

PNNL-38450

QUCODE

End-to-End Qubit Co-Design

September 2025

Jan F. Strube
Ajay S. Karakoti
Grant E. Johnson
Niranjan (Niri) Govind
Shannon J. Lee
Zexi Lu
Bruce J. Palmer
Roberto Gioiosa
Panagiotis (Panos) Stinis
Anne M. Chaka

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062

www.osti.gov ph: (865) 576-8401 fox: (865) 576-5728 email: reports@osti.gov

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov

QUCODE

End-to-End Qubit Co-Design

September 2025

Jan F. Strube
Ajay S. Karakoti
Grant E. Johnson
Niranjan (Niri) Govind
Shannon J. Lee
Zexi Lu
Bruce J. Palmer
Roberto Gioiosa
Panagiotis (Panos) Stinis
Anne M. Chaka

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99354

Acknowledgments

This research was supported by the PCSD Mission Seed, under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830.

Acknowledgments

Contents

Ackn	owledg	ments		ii
1.0	Introduction			1
	1.1	1.1 Considerations for qubit design		
2.0	Design Considerations			2
	2.1	Materials		2
		2.1.1	Qubit Candidates	2
		2.1.2	Host Materials	2
		2.1.3	Contributing factors to spin decoherence	2
3.0	Refe	rences		3
Fig	ures			
Figur	o 1 Cor	ncentual I	_ayers of a Quantum Computing System	1
ııyuı	C 1 COI	iocpiudi L	Layors of a Quartum Computing Cystem	

Contents

1.0 Introduction

Designing a quantum computer is a complex task that requires world-class expertise in material science, quantum chemistry, and computer science. Today, the different aspects of such an enterprise are often pursued in isolation: Material scientists pursue novel molecular structures and dopants to build qubits with high decoherence times, often without taking into account the environment that such qubits would operate in, which affects noise levels and ease of construction. On the other end of the spectrum, computer scientists develop algorithms that are simulated on idealized hardware, disregarding effects from physical systems that may impact the performance of the algorithm.

1.1 Considerations for qubit design

An important consideration in designing materials for building qubits is the decoherence of the qubit's spin states due to interactions of the qubit with other qubits or with its environment. Scientists distinguish between two characteristic times, the relaxation time T_1 and the dephasing time T_2 , where $T_2 \le 2T_1$. In the following we limit our considerations for effects that limit qubit capabilities to those affecting T_2 .

A quantum computer can be thought of in terms of the layers shown in Figure 1. A goal of an end-to-end design approach is to understand the interfaces between the different layers, so that on can design an optimal hardware system for a desired application and vice versa create algorithms and applications that take optimal advantage of provided hardware.

Figure 1 Conceptual Layers of a Quantum Computing System

In the following, we summarize knowledge gaps and opportunities for an increased footprint in the research of quantum computing systems.

Introduction 1

2.0 Design Considerations

Research related to the conceptual layers presented in Figure 1 is often conducted in isolation. Here we focus on knowledge gaps that are related to the interfaces between the layers, specifically between the quantum plane, architecture, and applications.

2.1 Materials

Since the performance of a quantum computing application depends significantly on the interaction of the qubit with a host material, both must be chosen carefully to optimize T_2 .

2.1.1 Qubit Candidates

PNNL has deep expertise in a class of materials that could be suitable candidates for qubit design, Polyoxometalates (POMs) [1]. These could be used to form molecular qubits that can be synthesized in PNNL lab spaces and arranged to form a quantum device using in-house capabilities such as ion soft landing (e.g., [2]). With these capabilities, fine control of materials can be applied to design for specific properties. Baldinelli et al. developed design rules to engineer the spin structure of a molecular qubit [4], specifically to control the Zero Field Splitting (ZFS). This property is correlated with the decoherence time T₂, and an investigation into similar design rules for POMs is a promising research direction.

