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Abstract 
This project aims to develop multi-scale building energy data, potentially improving the 
representation of the U.S. buildings sector in GCAM-USA, an U.S.-focused human-energy-Earth 
systems model. Existing building energy datasets are typically limited to national or regional 
levels, which constrains the ability of models to capture fine-scale human-energy-Earth systems 
interactions and reduces their relevance for decision-making on issues such as energy security, 
resilience, and energy planning. By leveraging AI and advanced data integration methods, this 
work fuses multiple existing datasets to enhance the physical and geographic representation of 
both residential and commercial building energy use. So far, progress includes processing 
residential building data, designing the data structure for commercial buildings, and testing AI 
approaches for integrating datasets and addressing spatial-temporal gaps. This effort can not 
only advances GCAM-USA’s capability in modeling the buildings sector but also supports 
broader DOE missions, such as developing digital testbeds, enhancing grid resilience analysis, 
and improving building–energy system modeling at decision-relevant scales. 
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Summary 
Key building energy drivers such as household income, building type, age, and urban-suburb-
rural context are currently missing or simplified in GCAM-USA but are being prioritized in this 
effort. For residential buildings, income and demographics strongly shape energy demand, while 
commercial demand is more closely tied to regional economic activity. AI-based integration 
allows harmonizing fragmented datasets like ACS, RECS, and CBECS, filling gaps where no 
single dataset provides complete spatial and temporal coverage. Early validation shows strong 
performance in capturing overall energy use, while highlighting opportunities to refine specific 
fuels such as propane and fuel oil. Future work will expand the use of advanced AI techniques 
to fill spatial and temporal gaps, incorporate richer building-level features, and apply 
explainability and uncertainty quantification methods to improve transparency and robustness of 
estimates. These developments will help establish a comprehensive AI-driven framework for 
building energy modeling that supports fine-scale, decision-relevant applications. 
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Acronyms and Abbreviations 
ACS  American Community Survey 
AHS   American Household Survey 
AI  Artificial Intelligence 
CBECS Commercial Buildings Energy Consumption Survey  
DHS  Department of Homeland Security 
DOE  Department of Energy 
GCAM  Global Change Analysis Model 
ML  Machine Learning 
NHTS  National Household Transportation Survey 
PUMA  Public Use Microdata Area 
PUMS  Public Use Micro Data Sample 
RECS  Residential Energy Consumption Survey 
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1.0 Introduction 
This project aims to integrate buildings data at multiple scales in order to build capabilities in 
modeling the buildings sector in the open-source Global Change Analysis Model (GCAM). 
Traditionally, energy-related buildings data are only available at the national or regional level, 
which limits our ability to accurately and quickly model human-energy-Earth systems at finer 
scales, reducing the relevance for GCAM as a decision making and planning tool around energy 
security related issues. This work would build our ability to model human-energy-Earth systems 
at multiple scales by leveraging Artificial Intelligence (AI) tools to fuse existing datasets that can 
be used to improve the physical and geographical representation of buildings energy 
consumptions in GCAM-USA, a version of GCAM focusing on the U.S. with more detail in the 
buildings sector. 

In addition to working toward better buildings sector representation in GCAM-USA, the cohesive 
dataset developed in this project would be useful to other missions of the Department of Energy 
(DOE) or Department of Homeland Security (DHS). For example, the Office of Science’s 
Biological and Environmental Research program is considering creating Digital Testbeds to 
integrate multiple different types of human and Earth science modeling at varying scales. This 
dataset supports digital testbeds by providing high-resolution, multi-scale information on building 
energy use, allowing models to more accurately capture the interactions between human 
systems and the environment. By leveraging AI or Machine Learning (ML) to fuse disparate 
datasets, it enhances the realism, scalability, and decision-relevance of testbed experiments, 
enabling more robust evaluation of energy scenarios. Furthermore, the proposal can provide 
useful input to the Office of Energy Efficiency and Renewable Energy by allowing them to 
access modeling of buildings integrated with other parts of the energy and Earth system at fine 
scales. For the Office of Electricity, this capacity could be useful in connecting one of the largest 
electricity loads (buildings) with power system models at scales relevant to resilience questions. 
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2.0 Key Drivers and Data 
The buildings sector in GCAM-USA includes a detailed structure representing residential and 
commercial building energy use across services, fuels, and technologies. However, key 
parameters that drive the dynamics and heterogeneity of building energy service demand, such 
as income (for residential buildings), urban/suburban/rural disaggregation, building type, and 
building age, are either simplified or absent in the GCAM-USA core version. This work 
prioritizes enhancing GCAM-USA’s capability in more accurately modeling the buildings sector, 
particularly through improvements of the representation of key drivers in building energy use. 
This work also works to increase the geographical detail of underlying GCAM-USA building 
data, to enable swift breakouts of sub-state GCAM-USA in the future. 

