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Abstract

This project aims to understand the critical factors that determine transduction performance of
topological phonons across an oxide perovskite/tungsten diselenide heterojunction. We will
investigate mechanisms of their propagation and interfacial coupling using modeling and
machine learning approaches. Methods include density functional theory, molecular dynamics,
numerical transport simulations, and active learning for building up a training dataset for force
field development.
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Summary

In this work, we aim to understand the critical factors that determine the performance of
topological phonon (TP) transduction, by revealing the mechanisms of their propagation and
interfacial coupling through a combination of modeling and machine learning approaches. While
TPs have been theorized and observed in isolated systems, their transport in heterostructures
remains unexplored, where steep challenges lie in the complexity of coupled topological
phenomena. Elucidation of dynamic TP behavior during their transport and interaction with
external chemical and structural environments remains an active field of research. Our work will
demonstrate the feasibility of directly representing TP and their topological transport using
atomistic modeling, and set the foundation for establishing a generic model to predict the
performance of quantum transducers for qubit co-design.

Summary i
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Acronyms and Abbreviations

TP Topological Phonon

MD Molecular Dynamics

DFT Density Functional Theory
WP Wave Packet
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1.0 Introduction

The next generation of quantum systems call for revolutionary transduction. For example,
quantum computers require scalability to realize their “quantum advantage”: the potential to
solve complex problems in minutes instead of eons on classical systems. This necessitates
distributed networks with interconnected components for processing and storage (Figure 1). The
processing units — the only component realized today — are generally built upon
superconducting qubits,” which provide fast gate operations but suffer from short coherence
times; as such, they are not suitable for long-term storage or long-range operations. Hybrid
quantum computing that interconnects different types of qubits, including spin qubits for long-
lived quantum memory,? and optical qubits that facilitate long-range entanglement,® is thus
needed. However, despite promising theories on how individual types could work separately,
efficiently coupling them together to create integrated networks remains unexplored. Phonons
offer the best compromise between long-range transport and low decoherence, and provide a
natural bridge between different qubit modalities due to their ability to couple to various quantum
systems.*® However, they also suffer from decoherence caused by disorder and two-level
system noise, and energy-loss from scattering. To address these challenges, we propose an
emerging class of quasi-particles — the topological phonon (TP) as a solution that ensures
robust, backscatter-free transport, protecting coherence during transduction.”

Our proposed research develops theories that enable robust, low-loss quantum transduction
mechanisms, directly addressing DOE’s mission to advance quantum information science.
Combining atomistic/numeric simulations and machine learning approaches, our work sets in
motion the development of a generic model to predict the performance of quantum transducers,
supporting goals under National Quantum Initiative (NQI) to establish next-generation quantum
networks. Establishing the foundation for a new class of TP-based transducers—an innovation
that could redefine quantum device architectures, as well as transforming our capability into the
corresponding tool for qubit co-design, will enable us to address a broader range of sponsors’
needs.

Classical computers Quantum computers

Data Flow ml Data Flow
/7

S
l -—

———.
Hard Drive I

Figure 1. Compared to classical computers, current quantum computers lack essential
components (such as quantum random access memory, or QRAM) distributed
networks to realize scalability. The coupling among different types of qubits that is
necessary for realizing the quantum network, is also missing.
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2.0 Research Design and Methodology

Among the many types of TPs, we focus on the Weyl and chiral phonons for their topology-
protected directionality and robustness against disturbance. Their strong coupling to electrons
and spins also enables electron-phonon-spin conversions. We propose to investigate the TP
transport across an oxide perovskite/\WWSe; heterojunction. Oxide perovskites (BaTiOs, SrTiOs3
etc.) host Weyl phonons.? They also possess potentially strong piezoelectric effects that make
them excellent candidates for superconducting qubit-TP transducer interfaces.® WSe; hosts
chiral phonons and has been identified as a candidate for spin qubits,'® " and our choice can
benefit from PNNL’s major efforts in the syntheses and design of transition metal

dichalcogenides.

Figure 2. The side view and top view of TH-WSez monolayer. The threefold rotational symmetry
is essential in ensuring the presence of chiral phonons.

To parameterize the governing equations for accurately representing the TP dynamics, we need
to understand TP propagation and coupling across the heterostructures in the transducers, yet
these TP behaviors are not well understood where steep challenges lie in the complexity of
coupled topological phenomena at ultra-low temperatures. We plan to tackle this by directly
representing the TP behavior in nanostructures with atomic-level inhomogeneities. Our
parameterized ab initio wave packet (WP) approach based on molecular dynamics (MD),?
developed under the Chemical Dynamics Initiative (CDI), is specifically designed for simulations
in the millikelvin-temperature range. Still, challenges arise in the accurate representation of TP
using stable atomic displacements; their behaviors at ultra-low temperatures are expected to be
strongly influenced by lattice anharmonicity, which may not be captured by the existing classical
force fields. As such, we propose to expand our WP approach to investigate TP transport.

o We will first identify chiral phonon modes in WSe; using density function theory (DFT)
simulations. WP will be applied to demonstrate TP interfacial scattering and understand
chiral phonon propagation in pristine and defected WSe..

All work will be done using the computation resources available at PNNL (The PNNL
Institutional Computing program, or PIC).

