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Abstract 
Our objective is to develop an Autonomous Chemical Experimentation (ACE) platform that 
accelerates discovery of new catalytic transformations and other energy-relevant chemical 
reactions and processes. We intentionally designed ACE to be highly modular, both with respect 
to its rapid deployment to different chemistries and experimental workflows as well as 
incorporation of a wide range of different AI algorithms. In addition to the development of the core 
software architecture, initial efforts were made to incorporate Large Language Models to provide 
human-interpretable reasoning of the optimizer’s actions, and to develop a user-friendly graphical 
interface for experimental researchers. ACE was demonstrated using a flow electrocatalysis 
platform containing an inline FTIR spectrometer for real-time analysis and quantification of the 
reaction outcome. Human-in-the-loop experiments were performed in which a human researcher 
conducted an experiment using electrode potentials suggested by ACE, then fed the spectral data 
back to ACE for decision making. After confirming the successful function of the optimizer, efforts 
were next directed to automation of the hardware and performed full autonomy tests using three 
reactions: catalytic oxidation of formate, catalytic oxidation of cyclohexanol, and oxidation of 
hydroquinone. These studies confirm that ACE can close the loop between reaction execution, 
analysis, and optimization. They also reveal that more improved product detection methods will 
be essential for ACE to make well-informed decisions for reactions with low conversions.  



PNNL-38463 

Acknowledgments iii 
 

Acknowledgments 
This research was supported by the Physical and Computational Science Directorate 
Mission Seed, under the Laboratory Directed Research and Development (LDRD) 
Program at Pacific Northwest National Laboratory (PNNL).  PNNL is a multi-program 
national laboratory operated for the U.S. Department of Energy (DOE) by Battelle 
Memorial Institute under Contract No. DE-AC05-76RL01830. 



PNNL-38463 

Acronyms and Abbreviations iv 
 

Acronyms and Abbreviations 
ACE   Autonomous Chemical Experimentation 
API  Application Programming Interface 
ATR  Attenuated Total Reflectance 
CE  Counter Electrode 
EI  Expected Improvement 
FTIR  Fourier Transform Infrared 
FY  Fiscal Year 
GP  Gaussian Process 
I/O  Input-Output 
IR  Infrared 
LLM  Large Language Model 
PI  Probability of Improvement 
RE  Reference Electrode 
RTU  Remote Terminal Unit 
UCB  Upper Confidence Bound 
UX  User Experience 
WE  Working Electrode 
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1.0 Introduction 
Catalysts will play a key role in strengthening America's energy and manufacturing resilience. 
Catalytic processes, integral to modern society, contribute approximately 25% to the U.S. GDP 
and underpin essential consumer goods production. Fundamental catalysis research is essential 
to develop new chemical technologies that use abundant yet distributed domestic resources of 
energy-rich carbon feedstocks to produce chemicals and fuels. One powerful approach is 
electrocatalysis, in which electric current is used to promote bond breaking and bond forming, 
thereby enabling new reaction pathways and enhanced selectivity. However, discovery of new 
catalysts – spanning both synthesis and testing of potential materials – is very labor-intensive and 
demands meticulous adjustment of variables, with physical conditions and chemical environments 
significantly influencing outcomes. Electrocatalysis adds further complications through the need 
to develop catalysts for both anodic and cathodic reactions, each with their unique synthesis and 
evaluation requirements. 

The development of autonomous experimental systems represents a transformative solution to 
these challenges, enabling the systematic exploration of complex parameter spaces with 
unprecedented efficiency and objectivity. Traditional electrochemical optimization approaches 
rely heavily on human intuition, sequential one-factor-at-a-time methodologies, and labor-
intensive experimental studies that often fail to capture the intricate relationships between multiple 
variables. The exponential growth in computational capabilities, coupled with advances in 
machine learning algorithms and laboratory automation, has created unique opportunities to 
fundamentally reimagine how chemical discovery and process optimization are conducted. 

The Autonomous Chemical Experimentation (ACE) platform was developed to address these 
limitations by creating a fully integrated system capable of autonomous experimental design, 
execution, and optimization for electrochemical processes. ACE combines sophisticated 
instrument control, real-time analytical monitoring, and artificial intelligence-driven decision-
making to enable unattended optimization studies that can operate continuously for days or 
weeks. The platform specifically targets flow electrocatalysis applications, where the complex 
interplay between voltage, temperature, flow rates, and chemical composition requires systematic 
exploration of multidimensional parameter spaces to identify optimal operating conditions. 

This report presents the comprehensive development and validation of ACE through multiple 
electrochemical investigations, focusing on the transition from human-in-the-loop semi-
autonomous operation to fully autonomous experimentation. Key innovations include a modular 
software architecture that enables rapid adaptation to new chemistry domains, integration of large 
language models for experimental interpretation and decision explanation, and the 
implementation of Bayesian optimization algorithms specifically tailored for expensive 
electrochemical function evaluations. The platform incorporates real-time FTIR spectroscopy for 
product quantification, automated electrochemical characterization, and multi-objective 
optimization considering product yield, Faradaic efficiency, selectivity, and reaction rates. 

The technical contributions span hardware integration challenges, signal processing 
methodologies for low-concentration product detection, autonomous experimental protocols, and 
user experience design for complex scientific workflows. Through systematic testing across three 
distinct electrochemical systems – potassium formate oxidation, alcohol oxidation, and 
hydroquinone oxidation – ACE successfully narrowed the search space while maintaining 
rigorous experimental standards and data quality. However, the platform’s ultimate identification 
of optimal operating conditions was limited by the detection limit of the FTIR spectrometer. These 
findings underscore both the promise of the autonomous approach and the technical challenges 
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that must be overcome for investigation of emerging catalysis applications without known 
solutions. The project's impact extends beyond technical achievements, having resulted in 
community recognition through workshops at Los Alamos National Laboratory and Argonne 
National Laboratory, securing follow-on funding from the Department of Energy Advanced 
Scientific Computing Research program, and generating significant interest from internal research 
groups seeking collaborative opportunities for autonomous experimentation applications. 

