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Summary 

When searching for computer code to perform the ubiquitous task of subtracting one polygon from 

another, it is difficult to find real examples or detailed explanations.  This paper outlines the step-by-step 

process necessary to accomplish this basic task.   

Keywords:  polygon subtraction algorithm, polygon difference algorithm, two-dimensions, and three-

dimensions.   
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1.1 

1.0 Introduction 

There has been much previous work on the topic of Boolean operations for polygons.  Most of the 

emphasis has been on polygon clipping (polygon intersection).  One of the earliest solutions was by 

Weiler and Atherton (1977) whose general approach of processing lists of vertices is incorporated into 

this algorithm.  A very good treatment of the operations of intersection, union, and difference was 

provided by Margalit and Knott (1989).  More recently, Rivero and Feito (2000) developed an efficient 

method of operation based on representing polygons through simplices, and Peng et al. (2005) provided 

performance improvements.  However, their methodology requires that polygons be translated to the first 

quadrant before processing.   

This subtraction or difference algorithm was developed to provide a polygon subtraction (or polygon 

difference) that works on simple polygons (as defined by Margalit and Knott (1989)) in two or 

three dimensions.  Inputs to the algorithm are two lists of vertices—each list representing a polygon.  The 

output from the algorithm is a list of polygons (each of which is a list of vertices) that represent the areas 

inside one of the original polygons but not the other.   

The general methodology is to begin by finding a point on the first polygon that is outside the other 

polygon.  Starting from that point, construct the output polygon by tracing around first polygon until 

hitting a point of intersection with other polygon.  Switch to other polygon and continue adding to the 

output polygon by tracing backward until hitting a point of intersection with original polygon.  Switch 

back to original polygon and continue tracing.  Continue tracing and switching until arriving back at 

starting point (closing the output polygon).  After all points in the first polygon have been processed, the 

process is repeated for the second polygon.   
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2.0 Methodology 

Two polygons are represented as lists of vertices.  It is assumed that the polygons are closed (the last 

vertex in each polygon is the same as the first vertex).  For three dimension applications, all vertices must 

lie on the same plane in space.   

2.1 High-level Overview 

Begin by finding the points of intersection between the two polygons and inserting them into each 

polygon’s list of vertices.  To facilitate the process, also set up lists with the following information for 

each vertex:   

 flag whether vertex is outside of the other polygon (points on edge are not outside) 

 if the vertex is an intersection point, provide the index of the same intersection point in the other 

polygon vertex list 

 “processed” flag (set to false initially).   

Complete the following steps for each of the two input polygons:   

1. find the first unused point on first polygon that is outside of the other polygon 

– if no unused points remain, then the algorithm is complete for this input polygon 

2. get next point in forward order and add to output polygon 

– if we’ve returned to the first point (closing polygon), current output polygon is complete; start 

another output polygon at step 1 

– if point is intersection, then go to step 3, otherwise continue step 2 

3. cross over to the other polygon 

4. get next point in reverse order and add to output polygon 

– if point is intersection, then go to step 5, otherwise continue step 4 

5. cross back over to original polygon and go to step 2.   

2.2 Detailed Description 

Figure 2.1 depicts an example of polygons to be subtracted.  The yellow polygon (denoted as 

polygon 2) will be subtracted from the red polygon (denoted as polygon 1).  There will be six resulting 

polygons—three red and three yellow.  None of the overlapping orange area will be in the output.   
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Figure 2.1.  Input Polygons to be Subtracted 

Begin by augmenting each list of vertices with the points of intersection with the other polygon.  

Points must be inserted in the correct position of the lists and no point may be duplicated.  For 3D 

applications, the intersection function should detect lines that approach within some distance ε.  If there 

are two intersection points in a row on the same segment of a polygon, then an additional point needs to 

be added between them if the segment is outside of the other polygon.  Figure 2.2 indicates where such a 

point should be inserted.  Inserting the extra point is necessary because the algorithm needs at least 

one point on each output polygon that is outside of the other polygon.   

 

Figure 2.2.  Extra Point between Intersections 

Figure 2.3 shows all of the points for polygon 1 numbered in order as they appear in the vertex list.  

Figure 2.4 shows all of the points for polygon 2 numbered in order as they appear in the vertex list.   
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Figures 2.3.  Labeled Vertices for Polygon 1 

 

Figures 2.4.  Labeled Vertices for Polygon 2 

Next, all of the points in each list that are outside of the other polygon need to be identified.  Points 

that are on the edge of the other polygon are not considered to be outside.  3D applications need to be able 

to detect points that approach an edge (a 3D line segment) within some distance ε.  They must also be 

able to determine whether a point is inside a polygon as long as they both lie on the same plane in space.  

For this example, the outside points are 0, 3, 4, 5, 8, 11, 12, and 13 for polygon 1 and 0, 3, 7, and 11 for 

polygon 2.   