Research Design and Methodology 2
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3.0 Results and discussion

3.1 Benchmarking interatomic potentials

The interatomic potential defines the law of physics in classical MD simulations; thus, a potential
that accurately describes atomic interactions is essential for ensuring reliable simulation
predictions. For phonon transport and heat transfer studies, the most important and
fundamental benchmark is the phonon dynamical matrix. Therefore, when choosing from
available potentials of Tersoff'® and Stillinger-Weber' (SW) types from literatures, we calibrated
their performance against the phonon dispersion, which represents the eigenvalues of the
dynamical matrices. The dispersion relationship was calculated using the GULP package,' and
our results agree well with previous benchmarks against DFT predictions.™

To further benchmark the potential in practical MD simulations, we set up a single slab of 1H-
WSe, containing 108x108 conventional unit cells (34,992 atoms) in a commensurate simulation
cell with fixed boundary conditions (Figure 3). The simulations are conducted using the
LAMMPS package.'® Both the Tersoff and SW potentials can preserve stable lattice structures
that are almost geometrically identical to experimental measurements and DFT predictions.
While the 2D slab largely remain stationary at temperatures lower than 100 K, there are
significant “wobbling”—collective atomic movements forming long-wavelength phonons—across
the slab at higher temperatures.

Figure 3. The side view and top view of 1TH-WSe; monolayer. The threefold rotational symmetry
is essential in ensuring the presence of chiral phonons.

In addition, we calculated the phonon density of states (PDOS), a higher-level physical quantity
derived from phonon dispersion relations. Different from 3D materials, where the PDOS is
largely independent of temperature, there is noticeable change in PDOS in monolayer 1H-WSe,
at 100 and 300 K (Figure 3). This indicates that significant lattice distortion/relaxation occurs

Results and discussion 3
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when the temperature increases in addition to thermal expansion, which can be attributed to
stronger atomic movements at elevated temperatures. There are also consistently a large
amount of phonon states near zero Hz, which are attributed to the long-wavelength phonons
(wobbling) which have low frequencies. Overall, both the Tersoff and SW potentials predict
phonon dispersions and PDOS that match well with DFT predictions. The SW potential was
eventually selected due to its higher computational efficiency (50% faster for ~35,000-atom

simulations).
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Figure 4. Comparison of PDOS predicted by Tersoff potential at 100 and 300 K, respectively.
The noticeable difference at difference temperatures is a pronounced feature
observed in 2D materials that is rarely present in 3D.
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Figure 5. Comparison of PDOS predicted by Tersoff and SW potentials at 100 K show
consistent profiles.

3.2 Calculating the Chiral Phonon Eigenvector

1H-WSe; monolayer hosts multiple chiral phonons.' Only those with non-zero momentum, i.e.
chiral phonons that can propagate are of interest, which can realize the function of transduction.
We chose the chiral phonon at K point ([1/3, 1/3]) in the first-Brillouin zone—commonly referred
to as the LO(K) chiral phonon'®—as our case study (LO represents the “longitudinal optical”
phonon branch).

The WP simulation requires the phonon eigenvector as inputs, which is used to calculate the
initial atomic displacements and velocities that can correctly represent the phonon of interest.
The eigenvector of LO(K) chiral phonon was calculated using GULP (Table 1), which yields two
degenerate optical phonons at K with almost identical frequencies (6.39 and 6.57 THz). The
eigenvectors take the form of atom-wise normalized unity vectors indicating the direction and
amplitude of the atomic displacement. The complex form indicates the presence of a phase
factor (the imaginary component) and represents circular movement of the atom. Both of the
degenerate eigenvectors show zero movement in W atoms, where Se atoms move in circular
motions around their equilibrium lattice points, consistent with previous studies. Note the two
degenerate phonons have perpendicular eigenvectors with a phase shift of 90 degrees; thus,
we conveniently designate them as LO and TO (transverse optical) branches. It is also
noteworthy that while the chiral phonon is commonly referred to as LO(K), it is effectively a
linear combination of the degenerate LO and TO phonons.

Table 1. The eigenvectors of the two degenerate LO(K) and TO(K) phonons

Components of the eigenvector LO TO
Wi 0 0
Wy 0 0
W, 0 0

Results and discussion 5
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Components of the eigenvector LO TO
Seix -0.032-0.4909i 0.054-0.497i
Seiy 0.499-0.032i -0.497i-0.054
Se1z 0 0
Sexx -0.032-0.499i -0.054+0.497i
Sezy 0.499-0.032i 0.497+0.054i
Sea: 0 0

3.3 Testing the WP simulation of the LO(K) chiral phonon

Atomic displacements were performed to the 108x108 slab 1H-WSe: according to the formalism
described in our previous study.'® The excited phonon would then propagate according to its
eigenvectors in the MD simulation. Snapshots of the phonon propagation, where the kinetic
energy of the atoms is visualized to represent the wave packet, are shown in Figure 6. While
initially excited as a single chiral phonon, it soon breaks down into its two degenerate
components. The low decoherence is attributed to several possible factors: 1) the eigenvectors
may not be accurate enough numerically; 2) the interatomic potential may not be accurate
enough. Even a slight breakdown of the threefold rotation symmetry prevents the chiral phonon
from forming properly; 3) as the wave packet has finite size, its frequency has a finite span too
which contributes to its degeneration. Further study into enhancing the phonon coherent length
is recommended.
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Figure 6. Propagation of the LO(K) chiral phonon in WP simulations. Initially a single phonon, it
soon broke down into its two degenerate components.
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4.0 Conclusion

We have successfully evaluated the feasibility of applying classical molecular dynamics in
simulating chiral phonons. While the chiral phonon can be correctly excited in the crystal lattice,
the coherent time is currently observed to be low. Further study into the underpinning
mechanism and methods to enhance coherency is recommended.

Conclusion 7
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