1.1 Levels of Autonomy 
 
The development of autonomous experimental systems requires a clear framework for defining 
and measuring the degree of independence from human intervention. Building upon established 
autonomy classifications, a six-level framework, given in the Autonomous Science initiative 
funding call, was used as a guidance for our ideation and development. It distinguishes between 
automation (physically-situated tools performing repetitive, pre-planned actions) and autonomous 
systems (able to accomplish tasks with minimal human involvement while predicting, planning, 
and adapting to environmental changes). 
 
Level 0 - No Autonomy: Traditional manual experimentation where humans perform all tasks 
without automation support, representing the current state of most research laboratories. 
 
Level 1 - Assistance: Human-executed experimental plans assisted by automated devices for 
repetitive, simple, and well-defined tasks such as pipetting robots or data logging instruments. 
 
Level 2 - Task Autonomy: Human-executed plans supported at each step by automated data 
analysis and decision tools based on predefined criteria, enabling enhanced efficiency while 
maintaining human oversight of all major decisions. 
 
Level 3 - Conditional Autonomy: Human-defined experimental plans with closed-loop semi-
automated execution, where systems incrementally optimize plans based on results while 
requiring human intervention for anomalies or significant deviations. 
 
Level 4 - High Autonomy: Fully automated execution of human-designed experimental plans, 
including integrated safety constraints and continuous operation without human intervention once 
initiated. 
 
Level 5 - Full Autonomy: Human-defined goals with instrument or laboratory systems that 
independently develop, execute, and adapt experimental plans to achieve objectives, potentially 
suggesting new research directions. 
 
The ACE platform was specifically designed to demonstrate both Level 3 (conditional autonomy) 
and Level 4 (high autonomy) capabilities for electrochemical optimization. The human-in-the-loop 
configuration exemplifies Level 3 autonomy, where researchers define experimental objectives 
and parameter spaces while ACE executes closed-loop optimization with minimal human 
intervention for instrument configuration and data management. The fully autonomous 
configuration achieves Level 4 autonomy through complete elimination of human intervention 
during plan execution, enabling unattended optimization cycles over long durations.  
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2.0 Reactor Design and Automation 
2.1 Batch Reactor for L3 Autonomy (FY24) 

In FY24 we employed an electrochemical batch reactor to test the implementation of L3 autonomy 
prior to moving forward with efforts to achieve L4 autonomy. This batch reactor was a standard 
three-electrode (working electrode [WE], reference electrode [RE], and counter electrode [CE]) 
set up in undivided cell with a fixed volume of electrolyte solution and was operated manually to 
record the outcomes of the experiments suggested by ACE (L3 autonomy) (Figure 1). 

 

  

2.2 Flow Reactor for L4 Autonomy (FY25) 

In FY25 we employed a flow electrocatalysis platform that was previously developed by members 
of our team (Figures 2-3).1-4 This flow cell consists of two compartments – namely, an anode and 
a cathode – separated by a Nafion 117 proton exchange membrane (PEM). A reference electrode 
(RHE) is positioned in the anodic compartment. A titanium (Ti) plate serves as the anode (i.e., 
WE), while a platinized titanium (Pt/Ti) plate functions as the cathode (i.e., CE). The electrolyzer 
is equipped with heating pads attached to the cathode and anode plates, as well as a pre-heating 
loop designed to warm the electrolyte before it enters the cell. The system operates using a flow-
by configuration and functions in single-pass mode. Electrolyte is delivered to the cell 
compartments by two peristaltic pumps at a flow rate of 4 to 5 mL/min. The outlet of the anode 
compartment, where the reaction of interest occurs, is connected to a reactIR spectrometer unit 
for monitoring reaction progress; the solution leaving the spectrometer unit is routed to a waste 
container. Similarly, the outlet of the cathode compartment is also directed to the same waste 

Figure 1: (a) Typical batch reactor setup, (b) Schematic of the batch reactor used for the 
formate chemistry. This batch reactor was used to demonstrate L3 Autonomy (Human-in-the-
loop experimentation). 
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container. This flow reactor setup was selected since it possesses the basic functions needed for 
L4 autonomy: controllable stimulus to impact the reaction performance (temperature and 
potential), and a low-latency detector for monitoring the reaction outcome in real-time (reactIR 
spectrometer). 

Figure 2: Schematic diagram of the flow reactor setup. 

Figure 3: Photograph of the assembled electrochemical reactor platform showing: (a) liquid 
pumps, (b) liquid pre-heating loop, (c) electrochemical flow cell, (d) electronic control panel for 
liquid pumps, (e) ReactIR equipped with a flow detector, (f) potentiostat (not shown). 
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2.3 Flow Reactor Automation 

The ACE platform integrated multiple specialized instruments to enable fully autonomous 
electrochemical experimentation. Each instrument was implemented as either an actuator 
(capable of changing experimental conditions) or sensor (monitoring system state) with dedicated 
communication strategies tailored to the manufacturer's available interfaces and protocols. 

2.3.1 Electrochemical Control: Biologic VSP3e Potentiostat  

The Biologic VSP3e multichannel potentiostat served as the 
primary electrochemical control instrument, functioning as 
both an actuator and sensor. As an actuator, it controlled 
applied voltage and electrochemical techniques (cyclic 
voltammetry, chronoamperometry). As a sensor, it 
continuously monitored electrochemical responses including 
current, voltage, and impedance measurements. 

