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Abstract

This study presents the development and implementation of an autonomous Bayesian
optimization (BO) framework for controlling and optimizing experimental parameters in Atom
Probe Tomography (APT). Using commercial silicon needle samples as a benchmark system, we
demonstrate that BO can efficiently navigate the complex parameter space of voltage and laser
power to achieve target charge state ratios (specifically Si*/(Si*+Si?*)) with minimal experimental
evaluations. Our implementation integrates Gaussian Process modeling with the CAMECA atom
probe control framework, enabling autonomous adjustment of experimental conditions in real-
time. Results show that the algorithm successfully converges to target ratios under different
scenarios: maintaining a reference ratio, increasing the ratio (favoring Si'*), and decreasing the
ratio (favoring Si?*). The system adapts to specimen evolution during analysis, compensating for
changes in apex geometry while maintaining optimization targets. This work establishes a proof
of concept for Al-driven optimization in APT, addressing the traditional challenges of manual
parameter tuning and paving the way for applications to more complex materials where
compositional accuracy is critical.
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Summary

This study introduces an automated Bayesian optimization system for Atom Probe Tomography
that intelligently controls experimental parameters to achieve specific charge state ratios. Using
silicon samples as a test case, we demonstrate the algorithm's ability to efficiently navigate the
voltage-laser parameter space, rapidly converging to optimal conditions that produce target
Si*/(Si*+Si?*) ratios within approximately 10 optimization steps.

The implementation comprises three Python modules that handle machine learning optimization
(ML_lib.py), hardware communication (Al_APT lib.py), and workflow orchestration
(Maestro_AIAPT.py). The system successfully addresses several technical challenges inherent
to APT analysis, including binary data interpretation, timing ambiguities in data collection, and
compensation for specimen evolution during analysis.

Our testing confirms that the algorithm can effectively maintain, increase, or decrease charge
state ratios by appropriately adjusting voltage and laser power combinations. In each scenario,
the observed parameter adjustments align with theoretical predictions based on field evaporation
physics and the Kingham model of post-ionization. Particularly notable is the system's ability to
compensate for the changing specimen geometry during analysis by progressively adjusting
parameters to maintain consistent field conditions.

The integration of safety features, particularly voltage reduction during computational operations,
allows for extended experimental runs while preserving specimen integrity. This automated
approach significantly reduces the reliance on operator expertise and trial-and-error parameter
tuning, promising improved efficiency, reproducibility, and accessibility in APT experimentation.

This work establishes a foundation for applying Al-driven optimization to more complex materials

and different optimization targets, potentially addressing longstanding challenges in accurate
compositional analysis of systems prone to preferential evaporation and detection biases.

Summary iii
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Acronyms and Abbreviations

Al Artificial Intelligence

APT Atom Probe Tomography
BO Bayesian Optimization

GP Gaussian Processes

LEAP Local Electrode Atom Probe
ML Machine Learning

RBF Radial Basis Function

ucB Upper Confidence Bound
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1.0 Introduction

Atom Probe Tomography (APT) is a powerful material characterization technique, enabling three-
dimensional atomic-scale imaging and compositional analysis of materials. Its utility has
revolutionized fields such as nanotechnology, metallurgy, and semiconductors, where precise
knowledge of the composition and the distribution of elements at the nanoscale level is critical to
understanding structure-properties relationships’. Despite its strengths, the accuracy of the
compositional data obtained via APT is highly dependent on experimental parameters such as
laser power, detection rate, and specimen voltage. These parameters influence critical aspects
of the analysis, from field evaporation behavior to ionization probabilities, and directly shape the
resulting mass spectrum. An important challenge in APT experiments is identifying optimal
parameter combinations that preserve the sample’s true composition in the collected data. This
challenge is particularly critical for complex materials, such as oxides, where deviations in the
detection of certain elements, especially oxygen, introduce significant errors in compositional
analysis®®. Accurate and systematic parameter optimization is therefore essential to ensure
reliable APT data interpretation.

Traditionally, optimizing APT parameters involves trial-and-error approaches, where operators
iteratively adjust experimental conditions while assessing data quality and refining their choices.
This process is time-consuming, relies heavily on operator expertise, and does not easily lend
itself to systematic exploration of the vast experimental parameter space. Automating this
optimization process would provide clear benefits, including reduced time and labor, higher
reproducibility, and the potential for data-driven discovery of experimental conditions that might
be overlooked in manual optimization.

