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Abstract

This project aims to develop multi-scale building energy data, potentially improving the
representation of the U.S. buildings sector in GCAM-USA, an U.S.-focused human-energy-Earth
systems model. Existing building energy datasets are typically limited to national or regional
levels, which constrains the ability of models to capture fine-scale human-energy-Earth systems
interactions and reduces their relevance for decision-making on issues such as energy security,
resilience, and energy planning. By leveraging Al and advanced data integration methods, this
work fuses multiple existing datasets to enhance the physical and geographic representation of
both residential and commercial building energy use. So far, progress includes processing
residential building data, designing the data structure for commercial buildings, and testing Al
approaches for integrating datasets and addressing spatial-temporal gaps. This effort can not
only advances GCAM-USA'’s capability in modeling the buildings sector but also supports
broader DOE missions, such as developing digital testbeds, enhancing grid resilience analysis,
and improving building—energy system modeling at decision-relevant scales.
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PNNL-38371

Summary

Key building energy drivers such as household income, building type, age, and urban-suburb-
rural context are currently missing or simplified in GCAM-USA but are being prioritized in this
effort. For residential buildings, income and demographics strongly shape energy demand, while
commercial demand is more closely tied to regional economic activity. Al-based integration
allows harmonizing fragmented datasets like ACS, RECS, and CBECS, filling gaps where no
single dataset provides complete spatial and temporal coverage. Early validation shows strong
performance in capturing overall energy use, while highlighting opportunities to refine specific
fuels such as propane and fuel oil. Future work will expand the use of advanced Al techniques
to fill spatial and temporal gaps, incorporate richer building-level features, and apply
explainability and uncertainty quantification methods to improve transparency and robustness of
estimates. These developments will help establish a comprehensive Al-driven framework for
building energy modeling that supports fine-scale, decision-relevant applications.

Summary iii
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1.0 Introduction

This project aims to integrate buildings data at multiple scales in order to build capabilities in
modeling the buildings sector in the open-source Global Change Analysis Model (GCAM).
Traditionally, energy-related buildings data are only available at the national or regional level,
which limits our ability to accurately and quickly model human-energy-Earth systems at finer
scales, reducing the relevance for GCAM as a decision making and planning tool around energy
security related issues. This work would build our ability to model human-energy-Earth systems
at multiple scales by leveraging Artificial Intelligence (Al) tools to fuse existing datasets that can
be used to improve the physical and geographical representation of buildings energy
consumptions in GCAM-USA, a version of GCAM focusing on the U.S. with more detail in the
buildings sector.

In addition to working toward better buildings sector representation in GCAM-USA, the cohesive
dataset developed in this project would be useful to other missions of the Department of Energy
(DOE) or Department of Homeland Security (DHS). For example, the Office of Science’s
Biological and Environmental Research program is considering creating Digital Testbeds to
integrate multiple different types of human and Earth science modeling at varying scales. This
dataset supports digital testbeds by providing high-resolution, multi-scale information on building
energy use, allowing models to more accurately capture the interactions between human
systems and the environment. By leveraging Al or Machine Learning (ML) to fuse disparate
datasets, it enhances the realism, scalability, and decision-relevance of testbed experiments,
enabling more robust evaluation of energy scenarios. Furthermore, the proposal can provide
useful input to the Office of Energy Efficiency and Renewable Energy by allowing them to
access modeling of buildings integrated with other parts of the energy and Earth system at fine
scales. For the Office of Electricity, this capacity could be useful in connecting one of the largest
electricity loads (buildings) with power system models at scales relevant to resilience questions.

Introduction 1
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2.0 Key Drivers and Data

The buildings sector in GCAM-USA includes a detailed structure representing residential and
commercial building energy use across services, fuels, and technologies. However, key
parameters that drive the dynamics and heterogeneity of building energy service demand, such
as income (for residential buildings), urban/suburban/rural disaggregation, building type, and
building age, are either simplified or absent in the GCAM-USA core version. This work
prioritizes enhancing GCAM-USA'’s capability in more accurately modeling the buildings sector,
particularly through improvements of the representation of key drivers in building energy use.
This work also works to increase the geographical detail of underlying GCAM-USA building
data, to enable swift breakouts of sub-state GCAM-USA in the future.