Communication Strategy: Biologic provides a 
comprehensive developer package with native Python API 
support, enabling direct programmatic control. Additionally, 
the third-party open-source package "easy-biologic" 
offered simplified Python wrappers that streamlined common 
electrochemical operations. The Python integration enabled 
real-time parameter adjustment based on experimental feedback, supporting the autonomous 
decision-making loop. 

2.3.2 Temperature Control: Autonics Multi-Channel Controller  

The Autonics multichannel temperature controller functioned 
primarily as an actuator for maintaining precise thermal conditions 
throughout the flow reactor system. The instrument featured built-
in PID (Proportional-Integral-Derivative) controller that 
automatically adjusted heating output to maintain target setpoints, 
reducing temperature fluctuations that could affect reaction 
kinetics and product selectivity. 

Communication Strategy: Communication was established 
using the Modbus RTU protocol, an industrial standard for serial 
communication between electronic devices. Modbus RTU 
transmits binary data in a compact format, making it suitable for 
real-time control applications. ACE implemented this 
communication using the "minimalmodbus" Python package, which provided straightforward 
read/write operations to the controller's input registers. This approach allowed ACE to remotely 
update temperature setpoints and monitor actual temperatures, ensuring thermal equilibrium 
before data collection phases. 

Figure 4: Biologic VSP3e multichannel 
potentiostat 

Figure 5: Autonics TM series 
temperature controller 
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2.3.3 Spectroscopic Analysis: Mettler Toledo ReactIR FTIR Spectrometer  

The ReactIR in-situ FTIR spectrometer functioned 
exclusively as a sensor, providing real-time chemical 
composition analysis of the flowing reaction mixture. 
The instrument used attenuated total reflectance (ATR) 
sampling to monitor molecular vibrations, enabling 
identification and quantification of reactants, products, 
and intermediates without sample removal or 
preparation. 

Communication Strategy: Unlike the other 
instruments, the ReactIR lacked direct Python API 
support, necessitating an indirect automation approach. 
The instrument's proprietary software was configured to 
automatically save spectral data at predetermined intervals (typically every 10 seconds during 
data collection phases) to a designated network-accessible directory. ACE implemented a custom 
FileI/O communication strategy that continuously monitored this directory for new spectral files. 
Upon detection of new data files, ACE's data processing modules automatically imported, 
preprocessed, and analyzed the spectral information. This file-based communication strategy 
proved robust and eliminated potential instrument control conflicts between ACE and the 
manufacturer's software. 

The integration of these three instrument communication strategies—direct API control, industrial 
protocol communication, and file-based data exchange—demonstrates the flexibility required for 
heterogeneous laboratory automation where instruments from different manufacturers may use 
incompatible communication standards. 

 

 

Figure 6: Mettler Toledo ReactIR in-situ 
FTIR spectrometer 
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3.0 Software Architecture and Algorithms 
3.1 ACE Computational Architecture 

ACE employs a modular architecture built around a core set of base modules that implement 
standardized, consistent APIs to ensure compatibility across diverse experimental workflows and 
optimization algorithms. ACE supports semi-autonomous and fully autonomous experimentation. 
This design philosophy enables seamless integration with various laboratory instruments while 
maintaining flexibility for different research domains and experimental objectives.  By using a 
module-based architecture (Figure 7), ACE is designed to be easily reconfigured for a wide range 
of experimental workflows beyond the initial demonstration in flow electrolysis in this project. 

The architecture consists of two primary layers: base modules that provide standardized 
functionality, and flexible modules that enable customization for specific use cases. 
Configuration is managed through YAML files that define experimental design parameters, 
including variable bounds, constraints, and target metrics such as product yield, current efficiency, 
selectivity, and reaction rates. Custom Python scripts handle metric computation and 
experimental data processing, allowing researchers to implement domain-specific calculations 
while maintaining compatibility with the broader ACE framework. This approach allows users to 
define new experimental campaigns without modifying the core architecture. 

The base modules consist of: 

• Experiment Module: Provides unified support for both simulated and empirical experiments 
through standardized APIs. The module defines consistent interfaces for specifying actuator 

Figure 7: ACE is a modular architecture that will serve as an interface between real-world 
physical experimentation and modern numerical methods in data science and optimization. 
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inputs (experimental parameters) and collecting sensor outputs (measured responses), 
enabling seamless switching between computational models and physical experiments. 

• Data Module: Implements standard data types and processing methodologies, including 
templates for custom data manipulation. This module ensures consistent data formatting and 
provides preprocessing capabilities that prepare raw instrument outputs for downstream 
analysis. 

• Metrics Module: Receives processed experimental data and evaluates key performance 
indicators and objectives for given input conditions. The module produces structured, AI-ready 
outputs that enable optimization algorithms to train and update their internal models efficiently. 

• Optimizer Module: Integrates new data from the metrics module to update predictive models 
and identify optimal parameters for subsequent experiments. The module communicates 
directly with the experiment module to execute instrument control commands, completing the 
autonomous experimentation loop. 

The flexible modules consist of: 

• YAML Configuration File: New experiments are specified using intuitive key-value pairs that 
define the complete experimental setup. The parameter space section specifies all 
controllable variables along with their feasible ranges, constraints, and data types. Fixed 
variables and metadata that remain constant throughout the optimization cycle are declared 
separately, ensuring consistent experimental conditions while allowing the optimizer to 
explore the defined parameter space. The configuration file also specifies target metrics and 
objectives, including whether each metric should be minimized or maximized. ACE supports 
both multi-objective optimization scenarios, where multiple competing objectives are 
simultaneously considered, and single-objective approaches where multiple metrics are 
combined into a weighted sum. This flexibility accommodates diverse research goals, for 
example, maximizing product yield while minimizing energy consumption to achieving optimal 
trade-offs between reaction rate and selectivity. 

