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Abstract

This work aims to develop a framework for energy-efficient computing that will enable molecular
dynamics (MD) simulations of large-scale phenomena with atomic precision and simultaneously
remove computational bottlenecks limiting the speed of MD simulations. We seek to implement
such an approach through the development of surrogate models for the interatomic force
calculation combined with the use of mixed numerical precision formats. For a model system of
neutral atoms (only pairwise interactions), significant force calculation efficiency improvements
were achieved, without detrimental effects on atomic structures or average energies, using
single precision, by developing a surrogate model (deep neural network), and by quantizing this
surrogate model. For a model system of charged atoms, the reciprocal-space calculation of
electrostatic interactions was identified as the main bottleneck, and the development of a
surrogate model should be pursued to achieve an estimated one-order-of-magnitude additional
speedup.
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Summary

The growth of supercomputing has led to the prevalent use of large-scale molecular dynamics
(MD) simulations in many scientific domains. Despite efforts to develop rare-event techniques
that bias MD algorithms towards physically and chemically interesting events, large-scale MD
simulations are generally aimed at direct sampling of the relevant phase space and attempt to
bridge molecular and particle scales only through brute force. This approach is highly energy
inefficient, and a novel approach is thus needed to reduce the energy cost of computation and
simultaneously remove bottlenecks that limit the speed of MD simulations.

The work presented in this report seeks to develop a framework for energy-efficient computing
that will enable MD simulations of large-scale phenomena with atomic precision. Two
approaches for energy-efficient computing were investigated: (1) Performance optimization
through use of mixed numerical precision formats; and (2) Force calculation optimization
through surrogate model development.

Performance optimization through use of mixed precision formats employed two model systems:
argon (Ar) and sodium chloride (NaCl). Simulations of neutral Ar atoms isolated the pairwise
short-range interaction calculation, which was greatly accelerated on GPUs compared to CPUs,
such that the pairwise calculation ceased to be the computing bottleneck. Lowering the
precision format led to faster calculations without any loss of accuracy in terms of calculated
structures. Simulations of ionic NaCl require calculations of both short-range and long-
range/electrostatic interactions, where part of the latter is performed in reciprocal space (k-
space). Significant speedup with no loss of accuracy was achieved by using NVIDIA’s GPU-
accelerated fast Fourier transform library for the k-space calculation. However, unlike for the Ar
system, efficiency gains from lowering the precision format only became apparent for large
systems (>250,000 atoms). Nonetheless, the k-space calculation remained the main bottleneck,
indicating that it should be the focus of future efficiency gain efforts.

A deep neural network (DNN) surrogate model was developed for the force calculation in liquid
Ar simulations. The force model is a compact pairwise multilayer perceptron with widths [1, 64,
64, 64, 1] and tanh activations in the hidden layers. It uses the normalized interatomic distance
as input and outputs a scalar weight applied along the unit displacement vector. Structural and
energy fidelity of the surrogate model to the MD simulation was demonstrated. Quantization
experiments were run using BF16 and INT4. BF16 reduced the force-evaluation compute time
by ~25-27% with no effect on predicted structure and energy, while the use of INT4 resulted in
a clear deterioration of both structure and energy. Neighbor search timings were largely
insensitive to precision and dominated end-to-end iteration time.

Future work should investigate scaling of numerical precision effects with larger and more
complex molecular systems to avoid latency and tail effects. The DNN surrogate model should
be extended to more complex systems that include electrostatic and multibody interactions.
Based on our performance evaluation with GPUs and the assumption that the force-evaluation
compute time of the DNN is independent of the complexity of the MD forcefield it is replacing,
we are predicting that replacing the k-space calculation by a DNN surrogate model will lead to a
one-order-of-magnitude speedup. The DNN should eventually be embedded in MD software like
LAMMPS to benefit from its efficient neighbor search and other features.

Summary i
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1.0 Introduction

Traditional molecular dynamics (MD) simulations have exclusively employed double-precision
floating-point arithmetic for numerical stability and accuracy on contemporary graphics
processing units (GPUs). Existing studies (e.g., Le Grand et al. (2013)) of GPU-enabled MD
simulations primarily discussed adaptations for single-precision. Recently (Jia et al., 2020),
machine learning (ML) based MD schemes have employed mixed single and half precision for
training on the latest GPUs (which support a variety of mixed-precision formats at the hardware
level), improving the overall performance/watt and energy consumption (owing to reduced data
movement and higher throughput). Automatic mixed-precision and post-training quantization (to
exploit integer precision) can offer major performance and energy-efficiency advantages of ML
models over full precision. We will specifically investigate the performance/accuracy trade-offs
on MD datasets using various mixed-precision optimizations.

Such hardware-level optimization can be augmented by algorithm-level optimization, specifically
using ML techniques. ML techniques have been applied to MD simulations to address
challenges and limitations with inadequate phase space sampling (Trizio and Parrinello, 2021),
low accuracy of forcefields (Behler, 2021), and analysis of atomic trajectories (Plante et al.,
2019). In this work, algorithm-level optimization will be achieved using surrogate modeling with
deep learning. Once trained, these models reduce the cost of complex pairwise and
electrostatic interactions used in the force computation.

The approach described in this report will be applicable to any science domain where
simulations of large-scale phenomena require atomistic precision. A key example is solid-fluid
interfacial systems where atomic-level interactions at the interface have a profound effect on the
large-scale behavior of the system. Examples abound in catalysis, materials synthesis,
geochemistry, energy storage, etc. As such, this work could open the door to new scientific
understanding by removing computational barriers that have historically limited spatial and
temporal scales achievable with molecular-scale simulation.

1.1 Research Design and Methodology

We followed a two-pronged approach to enhance hardware and algorithm efficiency for MD
workloads, by trading-off precision with computation efficiency (as depicted in Figure 1), relying
on: 1) simulations exploiting mixed-precision computations (lower-precision formats consume
less memory and increase bandwidth); and 2) surrogate modeling of interatomic forces using
deep neural networks (DNNs) . MD simulations of liquid Ar and crystalline NaCl will serve as
test cases where the former only requires calculation of short-range interactions whereas the
latter requires calculation of both short-range and long-range electrostatic interactions. Overall,
we use the MD trajectories (generated from mixed-precision simulations) to train a DNN
surrogate model that approximates the interatomic forces, further leveraging post-training
quantization to utilize contemporary lower-precision data formats such as brain floating point
(i.e., BF16). Computing resources of Pacific Northwest National Laboratory (PNNL) Research
Computing (i.e., Deception cluster) and National Energy Research Scientific Computing Center
(NERSC) leadership computing facilities (i.e., Perlmutter supercomputer) were used in this
research.
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Software-level optimization Hardware utilization Evaluation
optimization Molecular-scale
Mixed precision Surrogate modeling Post-training quantization properties

Deep Neural Quantization of
Network trained DNN

Changes due to
optimization vs

experimental

Pairwise force FP32 vs BF16 vs o
uncertainties

calculation INT8 vs INT4

Figure 1. The approach employed in this work consists of software-level optimization using mixed
numerical precision formats and a surrogate model as well as hardware utilization
optimization via post-training quantization of the surrogate model. Future work will evaluate
how changes to predicted structural properties due to this optimization approach compare
to the magnitude of experimental uncertainties.

1.2 Model Systems

The interaction energy between two atoms j and j, U;;, in classical MD simulations is composed
of two terms:

1 gqiq;

aT— o(rij) Eq. 1-1

ij

where ¢, is the permittivity of vacuum, q; and q; are the charges on atoms i/ and j separated by

distance r;;, and ¢(r;;) is a function describing the short-range pairwise interactions between
atoms j and j.

Two model systems (Figure 2) were considered:

1. Argon. In this system, g = 0 and Eq. 1-1 therefore simplifies to the short-range pairwise
interaction only.

2. NaCl. In this system, g = |1], and the interaction energy results from both long-range
electrostatic interactions and short-range pairwise interactions.

We will investigate the effects of optimization on structural (e.g., radial distribution functions)
and energetic (e.g., ensemble averages) properties of the two model systems.

Introduction 2
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2.0 Software-level Optimization with Mixed Numerical
Precision Formats

Two model systems were considered: Ar (Section 2.1) and NaCl (Section 2.2). Ar is a neutral
monoatomic system that allows for isolating the pairwise interaction calculation, whereas
simulating NaCl requires calculating electrostatic interactions, part of which is performed in
reciprocal space (k-space).

2.1 Argon System: Pairwise Interactions

Extensive testing of the GPU package of LAMMPS and of Kokkos_fp32' was performed by
varying the number of atoms in the system, the simulation ensemble, the number of GPUs
used, and the computing platform all for double, mixed, and single numerical precision formats.
Time per simulation step was used as the performance metric. The simulations performed for
this evaluation were run at 60 K (i.e., for solid Ar).

For the simulation ensemble, simulations in the NVE ensemble (constant number of particles,
constant volume, and constant energy) were faster than simulations in the NPT ensemble
(constant number of particles, constant pressure, and constant temperature) as shown in Figure
3(a), consistent with the additional computational overhead associated with thermostat and
barostat updates in the NPT ensemble. For both ensembles, reduced numerical precision led to
increased performance, although the difference between mixed and single precision was
relatively small for the NVE ensemble. Unless specified otherwise, the simulations presented
hereafter in Section 2.1 were carried out in the NPT ensemble to enable a consistent
performance evaluation.

Performance improved with the number of GPUs used up to 4 GPUs (Figure 3(b)). For 8 GPUs,
performance fell at times below that of 4 GPUs for smaller systems but surpassed that for 4
GPUs once the number of atoms was sufficiently large. Reproducibility tests (Figure 4) showed
that simulations performed using 1 or 2 GPUs were highly consistent, whereas simulations that
used 4 GPUs exhibited slight variations at low system sizes and results with 8 GPUs displayed
significant variability between repeated tests. The optimal GPU count was not necessarily the
maximum available but depended on the system size. The low performance and reduced
reproducibility at high GPU counts arose from increased communication and greater sensitivity
to scheduling, which became critical when the per-GPU workload was small. The simulations
presented hereafter were performed with a single GPU for consistency and ease of comparison.

" Kokkos_fp32 is an experimental extension of the Kokkos backend for LAMMPS aimed at enabling
single- and mixed-precision simulations.

Software-level Optimization with Mixed Numerical Precision Formats 4
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(a) Performance in NPT vs NVE Ensembles (b) Performance with Varying GPU Counts
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Figure 3. Performance comparisons: (a) NPT versus NVE; (b) different numbers of GPUs; (c) Perlmutter versus Deception; (d) GPU package
versus kokkos_fp32. Results obtained with single, mixed, and double numerical precision formats are shown in each case.
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Performance was also evaluated on different machines. Figure 3(c) compares results from two
clusters: Perimutter (NERSC supercomputer with NVIDIA A100 GPUs) and Deception (PNNL
supercomputer with RTX 2080 Ti GPUs). The results obtained with both clusters exhibited the
same trend of increasing performance with reduced numerical precision with performance on
Perlmutter being higher than on Deception.

We also compared the GPU package and Kokkos_fp32 using NPT simulations on a single GPU
on Perlmutter. The GPU package is a stable and widely used GPU accelerator in LAMMPS for
NVIDIA GPUs, supporting single, mixed, and double precision formats. It provides GPU
implementations of many functional forms for pairwise interactions. It also accelerates parts of
the k-space calculation needed to compute long-range electrostatic interactions. Kokkos is a
C++ programming model for writing performance-portable applications on major HPC platforms,
providing abstractions for parallel execution and data management. Kokkos_fp32 is an
experimental extension of the Kokkos backend for LAMMPS aimed at enabling single- and
mixed-precision simulations. It was suggested to us by NVIDIA developers and remains under
active testing. For the same system size, Kokkos_fp32 was significantly faster than the GPU
package (Figure 3(d)). Performance improved with reduced precision, although mixed and
single precision formats resulted in almost identical timings with Kokkos_fp32.

10 | 9.82 '
CPU pair
3] CPU other
m B GPU pair
E 6. GPU other
S Bl Kokkos pair
@ Kokkos fp32 other
U 4 =
=
=
2 1.12
; 0.93 0.87
0 —— 0.33 0.31
64 CPU 1 GPU (Double) 1 GPU (Mixed) 1 GPU (Single)

Figure 5. Liquid Ar system (64,000 atoms) at 100 K in the NVT ensemble. Effect of numerical precision
on total time per step for LAMMPS GPU package and Kokkos fp32. Timing obtained for the
same system on 64 CPUs (double precision) is shown for comparison.

Figure 5 illustrates the main performance improvements achieved by using GPUs compared to
CPUs, by using Kokkos_fp32 compared to the GPU package, and by lowering the numerical
precision. To allow comparison with the results of the surrogate model developed in this work
(see Section 3.0), these simulations were performed with a 64,000-atom system in the NVT
ensemble at 100 K (i.e., for liquid Ar). To evaluate the impact of reduced precision on predicted
properties of the liquid Ar system, we computed the Ar—Ar radial distribution functions (RDF)
from MD trajectories generated using LAMMPS’s CPU package, the GPU package (single
precision), and Kokkos_fp32 (single precision). As shown in Figure 6, the RDFs completely
overlapped, indicating that the use of lower numerical precision with either package did not
affect accuracy.

Software-level Optimization with Mixed Numerical Precision Formats 7
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Figure 6. Radial distribution functions (RDFs) of argon obtained from MD simulations performed
with LAMMPS (CPU), its GPU package (single precision), and Kokkos fp32 (single
precision).

2.2 NaCl System: k-Space Calculation

Following the tests performed with solid and liquid Ar and reported in the previous section, this
section describes the software-level optimization performed with the NaCl system. While MD
simulations of Ar only involve pairwise short-range interaction calculations because Ar atoms
are neutral, simulating NaCl requires computing long-range electrostatic/Coulombic interactions
between ions with formal charges of +1 or -1 (Eq. 1-1). Computing Coulombic interactions
involves a reciprocal-space (k-space) calculation using fast Fourier transform (FFT). NaCl is
therefore a more complex and computationally demanding system. All the simulations reported
in this section were performed at 298 K using Kokkos_fp32 in the NPT ensemble at 298 K.

Two FFT libraries can be used with Kokkos_fp32: CUFFT, NVIDIA’s GPU-accelerated fast
Fourier transform library, and KISS FFT, a lightweight CPU-based library without GPU support.
As shown in Figure 7, CUFFT achieves a large speedup compared to KISS FFT, while
numerical precision has a small to negligible effect on FFT performance for a system with
64,000 atoms. The effects of the FFT library and numerical precision on the NaCl predicted
structure were evaluated using Na—Cl| RDFs (Figure 8). The RDFs obtained with MD trajectories
computed with double-precision KISS and both double- and single-precision CUFFT overlap.
This result indicates that the choice of FFT library and numerical precision do not affect the
structural accuracy of the simulations.

Software-level Optimization with Mixed Numerical Precision Formats 8
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Figure 7. Performance for NaCl (64,000 atoms) using 64 CPUs and Kokkos_fp32 with KISS and
CUFFT libraries in double, mixed, or single precision.
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Figure 8. RDFs for Na and Cl computed with Kokkos fp32 using CUFFT (double and single
precision) and KISS (single precision).

Tests as a function of system size were performed using Kokkos_fp32 and the CUFFT library
(Figure 9). For small systems (<64,000 atoms), different precisions exhibited similar
performance for both the pairwise and k-space calculations. For larger systems, the time spent
on pairwise interactions remained similar for the different precision formats, whereas differences
in k-space performance became evident beyond 128,000 atoms. For the system with 256,000
atoms, the k-space calculation was 22.4% faster using single precision than using double
precision. When the system size is not large enough to fully saturate the GPU, performance
becomes limited by high latency and tail effects.

Software-level Optimization with Mixed Numerical Precision Formats 9
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For the 256,000-atom system, the mixed-precision results deviated slightly from expectation.
The pairwise interaction calculation took ~29% longer than the other two precisions, while
double and single precision showed similar performance. It is difficult to determine whether this
behavior is related to tail effects without further testing. According to the developers, there may
be several superfluous and silent float-double conversions that slow down compute-bound
kernels. The developers are actively working on addressing this issue.
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Figure 9. Performance with different numerical precision formats for systems of increasing size.
Simulation time per step is decomposed into pair, k-space, and other contributions.

2.3 Challenges in Implementing Mixed-precision Optimizations

Impact of mixed-precision optimizations can be nuanced; performance issues stemming from
suboptimal occupancy (i.e., inactive warps or groups of threads due to work assignment) and
load imbalance (nontrivial number of idle threads waiting for the rest at any particular time) can
diminish prospective gains from mixed-precision computations. These issues remain mostly
hidden (despite major GPU acceleration in comparison to CPU), unless thorough profiling and
configuration studies are conducted to quantify the trade-offs by increasing the system sizes
and assigning an appropriate number of GPU threads per atom to enhance the occupancy (e.g.,
roughly a system with 27,000 atoms will be needed to fully occupy an NVIDIA A100 GPU). For
smaller systems, several threads can be assigned on disparate symmetric multiprocessors of a
single GPU, utilizing multiple processes per GPU via technologies such as CUDA MPS (multi-
process service). Controlling the number of GPU threads per atom can improve the load
imbalance (by balancing the tasks per thread) but would require coordination with the number of
neighbors processed per thread; an imbalance between them can further exacerbate the load
imbalance (due to vast disparities in neighbor computations between groups of threads).

After improving the GPU occupancy using the steps outlined above, one would be poised to
extract further improvements owing to mixed-precision usage. Issues such as silent precision
conversions by compilers/runtimes (allowed by C++ language standard) can impact the
performance (we have observed such INT4 quantization limitations in JAX). Ultimately, MD
software packages are designed for generality and portability; we need to specifically co-design
newer mixed-precision kernels on current GPUs.

Software-level Optimization with Mixed Numerical Precision Formats 10
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3.0 Software-level Optimization with Surrogate Modeling

We developed a data-driven surrogate for liquid argon forces that exploits locality and symmetry
while remaining computationally lightweight. The force model is a compact pairwise multilayer
perceptron (MLP) with widths [1, 64, 64, 64, 1] and tanh activations in the hidden layers. Its

input is the normalized interatomic distance s = ||rij|| /1., and its output is a scalar weight

applied along the unit displacement vector. For each atom, forces are obtained by summing
weight X unit(rij) over neighbors within a cutoff r, = 8.5 A, with at most K = 128 neighbors per
atom. Periodic boundary conditions enforce translational invariance; permutation invariance
arises from the set-wise summation; and the directional aggregation makes the force rotate as a
vector under rigid rotations. With a co-rotated periodic cell, this yields an SE(3)-equivariant force
mapping under global rigid motions.

Training drew mini-batches consisting of one frame (10 ps intervals) and 200 randomly selected
particles (Figure 10). Target forces were standardized using the training-set mean and standard
deviation and were de-standardized at inference. The model was optimized with Adam (Kingma
and Ba, 2014). For validation, we computed velocity Verlet rollouts using the same timestep
used in the MD simulation (dt = 1073 ps) and evaluated force fidelity using root mean square
error (RMSE) and predicted forces (|Fpred|) versus reference forces (|F;,|) correlations (Figure
10). We also evaluated structural and energy fidelity using Ar—Ar RDF and potential energy
ensemble average, respectively (Figure 11).

Train/Test Loss FP32, diag R? = 1.000, RMSE = 0.000
1 —— Train
—— Test
0.40
le—01 v
— v
2 1e—02 °§ 0.30 4
(=}
= L
m =
% £
= 1e-03 150.20
le—04 0.10
le—05
00900 0.10 0.20 030 0.40
0 20000 40000 60000 80000 100000 Fouel (€V/A)
rue

Epochs

Figure 10. Model optimization and force fidelity. Left: Training and test mean-squared error (MSE)
versus optimization steps. Right: FP32 force-magnitude correlation |Fpm,| Versus |Fp.| on
held-out frames with the diagonal y = x shown as reference; up to 50,000 samples are
randomly subsampled for visibility, and the panel title reports the diagonal R?> and RMSE.
Axes are in eV/A.
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Figure 11. Structural and energy fidelity. Left: Ar—Ar RDFs computed from MD trajectories (“MD”),
surrogate model (“FP32”), and surrogate model quantized using BF16 (“BF16”) or INT4
(“INT4”) numerical precision formats. Right: Potential energy ensemble averages.
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4.0 Hardware Utilization Optimization with Post-training
Quantization

Quantization experiments for the liquid-argon surrogate were run on the same hardware utilized
in Section 3.0. We evaluated BF16 (floating-point) and INT4 (emulated, weight-only). Figure 12
shows force-magnitude correlations on held-out frames. The diagonal R? was 1.000 (FP32),
0.998 (BF16), and 0.944 (INT4), with corresponding RMSE of <0.001, 0.002 and 0.010, and
9.61 x 1073 eV/A, respectively. BF 16 therefore preserved force fidelity close to FP32, whereas
INT4 showed a clear loss consistent with the structural and energetic deviations. Figure 11
shows the structural and energetic comparisons: the RDF overlays matched the MD baseline,
and the average potential energy over 0—1000 ps was unchanged within plotting resolution for
BF16, whereas INT4 exhibited visible deviations. BF16 also reduced the force-evaluation
compute time by ~25-27% relative to FP32 across system sizes equal to (2x, 4x, 8x, 10x) for a
base system with 6,078 atoms. For BF16, weights are cast to bfloat16 at export and inference
uses bfloat16 matrix multiplication precision; for portability, weights are stored as float32 on disk
and cast at load time.

Figure 13 summarizes the runtime scaling: the compute sub-step benefits from BF16 while the
neighbor-search component remains largely unchanged and dominates iteration time unless
efficient neighbor lists are used. This neighbor-search-dominated profile is consistent with prior
reports (Li et al., 2022).

Attempts to accelerate inference with INT4 on NVIDIA H100 (Hopper) did not succeed in our
tests: a true 4-bit Tensor Core path was not engaged, exported INT4 weights were effectively
quantize—dequantize at export, and inference fell back to floating-point matrix multiplications, so
no speedup was observed. Enabling real INT4 acceleration will require int4xint4—int32 kernels
exposed through JAX/XLA; we will revisit this when such support is available and after
increasing compute intensity and neighbor reuse so that any gains are measurable. Even with
working INT4 kernels, the present configuration’s small GEMMs and dominant,
precision-insensitive neighbor-search cost (~33—40 ms/iteration) would limit end-to-end
improvement. In this report, INT4 is therefore used only to assess robustness of predictions, not
performance.

Hardware Utilization Optimization with Post-training Quantization 13
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INT4 R2=0.944, RMSE=0.010
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Figure 12. Force correlation for the tested quantized models. Left: FP32, Middle: BF16, Right: INT4; each panel shows |F,,cq| VS |Fim.| With

diagonal reference and panel titles reporting diag R? and RMSE. The INT4 panel exhibits visibly larger scatter away from the
diagonal and degraded metrics, compared with FP32 and BF16.
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Figure 13. Runtime scaling with system size. Left: Average force-evaluation time per iteration (log—log
axes) with FP32 and BF 16, together with reference guides for O(N), O(N?2), and O(N log N)
anchored at the smallest system. Right: Average neighbor-search time per iteration (linear
axes) with FP32 and BF 16, together with O(N) and O(1) guides. BF16 consistently
accelerates the compute substep by roughly 25-27%, whereas neighbor search is largely
insensitive to precision and dominates end-to-end iteration time unless efficient neighbor
lists are used.
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Figure 14. Comparison of force evaluation times and estimation of speedup achievable with DNN
surrogate model of pairwise and electrostatic interactions (down arrow). Force evaluation
times per step are shown for pairwise calculation with trained DNN (DNN FP32) and
quantized DNN (DNN BF16) on NVIDIA H100 GPU together with times for pairwise
calculation with LAMMPS-Kokkos_fp32 on NVIDIA A100 GPU (LAMMPS FP32) and
estimated times for combined pairwise and k-space calculations with LAMMPS-
Kokkos_fp32 on NVIDIA H100 GPU (LAMMPS FP32 k-space scaled) based on timings
obtained on NVIDIA A100 GPU.
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5.0 Recommendations for Future Work

Future work should focus on improving GPU utilization. Larger system sizes (500,000 atoms)
should be tested to avoid latency and tail effects. Mixed-precision simulations of large systems
should be examined in detail to assess numerical stability. For smaller systems, enabling
neighbor thread parallelism may help overcome the size limitation. However, this approach can
introduce load-balancing challenges and reduce cache reuse and therefore must be evaluated
with caution. Additional strategies, such as running multiple simultaneous simulations using
MPS or multi-instance GPU, should also be evaluated.

This work focused on Ar, a neutral atomic system requiring only pairwise interactions for force
calculations, and NaCl, a crystalline system, for which force calculations also include long-range
electrostatic interactions. However, forcefields for MD simulation can involve more complex
interaction types, such as two- (bonds), three- (angles), and four- (torsions) body interactions.
These complex interactions typically slow down MD simulations. In contrast, force calculation
timings of DNN surrogate models should not be affected by the complexity of the forcefields
they are replacing. Consequently, more complex forcefields are expected to translate to greater
speedup afforded by the surrogate model. Therefore, future work should extend the DNN
surrogate model developed in this work to encompass long-range electrostatic interactions as
well as two-, three-, and four-body interactions, which would allow simulation of molecular
systems. Future work could also apply this approach to ab initio MD (AIMD) simulation where
significant efficiency gains are expected through the generation of surrogate models that retain
the chemical accuracy of AIMD simulations. Finally, DNN surrogate models should be extended
to graph neural networks (GNNs) to better capture information transfer between atoms.

Recommendations for Future Work 16
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Appendix A — Mixed Numerical Precision Formats

Lower-precision numerical formats use less memory (since memory and bandwidth are scarce
in computing, reducing memory usage for compute-intensive workloads almost always improves
the overall bandwidth) — e.g., see 16-bit floating point (FP16) vs. 32-bit floating point (FP32)
(Figure A- 1), in contrast, several traditional science applications such as MD simulations often
use 64-bit floating point, and lack broader support for lower precision, even when deployed on
mixed-precision capable hardware such as modern NVIDIA GPUs. The ultimate goal is to trade-
off accuracy for performance (i.e., owing to enhanced bandwidth and efficient mixed-precision
enabled logic units in contemporary GPUs). In the Machine Learning world, higher precision is
almost always unnecessary, and existing methods routinely utilize computations with half-
precision and below.

sign (1 bit) exponent (5 bits) fraction (10 bits)

sign (1 bit) exponent (8 bits) fraction (23 bits)

Figure A- 1: FP16 (half-precision) vs. FP 32 (single-precision).

In terms of representing decimal numbers, FP32 low range is 107 whereas for FP16 it is 1078
(smallest number) — therefore, FP16 must trade-off accuracy with enhanced computation
performance. But, often, both performance and numerical stability is required. As such, several
numerical formats have been proposed recently to bridge the precision gap between FP16 and
FP32. For e.g., brain-floating format or BF16 also uses 16 bits like FP16 but uses 8 bits (+3 vs.
FP16) for exponent and 7 bits (-3 vs. FP16) for fraction. BF16 low range is 107 meaning that
its performance is like that of FP16 and numerical stability matches FP32.
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