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Abstract 
This work aims to develop a framework for energy-efficient computing that will enable molecular 
dynamics (MD) simulations of large-scale phenomena with atomic precision and simultaneously 
remove computational bottlenecks limiting the speed of MD simulations. We seek to implement 
such an approach through the development of surrogate models for the interatomic force 
calculation combined with the use of mixed numerical precision formats. For a model system of 
neutral atoms (only pairwise interactions), significant force calculation efficiency improvements 
were achieved, without detrimental effects on atomic structures or average energies, using 
single precision, by developing a surrogate model (deep neural network), and by quantizing this 
surrogate model. For a model system of charged atoms, the reciprocal-space calculation of 
electrostatic interactions was identified as the main bottleneck, and the development of a 
surrogate model should be pursued to achieve an estimated one-order-of-magnitude additional 
speedup. 
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Summary 
The growth of supercomputing has led to the prevalent use of large-scale molecular dynamics 
(MD) simulations in many scientific domains. Despite efforts to develop rare-event techniques 
that bias MD algorithms towards physically and chemically interesting events, large-scale MD 
simulations are generally aimed at direct sampling of the relevant phase space and attempt to 
bridge molecular and particle scales only through brute force. This approach is highly energy 
inefficient, and a novel approach is thus needed to reduce the energy cost of computation and 
simultaneously remove bottlenecks that limit the speed of MD simulations. 

The work presented in this report seeks to develop a framework for energy-efficient computing 
that will enable MD simulations of large-scale phenomena with atomic precision. Two 
approaches for energy-efficient computing were investigated: (1) Performance optimization 
through use of mixed numerical precision formats; and (2) Force calculation optimization 
through surrogate model development. 

Performance optimization through use of mixed precision formats employed two model systems: 
argon (Ar) and sodium chloride (NaCl). Simulations of neutral Ar atoms isolated the pairwise 
short-range interaction calculation, which was greatly accelerated on GPUs compared to CPUs, 
such that the pairwise calculation ceased to be the computing bottleneck. Lowering the 
precision format led to faster calculations without any loss of accuracy in terms of calculated 
structures. Simulations of ionic NaCl require calculations of both short-range and long-
range/electrostatic interactions, where part of the latter is performed in reciprocal space (k-
space). Significant speedup with no loss of accuracy was achieved by using NVIDIA’s GPU-
accelerated fast Fourier transform library for the k-space calculation. However, unlike for the Ar 
system, efficiency gains from lowering the precision format only became apparent for large 
systems (>250,000 atoms). Nonetheless, the k-space calculation remained the main bottleneck, 
indicating that it should be the focus of future efficiency gain efforts. 

A deep neural network (DNN) surrogate model was developed for the force calculation in liquid 
Ar simulations. The force model is a compact pairwise multilayer perceptron with widths [1, 64, 
64, 64, 1] and tanh activations in the hidden layers. It uses the normalized interatomic distance 
as input and outputs a scalar weight applied along the unit displacement vector. Structural and 
energy fidelity of the surrogate model to the MD simulation was demonstrated. Quantization 
experiments were run using BF16 and INT4. BF16 reduced the force‑evaluation compute time 
by ~25–27% with no effect on predicted structure and energy, while the use of INT4 resulted in 
a clear deterioration of both structure and energy. Neighbor search timings were largely 
insensitive to precision and dominated end‑to‑end iteration time. 