In summary, GCAM-USA version 8.3, the latest version as of today, models two building types 
(residential and commercial), where 14 residential energy services and 10 commercial services 
are included for each state. Each energy service is associated with different fuel and technology 
choices (e.g., standard vs. high-efficiency gas furnace vs. electric heat pump for residential 
heating service). See Table 1 below. Different choices are associated with different technology 
characteristics (e.g., cost, efficiency, and lifetime). There is also building shell conductance 
being modeled over years, which is related to the building age, a parameter currently missing in 
GCAM-USA. The current version of GCAM-USA does not incorporate consumer-specific 
characteristics, such as income levels, although extensions exist in development model 
branches. 

Table 1. Building service (supplysector), fuel (subsector), and technologies in GCAM-USA 

supplysector subsector technology 
resid heating biomass wood furnace 

resid heating coal coal furnace 

resid heating gas gas furnace 

resid heating gas gas furnace hi-eff 

resid heating electricity electric furnace 

resid heating electricity electric heat pump 

resid heating refined liquids fuel furnace 

resid heating refined liquids fuel furnace hi-eff 

resid cooling electricity air conditioning 

resid cooling electricity air conditioning hi-eff 

resid hot water gas gas water heater 

resid hot water gas gas water heater hi-eff 

resid hot water electricity electric resistance water heater 

resid hot water electricity electric resistance water heater hi-eff 

resid hot water electricity electric heat pump water heater 

resid hot water refined liquids fuel water heater 
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resid hot water refined liquids fuel water heater hi-eff 

resid lighting electricity incandescent 

resid lighting electricity fluorescent 

resid lighting electricity solid state 

resid refrigerators electricity refrigerator 

resid refrigerators electricity refrigerator hi-eff 

resid freezers electricity freezer 

resid freezers electricity freezer hi-eff 

resid dishwashers electricity dishwasher 

resid dishwashers electricity dishwasher hi-eff 

resid cooking electricity electric oven 

resid cooking gas gas oven 

resid cooking gas gas oven hi-eff 

resid cooking refined liquids lpg oven 

resid cooking refined liquids lpg oven hi-eff 

resid clothes dryers electricity clothes dryer 

resid clothes dryers electricity clothes dryer hi-eff 

resid clothes dryers gas clothes dryer 

resid clothes 
washers 

electricity clothes washer 

resid clothes 
washers 

electricity clothes washer hi-eff 

resid televisions electricity electricity 

resid computers electricity electricity 

resid furnace fans electricity electricity 

resid other gas gas 

resid other electricity electricity 

resid other refined liquids refined liquids 

comm heating biomass wood furnace 

comm heating coal coal furnace 

comm heating gas gas furnace 

comm heating gas gas furnace hi-eff 

comm heating electricity electric furnace 

comm heating electricity electric heat pump 

comm heating refined liquids fuel furnace 

comm cooling gas gas cooling 

comm cooling electricity air conditioning 
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comm cooling electricity air conditioning hi-eff 

comm hot water gas gas water heater 

comm hot water gas gas water heater hi-eff 

comm hot water electricity electric resistance water heater 

comm hot water electricity electric heat pump water heater 

comm hot water refined liquids fuel water heater 

comm ventilation electricity ventilation 

comm ventilation electricity ventilation hi-eff 

comm cooking gas gas range 

comm cooking gas gas range hi-eff 

comm cooking electricity electric range 

comm cooking electricity electric range hi-eff 

comm lighting electricity incandescent 

comm lighting electricity fluorescent 

comm lighting electricity solid state 

comm refrigeration electricity refrigeration 

comm refrigeration electricity refrigeration hi-eff 

comm office electricity office equipment 

comm other gas gas 

comm other electricity electricity 

comm other refined liquids refined liquids 

comm non-building electricity electricity 

2.1 Residential Buildings Sector 

To better capture residential building energy use, we identify several key drivers (Berrill et al. 
2021), including energy use by technology, floorspace, building age (related to shell 
conductance parameter), income, building type (multifamily vs single family vs large apt 
buildings), area type (urban vs suburb vs rural identification). Although GCAM-USA’s buildings 
sector operates at the state level, we aim to develop a dataset flexible in the scale at which we 
integrate parameters. It is worth noting that income deciles are implemented in the residential 
buildings sector in a model branch, where higher income generally leads to higher energy 
demand; however, technology choices are not linked to income levels. Therefore, future 
improvements, out of the scope of this LDRD, could include not only leveraging the income 
deciles in determining energy demand, but also refining behavioral parameters linked to income 
levels (e.g., resistance to electrification in low-income areas). Additionally, we could improve the 
shell conductance parameter based on building age data to better capture spatial and temporal 
variations in shell conductance and thus the thermal energy demand response. 

The dataset we plan to develop will provide annual values over the historical years, aligning with 
observed data. This dataset will provide energy use by service and fuel (as does the current 
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GCAM-USA dataset) as well as more detailed geography, building-type, income, and urban-
rural designation (if not noted by the geographic area). In addition, it would include estimates of 
statistical significance/error to support data needs in modeling and analysis.  

To develop this dataset, we will leverage a combination of U.S. datasets with national coverage 
and AI-based data integration methods. The open-source fusionACS dataset (Ummel et al. 
2024), which integrates the American Community Survey (ACS) Public Use Micro Data Sample 
(PUMS) (US Census Bureau 2016) with the Residential Energy Consumption Survey (RECS) 
(US Department of Energy 2018) and others, enables us to examine energy use and 
fuel/technology choice patterns across income groups at fine spatial scale (Public Use 
Microdata Area or PUMA level). This dataset will be used to evaluate how income affects 
technology adoption and energy intensity in residential buildings. We will also compare 
overlapping variables such as floorspace and building age per building type across datasets of 
RECS for matching geographies and years to assess consistency and fill in gaps. To integrate 
these datasets over time and across spatial levels (PUMA, state, and census region), we will 
design AI-based data integration methodology to perform spatial and temporal interpolation and 
extrapolation and generate consistent and comprehensive estimates of these key variables. The 
harmonized dataset will serve as inputs to refine GCAM-USA’s residential buildings types. 

2.2 Commercial Buildings Sector 

The approach to developing the dataset for commercial building energy use follows that for the 
residential buildings described above, with some important distinctions. First, the spatial 
resolution for commercial building energy use is expected to be coarser than for residential 
buildings (e.g., PUMA level), because the backbone dataset, Commercial Buildings Energy 
Consumption Survey or CBECS (US Department of Energy 2022), provides statistically robust 
estimates only at the census division level. To address this, we plan to integrate CBECS with 
ModelAmerica (New et al. 2021) data and apply AI-based methods to refine the spatial 
resolution where possible. Second, while household income is a strong determinant of 
residential energy demand, it is not a meaningful driver for commercial buildings. Instead, 
indicators such as regional GDP or economic activity levels will be used to represent 
commercial activity and associated energy consumption. Finally, commercial building energy 
consumption is generally less sensitive than residential demand to fluctuations in energy prices. 
To better understand these dynamics, we will apply sensitivity analysis to evaluate the relative 
importance of input variables on commercial energy demand outcomes. 
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3.0 Methodology 
Estimating household and building energy use by fuel type at fine geographic scales is 
inherently difficult because the variables most critical to energy demand, such as floor area, 
building type, vintage, and primary heating fuel, are never jointly observed in a single dataset at 
national scale. For instance, ACS provides rich demographic and socioeconomic information but 
contains only coarse measures of building characteristics. On the other hand, energy surveys 
such as RECS and CBECS capture end-use and fuel consumption in detail but are limited in 
sample size and lack geographic coverage below census region or division. Existing datasets 
(ACS, RECS, CBECS, ResStock, ComStock, ModelAmerica) independently capture 
demographics, buildings’ characteristics, and employment statistics, none of these datasets can 
provide estimates of building floor area and building type by fuel type and other relevant 
features.  

