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Abstract
This report presents a generalized Stackelberg game framework for designing and evaluating
financial incentives that enhance power system resilience through strategic deployment of
distributed energy resources (DERs) under various contingencies. The proposed approach
addresses the challenge of coordinating individual community investment decisions to meet
system-wide resilience objectives. The framework is demonstrated in a three-community test
system subjected to two transmission contingency scenarios: inter-community line failure
(Scenario one) and complete main grid disconnection (Scenario two). In both scenarios, three
incentive levels are compared: a Base case with no financial incentives, and low- and
high-incentive cases. In Scenario one, the Base case (no incentives) results in a total installed
DER capacity of 217.1 MW, with no load shedding due to alternative routing and the highest
community costs. Increasing incentives raises DER deployment to 432.5 MW, lowers total
aggregate community costs by $63.8M (7.13%), and completely avoids the need for costly new
transmission line construction. In Scenario two, the Base case results in 24.3 MWh of unserved
load. With the introduction of incentives, all load shedding is eliminated, and the communities
maintain up to 177.6 MWh of battery storage as an emergency reserve. These results
demonstrate that targeted incentives can dramatically improve grid resilience and
cost-effectiveness. This framework therefore provides policymakers and system planners with a
practical tool to design and evaluate financial incentive programs that simultaneously optimize
system resilience, community investment behavior, and economic efficiency across
multi-community transmission networks.
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Acronyms and Abbreviations

BESS battery energy storage system
DER distributed energy resource(s)
KKT Karush-Kuhn-Tucker
MW megawatt(s)
MWh megawatt-hour(s)
PNNL Pacific Northwest National Laboratory
PV photovoltaic(s)
SoC state-of-charge
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Notation

Sets

c(s) A set of disconnected transmission lines in contingency scenario s

L A set of transmission lines
N A set of communities
S A set of contingency scenarios
T A set contains all time steps
T cont
s A set contains all time steps in contingency scenario s

t(n) A set of transmission lines going into community n

f(n) A set of transmission lines going out from community n

Indices

l Transmission line index
n Community index
s Contingency scenario index
t Time step index

Parameters

B Total budget of the system operator
CBatt Unit cost of BESS
CPV Unit cost of PV
Ccont
n,t,s Electricity price for community n at time t in contingency scenario s

Cnorm
n,t Electricity price for community n at time t under normal condition

Cshed
n,t,s Unserved load cost for community n at time t in contingency scenario s

C line
l Unit variable cost for increasing the capacity of line l

Dn,t Load of community n at time t

DBatt BESS duration
F line
l Fixed cost for increasing the capacity of line l

M A sufficiently large number
rn,t Solar irradiance level at community n at time t

t̂s Start time of contingency scenario s

αann Annuity factor
ηch BESS charging efficiency
ηdis BESS discharging efficiency
θlim BESS cycle limit
ωnorm
n,t Probability of normal condition at time t

ωcont
n,t,s Probability of contingency scenario s at time t

Notation vi
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Decision Variables of the System Operator

CE Credit for emergency reserve (Fixed parameter for incentive evaluation)
pcontl,t,s Power flow through line l at time t in contingency scenario s

pnorml,t Power flow through line l at time t under normal condition
P cont

n,t,s Lower purchase limit of community n at time t in contingency scenario s

P
cont
n,t,s Upper purchase limit of community n at time t in contingency scenario s

IPV Incentive for PV (Fixed parameter for incentive evaluation)
IBatt Incentive for BESS (Fixed parameter for incentive evaluation)
p̂l Increased capacity of line l (Fixed parameter for incentive evaluation)
xl Binary variable indicating the expansion decision on line l