Future work should investigate scaling of numerical precision effects with larger and more 
complex molecular systems to avoid latency and tail effects. The DNN surrogate model should 
be extended to more complex systems that include electrostatic and multibody interactions. 
Based on our performance evaluation with GPUs and the assumption that the force-evaluation 
compute time of the DNN is independent of the complexity of the MD forcefield it is replacing, 
we are predicting that replacing the k-space calculation by a DNN surrogate model will lead to a 
one-order-of-magnitude speedup. The DNN should eventually be embedded in MD software like 
LAMMPS to benefit from its efficient neighbor search and other features. 
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Acronyms and Abbreviations 
AIMD  Ab initio molecular dynamics 
CPU  Central processing unit 
DNN  Deep neural network 
DOE  Department of Energy 
GNN  Graph neural network 
GPU  Graphics processing unit 
LAMMPS Large-scale atomic/molecular massively parallel simulator 
LDRD  Laboratory Directed Research and Development 
MD  Molecular dynamics 
ML  Machine learning 
MPS  Multi-process service 
MSE  Mean square error 
NERSC National Energy Research Scientific Computing Center 
PCSD  Physical and Computational Sciences Directorate 
PNNL  Pacific Northwest National Laboratory 
RDF  Radial distribution function 
RMSE  Root mean square error 
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1.0 Introduction 
Traditional molecular dynamics (MD) simulations have exclusively employed double-precision 
floating-point arithmetic for numerical stability and accuracy on contemporary graphics 
processing units (GPUs). Existing studies (e.g., Le Grand et al. (2013)) of GPU-enabled MD 
simulations primarily discussed adaptations for single-precision. Recently (Jia et al., 2020), 
machine learning (ML) based MD schemes have employed mixed single and half precision for 
training on the latest GPUs (which support a variety of mixed-precision formats at the hardware 
level), improving the overall performance/watt and energy consumption (owing to reduced data 
movement and higher throughput). Automatic mixed-precision and post-training quantization (to 
exploit integer precision) can offer major performance and energy-efficiency advantages of ML 
models over full precision. We will specifically investigate the performance/accuracy trade-offs 
on MD datasets using various mixed-precision optimizations. 

Such hardware-level optimization can be augmented by algorithm-level optimization, specifically 
using ML techniques. ML techniques have been applied to MD simulations to address 
challenges and limitations with inadequate phase space sampling (Trizio and Parrinello, 2021), 
low accuracy of forcefields (Behler, 2021), and analysis of atomic trajectories (Plante et al., 
2019). In this work, algorithm-level optimization will be achieved using surrogate modeling with 
deep learning. Once trained, these models reduce the cost of complex pairwise and 
electrostatic interactions used in the force computation. 

The approach described in this report will be applicable to any science domain where 
simulations of large-scale phenomena require atomistic precision. A key example is solid-fluid 
interfacial systems where atomic-level interactions at the interface have a profound effect on the 
large-scale behavior of the system. Examples abound in catalysis, materials synthesis, 
geochemistry, energy storage, etc. As such, this work could open the door to new scientific 
understanding by removing computational barriers that have historically limited spatial and 
temporal scales achievable with molecular-scale simulation.  

1.1 Research Design and Methodology 

We followed a two-pronged approach to enhance hardware and algorithm efficiency for MD 
workloads, by trading-off precision with computation efficiency (as depicted in Figure 1), relying 
on: 1) simulations exploiting mixed-precision computations (lower-precision formats consume 
less memory and increase bandwidth); and 2) surrogate modeling of interatomic forces using 
deep neural networks (DNNs) . MD simulations of liquid Ar and crystalline NaCl will serve as 
test cases where the former only requires calculation of short-range interactions whereas the 
latter requires calculation of both short-range and long-range electrostatic interactions. Overall, 
we use the MD trajectories (generated from mixed-precision simulations) to train a DNN 
surrogate model that approximates the interatomic forces, further leveraging post-training 
quantization to utilize contemporary lower-precision data formats such as brain floating point 
(i.e., BF16). Computing resources of Pacific Northwest National Laboratory (PNNL) Research 
Computing (i.e., Deception cluster) and National Energy Research Scientific Computing Center 
(NERSC) leadership computing facilities (i.e., Perlmutter supercomputer) were used in this 
research. 
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Figure 1. The approach employed in this work consists of software-level optimization using mixed 

numerical precision formats and a surrogate model as well as hardware utilization 
optimization via post-training quantization of the surrogate model. Future work will evaluate 
how changes to predicted structural properties due to this optimization approach compare 
to the magnitude of experimental uncertainties. 

