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Abstract

CAMEO (Codesign Architecture for Multi-objective Energy System Optimization) is a modular
workflow management framework that abstracts co-design problems as Directed Acyclic Graphs
(DAG). The framework employs JSON-based workflow specifications that enable systematic
decomposition of complex optimization problems into reusable, interchangeable components
including data loaders, scenario generators, optimization solvers, and result summarizers.
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Summary

CAMEO project has developed a modular co-design architecture for multi-scale, multi-objective
optimization to enable the optimized design and operation of energy systems with high PEL
penetration. The project identifies key components, requirements, dependencies, and
recommendations for the co-design. The architecture is instantiated as a containerized and
configurable execution platform to integrate co-design capabilities developed at PNNL and
externally.

Summary
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Acronyms and Abbreviations

CPS: Cyber Physical System

DER: Distributed Energy Resources
PEL: Power Electronic Load

CCD: Control Co-design
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1.0 Introduction

Complex engineering system optimization increasingly requires sophisticated computational
workflows that can orchestrate multiple interdependent components, handle diverse optimization
paradigms, and scale across distributed computing environments. Modern power grid
infrastructure exemplifies this challenge, as new technologies such as data centers with power
demands exceeding 100 MW, utility-scale battery storage installations, and distributed energy
resources are fundamentally reshaping energy generation, transmission, and distribution
systems. The integration of these technologies introduces complex interdependencies that
system planners must simultaneously optimize to ensure reliable power delivery, making them
integral to contemporary grid planning. Effective grid planning must simultaneously address
multiple objectives including infrastructure costs, reliability requirements, and economic
performance across various operational scenarios such as peak demand periods, contingency
conditions, and market participation strategies (Sharma et al., 2024). A control co-design
approach to optimization is therefore crucial, as it simultaneously considers multiple objectives to
maximize system performance and ensure efficient operation, while accounting for underlying
control system dynamics and interdependencies between grid components.

Over the past few decades, Control co-design (CCD) has been extensively used in different
science and technology domains such as underwater autonomous robotics (Yuh, Junku, 2000),
networked control systems, chemical process plants (Bhattacharya et al. 2021), automotive
suspensions, wind turbines (Sharma et al.,, 2024), and cyber-physical energy systems
(Thiagarajan et al., 2023).

This project report presents CAMEO (Co-design Architecture for Multi-objective Energy System
Optimization), a modular workflow management framework that addresses key software
engineering challenges in CCD optimization. In contrast to existing use-case oriented solutions,
CAMEO identifies common design patterns and computational components of multi-objective co-
design problems and develops generalized, plug-and-play software architecture. Our proposed
approach provides a robust modular workflow framework with standardized interfaces that
collectively support dynamic and customizable co-design workflows across diverse optimization
paradigms and computational environments. Architecture tackles key software challenges in
scalability, enabling workflows to manage increased computational complexity without
disproportionate resource expenditure, heterogeneity by supporting diverse computational
components and optimization methods within unified framework, and usability through
standardized workflow specifications and automated execution management. We demonstrate
CAMEQO’s versatility through three comprehensive use cases spanning power grid expansion
planning, battery size optimization, and large-scale distribution network generation, showcasing
the framework’s ability to handle varying computational scales and optimization paradigms.

CAMEOQO is a framework to aid researchers and system planners in running optimization
formulations developed a priori, over a large design parameter space. The contributions of
CAMEO can be summarized as follows: (i) Scalable framework for design-space exploration: We
develop a computational framework that explores wide design (hyper)-parameter spaces in high-
performance computing environments for given optimization formulations. Using CAMEO, we
systematically identify combinations of input parameter configurations and orchestrate parallel
execution of optimization problems using available computing resources, enabling
comprehensive design space exploration at

