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Abstract 
Distinguishing the most important features (e.g. proteins, metabolites, etc.) per group 
(e.g. control and treatment) is a critical challenge in feature-rich multi-omics experiments, 
especially in soil data. Traditional feature identification and ranking approaches, such as 
differential expression, are based on single omics and thus not directly translatable to 
multi-omics experiments. Here, 5 multi-omics integration models (DIABLO, JACA, MOFA, 
MultiMLP, and SLIDE) that were not explicitly built for soil data applications were tested 
using a soil-based multi-omics experiment. The data were obtained from an experimental 
setup of an autoclaved soil system inoculated with 8 bacteria and using chitin as the 
carbon source and including samples collected at 0- (control), 4-, 8-, and 12-weeks post-
inoculation. The omics data included metaproteomics, 16S rRNA sequencing, and LC-
MS/MS metabolomics (in positive and negative mode). Each multi-omics integration 
model was implemented, and top features were compared to differential univariate 
statistics per omic type, demonstrating that integration approaches cut the potential 
number of top features from 2957 identified by differential statistics to 13-224 (a 99.6% to 
92.4% reduction). Interestingly, most top features across integration models were not 
shared; though, scaling and averaging ranks across models shared similar patterns. This 
work highlights the usefulness of multi-omics integration models in soil-based microbial 
studies and the power of using multiple integration models together to interpret results. 
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Summary 
This study explores five integration models to rank biological features in soil multi-omics 
data, enhancing environmental microbiology insights through a complementary 
approach. 
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Acronyms and Abbreviations 
DIABLO, Data Integration Analysis for Biomarker discovery using Latent variable 
approaches for Omics studies; EM, expectation maximization; JACA, Joint Association 
and Classification Analysis; LC-MS/MS, liquid chromatography coupled with tandem 
mass spectrometry; MOFA, Multi-Omics Factor Analysis; MS, mass spectrometry; 
MultiMLP, Multiple Multi-Layer Perceptrons; Multi-Omics, Multiple Omics; SLIDE, 
Structural Learning and Integrative Decomposition  
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1.0 Introduction 
In traditional single omics bulk experiments, a sample (e.g. 1-10 grams of soil) is 
collected and biomolecules (e.g. DNA, proteins, lipids, metabolites) are extracted, 
undergo instrumentation (such as mass spectrometry analysis or sequencing), and are 
identified and quantified with computational annotation tools.1 Typically, key biological 
features which distinguish sample groups (e.g. a control and an experimental group) are 
then determined using differential expression or abundance statistics2-9, depending on 
the input data type. Features may then be ranked using p-values, fold changes, and 
other methods10, 11 to identify those most important in distinguishing groups. Though 
useful, traditional single-omics statistical approaches are not well-suited for multi-omics 
experiments because p-values and fold changes cannot be directly compared across 
different omics datasets. 

This discrepancy can be attributed to several factors, including differences in 
experimental design across omics (e.g., varying extraction techniques), instrumentation 
(e.g., mass spectrometry vs. sequencing), pre-processing choices, how expression 
values are measured (e.g., relative abundances in mass spectrometry vs. transcript 
counts in sequencing), and the generating mechanism and interpretation of missing 
values.12-17 To address this gap, multi-omics integration models18-23 have been 
developed to standardize disparate omics datasets, enabling easier comparison across 
omics datasets, often called views. Multi-omics integration models are variable in their 
design.24 Most can be categorized into three integration types: early (concatenating 
features across datasets for high-dimensional analysis), middle (transforming datasets 
into a combined representation before analysis), or late (analyzing datasets separately 
and combining results through a model or algorithm).24 An advantage of middle 
integration methods is that they address the “curse of dimensionality” problem (e.g. the 
increased risk of overfitting as the dimensions increase) of integration with reduction 
techniques, while also capturing both omic and inter-omic signals.25 This is as opposed 
to early integration that inherently ignores the dimensionality problem and may be 
biased by the disparities in feature sizes across omics; and late integration methods 
which may overly emphasize omic-specific signals and are more limited in capturing 
trends persistent across omics.25 

