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Abstract 
This study presents the development and implementation of an autonomous Bayesian 
optimization (BO) framework for controlling and optimizing experimental parameters in Atom 
Probe Tomography (APT). Using commercial silicon needle samples as a benchmark system, we 
demonstrate that BO can efficiently navigate the complex parameter space of voltage and laser 
power to achieve target charge state ratios (specifically Si+/(Si++Si2+)) with minimal experimental 
evaluations. Our implementation integrates Gaussian Process modeling with the CAMECA atom 
probe control framework, enabling autonomous adjustment of experimental conditions in real-
time. Results show that the algorithm successfully converges to target ratios under different 
scenarios: maintaining a reference ratio, increasing the ratio (favoring Si1+), and decreasing the 
ratio (favoring Si2+). The system adapts to specimen evolution during analysis, compensating for 
changes in apex geometry while maintaining optimization targets. This work establishes a proof 
of concept for AI-driven optimization in APT, addressing the traditional challenges of manual 
parameter tuning and paving the way for applications to more complex materials where 
compositional accuracy is critical. 
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Summary 
This study introduces an automated Bayesian optimization system for Atom Probe Tomography 
that intelligently controls experimental parameters to achieve specific charge state ratios. Using 
silicon samples as a test case, we demonstrate the algorithm's ability to efficiently navigate the 
voltage-laser parameter space, rapidly converging to optimal conditions that produce target 
Si+/(Si++Si2+) ratios within approximately 10 optimization steps. 

The implementation comprises three Python modules that handle machine learning optimization 
(ML_lib.py), hardware communication (AI_APT_lib.py), and workflow orchestration 
(Maestro_AIAPT.py). The system successfully addresses several technical challenges inherent 
to APT analysis, including binary data interpretation, timing ambiguities in data collection, and 
compensation for specimen evolution during analysis. 

Our testing confirms that the algorithm can effectively maintain, increase, or decrease charge 
state ratios by appropriately adjusting voltage and laser power combinations. In each scenario, 
the observed parameter adjustments align with theoretical predictions based on field evaporation 
physics and the Kingham model of post-ionization. Particularly notable is the system's ability to 
compensate for the changing specimen geometry during analysis by progressively adjusting 
parameters to maintain consistent field conditions. 

The integration of safety features, particularly voltage reduction during computational operations, 
allows for extended experimental runs while preserving specimen integrity. This automated 
approach significantly reduces the reliance on operator expertise and trial-and-error parameter 
tuning, promising improved efficiency, reproducibility, and accessibility in APT experimentation. 

This work establishes a foundation for applying AI-driven optimization to more complex materials 
and different optimization targets, potentially addressing longstanding challenges in accurate 
compositional analysis of systems prone to preferential evaporation and detection biases. 
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Acronyms and Abbreviations 
AI  Artificial Intelligence 
APT  Atom Probe Tomography  
BO  Bayesian Optimization 
GP  Gaussian Processes 
LEAP  Local Electrode Atom Probe 
ML  Machine Learning  
RBF  Radial Basis Function  
UCB  Upper Confidence Bound 
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1.0 Introduction 
Atom Probe Tomography (APT) is a powerful material characterization technique, enabling three-
dimensional atomic-scale imaging and compositional analysis of materials. Its utility has 
revolutionized fields such as nanotechnology, metallurgy, and semiconductors, where precise 
knowledge of the composition and the distribution of elements at the nanoscale level is critical to 
understanding structure-properties relationships1. Despite its strengths, the accuracy of the 
compositional data obtained via APT is highly dependent on experimental parameters such as 
laser power, detection rate, and specimen voltage. These parameters influence critical aspects 
of the analysis, from field evaporation behavior to ionization probabilities, and directly shape the 
resulting mass spectrum. An important challenge in APT experiments is identifying optimal 
parameter combinations that preserve the sample’s true composition in the collected data. This 
challenge is particularly critical for complex materials, such as oxides, where deviations in the 
detection of certain elements, especially oxygen, introduce significant errors in compositional 
analysis2–6. Accurate and systematic parameter optimization is therefore essential to ensure 
reliable APT data interpretation. 

