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Xuehang Song, Tse-Chun Chen, Grigoriy Kondyukov, Zhangshuan Hou, Inci Demirkanli

Summary

This report summarizes the initial results and outcomes of a physics-informed, data-driven
groundwater-level (GWL) mapping capability for the Hanford Site. GWL mapping at Hanford is typically
conducted annually and requires a significant amount of computational and expert resources, and it does
not allow assessment of the informational value of specific monitoring wells. The proposed method
produces spatially and temporally resolved fields consistent with sparse, irregularly sampled, and
nonuniformly distributed well measurements. Implemented successfully, this capability will allow rapid
mapping of groundwater levels and provide an opportunity to optimize monitoring activities (both
location and sampling frequency) based on data information value evaluation.

The approach integrates a diffusion-based generative model — trained on MODFLOW simulation data
from the Plateau-to-River (P2R) model — with score-based data assimilation (SDA), allowing
observation-conditioned mapping without retraining for each monitoring-network layout. The diffusion
prior captures dominant spatiotemporal structure — including regional gradients, barrier effects, and
capture zones — while SDA infuses current observations to generate full-domain GWL fields that are both
physically consistent and measurement-informed. Uncertainty is represented through an ensemble of
reconstructions, each reflecting independent realizations of the diffusion model conditioned on observed
data. A geospatial sampling pipeline harmonizes unstructured simulation outputs and point-well data onto
a common rasterized grid, providing consistent model-ready input throughout the workflow.

Preliminary results show stable reconstruction accuracy [mean absolute error (MAE) = 0.12-0.24 m],
with spatial uncertainty concentrated in high-gradient or data-sparse areas. A remove-well demonstration
quantifies marginal information value and illustrates how targeted adjustments to the monitoring network
can reduce reconstruction error. A prior-only forecast establishes a baseline for error growth when no new
observations are assimilated, providing guidance on monitoring frequency and scenario screening

(e.g., pump-and-treat operational or hydrologic perturbations). Work planned for fiscal year 2026 will
focus on fine-tuning the diffusion—SDA model hyperparameters, expanding robustness testing,
developing the monitoring-network assessment workflow, completing formal quality assurance and
validation, and preparing a manuscript. Together, these developments offer a scalable, physics-aware, and
uncertainty quantified mapping capability to support adaptive groundwater management at Hanford.

Background & Objectives

The Hanford Site requires long-term management of comingled contaminant plumes spanning decades of
remedial activity. GWL maps are critical inputs to the conceptual site model, remedial decisions and
actions, and performance monitoring, providing essential information to establish hydraulic gradients and
flow directions, evaluate pumping strategies to prevent aquifer overdraw, delineate contaminant migration
pathways, and assess groundwater—river interactions. In this report, GWL refers to hydraulic head
(elevation) in unconfined (water-table), perched, semi-confined, and confined aquifers across the site.
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Generating these GWL maps relies on a large monitoring network — more than 1,000 wells — with
measurements obtained from manual groundwater sampling (periodic and the annual synoptic event) and
from automated water-level or pressure records, such as the Automated Water Level Network (AWLN).
However, these GWL measurements exhibit spatial and temporal irregularities that require mapping
approaches capable of integrating data across both dimensions while handling irregular sampling patterns.
In parallel, a capability is needed to identify where additional measurements would reduce mapping errors
the most and quantify the marginal information value of existing wells, supporting cost-effective
monitoring network optimization.

Hanford’s contractor presently uses two complementary workflows to produce GWL maps. First, a
geostatistical workflow — multi-event universal kriging (MEUK) — interpolates irregularly spaced
water-level measurements; the MEUK outputs are then assembled with other inputs using ArcGIS to
create the annual sitewide GWL map (Heil, 2024). Second, for the low-gradient 200 East Area, a
simplified single-layer, two-dimensional, steady-state groundwater-flow simulator (MODFLOW-USG
with PEST) is calibrated to monitoring well heads to produce mass-conserving elevation grids used for
quarterly GWL mapping and particle tracking (Nordberg, 2025) .

Both workflows are designed for periodic (annual/quarterly) updates and reporting. Generating these
maps requires nontrivial effort, including data preparation, parameter selection, and assembly steps (e.g.,
MEUK input generation, variogram fitting, control-point integration, and model calibration). Neither
workflow directly quantifies the information value of individual wells, which is critical for improving the
monitoring efforts. These considerations motivate a more flexible spatiotemporal mapping capability that
supports rapid GWL mapping and facilitates evaluation and optimization of monitoring activities — both
location and sampling frequency — based on data-value evaluation.

Data Sources

GWL records for this study are drawn from the Hanford Environmental Information System (HEIS,
https://ehs.hanford.gov/eda/), which houses a comprehensive archive of water-level measurements dating
back to July 1948. After applying quality control (QC) filters, the dataset contains 187,361 observations
from 2,151 groundwater monitoring wells, out of 204,899 total entries spanning 2,517 unique well
locations. These measurements extend through December 2024 and reflect highly variable sampling
frequencies: Half of all wells contribute fewer than 57 readings, while the top decile exceeds 218
measurements. This uneven distribution in space and time poses challenges for interpolation and
uncertainty quantification, yet the long temporal record and broad spatial coverage also capture localized
hydrogeologic effects that are critical for model conditioning and validation. Given the labor and cost to
acquire and maintain these measurements, improving mapping efficiency increases the monitoring
program’s return on investment.

The filtered, cleaned dataset was archived as a data package for reproducible analysis and future
reference. Figure 1 summarizes annual well counts and highlights the early-1990s expansion and
sustained coverage thereafter. Figure 2 provides spatial snapshots showing how the monitoring footprint
evolved relative to the Columbia River and management areas.
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Figure 1. Annual number of unique HEIS wells with at least one groundwater-level measurement,
1948-2024 (QC-filtered).
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Figure 2. Representative snapshots of the GWL monitoring network (QC-filtered): 1948 (15 wells),
1970 (178), 1991 (718), and 2024 (1,185). Circles indicate wells with >1 reading in the
indicated year, the blue line represents the Columbia River, and the squares outline site
management areas for context.

Complementing the field data, we use simulated GWL snapshots from the Plateau-to-River (P2R)
MODFLOW model (Budge & Nichols, 2020), calibrated against historical well observations. The
baseline P2R configuration outputs GWL on a 274 x 201 grid with variable horizontal resolution over a
75-year history-matching interval (1943-2018) and a 122-year projection interval (2015-2137), with
time-varying stress periods (monthly to yearly).We reconfigured the model to output monthly fields for
both periods and extracted consistent time series of recharge, discharge, and well-pumping rates, together
with hydraulic conductivity fields, from the model inputs. Recharge, discharge, and pumping series were
then quantile-transformed to standardize their marginal distributions. All post-processed products are
stored as HDFS5 files (~2,385 monthly steps in total). Training the diffusion prior on these physically
consistent, fully gridded sequences captures dominant spatiotemporal structure (regional gradients, barrier
effects, low-flow zones), while HEIS observations provide measurements for score-based conditioning

during inference.
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Method

We employed a spatiotemporal mapping framework that combines a diffusion model with SDA to
reconstruct temporal sequences of GWL fields that honor both physics-informed site patterns and well
measurements. Figure 3 summarizes the workflow: Physics-based simulations provide training sequences
for the diffusion prior; during reconstruction, SDA assimilates measurements as spatiotemporal
constraints; ensemble reconstructions quantify uncertainty; and add/drop experiments evaluate
monitoring-network configurations. The subsections that follow briefly describe the reconstruction
procedure, the uncertainty and well-information analyses, and the data-preparation steps.

Physics Simulation )
Capture spatiotemporal
GWL structure (gradients,
Diffusion Prior Training CapturS 2onks, hamess).

Conditions on SR ek

Assimilation
sparse well data
and generates
ensembles for Ensemble-Based GWL
uncertainty. Reconstruction

Derives well-value maps
via add/drop analyses.