Decision Variables of Community n

ebatt,cn,t,s BESS SoC at time t in contingency scenario s

ebatt,nn,t BESS SoC at time t under normal condition

pch,cn,t,s BESS charged power at time t in contingency scenario s

pch,nn,t BESS charged power at time t under normal condition

pdis,cn,t,s BESS discharged power at time t in contingency scenario s

pdis,nn,t BESS discharged power at time t under normal condition
pcontn,t,s Power purchased at time t in contingency scenario s

pnormn,t Power purchased at time t under normal condition
ppv,cn,t,s PV generation at time t in contingency scenario s

ppv,nn,t PV generation at time t under normal condition
pshedn,t,s Load shedding at time t in contingency scenario s

Notation vii



PNNL-38326

Acknowledgments
This research was supported by the Energy System Co-Design with Multiple Objectives and
Power Electronics (E-COMP) Initiative, under the Laboratory Directed Research and
Development (LDRD) Program at Pacific Northwest National Laboratory (PNNL). PNNL is a
multi-program national laboratory operated for the U.S. Department of Energy (DOE) by Battelle
Memorial Institute under Contract No. DE-AC05-76RL01830. The authors express their
gratitude to Kyle Wilson for his invaluable assistance in identifying relevant datasets for the
case study and suggestions for this report.

Acknowledgments viii



PNNL-38326

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Lower-Level Problems: Community Optimization . . . . . . . . . . . . . . . . . 5
2.2 Upper-Level Problem: System Operator . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Integrated Model Formulation and Solution Approach Discussion . . . . . . . . 8

3.0 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Case Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Results and Analysis for Contingency Scenario One . . . . . . . . . . . . . . . 9
3.3 Results and Analysis for Contingency Scenario Two . . . . . . . . . . . . . . . 11

4.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.0 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Contents ix



PNNL-38326

Figures

1 Structure of the three-community system. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Input parameters of the use case, including power price, scaled load and solar capacity

factor of each community in a typical day. . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Two contingency scenarios analyzed in the case study. . . . . . . . . . . . . . . . . . . 11
4 Community investment decisions under different incentive values in scenario one. . . 13
5 Power flow through the new transmission line. . . . . . . . . . . . . . . . . . . . . . . . 14
6 Net power purchase of each community under different incentive values in scenario

one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 Community investment decisions under different incentive values in scenario two. . . . 15
8 Net power purchase of each community under different incentive values in scenario

two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Tables

1 Cost and incentive values for each scenario . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Community costs, incentives, and load shedding in scenario one . . . . . . . . . . . . 12
3 Community costs, incentives, and load shedding in scenario two . . . . . . . . . . . . 12

x



PNNL-38326

1.0 Introduction
Historical blackout events highlight the critical need to enhance grid resilience through improved
policymaking and coordinated planning and investment in distributed energy resources (DERs),
given the increasing frequency of power system disruptions. Busby et al. (2021) conducted a
comprehensive analysis of the 2021 Texas winter blackout, employing interdisciplinary methods
combining meteorological data, grid operations analysis, and policy evaluation. Their findings
showed how interdependent failures in electricity and natural gas systems led to prolonged,
cascading outages affecting over 4.5 million customers. Similarly, California’s implementation of
Public Safety Power Shutoffs to mitigate wildfire risk underscores the operational and regulatory
challenges utilities are facing in maintaining reliability amid natural hazards (Guliasi 2021). Both
cases demonstrate how current incentive structures and regulatory frameworks may fail to
prevent large-scale supply interruptions, highlighting the necessity for more adaptive and
coordinated approaches to resilience planning—especially as transmission contingencies
become more frequent and severe.

Furthermore, Ganz, Duan, and Ji (2023) carried out econometric analysis of outage data
from major U.S. metropolitan areas to study how severe weather-induced power outages affect
different communities. Their results showed that restoration times and outage impacts vary
significantly across regions and customer segments and that the importance of analytical
frameworks’ capability to capture heterogeneity in system response and recovery during
extreme events is underscored.