Machine learning (ML) has recently emerged as a powerful approach for automating experimental
workflows, with Bayesian optimization (BO) standing out as a technique particularly well-suited
for experimental parameter optimization. BO is a probabilistic machine learning framework for
black-box optimization problems, where the objective function is expensive or noisy to evaluate,
and the relationship between inputs and outputs is not explicitly known. By constructing a
surrogate model of the objective function (often using Gaussian Processes, GPs), BO allows for
efficient exploration of the experimental parameter space. Its iterative decision-making process
balances exploration (investigating unknown regions of the parameter space) with exploitation
(refining areas with promising results), enabling rapid convergence to optimal conditions with a
minimal number of evaluations. This makes BO a compelling approach to address the challenges
of optimizing APT parameters.

In this study, we focus on implementing and testing Bayesian optimization as a framework for
automating the control of APT experimental parameters. As a benchmark system, we use
commercial silicon (Si) needle samples and target optimization of the ratio of singly charged (Si*)
amongst the total of Si ions collected which includes Si* and the doubly charged (Si?*) ions in the
mass spectrum. The Si*/(Si*+Si?*) ratio was chosen because it is well-documented to vary as a
function of experimental parameters such as laser pulse energy and specimen voltage.
Optimizing this ratio enables us to evaluate whether BO can reliably identify experimental
conditions that achieve a specific, predetermined target ratio. While Si samples are relatively
straightforward to analyze and may not require extensive optimization in routine studies, they
present an ideal benchmark for developing and validating the BO framework due to their
reproducibility, availability in large quantities, and historical role as standard samples in APT
studies.

Introduction 1
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The primary focus of this work is the implementation of Bayesian optimization in the context of
APT and its evaluation using a well-defined and measurable target: the Si*/(Si*+Si?*) ratio.
Specifically, we aim to demonstrate that BO can autonomously determine the experimental
conditions necessary to achieve the target ratio with minimal experimental evaluations. Success
in this benchmark system serves as a foundation for future work on more complex materials, such
as oxides or multi-element systems, where deviations in compositional accuracy are a pressing
concern. However, this study is deliberately focused on developing and testing the BO framework
itself, leaving applications to more complex materials for future work.

This implementation uses the gpax Python package for Gaussian Process-based Bayesian
optimization and integrates it with the vendor-provided control framework for a CAMECA atom
probe instrument. The system is designed to autonomously adjust experimental conditions (laser
intensity and voltage), collect data on the resulting Si*/(Si*+Si?*) ratio, and iteratively refine its
predictions to converge to the target. This methodology builds on prior efforts from groups such
as Felfer et al.”, who developed open-source tools for atom probe instrument control, and Gault
et al.8, who explored machine learning-enhanced analysis of APT data. While existing work has
emphasized data analysis and instrument accessibility, our study represents a complementary
but distinct contribution: the automation and optimization of APT experimental parameters in real-
time.

By demonstrating that BO can successfully optimize APT experimental conditions using the
Si*/(Si*+Si?*) ratio as a benchmark, we establish a critical proof of concept for the broader
application of Al-driven optimization in APT. While the ultimate goal is to enable the accurate
compositional analysis of more complex materials, such as oxides, this work provides the
foundation for using BO to systematically and autonomously optimize experimental conditions,
reducing reliance on trial-and-error approaches and paving the way for fully automated APT
workflows.

This project aims to transform the APT and its injection system into an autonomous platform
capable of exploring and control experiments based on specific parameters such as the types of
chemical species detected. To achieve this goal, two main limitations must be addressed:

1. Modify the hardware to enable the APT to communicate electronically with computers.

2. Develop a BO-based algorithm capable of communicating and guiding the APT experiment.
The objectives of this project are:

1. Replace the manual control of the parameters of interest.

2. Install a PNNL-control computer capable of modifying experimental parameters.

3. Deploy an algorithm on the PNNL-control computer capable to orchestrate the OAP
experiment.

This deployment has been executed on the LEAP4000 system in PNNL as first test phase but is
meant to be extended to the other systems present in PNNL (LEAP5000 and LEAP6000).