Traditionally, optimizing APT parameters involves trial-and-error approaches, where operators 
iteratively adjust experimental conditions while assessing data quality and refining their choices. 
This process is time-consuming, relies heavily on operator expertise, and does not easily lend 
itself to systematic exploration of the vast experimental parameter space. Automating this 
optimization process would provide clear benefits, including reduced time and labor, higher 
reproducibility, and the potential for data-driven discovery of experimental conditions that might 
be overlooked in manual optimization. 

Machine learning (ML) has recently emerged as a powerful approach for automating experimental 
workflows, with Bayesian optimization (BO) standing out as a technique particularly well-suited 
for experimental parameter optimization. BO is a probabilistic machine learning framework for 
black-box optimization problems, where the objective function is expensive or noisy to evaluate, 
and the relationship between inputs and outputs is not explicitly known. By constructing a 
surrogate model of the objective function (often using Gaussian Processes, GPs), BO allows for 
efficient exploration of the experimental parameter space. Its iterative decision-making process 
balances exploration (investigating unknown regions of the parameter space) with exploitation 
(refining areas with promising results), enabling rapid convergence to optimal conditions with a 
minimal number of evaluations. This makes BO a compelling approach to address the challenges 
of optimizing APT parameters. 

In this study, we focus on implementing and testing Bayesian optimization as a framework for 
automating the control of APT experimental parameters. As a benchmark system, we use 
commercial silicon (Si) needle samples and target optimization of the ratio of singly charged (Si+) 
amongst the total of Si ions collected which includes Si+ and the doubly charged (Si2+) ions in the 
mass spectrum. The Si+/(Si++Si2+) ratio was chosen because it is well-documented to vary as a 
function of experimental parameters such as laser pulse energy and specimen voltage. 
Optimizing this ratio enables us to evaluate whether BO can reliably identify experimental 
conditions that achieve a specific, predetermined target ratio. While Si samples are relatively 
straightforward to analyze and may not require extensive optimization in routine studies, they 
present an ideal benchmark for developing and validating the BO framework due to their 
reproducibility, availability in large quantities, and historical role as standard samples in APT 
studies. 
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The primary focus of this work is the implementation of Bayesian optimization in the context of 
APT and its evaluation using a well-defined and measurable target: the Si+/(Si++Si2+) ratio. 
Specifically, we aim to demonstrate that BO can autonomously determine the experimental 
conditions necessary to achieve the target ratio with minimal experimental evaluations. Success 
in this benchmark system serves as a foundation for future work on more complex materials, such 
as oxides or multi-element systems, where deviations in compositional accuracy are a pressing 
concern. However, this study is deliberately focused on developing and testing the BO framework 
itself, leaving applications to more complex materials for future work. 

This implementation uses the gpax Python package for Gaussian Process-based Bayesian 
optimization and integrates it with the vendor-provided control framework for a CAMECA atom 
probe instrument. The system is designed to autonomously adjust experimental conditions (laser 
intensity and voltage), collect data on the resulting Si+/(Si++Si2+) ratio, and iteratively refine its 
predictions to converge to the target. This methodology builds on prior efforts from groups such 
as Felfer et al.7, who developed open-source tools for atom probe instrument control, and Gault 
et al.8, who explored machine learning-enhanced analysis of APT data. While existing work has 
emphasized data analysis and instrument accessibility, our study represents a complementary 
but distinct contribution: the automation and optimization of APT experimental parameters in real-
time. 

By demonstrating that BO can successfully optimize APT experimental conditions using the 
Si+/(Si++Si2+) ratio as a benchmark, we establish a critical proof of concept for the broader 
application of AI-driven optimization in APT. While the ultimate goal is to enable the accurate 
compositional analysis of more complex materials, such as oxides, this work provides the 
foundation for using BO to systematically and autonomously optimize experimental conditions, 
reducing reliance on trial-and-error approaches and paving the way for fully automated APT 
workflows. 

This project aims to transform the APT and its injection system into an autonomous platform 
capable of exploring and control experiments based on specific parameters such as the types of 
chemical species detected. To achieve this goal, two main limitations must be addressed: 
1. Modify the hardware to enable the APT to communicate electronically with computers. 
2. Develop a BO-based algorithm capable of communicating and guiding the APT experiment.  
The objectives of this project are:  
1. Replace the manual control of the parameters of interest.  
2. Install a PNNL-control computer capable of modifying experimental parameters.  
3. Deploy an algorithm on the PNNL-control computer capable to orchestrate the OAP 
experiment.  
 