The fundamental challenge in designing incentive mechanisms is to align individual
community investment decisions with system-wide resilience objectives when communities are
confronted with a range of possible contingencies, including but not limited to, inter-community
line disconnections, main grid outages, and other disruptions that may isolate or constrain
regions. Addressing this coordination problem requires systematic design and evaluation of how
financial incentive programs influence community investment behaviors and resulting system
performance across different contingency scenarios.

Foundational research on incentive regulation has provided the theoretical and empirical
basis for designing mechanisms that coordinate decentralized investment behaviors with
system wide objectives in electricity systems (Joskow 2014). This literature finds that
well-designed incentive structures, such as price-cap and revenue-cap regulation, can
effectively improve efficiency and service reliability across network industries. A practical
application of this theory to electricity transmission and networks is shown in Joskow (2008).
This empirical case study illustrates significant efficiency improvements when price-cap and
revenue-cap mechanisms are properly calibrated.

Alvarez and Rudnick (2010) analyzed the impact of several regulatory schemes and financial
incentives aimed at reconciling the objectives of planners and distribution companies while
promoting energy efficiency in the power sector. White certificates, also known as energy
efficiency certificates or tradable white certificates, are market-based instruments that create
tradable credits for verified energy savings achieved through efficiency measures. Under this
mechanism, utilities or other obligated parties must achieve specified energy savings targets
and can trade certificates to meet these obligations cost-effectively. By employing a data
envelope analysis framework on the distribution system in Chile, the authors conclude that white
certificates for energy efficiency best address the disincentive problems with minimal economic
stress of only 8-12% distribution loss. Revenue decoupling also performs well, surpassing
direct investment requirements when efficiency targets are modest; however direct investment
is more effective for ambitious targets. Complementing these insights, Khonakdar-Tarsi
et al. (2021) propose a reliability incentive regulation based on reward-penalty mechanisms,
which is tailored to account for local reliability characteristics. By grouping distribution feeders
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based on uncontrollable parameters such as geographic and environmental factors, the authors
design cluster-specific reward-penalty structures where the magnitude of financial rewards and
penalties varies based on each group’s baseline reliability challenges. Rather than applying
uniform incentive rates across all feeders, this approach recognizes that feeders facing different
inherent reliability constraints should have differentiated performance targets and corresponding
financial consequences. Application to a real-world 194-feeder system demonstrates that such
differentiated, cluster-based regulation can improve reliability by incentivizing utilities to compete
for higher service quality while accounting for varying operational conditions.

Recent developments in incentive design mechanisms for DERs have shifted focus to
addressing coordination challenges among multiple stakeholders. Wang et al. (2019) present a
comprehensive sharing mechanism for DERs that leverages cooperative game theory and
mechanism design. Their analysis of multi-community systems shows that effective
collaboration among communities requires substantial incentives to overcome self-interested
optimization behaviors. Brown and Sappington (2018) study optimal procurement strategies of
DERs using mechanism design theory. Their findings demonstrate that menu-based contracts
with screening mechanisms can yield efficient, cost-effective procurement outcomes for utilities.
Bhattacharya et al. (2022) conducted a systematic review of over 150 studies on incentive
mechanisms for smart grids, including demand response, renewable integration, and grid
modernization. Their studies summarize key design principles and implementation challenges
with various effectiveness across different application areas. Xu et al. (2024) experimentally
assess incentive mechanisms in a multi-community microgrid testbed. Their results show that
properly designed incentives increase resilience investments by 25-40% while maintaining
cost-effectiveness for participants. Alternatively, Yuli Astriani (2021) propose an
optimization-based approach for microgrid demand response that achieves both targeted
system cost-effectiveness and high participant satisfaction.