Lists of intersection indices need to be compiled.  For each point in list 1, if the point is an 

intersection it needs an index into list 2 for the same point.  Corresponding indices need to be created for 

list 2.  Besides intersection indices, a flag for each point needs to be established to indicate whether it has 

been added to an output polygon yet.  All of the flags, crossing indices and “outside” indicators should be 

compiled into a list or matrix for efficient processing (so that these flags and indices are immediately 

available for each point without the need for further lookups or searches).  Table 2.1 shows the list for 

polygon 1, and Table 2.2 shows the list for polygon 2.   
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Table 2.1.  Polygon List 1 

Vertex X Y Z Outside Cross Processed 

0    True -1 False 

1    False 1 False 

2    False 10 False 

3    True -1 False 

4    True -1 False 

5    True -1 False 

6    False 8 False 

7    False 6 False 

8    True -1 False 

9    False 4 False 

10    False 2 False 

11    True -1 False 

12    True -1 False 

13    True -1 False 

       

Table 2.2.  Polygon List 2 

Vertex X Y Z Outside Cross Processed 

0    True -1 False 

1    False 1 False 

2    False 10 False 

3    True -1 False 

4    False 9 False 

5    False -1 False 

6    False 7 False 

7    True -1 False 

8    False 6 False 

9    False -1 False 

10    False 2 False 

11    True -1 False 

       

The orientation (clockwise or counter-clockwise ordering of points) of each polygon is computed.  3D 

applications must be able to detect whether the polygon points are oriented differently as long as they 

both lie on the same plane in space.  The orientations are used to set a “Next Offset” value to use when 

stepping through points in the other polygon.  If the orientations of the two polygons are different then 

Next Offset value is set to 1, if the orientations are the same then Next Offset is set to -1.  In this 

example, the polygons are oriented oppositely, so Next Offset is set to 1.   

Now the process of stringing together output polygons begins.  Polygon 1 becomes “this” polygon 

and polygon 2 becomes the “other” polygon.   
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Step 1.  The first unused outside point of this polygon is found.  For this example, point 0 will be the 

starting point for the first time through the process.  The index of the point is assigned to a variable to 

keep track of the current position in this polygon, called Index A.  If no unused outside points remain, 

that means all of the output polygons have been found and the process is complete.  If a point is found, 

then start a new output polygon.   

Step 2.  Add the point at Index A to the output polygon and mark the point as “processed.”  If the 

point matches the first point in the output polygon then it means the output polygon is complete, so go 

back to step 1 to start another output polygon.   

Step 3.  If the point is not a crossing point then continue with step 9 below.  If the point is a crossing 

point, check for the special case described in Section 2.3.  If the special case does not apply, then continue 

with step 4.  If the special case does apply, then the point will not be treated as a crossing point and 

continue with step 9.   

Step 4.  Processing now switches to the “other” polygon.  Set Index B, the current position in the 

“other” polygon equal to the crossing index.  In this example, the first crossing index is 1.   

Step 5.  Add Next Offset to Index B.  (Wrap around if hit end of list.)   

Step 6.  Add the point at Index B to the output polygon.   

Step 7.  If the point is not a crossing point then continue with step 5.  If the point is a crossing point, 

check for the special case described below.  If the special case does not apply, then continue with step 8.  

If the special case does apply, then the point will not be treated as a crossing point and continue with 

step 5.   

Step 8.  Processing now switches back to the “this” polygon.  Set Index A equal to the crossing index 

plus 1.  In this example, the first crossing back index is 10, so Index A will be set to 11.  Continue at 

step 2.   

Step 9.  Add 1 to Index A, and continue at step 2.   

After the process is complete, the number of output polygons is saved for output from the algorithm.  

Then polygon 2 becomes “this” polygon and polygon 1 becomes the “other” polygon and the process is 

repeated.   

The first pass through the process outputs the three polygons (A, B, C) in Figure 2.5.  The second 

pass outputs the three polygons (D, E, F) in Figure 2.6.  Table 2.3 shows the source for each point in these 

polygons.   
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Figure 2.5.  Output from First Pass 

 

Figure 2.6.  Output from Second Pass 
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Table 2.3.  Outputs with Respect to Inputs 

Output Polygon Output Vertex Input Polygon Input Vertex 

A 0 1 0 

A 1 1 1 

A 2 2 2 

A 3 1 11 

A 4 1 12 

A 5 1 13 

B 0 1 3 

B 1 1 4 

B 2 1 5 

B 3 1 6 

B 4 2 9 

B 5 2 10 

B 6 1 3 

C 0 1 8 

C 1 1 9 

C 2 2 5 

C 3 2 6 

C 4 1 8 

D 0 2 0 

D 1 2 1 

D 2 1 2 

D 3 2 11 

E 0 2 3 

E 1 2 4 

E 2 1 10 

E 3 2 3 

F 0 2 7 

F 1 2 8 

F 2 1 7 

F 3 2 7 

    

The algorithm returns the list of six polygons along with the number three, indicating that the first 

three polygons were derived from the input polygon 1.   

2.3 Special Cases for Crossing Points 

There are cases for some polygons where the first crossing point should be ignored to wait for a later 

crossing point, such as when the polygons share an edge.  Consider the following example of the yellow 

polygon (polygon 1) being subtracted from the red polygon (polygon 2).   



 

2.8 

 

Figure 2.7.  Example 2:  Polygon 1 (Yellow) and Polygon 2 (Red) 

 

Figure 2.8.  Example 2:  Polygon 1 (Yellow) and Polygon 2 (Red) 
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Table 2.4.  Crossings and Outside Flags for Example 2 

Polygon 1 (Yellow) Polygon 2 (Red) 

Vertex Outside Cross Vertex Outside Cross 

0 True -1 0 True -1 

1 False 6 1 True -1 

2 False 5 2 True -1 

3 False -1 3 False 5 

4 False -1 4 False -1 

5 False 3 5 False 2 

6 True -1 6 False 1 

7 True -1 7 True -1 

 8 True -1 

    

As the first output polygon is being compiled, vertex 0 and then vertex 1 are output.  Since vertex 1 is 

a crossing point, we would normally cross over to vertex 6 of the red polygon.  However, by looking 

ahead we see that if we did, the next point would immediately cross back to point 2 of the yellow 

polygon.  That would lead to incorrect results.  So, a series of rules need to be applied before accepting a 

cross-over point: 

Rule 1:  Check the Outside status of the vertex on the other polygon after the crossing.  If it is 

outside, then don’t cross at this point.  If it is not outside, then apply rule 2.  (If traversing the “other” 

polygon the rule needs to be reversed:  if the vertex on “this” polygon after the crossing is not outside, 

then don’t cross at this point.)   