This deployment has been executed on the LEAP4000 system in PNNL as first test phase but is 
meant to be extended to the other systems present in PNNL (LEAP5000 and LEAP6000). 
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2.0 Results and discussion  
2.1 Overview of Auto-APT workflow and its component  

The overall Ai-APT system has been divided in three 
separate python algorithms: 

1. ML_lib.py (BOlib): implements Bayesian 
optimization algorithms (blue) 

2. AI_APT_lib.py (APTlib) Handles communication 
with the atom probe hardware (orange) 

3. Maestro_AIAPT.py (Mstr): Orchestrates the 
overall workflow and provides user interface 
(green) 

Initialization Phase 
The optimization begins with user-defined parameters 
collected through the main interface (Mstr): 

 

These inputs initialize the ML system's parameter space. 
Then the BOlib creates an initial set of random sampling 
points across the parameter space to efficiently explore 
voltage and laser power combinations. 

Data acquisition loop 
For each set of parameters, the system: 

1. Sets voltage and laser power through CAMECA's 
communication protocol 

2. Collects ion data until reaching either the count 
threshold or time limit 

3. Processes the collected data to calculate charge 
state ratios 

The core of data collection happens in APTlib: 

 
 
 
 
 
Safety & Processing phase  

Figure 1: System architecture 
diagram showing the modular 

organization of the Ai-APT system 
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A critical safety feature is the automatic reduction of voltage during computationally intensive 
operations: 

 
The system then processes collected mass spectra to calculate the charge state ratio:  

 
This processing identify Si1+ ions and Si2+ ions and calculates the ratio of Si1+/Sin+tot. As first 
approach we have defined all the ions with a m/z comprised between 27 and 31 Da as Si1+ and 
all the ions between 13 and 16 Da as Si2+.  
 
Bayesian Optimization Phase  
The heart of the system is the Gaussian Process (GP) model that learns from each 
measurement: 

 
The algorithm objective is to generate a probabilistic recommendation for the optimal set of 

parameters at each step. Unlike conventional neural networks, which use fixed weights and 
provide point estimates, Bayesian neural networks (BNNs) treat weights as probability 
distributions, incorporating uncertainty into their predictions. Due to their probabilistic nature, 
BNNs are more robust to overfitting, offering a more nuanced understanding of the model's 
confidence in its predictions, especially when dealing with limited or noisy data. Given that this is 
a low dimensional but potentially non-linear problem, the BNN architecture will be limited to a 
simple few-layer perceptron with hyperbolic tangent activations. In comparison of the most 
commonly used Gaussian process (GP), the BNN is faster at the prediction stage, and scales 
much better with increasing data size. For the voltage recommendations, we use a standard 
Bayesian inference approach: 

𝑝𝑝(𝑊𝑊,𝜎𝜎obs|𝑌𝑌,𝑋𝑋) ∝ 𝑝𝑝(𝑌𝑌|𝑋𝑋,𝑊𝑊,𝜎𝜎obs)𝑝𝑝(𝑊𝑊)𝑝𝑝(𝜎𝜎obs)   (1) 
 

where X and Y are the parameter sets (voltage and laser power) and composition values, 
respectively, 𝑝𝑝(𝑊𝑊,𝜎𝜎obs|𝑌𝑌,𝑋𝑋) is the posterior distribution representing our beliefs about the BNN 
weights (W) and the model noise level (𝜎𝜎obs) after seeing the available data (Y, X), 𝑝𝑝(𝑌𝑌|𝑋𝑋,𝑊𝑊,𝜎𝜎obs) 
is the likelihood function and 𝑝𝑝(𝑊𝑊) and 𝑝𝑝(𝜎𝜎obs) are the prior distributions over the BNN weights 
and the noise level. The posterior in (1) can be used to derive a probabilistic recommendation 
about the next value of applied parameters by performing Markov chain Monte Carlo (MCMC) 
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sampling from it, �𝑊𝑊(𝑖𝑖),𝜎𝜎obs
(𝑖𝑖) �

𝑖𝑖=1

𝑁𝑁
~ 𝑝𝑝(𝑊𝑊,𝜎𝜎obs|𝑌𝑌,𝑋𝑋). Then, the next parameter set is selected 

according to 
𝑥𝑥next = argmax

𝑥𝑥∗
 (𝜇𝜇∗ + 𝛽𝛽𝜎𝜎∗2) (2) 

𝜇𝜇∗ =
1
𝑁𝑁
� 𝑔𝑔�𝑥𝑥∗;𝑊𝑊(𝑖𝑖),𝜎𝜎obs

(𝑖𝑖) �
𝑁𝑁

𝑖𝑖=1
, (3) 

𝜎𝜎∗2 =
1

𝑁𝑁 − 1
� � 𝑔𝑔 �𝑥𝑥∗;𝑊𝑊(𝑖𝑖),𝜎𝜎obs

(𝑖𝑖) � − 𝜇𝜇∗ �
2𝑁𝑁

𝑖𝑖=1
 (4) 

where g is a Bayesian neural network model, 𝑥𝑥∗ is the space of all possible voltage values, and 𝛽𝛽 
is a coefficient controlling the exploration-exploitation trade-off. 

The choice between RBF (Radial Basis Function) and Matern kernels significantly impacts the 
optimization behavior: 
RBF Kernel: 

• Assumes an infinitely differentiable (extremely smooth) relationship between parameters 
and charge state ratios 

• Produces smoother predictions with strong correlations between nearby points 
• More confident in its predictions but potentially less robust to abrupt changes 

Matern Kernel: 
• Allows for less smooth functions with finite differentiability 
• Better captures physical processes that may have transitions or discontinuities 
• More conservative in predictions, especially with limited data 
• More flexible for modeling realistic physical relationships in the atom probe 
• Mathematically expressed as a generalization that includes a smoothness parameter 

The model balances exploration of unknown regions with exploitation of promising areas using 
the Upper Confidence Bound (UCB) acquisition function. The next experimental point is selected 
to maximize information gain. While we first used the RBF kernel, we quickly used only the Matern 
kernel because of its better time efficiency.  
 
 
 
Visualization Phase 
After each measurement, comprehensive visualizations and their corresponding .csv data files 
are generated including: 

1. GP standard deviation maps showing prediction uncertainty 
2. Acquisition function plots highlighting promising regions 
3. GP mean predictions showing the expected performance across parameter space 
4. Mass spectra histograms showing the raw data 

 
Finalization Phase 
Upon reaching the step limit, the system identifies the best parameters from the GP model: 

 
It then verifies these parameters by collecting a final dataset and reporting the achieved charge 
state ratio. 
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2.2 Key commands and their role  

The system uses specific commands from the CAMECA Imago LEAP Command Protocol to 
interact with the atom probe hardware. Every LEAP system follows the same overall architecture: 
the different controls, gauges and detectors of the instrument are connected to a main server that 
communicates with a PC_client that handles the user interface. The PNNL computer on which 
the Ai-APT algorithm is running has been connected to the LEAP4000 server via an ethernet 
splitter: 

 
Figure 2: Network architecture diagram showing connection between Ai-APT system and the 

LEAP server 

The connections to the server are established through three different ports: 

• The command port 8080 handles the instrument status information and data collection: 

 

• The command port 1000 handles voltage control: 

 

• The command port 1100 handles laser control: 

 

CAMECA engineers provided the following command to provide the Ai-APT algorithm some 
controls of the instrument: 

• Hardware controls commands: 
o "1 LASControl ACQ AUTO VOLT ENA FALSE\n": Disables automatic voltage 

control, enabling manual parameter adjustment 
o "1 LASControl HV SET SPECIMEN VOLTS {volts}\n": Sets specimen voltage 

to specific value 
o "1 LPS ENERGY SET POINT SET {power} 2\n": Sets laser power in picojoules 

• Data acquisition commands: 
o "1 LASServer SendData\n": Requests ion detection data from the atom probe 
o "1 LASServer SendStats\n": Requests system statistics including voltage and 

event rates 
These commands form the critical interface between the optimization algorithm and the physical 
hardware. 