Distribution system planning approaches increasingly integrate incentive designs within their
optimization frameworks. Alotaibi and Salama (2018) propose a multi-stage expansion planning
model incorporating mixed-integer linear programming and uncertainty considerations. Their
case study on a 33-bus distribution system shows that coordinated incentives reduce system
costs by 15-20% compared to uncoordinated planning. Fattaheian-Dehkordi et al. (2021)
develop bilevel optimization strategies to alleviate active power congestion in multi-agent
distribution systems by capturing agents’ strategic behaviors. Simulation results on a modified
IEEE test system show significant congestion reduction and improved system efficiency. Tian
et al. (2020) propose a joint planning framework to integrate financial incentives with stochastic
planning and operation for renewable-storage systems. Their case study results show that
feed-in tariffs and investment tax credits significantly influence optimal system sizing and
operational strategies, with benefit-cost ratios varying from 1.1 to 2.8 depending on the
incentive structure.

At the residential and community scale, DERs have been increasingly adopted for their
potential to provide local resilience benefits. Gorman et al. (2024) analyze the backup
capabilities of solar-plus-storage systems across the U.S. using geospatial and
techno-economic modeling, concluding that such hybrid systems can provide 3-7 days of
backup power for typical households, with economic viability improving significantly under
current federal incentive programs. Li and Okur (2023) present a game-theoretic and empirical
analysis of European energy communities, finding that significant variation in investment
responses comes from local resource characteristics and regulatory environments, with
benefit-cost ratios ranging from 1.2 to 3.8 across different community types.

Explaining this heterogeneity requires a deeper understanding of behavioral and contextual
drivers. Vibrans et al. (2023) analyze data from nearly 1,200 German households, identifying
distinct photovoltaic (PV) adopter profiles because households vary substantially in price
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sensitivities and non-economic motivations, supporting the need for differentiated incentive
approaches. Masini and Menichetti (2012) demonstrate, through empirical analysis of 265
renewable energy investors, that behavioral factors significantly impact choices beyond pure
economic optimization. Their survey shows that risk perception, social norms, and policy
uncertainty substantially influence investment timing and scale, highlighting the limitations of
strictly economic models.

Community energy planning methodologies have also evolved to account for varying
organizational structures and resource constraints. Gui and MacGill (2018) use scenario
analysis and stakeholder consultations to explore typologies of future clean energy communities
and identify structural opportunities and challenges across different community configurations.
Gui, Diesendorf, and MacGill (2017) examine infrastructure paradigms for DERs using
institutional economics analysis, focusing on community microgrids and factors such as
transaction costs, governance, and regulatory barriers. Ross and Day (2022) summarize the
best practices from NREL’s technical assistance work with over 100 communities, using
comparative case study analysis to identify success factors in community energy planning,
which include the importance of local leadership, stakeholder engagement, and technical
capacity building in achieving planning objectives.

Methods for power system expansion planning provide the foundation for integrating DERs
into grid transmission and distribution system development. Vahidinasab et al. (2020) review
over 200 studies on distribution network expansion across deterministic, stochastic, and robust
optimization frameworks, covering key challenges such as uncertainty management and
multi-objective trade-offs. Resener et al. (2019) develop detailed MILP models for distribution
system expansion planning, incorporating load growth uncertainty, distributed generation
integration, and reliability constraints. Their two-part framework addresses both strategic
investment timing and operational flexibility requirements. Aschidamini et al. (2022) provide a
systematic review of expansion planning approaches considering reliability, based on over 120
studies across different uncertainty modeling and solution methodologies. Their classification
framework highlights key trade-offs between computational complexity and solution quality
across different problem formulations. Saberi et al. (2023) develop multi-objective optimization
approaches that prioritize both reliability and resilience. A case study analysis of an 84-bus
distribution system shows substantial resilience improvements through strategic capacity
investments, with load shedding reductions of 25-40% under various contingency scenarios.

Sophisticated mathematical frameworks have greatly advanced the modeling of
multi-stakeholder decisions and strategic interactions in energy systems. The seminal work of
Fortuny-Amat and McCarl (1981) establishes the canonical mathematical formulation for
two-level (bilevel) programming problems, providing the foundation for the leader–follower
modeling structures that underpin much of the subsequent literature on hierarchical and
strategic decision-making in energy systems. Furthermore, Dempe and Zemkoho (2020)
provide a comprehensive theoretical approach for bilevel optimization problems, while Ruiz
et al. (2014) provide comprehensive tutorial review of complementarity-based approaches for
energy market modeling. Recent studies by Steriotis et al. (2023) and Dehghan and Amjady
(2015) leverage these advances, developing robust and bilevel frameworks for co-optimizing
investments and operations under uncertainty, and demonstrate practical benefits for
coordinated resource planning in complex transmission and distribution systems.

