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Abstract

This study explores a bio-inspired approach for memristive devices by combining Keggin-type
polyoxometalates (POMs)-[SiW12040]s (POM-T) and [PW12040]3 (POM-P), with silk fibroin (SF) to
create 2D SF—POM layers on highly ordered pyrolytic graphite (HOPG) as resistive switching
layers for memristors. We propose that the ordered SF layer template 0D POMs facilitate the
formation of conductive filaments, thereby enhancing the variability of the manufactured
memristors. AFM analysis revealed that both SF and SF—POM layers shared similar
morphologies, while SF-POM-T formed larger aggregates, likely due to the stronger acidity of
POM-T, which probably caused SF to aggregate and alter its secondary structure. Scanning
Kelvin probe microscopy (SKPM) revealed that POMs reduced the contact potential difference
of HOPG, resulting in lower work functions. Compared to an SF device, the SF-POM-P device
showed improved memristive behavior, with a larger current gap and good repeatability over
multiple sweeps; whereas the SF-POM-T device did not exhibit memristor activity, likely due to
acidity-induced disruption of the SF template’s order and CF formation. More importantly, SF—
POM-P devices also demonstrated programmable memristive states. Finally, combining
simulation-driven memristor modeling, we showcase a co-design workflow for advancing
bioinspired memristors through new materials design, synthesis, and device modeling and
development.
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Summary

We examined SF—POM resistive switching layers for bio-inspired memristors by leveraging
facilitated CF formation through templated POMs. AFM showed that SF and SF—POM layers
have similar in-plane morphologies, while SF-POM-T formed larger aggregates due to the
stronger acidity of POM-T. SKPM measurements revealed work-function reductions for the
assembled layers: SF = 4.59 eV, SF-POM-P = 4.27 eV, and SF-POM-T = 4.00 eV. At the
device level, |-V curves indicate that SF-POM-P demonstrated improved memristive
performance, characterized by a larger current gap and good repeatability across sweeps,
whereas SF-POM-T showed no memristive activity, likely due to the disruption of crystallinity
by acidity. Notably, SF-POM-P devices exhibited programmable memristive states, evidenced
by current jumps between 1 and 2 V, consistent with the redox versatility of POM clusters.
These results suggest that co-assembling SF with POMs can tune energy barriers and enable
tunable, programmable, energy-efficient memristors. POM-P delivered superior performance,
while POM-T highlights the important role of the chemical environment in modulating the order
of the resistive switching layers and CF formation. This work supports a co-design approach for
bio-inspired low-energy electronics, driven by simulation modeling for device design. Future
efforts will focus on optimizing POM selection, SF crystallinity, and interface engineering to
maximize device yield and stability. This project addresses the basic research need for
microelectronics to “flip the current paradigm: define innovative material, device, and
architecture requirements driven by applications, algorithms, and software.”
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Acronyms and Abbreviations

AFM: Atomic Force Microscopy

HOPG: Highly Ordered Pyrolytic Graphite

I-V: Current-Voltage

POM: Polyoxometalate

SF: Silk Fibroin

SF-POM-P: Silk Fibroin—Polyoxometalate—Phosphorus
SF-POM-T: Silk Fibroin—Polyoxometalate—Tungsten

SPICE: Simulation Program with Integrated Circuit Emphasis
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1.0 Introduction

Dennard scaling suggests that as transistors shrink, their dimensions and supply voltage
decrease together to maintain constant power density. However, this no longer applies around
90-nm technology because leakage currents and short-channel effects prevent voltage scaling,
leading to increased power density. (Johnsson and Netzer 2016; Lu et al. 2022) Therefore,
developing new materials to enhance the energy efficiency of transistors—achieving better
performance without raising power consumption—is crucial for advancing semiconductor
technologies. (Shi et al. 2021)

Biological systems exhibit remarkably low-energy mechanisms for information transmission and
electric energy transformation, enabled by the hierarchical organization of multi-component
biomacromolecules. (Noy, Artyukhin, and Misra 2009; Wei et al. 2022) Biological synaptic power
consumption is ~ 10 fJ per synaptic event (Wang et al. 2023), much less than that of widely
used inorganic transistors. Additionally, biological memristors have the advantages of non-
volatile storage and fast processing speed. Drawing inspiration from biological synapses, bio-
inspired memristors are attracting significant attention for their potential to revolutionize
computing, energy-efficient electronics, and bio-integrated technologies, representing a
paradigm in neuromorphic computing and microelectronics. (Kim et al. 2022; Shi, Heble, and
Zhang 2024; Shi et al. 2020) However, one essential challenge of the bio-inspired memristors is
the variability between devices and measurements. (Wang et al. 2023; Shi et al. 2020; Shi et al.
2021) Generally speaking, the operation and mechanism of memristors are controlled by the
formation of conductive filaments (CFs) through resistive switching layers. (Kaniselvan et al.
2025; Mehonic et al. 2020) The efficient information transfer in bio-inspired memristors hinges
on the reliable formation and dissolution of CFs, which are determined by crystallinity, defect
density, and interfacial stability with electrodes. (Mehonic et al. 2020; Shi et al. 2021) Therefore,
developing a biomimetic resistive switching layer with a controlled structure and associated CF
formation is essential for improving biomemristors’ performance.