Introduction 2
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2.0 Results and discussion

2.1 Overview of Auto-APT workflow and its component

The overall Ai-APT system has been divided in three

; . e ~
separate python algorithms: INITIALIZATION PHASE
1 ML lib py (BOIlb) implements Bayesian User inputs----»Parameter ----» Random initial
’ — " * Target ratio space setup sampling
optimization algorithms (blue) «Element *Voltage «# Initial points
«# Steps range
2. Al_APT lib.py (APTIib) Handles communication - Laser range )
with the atom probe hardware (orange)
4 N\
DATA ACQUISITION LOOP
3. Maestro_AIAPT.py (Mstr): Orchestrates the
overall workflow and provides user interface CERE - e lectionsy - (e
parameters « get data() data?
(9 reen) Laser « Store m/z *No: Continue
* Voltage values * Yes: Process
. J

Initialization Phase
The optimization begins with user-defined parameters TR A
collected through the main interface (Mstr): PV & PROCE ASE

Safety Calculate Evaluate score
python ¢ Collapse ERun Save Copy measures ch?rge ratio * [Target —

*Reduce * Sil+ count Measured]
1 target_ratio = float(input("What target ratio do you want to pursue? ")) Voltage «Si2+ count
2 num_counts = int(input{“"Enter the number of counts to collect: ")) L )
3 time_ limit = int({input("Enter the time limit (s): "))
4 step_limit = int(input("Enter how many ML steps perform before exiting: ")) -~ ~

A
BAYESIAN OPTIMIZATION PHASE

These inputs .|n|t|aI|ze the I\/.IL. §ystem s parameter SPACE. | [{pdute GP--hf Caleulate -1 Select next
Then the BOlIib creates an initial set of random sampling | | model acquisition | | parameters
points across the parameter space to efficiently explore 'E,J?(Fi/yatem {;nccg)on .\hf?:UCB point
. . * rit aata * Voltage
voltage and laser power combinations. Bl .Lasergpower
« Exploitation
. g G
Data acquisition loop -
For each set of parameters, the system: - ~
1. Sets voltage and laser power through CAMECA's VARG LA (OIS L6
communication protocol Plot Mass Create GP Export CSV
2. Collects ion data until reaching either the count Spectra Visualization | | data files
th hold ti limit * Histograms *GP Mean *Raw Data
resnola or ume imi *m/z peaks * Uncertainty *Results
3. Processes the collected data to calculate charge * Acquisition | | +GP Model
state ratios ~ g
The core of data collection happens in APTIib: Chon No  [Returnto data
python : Colls Max steps reached? acquisition
1 # Request raw data from atom probe Yes
2 msgToSend = "1 LASServer SendData\n" FINALIZATION PHASE
3  sent = self.readsocket.send(msgToSend.encode())
4 data = self.readsocket.recv(self.MAX_DATA BUF_SIZE) Getlbest ==qpTesthest =oor»iReportiinal
parameters parameters results
* From GP « Collect final * Best ratio
model data « Final score
* Verify * Optimal param

Figure 1: System architecture
diagram showing the modular

Safety & Processing phase gLl )
organization of the Ai-APT system
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A critical safety feature is the automatic reduction of voltage during computationally intensive
operations:

python

1 safe_voltage = HvSafe
2 print(f"SAFETY: Reducing voltage to {safe_voltage}V before processing”)
self._aptlib.set_voltage_log(safe_voltage)

The system then processes collected mass spectra to calculate the charge state ratio:

python
1 MeasuredRatio = self._MeasureRatio(self._Elements, self._IonArray)
2  Score = abs(self._TargetRatio - MeasuredRatio)

This processing identify Si'* ions and Si?* ions and calculates the ratio of Si'*/Simt. As first
approach we have defined all the ions with a m/z comprised between 27 and 31 Da as Si'* and
all the ions between 13 and 16 Da as Si?*.

Bayesian Optimization Phase
The heart of the system is the Gaussian Process (GP) model that learns from each
measurement:

python

# Initialize GP model with chosen kernel

2, if self. KernelType == "Matern":

3 gp_model = gpax.ExactGP({2, kernsl="Matern')

4, else:

5 gp model = gpax.ExactGP(2, kernsl="RBF')

B

7 # Fit the model to observed data

g gp model.fit{rng keyl, X norm, self. Scorefrray)
18 # Compute acquisition function to determine next point
11 obj = gpax.acquisition.UCB(rng_key2, gp _model, jnp.array(X_unmeasured_norm},
12 beta=1, maximize=False, nolseless=False)