2.3 Challenges in data collection and conversion 

Binary data interpretation, structure and conversion 
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The atom probe delivers raw binary data that must be carefully decoded. Each ion detection is 
represented as a series of 32 bit DWORD called “records”. Each records have many tags, but 
only four of interest in the context of this work: 
Tag 15 (0x0F): X position of the ion, tag 16 (0x10): Y position of the ion, tag 17 (0x11): time of 
flight of the ion, tag 18 (0x12): mass-to-charge ratio.  

The units of the mass record are 1/1024th of one Dalton and the X_POS and Y_POS units are in 
“LSBs” and are defined by the calibration done at the factory (in our LEAP4000 model, LSBs are 
in the order of 0.0387mm).   

The different conversions are handled as soon as the raw data collected: 

 

Data collection timing ambiguity  
A significant challenge arises from the atom probe's data collection mechanism: 

 
Each data request retrieves all ions detected since the previous request, creating potential 
ambiguity about parameter correlation. If voltage or laser settings were changed recently, the 
collected dataset may contain ions from multiple parameter configurations. The system must 
account for this by: 

• Implementing appropriate settling time after parameter changes 
• Clearing accumulated data before starting a new measurement 
• Ensuring sufficient statistics at each parameter setting 

Multiple ion detection filtering 
When multiple ions are detected from a single laser pulse, data quality can be compromised: 

 

The system explicitly ignores these multiple-hit events to maintain data quality, but this reduces 
data collection efficiency. This filtering mechanism helps ensure that mass-to-charge calculations 
remain accurate but requires longer collection times to achieve sufficient statistics. 
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2.4 Safety and guardrails  
APT is a destructive technique. Inherently, the specimen changes over time because APT 
requires removing material to analyze it, but the constant allowing to extract the surface atoms: 
the field evaporation remains the same.  
 
During an APT analysis, the applied voltage and laser are used to increase the surface electric 
field until it starts to extract surface atoms as ions. The value of the electric field at the surface 
also conditions the charge status of those ions. While evaporating the surface, the apex radius 
increases, and, subsequently, the intensities of applied voltage and/or laser power also increase 
to reach the same applied electric field.  
 
One of the main challenges was to implement sufficient guardrails for the algorithm to balance its 
capability to explore the space of parameters but in the same time, avoid parameter situations 
that are so destructive for the specimen that it changes it too much. While we are expecting the 
BO to track a “moving target” it is important to establish enough guard rails. 
The solution implemented is to include a systematic voltage decrease of several thousands of 
volts after each data collection to preserve the sample while the data processing that can take 
several minutes due to current hardware limitations.  
 
This approach is directly visible in the voltage plot of the experiment where we can directly 
voltage peaks every time the system is collecting data to make a better decision: 

 
Figure 3: Voltage profile showing safety reductions during data processing phases 

2.5 Brief description of the laser-assisted field evaporation in atom 
probe tomography 

Field evaporation is a natural phenomenon in which surface atoms rupture into ions under the 
influence of a high electric field. This process is probabilistic and is influenced by the quantum 
tunneling effect and thermal activation. To increase the probability of field evaporation, one can 
either increase the electric field or raise the temperature of the specimen's apex, as the latter 
reduces the energy barrier for ionization. In modern atom probe tomography, this dual approach 
is achieved by combining a high applied voltage with laser-assisted heating. 
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The applied voltage directly generates a strong electric field at 
the apex of the needle-shaped specimen, while laser illumination 
provides thermal energy, briefly increasing the local temperature 
at the apex. As the specimen is heated, less electric field is 
required to achieve the same probability of field evaporation. For 
instance, silicon atoms initially require approximately 33 V/nm at 
60 K to field evaporate, but at 300 K, the required electric field 
would be drastically reduced. This effect is observable in the 
mass spectra, where the relative abundance of differently 
charged ions shifts. In voltage mode, the process primarily 
produces doubly charged ions (Si²⁺), but under laser-assisted 
conditions, singly charged ions (Si¹⁺) become more prominent 
due to the reduced field requirement. A phenomena reported by 
DR Kingham in his fundamental work focusing on the post-
ionization of field evaporated ions, predicting the ratio of different Sin+ species depending on the 
applied electric field on the surface (Figure 4).  

Another critical aspect of field evaporation is the evolving geometry of the needle-shaped 
specimen during analysis. As atoms are removed layer-by-layer, the apex becomes duller and 
more voluminous, altering its geometry. Consequently, sustaining a constant electric field—and 
hence a consistent probability of field evaporation—requires progressively higher applied voltage 
and potentially greater laser power to maintain adequate thermal energy at the apex. 