AI offers a powerful opportunity to fill these gaps by learning from the joint distributions of known 
features, such as location, building age, land use, or demographics, to generate plausible 
estimates of missing attributes like building type or floor area. By learning from the overlapping 
margins across disparate datasets, AI models can infer plausible values for unobserved 
combinations of building and household features. In addition to that, these models offer an 
added advantage of capturing the temporal dynamics, a key element needed for GCAM-USA 
modeling. In comparison to traditional statistical models, these AI models can capture non-linear 
dynamics and possess the ability to integrate multimodal data (such as satellite imagery, parcel 
data, and urban morphology features) to infer building typologies or use statistical relationships 
from well-surveyed regions to impute floor area in less-documented areas. 

Our approach leverages a Bayesian multivariate regression framework that unifies 
demographic, socioeconomic, and building characteristics at the household level and then 
aggregates these estimates to the PUMA scale.  

3.1 Bayesian Multivariate Regression of Household Energy Use 

Let 𝑖𝑖 ∈ {1, … ,𝑁𝑁} index households, and 𝑗𝑗 ∈ {1, … , 4} index fuel types: natural gas (NG), fuel oil 
(FO), liquefied petroleum gas/propane (LP), and electricity (EL). For each household 𝑖𝑖, 
predictors: 𝐱𝐱𝑖𝑖 ∈ ℝ𝐾𝐾 is a vector of household and building level covariates (income, building age, 
structure type, household size, etc.); and observed 𝑦𝑦𝑖𝑖𝑖𝑖 is the annual energy use (Btu) for fuel 𝑗𝑗. 
Since residential energy use is highly skewed, we transform the target variable by taking the log 
normal.  

𝑧𝑧𝑖𝑖𝑖𝑖 = log (1 + 𝑦𝑦𝑖𝑖𝑖𝑖) 

We posit a Bayesian multivariate normal regression model: 

𝐳𝐳𝑖𝑖 = �

𝑧𝑧𝑖𝑖1
𝑧𝑧𝑖𝑖2
𝑧𝑧𝑖𝑖3
𝑧𝑧𝑖𝑖4

�~𝒩𝒩4(𝛍𝛍𝑖𝑖 ,𝚺𝚺), 

with mean 

𝛍𝛍𝑖𝑖 = 𝛼𝛼 + 𝐁𝐁T𝐱𝐱𝒊𝒊, 
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where, 

- 𝛂𝛂 ∈ ℝ4 are intercepts for each fuel,  

- 𝐁𝐁 ∈ ℝ𝐾𝐾 ×4 are regression coefficients linking predictors to each fuel, 

- 𝚺𝚺 ∈ ℝ4 ×4 is the residual covariance matrix capturing correlations across fuels. 

We assign weakly informative priors to regression coefficients to stabilize estimation without 
imposing overly restrictive assumptions  

𝛼𝛼𝑗𝑗~𝒩𝒩(0, 22), 𝐵𝐵𝑘𝑘𝑘𝑘~𝒩𝒩(0, 12) 

for all predictors 𝑘𝑘 and fuels 𝑗𝑗.  

Weakly informative priors help prevent pathological estimates in high-dimensional settings (e.g., 
extremely large positive or negative coefficients that are inconsistent with plausible household 
energy use), while avoiding the rigidity of strongly informative priors. These priors reflect the 
belief that most effects are likely small to moderate on the log-energy scale, but they still allow 
the data to dominate inference when strong evidence is present. 

For the covariance, we use an LKJ prior: 

Σ = 𝐋𝐋𝐋𝐋T, 𝐋𝐋~LKJCholeskyCov(𝜂𝜂 = 2,𝜎𝜎𝑗𝑗~HalfNormal(1)) 

which yields marginal standard deviations 𝜎𝜎𝑗𝑗 and a correlation matrix with weakly informative 
prior toward independence. The covariance matrix Σ allows residuals across fuels (NG, FO, LP, 
EL) to be correlated: households that consume more electricity may systematically consume 
less natural gas (substitution) or more (complementarity).  