The algorithm objective is to generate a probabilistic recommendation for the optimal set of
parameters at each step. Unlike conventional neural networks, which use fixed weights and
provide point estimates, Bayesian neural networks (BNNs) treat weights as probability
distributions, incorporating uncertainty into their predictions. Due to their probabilistic nature,
BNNs are more robust to overfitting, offering a more nuanced understanding of the model's
confidence in its predictions, especially when dealing with limited or noisy data. Given that this is
a low dimensional but potentially non-linear problem, the BNN architecture will be limited to a
simple few-layer perceptron with hyperbolic tangent activations. In comparison of the most
commonly used Gaussian process (GP), the BNN is faster at the prediction stage, and scales
much better with increasing data size. For the voltage recommendations, we use a standard
Bayesian inference approach:

p(W, Jobslva) x p(YlX' w, C’-obs)p(l/l/)p(a-obs) (1)

where X and Y are the parameter sets (voltage and laser power) and composition values,
respectively, p(W, a,,s|Y, X) is the posterior distribution representing our beliefs about the BNN
weights (W) and the model noise level (o,,5) after seeing the available data (Y, X), p(Y|X, W, 04ps)
is the likelihood function and p(W) and p(o,s) are the prior distributions over the BNN weights
and the noise level. The posterior in (1) can be used to derive a probabilistic recommendation
about the next value of applied parameters by performing Markov chain Monte Carlo (MCMC)

Results and discussion 4
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sampling from it {W(l) ol

obs} ~p(W,00pslY,X). Then, the next parameter set is selected

according to

Xnext = argmax (1. + Bo?) (2)
. Z (x:w®,6%), 3)

2 _ @ @ z
0F =~ 1Zi=1 X W®,60) ~ ) (4)

where g is a Bayesian neural network model, x, is the space of all possible voltage values, and g
is a coefficient controlling the exploration-exploitation trade-off.

The choice between RBF (Radial Basis Function) and Matern kernels significantly impacts the
optimization behavior:
RBF Kernel:

e Assumes an infinitely differentiable (extremely smooth) relationship between parameters

and charge state ratios

¢ Produces smoother predictions with strong correlations between nearby points

e More confident in its predictions but potentially less robust to abrupt changes
Matern Kernel:

o Allows for less smooth functions with finite differentiability
Better captures physical processes that may have transitions or discontinuities
More conservative in predictions, especially with limited data
More flexible for modeling realistic physical relationships in the atom probe
Mathematically expressed as a generalization that includes a smoothness parameter
The model balances exploration of unknown regions with exploitation of promising areas using
the Upper Confidence Bound (UCB) acquisition function. The next experimental point is selected
to maximize information gain. While we first used the RBF kernel, we quickly used only the Matern
kernel because of its better time efficiency.

Visualization Phase
After each measurement, comprehensive visualizations and their corresponding .csv data files
are generated including:

1. GP standard deviation maps showing prediction uncertainty

2. Acquisition function plots highlighting promising regions

3. GP mean predictions showing the expected performance across parameter space

4. Mass spectra histograms showing the raw data

Finalization Phase

Upon reaching the step limit, the system identifies the best parameters from the GP model:
python

1 best_params = ML_LIB.GetBestParameters()
2, if best_params:
best_wvoltage, best laser, predicted score = best_params

It then verifies these parameters by collecting a final dataset and reporting the achieved charge
state ratio.

Results and discussion 5
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2.2 Key commands and their role

The system uses specific commands from the CAMECA Imago LEAP Command Protocol to
interact with the atom probe hardware. Every LEAP system follows the same overall architecture:
the different controls, gauges and detectors of the instrument are connected to a main server that
communicates with a PC_client that handles the user interface. The PNNL computer on which
the Ai-APT algorithm is running has been connected to the LEAP4000 server via an ethernet

splitter:
LEAP4000 | | LEAP4000 | | Ethernet| | LEAP4000PC
instrument Server Splitter Client
|
PNNL Ai_APT
PC Control

Figure 2: Network architecture diagram showing connection between Ai-APT system and the
LEAP server

The connections to the server are established through three different ports:

e The command port 8080 handles the instrument status information and data collection:
# Connect to command port (888&)

self.readsocket.connect((self.IP, self.COMMAND PORT))

¢ The command port 1000 handles voltage control:
# Connect to voltage control port (10e8)

self.hvcontrol. connect({ (self.IP, salf.CONTROL PORT))

e The command port 1100 handles laser control:
# Connect to laser control port (1188)

self.lasercontrol.connect({self.IP, self.LASER_PORT))

CAMECA engineers provided the following command to provide the Ai-APT algorithm some
controls of the instrument:
e Hardware controls commands:
o "1 LASControl ACQ AUTO VOLT ENA FALSE\n": Disables automatic voltage
control, enabling manual parameter adjustment
o "1 LASControl HV SET SPECIMEN VOLTS {volts}\n": Sets specimen voltage
to specific value
o "1 LPS ENERGY SET POINT SET {power} 2\n": Sets laser power in picojoules
e Data acquisition commands:
"1 LASServer SendData\n": Requests ion detection data from the atom probe
o " LASServer SendStats\n": Requests system statistics including voltage and
event rates
These commands form the critical interface between the optimization algorithm and the physical
hardware.