While reliability-based models emphasize maintaining consistent service quality under
standard operating conditions, recent research in resilience-oriented planning has focused on
strategic system adaptation to extreme, low-probability, and high-impact disruptions. For
example, Khodaei (2014) propose a resiliency-oriented microgrid optimal scheduling framework
to reduce load shedding during severe contingencies via adaptive resource dispatch using
scenario-based stochastic optimization. Similarly, Wang, Rousis, and Strbac (2022) develop
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models for optimally sizing and pre-positioning mobile energy storage in decentralized
microgrids, concluding that coordinated storage deployment can achieve 30–50% reductions in
load shedding during major outages compared to fixed assets.

Economic valuation methodologies are fundamental for quantifying and justifying
investments in resilience. Sullivan, Schellenberg, and Blundell (2015) conduct an extensive
survey on over 3,000 commercial and industrial electricity customers, and provide updated
value-of-service reliability estimates for electric utility customers across the United States. Their
findings conclude that the cost of load shedding typically ranges $10,000 and $50,000 per MWh
depending on customer class and outage duration. Furthermore, Schröder and Kuckshinrichs
(2015) conduct a systematic international literature review of value of lost load studies,
identifying methodological challenges and variations in valuation estimates, yet consistently
affirming the substantial economic benefits of reducing outages.

While this extensive literature provides valuable theoretical and methodological foundations,
there are several methodological limitations that constrain multi-community transmission
resilience planning. Regulatory and mechanism design approaches, including Joskow (2014,
2008), Alvarez and Rudnick (2010), and Khonakdar-Tarsi et al. (2021), typically focus on
utility-level coordination without capturing strategic interactions and decentralized investment
responses of multiple independent communities facing transmission contingencies. Distribution
system planning studies, including Alotaibi and Salama (2018), Fattaheian-Dehkordi
et al. (2021), Tian et al. (2020), Saberi et al. (2023), and Resener et al. (2019), usually assume
a single, centralized decision-making authority and do not consider cross-community
coordination effects or transmission-level contingency scenarios. Bilevel optimization has
emerged as a standard approach for modeling hierarchical interactions in power systems,
supporting the analysis of strategic behavior among diverse stakeholders under regulatory or
market-based coordination (Steriotis et al. 2023; Dehghan and Amjady 2015; Ruiz et al. 2014).
However, prior applications emphasize primarily transmission and distribution coordination,
market equilibrium, or single-entity investment problems rather than investment planning across
multiple autonomous communities. Similarly, most resilience-oriented approaches, such as
Khodaei (2014) and Wang, Rousis, and Strbac (2022), consider microgrid scheduling or
operational resource management for individual entities, rather than integrated, long-term
investment coordination among heterogeneous communities linked by the transmission network.

In this report, we extend the application of Stackelberg (bilevel) optimization frameworks to
evaluate the effectiveness of various incentive designs for resilience investment across multiple
interconnected communities under various contingency scenarios. While the model can, in
principle, optimize incentive levels by treating them as upper-level variables, the current
analysis focuses on sensitivity analysis and policy evaluation for different fixed incentive
scenarios, due to computational and practical constraints. This approach demonstrates the
evaluation capability of the framework, while recognizing that future extensions could integrate
true incentive optimization within the bilevel structure.
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2.0 Model Formulation
This section presents our one-leader multiple-follower Stackelberg game model where a system
operator (leader) provides incentives to influence community investment decisions toward
achieving societal benefits, while communities (followers) optimize their individual objectives
given these incentives and available resources. The framework is formulated as a bilevel
optimization problem, with the system operator’s decisions modeled in the upper level and each
community’s response represented as a distinct lower-level problem.

