write.table(chemSpectra,"D:\\brs\\datasets2\\chem92Lib126.csv",

sep=",")
### Can also read them in. It takes 45 mins to do this right now,

so might want to do that ###
chemSpectra <- (read.table("D:\\brs\\datasets2\\chem92Lib126.csv",

sep=",",header=T))
chemSpectra <- array(unlist(chemSpectra),dim = dim(chemSpectra),

dimnames = NULL)
dimnames(chemSpectra) <- list(NULL,chemFilesSplit)
## Having trouble with the right shape, wrong sign
chemSpectra <- abs(chemSpectra)
###########################################
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##########################################
## Start with study2startHere.Rwork and continue below
###################################
##################################

## want R to open the leaps package without using the mouse (’cause I
like it that way)

library("leaps",character.only = TRUE)

## seperate out the chemicals for each run into a sub setChemSpectra
chemsRun <- read.table("D:\\IrSage\\IRSageSpec\\chem\\Andrea\\

Library2\\top5corr.txt",sep="\t")
setchemCol <- charmatch(as.character(chemsRun[,1]),

as.character(chemFiles[,1]))
setChemSpectra <- chemSpectra[,setchemCol]

## Gases to use for our example, then backgrounds, then concentrations.
gasesFilenames <- c("Ammonia","Ethene","F113","F114","Furan")
gases <- toupper(c("NH3","Ethene","F113","F114","Furan"))
gasesToMatch <-unlist(dimnames(setChemSpectra)[2])
##gasColumn <- c(76,47,49,50,54) ## which number gas the ones in the

images are
gasColumn <- charmatch(gases,gasesToMatch)
gasConcLevels <- read.table("D:\\BRS\\Datasets2\\top5corr\\

AmmoniaGas126Bands100Bkgrnds\\Ammonia_gas_conc_ultraLow.txt",sep=",")
numGases <- length(gases)
numGasConc <- length(gasConcLevels)

baseDir <- "D:\\brs\\datasets2\\top5corr\\"
numMaxPred <- 5
numROCpts <- 50

##########################################

## Off plume cube, used to make the mean and covaraince
dataCubeNO <- read.table(paste(baseDir,"NoGas126Bands100Bkgrnds\\

No_gas_25_126bands.txt",sep=""),sep=",")
dataCubeNO <- array(unlist(dataCubeNO), dim = c(dim(dataCubeNO)[1],

(dim(dataCubeNO)[2])/numWavelengths,numWavelengths),dimnames = NULL)

# Note, Nogas data has 5 times as many rows, so compute the mean and
## covariance with the most pixels, then subset.
meanOffPlume <- bkg.mean(dataCubeNO)
covHalfOffPlume <- bkg.vihalf(dataCubeNO)
# Now, "whiten" or "standardize" the chemical Library
## could either call LibStd, or LibWhite.
chemSpectraWhite <- as.data.frame(LibStd(setChemSpectra,

covHalfOffPlume))

## Now, for each gas cycle through the concentrations
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## Now, get rid of some rows of Nogas
dataCubeNO <- dataCubeNO[1:12,,]
dimsData <- dim(dataCubeNO)
numPixels <- (dimsData[1])*dimsData[2]##Nogas has all 5
concentrations
## We want to have zero concentration for the bmaRes and stepRes to
work like before.
numPixels <- dim(dataCubeNO)[1]*dim(dataCubeNO)[2]##Nogas has all 5
concentrations

for (k in 1:numGases)
{

thisGasColumn <- 1 + gasColumn[k] ## number of column in
predictor matrix of the gas in image

## create the bmaRes matrix for plotting the ROC curves, load it
with the zero concentration

bmaRes <- matrix(NA,nrow = numPixels,ncol = numGasConc+1,
dimnames = list(NULL,c(0,gasConcLevels)))

dataCubeWhite <- whiten.m(dataCubeNO,meanOffPlume,covHalfOffPlume)
dataCubeWhiteFlatten <- matrix(dataCubeWhite,nrow = numPixels ,

ncol = numWavelengths)
dataList <- split(dataCubeWhiteFlatten,1:numPixels)
dataListBMA <- lapply(dataList,BMAfitting,

as.data.frame(chemSpectraWhite),numMaxPred)
bmaRes[,1] <- unlist(lapply(dataListBMA,BMAPvalue,thisGasColumn))
## needed to sequence for probability curves
pPc <- seq(min(bmaRes[,1]),max(bmaRes[,1]),length = numROCpts)
## Now for stepwise regression
stepRes <- matrix(NA,nrow = numPixels,ncol = numGasConc + 1,

dimnames = list(NULL,c(0,gasConcLevels)))
dataListStep = lapply(dataList,StepFitting,(chemSpectraWhite))
stepRes[,1] = unlist(lapply(dataListStep,StepTvalue,gases[k]))
tVc <- seq(min(abs(stepRes[stepRes[,1]!=0,1])),

max(abs(stepRes[stepRes[,1]!=0,1])),length = numROCpts)
#if (any(is.nan(tVc)))
#{
# tVc <- seq(1,100,length=numROCpts)
#}

for (l in 1:numGasConc)
{

## get the correct directory and file to read in
thisDir <- paste(baseDir,gasesFilenames[k],

"Gas126Bands100Bkgrnds\\",sep="")
thisFile <- paste(thisDir,gasesFilenames[k],"_126Bands_",

gasConcLevels[l],"conc_100bkgrnd_ultraLow.csv",sep="")
## read in the file, then get into correct array format
dataCube <- read.table(thisFile,sep=",")
dataCube <- array(unlist(dataCube), dim = c(dim(dataCube)[1],