1.2 Model Systems 

The interaction energy between two atoms i and j, 𝑈𝑈𝑖𝑖𝑖𝑖, in classical MD simulations is composed 
of two terms: 

𝑈𝑈𝑖𝑖𝑖𝑖 =
1

4𝜋𝜋𝜀𝜀0
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖

+ 𝜑𝜑�𝑟𝑟𝑖𝑖𝑖𝑖� Eq. 1-1 

where 𝜀𝜀0 is the permittivity of vacuum, 𝑞𝑞𝑖𝑖 and 𝑞𝑞𝑗𝑗 are the charges on atoms i and j separated by 
distance 𝑟𝑟𝑖𝑖𝑖𝑖, and 𝜑𝜑�𝑟𝑟𝑖𝑖𝑖𝑖� is a function describing the short-range pairwise interactions between 
atoms i and j. 

Two model systems (Figure 2) were considered: 

1. Argon. In this system, 𝑞𝑞 = 0 and Eq. 1-1 therefore simplifies to the short-range pairwise 
interaction only. 

2. NaCl. In this system, 𝑞𝑞 = |1|, and the interaction energy results from both long-range 
electrostatic interactions and short-range pairwise interactions. 

We will investigate the effects of optimization on structural (e.g., radial distribution functions) 
and energetic (e.g., ensemble averages) properties of the two model systems. 
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Figure 2. Snapshots of the model systems used in this work: Liquid Ar (left) and crystalline NaCl (right). 
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2.0 Software-level Optimization with Mixed Numerical 
Precision Formats 

Two model systems were considered: Ar (Section 2.1) and NaCl (Section 2.2). Ar is a neutral 
monoatomic system that allows for isolating the pairwise interaction calculation, whereas 
simulating NaCl requires calculating electrostatic interactions, part of which is performed in 
reciprocal space (k-space). 

2.1 Argon System: Pairwise Interactions 

Extensive testing of the GPU package of LAMMPS and of Kokkos_fp321 was performed by 
varying the number of atoms in the system, the simulation ensemble, the number of GPUs 
used, and the computing platform all for double, mixed, and single numerical precision formats. 
Time per simulation step was used as the performance metric. The simulations performed for 
this evaluation were run at 60 K (i.e., for solid Ar). 

For the simulation ensemble, simulations in the NVE ensemble (constant number of particles, 
constant volume, and constant energy) were faster than simulations in the NPT ensemble 
(constant number of particles, constant pressure, and constant temperature) as shown in Figure 
3(a), consistent with the additional computational overhead associated with thermostat and 
barostat updates in the NPT ensemble. For both ensembles, reduced numerical precision led to 
increased performance, although the difference between mixed and single precision was 
relatively small for the NVE ensemble. Unless specified otherwise, the simulations presented 
hereafter in Section 2.1 were carried out in the NPT ensemble to enable a consistent 
performance evaluation. 

Performance improved with the number of GPUs used up to 4 GPUs (Figure 3(b)). For 8 GPUs, 
performance fell at times below that of 4 GPUs for smaller systems but surpassed that for 4 
GPUs once the number of atoms was sufficiently large. Reproducibility tests (Figure 4) showed 
that simulations performed using 1 or 2 GPUs were highly consistent, whereas simulations that 
used 4 GPUs exhibited slight variations at low system sizes and results with 8 GPUs displayed 
significant variability between repeated tests. The optimal GPU count was not necessarily the 
maximum available but depended on the system size. The low performance and reduced 
reproducibility at high GPU counts arose from increased communication and greater sensitivity 
to scheduling, which became critical when the per-GPU workload was small. The simulations 
presented hereafter were performed with a single GPU for consistency and ease of comparison. 

 
1 Kokkos_fp32 is an experimental extension of the Kokkos backend for LAMMPS aimed at enabling 
single- and mixed-precision simulations. 
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Figure 3. Performance comparisons: (a) NPT versus NVE; (b) different numbers of GPUs; (c) Perlmutter versus Deception; (d) GPU package 

versus kokkos_fp32. Results obtained with single, mixed, and double numerical precision formats are shown in each case. 
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Figure 4 Reproducibility of simulations performed with 1, 2, 4, or 8 GPUs (panels a–d, respectively). Solid and dash-dot-dot lines indicate the 

initial and duplicate tests, respectively. 
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Performance was also evaluated on different machines. Figure 3(c) compares results from two 
clusters: Perlmutter (NERSC supercomputer with NVIDIA A100 GPUs) and Deception (PNNL 
supercomputer with RTX 2080 Ti GPUs). The results obtained with both clusters exhibited the 
same trend of increasing performance with reduced numerical precision with performance on 
Perlmutter being higher than on Deception.  