Our recent work achieved a new 2D crystalline phase of silk fibroin (SF) self-assembled on
graphite and MoS, exhibiting an epitaxial relationship with the underlying lattice. (Shi et al.)
Additionally, this assembly reduces the surface potential of highly oriented pyrolytic graphite
(HOPG), significantly lowering the barrier to metal ion migration during CF growth and
increasing the transport rate of charged particles in protein films. (Shi et al. 2019; Shi et al.) In
this seed LDRD, we developed a novel strategy using 2D silk crystal films to template zero-
dimensional semiconducting nanoclusters, polyoxometalates (POMs) (Chen et al. 2018),
through advanced molecular epitaxial growth at HOPG-liquid interfaces for bio-inspired
memristors. We employed scanning Kelvin force microscopy (SKPM) to characterize the work
function (WF) of the synthesized 2D layer and discovered that POMs effectively tune its work
function to facilitate electron injections. Additionally, we fabricated memristors utilizing the silk-
POM 2D layer as the resistive switching component and used |-V measurements to
demonstrate improved stability, repeatability, and programmable memristive states. Finally, we
used simulation-driven memristor modeling to explore the feasibility of the co-design workflow
for SF-POM memristors. This seed project establishes a co-design methodology, initiates
characterization, forms a collaborative team bridging new materials synthesis and device
design, and offers a roadmap for the practical testing and prototyping of innovative
microelectronics devices.

Introduction 1
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2.0 Project results

2.1 2D SF-POM layers

In this work, we selected two Keggin-type POMs, [SiW12040]* (POM-T) and [PW12040]* (POM-
P), to synthesize 2D-SF-POM layers on HOPG. (Figure 1A) We combined a 10 mg/ml SF
solution with a 1 mg/ml POM solution in water, then drop-cast the mixture onto a freshly cleaved
HOPG surface (Figure 1B) and dried it. AFM images show that the SF and SF-POM-P layers
have similar morphologies (Figure 1C and 1E), while the SF-POM-T layer contains some large
aggregates (indicated by the arrow in Figure 1D). Both POM-T and POM-P are 0D nanoclusters
smaller than 1 nm in diameter. However, POM-T is more acidic than POM-P. AFM
measurements suggest that, although the small size of POMs allows for good distribution within
the SF layer without disrupting in-plane order and morphology, the acidic conditions caused by
POM-T (pH 1-2) may lead to SF aggregation and changes in secondary structure. Additionally,
we used SKPM to measure the surface potentials of the synthesized SF-POM layers. Previous
research showed that the standard SF layer can lower the contact potential difference (CPD) of
HOPG by about 60 mV.(Shi et al.) Figure 1F shows that the presence of POMs further
decreases the CPD by several hundred millivolts. Using the equation @sampie = @iip — €-CPD,
where @sample and @gp are the work functions (WFs) of the sample and AFM tip, respectively, and
considering the known WF of HOPG (4.65 eV), we calculated the WFs of the SF, SF-POM-P,
and SF-POM-T layers as 4.59 eV, 4.27 eV, and 4.00 eV, respectively. Therefore, employing the
co-assembled 2D SF-POMs as the resistive switching layer in memristors is expected to
enhance electron injection and filament formation, as well as energy efficiency.

30.00 nm
25.00
20.00
15.00
10.00

5.00
0.00

1 —HOPG — SF-POM-P —SF-POM-T

2
8

o5 o4 o3 o2
surface potential (V)

Figure 1. 2D SF-POM layers and characterizations. A) the structures of POM-T and POM-P. B-
E) the AFM height images of bare HOPG, SF on HOPG, SF-POM-T on HOPG, and
SF-POM-P on HOPG, respectively. F) the measured surface potential of HOPG, SF-

POM-P, and SF-POM-T, respectively.

2.2 SF-POM memristors
We further used the SF and synthesized SF-POM as resistive switching layers to fabricate
memristors in a vertical configuration (Figure 2A and 2B). Figure 3C shows the |-V

measurement of a pure-SF memristor. It exhibits poor switching and memristive performance,
with a small current gap between the opposite voltage sweep directions. In contrast, the SF-

Project results 2
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POM-P device shows enhanced memristive performance with a larger current gap (Fig. 2D).
Furthermore, the |-V curves demonstrate good repeatability after five consecutive sweeps. This
suggests that the CF growth during the voltage sweep is facilitated by the POM-P clusters, due
to the reduced WF and regulated electron migration. Encouragingly, the I-V curves of the SF-
POM-P device display several current jumps between 1 V and 2 V (Figure 2E). These jumps
indicate programmable memristive states, leveraging the programmable and reversible
reduction-oxidation states of POM clusters (Moors and Monakhov 2024; Primera-Pedrozo et al.
2023). Therefore, the synthesized SF-POM-P 2D layers have promising applications in
improving memristor variability, increasing information density, and enhancing energy efficiency
through programmable memristor states. Lastly, the SF-POM-T device did not show any
memristor performance (data not shown). One possible reason is that the acidic condition of
POM-T, pH 1-2, decreases the structural homogeneity of the 2D-SF-POM-T layer (indicated by
the arrow in Figure 1D) and disrupts the crystallinity and secondary structure of the SF template.
Although the SF-POM-T layer has a lower WF than SF-POM-P, the device using SF-POM-T as
the resistive switching layer performed poorly. This highlights the importance of co-designing
when developing new memristors.

A

/ k i
, © ///4' : © / 7ﬂ 1
) 8 W 7
Wl -

Figure 2. SF-POM-P device. A) the device configuration. B) the photo of a fabricated SF-POM
device. C) I-V curve of pure Silk memristor. D) f|ve consecutive swept |-V curves of
the Silk-POM-P memristor. E) the zoom-in I-V curve from Panel D referring to various
memristor states (1st-3rd). The arrows indicate the directions of the voltage sweeps.

2.3 Simulation-driven memristor modeling for device co-design

In parallel with the design and synthesis of SF-POM materials, as well as the associated device
fabrication and testing, our team explores the feasibility of building a co-design framework for
the SF-POM device using a simulation program with integrated circuit emphasis (SPICE) model
to simulate the device. (Figure 3A) SPICE simulation can drive memristor co-design by giving
materials scientists and device engineers a shared, actionable representation of a device,
speeding up iteration between device discovery and circuit integration. (McAndrew et al. 2025;
Li and Shi 2021) The simulation from the SPICE model will translate measured |-V hysteresis
into a small set of parameter changes and run virtual experiments (sweep amplitude, frequency)
that would be slow or costly in the lab. Additionally, device designers can plug the same model
into driver, sense amplifier, and array simulations to test read/write margins, variability
sensitivity, and failure modes before hardware is fabricated.

Our approach uses measured |-V data and design space exploration, with the Bouc—Wen

model (Ismail, Ikhouane, and Rodellar 2009; Ikhouane, Manosa, and Rodellar 2007) providing a
mathematical foundation. The Bouc—Wen is a compact phenomenological model of hysteresis

Project results 3
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that uses a single internal state variable, which changes in response to the electrical stimulus.
This variable, along with a simple conductance law, creates the characteristic I-V loops seen in
many memristive devices, all with a small set of intuitive parameters—our SPICE. .subckt
implementation exposes 14 adjustable parameters (k, alpha0, alphad, pshape, vscale, A, beta,
gamma, n, Cdiff, zinit, zleak, zscale, and gfloor), some of which control the static |-V shape and
pinching, while others govern the internal-state dynamics, affecting the loop width and rate
effects.

The design space exploration employs a multi-stage Python pipeline that evaluates parameter
sets based on their alignment with the |-V loop shape, timing, peak currents, and origin slope of
experimental data. This step-by-step approach ensures the final parameter set is not only a
good numerical fit but also reflects physically meaningful device behavior, making it robust for
larger circuit simulations. The resulting SPICE model integrates seamlessly into standard
simulation workflows and is especially suited for low-frequency or quasi-static experiments
(seconds to minutes), where Bouc—Wen assumptions hold best. (Figure 3B) This demonstrates
that the developed SPICE model can explore the design space of the SF-POM device to guide
the development of SF-POM memristors, including material choices and device scales for a co-

design workflow.
A SPICE Analog
Silk-fibroin Design space 3 c A
IV data exploration e ompgtatlon
models units

|-V overlay

0.0100 A
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Figure 3. Simulation-driven memristor modeling. A) the workflow of the simulation-driven circuit
design. B) the raw |-V curve of an SF memristor and the simulated IV-curve using the
Bouc—-Wen model.
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