(dim(dataCube)[2])/numWavelengths,numWavelengths),dimnames = NULL)
## whiten the cube, then flatten for using lapply for BMA and
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stepwise.
dataCubeWhite <- whiten.m(dataCube,meanOffPlume,covHalfOffPlume)
dataCubeWhiteFlatten <- matrix(dataCubeWhite,nrow = numPixels ,

ncol = numWavelengths)
dataList = split(dataCubeWhiteFlatten,1:numPixels)
dataListBMA=lapply(dataList,BMAfitting,

as.data.frame(chemSpectraWhite),5)
## get the BMA results into a matrix for plotting
bmaRes[,l+1] <- unlist(lapply(dataListBMA, BMAPvalue,

thisGasColumn))
## Now, for the stepwise
dataListStep = lapply(dataList,StepFitting,

as.data.frame(chemSpectraWhite))
stepRes[,l+1] = unlist(lapply(dataListStep,StepTvalue,gases[k]))

} ## end l loop
## write to disk for later
write.table(bmaRes,paste(thisDir,gasesFilenames[k],

"_126Bands_bma_100bkgrnd_ultraLowConc.csv",sep=""),row.names = FALSE)
write.table(stepRes,paste(thisDir,gasesFilenames[k],

"_126Bands_step_100bkgrnd_ultraLowConc.csv",sep=""),row.names =
FALSE)

## Now, get the bmaROCmat together and the stepROCmat together
bmaROCmat <- matrix(NA,nrow = numROCpts,ncol = numGasConc+1,

dimnames = list(NULL,c(0,gasConcLevels)))
stepROCmat <- matrix(NA,nrow = numROCpts,ncol = numGasConc+1,

dimnames = list(NULL,c(0,gasConcLevels)))
for (i in 1:numROCpts)
{

bmaROCmat[i,] <- apply(bmaRes,2,sum.get,pPc[i])/numPixels
stepROCmat[i,] <- apply(stepRes,2,sum.abs.get,tVc[i])/numPixels

}

## Now, plot both up and save them
matplot(bmaROCmat[,1],bmaROCmat[,-1],type=’l’,lty=1,xlab=

"False Alarm Probability",ylab = "Probability of Detection", main =
paste("BMA ROC for ", gasesFilenames[k],sep=""),col=1:5,xlim=
c(0,round(max(bmaROCmat[,1]),digits = 3)), ylim=c(0,1))

legend(.7*round(max(bmaROCmat[,1]),digits=3),0.3,legend =
paste(unlist(c(dimnames(bmaROCmat[,-1])[2]))," ppm",sep=""),lty=1,
col=1:5,cex = 0.6,bg="grey90")

savePlot(filename = paste(thisDir,"bmaROCplot",gasesFilenames[k],
"_100bkgrnd_ultraLowConc",sep=""),type="pdf")

matplot(stepROCmat[,1],stepROCmat[,-1],type = ’l’,lty=1,xlab=
"False Alarm Probability",ylab="Probability of Detection",main=
paste("STEP ROC for ", gasesFilenames[k],sep=""),col=1:5,xlim=
c(0,round(max(stepROCmat[,1]),digits = 3)),ylim=c(0,1))

legend(0.7*round(max(stepROCmat[,1]),digits=3),0.7,legend =
paste(unlist(c(dimnames(bmaROCmat[,-1])[2]))," ppm",sep=""),lty=1,
col=1:5,cex = 0.6,bg="grey90")
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savePlot(filename = paste(thisDir,"stepROCplot",
gasesFilenames[k],"_100bkgrnd_ultraLowConc",sep=""),type="pdf")

## Now, plot both up on the same axes and save them
#postscript(file = paste(thisDir,"ROCplot",gasesFilenames[k],

"_ultraLowConc.ps",sep=""),paper="letter")

matplot(bmaROCmat[,1],bmaROCmat[,-1],type=’l’,lty=0,lwd=1,xlab=
"False Alarm Probability",ylab = "Probability of Detection", main =
paste("ROC for ", gasesFilenames[k],sep=""),sub = "BMA solid line,
Stepwise dashed line.",cex.sub = 0.7,col=1:5,xlim=c(0,1), ylim=
c(0,1))

matlines(bmaROCmat[,1],bmaROCmat[,-1],type=’l’,lty=1,lwd=1,
xlim=c(0,1),ylim=c(0,1))

matlines(stepROCmat[,1],stepROCmat[,-1],type=’l’,lty=6,lwd=2,
col=1:5,xlim=c(0,1),ylim=c(0,1))

legend(.7*round(max(bmaROCmat[,1]),digits=3),0.3,legend =
paste(unlist(c(dimnames(bmaROCmat[,-1])[2]))," ppm",sep=""),lty=1,
col=1:5,cex = 0.6,bg="grey90")