Rule 2:  Check the Cross status of the vertex on the other polygon after the crossing.  If it is not a 

crossing, go ahead and accept the first crossing.  If it is a crossing, then the Cross status becomes the 

“Crossback” and rule 3 is applied.   

Rule 3:  If the “Crossback” is equal to the “Next” point on this polygon, then don’t cross at this 

point.  Otherwise, go ahead and accept the crossing.   

To apply rule 1 to vertex 1:  the point after the crossing is point 5 on the red polygon.  It is not 

outside, so there is no need to reject the crossing at this point.  Rule 2 needs to be applied.   

To apply rule 2:  point 5 on the red polygon is a crossing point.  Therefore, rule 3 needs to be applied.  

The Crossback is vertex 2.   

To apply rule 3:  the Crossback is vertex 2 (on the yellow polygon).  The Next vertex on this (the 

yellow) polygon is also 2.  Since the Crossback matches the Next point, reject the crossing.  Move on to 

vertex 2 of the yellow polygon and output it.  It is also a crossing point, but will be accepted by rule 2.   

After the first polygon is output, the next output polygon is compiled using polygon 2 (the red 

polygon) as “this” polygon and polygon 1 (the yellow polygon) as the “other” polygon.  Vertices 0, 1, 2, 

and 3 are output from red polygon followed by vertices 4, 3, and 2 from the yellow polygon.  Vertex 2 is 

a crossing point.  The crossing is vertex 5 of the red polygon.  When applying rule 1 (the reverse part) to 
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vertex 5, the point is not outside so the crossing is rejected.  So, processing continues to vertex 1 of the 

yellow polygon which is also a crossing point.  By rule 2, the crossing is accepted because it is not a 

Crossback point.   

Table 2.5 shows the output polygon vertices and the input sources for the vertices.   

Table 2.5.  Outputs with Respect to Inputs for Example 2 

Output Polygon Output Vertex Input Polygon Input Vertex 

1 0 1 0 

1 1 1 1 

1 2 1 2 

1 3 2 4 

1 4 2 3 

1 5 1 6 

1 6 1 7 

2 0 2 0 

2 1 2 1 

2 2 2 2 

2 3 2 3 

2 4 1 4 

2 5 1 3 

2 6 1 2 

2 7 1 1 

2 8 2 7 

2 9 2 8 

    

2.4 Three Dimensional Considerations 

There are several major components that need special treatment for 3D applications:   

 function that finds intersections between the polygons * 

 function that determines whether a point is inside a polygon 

 function that determines whether a point is on the edge of a polygon * 

 determining the orientation of a polygon 

 determining whether two points match *.   

Each of these components will be discussed here.  The components marked with * use a small 

distance, ε, within which a match or intersection is considered to occur.  All of the functions work for 

two dimensions as well as three dimensions.  Detailed code can be found in Appendix A.   
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2.4.1 Finding Intersections 

Each segment of one polygon needs to be compared to each segment of the other polygon.  There are 

three comparisons between the two segments.  Name the ends of the first segment point 1 and point 2.  

Name the ends of the second segment point 3 and point 4.   

 if the distance from point 1 to the second segment is less than ε, then point 1 is an intersection 

 if the distance from point 2 to the second segment is less than ε, then point 2 is an intersection 

 if the line segments approach within ε of each other, the closest approach point is an intersection.   

Duplicate intersections should be eliminated.  The intersections should be added to the vertex list 

ordered by their distance from the first point so they appear in the proper order.   

2.4.2 Determining Whether a Point is Inside of a Polygon 

A sum of angles from the point to each segment of the polygon is used to determine whether the point 

is inside.  If the sum is approximately -2PI or +2PI radians, then the point is inside.  The angle to each 

segment is based on the formula:   

 Cosine(theta) = DotProduct(V1,V2) / (Length(V1) * Length(V2))  

where: 

V1 is the vector from the point to one end of the segment 

V2 is the vector from the point to the other end of the segment 

The normal of each angle segment is compared to the normal of the first angle segment.  If the 

normals are different, then the angle is negated before being added to the sum.  The normal is computed 

as:   

 Normal = CrossProduct(V1,V2)  normalized to unit length  

where: 

V1 is the vector from the point to one end of the segment 

V2 is the vector from the point to the other end of the segment 

2.4.3 Determining Whether a Point is on the Edge of a Polygon 

The point is checked against each segment of the polygon.  If the closest approach distance between 

the point and a line segment in three dimensions is less than ε, then the point is considered to be on the 

edge of the polygon. 
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2.4.4 Determining the Orientation of a Polygon 

A normal is used to define the orientation of a polygon in three dimensions.  Three consecutive, non-

linear vertices are found on the polygon and are labeled P1, C, P2 (C denotes the “corner”).  The normal 

is the cross product of the two vectors C→P1 and C→P2 set to unit length (a distance of one from the 

origin of 0,0,0).  The normal is represented by a point in three dimensions.   

If the normals of two polygons are within a distance of ε in three dimensions, then the polygons are 

assumed to be oriented the same (facing the same direction).   