Here five middle integration models18-23 were selected and compared using a previously 
published study on the biological response of eight soil bacteria on the breakdown of 
chitin with four omics datasets: 16S rRNA sequencing, metaproteomics, and LC-MS/MS 
metabolomics (one in positive ion mode and the other in negative ion mode).26 To 
standardize hyperparameter tuning and feature ranking for ease of comparison, 
additional code and methods were developed. Differences in these feature rankings and 
their class representation (e.g. a metabolite class such as an organic acid), were 
compared and interpreted in the context of the original study and to univariate statistics 
(differential expression/abundance). This work highlights how integration models built 
for different biological contexts can be useful in soil-based research, and how a 
combination of multi-omics integration models together better resolves biological 
patterns than a single model on its own. 
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2.0 Methods 
2.1 Data Acquisition 
The experimental data has been published previously.26, 27 Eight microbial strains 
(Streptomyces sp001905665 strain 001, Neorhizobium tomejilense strain 005, 
Dyadobacter sp. strain 007, Sphingopyxis sp. strain 008, Ensifer adhaerens strain 011, 
Variovorax beijingensis strain 012, Sinorhizobium meliloti strain 014, and Rhodococcus 
sp003130705 strain 016) with demonstrated roles in chitin breakdown in soil from the 
Washington State University Irrigated Agricultural Research and Extension Center 
(IAREC) in Prosser, WA, were selected, as explained elsewhere.26, 27 Briefly, soil 
collected from IAREC was autoclaved, exposed to equal concentrations of each microbe, 
and underwent omics analysis (16S, metaproteomics, and LC-MS/MS metabolomics in 
positive and negative ion mode) captured at 0, 4, 8, and 12 weeks after inoculation of soil. 

DNA was extracted using the Quick-DNA Fecal/Soil Microbe Microprep kit (ZYMO 
Research, Irvine, CA), underwent 16S rRNA sequencing with V4 forward (515F) and 
reverse (806R) primers (MiSeq Reagent Kits v2) with an Illumina MiSeq, and results were 
analyzed with QIIME228, DADA229, and the SILVA30 database. Metabolites and peptides 
were isolated and separated with MPLEx.31 Metabolites were analyzed with tandem LC-
MS/MS using a Hypersil Gold C18 reverse-phase column and a UHPLC Waters Acquity 
(Waters, Milford, Massachusetts, USA) coupled to a high-resolution Q-Exactive HF-X 
Orbitrap mass spectrometer (HRMS) (Thermo Fisher Scientific, Waltham, MA). 
Instrumentation was conducted in Data Dependent Acquisition (DDA) mode in both 
positive and negative ion mode. Spectra were processed and metabolites identified with 
MZmine 3.2.332, SIRIUS 433, and MFAssignR.34 LC-MS/MS metaproteomics was 
conducted with a Orbitrap Fusion Lumos, peptides were identified with MaxQuant35 and 
rolled up to the protein level by summing the antilogs of log-transformed and normalized 
values, and proteins were filtered down to those with unique ties to specific bacteria.  