• Custom Processing Integration: Each experiment configuration is paired with a Python 
script that implements domain-specific data processing modules and metrics computation 
subroutines. These scripts define how raw instrument data should be transformed, filtered, 
and analyzed to extract meaningful performance indicators. The modular design ensures that 
custom processing logic integrates seamlessly with the standardized data flow, enabling 
researchers to implement specialized calculations for novel chemistry or unconventional 
measurement techniques while maintaining compatibility with ACE's optimization algorithms. 

 

3.2 Optimization Algorithm Integration 

ACE incorporates multiple data-driven optimization methods through standardized interfaces, 
including Bayesian optimization, pattern search, and differentiable programming approaches. 
Users can select algorithms based on their specific requirements during implementation. Future 
development will focus on creating automated algorithm selection mechanisms that choose the 
most appropriate optimization method based on problem characteristics. Current testing has 
concentrated on Bayesian optimization across the implemented chemistries; therefore, the 
following section elaborates specifically on this optimization framework. 
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3.2.1 Bayesian optimization 

Bayesian optimization is a sequential model-based approach for optimizing expensive-to-
evaluate functions, making it particularly well-suited for autonomous experimentation where each 
measurement is generally expensive to obtain, requiring significant time and resources. The 
method constructs a probabilistic surrogate model, typically a Gaussian process (GP) or a random 
forest, that captures both the predicted response and associated uncertainty across the 
parameter space. This probabilistic framework enables the algorithm to make informed decisions 
about where to sample next by balancing exploration of uncertain regions with exploitation of 
promising areas. 

For chemical experimentation, Bayesian optimization offers several advantages over traditional 
optimization methods. It naturally handles noisy measurements common in experimental 
systems, requires relatively few function evaluations to find optimal conditions, and provides 
uncertainty quantification that helps identify regions where additional experiments would be most 
informative. The method is particularly effective for problems with expensive function evaluations, 
continuous parameter spaces, and limited prior knowledge about the underlying response 
surface, making it an ideal choice for autonomous chemical discovery applications where 
experimental time and materials are valuable resources. 

The optimization process operates through two key components: a surrogate model that learns 
from previous experiments and an acquisition function that determines the next experimental 

Figure 8. Bayesian optimization uses a surrogate model and an acquisition function to guide 
the search for optimal experiment conditions. Figure from ax.dev. 
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conditions. Popular acquisition functions include Expected Improvement (EI), Upper Confidence 
Bound (UCB), and Probability of Improvement (PI), each offering different strategies for trading 
off exploration versus exploitation. As new experimental data becomes available, the surrogate 
model is updated using Bayesian inference, refining predictions and uncertainty estimates across 
the entire parameter space. Using an acquisition function like EI to sample new points initially 
promotes quick exploration because the expected values, informed by the uncertainty estimates, 
are higher in unexplored regions. Once the parameter space is adequately explored, EI naturally 
narrows focuses on regions where there is a high likelihood of a good objective value (i.e., 
exploitation). In our implementation, we used GP to model system outcomes and EI to optimize 
and suggest next experiments. These options (model type and acquisition function) can be varied 
in the configuration file. For details about GP and the acquisition functions, see Reference 5. 
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4.0 Large Language Models (LLMs) for Experiment 
Interpretation 

We integrated large language models (LLMs) into ACE to translate raw sensor streams (such as 
IR spectra) to provide operationally meaningful narratives that guide the next experiment and 
make the Bayesian Optimizer’s actions auditable and explainable.  The key idea from our work is 
developing a two-phased approach, in which first we extract information about a reaction 
intermediate from spectral features, and then, we infer the present reaction state (e.g. under-
excitation vs over-oxidation).  This collective information and knowledge of intermediates coupled 
with the reaction state is next combined with the autonomy objective such as maximizing reaction 
yield to predict the next optimal experimental configuration. 

4.1 Spectral Data Interpretation 

Spectral feature extraction involves the following steps: 

1) Identification of species from spectral features: The implementation of this step depends 
on our goals of focusing on a set of known intermediates versus open-ended extraction of 
possible candidates.  We provide the experimental context as input to guide the LLM’s 
reasoning about the presence of the species through reflectance, surface-enhanced 
adsorption etc.  We also provide instructions to reason about data quality by attending to 
features such as baseline drift, signal-to-noise ratio, and interference fringes.   

2) Next, we instruct the LLM to detect peaks with position, width, intensity and shape.  Each 
detection needs to be associated with specific wavenumbers and mapped to specific 
phases (such as dissolved or gas-phase, modulation-excitation).  Constraining the 
extraction step to produce incrementally richer features imposes strong reasoning 
requirements and leads to better qualitative results. 

3) Collective disambiguation: Once obtaining a set of initial hypotheses (inside the LLM) 
regarding a set of intermediates, we reason at the functional group level in terms of their 
appearance in an experimentally observed context. We check for assignments based on 
prior expectations from literature and produce explanations in terms of mechanistic steps. 

Fig. 9 provides an example of AI-based interpretation of IR spectroscopy data and its validation 
by a catalysis expert. 