2.4.5 Determining Whether Two Points Match 

If the distance between two points in three dimensions is less than ε, they are assumed to be the same 

point (they match).  (Though not exact, if all of the coordinate differences are less than ε then the match is 

assumed.  This is done for computational efficiency.)   
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3.0 Conclusions 

This algorithm is stable and efficient for polygons in two or three dimensions.  When implemented 

with indexed lists of flags, the assembly of output points proceeds in linear time.  The bulk of processing 

is spent in comparing the vertices of each polygon with those of the other polygon in order to determine 

intersections.  This basically requires 2*n*m comparisons (where n and m are the numbers of vertices of 

two polygons) because the first polygon is compared to the second and then the second is compared to the 

first.  There may be a clever way to reduce the comparisons to n*m by assembling both lists at the same 

time, but that is a subject for future research.   
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Appendix A 

Selected C++ Source Code 

// General Purpose Function - Returns all non-overlapped parts of polygons 

// The number derived from this polygon is returned in iNumFirst 

BOOL CPolyLine::Subtract(CPolyLine &poly, CArray<CPolyLine,CPolyLine&> 

&arrPoly, int &iNumFirst, double dEpsilon) 

{ 

 ClosePoly(); 

 poly.ClosePoly(); 

 

 // Make sure there are points in both polygons 

 if (m_arrPoint.GetCount()<=3 || poly.m_arrPoint.GetCount()<=3) { 

  return FALSE; 

 } 

 

 // Make sure both polygons are convex 

 if (!IsConvex3D(dEpsilon)) { 

  return FALSE; 

 } 

 if (!poly.IsConvex3D(dEpsilon)) { 

  return FALSE; 

 } 

 

 arrPoly.RemoveAll(); 

 iNumFirst = 0; 

 

 CArray <CDPoint,CDPoint&> arrPntX; 

 

 // Get list of all points from this polygon (including all intersection 

points with other polygon) 

 CArray <CDPoint,CDPoint&> arrPnt1; 

 arrPnt1.Add(m_arrPoint[0]); 

 for (int i=1; i<m_arrPoint.GetCount(); i++) { 

  CDPoint dPrv = arrPnt1[arrPnt1.GetCount()-1]; 

  CDPoint dCur = m_arrPoint[i]; 

  if (!dPrv.Compare3D(dCur, dEpsilon)) { 

   if (poly.IntersectLineSeg3D(dPrv, dCur, arrPntX, dEpsilon)) { 

    for (int j=arrPntX.GetCount()-2; j>0; j-=2) { 

     // Add extra points between groups of 2  

// so there will be a distinct point outside 

     CDPoint dPntMid = MidPoint3D(arrPntX[j-1], arrPntX[j]); 

     arrPntX.InsertAt(j, dPntMid); 

    } 

    AppendPointsNoDup(arrPnt1, arrPntX, dEpsilon); 

   } 

   AddPointNoDup(arrPnt1, dCur, dEpsilon); 

  } 

 } 

 

 // Get list of all points from other polygon (including all intersection 

points with other polygon) 

 CArray <CDPoint,CDPoint&> arrPnt2; 
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 arrPnt2.Add(poly.m_arrPoint[0]); 

 for (int i=1; i<poly.m_arrPoint.GetCount(); i++) { 

  CDPoint dPrv = arrPnt2[arrPnt2.GetCount()-1]; 

  CDPoint dCur = poly.m_arrPoint[i]; 

  if (!dPrv.Compare3D(dCur, dEpsilon)) { 

   if (IntersectLineSeg3D(dPrv, dCur, arrPntX, dEpsilon)) { 

    for (int j=arrPntX.GetCount()-2; j>0; j-=2) { 

     // Add extra points between groups of 2  

// so there will be a distinct point outside 

     CDPoint dPntMid = MidPoint3D(arrPntX[j-1], arrPntX[j]); 

     arrPntX.InsertAt(j, dPntMid); 

    } 

    AppendPointsNoDup(arrPnt2, arrPntX, dEpsilon); 

   } 

   AddPointNoDup(arrPnt2, dCur, dEpsilon); 

  } 

 } 

 

 // Make lists of outside points 

 int iNum1 = arrPnt1.GetCount(); 

 CArray <BOOL,BOOL> arrOut1; 

 arrOut1.SetSize(iNum1); 

 for (int i=0; i<iNum1; i++) { 

  if (!poly.IsInside3D(arrPnt1[i])) { 

   if (!poly.OnEdge3D(arrPnt1[i], dEpsilon)) { 

    arrOut1[i] = TRUE; // Point outside other polygon 

   } 

  } 

 } 

 int iNum2 = arrPnt2.GetCount(); 

 CArray <BOOL,BOOL> arrOut2; 

 arrOut2.SetSize(iNum2); 

 for (int i=0; i<iNum2; i++) { 

  if (!IsInside3D(arrPnt2[i])) { 

   if (!OnEdge3D(arrPnt2[i], dEpsilon)) { 

    arrOut2[i] = TRUE; // Point outside this polygon 

   } 

  } 

 } 

 

 BOOL bSameDir = GetNormal().Compare3D(poly.GetNormal(), dEpsilon); 

 

 int iNextOffset = bSameDir ? -1 : 1; 

 

 // Make lists of crossing points 

 CArray <int,int> arrCross1; 

 CArray <BOOL,BOOL> arrUsed1; 

 arrCross1.SetSize(iNum1); 

 arrUsed1.SetSize(iNum1); 

 for (int i=0; i<iNum1; i++) { 

  arrCross1[i] = -1; 

  arrUsed1[i] = FALSE; 

 } 

 CArray <int,int> arrCross2; 

 arrCross2.SetSize(iNum2); 

 CArray <BOOL,BOOL> arrUsed2; 

 arrUsed2.SetSize(iNum2); 
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 for (int j=0; j<iNum2; j++) { 

  arrCross2[j] = -1; 

  arrUsed2[j] = FALSE; 

 } 

 int iNumCross = 0; 

 for (int i=0; i<iNum1; i++) { 

  for (int j=0; j<iNum2; j++) { 

   if (arrPnt1[i].Compare3D(arrPnt2[j], dEpsilon)) { 

    arrCross1[i] = j; 

    arrCross2[j] = i; 

    iNumCross++; 

   } 

  } 

 } 

 

 if (iNumCross==0) { 

  return FALSE; 

 } 

 

 // Extract all the Polygons from List 1 

 while (TRUE) { 

  // Find first remaining outside point 

  CPolyLine newPoly(RGB(0,0,0)); 

  int iCur = -1; 

  for (int i=0; i<iNum1; i++) { 

   if (arrOut1[i] && !arrUsed1[i]) { 

    iCur = i; 

    break; 

   } 

  } 

  if (iCur < 0) { 

   // No remaining points outside, we are done 

   break; 

  } 

 

  while (iCur < iNum1) { 

   // Emit point 

   newPoly.AddDPoint(arrPnt1[iCur]); 

 

   // Mark so it won't be used again 

   arrUsed1[iCur] = TRUE; 

 

   if (newPoly.m_arrPoint.GetCount()>2 &&  

    newPoly.m_arrPoint[0].Compare3D(arrPnt1[iCur], 

dEpsilon)) { 

    break; // Polygon wrapped back to beginning point, so stop 

and emit polygon 

   } 

 

   // See if Point is a Crossing Point 

   int iCross = arrCross1[iCur]; 

   if (iCross > -1) { 

    // Get next point on other polygon after cross 

    int iNext = StepNext(iCross, iNextOffset, iNum2); 

    // Make sure it's a cross in 

    if (arrOut2[iNext]) { 

     // No, don't cross out 
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     iCross = -1; 

    } else { 

     // Check special case of crossing back to next point 

     int iCrossBack = arrCross2[iNext]; 

     if (iCrossBack == StepNext(iCur, 1, iNum1)) { 

      // Just wait for next point 

      iCross = -1; 

     } 

    } 

   } 

 

   if (iCross > -1) { 

    // Cross over to List 2 

    int iCur2 = iCross; 

    while (TRUE) { 

     // Traverse List 2 

     iCur2 = StepNext(iCur2, iNextOffset, iNum2); 

 

     // Emit point 

     newPoly.AddDPoint(arrPnt2[iCur2]); 

 

     // See if Point is a Crossing Point 

     iCross = arrCross2[iCur2]; 

     if (iCross > -1) { 

      // Get next point on polygon1 after cross 

      int iNext = StepNext(iCross, 1, iNum1); 

      // Make sure it's a cross out 

      if (!arrOut1[iNext]) { 

       // No, don't cross in 

       iCross = -1; 

      } else { 

       // Check special case of crossing back to next 

point 

       int iCrossBack = arrCross1[iNext]; 

       if (iCrossBack == StepNext(iCur2, iNextOffset, 

iNum2)){ 

        // Just wait for next point 

        iCross = -1; 

       } 

      } 

     } 

 

     if (iCross > -1) { 

      // Back to List1 

      iCur = iCross + 1; 

      break; 

     } 

    } 

   } else { 

    // Keep traversing List1 

    iCur++; 

   } 

  } 

  // Reached end of list, emit the new Polygon 

  newPoly.SetColor(GetColor()); 

  newPoly.SetExtents(); 

  arrPoly.Add(newPoly); 
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  iNumFirst++; // Count number of Polygons extracted from this List 

1 

 } 

 

 // Extract all the Polygons from List 2 

 while (TRUE) { 

  // Find first remaining outside point 

  CPolyLine newPoly(RGB(0,0,0)); 

  int iCur = -1; 

  for (int i=0; i<iNum2; i++) { 

   if (arrOut2[i] && !arrUsed2[i]) { 

    iCur = i; 

    break; 

   } 

  } 

  if (iCur < 0) { 

   // No remaining points outside, we are done 

   break; 

  } 

 

  while (iCur < iNum2) { 

   // Emit point 

   newPoly.AddDPoint(arrPnt2[iCur]); 

 

   // Mark so it won't be used again 

   arrUsed2[iCur] = TRUE; 

 

   if (newPoly.m_arrPoint.GetCount()>2 &&  

    newPoly.m_arrPoint[0].Compare3D(arrPnt2[iCur], 

dEpsilon)) { 

    break; // Polygon wrapped back to beginning point, so stop 

and emit polygon 

   } 

 

   // See if Point is a Crossing Point 

   int iCross = arrCross2[iCur]; 

   if (iCross > -1) { 

    // Get next point on other polygon after cross 

    int iNext = StepNext(iCross, iNextOffset, iNum1); 

    // Make sure it's a cross in 

    if (arrOut1[iNext]) { 

     // No, don't cross out 

     iCross = -1; 

    } else { 

     // Check special case of crossing back to next point 

     int iCrossBack = arrCross1[iNext]; 

     if (iCrossBack == StepNext(iCur, 1, iNum2)) { 

      // Just wait for next point 

      iCross = -1; 

     } 

    } 

   } 

 

   if (iCross > -1) { 

    // Cross over to List 1 

    int iCur2 = iCross; 

    while (TRUE) { 
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     // Traverse List 1 

     iCur2 = StepNext(iCur2, iNextOffset, iNum1); 

 

     // Emit point 

     newPoly.AddDPoint(arrPnt1[iCur2]); 

 

