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Abstract

Distinguishing the most important features (e.g. proteins, metabolites, etc.) per group
(e.g. control and treatment) is a critical challenge in feature-rich multi-omics experiments,
especially in soil data. Traditional feature identification and ranking approaches, such as
differential expression, are based on single omics and thus not directly translatable to
multi-omics experiments. Here, 5 multi-omics integration models (DIABLO, JACA, MOFA,
MultiMLP, and SLIDE) that were not explicitly built for soil data applications were tested
using a soil-based multi-omics experiment. The data were obtained from an experimental
setup of an autoclaved soil system inoculated with 8 bacteria and using chitin as the
carbon source and including samples collected at 0- (control), 4-, 8-, and 12-weeks post-
inoculation. The omics data included metaproteomics, 16S rRNA sequencing, and LC-
MS/MS metabolomics (in positive and negative mode). Each multi-omics integration
model was implemented, and top features were compared to differential univariate
statistics per omic type, demonstrating that integration approaches cut the potential
number of top features from 2957 identified by differential statistics to 13-224 (a 99.6% to
92.4% reduction). Interestingly, most top features across integration models were not
shared; though, scaling and averaging ranks across models shared similar patterns. This
work highlights the usefulness of multi-omics integration models in soil-based microbial
studies and the power of using multiple integration models together to interpret results.
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Summary
This study explores five integration models to rank biological features in soil multi-omics

data, enhancing environmental microbiology insights through a complementary
approach.

Summary iii
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Acronyms and Abbreviations

DIABLO, Data Integration Analysis for Biomarker discovery using Latent variable
approaches for Omics studies; EM, expectation maximization; JACA, Joint Association
and Classification Analysis; LC-MS/MS, liquid chromatography coupled with tandem
mass spectrometry; MOFA, Multi-Omics Factor Analysis; MS, mass spectrometry;
MultiMLP, Multiple Multi-Layer Perceptrons; Multi-Omics, Multiple Omics; SLIDE,
Structural Learning and Integrative Decomposition
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1.0 Introduction

In traditional single omics bulk experiments, a sample (e.g. 1-10 grams of soil) is
collected and biomolecules (e.g. DNA, proteins, lipids, metabolites) are extracted,
undergo instrumentation (such as mass spectrometry analysis or sequencing), and are
identified and quantified with computational annotation tools." Typically, key biological
features which distinguish sample groups (e.g. a control and an experimental group) are
then determined using differential expression or abundance statistics?°, depending on
the input data type. Features may then be ranked using p-values, fold changes, and
other methods'® ' to identify those most important in distinguishing groups. Though
useful, traditional single-omics statistical approaches are not well-suited for multi-omics
experiments because p-values and fold changes cannot be directly compared across
different omics datasets.

This discrepancy can be attributed to several factors, including differences in
experimental design across omics (e.g., varying extraction techniques), instrumentation
(e.g., mass spectrometry vs. sequencing), pre-processing choices, how expression
values are measured (e.g., relative abundances in mass spectrometry vs. transcript
counts in sequencing), and the generating mechanism and interpretation of missing
values.'>'” To address this gap, multi-omics integration models'®-22 have been
developed to standardize disparate omics datasets, enabling easier comparison across
omics datasets, often called views. Multi-omics integration models are variable in their
design.?* Most can be categorized into three integration types: early (concatenating
features across datasets for high-dimensional analysis), middle (transforming datasets
into a combined representation before analysis), or late (analyzing datasets separately
and combining results through a model or algorithm).?* An advantage of middle
integration methods is that they address the “curse of dimensionality” problem (e.g. the
increased risk of overfitting as the dimensions increase) of integration with reduction
techniques, while also capturing both omic and inter-omic signals.?® This is as opposed
to early integration that inherently ignores the dimensionality problem and may be
biased by the disparities in feature sizes across omics; and late integration methods
which may overly emphasize omic-specific signals and are more limited in capturing
trends persistent across omics.?%

Here five middle integration models'®23 were selected and compared using a previously
published study on the biological response of eight soil bacteria on the breakdown of
chitin with four omics datasets: 16S rRNA sequencing, metaproteomics, and LC-MS/MS
metabolomics (one in positive ion mode and the other in negative ion mode).?¢ To
standardize hyperparameter tuning and feature ranking for ease of comparison,
additional code and methods were developed. Differences in these feature rankings and
their class representation (e.g. a metabolite class such as an organic acid), were
compared and interpreted in the context of the original study and to univariate statistics
(differential expression/abundance). This work highlights how integration models built
for different biological contexts can be useful in soil-based research, and how a
combination of multi-omics integration models together better resolves biological
patterns than a single model on its own.