2.3 Challenges in data collection and conversion

Binary data interpretation, structure and conversion

Results and discussion 6



PNNL-38576

The atom probe delivers raw binary data that must be carefully decoded. Each ion detection is
represented as a series of 32 bit DWORD called “records”. Each records have many tags, but
only four of interest in the context of this work:

Tag 15 (OxOF): X position of the ion, tag 16 (0x10): Y position of the ion, tag 17 (0x11): time of
flight of the ion, tag 18 (0x12): mass-to-charge ratio.

The units of the mass record are 1/1024" of one Dalton and the X_POS and Y_POS units are in
“LSBs” and are defined by the calibration done at the factory (in our LEAP4000 model, LSBs are
in the order of 0.0387mm).

The different conversions are handled as soon as the raw data collected:

python

1 # Apply conversion factors
2, for ion in ions:

3 if 15 in ion: # X position

4 ion[15] *= self.X_LSB # ©.83811 mm
5 if 16 in ion: # Y position
Le]

ion[16] *= self.¥Y LSB # ©.83815 mm
if 18 in ion: # Mass-to-charge
8 ion[18] /= self.DALTON_CONVERSION # 1824

Data collection timing ambiguity
A significant challenge arises from the atom probe's data collection mechanism:

python

1 # Request data that has accumulated since the last request
2 msglToSend = "1 LASServer SendData\n”
3 data = self.readsocket.recv(self.MAX_DATA_BUF_SIZE)
Each data request retrieves all ions detected since the previous request, creating potential
ambiguity about parameter correlation. If voltage or laser settings were changed recently, the
collected dataset may contain ions from multiple parameter configurations. The system must
account for this by:

o Implementing appropriate settling time after parameter changes

o Clearing accumulated data before starting a new measurement

o Ensuring sufficient statistics at each parameter setting

Multiple ion detection filtering
When multiple ions are detected from a single laser pulse, data quality can be compromised:

python

# In the atom probe stats, these are tracked:
"dwTotalEvents": event_stats_data[l],
"dMultiplePercent”: event_stats_data[5],

W P

The system explicitly ignores these multiple-hit events to maintain data quality, but this reduces
data collection efficiency. This filtering mechanism helps ensure that mass-to-charge calculations
remain accurate but requires longer collection times to achieve sufficient statistics.

Results and discussion 7
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2.4 Safety and guardrails

APT is a destructive technique. Inherently, the specimen changes over time because APT
requires removing material to analyze it, but the constant allowing to extract the surface atoms:
the field evaporation remains the same.

During an APT analysis, the applied voltage and laser are used to increase the surface electric
field until it starts to extract surface atoms as ions. The value of the electric field at the surface
also conditions the charge status of those ions. While evaporating the surface, the apex radius
increases, and, subsequently, the intensities of applied voltage and/or laser power also increase
to reach the same applied electric field.

One of the main challenges was to implement sufficient guardrails for the algorithm to balance its
capability to explore the space of parameters but in the same time, avoid parameter situations
that are so destructive for the specimen that it changes it too much. While we are expecting the
BO to track a “moving target” it is important to establish enough guard rails.

The solution implemented is to include a systematic voltage decrease of several thousands of
volts after each data collection to preserve the sample while the data processing that can take
several minutes due to current hardware limitations.

This approach is directly visible in the voltage plot of the experiment where we can directly
voltage peaks every time the system is collecting data to make a better decision:
Interactive Step Selection

| |

8500

8000 ( (ﬁ
E 7500 A
S 6500 -
6000 A
5500 -
lon sequence

Figure 3: Voltage profile showing safety reductions during data processing phases

2.5 Brief description of the laser-assisted field evaporation in atom
probe tomography

Field evaporation is a natural phenomenon in which surface atoms rupture into ions under the
influence of a high electric field. This process is probabilistic and is influenced by the quantum
tunneling effect and thermal activation. To increase the probability of field evaporation, one can
either increase the electric field or raise the temperature of the specimen's apex, as the latter
reduces the energy barrier for ionization. In modern atom probe tomography, this dual approach
is achieved by combining a high applied voltage with laser-assisted heating.