In summary, GCAM-USA version 8.3, the latest version as of today, models two building types
(residential and commercial), where 14 residential energy services and 10 commercial services
are included for each state. Each energy service is associated with different fuel and technology
choices (e.g., standard vs. high-efficiency gas furnace vs. electric heat pump for residential
heating service). See Table 1 below. Different choices are associated with different technology
characteristics (e.g., cost, efficiency, and lifetime). There is also building shell conductance
being modeled over years, which is related to the building age, a parameter currently missing in

GCAM-USA. The current version of GCAM-USA does not incorporate consumer-specific
characteristics, such as income levels, although extensions exist in development model

branches.

Table 1. Building service (supplysector), fuel (subsector), and technologies in GCAM-USA

supplysector subsector technology
resid heating biomass wood furnace
resid heating coal coal furnace
resid heating gas gas furnace
resid heating gas gas furnace hi-eff
resid heating electricity electric furnace
resid heating electricity electric heat pump

resid heating

resid heating

refined liquids

refined liquids

fuel furnace

fuel furnace hi-eff

resid cooling electricity air conditioning

resid cooling electricity air conditioning hi-eff
resid hot water gas gas water heater
resid hot water gas gas water heater hi-eff
resid hot water electricity electric resistance water heater
resid hot water electricity electric resistance water heater hi-eff
resid hot water electricity electric heat pump water heater

resid hot water

refined liquids

fuel water heater

Key Drivers and Data



resid hot water
resid lighting
resid lighting
resid lighting
resid refrigerators
resid refrigerators
resid freezers
resid freezers
resid dishwashers
resid dishwashers
resid cooking
resid cooking
resid cooking
resid cooking
resid cooking
resid clothes dryers
resid clothes dryers
resid clothes dryers

resid clothes
washers

resid clothes
washers

resid televisions
resid computers
resid furnace fans
resid other
resid other
resid other
comm heating
comm heating
comm heating
comm heating
comm heating
comm heating
comm heating
comm cooling

comm cooling

Key Drivers and Data

refined liquids
electricity
electricity
electricity
electricity
electricity
electricity
electricity
electricity
electricity
electricity
gas
gas
refined liquids
refined liquids
electricity
electricity
gas

electricity
electricity

electricity
electricity
electricity
gas
electricity
refined liquids
biomass
coal
gas
gas
electricity
electricity
refined liquids
gas

electricity

fuel water heater hi-eff

incandescent
fluorescent
solid state
refrigerator
refrigerator hi-eff
freezer
freezer hi-eff
dishwasher
dishwasher hi-eff
electric oven
gas oven
gas oven hi-eff
Ipg oven
Ipg oven hi-eff
clothes dryer
clothes dryer hi-eff
clothes dryer

clothes washer
clothes washer hi-eff

electricity
electricity
electricity
gas
electricity
refined liquids
wood furnace
coal furnace
gas furnace
gas furnace hi-eff
electric furnace
electric heat pump
fuel furnace
gas cooling

air conditioning

PNNL-38371



comm cooling
comm hot water
comm hot water
comm hot water
comm hot water
comm hot water
comm ventilation
comm ventilation
comm cooking
comm cooking
comm cooking
comm cooking
comm lighting
comm lighting
comm lighting
comm refrigeration
comm refrigeration
comm office
comm other
comm other

comm other

comm non-building

electricity
gas
gas
electricity
electricity
refined liquids
electricity
electricity
gas
gas
electricity
electricity
electricity
electricity
electricity
electricity
electricity
electricity
gas
electricity
refined liquids

electricity

air conditioning hi-eff
gas water heater
gas water heater hi-eff
electric resistance water heater
electric heat pump water heater
fuel water heater
ventilation
ventilation hi-eff
gas range
gas range hi-eff
electric range
electric range hi-eff
incandescent
fluorescent
solid state
refrigeration
refrigeration hi-eff
office equipment
gas
electricity
refined liquids

electricity

2.1 Residential Buildings Sector

PNNL-38371

To better capture residential building energy use, we identify several key drivers (Berrill et al.

2021), including energy use by technology, floorspace, building age (related to shell
conductance parameter), income, building type (multifamily vs single family vs large apt

buildings), area type (urban vs suburb vs rural identification). Although GCAM-USA’s buildings
sector operates at the state level, we aim to develop a dataset flexible in the scale at which we
integrate parameters. It is worth noting that income deciles are implemented in the residential

buildings sector in a model branch, where higher income generally leads to higher energy
demand; however, technology choices are not linked to income levels. Therefore, future
improvements, out of the scope of this LDRD, could include not only leveraging the income

deciles in determining energy demand, but also refining behavioral parameters linked to income
levels (e.g., resistance to electrification in low-income areas). Additionally, we could improve the
shell conductance parameter based on building age data to better capture spatial and temporal

variations in shell conductance and thus the thermal energy demand response.