The covariance matrix must be symmetric, positive definite, and estimated from the noisy data, 
and if put naïve priors directly on the covariance elements, we risk invalid or unstable 
covariance matrices. The LKJ prior is a principled distribution over correlation matrices and 
ensures that any draw is a valid correlation matrix and the prior shape can be tuned with a 
single parameter 𝜂𝜂. An LKJ prior with 𝜂𝜂 = 1 places a uniform distribution over all possible 
correlation, treating strong positive, strong negative, and near-zero correlation as equal likely. 
Values of 𝜂𝜂 > 1 mildly favor correlations closer to zero (independence), while values of 𝜂𝜂 < 1 
favor extreme correlations near ±1. We set the LKJ prior parameter to 𝜂𝜂 = 2 and by doing so we 
express a weak prior belief that independence is slightly more plausible than strong correlations, 
while still allowing the data to reveal strong cross-fuel relationships if present. This aligns well 
with domain knowledge: some fuels may act as substitutes (e.g., natural gas v/s electricity), 
while others are only weakly related (e.g., propane and electricity).  

3.2 Posterior Inference 

Once trained, we obtain posterior samples of {𝛼𝛼,𝐵𝐵, Σ} using Hamiltonian Monte Carlo (NUTS) as 
implemented in PyMC. For each posterior draw 𝑠𝑠, we compute household-level posterior 
predictive means: 

𝑦𝑦�𝑖𝑖𝑖𝑖
(𝑠𝑠) = exp �𝜇𝜇𝑖𝑖𝑖𝑖

(𝑠𝑠)� − 1, 
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where 𝜇𝜇𝑖𝑖𝑖𝑖
(𝑠𝑠) is the sampled regression mean on the log scale. Additionally, we generate full 

posterior draws from the multivariate normal likelihood to incorporate residual variation.  

3.3 Weighted Aggregation to PUMA Level 

Each ACS household record carries a survey weight 𝑤𝑤𝑖𝑖 indicating the number of households it 
represents in the population. Let 𝑔𝑔(𝑖𝑖) denote the PUMA (and optionally building category) group 
to which household 𝑖𝑖 belongs. For each group 𝐺𝐺 and fuel 𝑗𝑗, we compute weighted posterior 
totals: 

𝑇𝑇𝐺𝐺𝑗𝑗
(𝑠𝑠) = �𝑤𝑤𝑖𝑖𝑦𝑦�𝑖𝑖𝑖𝑖

(𝑠𝑠)

𝑖𝑖∈𝐺𝐺

 

The posterior distribution of 𝑇𝑇𝐺𝐺𝐺𝐺 across draws s provides point estimates (posterior mean or 
median) and confidence intervals (e.g., 10th – 90th percentiles) for annual fuel-specific energy 
use at the PUMA level, further stratified by building category when required.  
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4.0 Evaluation 
Our work builds upon the work of fusionACS and ResStock/ComStock – efforts focused on 
enriching household, demographic, and socioeconomic characteristics captured in ACS with 
household-level energy consumption. In this section, we describe the data preprocessing steps, 
the experimental setup, and validation of our multivariate energy consumption prediction model 
at the housing level. The study is conducted for the state of WA, with results aggregated to the 
PUMA level and validated against state-level estimates of energy use by fuel type.   

4.1 Data Preprocessing 

fusionACS uses ACS microdata as the recipient backbone and fuses in variables from donor 
surveys such as RECS, American Household Survey (AHS), National Household Transportation 
Survey (NHTS), and the Consumer Expenditure Survey. This enriches ACS records with fuel 
consumption, expenditures, and related attributes. By contrast, ResStock and ComStock are 
large-scale, physics-based building stock models developed by NREL to characterize the U.S. 
residential and commercial building sectors. They integrate survey data, building physics, and 
regional parameters to generate high-resolution estimates of energy use, retrofit potential, and 
technology adoption.  

4.1.1 Housing Level Estimates: Link fusionACS to ACS 

fusionACS includes a persistent household identifier, ACS house ID (acs_hid), that links 
fusionACS record to the recipient dataset (ACS 5Y 2011-2015) microdata. Because ACS 5Y 
products pool multiple years, the same household may appear with estimates for different years. 
Since our objective is to produce household-level energy estimates, we index records by 
acs_hid and retain the most recent estimate within 2011-2015.  