Results and discussion 8
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The applied voltage directly generates a strong electric field at
the apex of the needle-shaped specimen, while laser illumination  10° o o
provides thermal energy, briefly increasing the local temperature

at the apex. As the specimen is heated, less electric field is sl
required to achieve the same probability of field evaporation. For
instance, silicon atoms initially require approximately 33 V/nm at
60 K to field evaporate, but at 300 K, the required electric field 107

would be drastically reduced. This effect is observable in the Si
mass spectra, where the relative abundance of differently . ql Si?Y Sit
charged ions shifts. In voltage mode, the process primarily Field (V/nm)

produces doubly charged ions (Si*'), but under laser-assisted  Fiqyre 4: Kingham plot of Si
conditions, singly charged ions (Si'*) become more prominent st ionization in presence of
due to the reduced field requirement. A phenomena reported by electric field

DR Kingham in his fundamental work focusing on the post-

ionization of field evaporated ions, predicting the ratio of different Si"* species depending on the
applied electric field on the surface (Figure 4).

Another critical aspect of field evaporation is the evolving geometry of the needle-shaped
specimen during analysis. As atoms are removed layer-by-layer, the apex becomes duller and
more voluminous, altering its geometry. Consequently, sustaining a constant electric field—and
hence a consistent probability of field evaporation—requires progressively higher applied voltage
and potentially greater laser power to maintain adequate thermal energy at the apex.

If we were to map the probability of field evaporation as a function of voltage and laser power, we
could visualize "iso-probability fronts" (Figure 5), which represent combinations of voltage and
laser power that yield the same probability of evaporation. As the specimen becomes duller during
the experiment, these iso-probability fronts shift upward and to the right, reflecting the need for
increased voltage and laser power to compensate for the geometric changes and sustain the field
evaporation process.

- -

Fevap
probability
2

> >

Figure 5: lllustration of iso-probability fronts in voltage-laser parameter space and its evolution
while the specimen needle is evaporated

2.6 Results and discussion
While numerous tests were conducted to adjust the safety guardrails and observe the behavior

of the algorithm, we will present in this section the three finals test confirming the effectiveness of
the algorithm in its current version.
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Each test is conducted on the same Si specimen which presents a 001 configuration, easily
recognizable by the hitmap of the evaporated atoms on the detector forming a cross. After laser
calibration in its X,Y axis and its focus, the sample is run in the APT following default values of
analysis. The system is programmed to analyze the Si specimen using a 60pJ laser power pulsing
at 125kHz, while adjusting the applied voltage in sort to get an average of 0.5% detection rate.
This rate means that, in average, the system collects 625 signals per second.

Launching the Ai-APT system, the automatic control of the voltage and the laser position are
suspended, giving up the controls of the voltage and laser power to the Ai-APT system. A first
ratio analysis is performed: the system collects by default 2000 counts before returning a ratio.
This ratio is collected three times and averaged to be used as a reference ratio rs from which a
target ratio riar will be determined arbitrarily.

ury
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Figure 6: Hitmap of the Si specimen used in the experiments.

All the tests were performed by requesting the collection of 5000 counts over a time period limited
to 60 seconds. The number of initial steps were set to 2 while the number of machine learning
steps were set to 50.

[tar = I'ref CASE
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In this test the Si ratio of interest is
manua”y found is 0.36 and the target Score (Target Ratio = Reference Ratio)
ratio is set at 0.36. The Ai-APT
algorithm is supposed to seek the
same ratio and, logically, we can
expect that the system finds an
optimal set of parameters close to the
original ones.
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At the beginning of the experiment,
this Si specimen needed 7156V and
60pdJ to get a Si ratio of 0.36 and the
final optimal result found by Ai-APT is

7356V and 63pJ When we examine ° 0 5 10 15 20 25 30 35 40 45 Step#so
the evolution of the score, which is the
difference between the ratio
measured and the target ratio, we can
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Figure 7: Score plot measuring the differential between
the target ratio and the measured ratio over two initial
see that the algorithm is rapidely steps and 50 main optimization steps. The initial ratio is

gt . 0.36 and the target ratio is 0.36.

finding a promising set of parameters,

reaching the optimal zone of parameter by the step 10. The examination of the GP Mean plot and
how the parameters are explored, we can see that the algorithm explore the limits of the
parameter ranges before rapidly find a zone of interest to focus on.
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Figure 8: Overlay of the BO exploration path across the laser/voltage parameter space in 2+50
steps and the GP mean plot of the parameter space at the 50" step. Here the algorithm starts
from a ratio of 0.36 and targets a ratio of 0.36.

While the final set of parameters found is close to the original parameters, we still can observe a
difference with the voltage increasing and the laser increasing. Normally, for a fixed ratio we are
looking for a fixed applied electric field and subsequently a fixed set of parameters. This difference
is explained by the fact that each measure requires it to probe the specimen, which makes it
evolve. After each measure, a quantity of Si atoms is removed from the specimen which increases
the radius curvature of the apex. This change of radius curvature means that to reach the same
level of electric field, we need to increase the applied voltage.

