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Acronyms and Abbreviations 
NFTI  Nuclear Forensics Transformation Innovation  
 
TF  Technical Forensics  
 
TFA  Technical Forensics Analysis 
 
FTIR  Fourier Transform Infrared Spectroscopy  
 
NMR  Nuclear Magnetic Resonance  
 
XRD  X-ray Diffraction 
 
XRF  X-ray Fluorescence  
 
ROC  Receiver Operating Characteristic  



      
PNNL-38905 

Contents iv 
 

      

Contents 
Acknowledgments ......................................................................................................................... ii 
Acronyms and Abbreviations ........................................................................................................ iii 
Contents ....................................................................................................................................... iv 
1.0 Introduction ....................................................................................................................... 1 
2.0 Method .............................................................................................................................. 2 
3.0 Data ................................................................................................................................... 4 
4.0 Results .............................................................................................................................. 5 
5.0 References ........................................................................................................................ 7 
 
 
Figures 
Figure 1. Example reconstructions from validation sample from diKale .... Error! Bookmark 

not defined. 
Figure 2. Receiver operating Characteristic (ROC) curve showing the proportion of 

times the same manufacturer scored above a varying threshold versus 
the proportion of the time a   different manufacturer scored above that 
same threshold. Separate lines indicate different ROC curves for 
increasing number of modalities included. ............................................................ 5 

Figure 3. Receiver Operating Characteristic (ROC) curve showing the proportion of 
times the same manufacturer scored above a varying threshold versus 
the proportion of the time a different manufacturer scored above that 
same threshold. Separate lines indicate different ROC curves for samples 
including the indicated modality. ........................................................................... 6 

 
 
 



      
PNNL-38905 

Introduction 1 
 

      

1.0 Introduction 
Combination of information from disparate data sources into a single decision is a core 
challenge in many fields, including the field of technical forensics. Technical forensics (TF) 
utilizes technical characterization of questioned samples to determine properties of that sample; 
these properties are then used to infer information of forensic interest, such as provenance, 
age, or attribution. TF is utilized in traditional forensic applications, such as the attribution of 
material fragments from an explosive, and in nuclear forensic applications, such as the 
attribution of actinides which have been interdicted out of regulatory control. 

The challenge of combining information from disparate sources, described alternately by many 
terms including “Data Fusion” and “Data Integration”, is exacerbated in the technical forensics 
domain due to at least two factors: the challenge of interpreting each information source 
singularly, and the relatively small data set sizes available. Extensive literature exists attempting 
to combine technical forensics information sources, both in manual and automated processes. 
These attempts are often bespoke to the specific information sources (such as the bi-, tri-, or 
quad-isotope chart (Moody, Grant, and Hutcheon 2005)), with some emerging examples of 
simple early- and late- fusion (, respectively). 

Simultaneous to the information combination efforts described in the previous paragraph, the 
field of natural language processing attempted (and largely succeeded) in combining 
information from multiple non-technical information sources. The ecosystem of “multi-modal” 
language models, which can take text and images as input, and generate text and images as 
output, became large and diverse by 2025 (Khan et al. 2025). In a generalized sense, many of 
these methods are trained by learning neural networks which can convert raw text or images 
into a vector of numbers describing the text or image, hereafter called “embeddings” and the 
neural networks performing the conversion are called “embedders”. By using a separate 
embedder for text and images, finding coincident text and images (such as images with their 
captions), and optimizing the parameters of the embedders such that the embeddings for the 
text and the image are similar, the field has found a bridge between text and images (Girdhar et 
al. 2023). It is the contention of the authors of this report that this insight is not limited to text and 
images but instead can be extended to any modality which can be found coincidently. The 
subject of the rest of this report is the application of this method to example multi-modal 
technical forensic data. Some details about the data used in this report are not appropriate for 
this report, and are included in a companion report (PNNL-38669). 
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2.0 Method 
Prior work applying neural network to TF analysis (TFA) showed the utility of unsupervised 
learning for representation of actinide samples, due to the dearth of labeled data suitable for 
supervised learning frameworks (Girard* et al. 2021). A modified technique from (Girard* et al. 
2021) was developed for the data anticipated in TFA. In TFA, several types of data are 
anticipated:  

• Bulk Measurements: Scalar quantities, such as density, which represent the entire 
sample.  