Also, ACS microdata for 2011 refers PUMA 2000 boundaries, while 2012 onward uses PUMA 
2010 boundaries. To provide consistent geography, we standardize all households to PUMA 
2010. For 2011 records (originally linked to PUMA 2000), we use GeoPandas to map each 
household to the best-matching PUMA 2010 polygon by intersecting PUMA 2000 and PUMA 
2010 shapefiles, then assigning the area-dominant PUMA 2010. This produces a single, 
consistent PUMA10 key for aggregation and reporting.  

4.1.2 Handling Implicates in fusionACS 

fusionACS provides 40 implicates per household to reflect fusion uncertainty. In this study, we 
take the average across implicates to create a single working value per household. In future 
versions, we will treat implicates as draws from a posterior predictive distribution and propagate 
them through through model fitting and PUMA aggregation to produce principled uncertainty 
intervales that reflect both model parameters and fusion uncertainty.  

After these steps, each row in the modeling frame represents a unique household (identified by 
acs_hid) with (i) its most recent estimates (2011-2015), (ii) a single implicate – averaged for 
fused variable, and (iii) a harmonized PUMA10 identifier. ACS household weights (WGTP) are 
retained to scale each sampled household to the population. In modeling, households are 
treated as independent records and treat WGTP as a post-modeling scaling factor.  
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4.1.3 Feature Engineering 

Finally, we harmonize categorical variables and derive numeric features that better represent 
building stock characteristics.  

- Building type (BLD) from ACS is collapsed into three categories – single-family, multi-
family, and others – with non-response coded as unknown.  

- Number of units in multi-family structures is approximated using midpoints for 
categorical ranges (e.g., 3-4 apartments → 4 units, 20-49 apartments → 35 units).  

- Year built (YBL) from ACS is mapped to a representative construction year using 
midpoints for categorical ranges (when an exact year was unavailable), then converted 
to building age (AGE) by subtracting from the reference year 2025. 

- Heating fuel (HFL) is collapsed into four categories – natural gas, propane, electricity, 
and oil/kerosene. All other fuels are grouped as others; non-response is coded as 
unknown.   

- Continuous housing features such as number of bedrooms (BDSP), number of rooms 
(RMSP), and number of persons in family (NPF) were preserved as numeric inputs.  

- Household income (HINCP) is inflation-adjusted to constant 2015 dollars using ACS’s 
adjustment factor (ADJINC). 

4.1.4 Data Preparation for Model Training and Validation 

To prepare the data for model training, we begin by splitting the dataset into randomly sampled 
70:30 training and testing split. The training set container 63,589 observations and the test set 
27,253 observations. The split is performed with stratification based on BLD category and HFL 
category, ensuring that the relative distribution of these categorical groups is maintained across 
both subsets. Stratification helps prevent bias by making sure that the test set is representative 
of the overall population, rather than disproportionately containing more or fewer samples from 
certain building or household fuel categories. For preprocessing, we apply one-hot encoding to 
categorical variables and numeric features are standardized using Standard Scaler, which 
transforms each numeric feature to have zero mean and unit variance.  

4.2 Model Validation: Housing-Level Energy Estimation by Fuel Type 

We trained the model using MCMC sampling with two chains and 2000 posterior draws after a 
2000-step tuning phase.  

Table 2. Model predictive performance in estimating log-normal energy consumption by fuel 
type as measured through RSME 

 Train Test 

Natural Gas 4.88 4.85 

Oil/Petroleum 3.27 3.29 
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Kerosene Oil 3.74 3.75 

Electricity 0.44 0.44 

 

4.2.1 Predictive Performance 

Table 2 summarize the root mean squared error (RMSE) which captured the absolute 
magnitude of prediction errors. On the training set, RMSE values ranged from 0.44 (Electricity) 
to 4.88 (Natural Gas). Oil/Petroleum and Kerosene Oil fell between these extremes. The close 
alignment of train and test performance indicates that the model generalizes well to unseen 
data. 