If we were to map the probability of field evaporation as a function of voltage and laser power, we 
could visualize "iso-probability fronts" (Figure 5), which represent combinations of voltage and 
laser power that yield the same probability of evaporation. As the specimen becomes duller during 
the experiment, these iso-probability fronts shift upward and to the right, reflecting the need for 
increased voltage and laser power to compensate for the geometric changes and sustain the field 
evaporation process. 

 
Figure 5: Illustration of iso-probability fronts in voltage-laser parameter space and its evolution 

while the specimen needle is evaporated 

 

2.6 Results and discussion  

While numerous tests were conducted to adjust the safety guardrails and observe the behavior 
of the algorithm, we will present in this section the three finals test confirming the effectiveness of 
the algorithm in its current version. 

Figure 4: Kingham plot of Si 
post ionization in presence of 

electric field 
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Each test is conducted on the same Si specimen which presents a 001 configuration, easily 
recognizable by the hitmap of the evaporated atoms on the detector forming a cross. After laser 
calibration in its X,Y axis and its focus, the sample is run in the APT following default values of 
analysis. The system is programmed to analyze the Si specimen using a 60pJ laser power pulsing 
at 125kHz, while adjusting the applied voltage in sort to get an average of 0.5% detection rate. 
This rate means that, in average, the system collects 625 signals per second.  

Launching the Ai-APT system, the automatic control of the voltage and the laser position are 
suspended, giving up the controls of the voltage and laser power to the Ai-APT system. A first 
ratio analysis is performed: the system collects by default 2000 counts before returning a ratio. 
This ratio is collected three times and averaged to be used as a reference ratio rref from which a 
target ratio rtar will be determined arbitrarily. 

  
Figure 6: Hitmap of the Si specimen used in the experiments. 

All the tests were performed by requesting the collection of 5000 counts over a time period limited 
to 60 seconds. The number of initial steps were set to 2 while the number of machine learning 
steps were set to 50.  

 

rtar = rref case 
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In this test the Si ratio of interest is 
manually found is 0.36 and the target 
ratio is set at 0.36. The Ai-APT 
algorithm is supposed to seek the 
same ratio and, logically, we can 
expect that the system finds an 
optimal set of parameters close to the 
original ones. 

At the beginning of the experiment, 
this Si specimen needed 7156V and 
60pJ to get a Si ratio of 0.36 and the 
final optimal result found by Ai-APT is 
7356V and 63pJ. When we examine 
the evolution of the score, which is the 
difference between the ratio 
measured and the target ratio, we can 
see that the algorithm is rapidely 
finding a promising set of parameters, 
reaching the optimal zone of parameter by the step 10. The examination of the GP Mean plot and 
how the parameters are explored, we can see that the algorithm explore the limits of the 
parameter ranges before rapidly find a zone of interest to focus on.  

Figure 7: Score plot measuring the differential between 
the target ratio and the measured ratio over two initial 
steps and 50 main optimization steps. The initial ratio is 
0.36 and the target ratio is 0.36. 



PNNL-38576 

Results and discussion 12 
 

 
Figure 8: Overlay of the BO exploration path across the laser/voltage parameter space in 2+50 
steps and the GP mean plot of the parameter space at the 50th step. Here the algorithm starts 
from a ratio of 0.36 and targets a ratio of 0.36.  

While the final set of parameters found is close to the original parameters, we still can observe a 
difference with the voltage increasing and the laser increasing. Normally, for a fixed ratio we are 
looking for a fixed applied electric field and subsequently a fixed set of parameters. This difference 
is explained by the fact that each measure requires it to probe the specimen, which makes it 
evolve. After each measure, a quantity of Si atoms is removed from the specimen which increases 
the radius curvature of the apex. This change of radius curvature means that to reach the same 
level of electric field, we need to increase the applied voltage.  
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rtar > rref case 

When we request to increase the 
ratio, the algorithm will seek a set of 
parameters that favor the 
emergence of Si1+ vs Si2+. In this 
particular case, the specimen was 
presenting a ratio of 0.36 with an 
applied voltage of 7268 V and a 
laser power of 60pJ. The target 
ratio, set at 0.65, is reached by 
reducing the voltage and increasing 
the laser power to, respectively, 
7018V and 100pJ. On the GP Mean 
plot, we can observe the behavior of 
the algorithm that rapidly migrates 
toward higher laser powers and 
lower applied voltage by step 6, 
reaching the upper limits of the laser 
power.  