2.2 Data Filtering, Missing Value Imputation, and Scaling 
Unknown metabolites without at least class information (e.g. a metabolite class such as 
an organic acid) were filtered out to ensure interpretations can be made. To conduct some 
of the integration models (DIABLO18,  SLIDE23), missing values were not permitted and 
thus the multi-omics data required imputation. Features (e.g. metabolites, proteins, etc.) 
without enough representation per group (0 weeks (n = 3) and post-0 weeks (n = 9)) were 
filtered out before imputation. A maximum of 1 missing sample per feature (33% 
missingness) was permitted for group 0 weeks and 4 for group post-0 weeks (44% 
missingness). 16S data was log2 transformed. Proteomics data was log2-transformed 
and mean-centered normalized. Metabolomics data was processed as described 
previously.26 Expectation maximization (EM) imputation36, 37 was selected for its speed 
and performance in omics analysis, as compared to other imputation methods.38, 39 
Following imputation with the mvdalab37 implementation of the EM algorithm, omics 
datasets were scaled with the scale40 function. 
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2.3 Selection of Integration Models 
All selected integration models18-23 were approaches which use both unsupervised and 
supervised learning. First, an unsupervised step reduces an omics dataset (also called a 
view) into a lower dimensional space (also called a latent space) and then latent variables 
are calculated. Then, a supervised step separates groups (e.g. a control and an 
experimental group) based on those latent variable properties. Interestingly, MOFA20 was 
the only approach where group information was not explicitly implemented into model 
parameters, as MOFA had better performances when groups were not specified. All 
models18-23 were open-source, implemented in R or python, and either calculated or had 
a method to calculate feature rankings. More details on each integration model and the 
tuned hyperparameters are further explained in Table 1.  

Table 1. Short descriptions of selected integration models with hyperparameters that were 
tuned. 

Integration 
Model 

Description Tuned Hyperparameters 

DIABLO18 Data Integration Analysis for 
Biomarker discovery using Latent 
variable approaches for Omics 
studies. A sparse partial least 
squares discriminant analysis (sPLS-
DA) approach which uses a design 
matrix of correlations between omics. 
Latent variables are penalized with a 
LASSO.  

the number of components, 
the design matrix. 
Hyperparameters were 
selected using BER (Balanced 
Error Rate). 

JACA19 Joint Association and Classification 
Analysis of multi-view data. 
Combines canonical correlation 
analysis (CCA) and linear 
discriminant analysis with (LDA).  

alpha (weight between LDA 
and CCA), lambdad 
(regularization for sparsity 
level in each weight matrix), 
and rho (shrinkage for elastic 
net). Hyperparameters were 
selected using precision-recall 
area under the curve (PR-
AUC).  

MOFA20 Multi-Omics Factor Analysis. 
Incorporates Automatic Relevance 
Determination into Bayesian Group 
Factor Analysis to separate variation 
between multiple and single views. 
The MOFA+ version includes priors 
for more flexible regularization.    

the number of components. 
Hyperparameters were 
selected using Evidence 
Lower Bound (ELBO). 
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MultiMLP21, 22 Averaging of Multiple Multi-Layer 
Perceptrons. A non-variational 
adaption of the DeepIMV model. 
DeepIMV is a deep neural net 
information bottleneck approach built 
with PyTorch, originally designed with 
joint distributions to handle missing 
data. A slightly altered version of 
DeepIMV, which averages the 
marginal model predictions, is used 
here, as there was no missingness 
after imputation. 

grid size of each omic (view). 
Hyperparameters were 
selected using cross-entropy 
loss.  

SLIDE23 Structural Learning and Integrative 
Decomposition. A linked component 
model that incorporates shared 
information between views which 
identifies the joint number of 
components in the latent space.  

a structure matrix of shared 
components across views. 
Hyperparameters were 
selected with weighted 
Frobenius norm loss. 

2.4 Differential Expression and Abundance Statistics 
For comparison purposes, differential expression (16S) and differential abundance 
(metaproteomics, LC-MS/MS metabolomics in positive ion mode, LC-MS/MS 
metabolomics in negative ion mode) was conducted on the processed data between the 
two groups (0 weeks and post-0 weeks) using pmartR.5, 6 To control the false discovery 
rate of significant biomolecules, p-values were adjusted using Benjamini-Hochberg. 