PNNL-38463 

Large Language Models (LLMs) for Experiment Interpretation 12 
 

 
Figure 9. Expert evaluation of AI-extracted spectral features for cyclohexanol system 

4.2 Suggesting Experimental Steps 

We can model the experimental step prediction by constructing a state-space transition model 
of the reaction.  Essentially, we formulate the autonomous steering problem into three sub-
steps: 1) mapping the currently observed temporal experimental data into a high-level phase 
description and 2) then decide what is the optimal next phase for the reaction to pursue in 
accordance with the autonomy objective, and 3) search over the space of plausible actions to 
determine how to transition the chemical system from the current phase to the desired next 
phase.  

We describe an example set of phase classifications below.  This should be automatically 
generated by any state-of-the-art LLM in a reaction-specific fashion. 

• Selective activation of the reactant: This is evidenced by observations of monotone growth 
and stabilization of the reaction rate. Our goal is to detect when the catalyst’s interaction 
with reaction intermediates is neither too strong or weak to achieve highest activity (Sabatier 
principle). Observation of weak responses to small 10-20 mV steps would indicate under-
excitation or barrier to entering the sweet spot. 

• Over-oxidation: We reason about over-oxidation through seeking shift in characteristic band 
positions that correlates with the formation of oxidized metal species, and electron-deficient 
oxygen sites. This can be further improved through observation/constraining via change in 
peak intensity and shape, which informs us about the local bonding environment of oxygen 
atoms. 
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• Detecting Oxygen-evolution competition: As in above – the key reasoning principles are 
identification and tracking the presence and concentration of different species and the 
change in their relative intensity. An initial observation of competition can be further verified 
through forcing the LLM to produce a mechanistic explanation such as change in vibrations 
of water or hydroxyl groups. 

• Detection of de-activation/deposit accumulation: At this point, we can follow the general 
principle of making the LLM generate a) the phase definitions from a reaction, b) a list of 
candidate intermediates that indicate the formation of the phase (e.g. accumulation of 
carbonaceous deposits from C-H/C=O bands) and c) a list of mechanistic steps that we can 
reason about through observing the interaction (or lack of) of the candidates (such as 
disappearance of characteristic bands associated with active sites).  

Given the inferred regime, suggestion of an experimental step is accomplished by prompting the 
LLM to select from a restricted action set.  Again, these action spaces can be generated 
automatically by the LLM with domain-based verifications. 

• Voltage step only: to move from under-excitation to steer towards “sweet spot”. Confirm 
success of action through monotonic growth of product. 

• Temperature step only: when mass transfer limits or deactivation suspected and 
rate/selectivity trends do not respond monotonically to voltage. 

• No change: when we observe stable product yields and no evidence of deactivation. 
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5.0 User Experience (UX) Design 
ACE's user interface development involved collaboration with a UX designer to create an intuitive 
front-end system that would lower the barrier to autonomous experimentation for researchers. 
The design focused on two primary components: an experiment specification interface and a real-
time monitoring dashboard. The experiment specification module featured a form-based interface 
that guided users through parameter definition, objective selection, and constraint specification, 
with the intended capability to automatically generate the underlying YAML configuration files and 
associated Python metrics scripts. This approach aimed to eliminate the need for researchers to 
manually write configuration code while maintaining the flexibility of the underlying modular 
architecture. 

The monitoring dashboard was designed to provide comprehensive oversight of autonomous 
experiments, displaying real-time optimization progress, current parameter values, and the 
operational status of all connected instruments including the potentiostat, temperature controller, 
and FTIR spectrometer. The dashboard incorporated visualization elements for tracking 
convergence metrics, experimental history, and system alerts to enable researchers to monitor 
long-running autonomous campaigns effectively. Throughout the design process, we conducted 
usability testing sessions with domain experts in electrochemistry and automation to validate 
interface concepts and refine user workflows based on their feedback. While significant progress 
was made in implementing core interface elements, development was ultimately redirected to 
prioritize the underlying automation infrastructure and algorithm validation across the chemistry 
campaigns. The partially implemented interface components provided valuable user experience 
insights that informed subsequent design decisions and established a foundation for future 
development efforts. 
  

Figure 10. Screenshots of design concepts for the experiment specification page and the real-time 
dashboard. 
 



PNNL-38463 

Model Chemistries 15 
 

6.0 Model Chemistries 
Several different chemical reactions were selected for testing and demonstration of ACE (Figure 
11.). Each of these reactions affords a product with a carbon-oxygen double bond that exhibits 
an intense stretching mode (νC=O) in the IR spectrum, which is ideal for detection during 
autonomous experimentation runs. Moreover, as discussed in the following sections, each 
reaction also presents a selectivity challenge that can benefit from the use of autonomous 
experimentation to identify the optimal conditions for the electrochemical reaction. 

 
 

Figure 11. Depiction of the anode reactions selected for testing the autonomous 
electrochemistry platform. In each case, the corresponding cathode reaction is hydrogen 

evolution. 

Significant challenges in product quantification were encountered for each of these reactions due 
to the detection limit of the FTIR probe. The aqueous electrolyte exhibited a noisy baseline, a pH-
dependent bending mode in the spectral region of interest (1600-1700 cm−1), and significant 
variation in the overall shape of the baseline from one experiment to the next. To improve the 
data quality, we employed spectral averaging, smoothing functions, (Savitzky-Golay, moving 
average), and baseline correction routines (polynomial fits, AsLS). With these protocols, we found 
that product concentrations >10 mM could be reliably detected in calibration experiments, which 
is a much higher detection limit than expected for typically intense C=O stretching modes.   

