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Abstract 
A paradigm shift in chemical risk assessment is emphasizing mixture testing over single 
compound analysis, eliminating animal testing, and adopting advanced modeling approaches to 
understand mixture activity profiles. However, existing computational models largely focus on 
single chemicals, with few effective solutions for modeling complex mixtures that account for 
synergistic or antagonistic effects and multiple Modes of Action (MoA). Conventional methods like 
concentration addition (CA) and independent action (IA) are insufficient for this task as they are 
designed for simplistic interactions and struggle to account for the dynamic and multifaceted 
nature of chemical mixtures, such as overlapping MoA and non-linear interactions. Finch offers a 
novel approach utilizing deep learning (DL) embeddings and multi-task quantitative structure-
activity relationship (QSAR) models to improve chemical exposure prediction. By leveraging 
molecular descriptors, physiochemical properties, and large language model (LLM) embeddings 
from SMILES inputs, Finch preserves critical information in a latent space thereby enhancing 
predictive accuracy. The multi-task learning aspect of Finch is highly advantageous, as it 
simultaneously optimizes multiple loss functions, leveraging all available data across tasks to 
develop generalized representations that effectively capture complex ingredient interactions 
within mixtures. 
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Acronyms and Abbreviations 
AI  Artificial Intelligence 
CA  Concentration Addition 
DL  Deep Learning 
FMD  Formula Molecular Descriptors 
FME  Formula Molecular Embeddings 
IA  Independent Action 
LLM  Large Language Model 
MoA  Mode of Action 
MD  Molecular Descriptors 
ME  Molecular Embeddings 
ML  Machine Learning 
OPFRS Organophosphate Flame Retardants 
PFAS  Polyfluoroalkyl Compounds 
RF  Random Forest 
QSAR  Quantitative Structure Activity Relationship 
RCDK  R’s Chemistry Development Kit 
ROC-AUC Receiver Operating Characteristic Area under the Curve 
SMILES Simplified Molecular Input Line Entry System 
2,4-DCP 2,4-dichlorophenol 
2,5-DCP 2,5-dichlorophenol 
BP-3  Benzophenone-3 
bPB  Butyl paraben 
Cd  Cadmium chloride hydrate 
Co  Cobalt chloride 
Cu  Cupric sulfate 
EHDPHP 2-Ethylhexyl diphenyl phosphate 
Hg  Methylmercury chloride 
Ni  Nickel dichloride 
Pb  Lead chloride 
PFHxS  Perfluorohexanesulfonic acid 
PFNA  Perfluorononanoic acid 
PFOA  Perfluorooctanoic acid 
pPB  Propyl paraben 
Sb  Antimony(III) chloride 
Se  Sodium selenite 
TBOEP Tris(2-butoxyethyl) phosphate 
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TCPP  Tris(1-chloro-2-propyl)phosphate 
TCS  Triclosan 
TDCPP Tris(1,3-dichloropropyl) phosphate 
TEHP  Tri (2-ethylhexyl)phosphate 
TPhP  Triphenyl phosphate 
Zn  Zinc sulfate heptahydrate 
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1.0 Introduction 
The accurate prediction of dose-response behavior in chemical mixtures is a central challenge 
within the field of toxicology. Unlike single-agent exposures, mixtures often exhibit complex, non-
linear interactions such as antagonism, synergism, or potentiation, which complicate efforts to 
anticipate their biological impacts. [1-5] Addressing this complexity is essential for safeguarding 
public health, promoting environmental safety, and providing reliable guidance for regulatory 
decision-making and product development. 

Traditional toxicological testing approaches, relying extensively on in vivo and in vitro 
experiments, face significant limitations when applied to chemical mixtures. These methods are 
both resource-intensive and constrained by the sheer number of possible combinations that 
require assessment. Furthermore, experimental techniques designed to quantify multi-component 
interactions often demand advanced robotics and specialized equipment, thereby adding cost 
and limiting accessibility for many research laboratories. Consequently, the development of novel, 
scalable, and cost-effective alternatives has become an urgent priority. 

Recent advancements in artificial intelligence (AI) and machine learning (ML) provide a promising 
framework for addressing this challenge. [6-14] These methodologies offer the ability to integrate 
large-scale toxicological datasets and model complex chemical interactions efficiently. 
Specifically, deep learning (DL) architectures have demonstrated significant capabilities in 
identifying hierarchical features and capturing nuanced relationships among toxicological 
endpoints and chemical properties. [15-17] This computational approach allows for rapid, reliable 
predictions of mixture toxicity, reducing reliance on traditional experiments and enabling novel 
insights into mixture behaviors that would otherwise be difficult to measure. 

Despite these technological advances, predictive modeling for mixture toxicity still faces critical 
obstacles, most notably data scarcity. For chemical mixtures, datasets are often insufficient due 
to variability in composition, concentration, and endpoint measurements. Furthermore, the 
combinatorial complexity inherent to multi-component mixtures far exceeds the data generation 
capacity of traditional experimental approaches. Addressing these issues requires innovative 
strategies capable of leveraging existing data effectively while adapting to the diverse challenges 
posed by mixtures. 

In this context, the emergence of transfer learning represents a significant step forward. This 
approach enables models trained on single-agent toxicity data to be adapted for multi-component 
formulations, reducing the requirement for mixture-specific datasets. [18-20] By leveraging pre-
established representations and learned parameters from single-chemical datasets, transfer 
learning not only mitigates data limitations but also improves predictive accuracy in modeling 
complex interactions. Implementing transfer learning into toxicity prediction frameworks offers 
opportunities to expedite the identification of hazardous combinations, guide experimental 
protocols, and inform risk assessments with greater precision and efficiency. 
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2.0 Materials and Methods 
2.1 Data Collection and Processing 

2.1.1 Cytotoxicity of Mixtures Data 

Cytotoxicity data for individual chemicals and mixtures were sourced from a previously 
established dataset linked to the HBM4EU project, encompassing 24 compounds and 39 
mixtures. [8, 12] The selected compounds included 9 heavy metals, 6 organophosphate flame 
retardants (OPFRs), 3 polyfluoroalkyl substances (PFAS), and 6 phenols. This dataset provided 
molecular structure information via Simplified Molecular Input Line Entry System (SMILES), 
mixture compositions, and toxicity measurements across varying concentrations. To prepare the 
data for model training, cytotoxicity values were normalized to a range of 0 to 1 using min-max 
scaling, with a maximum cap of 100%. Concentration values were converted to molar units to 
enhance numerical stability during model development. 

2.1.2 PubChem Bioassay Data 

The primary dataset was sourced from PubChem and comprised bioassay data on the toxicity of 
9,524 compounds in HepG2 cell lines at exposure times of 24 hours and 40 hours. The dataset 
included SMILES strings, activity outcomes, and assay parameters, with compounds classified 
as "Active" (toxic) or "Inactive" (non-toxic) based on the "PUBCHEM_ACTIVITY_OUTCOME" 
field. Canonicalized SMILES representations were extracted for model input, and binary labels 
were assigned (1 for toxic and 0 for non-toxic compounds). The data was stratified into training 
(80%) and validation (20%) subsets, ensuring consistent class distributions across splits. 

2.2 ChemBERTa-2 Fine-Tuning 

The ChemBERTa-2 model, accessed via Hugging Face, was utilized to perform binary 
classification of compound cytotoxicity. All workflows including data preprocessing, model fine-
tuning, and embedding extraction were implemented in Python (v3.10) using libraries such as 
pandas (v1.4), numpy (v1.24), PyTorch (v2.5), and Hugging Face Transformers (v4.33). Chemical 
structures, represented as SMILES strings, were tokenized using ChemBERTa-2’s custom 
tokenizer to generate token sequences formatted for the model, including special tokens ([CLS] 
and [SEP]) suitable for its BERT-like architecture.  

During fine-tuning, the PubChem bioassay data was processed, where each encoded input 
chemical leveraged the [CLS] token to pass through a classification head, yielding probabilities 
for cytotoxic versus non-cytotoxic outcomes. After training, embeddings (384-dimensional 
representations generated from the [CLS] token) were extracted using the Hugging Face pipeline 
and stored for downstream analysis, including clustering and additional machine learning 
applications.  

