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Abstract

A paradigm shift in chemical risk assessment is emphasizing mixture testing over single
compound analysis, eliminating animal testing, and adopting advanced modeling approaches to
understand mixture activity profiles. However, existing computational models largely focus on
single chemicals, with few effective solutions for modeling complex mixtures that account for
synergistic or antagonistic effects and multiple Modes of Action (MoA). Conventional methods like
concentration addition (CA) and independent action (IA) are insufficient for this task as they are
designed for simplistic interactions and struggle to account for the dynamic and multifaceted
nature of chemical mixtures, such as overlapping MoA and non-linear interactions. Finch offers a
novel approach utilizing deep learning (DL) embeddings and multi-task quantitative structure-
activity relationship (QSAR) models to improve chemical exposure prediction. By leveraging
molecular descriptors, physiochemical properties, and large language model (LLM) embeddings
from SMILES inputs, Finch preserves critical information in a latent space thereby enhancing
predictive accuracy. The multi-task learning aspect of Finch is highly advantageous, as it
simultaneously optimizes multiple loss functions, leveraging all available data across tasks to
develop generalized representations that effectively capture complex ingredient interactions
within mixtures.

Abstract i
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1.0 Introduction

The accurate prediction of dose-response behavior in chemical mixtures is a central challenge
within the field of toxicology. Unlike single-agent exposures, mixtures often exhibit complex, non-
linear interactions such as antagonism, synergism, or potentiation, which complicate efforts to
anticipate their biological impacts. [1-5] Addressing this complexity is essential for safeguarding
public health, promoting environmental safety, and providing reliable guidance for regulatory
decision-making and product development.

Traditional toxicological testing approaches, relying extensively on in vivo and in vitro
experiments, face significant limitations when applied to chemical mixtures. These methods are
both resource-intensive and constrained by the sheer number of possible combinations that
require assessment. Furthermore, experimental techniques designed to quantify multi-component
interactions often demand advanced robotics and specialized equipment, thereby adding cost
and limiting accessibility for many research laboratories. Consequently, the development of novel,
scalable, and cost-effective alternatives has become an urgent priority.

Recent advancements in artificial intelligence (Al) and machine learning (ML) provide a promising
framework for addressing this challenge. [6-14] These methodologies offer the ability to integrate
large-scale toxicological datasets and model complex chemical interactions efficiently.
Specifically, deep learning (DL) architectures have demonstrated significant capabilities in
identifying hierarchical features and capturing nuanced relationships among toxicological
endpoints and chemical properties. [15-17] This computational approach allows for rapid, reliable
predictions of mixture toxicity, reducing reliance on traditional experiments and enabling novel
insights into mixture behaviors that would otherwise be difficult to measure.

Despite these technological advances, predictive modeling for mixture toxicity still faces critical
obstacles, most notably data scarcity. For chemical mixtures, datasets are often insufficient due
to variability in composition, concentration, and endpoint measurements. Furthermore, the
combinatorial complexity inherent to multi-component mixtures far exceeds the data generation
capacity of traditional experimental approaches. Addressing these issues requires innovative
strategies capable of leveraging existing data effectively while adapting to the diverse challenges
posed by mixtures.

In this context, the emergence of transfer learning represents a significant step forward. This
approach enables models trained on single-agent toxicity data to be adapted for multi-component
formulations, reducing the requirement for mixture-specific datasets. [18-20] By leveraging pre-
established representations and learned parameters from single-chemical datasets, transfer
learning not only mitigates data limitations but also improves predictive accuracy in modeling
complex interactions. Implementing transfer learning into toxicity prediction frameworks offers
opportunities to expedite the identification of hazardous combinations, guide experimental
protocols, and inform risk assessments with greater precision and efficiency.

Introduction 1
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2.0 Materials and Methods

2.1 Data Collection and Processing
211 Cytotoxicity of Mixtures Data

Cytotoxicity data for individual chemicals and mixtures were sourced from a previously
established dataset linked to the HBM4EU project, encompassing 24 compounds and 39
mixtures. [8, 12] The selected compounds included 9 heavy metals, 6 organophosphate flame
retardants (OPFRs), 3 polyfluoroalkyl substances (PFAS), and 6 phenols. This dataset provided
molecular structure information via Simplified Molecular Input Line Entry System (SMILES),
mixture compositions, and toxicity measurements across varying concentrations. To prepare the
data for model training, cytotoxicity values were normalized to a range of 0 to 1 using min-max
scaling, with a maximum cap of 100%. Concentration values were converted to molar units to
enhance numerical stability during model development.