2.5 Hyperparameter Tuning 
Each model implementation had a tuning step to limit ambiguous hyperparameter 
selection. For ease of comparison, the same cross-validation splits were used with 
JACA19, MOFA20, MultiMLP21, 22, and SLIDE.23 DIABLO18 did not have a simple method 
to implement cross-validation splits. DIABLO and JACA had built-in functions to conduct 
hyperparameter selection, and additional code was written to tune selected MOFA, 
MultiMLP, and SLIDE hyperparameters. Code was also written to extend the JACA 
hyperparameter tuning to incorporate cross-validation splits using a neural net.41 Note 
that each model differs significantly in its approach and the tuning variables it uses (Table 
1), such as cross-entropy loss or Evidence Lower Bound (ELBO).  

2.6 Top Feature Selection 
Each model yields one or more components, which are lower-dimensional 
representations of the high dimensional multi-omics data that capture the underlying 
structure. In cases where multiple components were returned for a specific integration 
model, the component with the best group separation was determined using the 
tidymodels42 implementation of the neural net nnet41 R package. Selected 
hyperparameters (the number of hidden units, the weight decay penalty, and the number 
of epochs) for the neural net (NN) were tuned with 3-cross fold validation repeated 5 
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times. The most important component was then determined with Shapley43 values as 
calculated by the fastshap44 R package.  

Feature weights per top scoring component (if there were multiple) or the single 
component were then extracted for DIABLO18, JACA19, MOFA20, and SLIDE.23 Shapley 
values were calculated for MultiMLP21, 22 using the shap43 python library. Absolute weight 
values per feature had their algorithmic “knee”, the point of diminishing returns in feature 
importance scores, detected by the kneedle45 algorithm. All features above this threshold 
were considered “top features” per integration model and were subsequently compared 
for their omics type (e.g. 16S, metaproteomics, etc.) and shared feature importances.  

Finally, to evaluate the similarity of model results, absolute weights from each model were 
extracted and a non-parametric Spearman correlation was calculated for all pairs of 
models. Euclidean distances between correlations were calculated and clustered with 
hierarchical clustering.  

2.7 Top Feature Class Identification 
Meta information on biomolecules was collected, specifically metabolite class information 
as determined by CANOPUS46, protein function information as determined by COG47, 48, 
and the bacteria which map to each protein, as previously described. Ranks were 
normalized by equation 1, 

1 −
1 − 𝑟𝑟

max (𝑅𝑅)
(Equation 1) 

where “r” represents a specific rank in a list of ranks “R” for an integration model. Thus, if 
there were 5 features, ranks 1 through 5 would be 1, 0.8, 0.6, 0.4, and 0.2, respectively. 
For comparison purposes, average ranks per feature class were calculated, and feature 
classes sorted by highest to lowest rank in a plot. In cases where a feature class was not 
represented by an integration model, it was assigned a rank of 0. Counts of the number 
of features per class were also plotted.  
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3.0 Results 
3.1 Omics Data Properties and the Impacts of Filtering Decisions 
Before imputation, unknown metabolites were filtered out, removing 12,269 (81%) and 
6,365 (78%) of the features in the positive and negative ion mode, respectively. Then, 
omics data was filtered to ensure enough feature representation per sample with at least 
2 samples for the 0 week group (n = 3) and at least 5 samples for post-0 week group 
(weeks 4-12, n = 9). This resulted in the removal of 63.5%, 1.62%, and 4.83% of the 
metaproteomics, metabolomics positive, and metabolomics negative datasets post-
unknown filtering, respectively (Fig. 1a). Pre-imputation, correlation heatmaps for the 16S 
and metabolomics negative datasets show a strong correlation within 0 timepoint 
samples, and within post-0 timepoint samples (Fig. 1b). Post-imputation, the separation 
of groups is clear for all omics views, even though group information is not explicitly 
specified in expectation maximization imputation (Fig. 1c). Note that 16S data had no 
missingness and thus did not have any imputation.  