Results and discussion
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rtar > rref case . .
Score (Target Ratio > Reference Ratio)

0.35 ﬂ'

0.15

When we request to increase the
ratio, the algorithm will seek a set of
parameters that favor the
emergence of Si'* vs Si?*. In this
particular case, the specimen was
presenting a ratio of 0.36 with an
applied voltage of 7268 V and a
laser power of 60pJ. The target
ratio, set at 0.65, is reached by L

reducing the voltage and increasing

the laser power to, respectively, 5 10 15 20 25 30 35 40 45 50

7018V and 100pJ. On the GP Mean Step#

plot, we can observe the behavior of g e 9: Score plot measuring the differential between the
the algorithm that rapidly migrates i5qet ratio and the measured ratio over two initial steps and
toward higher laser powers and 50 main optimization steps. The initial ratio is 0.36 and the
lower applied voltage by step 6, 5rget ratio is 0.65.

reaching the upper limits of the laser

power.
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Such behavior is expected and follows the trend predicted by DR Kingham plots. By increasing
the laser power, the system increases the probability of field evaporation while requiring a lower
applied electric field.

ltar < I'ef CASE . .
Hlar = refl 2ES% Score (Target Ratio > Reference Ratio)

o
'S

When we request to increase the
ratio, the algorithm will seek a set
of parameters that favor the
emergence of Si?* vs Si'*. In this
particular case, the specimen was
presenting a ratio of 0.23 with an
applied voltage of 8175 V and a
laser power of 60pJ. The target
ratio, set at 0.15, is reached by
increasing the voltage and
decreasing the laser power down o 5 10 15 20 25 30 35 40 45 50

to, respectively, ~8675V and 40pJ. Step#

On the corresponding GP Mean Figure 10: Score plot measuring the differential between the
plot, we can observe that the targetratio and the measured ratio over two initial steps and

algorithm reaches the optimal zone 50 main optimization steps. The initial ratio is 0.23 and the
of parameters after the 5 step, target ratiois 0.15.

before exploring with different laser
power while maintaining high voltages.
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As for the other cases this behavior is expected and follows the prediction of DR Kingham. To
maintain a reasonable probability of field evaporation while decreasing the laser power, the
system relies more on the intensity of the applied electric field. With a more intense electric field
during the field evaporation, the occurrence of a second ionization of the Si ions increases as
well.

Results and discussion
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Q Initialization Points i

* Predicted Best
(7018.01, 100.00)

Laser Power (p))
Measurement Sequence

6800 7000 7200 7400 7600
Voltage (V)

0.000 0.045 0.090 0.135 0.180 0.225 0.270 0.315 0.360
GP Mean Prediction

Figure 11: Overlay of the BO exploration path across the laser/voltage parameter space in 2+50
steps and the GP mean plot of the parameter space at the 50" step. Here the algorithm starts
from a ratio of 0.36 and targets a ratio of 0.65.
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Figure 12: Overlay of the BO exploration path across the laser/voltage parameter space in 2+50
steps and the GP mean plot of the parameter space at the 50" step. Here the algorithm starts
from a ratio of 0.25 and targets a ratio of 0.15
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3.0 Future development and perspectives

While our implementation successfully demonstrates the viability of BO for controlling voltage and
laser power in APT, significant opportunities exist for expanding control capabilities and
enhancing safety guardrails. Two distinct paths for expanding system controls emerge: vendor-
dependent integration and graphic user-interface (GUI) augmentation.

The vendor-dependent approach involves collaboration with CAMECA to gain access to
additional control protocols beyond those currently implemented. This approach offers
advantages in reliability and official support, potentially enabling more deeply integrated
functionality and access to protected instrument features. However, this path may be limited by
vendor prioritization, development timelines, and proprietary restrictions, potentially limiting rapid
innovation and customization.

Alternatively, the GUI-based approach involves developing interface automation tools that interact
with the existing software interface rather than direct command protocols. This method provides
greater flexibility and independence from vendor constraints, allowing for faster implementation
of novel features and customized workflows such as combining the instrumental control system
to a large language model (LLM). However, this approach may face challenges with robustness,
particularly during software updates, and lacks the stability guarantees of vendor-supported
solutions. Such customized approach will require long-term in-house support.