21.2 PubChem Bioassay Data

The primary dataset was sourced from PubChem and comprised bioassay data on the toxicity of
9,524 compounds in HepG2 cell lines at exposure times of 24 hours and 40 hours. The dataset
included SMILES strings, activity outcomes, and assay parameters, with compounds classified
as "Active" (toxic) or "Inactive" (non-toxic) based on the "PUBCHEM_ACTIVITY_OUTCOME"
field. Canonicalized SMILES representations were extracted for model input, and binary labels
were assigned (1 for toxic and 0 for non-toxic compounds). The data was stratified into training
(80%) and validation (20%) subsets, ensuring consistent class distributions across splits.

2.2 ChemBERTa-2 Fine-Tuning

The ChemBERTa-2 model, accessed via Hugging Face, was utilized to perform binary
classification of compound cytotoxicity. All workflows including data preprocessing, model fine-
tuning, and embedding extraction were implemented in Python (v3.10) using libraries such as
pandas (v1.4), numpy (v1.24), PyTorch (v2.5), and Hugging Face Transformers (v4.33). Chemical
structures, represented as SMILES strings, were tokenized using ChemBERTa-2’s custom
tokenizer to generate token sequences formatted for the model, including special tokens ([CLS]
and [SEP]) suitable for its BERT-like architecture.

During fine-tuning, the PubChem bioassay data was processed, where each encoded input
chemical leveraged the [CLS] token to pass through a classification head, yielding probabilities
for cytotoxic versus non-cytotoxic outcomes. After training, embeddings (384-dimensional
representations generated from the [CLS] token) were extracted using the Hugging Face pipeline
and stored for downstream analysis, including clustering and additional machine learning
applications.

Model training was conducted on a DGX node equipped with 8 2080-ti GPUs to accelerate
computation, using 200 epochs, a batch size of 64, the AdamW optimizer with a learning rate of
107°, a linear scheduler with 500 warmup steps, and a weight decay of 0.01. Performance
evaluation was conducted on a held-out validation set (20% of the data) using metrics including
accuracy, F1-score, and Receiver Operating Characteristic Area Under the Curve (ROC-AUC).

Materials and Methods 2
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2.3 Molecular Descriptor Generation

Molecular descriptors for individual compounds from the previously obtained dataset [8, 12] were
generated using the Chemistry Development Kit (RCDK) in R [21]. These descriptors captured a
range of physicochemical properties, including topological, geometric, and electronic features.
After filtering out descriptors with missing values (NA) or no variability, a total of 103 descriptors
remained, which were normalized using min-max scaling.

For chemical mixtures, formula molecular descriptors (FMDs) were computed as weighted sums
of the individual molecular descriptors (MD), with weights based on the mole fractions of each
compound within the mixture:

Nmax

FMD; = Z (xn X MD; )

n

Here, FMD; represents the i" molecular descriptor for a mixture, x, is the mole fraction of
compound n, and MD;,, is the i descriptor of the n" individual compound. This methodology
produces a composite descriptor vector that captures the aggregated molecular properties of the
mixture. The composite FMDs were utilized as input features for training random forest regression
models, enabling predictive analysis based on the molecular representations of both individual
compounds and mixtures.

2.4 Molecular Embedding Extraction

Molecular embeddings derived from the pre-trained and fine-tuned ChemBERTa models were
utilized to capture chemical information relevant to toxicity prediction. These embeddings served
as robust molecular representations for downstream machine learning tasks, including
concentration-dependent toxicity modeling.

To extract embeddings for individual compounds, SMILES strings were processed through both
versions of the ChemBERTa model, with the final hidden layer output corresponding to the [CLS]
token captured as 384-dimensional vectors. This process was efficiently executed using
PyTorch's no-gradient context for batch processing. These embeddings encapsulate chemical
information learned during fine-tuning and were subsequently used as descriptors for predictive
modeling.

For mixture toxicity modeling, a formula molecular embedding (FME) was calculated by extending
the concept used for molecular descriptors (FMDs). FME was computed as a weighted sum of
the individual compound embeddings, proportional to each compound's mole fraction in the
mixture:

Nmax

FME; = Z (xn X [CLS]; )

Here, FME; represents the i formula molecular embedding for a mixture, ¥, is the mole fraction
of compound n, and [CLS];,, is the i element of the [CLS] embedding for the n'" compound. This
approach produces a single composite embedding vector that encapsulates the aggregated
molecular information of the mixture. These composite embeddings were subsequently employed
as input features for training random forest regression models to predict mixture toxicity.