Figure 1. (A) Log10 counts of features impacted by the missingness filter for metabolomics 
negative (left), metabolomics positive (middle), and metaproteomics (right) data. 
Log10 is used for visualization purposes. Black indicates the feature was maintained 
and red indicates a feature was filtered out. 16S data had no missingness. (B) 
Pearson correlation matrices of each omic before and (C) after expectation 
maximization imputation. Note that 16S data was not imputed but included in the plot 
for comparison purposes. 
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3.2 Selection of Hyperparameters, Components, and Top Features 

Table 2.  A description of integration models and selected hyperparameters. 
Integration 
Model 

Hyperparameter Selection Model Used 

DIABLO18 Number of components: 1 diablo::tune.block.splsda()18 

JACA19 alpha (weight between LDA and 
CCA): 0.5 

lambdad (regularization for sparsity 
level in each weight matrix): 0.1 

rho (shrinkage for elastic net): 0.01 

jaca::jacaTrain()19 
Custom code49 using 
tidymodels42 and nnet::nnet()41 

MOFA20 Number of components: 5 Custom code49 using 
MOFA2::run_mofa()20 

MultiMLP21, 22 Grid size: 2x original data size Custom code49 

SLIDE23 A structure matrix for the learned 
latent components, describing the 
extent that each component 
represents individual or multiple 
omics 

Custom code49 

Hyperparameter selection is summarized in Table 2. Briefly, default functions in packages 
were used wherever possible, and custom code was used to select hyperparameters for 
JACA19, MOFA20, MultiMLP21, 22, and SLIDE.23 After the selection of hyperparameters, 
integration models were run on the multi-omics dataset, and top components were 
selected for the only model that returned multiple components (i.e. MOFA). To determine 
the top component, a neural net41 was fit to MOFA, and the component with the highest 
Shapley value returned (Component 1, with a Shapley value of 0.162, while all other 
values were below 0.001). There was clear separation between the 0 week and post-0 
week groups for all models with components (DIABLO, MOFA, SLIDE). Interestingly, 
MOFA and SLIDE have some separation by the specific week the sample was collected 
(0, 4, 8, and 12 weeks), even though the integration model was not supplied that 
information.  
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Figure 2. Feature absolute weights per integration model, with a cutoff determined by the 
kneedle algorithm (dashed line). Features are colored by omic type: 16S (red), 
metabolomics negative (light green), metabolomics positive (light blue), and 
metaproteomics (purple). 

3.3 Similarity of Top Features Across Integration Models 

Figure 3. (A) Proportion of all possible features considered a “top feature” using differential 
statistics with a p-value cut-off of 0.05, and the integration models after kneedle top 
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feature selection. (B) Proportions from A split by omics type. (C) Count of the number 
of top features shared across the five integration models. (D) Shared features between 
integration models and differential expression. The numerator is the number of 
overlapping features between the models in the columns and rows, and the 
denominator in the number of features in the model listed at the bottom of the column. 

As a base line, differential expression3 and differential abundance5, 6 statistics were 
calculated, and significant biomolecules (𝛼𝛼 ≤ 0.05) were concatenated together, resulting 
in 2957 potential top features (40.6% of the original dataset) to explain the difference 
between the control (0 week timepoint) and experimental (all other timepoints) conditions 
(Figure 3a). Each integration model returned far fewer top features, as MultiMLP had the 
largest count (224, 3.1% of the original dataset) and SLIDE had the lowest (13, 0.2%). 
Thus, each multi-omics integration model delivered on one of the goals of their design: to 
provide a smaller list of top targets explaining biological conditions than simply 
concatenating together significant biomolecules across omics datasets.  

Four integration models (DIABLO, JACA, MOFA, MultiMLP) returned at least one feature 
from each omic dataset (view), while SLIDE only returned features from 16S and 
metabolomics negative (Figure 3b). The total number of possible features (p) per omic 
was 8, 1752, 2726, and 2800 for 16S, metabolomics negative, metaproteomics, and 
metabolomics positive, respectively; thus, high proportions of 16S data would reflect only 
a few features. Detailed counts of the number of features per omic are provided in Table 
3. In terms of shared features across models, 44 features are shared across at least 2
models, 15 across 3, 7 across 4, and 2 across all 5 (Figure 3c). The 2 shared features
across all models are a carboxylic acid and an amino acid with no further identification,
making the exact shared interpretation of this feature difficult.