• Spectra Like: One dimensional quantities, which represent the excitation of the sample 
against an excitation variable, such as energy or wavelength. Note that these may be 
measured in several different “channels” (such as in Raman spectroscopy where the 
excitation wavelength is changed), so they are represented with two dimensions (i.e. 
["channel" ×"spectra length" ]). 

• Image Like: Two dimensional quantities, which represent measurements of the sample 
at different spatial locations projected into a single plane, usually in a raster scan. Like 
spectra-like, these may be measured in several different “channels” (such as red, green, 
and blue for visible light imagery), or they are represented with three dimensions (i.e. 
["channel" ×"image height" ×"image width" ]).  

• Volume Like: Three dimensional quantities, which represent measurements of the 
sample at different spatial locations, usually in a voxel scan or tomographic 
reconstruction. Like image-like, these may be measured in several different “channels” 
(such as different energies of x-ray in x-ray computed tomography), so they are 
represented with four dimensions (i.e. ["channel" ×"volume depth" ×"volume height" 
×"volume width" ]). 

Convolutional neural networks were developed to handle the types of data described above. 
These convolutional neural networks were trained to reconstruct their input after compression 
through blocks of convolutional neural network blocks, and decompression through blocks of 
convolutional up-sampling neural network blocks. In this way, they are trained to concentrate 
the information in their input into a small, single dimensional representation, called the 
embedding1. The spatial average at the last layer of convolutional blocks was used as the 
embedding for each measurement. 

With embeddings computed for each measurement from a sample, combination of information 
from each modality is then possible. The approached proposed in this report is to cast all 
measurements of a sample as a sequence, therefore each sample can be represented by a 
matrix of size [number of measurements × embedding dimension]1F

2. This approach aligns the 
combination of information from each modality into sequence modeling, a topic of enormous 
amounts of data-scientific research. Specifically, it admits the application of Transformers 

 
1 The reconstruction objective chosen attempts to preserve all information in the input, including 
information which may be unrelated to the sample, such as imaging settings. Reconstruction was chosen 
because of its completely unsupervised nature in this setting, where labeled data collection and 
augmentation are challenging or expensive.  
 
2 assuming all embedding dimensions are chosen to be equal. 
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(Vaswani et al. 2017) to the combination of multimodal information. The attention mechanism in 
Transformers allows for the modulation of information passing between all items in the input 
sequence, to all items in the output sequence. Further, unlike static modulation techniques like 
gMLP (Liu et al. 2021) or MLP-Mixer (Tolstikhin et al. 2021), attention is dynamic in its 
modulation. The modulation of information mixing between input items in the sequence and the 
output is determined by a pattern which is itself dependent on the input items. This flexible 
mechanism fits all the desiderata for combination of information from multiple technical 
modalities, including the ability to concentrate on relevant information, ignore irrelevant 
information, and contextualize information in one input item with information from other input 
items. We use the common class token approach, where a custom sequence item is prepended 
to the embedded modalities in the sequence, the sequence (with prepended item) is passed 
through an encoder-only Transformer3, and the output item at the location corresponding to the 
prepended item is used as the overall embedding for the sample. 

The final piece for multimodal information mixing is the technique for training the Transformer 
from the previous paragraph. Contrastive learning is utilized, specifically the normalized 
temperature-scaled cross-entropy loss from (Chen et al. 2020), which is defined as 

ℒ = −
1
𝑁𝑁

� log
𝑖𝑖∈[0…𝑁𝑁]

∑ 𝟙𝟙𝑗𝑗∈[0…𝑁𝑁] (𝑖𝑖, 𝑗𝑗)exp(sim(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖)/𝜏𝜏)
∑ �1 − 𝟙𝟙(𝑖𝑖, 𝑗𝑗)�𝑗𝑗∈[0…𝑁𝑁] exp�sim�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�/𝜏𝜏�

, 

where 𝑁𝑁 are the number of embeddings in a batch, sim(𝑥𝑥,𝑦𝑦) is a similarity function between 𝑥𝑥 
and 𝑦𝑦 (we use the inner product 𝑥𝑥𝑇𝑇𝑦𝑦), 𝟙𝟙(𝑖𝑖, 𝑗𝑗) is an indicator function which returns 1 when 𝑖𝑖 and 𝑗𝑗 
are from a positive pair and 0 otherwise, and 𝜏𝜏 is some temperature which can be scaled to 
encourage sharper distributions. While much of the literature uses augmentations to create 
positive pairs, recent work has found that positive pairs chosen from different measurements of 
the same object have benefits and require no development of realistic augmentations (Johnson, 
McDonald, and Tasdizen 2024). The proposed positive pair ontology in this report is any set of 
measurements from the same sample or a replicate sample. The negative pair ontology is 
anything that does not fit that description: i.e. any set of measurements from a sample which is 
not the same and not a replicate. Note that supersets of measurements (and subsets) are 
allowed as positive pairs in this ontology, that is to say that a sample which was measured 
through Raman spectroscopy and x-ray fluorescence could be paired with a replicate sample 
measured with only Raman spectroscopy. 

 

 
3 An encoder only Transformer returns a sequence the same size as the input sequence and allows the 
attention mechanism to attend to all items in the input for all items in the output. 
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3.0 Data 
A collaboration with a government agency was initiated for the purpose of advising the USSS 
forensics lab on the best way to compare multi-modality characterization in a statistically 
rigorous manner. While the agency’s historic forensic mission is in fluid analysis, the exemplar 
problem chosen for the present work is that of plastics. It was hypothesized that multi-modality 
characterization could inform based plastic used to create the item, which could then be used to 
trace the plastic origin manufacturer’s records. The forensic laboratory at the agency obtained 
and analyzed 13 plastics from 13 different manufacturers in 2 replicates. These were 
characterized using FTIR, NMR, Raman, XRD, and XRF modalities. Pretraining data was also 
obtained for the training of modality specific reconstructions. These were obtained for each 
different modality: for Raman spectroscopy from RamanSpy (Georgiev et al. 2024), for x-ray 
diffraction from opXRD (Hollarek et al. 2025), for x-ray fluorescence using several sources 
(Manni and Viganò 2023; Kabiri et al. 2024; Von Konrat 2022), for Nuclear magnetic resonance 
using NP-MRD (Wishart et al. 2022), and for fourier-transform infrared spectroscopy using 
FTIR-Plastics (Villegas Camacho et al. 2024).The data was split into a training and validation 
set. The validation set included samples from five manufacturers which were in replicates 2 or 3. 
The training set included all other samples. 
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4.0 Results 
The autoencoder framework was highly successful in reconstructing both the pretraining, 
training, and validation data. Overall loss, at the end of 1.97x104 iterations, was 3.03x10-4 

The overall performance of the framework was moderate. When used to embed samples from a 
manufacturer, the closest sample to that embedding was the same manufacturer 50% of the 
time. An embedding from the same manufacturer was in the top 3 closest embeddings 80% of 
the time. Figure 2 shows that the performance was best when all five modalities were included, 
and Figure 3 shows that samples which included information from Raman spectroscopy was 
most useful for embedding the entire sample. 

 

 
Figure 1.   Receiver operating Characteristic (ROC) curve showing the proportion of times 
the same manufacturer scored above a varying threshold versus the proportion of the time 
a   different manufacturer scored above that same threshold. Separate lines indicate 
different ROC curves for increasing number of modalities included. 
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Figure 2. Receiver Operating Characteristic (ROC) curve showing the proportion of times 
the same manufacturer scored above a varying threshold versus the proportion of the time 
a different manufacturer scored above that same threshold. Separate lines indicate 
different ROC curves for samples including the indicated modality. 
 

Future work should look to improve the performance of this framework. In particular, while the 
autoencoder framework was trained using very large data, there were only 403 combinations of 
modalities from the same sample for training of the sequence network. Many more cross-modal 
samples, whether from open literature or experiments, should be included in training to improve 
performance. 
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