Model training was conducted on a DGX node equipped with 8 2080-ti GPUs to accelerate 
computation, using 200 epochs, a batch size of 64, the AdamW optimizer with a learning rate of 
10⁻⁵, a linear scheduler with 500 warmup steps, and a weight decay of 0.01. Performance 
evaluation was conducted on a held-out validation set (20% of the data) using metrics including 
accuracy, F1-score, and Receiver Operating Characteristic Area Under the Curve (ROC-AUC). 
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2.3 Molecular Descriptor Generation 

Molecular descriptors for individual compounds from the previously obtained dataset [8, 12] were 
generated using the Chemistry Development Kit (RCDK) in R [21]. These descriptors captured a 
range of physicochemical properties, including topological, geometric, and electronic features. 
After filtering out descriptors with missing values (NA) or no variability, a total of 103 descriptors 
remained, which were normalized using min-max scaling. 

For chemical mixtures, formula molecular descriptors (FMDs) were computed as weighted sums 
of the individual molecular descriptors (MD), with weights based on the mole fractions of each 
compound within the mixture: 

𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 = � �𝑥𝑥𝑛𝑛 × 𝑀𝑀𝑀𝑀𝑖𝑖,𝑛𝑛�
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛

 

Here, FMDᵢ represents the ith molecular descriptor for a mixture, χₙ is the mole fraction of 
compound n, and MDᵢ,ₙ is the ith descriptor of the nth individual compound. This methodology 
produces a composite descriptor vector that captures the aggregated molecular properties of the 
mixture. The composite FMDs were utilized as input features for training random forest regression 
models, enabling predictive analysis based on the molecular representations of both individual 
compounds and mixtures. 

2.4 Molecular Embedding Extraction 

Molecular embeddings derived from the pre-trained and fine-tuned ChemBERTa models were 
utilized to capture chemical information relevant to toxicity prediction. These embeddings served 
as robust molecular representations for downstream machine learning tasks, including 
concentration-dependent toxicity modeling.  

To extract embeddings for individual compounds, SMILES strings were processed through both 
versions of the ChemBERTa model, with the final hidden layer output corresponding to the [CLS] 
token captured as 384-dimensional vectors. This process was efficiently executed using 
PyTorch's no-gradient context for batch processing. These embeddings encapsulate chemical 
information learned during fine-tuning and were subsequently used as descriptors for predictive 
modeling.  

For mixture toxicity modeling, a formula molecular embedding (FME) was calculated by extending 
the concept used for molecular descriptors (FMDs). FME was computed as a weighted sum of 
the individual compound embeddings, proportional to each compound's mole fraction in the 
mixture:  

𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 = � �𝑥𝑥𝑛𝑛 × [𝐶𝐶𝐶𝐶𝐶𝐶]𝑖𝑖,𝑛𝑛�
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛

 

Here, FMEᵢ represents the ith formula molecular embedding for a mixture, χₙ is the mole fraction 
of compound n, and [CLS]ᵢ,ₙ is the ith element of the [CLS] embedding for the nth compound. This 
approach produces a single composite embedding vector that encapsulates the aggregated 
molecular information of the mixture. These composite embeddings were subsequently employed 
as input features for training random forest regression models to predict mixture toxicity. 
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2.5 Random Forest Models for Concentration-Dependent Toxicity 
Prediction 

Three Random Forest models were developed to evaluate the effectiveness of molecular 
descriptors (MDs and FMDs) versus embeddings from pre-trained and fine-tuned ChemBERTa 
models (MEs and FMEs) in predicting concentration-dependent cytotoxicity responses. This 
methodology leveraged the detailed chemical information captured by MDs and MEs, while 
utilizing machine learning models to account for non-linear relationships between chemical 
structure and toxicity across concentration levels.  

The Random Forest models were implemented using scikit-learn (v1.7.2) with comprehensive 
hyperparameter optimization for robust performance. Input feature vectors for the MD/FMD-based 
models included 103 molecular descriptors along with compound concentration values, while the 
ME/FME-based models utilized 384-dimensional ChemBERTa embeddings combined with 
concentration attributes. The target variable was normalized cytotoxicity, ranging from 0 (no 
cytotoxicity) to 1 (complete cytotoxicity).   