2.1 Lower-Level Problems: Community Optimization

We assume there are N communities in the system. Each community n ∈ N = {1, 2, · · · , N},
acting as an independent follower, responds to the system operator’s incentive and minimizes
its total cost, including net investment costs and expected operational costs across normal and
contingency scenarios:

min
(
CPV − IPV

)
PPV
n +

(
CBatt − IBatt

)
PBatt
n − CEEmin

n

+ αann

∑
t∈T

ωnorm
t Cnorm

n,t pnormn,t +
∑
s∈S

∑
t∈T cont

s

ωcont
t,s

(
Ccont
n,t,sp

cont
n,t,s + Cshed

n,t,s p
shed
n,t,s

) .
(1)

The first line of (1) calculates the net investment costs incurred by community n for installing
new devices. CPV and CBatt represent the unit costs of PV and BESS, respectively; IPV, IBatt,
and CE denote the incentives provided for PV, BESS, and emergency reserve, respectively;
PPV
n , PBatt

n , and Emin
n are the size of PV, the size of BESS, and the amount of emergency

reserve for community n, respectively.
The second line of the objective function evaluates the operational costs of community n

over a typical time period (e.g., a day, week, month, or year), where the set T = {1, 2, · · · , T}
representing the time indices. Annuity factor αann converts the total operational cost over the
lifespan of PV and BESS to equivalent current values.

The set S includes all contingency scenarios. For each scenarios s ∈ S, which begins at
time t̂s, the corresponding time steps are collected as T cont

s = {t̂s, t̂s + 1, · · · , T} ⊆ T .
Parameters ωnorm

t and ωcont
t,s denote the probability of normal condition and contingency scenario

s at time t, respectively; Cnorm
n,t , Ccont

n,t,s, and Cshed
n,t,s represent the electricity price under normal

condition, electricity price during contingency scenario s, and the cost of unserved load,
respectively. The decision variables pnormn,t , pcontn,t,s, and pshedn,t,s represent the amount of power
purchased under normal condition, purchased power during contingency scenario s, and the
amount of load shedding, respectively.

The behavior of each community is described by a series of decision variables and
constraints. The following constraints are for all n ∈ N .

PV generation is limited by solar irradiance and installed capacity under normal condition
and contingency scenarios:

0 ≤ ppv,nn,t ≤ rpvn,tP
pv
n ∀t ∈ T , (2)

0 ≤ ppv,cn,t,s ≤ rpvn,tP
pv
n ∀s ∈ S, t ∈ T cont

s , (3)

where ppv,nn,t and ppv,cn,t,s are decision variables for the PV generation in normal condition and
contingency scenario s, respectively, and rn,t represents the solar irradiance level.

Model Formulation 5
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BESS operation should satisfy power and energy limits:

0 ≤ pch,nn,t , pdis,nn,t ≤ PBatt
n ∀t ∈ T , (4)

0 ≤ pch,cn,t,s, pdis,cn,t,s ≤ PBatt
n ∀s ∈ S, t ∈ T cont

s , (5)

Emin
n ≤ ebatt,nn,t ≤ PBatt

n DBatt ∀t ∈ T , (6)

0 ≤ ebatt,cn,t,s ≤ PBatt
n DBatt ∀s ∈ S, t ∈ T cont

s , (7)

where DBatt is BESS duration; pch,nn,t , p
dis,n
n,t , and ebatt,nn,t are decision variables for BESS charged

power, discharged power, and state of charge (SoC) at time t under normal condition; pch,cn,t,s,
pdis,cn,t,s, and ebatt,cn,t,s are the corresponding ones for contingency scenario s.