 
Figure 1 Model prediction performance as measured through RMSE 

4.2.2 Posterior Diagnostics and Residual Dependencies 

Posterior convergence was assessed using the Gelman-Rubin 𝑅𝑅� statistic, effective sample size 
(ESS), and the number of divergent transitions. The maximum 𝑅𝑅� observed was 1.0, with 
effective sample sizes for both bulk and tail distributions exceeded 4,500 and no divergent 
transitions were recorded. These diagnostics indicated that the sampler mixed well, providing 
reliable posterior uncertainty estimates. 
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Figure 2 Residual heatmap correlation (mean) 

Analysis of residual correlations revealed some remaining structure across predictors and fuels 
(see Figure 2). The correlation matrix shows the degree to which pairs of variables move 
together. Each cell in the matrix contains a correlation coefficient, which ranges from -1 to +1. A 
value close to +1 indicates that the two variables tend to increase or decrease together (positive 
association), while a value close to -1 indicates that one variable tends to decrease when the 
other increases (negative association). Values near 0 suggest little or no linear relationship 
between the variables. 

In this study, the correlation matrix is used to examine the residuals – the differences between 
observed and predicted energy consumption. If the model captures all systematic patterns, the 
residuals should behave like random noise, and the correlations across different fuels or 
predictors should be close to zero. However, if we observe blocks of higher positive or negative 
correlations, it suggests that certain relationships remain unexplained by the model. For 
example, strong residual correlation between two fuels might indicate that household using 
those fuels share unmodeled characteristics (such as building envelope type or heating 
equipment efficiency) that systematically affect energy use.  

Heatmaps of residual correlations indicated that dependencies were most pronounced for 
specific fuel categories, particularly fuel oil and propane, suggesting that the current model 
although captures broad-scale variation, it does not fully explain heterogeneity in all fuel-use 
pattern. Incorporating additional building-level features (e.g., insulation, roof type) or hierarchical 
structures may help reduce residual dependencies.  

4.2.3 Overall Assessment 

Overall, the evaluation of the prediction model highlighted that the model was able to capture 
broad variation in household energy consumption and achieved excellent posterior 
convergence. Electricity was modeled with relatively low proportional errors, while other energy 
sources remain more difficult due to variability in usage and limited representation in the 
dataset. The absence of convergence issues strengthens confidence in inference, but residual 
structure points to opportunities for extending the model specification. 
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5.0 Future Work 
Ongoing efforts focus on processing residential building datasets and finalizing the data 
structure design for commercial buildings. Future work can include explorations of various AI 
methods for integrating the datasets and filling spatial-temporal data gaps. A comprehensive 
and detailed framework of how to use AI methods to model building energy consumptions can 
be designed in the future, including data processing, model training, sensitivity analysis, and 
performance evaluation. Future work can also include exploration of statistical significance of 
the estimates across varying geographies (e.g., PUMAS, counties).  

Specifically, within AI, multiple extensions are possible. An important area is addressing spatial 
and temporal gaps in the data. The existing model relies on a limited set of features (present in 
ACS) to predict energy consumption by fuel type; however, prior studies have shown that 
additional building-level characteristics, such as building envelope type, roof type, insulation, are 
equally important drivers of consumption patterns, which are unfortunately not captured in the 
ACS. Moreover, GCAM-USA requires estimates over time, which add a temporal dimension to 
the prediction challenge. Generative models, including variational autoencoders or diffusion-
based approaches, can provide much more realistic imputations by leveraging correlations 
across geography and time to fill these gaps. Such methods could leverage multiple diverse 
datasets, ranging from household surveys and building stock models to remote sensing and 
climate records, to produce spatially and temporally complete estimates.  

Advanced representation learning techniques, such as graph neural networks or knowledge 
graph embeddings, could be employed to explicitly capture relationships between building 
characteristics, energy use, and contextual factors. By modeling these interdependencies, it 
becomes possible to move beyond treating each building as an isolated unit and instead 
represent the broader system of connections (e.g., shared infrastructure, neighborhood-level 
demographics, and climate influences). This richer representation would allow one to identify 
clusters of buildings with similar consumption profiles and detect structural vulnerabilities.  

Beyond predictions, future efforts could also focus on designing a comprehensive modeling 
framework that incorporate explainability methods to interpret model drivers. Providing 
transparent reasoning behind estimates, such as identifying whether household income, 
building age, or equipment type drives observed energy use, would help improve feature 
engineering to further improve the model. Lastly, uncertainty quantification through Bayesian 
deep learning or ensemble techniques will be essential to assess robustness, particularly when 
generalizing to underrepresented building types or regions. By attaching credible intervals to 
forecasts, decision-makers can explicitly account for risk and variability, reducing the chance of 
overconfidence. 
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