Introduction 1
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2.0 Methods

2.1 Data Acquisition

The experimental data has been published previously.?® 27 Eight microbial strains
(Streptomyces sp001905665 strain 001, Neorhizobium tomejilense strain 005,
Dyadobacter sp. strain 007, Sphingopyxis sp. strain 008, Ensifer adhaerens strain 011,
Variovorax beijingensis strain 012, Sinorhizobium meliloti strain 014, and Rhodococcus
sp003130705 strain 016) with demonstrated roles in chitin breakdown in soil from the
Washington State University Irrigated Agricultural Research and Extension Center
(IAREC) in Prosser, WA, were selected, as explained elsewhere.?: 27 Briefly, soil
collected from IAREC was autoclaved, exposed to equal concentrations of each microbe,
and underwent omics analysis (16S, metaproteomics, and LC-MS/MS metabolomics in
positive and negative ion mode) captured at 0, 4, 8, and 12 weeks after inoculation of soil.

DNA was extracted using the Quick-DNA Fecal/Soil Microbe Microprep kit (ZYMO
Research, Irvine, CA), underwent 16S rRNA sequencing with V4 forward (515F) and
reverse (806R) primers (MiSeq Reagent Kits v2) with an Illumina MiSeq, and results were
analyzed with QIIME228, DADA2?°, and the SILVA3® database. Metabolites and peptides
were isolated and separated with MPLEx.3" Metabolites were analyzed with tandem LC-
MS/MS using a Hypersil Gold C18 reverse-phase column and a UHPLC Waters Acquity
(Waters, Milford, Massachusetts, USA) coupled to a high-resolution Q-Exactive HF-X
Orbitrap mass spectrometer (HRMS) (Thermo Fisher Scientific, Waltham, MA).
Instrumentation was conducted in Data Dependent Acquisition (DDA) mode in both
positive and negative ion mode. Spectra were processed and metabolites identified with
MZmine 3.2.3%, SIRIUS 433, and MFAssignR.3¢ LC-MS/MS metaproteomics was
conducted with a Orbitrap Fusion Lumos, peptides were identified with MaxQuant3® and
rolled up to the protein level by summing the antilogs of log-transformed and normalized
values, and proteins were filtered down to those with unique ties to specific bacteria.

2.2 Data Filtering, Missing Value Imputation, and Scaling

Unknown metabolites without at least class information (e.g. a metabolite class such as
an organic acid) were filtered out to ensure interpretations can be made. To conduct some
of the integration models (DIABLO'8, SLIDE?®), missing values were not permitted and
thus the multi-omics data required imputation. Features (e.g. metabolites, proteins, etc.)
without enough representation per group (0 weeks (n = 3) and post-0 weeks (n = 9)) were
filtered out before imputation. A maximum of 1 missing sample per feature (33%
missingness) was permitted for group 0 weeks and 4 for group post-0 weeks (44%
missingness). 16S data was log2 transformed. Proteomics data was log2-transformed
and mean-centered normalized. Metabolomics data was processed as described
previously.?® Expectation maximization (EM) imputation3®- 37 was selected for its speed
and performance in omics analysis, as compared to other imputation methods.3® 3°
Following imputation with the mvdalab3’ implementation of the EM algorithm, omics
datasets were scaled with the scale*? function.

Methods 2
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2.3 Selection of Integration Models

All selected integration models'®-23 were approaches which use both unsupervised and
supervised learning. First, an unsupervised step reduces an omics dataset (also called a
view) into a lower dimensional space (also called a latent space) and then latent variables
are calculated. Then, a supervised step separates groups (e.g. a control and an
experimental group) based on those latent variable properties. Interestingly, MOFA2° was
the only approach where group information was not explicitly implemented into model
parameters, as MOFA had better performances when groups were not specified. All
models'823 were open-source, implemented in R or python, and either calculated or had
a method to calculate feature rankings. More details on each integration model and the
tuned hyperparameters are further explained in Table 1.

Table 1. Short descriptions of selected integration models with hyperparameters that were
tuned.

Integration Description Tuned Hyperparameters
Model

DIABLO" Data Integration  Analysis for | the number of components,
Biomarker discovery using Latent |the design matrix.
variable approaches for Omics | Hyperparameters were
studies. A sparse partial least | selected using BER (Balanced
squares discriminant analysis (sPLS- | Error Rate).