Table 3.  Number of features returned per integration model per omic (view). Differential 
expressed/abundant biomolecules are included for comparison. 

Integration Model 16S Metabolomics 
Negative 

Metabolomics 
Positive 

Metaproteomics 

DIABLO 3 9 14 14 

JACA 2 9 10 5 

MOFA 1 37 9 11 

MultiMLP 5 167 13 39 

SLIDE 6 7 0 0 

Interestingly, all multi-omics integration models identified a subset of biomolecules that 
overlapped with those determined as significant through differential statistics, except for 
MultiMLP which selected two features with relatively close to significant values (p-values 
of 0.0520 and 0.0705) (Fig. 3d). Importantly, none of these integration models explicitly 
incorporate differential statistics; yet, the observed overlap provides validation for the 
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reliability of these models. JACA and DIABLO had significant overlap, where 100% of the 
features within JACA were also in DIABLO (Fig. 3d). To account for mismatched vector 
sizes when calculating overlap, we used the smaller vector size as the denominator in 
proportional comparisons. Based on this approach, MOFA and DIABLO exhibited the 
least overlap, sharing only 30% of their features, and the average proportion of shared 
features was 55.7%. Though the overlap was promising, it should not be missed that 190 
features were not shared across models; thus, the selection of one individual integration 
model may lead to different downstream interpretations of the results. 

Models were then clustered together by the Euclidean distances of the Spearman 
correlations of their absolute feature weights. DIABLO and JACA clustered together, 
which is not surprising given their shared top features (Figure 3) and how they assign 
weights of 0 to lowly important features (Figure 2). SLIDE, MOFA, and MultiMLP do not 
assign 0 weights (Figure 2), and formed a second cluster together, with a slight deviation 
from MultiMLP, which may be due to its multi-layer perceptron approach as opposed to a 
decomposition or factor analysis approach (Table 1). 

3.4 Top Feature Exploration 
Top feature ranks were then scaled (Equation 1) so that the highest-ranking features 
would be at or near 1, and the lowest top ranked features would be near 0. Any features 
that were not in the top rank were given a rank of 0. Average ranks were calculated for 
each feature, and any features present in at least 2 models or without a specific 
identification (e.g. a class of proteins as opposed to a specific protein) were removed, 
resulting in 22 features (Figure 4). The top two ranked features were Sphingopyxis and 
Streptomyces, which both have crucial rules in the initial breakdown (Streptomyces, 
Neorhizobium) and continued breakdown (Sphingopyxis, Dyadobacter, and Variovorax) 
of chitin.26 The other bacteria  of the eight  species cohort, Ensifer, Rhodococcus, and 
Sinorhizobium, though important to the interspecies degradation of chitin, play less 
central and more specialized roles, as supported in the original study26, and were not in 
the top features. Interestingly, the importance of these five bacteria was further 
emphasized in the protein features, where the mean scaled rank of top proteins in at least 
two models was, in order, Sphingopyxis, Streptomyces, Variovorax, Dyadobacter, and 
Neorhizobium.  
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Figure 4. Scaled ranks of top features, ordered from highest to lowest mean scaled rank. 
Features present in only one integration model or features without a specific 
identification (e.g. a class of metabolites as opposed to a specific metabolite) were 
removed. 

Though there are similar patterns between the highest ranked bacteria  in both the 16S 
and metaproteomics, none of the top ranked proteins (xylF, lpdA, exaA, gapA, cobN, 
sucB, and cspA) exhibit any direct roles in the breakdown of chitin, suggesting that other 
pathways and processes of these species may respond more strongly to time than those 
that are involved in chitin degradation. Several Streptomyces proteins (xylF, gapA, cobN, 
sucB) had decreased abundance while exaA (Variovorax) and lpdA (Dyadobacter) had 
increased abundance, aligning with the overall changes in microbe populations as 
determined by the 16S data. Interestingly, the cold shock cspA protein (Neorhizobium) 
had a strong decrease in expression, likely because the samples were pre-incubated at 
5°C and later incubated at 20°C, removing the need for cold shock proteins. 