6.1 Formate Oxidation 

The first reaction, catalytic oxidation of formate to bicarbonate, has been suggested as a 
reversible cycle for chemical storage and retrieval of dihydrogen.6-7 Oxidation of formate anion 
produces a mixture of bicarbonate and carbonate products as an acid/base pair that are in rapid 
equilibrium with each other. Therefore the ratio of products is determined by the solution pH, 
which in turn is impacted by the overall reaction conversion. Bicarbonate/carbonate can also 
decompose into carbon dioxide, which is not desirable for hydrogen storage applications due to 
the added complexity of capturing and storing a gaseous product. This leads to a selectivity 
challenge, in which catalytic systems are needed that can selectively oxidize formate to 
bicarbonate instead of carbon dioxide.  
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One challenge of the formate oxidation reaction is that both the reactant and products exhibit 
multiple symmetric and asymmetric stretching bands in the IR spectra (Figure 12). This 
presented a challenge for quantification of overlapping signals. To address this challenge, we 
employed the initial potassium formate spectrum as a baseline reference, featuring a 
characteristic peak at 1576 cm−1. This approach enabled real-time monitoring of reactant 
consumption through the progressive decrease of the 1576 cm−1 peak intensity, while 
simultaneously tracking the formation of bicarbonate (1652 cm−1) and carbonate (1404 cm−1) 
products at different applied potentials and temperatures. 

6.2 Cyclohexanol Oxidation 

The second reaction, catalytic oxidation of cyclohexanol to cyclohexanone, was selected as a 
model reaction with simpler product analysis as the mid-IR spectral region contains a single 
symmetric νC=O band for the product and no bands for the reactant. Some catalysts can further 
oxidize cyclohexanone to adipate through C-C bond cleavage and ring opening.8-9 The reaction 
mechanisms dictating selectivity for one product over the other are not well understood. As a 
result, autonomous experimentation is a promising avenue to rapidly identify how the 
experimental conditions can steer a given catalyst to favor one product over the other.   

 

 

 

 

 

 

Figure 12. Calibration curves obtained from FTIR response for known concentrations of 
potassium formate (left) and potassium bi-carbonate (right) aqueous solutions. 
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6.3 Hydroquinone Oxidation 

The final reaction, oxidation of hydroquinone to benzoquinone, has been studied for applications 
in organic redox flow batteries,10-11 mediated fuel cells,12 and pH-swing separations.13 This 
reaction occurs facilely at an electrode in the absence of a catalyst,14 such that the reaction may 
display much higher rates and conversions than either catalytic oxidation of formate or 
cyclohexanol. However, hydroquinone can also be electrochemically polymerized under some 
conditions,15-16 creating a selectivity challenge that that can potentially be overcome using 
autonomous reaction optimization. 

Figure 14: Calibration curves obtained from FTIR response for known concentrations of 
hydroquinone (left) and benzoquinone (right) aqueous solutions. 

Figure 13: Calibration curves obtained from FTIR response for known concentrations of  
cyclohexanone aqueous solutions. 
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7.0 Experimentation Procedure 
ACE was incrementally developed from semi-autonomous to fully autonomous experimentation, 
beginning with a human-in-the-loop configuration that provided a controlled transition toward 
complete automation. 

7.1 Human-in-the-loop Experimentation (FY 24) 

In this initial setup, ACE functioned as an intelligent decision-making system while relying on 
minimal human intervention for specific manual tasks that had not yet been automated. Initial 
experiments were conducted by varying applied voltage at ambient room temperature to reduce 
system complexity, with temperature control subsequently incorporated as an additional design 
variable in later experiments. The semi-autonomous workflow is as follows: 

• Initial Condition Generation: ACE's optimization algorithm suggests initial experimental 
conditions (voltage setpoints and later temperature targets) based on the defined parameter 
space and objectives specified in the YAML configuration file. Recommended experimental 
conditions are communicated to the experimentalist. 

• Manual Instrument Configuration (first point of human intervention): Researcher 
manually configures the potentiostat with ACE-specified voltage settings and starts data 
collection on ReactIR FTIR spectrometer to continuously collect time-series measurements at 
regular intervals, automatically saving spectral data to pre-specified directory. 

• Reaction Execution: Electrochemical reaction proceeds autonomously for predetermined 
24-hour duration.  

Figure 15: Human-in-the-loop, semi-autonomous workflow with two distinct points of human 
intervention. 
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• Data Transfer (second point of human intervention): Upon experiment completion, the 
researcher moves time-series spectra data to network drive. This intervention was necessary 
because the FTIR’s proprietary software does not allow direct saving of spectra files to a 
network drive.  

• Autonomous Decision-Making: ACE's data processing pipeline activates automatically 
within seconds to: (i) Import raw spectral files, (ii) Apply preprocessing algorithms, (iii) 
Compute performance metrics, (iv) Execute Bayesian optimization algorithm to determine the 
next set of experimental conditions. 

• Researcher Notification: Researcher receives alert with newly proposed parameter values 
for subsequent experiment cycle. 

This human-in-the-loop approach required only two discrete points of manual intervention: initial 
instrument configuration with ACE-specified voltage settings and transfer of FTIR data files to 
designated analysis directories. All aspects of experimental design, data interpretation, 
performance evaluation, and optimization-based decision making were handled autonomously by 
ACE, demonstrating the system's capability to manage the complete experimental reasoning loop 
while maintaining compatibility with existing laboratory infrastructure and workflows. 