DA) approach which uses a design
matrix of correlations between omics.
Latent variables are penalized with a
LASSO.

JACA' Joint Association and Classification | alpha (weight between LDA
Analysis of  multi-view  data. | and CCA), lambdaq
Combines canonical correlation | (regularization for sparsity
analysis (CCA) and linear | level in each weight matrix),
discriminant analysis with (LDA). and rho (shrinkage for elastic
net). Hyperparameters were
selected using precision-recall
area under the curve (PR-
AUC).

MOFA?2° Multi-Omics Factor Analysis. | the number of components.
Incorporates Automatic Relevance | Hyperparameters were
Determination into Bayesian Group | selected using Evidence
Factor Analysis to separate variation | Lower Bound (ELBO).
between multiple and single views.
The MOFA+ version includes priors
for more flexible regularization.

Error! No text of specified style in document. 3
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MultiMLP?1. 22

Averaging of Multiple Multi-Layer

grid size of each omic (view).

Perceptrons. A non-variational | Hyperparameters were
adaption of the DeeplMV model. | selected using cross-entropy
DeeplMV is a deep neural net| loss.

information bottleneck approach built
with PyTorch, originally designed with
joint distributions to handle missing
data. A slightly altered version of
DeeplMV, which averages the
marginal model predictions, is used
here, as there was no missingness
after imputation.

a structure matrix of shared
components across views.
Hyperparameters were
selected with weighted
Frobenius norm loss.

SLIDE?3 Structural Learning and Integrative
Decomposition. A linked component
model that incorporates shared
information between views which
identifies the joint number of

components in the latent space.

2.4 Differential Expression and Abundance Statistics

For comparison purposes, differential expression (16S) and differential abundance
(metaproteomics, LC-MS/MS metabolomics in positive ion mode, LC-MS/MS
metabolomics in negative ion mode) was conducted on the processed data between the
two groups (0 weeks and post-0 weeks) using pmartR.% ¢ To control the false discovery
rate of significant biomolecules, p-values were adjusted using Benjamini-Hochberg.

2.5 Hyperparameter Tuning

Each model implementation had a tuning step to limit ambiguous hyperparameter
selection. For ease of comparison, the same cross-validation splits were used with
JACA'®, MOFA2°, MultiMLP?'-22, and SLIDE.?® DIABLO® did not have a simple method
to implement cross-validation splits. DIABLO and JACA had built-in functions to conduct
hyperparameter selection, and additional code was written to tune selected MOFA,
MultiMLP, and SLIDE hyperparameters. Code was also written to extend the JACA
hyperparameter tuning to incorporate cross-validation splits using a neural net.*' Note
that each model differs significantly in its approach and the tuning variables it uses (Table
1), such as cross-entropy loss or Evidence Lower Bound (ELBO).

2.6 Top Feature Selection

Each model yields one or more components, which are lower-dimensional
representations of the high dimensional multi-omics data that capture the underlying
structure. In cases where multiple components were returned for a specific integration
model, the component with the best group separation was determined using the
tidymodels*?> implementation of the neural net nnet*! R package. Selected
hyperparameters (the number of hidden units, the weight decay penalty, and the number
of epochs) for the neural net (NN) were tuned with 3-cross fold validation repeated 5

Methods
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times. The most important component was then determined with Shapley*® values as
calculated by the fastshap** R package.

Feature weights per top scoring component (if there were multiple) or the single
component were then extracted for DIABLO'8, JACA'®, MOFA?, and SLIDE.?® Shapley
values were calculated for MultiMLP?" 22 using the shap*?® python library. Absolute weight
values per feature had their algorithmic “knee”, the point of diminishing returns in feature
importance scores, detected by the kneedle*® algorithm. All features above this threshold
were considered “top features” per integration model and were subsequently compared
for their omics type (e.g. 16S, metaproteomics, etc.) and shared feature importances.

Finally, to evaluate the similarity of model results, absolute weights from each model were
extracted and a non-parametric Spearman correlation was calculated for all pairs of
models. Euclidean distances between correlations were calculated and clustered with
hierarchical clustering.

2.7 Top Feature Class Identification

Meta information on biomolecules was collected, specifically metabolite class information
as determined by CANOPUS?#6, protein function information as determined by COG*"- 48,
and the bacteria which map to each protein, as previously described. Ranks were
normalized by equation 1,

1—-r
max (R)
(Equation 1)

where “r’ represents a specific rank in a list of ranks “R” for an integration model. Thus, if
there were 5 features, ranks 1 through 5 would be 1, 0.8, 0.6, 0.4, and 0.2, respectively.
For comparison purposes, average ranks per feature class were calculated, and feature
classes sorted by highest to lowest rank in a plot. In cases where a feature class was not
represented by an integration model, it was assigned a rank of 0. Counts of the number
of features per class were also plotted.