Introduction 1
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scale. (ii) Modular approach for enhanced heterogeneity: We employ a modular software
architecture that facilitates multiple workflow instances, allowing optimization formulations to be
easily adapted and reconfigured at run-time for given co-design problems. Through CAMEO, we
provide standardized interfaces and plug-and play capabilities that enable users to tailor the
framework to specific needs and objectives, promoting broad applicability across different system
optimization scenarios and computational paradigms. (iii) Containerized architecture for
enhanced usability: We implement an automated workflow orchestration system using dedicated
containerized environments, offering a lightweight and portable solution for deployment and
execution across diverse computing infrastructures. We leverage containerized architecture to
provide consistent performance and simplified dependency management across environments,
with lower overhead than traditional virtual machine approaches. This enables quick setup,
scalable operations, and efficient resource utilization, making our framework highly customizable
and user-friendly for diverse co-design applications.

Introduction 2



2.0 CAMEO Architecture and Methodology

CAMEDQO is a use-case agnostic co-design framework that provides scalable and modular ways
to explore the design-space of an optimization formulation. The framework executes multiple
instances of the formulation in parallel to provide insight into the accuracy, sensitivity, and
computing performance of the formulation in a High-Performance Computing (HPC)
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Figure 1 CAMEO Architecture: Modular Design to support multiple instances of co-design
workflows

As shown in Fig. 1, CAMEO uses a modular approach to define various components and their
behavior. For example, an entity object is used to specify design parameters and hyper-
parameters. Similarly, the optimization object links the entity object to an algorithm and
corresponding solver with seed parameters. Furthermore, a simulation object defines the
underlying energy system topology, telemetry, control parameters, and evaluation metrics.
CAMEDO also monitors the execution environment and generates provenance summaries to share
with downstream decision support applications such as pareto-front visualizations and
dashboards.

2.1 Workflow Characterization and Specification

CAMEO characterizes co-design workflows as Directed Acyclic Graphs (DAGs) where stages
represent distinct computational components and edges define data dependencies between
them. This graph-based representation enables systematic decomposition of complex co-design
problems into manageable, interconnected stages that execute in dependency order while
maintaining data flow integrity throughout the process. Figure 2 illustrates a typical DAG
structured co-design workflow.

CAMEO Architecture and Methodology
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The workflow specification encompasses several distinct categories of stages, each serving
specific roles in the co-design process. Data loading stages handle the ingestion of scenario
definitions, system parameters, design constraints, and operational data that characterize the
co-design problem space. These stages establish the foundational inputs required for subsequent
analysis and optimization. Optimization stages constitute the core computational components
where co-design problems are formulated
and solved using various paradigms
including white-box mathematical
optimization, heuristic-based approaches,
or black-box simulation coupled with
Bayesian optimization techniques. The
_ _ _ modular nature of these stages enables
Figure 2 The DAG representation of a co-design  gjrect comparison of different optimization
workflow showing data dependencies between methodologies and optimization
computational stages. parameters within the same workflow
framework. Finally, analysis and summarization stages aggregate and synthesize results across
multiple scenarios, performing comparative analysis and generating insights that inform design
decisions.

Data loader
stage

Data loader
stage

Optimization
stage

Scenario
Generator
stage

Data loader
stage

CAMEOQO’s workflow characterization has several key architectural principles that facilitates its
applicability to diverse co-design problems. Standardized input-output interfaces across all stages
ensure seamless integration and compatibility, enabling components to exchange data regardless
of their underlying implementation or the specific co-design domain. The modular plug-and-play
capability allows stages to be dynamically reconfigured, replaced, or extended without disrupting
the overall workflow structure, providing the flexibility needed to adapt to evolving problem
requirements or incorporate new methodologies. Multiple optimization paradigm support enables
the framework to accommodate various solution approaches within a unified computational

The DAG structure accommodates multi-modal and multi-temporal data flows between
components, supporting diverse information types such as model parameters, control variables,
design specifications, operational data, constraints, objective functions, and system topologies.
Dependencies between stages are explicitly defined, ensuring that each component receives the
appropriate inputs from its predecessors while maintaining computational efficiency through
parallelization where possible. This dependency management also facilitates systematic
exploration of design spaces across multiple scenarios and operating conditions.

environment, from traditional mathematical programming to state-of-the-art Al/ML-based
techniques. This characterization promotes a structured yet flexible approach to co-design
workflow creation, systematically addressing the complex and heterogeneous nature of multi-
disciplinary design optimization while maintaining computational tractability and result
reproducibility.