The dataset we plan to develop will provide annual values over the historical years, aligning with
observed data. This dataset will provide energy use by service and fuel (as does the current

Key Drivers and Data
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GCAM-USA dataset) as well as more detailed geography, building-type, income, and urban-
rural designation (if not noted by the geographic area). In addition, it would include estimates of
statistical significance/error to support data needs in modeling and analysis.

To develop this dataset, we will leverage a combination of U.S. datasets with national coverage
and Al-based data integration methods. The open-source fusionACS dataset (Ummel et al.
2024), which integrates the American Community Survey (ACS) Public Use Micro Data Sample
(PUMS) (US Census Bureau 2016) with the Residential Energy Consumption Survey (RECS)
(US Department of Energy 2018) and others, enables us to examine energy use and
fuel/technology choice patterns across income groups at fine spatial scale (Public Use
Microdata Area or PUMA level). This dataset will be used to evaluate how income affects
technology adoption and energy intensity in residential buildings. We will also compare
overlapping variables such as floorspace and building age per building type across datasets of
RECS for matching geographies and years to assess consistency and fill in gaps. To integrate
these datasets over time and across spatial levels (PUMA, state, and census region), we will
design Al-based data integration methodology to perform spatial and temporal interpolation and
extrapolation and generate consistent and comprehensive estimates of these key variables. The
harmonized dataset will serve as inputs to refine GCAM-USA'’s residential buildings types.

2.2 Commercial Buildings Sector

The approach to developing the dataset for commercial building energy use follows that for the
residential buildings described above, with some important distinctions. First, the spatial
resolution for commercial building energy use is expected to be coarser than for residential
buildings (e.g., PUMA level), because the backbone dataset, Commercial Buildings Energy
Consumption Survey or CBECS (US Department of Energy 2022), provides statistically robust
estimates only at the census division level. To address this, we plan to integrate CBECS with
ModelAmerica (New et al. 2021) data and apply Al-based methods to refine the spatial
resolution where possible. Second, while household income is a strong determinant of
residential energy demand, it is not a meaningful driver for commercial buildings. Instead,
indicators such as regional GDP or economic activity levels will be used to represent
commercial activity and associated energy consumption. Finally, commercial building energy
consumption is generally less sensitive than residential demand to fluctuations in energy prices.
To better understand these dynamics, we will apply sensitivity analysis to evaluate the relative
importance of input variables on commercial energy demand outcomes.

Key Drivers and Data 5
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3.0 Methodology

Estimating household and building energy use by fuel type at fine geographic scales is
inherently difficult because the variables most critical to energy demand, such as floor area,
building type, vintage, and primary heating fuel, are never jointly observed in a single dataset at
national scale. For instance, ACS provides rich demographic and socioeconomic information but
contains only coarse measures of building characteristics. On the other hand, energy surveys
such as RECS and CBECS capture end-use and fuel consumption in detail but are limited in
sample size and lack geographic coverage below census region or division. Existing datasets
(ACS, RECS, CBECS, ResStock, ComStock, ModelAmerica) independently capture
demographics, buildings’ characteristics, and employment statistics, none of these datasets can
provide estimates of building floor area and building type by fuel type and other relevant
features.

Al offers a powerful opportunity to fill these gaps by learning from the joint distributions of known
features, such as location, building age, land use, or demographics, to generate plausible
estimates of missing attributes like building type or floor area. By learning from the overlapping
margins across disparate datasets, Al models can infer plausible values for unobserved
combinations of building and household features. In addition to that, these models offer an
added advantage of capturing the temporal dynamics, a key element needed for GCAM-USA
modeling. In comparison to traditional statistical models, these Al models can capture non-linear
dynamics and possess the ability to integrate multimodal data (such as satellite imagery, parcel
data, and urban morphology features) to infer building typologies or use statistical relationships
from well-surveyed regions to impute floor area in less-documented areas.

Our approach leverages a Bayesian multivariate regression framework that unifies
demographic, socioeconomic, and building characteristics at the household level and then
aggregates these estimates to the PUMA scale.