We also compared the GPU package and Kokkos_fp32 using NPT simulations on a single GPU 
on Perlmutter. The GPU package is a stable and widely used GPU accelerator in LAMMPS for 
NVIDIA GPUs, supporting single, mixed, and double precision formats. It provides GPU 
implementations of many functional forms for pairwise interactions. It also accelerates parts of 
the k-space calculation needed to compute long-range electrostatic interactions. Kokkos is a 
C++ programming model for writing performance-portable applications on major HPC platforms, 
providing abstractions for parallel execution and data management. Kokkos_fp32 is an 
experimental extension of the Kokkos backend for LAMMPS aimed at enabling single- and 
mixed-precision simulations. It was suggested to us by NVIDIA developers and remains under 
active testing. For the same system size, Kokkos_fp32 was significantly faster than the GPU 
package (Figure 3(d)). Performance improved with reduced precision, although mixed and 
single precision formats resulted in almost identical timings with Kokkos_fp32. 

 
Figure 5. Liquid Ar system (64,000 atoms) at 100 K in the NVT ensemble. Effect of numerical precision 

on total time per step for LAMMPS GPU package and Kokkos_fp32. Timing obtained for the 
same system on 64 CPUs (double precision) is shown for comparison. 

Figure 5 illustrates the main performance improvements achieved by using GPUs compared to 
CPUs, by using Kokkos_fp32 compared to the GPU package, and by lowering the numerical 
precision. To allow comparison with the results of the surrogate model developed in this work 
(see Section 3.0), these simulations were performed with a 64,000-atom system in the NVT 
ensemble at 100 K (i.e., for liquid Ar). To evaluate the impact of reduced precision on predicted 
properties of the liquid Ar system, we computed the Ar–Ar radial distribution functions (RDF) 
from MD trajectories generated using LAMMPS’s CPU package, the GPU package (single 
precision), and Kokkos_fp32 (single precision). As shown in Figure 6, the RDFs completely 
overlapped, indicating that the use of lower numerical precision with either package did not 
affect accuracy. 
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Figure 6. Radial distribution functions (RDFs) of argon obtained from MD simulations performed 

with LAMMPS (CPU), its GPU package (single precision), and Kokkos_fp32 (single 
precision). 

2.2 NaCl System: k-Space Calculation 

Following the tests performed with solid and liquid Ar and reported in the previous section, this 
section describes the software-level optimization performed with the NaCl system. While MD 
simulations of Ar only involve pairwise short-range interaction calculations because Ar atoms 
are neutral, simulating NaCl requires computing long-range electrostatic/Coulombic interactions 
between ions with formal charges of +1 or −1 (Eq. 1-1). Computing Coulombic interactions 
involves a reciprocal-space (k-space) calculation using fast Fourier transform (FFT). NaCl is 
therefore a more complex and computationally demanding system. All the simulations reported 
in this section were performed at 298 K using Kokkos_fp32 in the NPT ensemble at 298 K. 

Two FFT libraries can be used with Kokkos_fp32: CUFFT, NVIDIA’s GPU-accelerated fast 
Fourier transform library, and KISS FFT, a lightweight CPU-based library without GPU support. 
As shown in Figure 7, CUFFT achieves a large speedup compared to KISS FFT, while 
numerical precision has a small to negligible effect on FFT performance for a system with 
64,000 atoms. The effects of the FFT library and numerical precision on the NaCl predicted 
structure were evaluated using Na–Cl RDFs (Figure 8). The RDFs obtained with MD trajectories 
computed with double-precision KISS and both double- and single-precision CUFFT overlap. 
This result indicates that the choice of FFT library and numerical precision do not affect the 
structural accuracy of the simulations. 
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Figure 7. Performance for NaCl (64,000 atoms) using 64 CPUs and Kokkos_fp32 with KISS and 

CUFFT libraries in double, mixed, or single precision. 

 
 

Figure 8. RDFs for Na and Cl computed with Kokkos_fp32 using CUFFT (double and single 
precision) and KISS (single precision). 