CAMEO Architecture and Methodology 4
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2.2 JSON-based declarative abstraction

CAMEO uses a JSON-based hierarchical serialization format for encoding and persisting various
design variables, making it easier to manage and modify input data. This abstraction layer provides
a clean separation between workflow definition and execution, allowing users to define complex
computational pipelines without directly writing pipeline code. At its core, the framework organizes
computational workflows as DAGs through two primary components: (i) stages are individual
processing units that perform specific tasks, and (ii) dependencies are directed relationships
between these stages that define their execution order. Together, these components form a DAG
that represents the workflow.

During initialization, CAMEO validates the graph structure to ensure the absence of circular
dependencies and confirms that all referenced stages exist, providing explicit error messages when
validation fails.

The stages in CAMEO represent diverse computational tasks and data operations, each with a
specific type designation. Common stage types include ‘csvloader’ for importing tabular data from
CSV files, ‘pathloader’ for accessing script files and data directories, and ‘process’ for executing
computational tasks through shell commands or scripts. Each stage definition includes structured
specifications for inputs (data required for processing) and outputs (results produced after
execution). This input-output schema forms the basis for data flow throughout the workflow, with
strict validation ensuring that inputs for any stage are available in the outputs of its parent stages in
the dependency graph.

{
"stages": [
"stage":{...}, "dependencyl":{...},
"dependency2":{...}],
"dependencies": {
"stage": ["dependencyl", "dependency2"]
}
}

CAMEDO uses Nextflow, a scientific workflow management system to demonstrate implementation
and execute workflows defined by the JSON abstraction. After evaluating multiple workflow
management systems (Table 1), Nextflow emerged as the optimal choice due to its core strengths
that align with our requirements: multi-platform container support, diverse executor compatibility
(SLURM, Moab, Kubernetes, cloud platforms), and efficient checkpoint-based process
management. The framework is therefore instantiated as a containerized and configurable
execution platform with relevant technology stack, standardized interfaces, optimal data formats,
and validation schema. The framework’s language-agnostic architecture enables rapid prototyping
while maintaining workflow integrity. Nextflow’s unified developmentto-production pipeline, coupled
with comprehensive provenance tracking and execution reporting, effectively addresses our
complex computational demands and deployment scenarios.

CAMEO Architecture and Methodology 5



Table 1 Comparison of different scientific workflow systems

. Containers | Cloud
Language | Parallelization | Flow Control Supported | Platforms
Workflow AWS,
Configurable | definition files Azure,
) : docker,
groovy, with and variables, Google
Nextflow ; . ) podman,
java automatic command line . ) Cloud,
. singularity
retries parameter Kubernetes
settings.
Configurable | File inputs and | docker
Snakemake | python Wlt.h specific | outputs, . through_ Kubernetes
retires command line | singularity
CPU settings
Configurable | Directed Acyclic AWS,
at task level Graph (DAG) Azure,
. o docker,
airflow python scheduler based pipeline sinqularit Google
defined in 9uiamyY 1 cloud,
python script Kubernetes
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2.3 Computational Infrastructure to Support Scalable Co-design

Supporting modular and scalable co-design workflow systems requires robust computational
infrastructure that can handle varying workloads and resource demands across distributed
computing environments. CAMEO addresses these requirements through its abstraction layer that
seamlessly interfaces with high-performance computing (HPC) clusters, enabling automatic scaling
and resource management without requiring users to manage low-level infrastructure details.