     // See if Point is a Crossing Point 

     iCross = arrCross1[iCur2]; 

     if (iCross > -1) { 

      // Get next point on polygon2 after cross 

      int iNext = StepNext(iCross, 1, iNum2); 

      // Make sure it's a cross out 

      if (!arrOut2[iNext]) { 

       // No, don't cross in 

       iCross = -1; 

      } else { 

       // Check special case of crossing back to next 

point 

       int iCrossBack = arrCross2[iNext]; 

       if (iCrossBack == StepNext(iCur2, iNextOffset, 

iNum1)){ 

        // Just wait for next point 

        iCross = -1; 

       } 

      } 

     } 

 

     if (iCross > -1) { 

      // Back to List2 

      iCur = iCross + 1; 

      break; 

     } 

    } 

 

   } else { 

    // Keep Traversing List2 

    iCur++; 

   } 

  } 

  // Reached end of list, emit the new Polygon 

  newPoly.SetColor(poly.GetColor()); 

  newPoly.SetExtents(); 

  arrPoly.Add(newPoly); 

 } 

 

 return TRUE; 

} 

 

// See if Polygon touches or crosses itself 

// Assumes Polygon is closed 

// Returns FALSE if it does 

BOOL CPolyLine::IsConvex3D(double dEpsilon) 

{ 

 CDPoint dPntX; 

 int iNumPnt = m_arrPoint.GetCount() - 1; 

 for (int i=0; i<iNumPnt; i++) { 

  for (int j=i+1; j<iNumPnt; j++) { 
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   if (m_arrPoint[i].Compare3D(m_arrPoint[j], dEpsilon)) { 

    return FALSE; 

   } 

   if (i<iNumPnt && j<iNumPnt) { 

    if (LineLine3D(m_arrPoint[i], m_arrPoint[i+1], m_arrPoint[j], 

m_arrPoint[j+1], dPntX, TRUE, dEpsilon)) { 

     return FALSE; 

    } 

   } 

  } 

 } 

 return TRUE; 

} 

 

// Determines whether the given line segment intersects the edge of the 

polyline in 3D 

// All the intersection points are placed into arrPntX 

// arrPntX will be sorted based on distance from dPnt1 

BOOL CPolyLine::IntersectLineSeg3D(const CDPoint &dPnt1, const CDPoint 

&dPnt2, CArray <CDPoint,CDPoint&> &arrPntX, double dEpsilon) const 

{ 

 BOOL bIntersect = FALSE; 

 CArray <CDPoint,CDPoint&> arrTemp; 

 CDPoint dPntX; 

 

 int iPnts = m_arrPoint.GetSize()-1; // Assume closed polygons 

 for (int i=0; i<iPnts; i++) { 

  // Check each line segment 

  int j = (i+1) % iPnts; 

  CDPoint dPnt3 = m_arrPoint[i]; 

  CDPoint dPnt4 = m_arrPoint[j]; 

  // Does given line segment intersect this line segment? 

  BOOL bEnds = FALSE; 

  if (PointLineSegDist3D(dPnt3, dPnt1, dPnt2) <= dEpsilon) { 

   arrTemp.Add(dPnt3); 

   bIntersect = TRUE; 

   bEnds = TRUE; 

  } 

  if (PointLineSegDist3D(dPnt4, dPnt1, dPnt2) <= dEpsilon) { 

   arrTemp.Add(dPnt4); 

   bIntersect = TRUE; 

   bEnds = TRUE; 

  } 

  if (!bEnds && LineLine3D(dPnt1, dPnt2, dPnt3, dPnt4, dPntX, TRUE, 

dEpsilon)) { 

   arrTemp.Add(dPntX); 

   bIntersect = TRUE; 

  } 

 } 

 int iNumOut = arrTemp.GetCount(); 

 if (iNumOut > 0) { 

  // Add intersection point(s) to arrPntX 

  arrPntX.RemoveAll(); 

  if (iNumOut==1) { 

   arrPntX.Add(arrTemp[0]); // Just the one 

  } else { 
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   // Sort points based on distance from dPnt1 

   CArray <CDPoint,CDPoint&> arrSort; 

   arrSort.SetSize(iNumOut); 

   for (int i=0; i<iNumOut; i++) { 

    arrSort[i].m_x = i; 

    arrSort[i].m_y = LineLength3D(dPnt1, arrTemp[i]); 

   } 

   qsort(arrSort.GetData(), iNumOut, sizeof(CDPoint), QCompareDPointY); 

   CDPoint dPntLast = arrTemp[int(arrSort[0].m_x)]; 

   arrPntX.Add(dPntLast); 

   for (int i=1; i<iNumOut; i++) { 

    CDPoint dPntThis = arrTemp[int(arrSort[i].m_x)]; 

    if (!dPntThis.Compare3D(dPntLast, dEpsilon)) { 

     // Filter out duplicate points 

     arrPntX.Add(dPntThis); 

     dPntLast = dPntThis; 

    } 

   } 

  } 

 } 

 return bIntersect; 

} 

 

// Finds the minimum 3D distance from a point to a line segment 

double PointLineSegDist3D(const CDPoint &p, const CDPoint &p1, const CDPoint 

&p2) 

{ 

 double b = (p.m_x-p1.m_x)*(p2.m_x-p1.m_x) + (p.m_y-p1.m_y)*(p2.m_y-p1.m_y) 

+ (p.m_z-p1.m_z)*(p2.m_z-p1.m_z); 

 

 double dx = (p2.m_x-p1.m_x); 

 double dy = (p2.m_y-p1.m_y); 

 double dz = (p2.m_z-p1.m_z); 

 double c = dx*dx + dy*dy + dz*dz; 

 if (c == 0.0) { 

  // Point1 and Point2 are the same 

  return LineLength(p, p1); 