Regardless of the integration approach selected, we must acknowledge that the algorithm can
control the experiment only as well as its human counterpart would with the same level of controls.
The main bottleneck for achieving fully autonomous experiments is providing comprehensive
control over all aspects of the experimental process. Pulse frequency modulation represents a
critical parameter for optimizing detection efficiency and reducing multiple-hit events. Automated
laser positioning control would enable spatial optimization across the specimen apex, potentially
improving evaporation uniformity. Similarly, sample positioning optimization could enhance data
collection consistency. Detection rate monitoring and automatic adjustment would allow the
system to maintain optimal analysis conditions throughout extended runs, particularly important
for specimens with varying evaporation characteristics. Moreover, the system requires the
capacity to not only identify masses of interest on the mass spectra, but also analyze their relative
intensities, profiles, overlays, and other spectral features—capabilities that human operators
routinely employ, sometimes passively.

This highlights a fundamental principle: an Al-driven system can only match or exceed human
performance when granted the same or greater level of control over experimental parameters.
Without equivalent access to all the controls available to human operators, even the most
sophisticated algorithm will remain constrained by its limited influence over the experimental
apparatus.

A particularly promising development is the integration of electronic valve controls for reactive gas
introduction, recently installed and currently in testing phase. This capability would enable
automated Field lon Microscopy (FIM) and Operando Atom Probe (OAP) visualization between
APT runs for in-situ sample condition assessment.

Equally important is the development of enhanced safety guardrails that better preserve specimen
integrity throughout autonomous operation. Current voltage-reduction measures provide basic
protection, but more sophisticated approaches are needed. These include implementing multi-
parameter safety envelopes that adapt based on real-time specimen response, detection rate

Future development and perspectives 16
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monitoring with automatic intervention when approaching critical thresholds, and pattern
recognition algorithms capable of identifying incipient specimen failure before destructive events
occur.

Advanced guardrails could incorporate predictive modeling of specimen evolution during analysis,
anticipating geometric changes and preemptively adjusting parameters to maintain stable field
evaporation conditions. This would be particularly valuable for heterogeneous materials where
evaporation behavior can change dramatically at interfaces or precipitates.

Developing these enhanced controls and safety features while maintaining the core advantages
of BO represents the next frontier in autonomous APT experimentation. The ideal implementation
would combine the reliability of vendor-approved controls with the flexibility of user-defined
automation, creating a system capable of safely exploring complex parameter spaces across
diverse material systems while preserving specimen integrity throughout the experimental
process.

Future development and perspectives
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4.0 Conclusion

The successful implementation and validation of a Bayesian optimization framework for
controlling atom probe parameters represents a significant advancement in automating APT
experimentation. Our results demonstrate that the BO algorithm can effectively navigate the
voltage-laser parameter space to achieve target charge state ratios in silicon samples, converging
rapidly within approximately 10 steps across various scenarios. This efficiency highlights the
potential for reducing both experiment duration and operator intervention in APT studies. The
system's ability to adapt to the evolving specimen geometry during field evaporation is particularly
noteworthy. As the specimen apex becomes duller throughout the experiment, the algorithm
automatically compensates by adjusting parameters to maintain the desired charge state ratio,
demonstrating its robustness in real experimental conditions. This adaptability is crucial for long-
duration APT experiments where specimen evolution is inevitable. While this study focused on
silicon as a benchmark material with the Si*/(Si*+Si?*) ratio as the optimization target, the
framework developed here lays the foundation for extending this approach to more complex
materials and different optimization objectives. Future work should explore applications to
challenging systems such as oxides, where accurate compositional analysis remains problematic
due to preferential evaporation and detection biases. The integration of safety guardrails,
particularly the automatic voltage reduction during data processing, ensures specimen
preservation during optimization. This feature, combined with the system's ability to handle data
collection ambiguities and filter multiple ion detection events, creates a robust framework for
reliable APT parameter optimization. In conclusion, this work demonstrates the feasibility and
advantages of Al-driven automation in APT experimentation, offering a pathway toward more
systematic, reproducible, and efficient materials analysis. By reducing reliance on operator
expertise and trial-and-error approaches, this methodology has the potential to accelerate
discovery in materials science and expand the accessibility of high-quality APT analysis.
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Appendix A — List of experiments

In this section we report the RHIT codes of all the APT runs conducted to test and improve the
algorithm. In bold are highlighted the experiments that were completed and used to evaluate the
behavior of the algorithm. All raw data are stored in the central APT data server:
\\pnl.gov\Projects\APT DB\5031.

33520 35550 35551 35558 35595 35596 35683
35684 35691 35697 35704 35705 35707 35708
35709 35710 35715 35780 35782 35842 35845
35979 35980 35982 36203 36204 36220 36223
36306 36309 36310 36317 36319 36320 36321
36322 36323 36324 36325
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