#dev.off()

savePlot(filename = paste(thisDir,"ROCplot",gasesFilenames[k],
"_100bkgrnd_ultraLowConc",sep=""),type="pdf")

} ## end k loop

######################################################
######################################################
### Create updated figures for the paper
## Load in the start here stuff.
library("leaps",character.only = TRUE)

libSize <- 25
libType <- "uncorrelated"
thisType <- paste("top",libSize,substr(libType,1,1+regexpr("r",

libType)),sep="") # looks for first r in libType

## seperate out the chemicals for each run into a sub setChemSpectra
chemsRun <- read.table(paste("D:\\IrSage\\IRSageSpec\\chem\\Andrea\\

Library2\\",thisType,".txt",sep=""),sep="\t")
setchemCol <- charmatch(as.character(chemsRun[,1]),

as.character(chemFiles[,1]))
setChemSpectra <- chemSpectra[,setchemCol]

gasesFilenames <- c("Ammonia","Ethene","F113","F114","Furan")
gases <- toupper(c("NH3","Ethene","F113","F114","Furan"))
gasesToMatch <-unlist(dimnames(setChemSpectra)[2])
##gasColumn <- c(76,47,49,50,54) ## which number gas the ones in the
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images are
gasColumn <- charmatch(gases,gasesToMatch)
gasConcLevels <- read.table("D:\\BRS\\Datasets2\\top5corr\\

AmmoniaGas126Bands100Bkgrnds\\Ammonia_gas_conc_ultraLow.txt",sep=",")
numGases <- length(gases)
numGasConc <- length(gasConcLevels)
numMaxPred <- 5
numROCpts <- 50

for (k in 1:numGases){
thisDir <- paste("D:\\brs\\datasets2\\",thisType,"\\",
gasesFilenames[k],"Gas126Bands100Bkgrnds\\",sep="")

bmaRes <- read.table(paste(thisDir,gasesFilenames[k],
"_126Bands_bma_100bkgrnd_ultraLowConc.csv",sep=""),header = TRUE)
stepRes <- read.table(paste(thisDir,gasesFilenames[k],
"_126Bands_step_100bkgrnd_ultraLowConc.csv",sep=""),sep="",header =
TRUE)

## needed to sequence for probability curves
pPc <- seq(min(bmaRes[,1]),max(bmaRes[,1]),length = numROCpts)
tVc <- seq(min(abs(stepRes[stepRes[,1]!=0,1])),
max(abs(stepRes[stepRes[,1]!=0,1])),length = numROCpts)
## Now, get the bmaROCmat together and the stepROCmat together

bmaROCmat <- matrix(NA,nrow = numROCpts,ncol = numGasConc+1,
dimnames = list(NULL,c(0,gasConcLevels)))

stepROCmat <- matrix(NA,nrow = numROCpts,ncol = numGasConc+1,
dimnames = list(NULL,c(0,gasConcLevels)))

for (i in 1:numROCpts)
{

bmaROCmat[i,] <- apply(bmaRes,2,sum.get,pPc[i])/
dim(bmaRes)[[1]]#numPixels

stepROCmat[i,] <- apply(stepRes,2,sum.abs.get,tVc[i])/
dim(stepRes)[[1]]#numPixels

}

## Plot up, with appropriate labels this time...

matplot(bmaROCmat[,1],bmaROCmat[,-1],type=’l’,lty=0,lwd=1,xlab=
"False Alarm Probability",ylab = "Probability of Detection", main =
paste(gasesFilenames[k],":",libSize,libType,sep=" "),sub =
"BMA solid line, Stepwise dashed line.",cex.sub = 0.8,col=1:5,xlim=
c(0,1), ylim=c(0,1))

matlines(bmaROCmat[,1],bmaROCmat[,-1],type=’l’,lty=1,lwd=1,
xlim=c(0,1),ylim=c(0,1))

matlines(stepROCmat[,1],stepROCmat[,-1],type=’l’,lty=6,lwd=2,
col=1:5,xlim=c(0,1),ylim=c(0,1))

legend(.7*round(max(bmaROCmat[,1]),digits=3),0.3,legend =
paste(unlist(c(dimnames(bmaROCmat[,-1])[2]))," ppm",sep=""),lty=1,
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col=1:5,cex = 0.7,bg="grey90")

savePlot(filename = paste(thisDir,"ROCplot",gasesFilenames[k],
"_100bkgrnd_",substr(libType,1,1+regexpr("r",libType)),libSize,
sep=""),type="pdf")

## write to two places
savePlot(filename = paste("D:\\brs\\clientreports\\sandy\\ROCplot",

gasesFilenames[k],"_100bkgrnd_",substr(libType,1,1+regexpr("r",
libType)),libSize,sep=""),type="pdf")

}
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