Such behavior is expected and follows the trend predicted by DR Kingham plots. By increasing 
the laser power, the system increases the probability of field evaporation while requiring a lower 
applied electric field.  

rtar < rref case 

When we request to increase the 
ratio, the algorithm will seek a set 
of parameters that favor the 
emergence of Si2+ vs Si1+. In this 
particular case, the specimen was 
presenting a ratio of 0.23 with an 
applied voltage of 8175 V and a 
laser power of 60pJ. The target 
ratio, set at 0.15, is reached by 
increasing the voltage and 
decreasing the laser power down 
to, respectively, ~8675V and 40pJ. 
On the corresponding GP Mean 
plot, we can observe that the 
algorithm reaches the optimal zone 
of parameters after the 5 step, 
before exploring with different laser 
power while maintaining high voltages.  

As for the other cases this behavior is expected and follows the prediction of DR Kingham. To 
maintain a reasonable probability of field evaporation while decreasing the laser power, the 
system relies more on the intensity of the applied electric field. With a more intense electric field 
during the field evaporation, the occurrence of a second ionization of the Si ions increases as 
well.  

Figure 9: Score plot measuring the differential between the 
target ratio and the measured ratio over two initial steps and 
50 main optimization steps. The initial ratio is 0.36 and the 
target ratio is 0.65. 

Figure 10: Score plot measuring the differential between the 
target ratio and the measured ratio over two initial steps and 
50 main optimization steps. The initial ratio is 0.23 and the 
target ratio is 0.15. 
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Figure 11: Overlay of the BO exploration path across the laser/voltage parameter space in 2+50 
steps and the GP mean plot of the parameter space at the 50th step. Here the algorithm starts 
from a ratio of 0.36 and targets a ratio of 0.65.  
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Figure 12: Overlay of the BO exploration path across the laser/voltage parameter space in 2+50 
steps and the GP mean plot of the parameter space at the 50th step. Here the algorithm starts 
from a ratio of 0.25 and targets a ratio of 0.15 
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3.0 Future development and perspectives 
While our implementation successfully demonstrates the viability of BO for controlling voltage and 
laser power in APT, significant opportunities exist for expanding control capabilities and 
enhancing safety guardrails. Two distinct paths for expanding system controls emerge: vendor-
dependent integration and graphic user-interface (GUI) augmentation. 

The vendor-dependent approach involves collaboration with CAMECA to gain access to 
additional control protocols beyond those currently implemented. This approach offers 
advantages in reliability and official support, potentially enabling more deeply integrated 
functionality and access to protected instrument features. However, this path may be limited by 
vendor prioritization, development timelines, and proprietary restrictions, potentially limiting rapid 
innovation and customization. 

Alternatively, the GUI-based approach involves developing interface automation tools that interact 
with the existing software interface rather than direct command protocols. This method provides 
greater flexibility and independence from vendor constraints, allowing for faster implementation 
of novel features and customized workflows such as combining the instrumental control system 
to a large language model (LLM). However, this approach may face challenges with robustness, 
particularly during software updates, and lacks the stability guarantees of vendor-supported 
solutions. Such customized approach will require long-term in-house support. 

Regardless of the integration approach selected, we must acknowledge that the algorithm can 
control the experiment only as well as its human counterpart would with the same level of controls. 
The main bottleneck for achieving fully autonomous experiments is providing comprehensive 
control over all aspects of the experimental process. Pulse frequency modulation represents a 
critical parameter for optimizing detection efficiency and reducing multiple-hit events. Automated 
laser positioning control would enable spatial optimization across the specimen apex, potentially 
improving evaporation uniformity. Similarly, sample positioning optimization could enhance data 
collection consistency. Detection rate monitoring and automatic adjustment would allow the 
system to maintain optimal analysis conditions throughout extended runs, particularly important 
for specimens with varying evaporation characteristics. Moreover, the system requires the 
capacity to not only identify masses of interest on the mass spectra, but also analyze their relative 
intensities, profiles, overlays, and other spectral features—capabilities that human operators 
routinely employ, sometimes passively.  