Methods S
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3.0 Results

3.1 Omics Data Properties and the Impacts of Filtering Decisions
Before imputation, unknown metabolites were filtered out, removing 12,269 (81%) and
6,365 (78%) of the features in the positive and negative ion mode, respectively. Then,
omics data was filtered to ensure enough feature representation per sample with at least
2 samples for the 0 week group (n = 3) and at least 5 samples for post-0 week group
(weeks 4-12, n = 9). This resulted in the removal of 63.5%, 1.62%, and 4.83% of the
metaproteomics, metabolomics positive, and metabolomics negative datasets post-
unknown filtering, respectively (Fig. 1a). Pre-imputation, correlation heatmaps for the 16S
and metabolomics negative datasets show a strong correlation within 0 timepoint
samples, and within post-0 timepoint samples (Fig. 1b). Post-imputation, the separation
of groups is clear for all omics views, even though group information is not explicitly
specified in expectation maximization imputation (Fig. 1c). Note that 16S data had no
missingness and thus did not have any imputation.
A

metabolomics negative metabolomics positive metaproteomics
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Figure 1. (A) Log10 counts of features impacted by the missingness filter for metabolomics
negative (left), metabolomics positive (middle), and metaproteomics (right) data.
Log10 is used for visualization purposes. Black indicates the feature was maintained
and red indicates a feature was filtered out. 16S data had no missingness. (B)
Pearson correlation matrices of each omic before and (C) after expectation
maximization imputation. Note that 16S data was not imputed but included in the plot
for comparison purposes.
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3.2 Selection of Hyperparameters, Components, and Top Features

Table 2. A description of integration models and selected hyperparameters.
Integration Hyperparameter Selection Model Used
Model
DIABLO"® Number of components: 1 diablo::tune.block.splsda()'®
JACA' alpha (weight between LDA and | jaca::jacaTrain()"®
CCA): 0.5 Custom code*? using

o | tidymodels*? and nnet::nnet()*’
lambdauq (regularization for sparsity

level in each weight matrix): 0.1

rho (shrinkage for elastic net): 0.01

MOFA2° Number of components: 5 Custom code*? using
MOFA2::run_mofa()%°

MultiMLP?'.22 | Grid size: 2x original data size Custom code?*®

SLIDE% A structure matrix for the learned | Custom code*®

latent components, describing the
extent that each component
represents individual or multiple
omics

Hyperparameter selection is summarized in Table 2. Briefly, default functions in packages
were used wherever possible, and custom code was used to select hyperparameters for
JACA"'™, MOFA?°, MultiMLP?"- 22, and SLIDE.?® After the selection of hyperparameters,
integration models were run on the multi-omics dataset, and top components were
selected for the only model that returned multiple components (i.e. MOFA). To determine
the top component, a neural net*' was fit to MOFA, and the component with the highest
Shapley value returned (Component 1, with a Shapley value of 0.162, while all other
values were below 0.001). There was clear separation between the 0 week and post-0
week groups for all models with components (DIABLO, MOFA, SLIDE). Interestingly,
MOFA and SLIDE have some separation by the specific week the sample was collected
(0, 4, 8, and 12 weeks), even though the integration model was not supplied that
information.

Results 7
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Figure 2. Feature absolute weights per integration model, with a cutoff determined by the
kneedle algorithm (dashed line). Features are colored by omic type: 16S (red),
metabolomics negative (light green), metabolomics positive (light blue), and

metaproteomics (purple).

3.3 Similarity of Top Features Across Integration Models
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feature selection. (B) Proportions from A split by omics type. (C) Count of the number
of top features shared across the five integration models. (D) Shared features between
integration models and differential expression. The numerator is the number of
overlapping features between the models in the columns and rows, and the
denominator in the number of features in the model listed at the bottom of the column.

As a base line, differential expression® and differential abundance® © statistics were
calculated, and significant biomolecules (¢ < 0.05) were concatenated together, resulting
in 2957 potential top features (40.6% of the original dataset) to explain the difference
between the control (0 week timepoint) and experimental (all other timepoints) conditions
(Figure 3a). Each integration model returned far fewer top features, as MultiMLP had the
largest count (224, 3.1% of the original dataset) and SLIDE had the lowest (13, 0.2%).
Thus, each multi-omics integration model delivered on one of the goals of their design: to
provide a smaller list of top targets explaining biological conditions than simply
concatenating together significant biomolecules across omics datasets.