7.2 Autonomous Experimentation 

The fully autonomous configuration eliminated both points of human intervention identified in the 
human-in-the-loop setup, enabling ACE to directly control all experimental instruments and 
execute complete optimization cycles without manual oversight. To enable this advanced 
operational mode, a flow reactor replaced the batch reactor and ACE maintained direct 
communication with both the potentiostat and temperature controller, automatically implementing 
voltage and temperature setpoints as determined by the Bayesian optimization algorithm. All 
variables, parameters, and objectives remain specified in the same YAML configuration file 

Figure 16: Fully autonomous workflow with direct instrument control. 
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format, with identical data processing and metrics computation scripts used in the human-in-the-
loop configuration. The fully autonomous experimentation workflow is as follows: 

• Experiment Initialization: Electrolyte flow is initiated through the flow cell, ReactIR FTIR 
spectrometer begins data collection, and the autonomous experiment sequence commences. 

• Electrochemical Characterization: ACE executes cyclic voltammetry technique via the 
potentiostat to perform initial electrochemical characterization, automatically determining 
suitable voltage ranges based on reasonable current response values. Temperature control 
range is fixed between 25°C (room temperature) and 65°C as specified in configuration file. 

• Initial Condition Generation: Bayesian optimization algorithm autonomously selects starting 
experimental conditions (voltage and temperature setpoints) 

• Direct Instrument Control: ACE runs the following sequence of techniques on the 
potentiostat to set the new voltage: (i) Potentiostatic Electrochemical Impedance 
Spectroscopy, (ii) Ohmic drop compensation, (iii) Chronoamperometry. ACE also sets the 
temperature setpoint. 

• Equilibration Phase: A 10-minute stabilization period allows both electrochemical and 
thermal systems to reach steady-state conditions at target setpoints. 

• Data Collection Phase: A 2-minute FTIR data acquisition is performed while maintaining 
constant experimental conditions (voltage and temperature) 

• Data Processing and Analysis: (i) FTIR spectral data is automatically averaged across the 
2-minute collection window, (ii) Product quantification is performed using pre-established 
calibration relationships, (iii) Key performance metrics are computed from processed spectral 
data. 

• Optimization Decision: Bayesian optimization algorithm processes computed metrics to 
determine next optimal experimental conditions. Process repeats autonomously with new 
voltage and temperature setpoints until convergence criteria are met or maximum iterations 
reached. 

This fully autonomous workflow requires zero human intervention after initiating the experiment 
sequence, demonstrating ACE's capability for unattended optimization cycles spanning multiple 
hours (or even days) while maintaining precise experimental control and data quality standards. 
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8.0 Key Optimization Metrics 
The ACE platform evaluated electrocatalytic performance using four critical metrics that 
comprehensively assess reaction efficiency, selectivity, and kinetics. These metrics provided 
quantitative objectives for Bayesian optimization while enabling meaningful comparison across 
different experimental conditions and chemistry campaigns. 

8.1 Product Yield 

Product yield quantifies the conversion efficiency of reactant to desired product, expressed as: 

𝑌𝑌 =
𝑛𝑛product

𝑛𝑛reactant,initial
× 100% 

where 𝑛𝑛product represents moles of target product formed and 𝑛𝑛reactant, initial is the initial moles of 
reactant. 

Derivation from Experimental Data: 

• FTIR Analysis: Product concentrations were determined using relationships established 
through offline calibration curves. Peak areas corresponding to characteristic vibrational 
modes were integrated and converted to concentration using pre-established calibration 
factors. 

• Batch Setup: Initial reactant concentration was known from solution preparation. Final 
product concentration was measured after 24-hour reaction completion. 

• Flow Setup: Steady-state product concentration was measured during the 2-minute data 
collection window, with reactant concentration determined from inlet flow composition. 

8.2 Faradaic Efficiency 

Faradaic efficiency measures the fraction of total charge that contributes to the desired 
electrochemical reaction, calculated as: 

FE =
𝑛𝑛 × 𝑧𝑧 × 𝐹𝐹
𝑄𝑄total

× 100% 

where 𝑛𝑛 is moles of product, z is electrons transferred per molecule of product (𝑧𝑧 = 2, for a 2-
electron reaction), 𝐹𝐹 is Faraday's constant (96,485 C/mol), and 𝑄𝑄total is total charge passed. 

Derivation from Experimental Data: 

• Electrochemical Readouts: Total charge was calculated by integrating current over 
time: 𝑄𝑄 = ∫ 𝐼𝐼(𝑡𝑡) 𝑑𝑑𝑑𝑑 

• FTIR Quantification: Product moles determined from spectroscopic analysis and calibration 
relationships 

• Batch Setup: Charge integration performed over entire 24-hour reaction period 
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• Flow Setup: Steady-state current measured during the 2-minute data collection window, with 
charge calculated for sampling interval of 1s. The total product was computed from FTIR 
quantification and volumetric flow rate (L/s).  

8.3 Selectivity 

Selectivity evaluates the preference for desired product formation relative to competing side 
reactions: 

𝑆𝑆 =
𝑛𝑛target product

∑𝑛𝑛all products
× 100% 

Derivation from Experimental Data: 

• FTIR Multi-component Analysis: Simultaneous quantification of all detectable products 
using their characteristic absorption bands 

• Calibration Requirements: Individual calibration curves established for each potential 
product species 

8.4 Reaction Rate 

Reaction rate quantifies the speed of product formation, normalized to either reactor volume or 
electrode surface area: 

𝑟𝑟 =
𝑑𝑑𝑛𝑛product

𝑑𝑑𝑑𝑑 × 𝑉𝑉
 or 

𝑑𝑑𝑛𝑛product

𝑑𝑑𝑑𝑑 × 𝐴𝐴
 

where 𝑉𝑉 is reactor volume and 𝐴𝐴 is electrode surface area. 