We leverage Nextflow’s configuration system to configure parallel SLURM jobs across multiple
compute nodes, utilizing a declarative approach that separates workflow logic from infrastructure
specifications. The configuration structure demonstrates how CAMEO abstracts computational

requirements:

{

"apptainer": {

"autoMounts": true,
"enabled": true,
"runOptions": "<container runtime options>",
"cacheDir": "<container cache directory path>"
2
"process": {
"executor": "<cluster job scheduler type>",
"queue": "<target job queue name>",
"time": "<maximum execution time limit>",
"cpus": "<number of CPUs>",
"nodes": "<number of nodes>",
"allocation": "<allocation name>",
}
}

The containerization layer through Apptainer ensures reproducible execution environments across
heterogeneous compute nodes, while the autoMounts capability provides seamless access to
shared file systems and user directories. The SLURM integration enables dynamic resource

CAMEO Architecture and Methodology 6
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allocation where clusterOptions specify computational requirements including CPU cores, memory,
node count, and project accounting information. This infrastructure abstraction allows CAMEO
workflows to automatically scale from single-node development environments to large-scale HPC
deployments, accommodating the computational demands of complex co-design optimization
problems involving thousands of parallel processes. The separation of workflow definition from
infrastructure configuration enables portability across different computing environments while
maintaining consistent execution semantics and performance characteristics.

CAMEO Architecture and Methodology 7
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3.0 Use Cases

The project selected three power grid planning use cases that demonstrate CAMEOQO’s capability
to implement co-design optimization workflows over extensive parameter spaces. We present
three cases that encompass: (1) reliability-aware power grid expansion planning for data center
integration, (2) optimal battery design for variable generation installations, and (3) power
distribution network generation for the entire state of Virginia, USA. Each use case showcases
different aspects of CAMEO’s workflow orchestration capabilities, from scenario-based
optimization and stochastic programming to large-scale parallel execution on high-performance
computing platforms.

3.1 Reliability-Aware Power Grid Expansion Planning for Data Center
Integration

In this use case, we address the challenge of determining optimal transmission grid expansion
strategies to reliably support largescale data center installations with power demands ranging
between 100 and 200 MW. We formulate a multi-objective co-design optimization that considers
multiple location scenarios (urban edge, industrial park, rural tech hub) and data center operation
profiles (standard, high-redundancy, Al/ML focused) to minimize total expansion costs while
ensuring N-1 reliability standards. We utilize CAMEO to orchestrate the evaluation of transmission

3 parameter

sets 27 optimized
results

Optimization
parameter loader

csvloader stage

9x3=27
combinations

3 location
scenarios

Design optimizer

process stage

Location
scenario loader

process stage

csvloader stage

Script 2 Script 3

pathloader stage

Scenario Generator
Operation mode

loader
csvloader stage Script 1

pathloader stage

pathloader stage

9 scenarios

3 operation
modes

Figure 3 The DAG workflow used to perform the power grid expansion planning problem for
data center integration.
line upgrades and capacity additions across these diverse scenarios, enabling grid planners to
identify cost-effective expansion plans that maintain system reliability under various operating
conditions and future uncertainties.

3.2 Optimal Battery Design for Variable Generation Installations

In this use case, we focus on determining the optimal battery storage size and MTDC cable
capacity required to support variable generation installations while maximizing revenue from
participation in real-time, day-ahead, and reserve electricity markets, accounting for installation
costs. The optimization formulation is inspired by the scenario tree-based stochastic programming
approach for revenue maximization proposed in [14]. We have extended the methodology to
demonstrate CAMEQ’s capability in handling multiple formulations within the stochastic

Use Cases 8
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programming paradigm. We demonstrate two distinct optimization formulations: (i) a scenario
based approach (illustrated through the DAG workflow in Figure 4) where we generate 20 random
scenarios per generation location based on generation variability and market data, solving 32
battery configurations across 5 locations (totaling 3,200 optimization problems), and (ii) a

32 battery
configurations

Battery data loader

csvloader stage

160 optimized
results

A, Scenario-tree
Xo= i —w
combinations based Optimizer

Market data loader Scenario Tree

Generator
csvloader stage
5 locations

process stage

Script 3

pathloader stage

Script 2

pathloader stage

5 scenario
trees

Generate 1
scenario tree for
each location

Script 1

pathloader stage

Figure 4 The DAG workflow for scenario tree-based optimization formulation for the battery
design problem.
stochastic programming approach where we use scenario trees for each location with the same
battery configurations (resulting in 160 stochastic optimization problems solved in parallel).