3.1 Bayesian Multivariate Regression of Household Energy Use

Leti € {1, ..., N} index households, and j € {1, ..., 4} index fuel types: natural gas (NG), fuel oll
(FO), liquefied petroleum gas/propane (LP), and electricity (EL). For each household i,
predictors: x; € RX is a vector of household and building level covariates (income, building age,
structure type, household size, etc.); and observed y;; is the annual energy use (Btu) for fuel j.
Since residential energy use is highly skewed, we transform the target variable by taking the log
normal.

zij =log (1 +yi;)

We posit a Bayesian multivariate normal regression model:
451
Zi2

zl - Zi3 ~‘N4-(I’lll z);
Zi4

with mean

W, = a + BTx;,

Methodology 6
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where,
- «a € R* are intercepts for each fuel,
- B e R¥** are regression coefficients linking predictors to each fuel,
- X e R*** s the residual covariance matrix capturing correlations across fuels.

We assign weakly informative priors to regression coefficients to stabilize estimation without
imposing overly restrictive assumptions

aj~N(0,22),  Byj~N(0,1?)
for all predictors k and fuels j.

Weakly informative priors help prevent pathological estimates in high-dimensional settings (e.g.,
extremely large positive or negative coefficients that are inconsistent with plausible household
energy use), while avoiding the rigidity of strongly informative priors. These priors reflect the
belief that most effects are likely small to moderate on the log-energy scale, but they still allow
the data to dominate inference when strong evidence is present.

For the covariance, we use an LKJ prior:
L =LL",  L~LKJCholeskyCov(n = 2, 0;~HalfNormal(1))

which yields marginal standard deviations o; and a correlation matrix with weakly informative
prior toward independence. The covariance matrix X allows residuals across fuels (NG, FO, LP,
EL) to be correlated: households that consume more electricity may systematically consume
less natural gas (substitution) or more (complementarity).

The covariance matrix must be symmetric, positive definite, and estimated from the noisy data,
and if put naive priors directly on the covariance elements, we risk invalid or unstable
covariance matrices. The LKJ prior is a principled distribution over correlation matrices and
ensures that any draw is a valid correlation matrix and the prior shape can be tuned with a
single parameter n. An LKJ prior with n = 1 places a uniform distribution over all possible
correlation, treating strong positive, strong negative, and near-zero correlation as equal likely.
Values of n > 1 mildly favor correlations closer to zero (independence), while values of n < 1
favor extreme correlations near +1. We set the LKJ prior parameter to n = 2 and by doing so we
express a weak prior belief that independence is slightly more plausible than strong correlations,
while still allowing the data to reveal strong cross-fuel relationships if present. This aligns well
with domain knowledge: some fuels may act as substitutes (e.g., natural gas v/s electricity),
while others are only weakly related (e.g., propane and electricity).

3.2 Posterior Inference

Once trained, we obtain posterior samples of {«, B, X} using Hamiltonian Monte Carlo (NUTS) as
implemented in PyMC. For each posterior draw s, we compute household-level posterior
predictive means:

9 = exp (1) -1,

Methodology 7
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where ,uﬁ) is the sampled regression mean on the log scale. Additionally, we generate full
posterior draws from the multivariate normal likelihood to incorporate residual variation.

3.3 Weighted Aggregation to PUMA Level

Each ACS household record carries a survey weight w; indicating the number of households it
represents in the population. Let g(i) denote the PUMA (and optionally building category) group
to which household i belongs. For each group G and fuel j, we compute weighted posterior
totals:

0= S
ieG

The posterior distribution of T;;; across draws s provides point estimates (posterior mean or

median) and confidence intervals (e.g., 10" — 90" percentiles) for annual fuel-specific energy
use at the PUMA level, further stratified by building category when required.

Methodology 8
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4.0 Evaluation

Our work builds upon the work of fusionACS and ResStock/ComStock — efforts focused on
enriching household, demographic, and socioeconomic characteristics captured in ACS with
household-level energy consumption. In this section, we describe the data preprocessing steps,
the experimental setup, and validation of our multivariate energy consumption prediction model
at the housing level. The study is conducted for the state of WA, with results aggregated to the
PUMA level and validated against state-level estimates of energy use by fuel type.

4.1 Data Preprocessing

fusionACS uses ACS microdata as the recipient backbone and fuses in variables from donor
surveys such as RECS, American Household Survey (AHS), National Household Transportation
Survey (NHTS), and the Consumer Expenditure Survey. This enriches ACS records with fuel
consumption, expenditures, and related attributes. By contrast, ResStock and ComStock are
large-scale, physics-based building stock models developed by NREL to characterize the U.S.
residential and commercial building sectors. They integrate survey data, building physics, and
regional parameters to generate high-resolution estimates of energy use, retrofit potential, and
technology adoption.