This highlights a fundamental principle: an AI-driven system can only match or exceed human 
performance when granted the same or greater level of control over experimental parameters. 
Without equivalent access to all the controls available to human operators, even the most 
sophisticated algorithm will remain constrained by its limited influence over the experimental 
apparatus. 

A particularly promising development is the integration of electronic valve controls for reactive gas 
introduction, recently installed and currently in testing phase. This capability would enable 
automated Field Ion Microscopy (FIM) and Operando Atom Probe (OAP) visualization between 
APT runs for in-situ sample condition assessment.  

Equally important is the development of enhanced safety guardrails that better preserve specimen 
integrity throughout autonomous operation. Current voltage-reduction measures provide basic 
protection, but more sophisticated approaches are needed. These include implementing multi-
parameter safety envelopes that adapt based on real-time specimen response, detection rate 
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monitoring with automatic intervention when approaching critical thresholds, and pattern 
recognition algorithms capable of identifying incipient specimen failure before destructive events 
occur. 

Advanced guardrails could incorporate predictive modeling of specimen evolution during analysis, 
anticipating geometric changes and preemptively adjusting parameters to maintain stable field 
evaporation conditions. This would be particularly valuable for heterogeneous materials where 
evaporation behavior can change dramatically at interfaces or precipitates. 

Developing these enhanced controls and safety features while maintaining the core advantages 
of BO represents the next frontier in autonomous APT experimentation. The ideal implementation 
would combine the reliability of vendor-approved controls with the flexibility of user-defined 
automation, creating a system capable of safely exploring complex parameter spaces across 
diverse material systems while preserving specimen integrity throughout the experimental 
process. 
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4.0 Conclusion  
The successful implementation and validation of a Bayesian optimization framework for 
controlling atom probe parameters represents a significant advancement in automating APT 
experimentation. Our results demonstrate that the BO algorithm can effectively navigate the 
voltage-laser parameter space to achieve target charge state ratios in silicon samples, converging 
rapidly within approximately 10 steps across various scenarios. This efficiency highlights the 
potential for reducing both experiment duration and operator intervention in APT studies. The 
system's ability to adapt to the evolving specimen geometry during field evaporation is particularly 
noteworthy. As the specimen apex becomes duller throughout the experiment, the algorithm 
automatically compensates by adjusting parameters to maintain the desired charge state ratio, 
demonstrating its robustness in real experimental conditions. This adaptability is crucial for long-
duration APT experiments where specimen evolution is inevitable. While this study focused on 
silicon as a benchmark material with the Si+/(Si++Si2+) ratio as the optimization target, the 
framework developed here lays the foundation for extending this approach to more complex 
materials and different optimization objectives. Future work should explore applications to 
challenging systems such as oxides, where accurate compositional analysis remains problematic 
due to preferential evaporation and detection biases. The integration of safety guardrails, 
particularly the automatic voltage reduction during data processing, ensures specimen 
preservation during optimization. This feature, combined with the system's ability to handle data 
collection ambiguities and filter multiple ion detection events, creates a robust framework for 
reliable APT parameter optimization. In conclusion, this work demonstrates the feasibility and 
advantages of AI-driven automation in APT experimentation, offering a pathway toward more 
systematic, reproducible, and efficient materials analysis. By reducing reliance on operator 
expertise and trial-and-error approaches, this methodology has the potential to accelerate 
discovery in materials science and expand the accessibility of high-quality APT analysis. 
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Appendix A – List of experiments  
In this section we report the RHIT codes of all the APT runs conducted to test and improve the 
algorithm. In bold are highlighted the experiments that were completed and used to evaluate the 
behavior of the algorithm. All raw data are stored in the central APT data server: 
\\pnl.gov\Projects\APT_DB\5031.  

33520 35550 35551 35558 35595 35596 35683 

35684 35691 35697 35704 35705 35707 35708 

35709 35710 35715 35780 35782 35842 35845 

35979 35980 35982 36203 36204 36220 36223 

36306 36309 36310 36317 36319 36320 36321 

36322 36323 36324 36325    
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