The dynamics of the BESS SoC can be modeled as:

ebatt,nn,t = ebatt,nn,t−1 −
(
ηdispdis,nn,t − ηchpch,nn,t

)
∆T ∀t ∈ T \{1}, (8)

ebatt,cn,t,s = ebatt,cn,t−1,s −
(
ηdispdis,cn,t,s − ηchpch,cn,t,s

)
∆T ∀s ∈ S, t ∈ T cont

s \{t̂s}, (9)

where ηch and ηdis are BESS charging and discharging efficiencies, respectively; ∆T represents
time step length. In addition, we assume the BESS is half charged at both the beginning and
end of the operational time horizon under normal condition. The initial SoC in each contingency
scenario depends on the corresponding BESS state under normal condition. The SoC at the
final time step in contingency scenarios is left unrestricted. Such boundary conditions are
formulated as:

ebatt,nn,1 = 0.5PBatt
n DBatt −

(
ηdispdis,nn,1 − ηchpch,nn,1

)
∆T, (10)

ebatt,c
n,t̂,s

= ebatt,n
n,t̂−1

−
(
ηdispdis,c

n,t̂,s
− ηchpch,c

n,t̂,s

)
∆T ∀s ∈ S, (11)

ebatt,nn,T = 0.5PBatt
n DBatt. (12)

BESS cycling limit is imposed by restricting total discharged energy under normal condition:∑
t∈T

ebatt,nn,t ≤ θlimPBatt
n DBatt, (13)

where θlim is the number of cycle limit. The BESS operation in contingency scenarios is not
restricted because such events typically have a low probability of occurrence, and the BESS
serves as a critical resource for meeting load demands when they happen.

Power should be balanced to satisfy demand under normal condition and in contingency
scenarios:

ppv,nn,t + pdis,nn,t − pch,nn,t + pnormn,t = Dn,t ∀t ∈ T , (14)

ppv,cn,t,s + pdis,cn,t,s − pch,cn,t,s + pcontn,t,s + pshedn,t,s = Dn,t ∀s ∈ S, t ∈ T cont
s , (15)

where Dn,t represents the load at time t.
We assume that each community can only purchase power under normal condition but is

permitted to sell power to other communities during contingency scenarios. While the system
typically has sufficient transmission capacity to meet the load demands of all communities, limits
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on power purchases may be imposed during contingency scenarios to prevent overloading the
remaining operational transmission lines. The related variables have the following bounds:

pnormn,t ≥ 0 ∀t ∈ T , (16)

P cont
n,t,s ≤ pcontn,t,s ≤ P

cont
n,t,s ∀s ∈ S, t ∈ T cont

s , (17)

0 ≤ pshedn,t,s ≤ Dn,t ∀s ∈ S, t ∈ T cont
s , (18)

where P cont
n,t,s and P

cont
n,t,s are lower and upper limits for power purchase in contingency scenario s,

respectively.

2.2 Upper-Level Problem: System Operator

To enhance the resilience of the system, the system operator aims to minimize the total load
shedding across all communities during contingency scenarios. This objective is formulated as:

min
∑
n∈N

∑
s∈S

∑
t∈T cont

s

ωcont
t,s pshedn,t,s . (19)

In this objective, alternative metrics, such as the total system energy cost, can also be
considered and formulated easily.

The system operator is subject to a budget constraint that accounts for the total incentives
provided and the investment in transmission capacity expansion. This constraint is formulated
as:

IPVPPV
n + IBattPBatt

n + CEEmin
n +

∑
l∈L

(
F line
l xl + C line

l p̂l

)
≤ B, (20)

where L is the set of all transmission lines, F line
l and C line

l represent the fixed cost and unit
variable cost associated with increasing the capacity of line l, and B denotes the total budget of
the system operator. The binary variable xl indicates whether line l is expended (xl = 1) or not
(xl = 0), while the continuous variable p̂l specifies the amount of increased capacity. They have
the following relationship with M being a sufficiently large number:

0 ≤ p̂l ≤ Mxl ∀l ∈ L. (21)