411 Housing Level Estimates: Link fusionACS to ACS

fusionACS includes a persistent household identifier, ACS house ID (acs_hid), that links
fusionACS record to the recipient dataset (ACS 5Y 2011-2015) microdata. Because ACS 5Y
products pool multiple years, the same household may appear with estimates for different years.
Since our objective is to produce household-level energy estimates, we index records by
acs_hid and retain the most recent estimate within 2011-2015.

Also, ACS microdata for 2011 refers PUMA 2000 boundaries, while 2012 onward uses PUMA
2010 boundaries. To provide consistent geography, we standardize all households to PUMA
2010. For 2011 records (originally linked to PUMA 2000), we use GeoPandas to map each
household to the best-matching PUMA 2010 polygon by intersecting PUMA 2000 and PUMA
2010 shapefiles, then assigning the area-dominant PUMA 2010. This produces a single,
consistent PUMA10 key for aggregation and reporting.

41.2 Handling Implicates in fusionACS

fusionACS provides 40 implicates per household to reflect fusion uncertainty. In this study, we
take the average across implicates to create a single working value per household. In future
versions, we will treat implicates as draws from a posterior predictive distribution and propagate
them through through model fitting and PUMA aggregation to produce principled uncertainty
intervales that reflect both model parameters and fusion uncertainty.

After these steps, each row in the modeling frame represents a unique household (identified by
acs_hid) with (i) its most recent estimates (2011-2015), (ii) a single implicate — averaged for
fused variable, and (iii) a harmonized PUMA10 identifier. ACS household weights (WGTP) are
retained to scale each sampled household to the population. In modeling, households are
treated as independent records and treat WGTP as a post-modeling scaling factor.

Evaluation 9
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41.3 Feature Engineering

Finally, we harmonize categorical variables and derive numeric features that better represent
building stock characteristics.

- Building type (BLD) from ACS is collapsed into three categories — single-family, multi-
family, and others — with non-response coded as unknown.

- Number of units in multi-family structures is approximated using midpoints for
categorical ranges (e.g., 3-4 apartments — 4 units, 20-49 apartments — 35 units).

- Year built (YBL) from ACS is mapped to a representative construction year using
midpoints for categorical ranges (when an exact year was unavailable), then converted
to building age (AGE) by subtracting from the reference year 2025.

- Heating fuel (HFL) is collapsed into four categories — natural gas, propane, electricity,
and oil’kerosene. All other fuels are grouped as others; non-response is coded as
unknown.

- Continuous housing features such as number of bedrooms (BDSP), number of rooms
(RMSP), and number of persons in family (NPF) were preserved as numeric inputs.

- Household income (HINCP) is inflation-adjusted to constant 2015 dollars using ACS’s
adjustment factor (ADJINC).

41.4 Data Preparation for Model Training and Validation

To prepare the data for model training, we begin by splitting the dataset into randomly sampled
70:30 training and testing split. The training set container 63,589 observations and the test set
27,253 observations. The split is performed with stratification based on BLD category and HFL
category, ensuring that the relative distribution of these categorical groups is maintained across
both subsets. Stratification helps prevent bias by making sure that the test set is representative
of the overall population, rather than disproportionately containing more or fewer samples from
certain building or household fuel categories. For preprocessing, we apply one-hot encoding to
categorical variables and numeric features are standardized using Standard Scaler, which
transforms each numeric feature to have zero mean and unit variance.

4.2 Model Validation: Housing-Level Energy Estimation by Fuel Type

We trained the model using MCMC sampling with two chains and 2000 posterior draws after a
2000-step tuning phase.

Table 2. Model predictive performance in estimating log-normal energy consumption by fuel
type as measured through RSME

Train Test
Natural Gas 4.88 4.85
Oil/Petroleum 3.27 3.29

Evaluation
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Kerosene Qil 3.74 3.75

Electricity 0.44 0.44

421 Predictive Performance

Table 2 summarize the root mean squared error (RMSE) which captured the absolute
magnitude of prediction errors. On the training set, RMSE values ranged from 0.44 (Electricity)
to 4.88 (Natural Gas). Oil/Petroleum and Kerosene Oil fell between these extremes. The close
alignment of train and test performance indicates that the model generalizes well to unseen
data.

btung btufo btulp btuel
Figure 1 Model prediction performance as measured through RMSE

4.2.2 Posterior Diagnostics and Residual Dependencies

Posterior convergence was assessed using the Gelman-Rubin R statistic, effective sample size
(ESS), and the number of divergent transitions. The maximum R observed was 1.0, with
effective sample sizes for both bulk and tail distributions exceeded 4,500 and no divergent
transitions were recorded. These diagnostics indicated that the sampler mixed well, providing
reliable posterior uncertainty estimates.