Monitoring-Network
Assessment

Figure 3. Diffusion—-SDA workflow for groundwater-level reconstruction and monitoring assessment.
Diffusion—-SDA Framework for GWL Reconstruction

e Training (diffusion prior). Train a generative prior on monthly sequences of P2R simulations
(Song et al., 2021). The prior captures dominant hydrogeologic structure — regional gradients,
capture zones, barrier effects, and river influence — without overfitting to individual snapshots.

o Inference (observation conditioning). At reconstruction, SDA guides reverse-time diffusion
(Rozet & Louppe, 2023a, 2023b) trajectories toward HEIS well measurements at their recorded
locations and times, enforcing observation consistency under sparse, irregular sampling.

¢ Outputs. Running the conditioned reverse-diffusion process multiple times with independent
(noise) initializations produces an ensemble of plausible GWL reconstructions.

Uncertainty Quantification and Well Information Value Analysis

¢ Ensemble uncertainty. Multiple SDA-conditioned reconstructions with independent initializations
form an ensemble; the ensemble mean is the best-estimate GWL field and the ensemble spread
(standard deviation across members) indicates where predictions are less certain in space and time.

¢ Information-value analysis. Leave-one-out and add/drop experiments compare errors (e.g., MAE)
against the full-network reconstruction to quantify each well’s marginal information value and
reveal under-monitored areas for potential network adjustments.

Geospatial Sampling and Data Preparation

Training the diffusion prior and applying SDA require consistent spatiotemporal tensors that preserve
domain geometry and observation metadata. To handle heterogeneous inputs — unstructured P2R meshes
with time-variable stress periods, aquifer hydraulic-property fields, and sparse, irregular well
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measurements — we developed a lightweight geospatial toolkit (geosamplerite) for fast data rasterization
and lazy loading. The toolkit harmonizes sources by rasterizing model outputs (e.g., heads,
recharge/discharge, pumping) and static fields (e.g., hydraulic conductivity), together with point-well
observations, onto a uniform grid, while retaining boundary masks and inactive cells and aligning records
to a common monthly time base. Using this toolkit, we produce model-ready time series with minimal
information loss for the diffusion—SDA workflow.

Results

Results are organized into three parts: (1) observation-conditioned GWL mapping, (2) impact of reducing
well coverage, and (3) GWL forecast. Performance is evaluated against physics-based reference (“truth”)
fields from the P2R model: Spatial accuracy is assessed with cellwise residuals, uncertainty with
ensemble spread, and temporal behavior with the domain-wide monthly MAE.

Observation-Conditioned GWL Mapping

To evaluate spatial accuracy under observation conditioning, a representative month (March 2023) is
analyzed in detail. The physics-based reference (Figure 4a) and the diffusion—SDA reconstruction (Figure
4b) exhibit close agreement across the domain, with the residual field (Figure 4c, prediction — reference)
predominantly within —1 to 1 m. Observation locations (dots in Figure 4c) show the impact of
measurement conditioning: Denser clusters correspond to smaller residuals. The ensemble standard-
deviation map (Figure 4d) mirrors these patterns — higher spread co-locates with larger residuals —
indicating that the uncertainty metric is well calibrated to local prediction difficulty.
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Figure 4. Observation-conditioned GWL mapping. Panels (a—b) show water-table elevation in meters
above sea level: (a) reference field from the physics-based simulator; (b) diffusion—-SDA
prediction; (¢) prediction minus reference (red = overprediction, blue = underprediction), m;
(d) ensemble standard deviation (“spread”), m. Points indicate wells with observations.

Figure 5 summarizes the month-to-month model performance (Jan 2022—Dec 2024). Monitoring coverage
varies substantially (Figure 5, top), and mapping accuracy tracks it (Figure 5, bottom): The domain-wide
monthly MAE between diffusion—SDA and the P2R reference is typically 0.12~0.24 m — lower in months
with more reporting wells (e.g., ~400) and higher when coverage drops.
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These results demonstrate that the proposed framework quantitatively links monitoring-network size and
spatial placement to GWL mapping accuracy.