Tests as a function of system size were performed using Kokkos_fp32 and the CUFFT library 
(Figure 9). For small systems (<64,000 atoms), different precisions exhibited similar 
performance for both the pairwise and k-space calculations. For larger systems, the time spent 
on pairwise interactions remained similar for the different precision formats, whereas differences 
in k-space performance became evident beyond 128,000 atoms. For the system with 256,000 
atoms, the k-space calculation was 22.4% faster using single precision than using double 
precision. When the system size is not large enough to fully saturate the GPU, performance 
becomes limited by high latency and tail effects.  
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For the 256,000-atom system, the mixed-precision results deviated slightly from expectation. 
The pairwise interaction calculation took ~29% longer than the other two precisions, while 
double and single precision showed similar performance. It is difficult to determine whether this 
behavior is related to tail effects without further testing. According to the developers, there may 
be several superfluous and silent float-double conversions that slow down compute-bound 
kernels. The developers are actively working on addressing this issue.  

 
Figure 9. Performance with different numerical precision formats for systems of increasing size. 

Simulation time per step is decomposed into pair, k-space, and other contributions. 

2.3 Challenges in Implementing Mixed-precision Optimizations 

Impact of mixed-precision optimizations can be nuanced; performance issues stemming from 
suboptimal occupancy (i.e., inactive warps or groups of threads due to work assignment) and 
load imbalance (nontrivial number of idle threads waiting for the rest at any particular time) can 
diminish prospective gains from mixed-precision computations. These issues remain mostly 
hidden (despite major GPU acceleration in comparison to CPU), unless thorough profiling and 
configuration studies are conducted to quantify the trade-offs by increasing the system sizes 
and assigning an appropriate number of GPU threads per atom to enhance the occupancy (e.g., 
roughly a system with 27,000 atoms will be needed to fully occupy an NVIDIA A100 GPU). For 
smaller systems, several threads can be assigned on disparate symmetric multiprocessors of a 
single GPU, utilizing multiple processes per GPU via technologies such as CUDA MPS (multi-
process service). Controlling the number of GPU threads per atom can improve the load 
imbalance (by balancing the tasks per thread) but would require coordination with the number of 
neighbors processed per thread; an imbalance between them can further exacerbate the load 
imbalance (due to vast disparities in neighbor computations between groups of threads).  

After improving the GPU occupancy using the steps outlined above, one would be poised to 
extract further improvements owing to mixed-precision usage. Issues such as silent precision 
conversions by compilers/runtimes (allowed by C++ language standard) can impact the 
performance (we have observed such INT4 quantization limitations in JAX). Ultimately, MD 
software packages are designed for generality and portability; we need to specifically co-design 
newer mixed-precision kernels on current GPUs. 
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3.0 Software-level Optimization with Surrogate Modeling 
We developed a data‑driven surrogate for liquid argon forces that exploits locality and symmetry 
while remaining computationally lightweight. The force model is a compact pairwise multilayer 
perceptron (MLP) with widths [1, 64, 64, 64, 1] and tanh activations in the hidden layers. Its 
input is the normalized interatomic distance 𝑠𝑠 = ��𝑟𝑟𝑖𝑖𝑖𝑖�� /𝑟𝑟𝑐𝑐, and its output is a scalar weight 
applied along the unit displacement vector. For each atom, forces are obtained by summing 
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 × 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�𝑟𝑟𝑖𝑖𝑖𝑖� over neighbors within a cutoff 𝑟𝑟𝑐𝑐 = 8.5 Å, with at most K = 128 neighbors per 
atom. Periodic boundary conditions enforce translational invariance; permutation invariance 
arises from the set‑wise summation; and the directional aggregation makes the force rotate as a 
vector under rigid rotations. With a co‑rotated periodic cell, this yields an SE(3)‑equivariant force 
mapping under global rigid motions. 

Training drew mini‑batches consisting of one frame (10 ps intervals) and 200 randomly selected 
particles (Figure 10). Target forces were standardized using the training‑set mean and standard 
deviation and were de‑standardized at inference. The model was optimized with Adam (Kingma 
and Ba, 2014). For validation, we computed velocity Verlet rollouts using the same timestep 
used in the MD simulation (𝑑𝑑𝑑𝑑 = 10−3 𝑝𝑝𝑝𝑝) and evaluated force fidelity using root mean square 
error (RMSE) and predicted forces (�𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�) versus reference forces (|𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|) correlations (Figure 
10). We also evaluated structural and energy fidelity using Ar–Ar RDF and potential energy 
ensemble average, respectively (Figure 11). 

  

Figure 10. Model optimization and force fidelity. Left: Training and test mean‑squared error (MSE) 
versus optimization steps. Right: FP32 force‑magnitude correlation �𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� versus |𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡| on 
held‑out frames with the diagonal y = x shown as reference; up to 50,000 samples are 
randomly subsampled for visibility, and the panel title reports the diagonal 𝑅𝑅2 and RMSE. 
Axes are in eV/Å. 
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Figure 11. Structural and energy fidelity. Left: Ar–Ar RDFs computed from MD trajectories (“MD”), 

surrogate model (“FP32”), and surrogate model quantized using BF16 (“BF16”) or INT4 
(“INT4”) numerical precision formats. Right: Potential energy ensemble averages. 

 



PNNL-38353 

Hardware Utilization Optimization with Post-training Quantization 13 
 

4.0 Hardware Utilization Optimization with Post-training 
Quantization 

Quantization experiments for the liquid‑argon surrogate were run on the same hardware utilized 
in Section 3.0. We evaluated BF16 (floating‑point) and INT4 (emulated, weight‑only). Figure 12 
shows force‑magnitude correlations on held‑out frames. The diagonal 𝑅𝑅2 was 1.000 (FP32), 
0.998 (BF16), and 0.944 (INT4), with corresponding RMSE of <0.001, 0.002 and 0.010, and 
9.61 × 10−3 eV/Å, respectively. BF16 therefore preserved force fidelity close to FP32, whereas 
INT4 showed a clear loss consistent with the structural and energetic deviations. Figure 11 
shows the structural and energetic comparisons: the RDF overlays matched the MD baseline, 
and the average potential energy over 0–1000 ps was unchanged within plotting resolution for 
BF16, whereas INT4 exhibited visible deviations. BF16 also reduced the force‑evaluation 
compute time by ~25–27% relative to FP32 across system sizes equal to (2×, 4×, 8×, 10×) for a 
base system with 6,078 atoms. For BF16, weights are cast to bfloat16 at export and inference 
uses bfloat16 matrix multiplication precision; for portability, weights are stored as float32 on disk 
and cast at load time.  

Figure 13 summarizes the runtime scaling: the compute sub-step benefits from BF16 while the 
neighbor‑search component remains largely unchanged and dominates iteration time unless 
efficient neighbor lists are used. This neighbor‑search-dominated profile is consistent with prior 
reports (Li et al., 2022). 

Attempts to accelerate inference with INT4 on NVIDIA H100 (Hopper) did not succeed in our 
tests: a true 4‑bit Tensor Core path was not engaged, exported INT4 weights were effectively 
quantize–dequantize at export, and inference fell back to floating‑point matrix multiplications, so 
no speedup was observed. Enabling real INT4 acceleration will require int4×int4→int32 kernels 
exposed through JAX/XLA; we will revisit this when such support is available and after 
increasing compute intensity and neighbor reuse so that any gains are measurable. Even with 
working INT4 kernels, the present configuration’s small GEMMs and dominant, 
precision‑insensitive neighbor‑search cost (~33–40 ms/iteration) would limit end‑to‑end 
improvement. In this report, INT4 is therefore used only to assess robustness of predictions, not 
performance. 
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Figure 12. Force correlation for the tested quantized models. Left: FP32, Middle: BF16, Right: INT4; each panel shows �𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� vs |𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡| with 

diagonal reference and panel titles reporting diag 𝑅𝑅2 and RMSE. The INT4 panel exhibits visibly larger scatter away from the 
diagonal and degraded metrics, compared with FP32 and BF16. 
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Figure 13. Runtime scaling with system size. Left: Average force‑evaluation time per iteration (log–log 

axes) with FP32 and BF16, together with reference guides for O(N), O(𝑁𝑁2), and O(𝑁𝑁 log𝑁𝑁) 
anchored at the smallest system. Right: Average neighbor‑search time per iteration (linear 
axes) with FP32 and BF16, together with O(N) and O(1) guides. BF16 consistently 
accelerates the compute substep by roughly 25–27%, whereas neighbor search is largely 
insensitive to precision and dominates end‑to‑end iteration time unless efficient neighbor 
lists are used. 

 
Figure 14. Comparison of force evaluation times and estimation of speedup achievable with DNN 

surrogate model of pairwise and electrostatic interactions (down arrow). Force evaluation 
times per step are shown for pairwise calculation with trained DNN (DNN FP32) and 
quantized DNN (DNN BF16) on NVIDIA H100 GPU together with times for pairwise 
calculation with LAMMPS-Kokkos_fp32 on NVIDIA A100 GPU (LAMMPS FP32) and 
estimated times for combined pairwise and k-space calculations with LAMMPS-
Kokkos_fp32 on NVIDIA H100 GPU (LAMMPS FP32 k-space scaled) based on timings 
obtained on NVIDIA A100 GPU. 
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5.0 Recommendations for Future Work 
Future work should focus on improving GPU utilization. Larger system sizes (≥500,000 atoms) 
should be tested to avoid latency and tail effects. Mixed-precision simulations of large systems 
should be examined in detail to assess numerical stability. For smaller systems, enabling 
neighbor thread parallelism may help overcome the size limitation. However, this approach can 
introduce load-balancing challenges and reduce cache reuse and therefore must be evaluated 
with caution. Additional strategies, such as running multiple simultaneous simulations using 
MPS or multi-instance GPU, should also be evaluated. 

This work focused on Ar, a neutral atomic system requiring only pairwise interactions for force 
calculations, and NaCl, a crystalline system, for which force calculations also include long-range 
electrostatic interactions. However, forcefields for MD simulation can involve more complex 
interaction types, such as two- (bonds), three- (angles), and four- (torsions) body interactions. 
These complex interactions typically slow down MD simulations. In contrast, force calculation 
timings of DNN surrogate models should not be affected by the complexity of the forcefields 
they are replacing. Consequently, more complex forcefields are expected to translate to greater 
speedup afforded by the surrogate model. Therefore, future work should extend the DNN 
surrogate model developed in this work to encompass long-range electrostatic interactions as 
well as two-, three-, and four-body interactions, which would allow simulation of molecular 
systems. Future work could also apply this approach to ab initio MD (AIMD) simulation where 
significant efficiency gains are expected through the generation of surrogate models that retain 
the chemical accuracy of AIMD simulations. Finally, DNN surrogate models should be extended 
to graph neural networks (GNNs) to better capture information transfer between atoms. 
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Appendix A – Mixed Numerical Precision Formats 
Lower-precision numerical formats use less memory (since memory and bandwidth are scarce 
in computing, reducing memory usage for compute-intensive workloads almost always improves 
the overall bandwidth) – e.g., see 16-bit floating point (FP16) vs. 32-bit floating point (FP32) 
(Figure A- 1), in contrast, several traditional science applications such as MD simulations often 
use 64-bit floating point, and lack broader support for lower precision, even when deployed on 
mixed-precision capable hardware such as modern NVIDIA GPUs. The ultimate goal is to trade-
off accuracy for performance (i.e., owing to enhanced bandwidth and efficient mixed-precision 
enabled logic units in contemporary GPUs). In the Machine Learning world, higher precision is 
almost always unnecessary, and existing methods routinely utilize computations with half-
precision and below. 

 
Figure A- 1: FP16 (half-precision) vs. FP 32 (single-precision). 

In terms of representing decimal numbers, FP32 low range is 10−38 whereas for FP16 it is 10−8 
(smallest number) – therefore, FP16 must trade-off accuracy with enhanced computation 
performance. But, often, both performance and numerical stability is required. As such, several 
numerical formats have been proposed recently to bridge the precision gap between FP16 and 
FP32. For e.g., brain-floating format or BF16 also uses 16 bits like FP16 but uses 8 bits (+3 vs. 
FP16) for exponent and 7 bits (−3 vs. FP16) for fraction. BF16 low range is 10−38 meaning that 
its performance is like that of FP16 and numerical stability matches FP32. 
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