Hyperparameters such as the number of estimators (trees) [100, 200, 300, 400], maximum tree 
depths [None, 10, 20, 30, 40], and split criteria ['squared_error', 'absolute_error'] were optimized 
via extensive grid search. Optimal parameters included 200 estimators and a maximum depth of 
10 for the MD-based model, and 100 estimators with no depth restriction for the ME-based model. 
Five-fold cross-validation, with stratified sampling by compounds, was employed to prevent 
overfitting, ensuring that all concentrations of a compound were retained within the same fold. 
This stratification was essential to assess model generalizability across unseen chemical 
structures. 
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3.0 Results 
3.1 ChemBERTa-2 Fine-Tuning 

The ChemBERTa-2 model was fine-tuned on HepG2 toxicity data from PubChem to develop a 
domain-specific model capable of generating toxicology-tailored embeddings. To evaluate the 
fine-tuned model, key metrics including accuracy, Receiver Operating Characteristic Area Under 
the Curve (ROC-AUC), and F1-score were employed, ensuring a robust assessment of the 
classifier's performance. Accuracy provided a straightforward measure of correct predictions 
relative to total predictions, while ROC-AUC evaluated the model's sensitivity and specificity 
across varying thresholds, reflecting its ability to discriminate between toxic and non-toxic 
compounds. The F1-score, combining precision and recall, was particularly valuable for analyzing 
class imbalances by balancing false positives and false negatives. Collectively, these metrics 
offered a comprehensive view of the model's strengths and limitations without over-reliance on a 
single measurement. 

Table 1. Fine-Tuning of ChemBERTa-2 on PubChem Data. 

 

Results from the fine-tuning process are shown in Table 1, where the ChemBERTa-2 classifier 
achieved an accuracy of 0.89, indicating a high rate of correct predictions. The ROC-AUC score 
of 0.70 suggests moderate ability to differentiate between toxic and non-toxic compounds but 
reveals limitations in capturing subtleties at varying thresholds. Additionally, the F1-score of 0.41 
highlights challenges, primarily due to high false negatives, reflecting low recall on toxic 
predictions. 

To further assess performance, a confusion matrix analysis was conducted (Figure 1), providing 
a detailed breakdown of the model's predictions relative to ground truth. The analysis revealed 
strong performance in classifying non-toxic compounds correctly (0.93 accuracy), with a low 
misclassification rate (0.07). However, the model struggled to accurately identify toxic 
compounds, achieving only 0.47 correctness in this category. These limitations likely stem from  

Figure 1. Confusion matrix for the ChemBERTa-based classification model predicting HepG2 
toxicity outcome. 

Model Accuracy ROC-AUC F1-Score 
ChemBERTa Classifier 0.89 0.70 0.41 
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the inherent noise within the HepG2 PubChem dataset, which is characterized by high-throughput 
screening issues, such as variability in dose-response curves. This noise is attributed to small 
assay volumes in 1536-well plates, leading to inconsistencies in curve categorization and, 
consequently, impacting the fine-tuning process. While the overall metrics demonstrate promising 
potential for ChemBERTa-2 in toxicology applications, the variability in data quality presents 
challenges that must be addressed to further enhance model performance. 

3.2 Model Validation Results 

Three Random Forest (RF) regression models were trained to predict dose-response curves for 
chemical compounds and mixtures, utilizing distinct molecular representations: a molecular 
descriptor-based RF model (MD RF), a pre-trained molecular embedding RF model (pre-trained 
ME RF), and a fine-tuned molecular embedding RF model (fine-tuned ME RF). Model validation 
was performed using 5-fold cross-validation on the training dataset (n=554), a standard technique 
to mitigate overfitting and provide a robust evaluation of model performance.  