Materials and Methods 3
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2.5 Random Forest Models for Concentration-Dependent Toxicity
Prediction

Three Random Forest models were developed to evaluate the effectiveness of molecular
descriptors (MDs and FMDs) versus embeddings from pre-trained and fine-tuned ChemBERTa
models (MEs and FMEs) in predicting concentration-dependent cytotoxicity responses. This
methodology leveraged the detailed chemical information captured by MDs and MEs, while
utilizing machine learning models to account for non-linear relationships between chemical
structure and toxicity across concentration levels.

The Random Forest models were implemented using scikit-learn (v1.7.2) with comprehensive
hyperparameter optimization for robust performance. Input feature vectors for the MD/FMD-based
models included 103 molecular descriptors along with compound concentration values, while the
ME/FME-based models utilized 384-dimensional ChemBERTa embeddings combined with
concentration attributes. The target variable was normalized cytotoxicity, ranging from 0 (no
cytotoxicity) to 1 (complete cytotoxicity).

Hyperparameters such as the number of estimators (trees) [100, 200, 300, 400], maximum tree
depths [None, 10, 20, 30, 40], and split criteria ['squared_error', 'absolute error'] were optimized
via extensive grid search. Optimal parameters included 200 estimators and a maximum depth of
10 for the MD-based model, and 100 estimators with no depth restriction for the ME-based model.
Five-fold cross-validation, with stratified sampling by compounds, was employed to prevent
overfitting, ensuring that all concentrations of a compound were retained within the same fold.
This stratification was essential to assess model generalizability across unseen chemical
structures.

Materials and Methods 4
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3.0 Results
3.1 ChemBERTa-2 Fine-Tuning

The ChemBERTa-2 model was fine-tuned on HepG2 toxicity data from PubChem to develop a
domain-specific model capable of generating toxicology-tailored embeddings. To evaluate the
fine-tuned model, key metrics including accuracy, Receiver Operating Characteristic Area Under
the Curve (ROC-AUC), and F1-score were employed, ensuring a robust assessment of the
classifier's performance. Accuracy provided a straightforward measure of correct predictions
relative to total predictions, while ROC-AUC evaluated the model's sensitivity and specificity
across varying thresholds, reflecting its ability to discriminate between toxic and non-toxic
compounds. The F1-score, combining precision and recall, was particularly valuable for analyzing
class imbalances by balancing false positives and false negatives. Collectively, these metrics
offered a comprehensive view of the model's strengths and limitations without over-reliance on a
single measurement.

Table 1. Fine-Tuning of ChemBERTa-2 on PubChem Data.

Model Accuracy ROC-AUC F1-Score
ChemBERTa Classifier 0.89 0.70 0.41

Results from the fine-tuning process are shown in Table 1, where the ChemBERTa-2 classifier
achieved an accuracy of 0.89, indicating a high rate of correct predictions. The ROC-AUC score
of 0.70 suggests moderate ability to differentiate between toxic and non-toxic compounds but
reveals limitations in capturing subtleties at varying thresholds. Additionally, the F1-score of 0.41
highlights challenges, primarily due to high false negatives, reflecting low recall on toxic
predictions.

To further assess performance, a confusion matrix analysis was conducted (Figure 1), providing
a detailed breakdown of the model's predictions relative to ground truth. The analysis revealed
strong performance in classifying non-toxic compounds correctly (0.93 accuracy), with a low
misclassification rate (0.07). However, the model struggled to accurately identify toxic
compounds, achieving only 0.47 correctness in this category. These limitations likely stem from

Confusion Matrix
Not Toxic Toxic

Not Toxic

o
(-]
Aunqeqoud

Actual Labels
I
'

Toxic 0.53 0.47

I;redicted Labelis

Figure 1. Confusion matrix for the ChemBERTa-based classification model predicting HepG2
toxicity outcome.
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the inherent noise within the HepG2 PubChem dataset, which is characterized by high-throughput
screening issues, such as variability in dose-response curves. This noise is attributed to small
assay volumes in 1536-well plates, leading to inconsistencies in curve categorization and,
consequently, impacting the fine-tuning process. While the overall metrics demonstrate promising
potential for ChemBERTa-2 in toxicology applications, the variability in data quality presents
challenges that must be addressed to further enhance model performance.

3.2 Model Validation Results

Three Random Forest (RF) regression models were trained to predict dose-response curves for
chemical compounds and mixtures, utilizing distinct molecular representations: a molecular
descriptor-based RF model (MD RF), a pre-trained molecular embedding RF model (pre-trained
ME RF), and a fine-tuned molecular embedding RF model (fine-tuned ME RF). Model validation
was performed using 5-fold cross-validation on the training dataset (n=554), a standard technique
to mitigate overfitting and provide a robust evaluation of model performance.

The accuracy of the models was assessed using three metrics: R-squared (R?), Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE), as outlined in Table 2. R? measures the
global fit of the model, MAE provides an intuitive measure of average prediction error, and RMSE
prioritizes sensitivity to larger deviations. Utilizing all three metrics ensures a comprehensive
evaluation and allows for meaningful comparison across models. Validation results indicated
strong performance across all models, with both the MD RF and fine-tuned ME RF models
achieving an R? of 0.89 £ 0.05, while the pre-trained ME RF model performed comparably with
an R2? of 0.90 = 0.04. These values demonstrate the models' ability to explain a substantial
proportion of variance in the target variable. Predictive accuracy, reflected in MAE, was similar
across models, with low values of 0.066 + 0.02 (MD RF), 0.065 £ 0.02 (pre-trained ME RF), and
0.068 + 0.02 (fine-tuned ME RF). Additionally, RMSE values were consistent, with 0.14 £ 0.03 for
both MD RF and fine-tuned ME RF models, and 0.13 £ 0.03 for the pre-trained ME RF model,
emphasizing the models' ability to limit larger prediction errors. Overall, the results indicate that
all three RF models effectively capture and predict dose-response characteristics with
comparable performance, demonstrating their reliability in toxicology modeling.

Table 2. Kfold Cross Validation Results on Train Data Set (n=554).

Model R? MAE' RMSE'

MD RF 0.89 £0.05 0.066 + 0.02 0.14 £ 0.03
Pre-trained ME RF 0.90 £ 0.04 0.065 £ 0.02 0.13+0.03
Fine-tuned ME RF 0.89 £ 0.05 0.068 + 0.02 0.14 £ 0.03

' Units are Cytotoxicity.

3.3 Dose Response Curve Predictions

The performance of the three Random Forest models (MD RF, pre-trained ME RF, and fine-tuned
ME RF) was evaluated on the test set (20% hold-out data) using R?, Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE), as detailed in Table 3. Results demonstrated that all
models achieved high accuracy, with minimal differences observed between the input feature
types (MDs, pre-trained MEs, and fine-tuned MEs). Plots of predicted values against ground truth
(Figure 2) revealed strong performance at the extreme values, while errors were more
pronounced in the central region, likely due to the steeper slope changes in this range. Further

Results 6
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evaluation of dose-response curves for individual compounds (Figure 3) and mixtures (Figure 4)
provided additional insights into model strengths and weaknesses. Analysis of individual
compound predictions indicated that pre-trained ME RF and fine-tuned ME RF models
demonstrated marginal improvements

Table 3. Random Forest Model Metrics on Test Data Set (n=139).

Model R? MAE' RMSE!'

MD RF 0.90 0.056 0.12
Pre-trained ME RF 0.92 0.046 0.11
Fine-tuned ME RF 0.91 0.052 0.12

" Units are Cytotoxicity.
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Figure 2. Test set ground truth against (Top) MD RF model (Middle) pre-trained ME RF model,
and (Bottom) fine-tuned ME RF model.
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Figure 3. Individual compound dose response curve for (Top) MD RF, (Middle) pre-trained ME
RF, and (Bottom) fine-tuned ME RF where blue () is ground truth and the green (e)
are predicted values.
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Figure 4. Mixture dose response curve for (Top) MD RF, (Middle) ME RF, and (Bottom) fine-
tuned ME RF where blue (x) is ground truth and the green (e) are predicted values.
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4.0 Discussion

Our analysis of molecular representation methods for liver toxicity prediction demonstrated
comparable performance across approaches, with pre-trained ChemBERTa embeddings
combined with Random Forest regression slightly outperforming fine-tuned ChemBERTa
embeddings and traditional RCDK molecular descriptors. Specifically, the pre-trained
embeddings achieved an R? of 0.92, compared to 0.91 for fine-tuned embeddings and 0.90 for
RCDK descriptors. This result underscores the capability of pre-trained transformer-based
embeddings to inherently capture chemical patterns relevant to toxicological outcomes, without
requiring endpoint-specific fine-tuning. The transformer architecture in ChemBERTa effectively
learns contextual chemical substructures and interactions, vyielding robust performance
comparable to traditional, descriptor-based methods reliant on predefined chemical features.