 } 

 

 double d = b / c; 

 if (d<0.0 || d>1.0) { 

  // Closest point to line is not on the segment, so it is one of the end 

points 

  dx = p1.m_x - p.m_x; 

  dy = p1.m_y - p.m_y; 

  dz = p1.m_z - p.m_z; 

  double e = dx*dx + dy*dy + dz*dz; 

  dx = p2.m_x - p.m_x; 

  dy = p2.m_y - p.m_y; 

  dz = p2.m_z - p.m_z; 

  double f = dx*dx + dy*dy + dz*dz; 

  if (e<f) { 

   return sqrt(e); 

  } else { 

   return sqrt(f); 

  } 

 } else { 
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  // Closest point to line is on the segment 

  double d1 = ((p2.m_y-p1.m_y)*(p.m_z-p1.m_z) - (p.m_y-p1.m_y)*(p2.m_z-

p1.m_z)); 

  double d2 = ((p2.m_x-p1.m_x)*(p.m_z-p1.m_z) - (p.m_x-p1.m_x)*(p2.m_z-

p1.m_z)); 

  double d3 = ((p2.m_x-p1.m_x)*(p.m_y-p1.m_y) - (p.m_x-p1.m_x)*(p2.m_y-

p1.m_y)); 

double a = sqrt( d1*d1 + d2*d2 + d3*d3 ); 

  return a / sqrt(c); 

 } 

} 

 

// Find the point of intersection (pa) between two lines P1:P2 and P3:P4 in 

3D. 

// Returns FALSE if the lines don't approach within dEpsilon 

BOOL LineLine3D(const CDPoint &p1, const CDPoint &p2, const CDPoint &p3, 

const CDPoint &p4, CDPoint &pa, BOOL bSegment, double dEpsilon) 

{ 

 CDPoint pb; // 2nd perpendicular returned by function below 

 if (LineLine3D(p1, p2, p3, p4, pa, pb, bSegment, dEpsilon)) { 

  if (LineLength3D(pa, pb) <= dEpsilon) { 

   // A single point 

   return TRUE; 

  } 

 } 

 return FALSE; 

} 

 

// Finds the line segment Pa:Pb that is the shortest perpendicular between 

two lines P1:P2 and P3:P4 in 3D. 

// Returns FALSE if two lines (P1:P2 and P3:P4) are parallel 

// Also returns FALSE if bSegment is TRUE and either intersection does not 

occur within segment 

// Based on algorithm by Paul Bourke, University of Western Ausralia, 

PaulBourke.net, used with permission - no restrictions 

BOOL LineLine3D(const CDPoint &p1, const CDPoint &p2, const CDPoint &p3, 

const CDPoint &p4, CDPoint &pa, CDPoint &pb, BOOL bSegment, double dEpsilon) 

{ 

 CDPoint p13, p43, p21;  

 

 p13.m_x = p1.m_x - p3.m_x; 

 p13.m_y = p1.m_y - p3.m_y; 

 p13.m_z = p1.m_z - p3.m_z; 

 

 p43.m_x = p4.m_x - p3.m_x; 

 p43.m_y = p4.m_y - p3.m_y; 

 p43.m_z = p4.m_z - p3.m_z; 

 

 if (fabs(p43.m_x) <= dEpsilon && fabs(p43.m_y) <= dEpsilon && 

fabs(p43.m_z) <= dEpsilon) { 

  return FALSE; 

 } 

 

 p21.m_x = p2.m_x - p1.m_x; 

 p21.m_y = p2.m_y - p1.m_y; 

 p21.m_z = p2.m_z - p1.m_z; 
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 if (fabs(p21.m_x) <= dEpsilon && fabs(p21.m_y) <= dEpsilon && 

fabs(p21.m_z) <= dEpsilon) { 

  return FALSE; 

 } 

 

 double d1343, d4321, d1321, d4343, d2121;  

 d1343 = p13.m_x * p43.m_x + p13.m_y * p43.m_y + p13.m_z * p43.m_z; 

 d4321 = p43.m_x * p21.m_x + p43.m_y * p21.m_y + p43.m_z * p21.m_z; 

 d1321 = p13.m_x * p21.m_x + p13.m_y * p21.m_y + p13.m_z * p21.m_z; 

 d4343 = p43.m_x * p43.m_x + p43.m_y * p43.m_y + p43.m_z * p43.m_z; 

 d2121 = p21.m_x * p21.m_x + p21.m_y * p21.m_y + p21.m_z * p21.m_z; 

 

 double denom = d2121 * d4343 - d4321 * d4321; 

 

 if (fabs(denom) <= dEpsilon) { 

  return(FALSE); 

 } 

 

 double numer = d1343 * d4321 - d1321 * d4343; 

 

 double mua = numer / denom;  // Where Pa = P1 + mua (P2 - P1) 

 

 double mub = (d1343 + d4321 * (mua)) / d4343;  // Where Pb = P3 

+ mub (P4 - P3) 

 

 if (bSegment) { 

  if (mua<=0.0 || mua>=1.0) { 

   // Don't intersect within line segments 

   return FALSE; 

  } 

  if (mub<=0.0 || mub>=1.0) { 

   // Don't intersect within line segments 

   return FALSE; 

  } 

 } 

 

 pa.m_x = p1.m_x + mua * p21.m_x;  

 pa.m_y = p1.m_y + mua * p21.m_y;  

 pa.m_z = p1.m_z + mua * p21.m_z; 

 

 pb.m_x = p3.m_x + mub * p43.m_x;  

 pb.m_y = p3.m_y + mub * p43.m_y;  

 pb.m_z = p3.m_z + mub * p43.m_z;  