3.3 Power Distribution Network Generation for Virginia, USA

In this use case, we demonstrate CAMEOQO’s scalability by showcasing secondary network
generation for multiple counties across Virginia, highlighting the framework’s ability to execute
computationally intensive tasks in parallel across multiple cores on high-performance computing
platforms. We execute simultaneous network generation processes for different counties,

demonstrating CAMEO'’s capability to handle large-scale, geographically distributed optimization
problems efficiently.

County FIPS County data file Secondary Network
loader extractor Generator

133

counties

133 parallel
processes
Directory path Script 1

pathloader stage pathloader stage

Figure 5 The DAG workflow for secondary distribution network generation for 133 counties in
Virginia

Use Cases 9
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4.0 Results and Discussion

To demonstrate the practical benefits of CAMEO’s JSON abstraction, we evaluate three key
aspects that directly impact productivity and workflow management in energy system co-design
tasks: (i) modularity enabling seamless adaptation across multiple problem scenarios, (ii)
deployability facilitating execution across diverse computing environments, and (iii)
development efficiency streamlining workflow creation and maintenance processes.

These metrics provide evidence of the framework’s usability advantages in handling varied
optimization problems, supporting multi-environment execution, and reducing development
overhead compared to traditional workflow implementation approaches. We analyze
component reusability across our three use cases to demonstrate the modular design benefits
of the JSON abstraction. Our analysis reveals significant component overlap: data loader and
script loader stages achieve 100% reusability across all use cases. The optimization stages
show no such reusability, since the nature of optimization formulations are different for our three
use cases. The plug-and- play capability is exemplified in our second use case, where we
seamlessly swap between scenario-based and stochastic optimization formulations by
modifying only handful of lines in the JSON abstraction — specifically changing the optimization
stage reference while defining the DAG workflow in the JSON abstraction.

Cross-domain portability analysis shows that majority of workflow components remain identical
when adapting workflows from power grid expansion to battery size optimization to distribution
network generation. The core workflow pattern of data loading — scenario generation —
optimization — summarization remains consistent, with only domain-specific parameters and
script references requiring modification.

4.1 Deployable Across Multiple Compute Environments

CAMEO can be used to execute identical optimization workflows on different computational
platforms without modification to the underlying workflow logic. We illustrated this cross-platform
capability by showing execution duration and CPU usage performance when running identical
data center integration optimization problems across three different computing environments: (i)
multiple nodes on HPC resources, (ii) single node on HPC resources, and (iii) single node on a
virtual machine. This seamless deployability enables users to leverage available computational
resources optimally while maintaining workflow consistency and reproducibility across different
infrastructure configurations.

The performance analysis reveals the compute platform-agnostic design of CAMEO, which
provides actionable insights for strategic resource allocation across different computing
environments. For example, in our data center integration use case, ‘rural tech hub’ scenarios
consistently show the fastest execution times (60-100 seconds) across all computing platforms
due to smaller grid sizes, while ‘industrial park’ scenarios exhibit longer execution times (400-500
seconds on virtual machines) due to more complex optimization problems. The ability of CAMEO
framework to deploy identically across multiple nodes on HPC resources, single HPC nodes, and
virtual machines demonstrates superior performance adaptability, with HPC resources achieving
higher CPU utilization rates (100-120%) compared to virtual machines (80-90%).