Four integration models (DIABLO, JACA, MOFA, MultiMLP) returned at least one feature
from each omic dataset (view), while SLIDE only returned features from 16S and
metabolomics negative (Figure 3b). The total number of possible features (p) per omic
was 8, 1752, 2726, and 2800 for 16S, metabolomics negative, metaproteomics, and
metabolomics positive, respectively; thus, high proportions of 16S data would reflect only
a few features. Detailed counts of the number of features per omic are provided in Table
3. In terms of shared features across models, 44 features are shared across at least 2
models, 15 across 3, 7 across 4, and 2 across all 5 (Figure 3c). The 2 shared features
across all models are a carboxylic acid and an amino acid with no further identification,
making the exact shared interpretation of this feature difficult.

Table 3. Number of features returned per integration model per omic (view). Differential
expressed/abundant biomolecules are included for comparison.

Integration Model 16S Metabolomics | Metabolomics | Metaproteomics
Negative Positive

DIABLO 3 9 14 14

JACA 2 9 10 5

MOFA 1 37 9 11

MultiMLP 5 167 13 39

SLIDE 6 7 0 0

Interestingly, all multi-omics integration models identified a subset of biomolecules that
overlapped with those determined as significant through differential statistics, except for
MultiMLP which selected two features with relatively close to significant values (p-values
of 0.0520 and 0.0705) (Fig. 3d). Importantly, none of these integration models explicitly
incorporate differential statistics; yet, the observed overlap provides validation for the

Results 9
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reliability of these models. JACA and DIABLO had significant overlap, where 100% of the
features within JACA were also in DIABLO (Fig. 3d). To account for mismatched vector
sizes when calculating overlap, we used the smaller vector size as the denominator in
proportional comparisons. Based on this approach, MOFA and DIABLO exhibited the
least overlap, sharing only 30% of their features, and the average proportion of shared
features was 55.7%. Though the overlap was promising, it should not be missed that 190
features were not shared across models; thus, the selection of one individual integration
model may lead to different downstream interpretations of the results.

Models were then clustered together by the Euclidean distances of the Spearman
correlations of their absolute feature weights. DIABLO and JACA clustered together,
which is not surprising given their shared top features (Figure 3) and how they assign
weights of 0 to lowly important features (Figure 2). SLIDE, MOFA, and MultiMLP do not
assign 0 weights (Figure 2), and formed a second cluster together, with a slight deviation
from MultiMLP, which may be due to its multi-layer perceptron approach as opposed to a
decomposition or factor analysis approach (Table 1).

3.4 Top Feature Exploration

Top feature ranks were then scaled (Equation 1) so that the highest-ranking features
would be at or near 1, and the lowest top ranked features would be near 0. Any features
that were not in the top rank were given a rank of 0. Average ranks were calculated for
each feature, and any features present in at least 2 models or without a specific
identification (e.g. a class of proteins as opposed to a specific protein) were removed,
resulting in 22 features (Figure 4). The top two ranked features were Sphingopyxis and
Streptomyces, which both have crucial rules in the initial breakdown (Streptomyces,
Neorhizobium) and continued breakdown (Sphingopyxis, Dyadobacter, and Variovorax)
of chitin.?® The other bacteria of the eight species cohort, Ensifer, Rhodococcus, and
Sinorhizobium, though important to the interspecies degradation of chitin, play less
central and more specialized roles, as supported in the original study?®, and were not in
the top features. Interestingly, the importance of these five bacteria was further
emphasized in the protein features, where the mean scaled rank of top proteins in at least
two models was, in order, Sphingopyxis, Streptomyces, Variovorax, Dyadobacter, and
Neorhizobium.

Results
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Figure 4. Scaled ranks of top features, ordered from highest to lowest mean scaled rank.
Features present in only one integration model or features without a specific
identification (e.g. a class of metabolites as opposed to a specific metabolite) were
removed.