 

 return TRUE; 

} 

 

double LineLength3D(const CDPoint &pnt1, const CDPoint &pnt2) 

{ 

 double dX = pnt1.m_x - pnt2.m_x; 

 dX *= dX; 

 

 double dY = pnt1.m_y - pnt2.m_y; 

 dY *= dY; 

 

 double dZ = pnt1.m_z - pnt2.m_z; 

 dZ *= dZ; 
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 return sqrt(dX + dY + dZ); 

} 

 

// Returns TRUE if point on edge of PolyLine 

BOOL CPolyLine::OnEdge3D(const CDPoint &dPnt, double dEpsilon) 

{ 

 int iNumPoints = m_arrPoint.GetCount(); 

 if (iNumPoints>1) { 

  for (int i=0; i<iNumPoints; i++) { 

   int j = (i+1)%iNumPoints; 

   if (!m_arrPoint[i].Compare3D(m_arrPoint[j], dEpsilon)) { // Skip 

segments of duplicate point 

    if (PointLineSegDist3D(dPnt, m_arrPoint[i], m_arrPoint[j]) <= 

dEpsilon) { 

     return TRUE; 

    } 

   } 

  } 

 } 

 return FALSE; 

} 

 

// See if point is inside polygon in 3D space 

BOOL CPolyLine::IsInside3D(const CDPoint &dPnt) const 

{ 

 int nPnts = m_arrPoint.GetSize(); 

 if (nPnts>2) { 

  double dSumTheta = 0.0; 

  CDPoint dNormal = CalcNormal(dPnt, m_arrPoint[0], m_arrPoint[1]); 

  for (int i=0; i<nPnts; i++) { 

   // Get the angle to the 2 points that make up the segment 

   int j = (i+1)%nPnts; 

   double dTheta = CalcAngle3D(dPnt, m_arrPoint[i], m_arrPoint[j]); 

   CDPoint dNormalTest = CalcNormal(dPnt, m_arrPoint[i], 

m_arrPoint[j]); 

   if (!dNormal.Compare3D(dNormalTest,0.000001)) { 

    dTheta = -dTheta; 

   } 

   // Sum of all angles 

   dSumTheta += dTheta; 

  } 

  if (fabs(dSumTheta - 2.0*PI) < 0.000001) { 

   // If sum approaches 2PI, it is inside 

   return TRUE; 

  } 

  if (fabs(dSumTheta + 2.0*PI) < 0.000001) { 

   // If sum approaches -2PI, it is inside 

   return TRUE; 

  } 

 } 

 return FALSE; 

} 

 

CDPoint CalcNormal(CDPoint dCorner, CDPoint dPnt1, CDPoint dPnt2) 

{ 

 // Cross product of 2 vectors to get normal 
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 CDPoint N; 

 N.m_x = (dPnt1.m_y-dCorner.m_y)*(dPnt2.m_z-dCorner.m_z) - (dPnt1.m_z-

dCorner.m_z)*(dPnt2.m_y-dCorner.m_y); 

 N.m_y = (dPnt1.m_z-dCorner.m_z)*(dPnt2.m_x-dCorner.m_x) - (dPnt1.m_x-

dCorner.m_x)*(dPnt2.m_z-dCorner.m_z); 

 N.m_z = (dPnt1.m_x-dCorner.m_x)*(dPnt2.m_y-dCorner.m_y) - (dPnt1.m_y-

dCorner.m_y)*(dPnt2.m_x-dCorner.m_x); 

 

 // Find length of normal vector 

 double dLength = sqrt(N.m_x*N.m_x + N.m_y*N.m_y + N.m_z*N.m_z); 

 

 // Normalize (make it unit length) 

 N.m_x /= dLength; 

 N.m_y /= dLength; 

 N.m_z /= dLength; 

 

 return N; 

} 

// Calculates the Angle in 3D 

// P0 ---------P1 

//  \    

//   \  Angle 

//    \  

//     \  

//      P2 

double CalcAngle3D(const CDPoint &dPnt0, const CDPoint &dPnt1, const CDPoint 

&dPnt2) 

{ 

 // Based on formula Cosine(theta) = DotProduct(V1,V2) / (Length(V1) * 

Length(V2)) 

 

 double dDotProduct = (dPnt1.m_x-dPnt0.m_x)*(dPnt2.m_x-dPnt0.m_x) + 

(dPnt1.m_y-dPnt0.m_y)*(dPnt2.m_y-dPnt0.m_y) + 

(dPnt1.m_z-dPnt0.m_z)*(dPnt2.m_z-dPnt0.m_z); 

 

 double dCosTheta = dDotProduct / 

(LineLength3D(dPnt0,dPnt1)*LineLength3D(dPnt0,dPnt2)); 

 if (dCosTheta < -1.0) { 

  dCosTheta = -1.0; 

 } 

 if (dCosTheta > 1.0) { 

  dCosTheta = 1.0; 

 } 

 

 double dTheta = acos(dCosTheta); // Calculate the Angle 

 

 return dTheta; 

} 

 

// 3D Comparison with tolerance 

BOOL CDPoint::Compare3D(const CDPoint &dPnt, double dEps) const 

{ 

 if (fabs(m_x - dPnt.m_x) > dEps) { 

  return FALSE; 

 } 

 

 if (fabs(m_y - dPnt.m_y) > dEps) { 
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  return FALSE; 

 } 

 

 if (fabs(m_z - dPnt.m_z) > dEps) { 

  return FALSE; 

 } 

 

 return TRUE; 

} 

 

 



 

 



 

 

 