The metabolomics data had no specific ties to species and instead represent the 
abundances across all species, making their direct interpretation difficult. Ten specific 
metabolites were identified by at least two integration models. None had any direct ties 
to chitin metabolism. Some connections exist between top proteins and metabolites, 
such as acetoacetate which can be converted into acetoacetyl-CoA and enter the citric 
acid cycle (lpdA and sucB) and is involved in glycolysis (gapA). Interestingly, 
acetoacetate had decreased abundances, which could indicate a continued depletion as 
it feeds into the citric acid cycle or as it is converted into lipids and certain peptides. 
Although neither the metaproteomics nor the metabolomics data had a biomolecule 
associated with chitin metabolism as a top feature, several chitin metabolism features 
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were still used to separate groups, such as glmS and chitobiose in MOFA, MultiMLP, 
and SLIDE that had weights near the cutoff. The goal of each multi-omics integration 
model is to return an optimal set of all features, so exclusion from the “top features” 
does not indicate that the feature contains no value. Instead, it suggests a stronger 
signal to separate groups. A particular advantage of multi-omics integration models is 
that they allow for the identification of features with complementary information, such as 
the shared expression profiles of microbes in 16S and metaproteomics data, and the 
metabolic relationships between some top proteins and metabolites. 

Figure 5. Average scaled ranks of feature information, ordered from highest to lowest scaled 
mean rank across integration models for (A) CANOPUS categories of metabolomics 
data (combining both negative and positive ion mode), and (B) COG categories of 
protein functions. Mean ranks are reported, as long as the number of features in 
each category. 

To detect any patterns at biomolecule category levels (e.g. CANOPUS46 categories for 
metabolites and COG47, 48 categories for protein data), all top features were averaged at 
the category level, with reports of the number of biomolecules detected in each category. 
All integration models ranked organic acids, peptides & derivatives, lipids & derivatives, 
and organoheterocyclics as important classes of biomolecules for separating conditions 
(Figure 5). Differential abundance of these biomolecules shows an increased abundance, 
potentially indicating a focus on storage (as opposed to catabolism) of lipids as the main 
energy source (chitin) depletes. This may also explain the decreased abundance of 
acetoacetate, which could be stored in these lipids. The focus on anabolism of these 
specific energy-storing compounds may also be supported by protein COGs, where there 
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is a heavy focus on carbohydrate metabolism and energy conversion. These results 
demonstrate that incorporating additional meta information about features reveals 
additional information about the biological system of study. 
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4.0 Discussion 
Each of the selected models has been demonstrated as a useful and informative 
approach for multi-omics analysis18-23; yet, on their own, no model provides a cohesive 
view of the most important features distinguishing conditions. For example, no model 
ranked all top bacteria in the 16S data. But, by scaling and averaging ranks across 
models, all the most important bacteria were seen in both the 16S and metaproteomics 
data. This demonstrates the value in utilizing several integration models, as opposed to 
just one, to get a more complete view of the top features, especially in cases where there 
are thousands of potential features. This work also shows the reliability of each of these 
approaches, as all models selected a subset of significant or near significant features 
without that information explicitly provided, and all models provided some top features 
which match previous work.26 Limitations to this study include a small and imbalanced 
sample size (n = 3 for the control group, and n = 9 for experimental group), non-specific 
identifications in the metaproteomics and metabolomics data, high levels of missingness 
in the metaproteomics, and an inability to tie metabolomics to specific bacteria(essentially 
a “meta”-metabolomics approach). Future work in this area could focus on ensemble 
approaches and comparisons on larger datasets. 
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