2.1.2 Host Materials

In a physical material, qubits interact with their environment, so designing a good host matrix, requires solving To design a good host matrix, one has to compute the time evolution of the spin Hamiltonian $H = H_S + H_B + H_{(S-B)}$, where H_S is the electron spin, H_B is the bosonic bath, $H_{(S-B)}$ is the interaction term. Kanai et al. have developed an algorithm to scan over 12,000 host materials [4], using cluster correlation expansion. They found good agreement between their predictions and experiments. Their approach to scanning material should be extended to materials relevant for designing POMs and POM assemblies. Additionally, some assumptions in their work simplifies calculations, but presents significant experimental challenges, such as operating in an environment with a magnetic field of $B = 5 \, T$.

2.1.3 Contributing factors to spin decoherence

A main contributor to spin decoherence in physical materials is via spin—phonon coupling. The research in this area [5-8] is currently hard to integrate into quantum simulators. We have done some preliminary studies of how to integrate a molecular dynamics software package (LAMMPS), with a quantum simulator (qiskit), to combine quantum-mechanical computations with a realistic phonon spectrum. This would allow incorporating a realistic noise model into those calculations and to respond to physical changes of the system during computations.

Design Considerations 2

3.0 References

- [1] Influence of surface and intermolecular interactions on the properties of supported polyoxometalates, O. M. Primera-Pedrozo, S. Tan, D. Zhang, B. T. O'Callahan, W. Cao, E. T. Baxter, X.-B. Wang, P. Z. El-Khoury, V. Prabhakaran, V.-A. Glezakou, and G. E. Johnson, *Nanoscale*, 15(12):5786–5797, 2023, DOI: 10.1039/D2NR06148A
- [2] Mobility Selective Ion Soft-Landing and Characterization Enabled Using Structures for Lossless Ion Manipulation, Jung Y. Lee, Ailin Li, Venkateshkumar Prabhakaran, Xin Zhang, Christopher P. P. Harrilal, Libor Kovarik, Yehia M. Ibrahim, Richard D. Smith, and Sandilya V. B. Garimella, *Analytical Chemistry* **2024** 96 (8), 3373-3381, DOI: 10.1021/acs.analchem.3c043
- [3] Design rules to engineer the spin structure of cr4+ molecular qubits via matrix modularity, L. Baldinelli, D. Sorbelli, M. Toriyama, G. Bistoni, F. De Angelis, and G. Galli, *Journal of the American Chemical Society*, 147(24):20693–20702, 06 2025, DOI: 10.1021/jacs.5c04004
- [4] **Generalized scaling of spin qubit coherence in over 12,000 host materials**, S. Kanai, F.J. Heremans, H. Seo, G. Wolfowicz, C.P. Anderson, S.E. Sullivan, M. Onizhuk, G. Galli, D.D. Awschalom, & H. Ohno, Proc. Natl. Acad. Sci. U.S.A. 119 (15) e2121808119, https://doi.org/10.1073/pnas.2121808119 (2022).
- [5] **How do phonons relax molecular spins?**, Alessandro Lunghi, Stefano Sanvito, Sci. Adv.5,eaax7163(2019).DOI:10.1126/sciadv.aax7163
- [6] The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets, Lunghi, A., Totti, F., Sessoli, R. et al. Nat Commun 8, 14620 (2017). https://doi.org/10.1038/ncomms14620
- [7] **Spin–phonon coupling and magnetic relaxation in single-molecule magnets**, J. G. C. Kragskow, A. Mattioni, J. K. Staab, D. Reta, J. M. Skelton, and N. F. Chilton, Chemical Society Reviews, 52(14):4567–4585, 2023, DOI: 10.1039/D2CS00705C
- [8] Toward exact predictions of spin-phonon relaxation times: An ab initio implementation of open quantum systems, Alessandro Lunghi, theory.Sci. Adv.8,eabn7880(2022).DOI:10.1126/sciadv.abn7880

References 3

Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov