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Abstract

VISIONARY is an Al system that accelerates energy materials discovery by automatically generating
hypotheses about structure-property relationships. It analyzes patterns in materials data,
identifies promising correlations, and proposes testable scientific hypotheses without human
intervention. By streamlining this reasoning process, VISIONARY helps researchers efficiently
identify candidate materials with desired properties, significantly speeding up the materials
development pipeline for energy applications. During the project, we developed a standalone
application. The application uses a combination of papers provided by the user and data collected
from FutureHouse’s dataset to build an understanding of the background that the user wants to
explore for the hypothesis.

Abstract i



PNNL-38380

Summary

Visionary, as described in Figure 1, works using three separate LLMs. The first one is FutureHouse
[2], which leverages the abilities of LLMs to extract, structure, and refine domain-specific
knowledge. It makes use of a large dataset of literature that allows it to gain a wider knowledge of
what MOFs exist, how they are synthesized, and what hypothesis-relevant performance
characteristics are reported. The second LLM is PaperQA[3], which we use to analyze the literature
listed by Crow, together with a user-provided list of manuscripts, and extract the information that
the expert user would need to conduct experimental validation and verify the hypothesis. Finally,
the third LLM takes the analysis produced by PaperQA and generates a hypothesis responding to
the user’s input. Both PaperQA and the hypothesis-generation LLM use an off-the-shelf version of
Claude 3.7 Sonnet [6] as the underlying model. In the future, we will extend hypothesis generation
to also include experimental validation steps for the user to follow.

Future house LLM

Background Hypothesis
query Summary Generation LLM

Hypothesis ﬂuek

Feature

/ Generated
iltered hypothesis

overview

Figure 1: VISIONARY overview
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1.0 Background and motivation

Metal-organic frameworks (MOFs) have emerged as promising sorbents and catalysts due to
their characteristic microporous structure and design principle, which involves the coordination
of a large family of well-ordered porous structures composed of various metal-organic metal
ions or clusters (nodes) and organic ligands (linkers). MOFs, thus, require an intricate balance
between chemical complexity and structural modality, which further manipulates the material
functionality with tailorable pore sizes, chemical environments, and functional groups on the
linkers.

MOF design makes it intractable to experimentally test all possible node and linker
combinations and determine the optimal structure for a given application. This compositional
complexity is an example of a multi-variable system in which progress is limited by the
constrained operational framework in which humans operate, including restricted parallel
processing capabilities, reduced data integration capacity, and inherent cognitive bandwidth
constraints. Furthermore, synthesis and property optimization have traditionally relied on
manual, trial-and-error experimental methods, which are time-intensive, costly, and insufficiently
scalable in the face of the nearly infinite design space of MOFs. Thus, human researchers have
a limited ability to perform comprehensive pattern recognition across large datasets, compared
to automated systems.

To overcome these limitations and accelerate MOF materials discovery, an Al-driven hypothesis
generator developed from VISIONARY can generate testable hypotheses for enhancing
catalytic reactivity and storage capacity of MOF catalysts through molecular modifications,
advancing the development of energy storage materials. With proper training, the Al platform we
have developed will be extendable to a wide variety of materials and chemistry systems,
accelerating scientific knowledge generation across fields. By aiding in the identification of
actionable hypotheses based on predictive analytics, this Al-driven workflow not only minimizes
the cost and time associated with material discovery but also advances fundamental
understanding of the underlying principles that govern MOF behavior in energy applications.

Acronyms and AbbreviationsBackground and motivation
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2.0 Design

We use two primary sources for literature review in our system: the FutureHouse Crow agent
and user-provided manuscripts. Crow reviews synthesized MOFs from published literature,
extracting nodes, linkers, synthesis environments, XRD profiles, precursor chemicals, and CO2
capture data. Additionally, we process user-provided scientific manuscripts through the
VISIONARY application.

After gathering literature, we employ PaperQA to extract MOF synthesis features from both
sources, including nodes, linkers, and treatment processes. The Claude LLM then generates
hypotheses based on user questions and the literature analysis from PaperQA. Users can
customize both the Crow queries and PaperQA prompts through the VISIONARY interface.

For hypothesis generation, we first utilize FutureHouse. This tool helps identify knowledge gaps
and suggest new research directions by scanning scientific literature, finding unexplored areas,
and connecting different research domains. PaperQA serves as the foundation for
FutureHouse's Al agents, analyzing scientific papers with proper citations while avoiding
inaccuracies. Researchers can upload targeted collections of papers, allowing the system to
identify contradictions between studies that often indicate opportunities for discovery.

2.1 Literature Review

The literature review is performed using two sources. The first one is the FutureHouse Crow
agent, which we employ to review the synthesized MOFs reported in the literature and for each
reported synthesis list the corresponding node, linker, and synthesis environment. Furthermore,
we request Crow to obtain information on the XRD profile and precursor chemical of each MOF
and identify the CO2 capture and conversion behavior when reported. The second source is a
user-provided list of URLs pointing to user-selected scientific manuscripts, which the
VISIONARY application employs to download a digital copy of each accessible manuscript in
the list.

Once the literature review has been performed, we employ PaperQA to extract from the list of
papers provided by Crow and by the user, a detailed list of the important MOF synthesis
features needed to provide a testable hypothesis. Such features include nodes, linkers, and pre-
and post-treatment, among others. Once the analysis has been performed, we use the Claude
LLM to generate the final hypothesis based on the question from the user and the context
provided by the literature analysis generated by PaperQA. Both the literature review query to
Crow and the literature analysis prompt to PaperQA can be customized by the user through the
VISIONARY interface.

2.2 Hypothesis generation

Once the literature review is done, the hypothesis generation part of VISIONARY can be used.
The first model that is used by VISIONARY to generate a hypothesis is FutureHouse. These
smart Al assistants help scientists do research faster and better. The main goal of the LLM is to
find gaps in current knowledge and suggest new ideas to explore. For hypothesis generation
specifically, FutureHouse helps by having its Al agents scan through vast amounts of scientific
literature, identify what hasn't been studied yet, make connections between different research
areas that humans might miss, and then suggest new research questions and experiments
based on these findings. Instead of scientists spending months reading papers to come up with
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new ideas, FutureHouse's Al can do this work in much less time and help researchers focus on
testing promising new hypotheses, ultimately accelerating the pace of scientific discovery in
fields like medicine and engineering.

PaperQA is a specialized Al tool developed by FutureHouse that reads and analyzes scientific
papers to answer questions with high accuracy and proper citations and is designed specifically
to avoid hallucinations. It's essentially the foundation that powers FutureHouse's other Al agents
like Crow, Falcon, and Owl. For analyzing and interpreting scientific literature during hypothesis
generation, PaperQA is valuable because it allows researchers to upload their own curated
collection of papers from their specific field of interest, then systematically analyze them to find
contradictions between different studies - and these contradictions often point to where new
discoveries can be made. Rather than getting overwhelmed by millions of papers across all of
science, researchers can focus PaperQA on just the most relevant documents to their research
question, then use tools like ContraCrow (built on top of PaperQA) to automatically identify
every claim in those papers and find where different studies disagree with each other. This
targeted approach helps generate more focused, actionable hypotheses because the Al is
working with a carefully selected, domain-specific literature base rather than trying to process all
scientific knowledge at once, making it much more likely to find meaningful research gaps and
contradictions that could lead to breakthrough discoveries.

Design 2
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3.0 Automated Hypothesis Generation: Evaluation &
Presentation of Machine Reasoning Traces

In this section, we cover how we would go about developing an inspectable automated
hypothesis generation systems that show its reasoning process for scientific evaluation. Our
evaluation framework examines five key questions: convergence to known answers, generation
of credible new ideas, contribution of workflow components, impact of justification, and iteration
efficiency.

We designed an autonomous system that follows a structured problem-solving schema through
exploration, evaluation, and self-critique. The system advances by selecting optimal questions

at each step of the process: defining problems, gathering information, generating alternatives,
evaluating options, making decisions, implementing solutions, and reflecting on outcomes.

3.1 Motivation

Automated hypothesis generation is only useful if its reasoning is inspectable, comparable, and
scientifically meaningful. Beyond producing ideas, the system must show how it arrived there so
chemists can assess plausibility and novelty [1]. This section focuses on how we evaluate and

present machine reasoning traces so they can be read, audited, and scored like any other
scientific artifact.

3.2 Key Questions we aim to answer

e Q1. Convergence to ground truth: Can the system reach a known (even indirect)
answer?

e Q2. Novelty: Does it generate credible new ideas? How similar or distinct are ideas
across the reasoning space?

e Q3. Contribution of new components: Which parts of our workflow (branching, synthesis,
feedback loops, multi-participant “co-thinking”) drive gains?

¢ Q4. Role of justification & specificity: What is the impact of explicit “why” at each step
and of increasing specificity?

o Q5. Sample efficiency: How many iterations are typically needed to reach comparable
hypotheses?

3.3 Experiment

We configured an autonomous hypothesis generator that samples questions from a problem-
solving schema and advances by exploration, evaluation, and self-critique:

e Problem Definition: “What exactly is the problem?”
¢ Information Gathering: “What do we know/need to know?”

¢ Alternative Generation: “What are plausible routes?”

Automated Hypothesis Generation: Evaluation & Presentation of Machine Reasoning Traces 3



o Evaluation: “How do we assess these?”
e Decision: “What do we pursue next?”
¢ Implementation: “How would we do it?”

¢ Reflection: “What did we learn/revise?”

PNNL-38380

e At each step, the agent selects the next best questions to ask and continues reasoning.

The figure below shows results from a 3+ hour run executed with ~30 iterations using 03-mini

and recorded a complete, auditable trace to explore catalysts for a given reaction. The
embedded figure presents the run and maps directly to the log.

Example Chain: Fe-Ni on Zr-Doped Ce(): with Engineered Vacancies

This chain shows the model combining concepts like defect engineering, support modification
via doping, bimetallic synergy, and specific synthesis methods:

1. Initial Concept (Defect Engineering): thought 2 proposes using Fe on a CeD:
support where oxygen vacancies are deliberately engineered to a specific target
concentration (~5% 10P* cm*) via H: reduction, with plans for in-situ Raman/EPR
verification.

= Synthesis: Combines Fe deposition with controlled Ce(): defect creation.
o Concepts: Fe catalyst + targeted defect engineering + advanced characterization.

2. Adding Support Modification (Doping): thoughe 12 introduces doping the Ce(n
support with Zr, The justification is that Zr doping can enhance thermal stability and
potentially stabilize/increase the concentration of beneficial oxygen vacancies compared
to pure Ce()..

o Synthesis: Adds support doping prior to Fe deposition,
o Concepts: Support modification (doping) + enhanced defect stability + thermal
stability.

3. Refining Support Synthesis: ctcught_15 refines the doped support idea from
thouwghe 12, It specifies creating a Ce()s-Zr(); solid solution (targeting 10-20 mol% Zr)
using a sol-gel method for better homogeneity, followed by specific calcination and
reduction steps before adding the Fe.

o Synthesis: Specifies advanced method (sol-gel) for doped support + precise
composition control + defined thermal treatments.

o Concepts: Advanced synthesis method + solid solution formation + controlled
thermal processing.

4. Integrating Bimetallics: «nougnt_17 combines the refined doped support with a
bimetallic concept (explored earlier in thought & with Fe-Ni on plain Ce0s). It proposes
synthesizing an Fe-Ni bimetallic catalyst using co-impregnation onto the optimized Zr-
dﬂl:d CeO: support from thought_15.

Synthesis: Co-impregnation of fwo metals onto the pre-synthesized advanced
su

o Cmrcpﬂ: Bimetallic synergy (Fe-Ni) + optimized doped support + integrated
defect/supportbimetallic strategy.

Figure 2: The search process automatically summarized from the reasoning traces

Automated Hypothesis Generation: Evaluation & Presentation of Machine Reasoning Traces
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Figure 3: Hierarchical evolution of hypothesis during the autonomous reasoning process.

3.4 Results and Discussion
The experiment shows a number of key aspects of autonomous machine-reasoning:

¢ |terative Refinement Process: The detailed traces show 30 search iterations exploring
different catalyst configurations. Each iteration builds on previous discoveries, from initial
Fe-CeO, concepts to sophisticated bimetallic systems.

¢ Hierarchical Knowledge Building: The synthesis flow demonstrates how concepts build
on each other: a) basic defect engineering concept, b) support modification through
doping, c) advanced synthesis methods, d) integration of multiple concepts into
sophisticated catalyst designs

o Emergent Hypotheses: Three high-confidence hypotheses emerged from analyzing 73
thought nodes across 30 iterations. The reasoning process shows how detailed
exploration aggregates into broader principles (optimal oxygen vacancy engineering).
The system explored multiple parallel paths - Fe-based catalysts, Cu-Ni bimetallics [7],
and Mn-doped Ni systems - then synthesized the best features from each approach.

Automated Hypothesis Generation: Evaluation & Presentation of Machine Reasoning Traces 5
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This is a preliminary experiment, primarily aimed at understanding how to quantitatively study
the autonomous execution of a scientific reasoning machine. Validation of such hypothesis
generation using scientific domain knowledge is ongoing. However, this study clearly
demonstrates how Al systems can navigate vast solution spaces and extract actionable insights
by synthesizing knowledge from multiple reasoning chains.

Automated Hypothesis Generation: Evaluation & Presentation of Machine Reasoning Traces 6
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4.0 Interface
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Figure 4: VISIONARY system architecture

VISIONARY provides a comprehensive user-friendly interface designed to streamline
hypothesis generation from scientific literature using large language models (LLMs). The
application features a dashboard that allows users to navigate between key sections, Papers,
Hypothesis, APl Keys, and User Profile.

Within the Papers section, users can initiate the collection of scientific papers by specifying a
research topic or providing a list of seed documents. These requests are processed in the
background by the Flask [4] APl backend, enabling users to monitor the status of each job in
real-time while continuing to use other parts of the application. Once papers have been
collected, users can view, download, or delete the papers as needed.

In the Hypothesis section, users can extract features and generate new hypotheses based on
the collected literature. When a hypothesis generation request is initiated, the backend
communicates with the Hypothesis LLM to produce results. Users can track the progress of the
hypothesis generation in real-time through the dashboard. Once generated, hypotheses are
delivered to the React frontend, where users can review and manage them.

In the API Keys section, users can securely add, edit, or remove API keys needed for
integrating with the LLMs. Credentials are managed in a user-friendly and secure manner. In the
User Profile section, users can modify their username, name, and password.

All user actions in the interface are powered by API calls to the Flask backend, which interacts
with a local PostgreSQL [5] database for persistent storage of user data, papers, hypotheses,
and API keys. The backend also manages file storage for uploaded and collected documents,
organizing them in a structured directory by user and topic. The entire application is
containerized using Docker, making it easy to deploy and ensure environments are consistent
for development purposes.
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