Derivation from Experimental Data: 

• Batch Setup: Rate calculated from concentration change over 24-hour period: 𝑟𝑟 =
[𝑃𝑃]final−[𝑃𝑃]initial

𝑡𝑡×𝑉𝑉
 

• Flow Setup: Steady-state rate determined from residence time analysis: 𝑟𝑟 =
[𝑃𝑃]out×𝑉̇𝑉
𝑉𝑉reactor

 where 𝑉̇𝑉 is volumetric flow rate 

• FTIR Integration: Product concentration profiles enabled rate determination through 
numerical differentiation of concentration-time relationships 

While all four metrics were computed and monitored for every reaction, the Bayesian optimization 
algorithm focused exclusively on product yield and current efficiency (Faradaic efficiency) as the 
primary objectives for autonomous decision-making. This strategic selection simplified the multi-
objective optimization problem while targeting the most critical performance indicators for 
electrocatalytic processes, consistent with established practices in autonomous electrochemical 
experimentation. 
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9.0 Key Results 
9.1 FY24 (Level 3) Human-in-the-loop experimentation  

Prior to initiating the effort to automate the flow reactor, a human-in-the-loop experiment was 
conducted to verify that the Bayesian optimization implementation was working as expected. For 
this experiment, a Pd/carbon anode was used to catalyze the oxidation of formate to bicarbonate 
using the stirred batch reactor. As described above, the FTIR spectra of this reaction exhibit 
strongly overlapping bands from 1200-1800 cm−1, which could be addressed using the initial 
formate solution as the baseline for the experimental data. Representative time-series data for 
the reaction progression for optimal conditions are shown in Figure 17.    

 

 

 

 

Figure 17: Product quantification and key metrics of catalytic formate oxidation, showing the time 
dependence of FTIR signal intensity (top left), calculated concentrations (top right), and the catalytic 
metrics of Product Yield and Faradaic Efficiency (bottom). 
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The optimization campaign was carried out by varying a single parameter (electrode potential) 
and monitoring the impact on the product yield and Faradaic efficiency after 24 hours of reaction. 
The Bayesian Optimizer successfully narrowed into an optimal potential, ~0.36 V, after sampling 
only eight different electrode potentials. This can be seen visually in Figure 18, where the optimum 
potential is characterized by a low uncertainty of the two optimization objectives. 

 

9.2 FY25 (Level 4) Autonomous Experimentation 

Fully autonomous experiments were conducted for catalytic oxidation of formate and 
cyclohexanol. In these experiments, the flow reactor was configured for single pass 
measurements to simplify the automation requirements and enable real-time measurements. 
However, the catalysts we tested did not exhibit high enough activity to generate sufficient product 
in a single pass for detection by the FTIR. To address these sensitivity limitations, we pivoted to 
the non-catalytic electrochemical oxidation of hydroquinone to p-benzoquinone, which provided 
higher conversion rates suitable for online detection. Initial attempts to monitor the characteristic 
carbonyl stretch at 1652 cm⁻¹ were confounded by overlap with the water bending mode. 
Consequently, we recalibrated our analytical approach using the less intense but spectrally 
isolated peak at 1318 cm⁻¹, establishing new calibration curves for product quantification. 

Process optimization revealed critical operating constraints and system limitations. Certain 
voltage-temperature combinations (above unknown threshold values) induced undesired 
polymerization reactions, manifesting as precipitate formation that occluded flow channels and 
polymer deposition on the titanium electrode surface. This electrode fouling significantly impeded 
current generation, resulting in diminished product yields and compromised electrochemical 
performance. Additionally, the reactor's thermal control system, equipped only with a heating 

Figure 18: Evolution of Gaussian process surrogate model used by the multi-objective Bayesian 
optimization algorithm. After 8 runs, the optimal potential was found around 0.36V. 
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element and lacking active cooling capability, created significant temperature equilibration delays. 
Once elevated temperatures were reached, the system required extended periods to cool to lower 
setpoints, severely constraining the autonomous optimization algorithm's ability to efficiently 
explore the temperature parameter space. Future system iterations will require integrated cooling 
mechanisms to enable rapid bidirectional temperature control. 

These trials successfully demonstrated ACE's autonomous decision-making capabilities, 
including real-time parameter adjustment and adaptive experimental design without human 
intervention. However, the results highlight the need for improved chemistry execution protocols 
and enhanced thermal management systems to achieve reliable product quantification in 
autonomous workflows. Future iterations will focus on expanding the viable chemistry space, 
implementing predictive models to avoid deleterious operating conditions, and incorporating 
active cooling systems for comprehensive temperature control. 

 

 

 

Figure 19: Evolution of key metrics - product yield and current efficiency for the hydroquinone 
oxidation reaction (left) corresponding IR spectra (right). The water peak near 1652 cm-1 
overlaps with the product peak. For quantification, we used the peak at 1318 cm-1 to enable 
optimization decisions. The optimal conditions over 12 trials were 1.44V and 35℃. 
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10.0 Conclusion 
In summary, this project successfully achieved autonomous experimentation of flow 
electrosynthesis for several different model chemistries. Multiple technical milestones were 
achieved during this project, including the development of a robust automation platform, an 
extensible modular workflow, and demonstration of both human-in-the-loop (L3) autonomy and 
high (L4) autonomy. Our efforts in this area have been presented in two community workshops – 
“AI/ML for Isotopes” at Los Alamos National Laboratory, and “Scientific Discovery in the AI Age” 
at Argonne National Laboratory and multiple internal research symposia. Finally, our success in 
this LDRD project has enabled us to secure follow-on funding from DOE ASCR (FWP 86405) and 
has elicited strong internal collaboration interest. These outcomes emphasize the potential for 
ACE to enable greater experimental autonomy for a variety of energy-scale chemical challenges. 
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