The accuracy of the models was assessed using three metrics: R-squared (R²), Mean Absolute 
Error (MAE), and Root Mean Squared Error (RMSE), as outlined in Table 2. R² measures the 
global fit of the model, MAE provides an intuitive measure of average prediction error, and RMSE 
prioritizes sensitivity to larger deviations. Utilizing all three metrics ensures a comprehensive 
evaluation and allows for meaningful comparison across models. Validation results indicated 
strong performance across all models, with both the MD RF and fine-tuned ME RF models 
achieving an R² of 0.89 ± 0.05, while the pre-trained ME RF model performed comparably with 
an R² of 0.90 ± 0.04. These values demonstrate the models' ability to explain a substantial 
proportion of variance in the target variable. Predictive accuracy, reflected in MAE, was similar 
across models, with low values of 0.066 ± 0.02 (MD RF), 0.065 ± 0.02 (pre-trained ME RF), and 
0.068 ± 0.02 (fine-tuned ME RF). Additionally, RMSE values were consistent, with 0.14 ± 0.03 for 
both MD RF and fine-tuned ME RF models, and 0.13 ± 0.03 for the pre-trained ME RF model, 
emphasizing the models' ability to limit larger prediction errors. Overall, the results indicate that 
all three RF models effectively capture and predict dose-response characteristics with 
comparable performance, demonstrating their reliability in toxicology modeling. 

Table 2. Kfold Cross Validation Results on Train Data Set (n=554). 

 

 

3.3 Dose Response Curve Predictions 

The performance of the three Random Forest models (MD RF, pre-trained ME RF, and fine-tuned 
ME RF) was evaluated on the test set (20% hold-out data) using R², Mean Absolute Error (MAE), 
and Root Mean Squared Error (RMSE), as detailed in Table 3. Results demonstrated that all 
models achieved high accuracy, with minimal differences observed between the input feature 
types (MDs, pre-trained MEs, and fine-tuned MEs). Plots of predicted values against ground truth 
(Figure 2) revealed strong performance at the extreme values, while errors were more 
pronounced in the central region, likely due to the steeper slope changes in this range. Further 

Model R2 MAE1 RMSE1 
MD RF 0.89 ± 0.05 0.066 ± 0.02 0.14 ± 0.03 

Pre-trained ME RF 0.90 ± 0.04 0.065 ± 0.02 0.13 ± 0.03 
Fine-tuned ME RF 0.89 ± 0.05 0.068 ± 0.02 0.14 ± 0.03 

1 Units are Cytotoxicity. 
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evaluation of dose-response curves for individual compounds (Figure 3) and mixtures (Figure 4) 
provided additional insights into model strengths and weaknesses. Analysis of individual 
compound predictions indicated that pre-trained ME RF and fine-tuned ME RF models 
demonstrated marginal improvements 

Table 3. Random Forest Model Metrics on Test Data Set (n=139). 

Model R2 MAE1 RMSE1 
MD RF 0.90 0.056 0.12 

Pre-trained ME RF 0.92 0.046 0.11 
Fine-tuned ME RF 0.91 0.052 0.12 

1 Units are Cytotoxicity. 

 

 
Figure 2. Test set ground truth against (Top) MD RF model (Middle) pre-trained ME RF model, 

and (Bottom) fine-tuned ME RF model. 
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Figure 3. Individual compound dose response curve for (Top) MD RF, (Middle) pre-trained ME 

RF, and (Bottom) fine-tuned ME RF where blue (χ) is ground truth and the green (●) 
are predicted values. 
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Figure 4. Mixture dose response curve for (Top) MD RF, (Middle) ME RF, and (Bottom) fine-

tuned ME RF where blue (x) is ground truth and the green (●) are predicted values. 
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4.0 Discussion 
Our analysis of molecular representation methods for liver toxicity prediction demonstrated 
comparable performance across approaches, with pre-trained ChemBERTa embeddings 
combined with Random Forest regression slightly outperforming fine-tuned ChemBERTa 
embeddings and traditional RCDK molecular descriptors. Specifically, the pre-trained 
embeddings achieved an R² of 0.92, compared to 0.91 for fine-tuned embeddings and 0.90 for 
RCDK descriptors. This result underscores the capability of pre-trained transformer-based 
embeddings to inherently capture chemical patterns relevant to toxicological outcomes, without 
requiring endpoint-specific fine-tuning. The transformer architecture in ChemBERTa effectively 
learns contextual chemical substructures and interactions, yielding robust performance 
comparable to traditional, descriptor-based methods reliant on predefined chemical features. 