Results and Discussion 10
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5.0 Al-enabled optimization and workflow generation

CAMEOQ project also explored state-of-the-art artificial intelligence and large language model
(LLM)-based approaches in optimization and complex workflow generation applications. The
project set up LLM-based experiments to auto-select priors in a Bayesian optimization

formulation. Traditional

The following are examples of the performance of a {: } measured in { } and the cor-

responding model hyperparameter configurations. The model is evaluated on a tabular {task} methO.dS use ran.df)m

task containing { } classes. The tabular dataset contains { sampllng or space-fllllng
} samples and { } features ({ } categorical, deSignS which do not

} numerical). The allowable ranges for the hyperparameters are: o
{ ition and }- Recommend a configuration that can achieve the target performance leverage pI'Ob'em-SpeCIfIC
of {targct score}. Do not recommend values at the minimum or maximum of allowable range, i
do not recommend rounded values. Recommend values with the highest possible precision, as .pr.lc.)rs. We U.SGd LLMS as the
requested by the allowed ranges. Your response must only contain the predicted configuration, initial sampllng function and

in the format ## configuration ##. are tasked with generating
Performance: {performance 1} o X
Hyperparameter configuration: configuration 1 initial sample points
Performance: {performance n} conditioned by varying levels
Hyperparameter configuration: {configuration n} of context related to the
Performance: {performance used to sample configuration} optimization problem We
Hyperparameter configuration: X s
defined a parameterized
Figure 6 Candidate Sample Prompt template that configures an

LLM agent to iteratively
converge on prior values for the Bayesian optimization. Such approach was also extended to
perform surrogate modeling and acquisition function generation tasks.

We also developed agentic LLM-application to auto-generate abstractions and workflow

o

CAMEO

Phase 2: Refinement

i 4
Interactive Workflow @ Back Download

{am_mm:_ mmmnm] -/ 12 outputs
}’Mm_mnumw;] {11 outputs
emmr\_unmm- - 120utputs muumr_gm_mmmj . Etueemv_mnnrio _generata
lmmmnjm_mmmsen;xJ

datacenter_scenario_generatorScript
e

Figure 7 LLM-based workflow generation
definitions for the optimization formulations. The goal of this task was to analyze a code repository,
in addition to user provided natural language description of the codebase. We developed a web-
based prototype to identify optimization stages as defined in section 2 and recommend a nextflow
workflow for user review and validation as shown in the figure below. This prototype also allows

Al-enabled optimization and workflow generation 11
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you to edit the workflow by changing stage or parameter definition. The resulting workflow can be
executed in a containerized environment.

Al-enabled optimization and workflow generation 12
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6.0 Conclusion

CAMEQ’s use case agnostic design enables application across diverse optimization domains,
as demonstrated through three distinct use cases spanning power grid expansion planning,
battery size optimization, and large-scale distribution network generation, each requiring
different computational scales and optimization paradigms.

CAMEOQ’s JSON-based workflow abstraction and standardized component interfaces provide
a foundation for systematic decomposition of complex optimization problems into reusable,
interchangeable modules. The framework’s containerized execution environment and seamless
integration with HPC infrastructure demonstrate its capability to handle varying computational
demands while maintaining workflow portability across different computing environments.

This work has several limitations that present opportunities for future research. We lack a
comprehensive taxonomy relating to energy system workflow patterns to generic computational
motifs, which would enhance cross-domain applicability. Our evaluation excludes systematic
comparison with other declarative workflow systems such as CromWell (WDL), StreamFlow, and
Toil (CWL), limiting context for CAMEQ'’s relative positioning. Additionally, we demonstrate
technical capabilities without comprehensive user surveys to assess real-world usability and
adoption barriers.

Future development will address these limitations while expanding CAMEQ’s capabilities
through an extensible library of optimization modules, formal workflow pattern taxonomies, and
comparative benchmarking studies with existing workflow systems. We plan to implement
graphical user interfaces for enhanced workflow specification, enable seamless interfacing with
cloud platforms and specialized optimization solvers, and conduct comprehensive user studies to
validate practical applicability. Furthermore, we will investigate generating JSON stage definitions
through human-in-the loop Large Language Model methods to further abstract co-design
formulation from low-level code development. These enhancements will strengthen CAMEQO’s
position as a general-purpose computational framework for complex system optimization across
diverse engineering disciplines.

Conclusion
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