Fine-tuning ChemBERTa on HepG2 toxicity data provided only marginal performance
improvement beyond pre-trained embeddings, likely due to limitations in the fine-tuning dataset.
The dataset, originating from high-throughput microwell assays, introduced variability and noise
due to experimental conditions such as small cell counts per well, compromising the training
signal quality. This observation highlights the importance of high-quality and biologically
representative data for effective model fine-tuning. Moreover, it suggests that leveraging pre-
trained embeddings directly is a viable strategy when endpoint-specific datasets are of limited
quality.

A key innovation in this study was the prediction of mixture toxicity using weighted molecular
embeddings. By combining individual embeddings weighted by their mole fractions, we
successfully generated representations of mixtures capable of capturing their toxicity profiles with
high accuracy, evidenced by strong R? scores and low prediction errors. This approach provides
a flexible alternative to traditional mixture prediction methods that often rely on extensive
experimental data or simplistic models like concentration addition or independent action. The
embedding-based framework allows predictions for mixtures of compounds with available
individual embeddings, without requiring explicit mixture training data—a feature highly valuable
for real-world risk assessment scenarios involving complex chemical exposures.

Another significant advancement was the ability to predict detailed dose-response curves for
individual compounds and mixtures, moving beyond binary classification models that simply
categorize compounds as toxic or non-toxic. By modeling toxicity as a function of concentration,
our approach provides a more nuanced assessment aligned with the dose-dependent nature of
toxicity. This capability enables the calculation of essential toxicological parameters such as EC10
and EC50 values, critical for regulatory decision-making and risk assessment. The close
agreement observed between predicted and experimental dose-response curves further validates
the robustness of this approach across diverse scenarios.

Despite these promising results, several limitations must be acknowledged. The current approach
assumes additivity in the embedding space for mixture toxicity prediction, which may not fully
account for potential synergistic or antagonistic interactions in complex mixtures. Additionally,
training data derived from HepG2 cell line experiments may not fully represent the biological
complexity of liver toxicity in vivo, including metabolic activation or detoxification mechanisms.
The imbalance in the fine-tuning dataset, with a larger proportion of non-toxic compounds, could
bias the model toward predicting non-toxicity. Furthermore, while embeddings capture rich
chemical-toxicity relationships, the lack of interpretability for individual embedding dimensions
limits insights into the underlying mechanisms of toxicity.

Discussion 10
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Future efforts should focus on addressing these challenges through several avenues.
Incorporating metabolic activation data could enhance the physiological relevance of predictions,
particularly for compounds requiring metabolic processing to exert toxic effects. Expanding the
approach to additional cell types and toxicity endpoints would broaden its application beyond liver
toxicity. Moreover, developing advanced mixture toxicity models that account for synergistic and
antagonistic effects could further improve predictions for complex exposures. These
enhancements, combined with efforts to improve dataset quality and diversity, will strengthen the
utility and applicability of embedding-based methodologies for toxicological research and
regulatory frameworks.

Discussion

11
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5.0 Conclusion

This study introduces a transformative approach to predictive toxicology by leveraging
ChemBERTa-based molecular representations for liver toxicity prediction. The findings reveal that
pre-trained ChemBERTa embeddings paired with Random Forest regression outperform fine-
tuned embeddings and traditional descriptor-based methods. This result demonstrates the
inherent capacity of transformer-based architectures to capture chemical features relevant to
toxicological outcomes without endpoint-specific fine-tuning. Furthermore, the use of weighted
molecular embeddings for mixture toxicity prediction represents a viable methodology for the
characterization of complex mixture toxicity profiles. This approach addresses key challenges in
real-world risk assessment and regulatory applications where exposure to chemical mixtures is
more common than individual compounds. Additionally, the ability to predict complete
concentration-response curves adds significant benefits such as allowing dose-dependent hazard
evaluation and the calculation of critical toxicological parameters like EC10 and EC50 values.

Conclusion 12
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