Fine-tuning ChemBERTa on HepG2 toxicity data provided only marginal performance 
improvement beyond pre-trained embeddings, likely due to limitations in the fine-tuning dataset. 
The dataset, originating from high-throughput microwell assays, introduced variability and noise 
due to experimental conditions such as small cell counts per well, compromising the training 
signal quality. This observation highlights the importance of high-quality and biologically 
representative data for effective model fine-tuning. Moreover, it suggests that leveraging pre-
trained embeddings directly is a viable strategy when endpoint-specific datasets are of limited 
quality. 

A key innovation in this study was the prediction of mixture toxicity using weighted molecular 
embeddings. By combining individual embeddings weighted by their mole fractions, we 
successfully generated representations of mixtures capable of capturing their toxicity profiles with 
high accuracy, evidenced by strong R² scores and low prediction errors. This approach provides 
a flexible alternative to traditional mixture prediction methods that often rely on extensive 
experimental data or simplistic models like concentration addition or independent action. The 
embedding-based framework allows predictions for mixtures of compounds with available 
individual embeddings, without requiring explicit mixture training data—a feature highly valuable 
for real-world risk assessment scenarios involving complex chemical exposures.  

Another significant advancement was the ability to predict detailed dose-response curves for 
individual compounds and mixtures, moving beyond binary classification models that simply 
categorize compounds as toxic or non-toxic. By modeling toxicity as a function of concentration, 
our approach provides a more nuanced assessment aligned with the dose-dependent nature of 
toxicity. This capability enables the calculation of essential toxicological parameters such as EC10 
and EC50 values, critical for regulatory decision-making and risk assessment. The close 
agreement observed between predicted and experimental dose-response curves further validates 
the robustness of this approach across diverse scenarios. 

Despite these promising results, several limitations must be acknowledged. The current approach 
assumes additivity in the embedding space for mixture toxicity prediction, which may not fully 
account for potential synergistic or antagonistic interactions in complex mixtures. Additionally, 
training data derived from HepG2 cell line experiments may not fully represent the biological 
complexity of liver toxicity in vivo, including metabolic activation or detoxification mechanisms. 
The imbalance in the fine-tuning dataset, with a larger proportion of non-toxic compounds, could 
bias the model toward predicting non-toxicity. Furthermore, while embeddings capture rich 
chemical-toxicity relationships, the lack of interpretability for individual embedding dimensions 
limits insights into the underlying mechanisms of toxicity. 
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Future efforts should focus on addressing these challenges through several avenues. 
Incorporating metabolic activation data could enhance the physiological relevance of predictions, 
particularly for compounds requiring metabolic processing to exert toxic effects. Expanding the 
approach to additional cell types and toxicity endpoints would broaden its application beyond liver 
toxicity. Moreover, developing advanced mixture toxicity models that account for synergistic and 
antagonistic effects could further improve predictions for complex exposures. These 
enhancements, combined with efforts to improve dataset quality and diversity, will strengthen the 
utility and applicability of embedding-based methodologies for toxicological research and 
regulatory frameworks. 
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5.0 Conclusion 
This study introduces a transformative approach to predictive toxicology by leveraging 
ChemBERTa-based molecular representations for liver toxicity prediction. The findings reveal that 
pre-trained ChemBERTa embeddings paired with Random Forest regression outperform fine-
tuned embeddings and traditional descriptor-based methods. This result demonstrates the 
inherent capacity of transformer-based architectures to capture chemical features relevant to 
toxicological outcomes without endpoint-specific fine-tuning. Furthermore, the use of weighted 
molecular embeddings for mixture toxicity prediction represents a viable methodology for the 
characterization of complex mixture toxicity profiles. This approach addresses key challenges in 
real-world risk assessment and regulatory applications where exposure to chemical mixtures is 
more common than individual compounds. Additionally, the ability to predict complete 
concentration-response curves adds significant benefits such as allowing dose-dependent hazard 
evaluation and the calculation of critical toxicological parameters like EC10 and EC50 values. 
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