Evaluation 11



PNNL-38371

1.00
btung

0.75
btufo 0.50

0.25
btulp 0.00

-0.25
btuel

btung btufo btulp btuel

Figure 2 Residual heatmap correlation (mean)

Analysis of residual correlations revealed some remaining structure across predictors and fuels
(see Figure 2). The correlation matrix shows the degree to which pairs of variables move
together. Each cell in the matrix contains a correlation coefficient, which ranges from -1 to +1. A
value close to +1 indicates that the two variables tend to increase or decrease together (positive
association), while a value close to -1 indicates that one variable tends to decrease when the
other increases (negative association). Values near 0 suggest little or no linear relationship
between the variables.

In this study, the correlation matrix is used to examine the residuals — the differences between
observed and predicted energy consumption. If the model captures all systematic patterns, the
residuals should behave like random noise, and the correlations across different fuels or
predictors should be close to zero. However, if we observe blocks of higher positive or negative
correlations, it suggests that certain relationships remain unexplained by the model. For
example, strong residual correlation between two fuels might indicate that household using
those fuels share unmodeled characteristics (such as building envelope type or heating
equipment efficiency) that systematically affect energy use.

Heatmaps of residual correlations indicated that dependencies were most pronounced for
specific fuel categories, particularly fuel oil and propane, suggesting that the current model
although captures broad-scale variation, it does not fully explain heterogeneity in all fuel-use
pattern. Incorporating additional building-level features (e.g., insulation, roof type) or hierarchical
structures may help reduce residual dependencies.

423 Overall Assessment

Overall, the evaluation of the prediction model highlighted that the model was able to capture
broad variation in household energy consumption and achieved excellent posterior
convergence. Electricity was modeled with relatively low proportional errors, while other energy
sources remain more difficult due to variability in usage and limited representation in the
dataset. The absence of convergence issues strengthens confidence in inference, but residual
structure points to opportunities for extending the model specification.
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5.0 Future Work

Ongoing efforts focus on processing residential building datasets and finalizing the data
structure design for commercial buildings. Future work can include explorations of various Al
methods for integrating the datasets and filling spatial-temporal data gaps. A comprehensive
and detailed framework of how to use Al methods to model building energy consumptions can
be designed in the future, including data processing, model training, sensitivity analysis, and
performance evaluation. Future work can also include exploration of statistical significance of
the estimates across varying geographies (e.g., PUMAS, counties).

Specifically, within Al, multiple extensions are possible. An important area is addressing spatial
and temporal gaps in the data. The existing model relies on a limited set of features (present in
ACS) to predict energy consumption by fuel type; however, prior studies have shown that
additional building-level characteristics, such as building envelope type, roof type, insulation, are
equally important drivers of consumption patterns, which are unfortunately not captured in the
ACS. Moreover, GCAM-USA requires estimates over time, which add a temporal dimension to
the prediction challenge. Generative models, including variational autoencoders or diffusion-
based approaches, can provide much more realistic imputations by leveraging correlations
across geography and time to fill these gaps. Such methods could leverage multiple diverse
datasets, ranging from household surveys and building stock models to remote sensing and
climate records, to produce spatially and temporally complete estimates.

Advanced representation learning techniques, such as graph neural networks or knowledge
graph embeddings, could be employed to explicitly capture relationships between building
characteristics, energy use, and contextual factors. By modeling these interdependencies, it
becomes possible to move beyond treating each building as an isolated unit and instead
represent the broader system of connections (e.g., shared infrastructure, neighborhood-level
demographics, and climate influences). This richer representation would allow one to identify
clusters of buildings with similar consumption profiles and detect structural vulnerabilities.

Beyond predictions, future efforts could also focus on designing a comprehensive modeling
framework that incorporate explainability methods to interpret model drivers. Providing
transparent reasoning behind estimates, such as identifying whether household income,
building age, or equipment type drives observed energy use, would help improve feature
engineering to further improve the model. Lastly, uncertainty quantification through Bayesian
deep learning or ensemble techniques will be essential to assess robustness, particularly when
generalizing to underrepresented building types or regions. By attaching credible intervals to
forecasts, decision-makers can explicitly account for risk and variability, reducing the chance of
overconfidence.
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