Monthly Well Count

400

300

200

0.225
0.200
0.175
0.150

Figure 5. Top: Number of wells with measurements each month. Bottom: Monthly MAE (unit, m)
between the diffusion—SDA prediction and the reference field.

Impact of Reducing Well Coverage

We withheld a localized cluster of wells in the 200 West pump-and-treat area at Hanford and recomputed
the March 2023 observation-conditioned map (Figure 6); 23 wells were removed, a ~5% reduction from
active wells that month. Relative to the baseline (Figure 4), the perturbed case shows localized
degradation: Residuals (prediction — reference) increase within and adjacent to the removal footprint
(Figure 6¢), and ensemble spread widens in the same zone (Figure 6d); outside that area, both metrics
remain near baseline.
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Figure 6. Remove-well experiment (March 2023). Panels (a—b) show water-table elevation in meters
above sea level: (a) reference field from the physics-based simulator; (b) diffusion-SDA
prediction; (c) prediction minus reference (red = overprediction, blue = underprediction), m;
(d) ensemble standard deviation (“spread’), m. Points indicate wells with observations.
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This end-member example demonstrates how the framework quantifies the accuracy and uncertainty
impacts of coverage changes. We are extending and automating the workflow to support domain-wide,
systematic add/remove-well trials that assimilate synthetic measurements to estimate expected reductions
in MAE and changes in ensemble spread; outputs are delivered as AMAE/Aspread maps and ranked
well-level information-value scores to guide monitoring-network improvement and optimization.

GWL Forecast

Beyond present-day, observation-conditioned maps, forecasting is essential for planning (e.g.,
anticipating responses to pumping or natural variability). As a baseline test, we initialize the ensemble
from the December 2023 conditioned state and advance through January—December 2024 without
ingesting new well measurements. Each ensemble member evolves under the learned generative
dynamics only, and agreement with the physics-based reference (P2R model) is tracked using the
domain-wide monthly MAE.

Figure 7 summarizes the outcome. During the data-assimilation window (January 2022—December 2023;
left of the dashed divider), monthly MAE is relatively low and stable. After transitioning to the forecast
window (January—December 2024), MAE increases progressively and the ensemble spread widens,
indicating growing uncertainty in the absence of observation updates.
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Figure 7. Monthly MAE from January 2022 to December 2024. Gray traces are individual ensemble
members; the blue curve is the ensemble mean. The vertical dashed line marks the transition
from the observation-conditioned period to the prior-only forecast period with no observation
updates, unit m.

As an exploratory test, this establishes a baseline for error growth and uncertainty in the absence of new
data, demonstrating the framework’s potential to determine the minimum measurement frequency needed
to meet specified accuracy targets.

Ongoing Evaluations and Expected Outcomes

o Continue to improve diffusion—SDA accuracy via targeted hyperparameter tuning (e.g., noise
schedule, network capacity, learning rate) and refinement of the observation-error model.

e Develop an automated add/drop toolkit for well information value assessment that runs rolling leave-
one-out and add-one-in experiments, generates well information value scores and ranked
recommendations, and conducts quality assurance with documented acceptance criteria.

e Deliver a manuscript summarizing methods and the monitoring-network assessment workflow.
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o Inform water-level monitoring decisions: Use these outputs to (1) identify well information value
based on quantified information value; (2) set minimum measurement frequency by area to meet
accuracy targets; and (3) adjust the spatial distribution of monitoring to reduce uncertainty in
high-gradient or under-constrained zones.

Quality Assurance

This work was performed in accordance with the Pacific Northwest National Laboratory Nuclear Quality
Assurance Program (NQAP). The NQAP complies with the DOE Order 414.1D, Quality Assurance. The
NQAP uses NQA-1-2012, Quality Assurance Requirements for Nuclear Facility Application, as its
consensus standard and NQA-1-2012, Subpart 4.2.1 as the basis for its graded approach to quality. Any
data presented in this document is preliminary, for information only (FIO), and subject to revision.
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