Though there are similar patterns between the highest ranked bacteria in both the 16S
and metaproteomics, none of the top ranked proteins (xylF, IpdA, exaA, gapA, cobN,
sucB, and cspA) exhibit any direct roles in the breakdown of chitin, suggesting that other
pathways and processes of these species may respond more strongly to time than those
that are involved in chitin degradation. Several Streptomyces proteins (xylF, gapA, cobN,
sucB) had decreased abundance while exaA (Variovorax) and IpdA (Dyadobacter) had
increased abundance, aligning with the overall changes in microbe populations as
determined by the 16S data. Interestingly, the cold shock cspA protein (Neorhizobium)
had a strong decrease in expression, likely because the samples were pre-incubated at
5°C and later incubated at 20°C, removing the need for cold shock proteins.

The metabolomics data had no specific ties to species and instead represent the
abundances across all species, making their direct interpretation difficult. Ten specific
metabolites were identified by at least two integration models. None had any direct ties
to chitin metabolism. Some connections exist between top proteins and metabolites,
such as acetoacetate which can be converted into acetoacetyl-CoA and enter the citric
acid cycle (IpdA and sucB) and is involved in glycolysis (gapA). Interestingly,
acetoacetate had decreased abundances, which could indicate a continued depletion as
it feeds into the citric acid cycle or as it is converted into lipids and certain peptides.
Although neither the metaproteomics nor the metabolomics data had a biomolecule
associated with chitin metabolism as a top feature, several chitin metabolism features
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were still used to separate groups, such as gimS and chitobiose in MOFA, MultiMLP,
and SLIDE that had weights near the cutoff. The goal of each multi-omics integration
model is to return an optimal set of all features, so exclusion from the “top features”
does not indicate that the feature contains no value. Instead, it suggests a stronger
signal to separate groups. A particular advantage of multi-omics integration models is
that they allow for the identification of features with complementary information, such as
the shared expression profiles of microbes in 16S and metaproteomics data, and the
metabolic relationships between some top proteins and metabolites.

Organic acids 24

Peptides & Derivatives 94
Lipids & Derivatives 41
Organcheteracyclics 23
Benzenoids 21
Organonitrogens

Nucleosides & Analogues

Phenylpropanoids & Polyketides

@ w =

Carbohydrates & Sugars

Organooxygens

T T —_—F———————————————— ———
DIABLO JACA MOFA SLIDE Mean Rank Count

Inorganic lon Metabolism/Transport
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-
=
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Transcription
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Cell Wall/Membranes
Translation/Ribosome Structure
PTMs/Chaperones
Replication/Recombination/Repair _
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Cell Motility
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Figure 5. Average scaled ranks of feature information, ordered from highest to lowest scaled
mean rank across integration models for (A) CANOPUS categories of metabolomics
data (combining both negative and positive ion mode), and (B) COG categories of
protein functions. Mean ranks are reported, as long as the number of features in
each category.

To detect any patterns at biomolecule category levels (e.g. CANOPUS*® categories for
metabolites and COG*"- 48 categories for protein data), all top features were averaged at
the category level, with reports of the number of biomolecules detected in each category.
All integration models ranked organic acids, peptides & derivatives, lipids & derivatives,
and organoheterocyclics as important classes of biomolecules for separating conditions
(Figure 5). Differential abundance of these biomolecules shows an increased abundance,
potentially indicating a focus on storage (as opposed to catabolism) of lipids as the main
energy source (chitin) depletes. This may also explain the decreased abundance of
acetoacetate, which could be stored in these lipids. The focus on anabolism of these
specific energy-storing compounds may also be supported by protein COGs, where there
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is a heavy focus on carbohydrate metabolism and energy conversion. These results
demonstrate that incorporating additional meta information about features reveals
additional information about the biological system of study.
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4.0 Discussion

Each of the selected models has been demonstrated as a useful and informative
approach for multi-omics analysis'®23; yet, on their own, no model provides a cohesive
view of the most important features distinguishing conditions. For example, no model
ranked all top bacteria in the 16S data. But, by scaling and averaging ranks across
models, all the most important bacteria were seen in both the 16S and metaproteomics
data. This demonstrates the value in utilizing several integration models, as opposed to
just one, to get a more complete view of the top features, especially in cases where there
are thousands of potential features. This work also shows the reliability of each of these
approaches, as all models selected a subset of significant or near significant features
without that information explicitly provided, and all models provided some top features
which match previous work.?® Limitations to this study include a small and imbalanced
sample size (n = 3 for the control group, and n = 9 for experimental group), non-specific
identifications in the metaproteomics and metabolomics data, high levels of missingness
in the metaproteomics, and an inability to tie metabolomics to specific bacteria(essentially
a “meta”-metabolomics approach). Future work in this area could focus on ensemble
approaches and comparisons on larger datasets.
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