Power flow through transmission lines should be balanced at each community and within line
capacity: ∑

l∈t(n)

pnorml,t −
∑

l∈f(n)

pnorml,t = pnormn,t ∀n ∈ N , t ∈ T , (22)

∑
l∈t(n)

pcontl,t,s −
∑

l∈f(n)

pcontl,t,s = pcontn,t,s ∀n ∈ N , s ∈ S, t ∈ T cont
s , (23)

− Pl − p̂l ≤ pnorml,t ≤ Pl + p̂l, ∀l ∈ L, t ∈ T (24)

− Il∈c(s)Pl − p̂l ≤ pcontl,t,s ≤ Il∈c(s)Pl + p̂l, ∀l ∈ L, s ∈ S, t ∈ T cont
s (25)

(26)

where t(n) and f(n) are the sets of transmission lines going into and out from community n,
respectively; c(s) is the set of lines disconnected in contingency scenario s; Pl represents the
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original capacity of line l. Variables pnorml,t and pcontl,t,s denote the power flow through line l at time t
under normal condition and in contingency scenarios, respectively. Il∈c(s) is an indicator
function that takes 1 if l ∈ c(s) and 0 otherwise.

The power purchase limits for each community have the following bounds:

P cont
n,t,s ≤ 0 ∀n ∈ N , s ∈ S, t ∈ T cont

s , (27)

P
cont
n,t,s ≥ 0 ∀n ∈ N , s ∈ S, t ∈ T cont

s . (28)

2.3 Integrated Model Formulation and Solution Approach Discussion

With both leader’s and Followers’ problem defined, they can be integrated as the following
Stackelberg game model for incentive evaluation and design:

min (19)

s.t. (20− 28)

pshedn,·,· ∈ argmin{(1)n|(2− 18)n} ∀n ∈ N .

(29)

where the subscript n of the equations numbers indicates the corresponding index in the
referenced objective function and constraints.

This bilevel optimization problem can be reformulated as a single-level problem by replacing
the lower-level problems with their Karush-Kuhn-Tucker (KKT) conditions. When applied to
incentive design, the incentive values are treated as upper-level decision variables. The product
of these variables with lower-level variables, representing the sizes of PV, BESS, and
emergency reserves, causes the single-level reformulation to remain nonconvex and
nonlinear—even if the complementary slackness constraints are linearized using the big-M
approach. Additionally, upper-level variables appear as both objective function coefficients and
right-hand-side constants in the lower-level problems, while lower-level variables are also
present in upper-level constraints. These interdependencies make it challenging to directly
apply decomposition algorithms. Advanced solution approaches are needed to solve the
general form of this problem.

When the incentives are fixed and treated as parameters, the proposed Stackelberg game
model can simulate community responses and evaluate their outcomes. In this context, the
single-level reformulation can be converted into a mixed-integer linear programming problem,
which offers better scalability and can be efficiently solved using open-source or commercial
solvers. By testing and analyzing different incentive combinations, this framework can support
and enhance decision-making processes. A case study is presented and analyzed in the
following section.

Model Formulation 8
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3.0 Case Study

3.1 Case Settings

We analyze incentives for a three-community system under various transmission contingency
scenarios. The structure of the system is illustrated in Figure 1. Community 1 is connected to
the power market as well as to the other two communities.

Figure 1: Structure of the three-community system.

A 5% discount rate is applied over a 16-year lifespan of the equipment. The average
electricity price, load profiles and solar capacity factors for three regions in August 2024 are
extracted from CAISO to represent a typical day in the analysis. Each region corresponds to
one community in the system. The load is scaled to reach a peak demand of 100 MW,
assuming similar load levels across all three communities. The cost of unserved demand is set
to be 10 times the electricity price. The data are visualized in Figure 2.

Two contingency scenarios, shown in Figure 3, are analyzed. In the first scenario, the
transmission line between Community 1 and Community 3 is disconnected, causing community
3 to be isolated. A new transmission line between Community 2 and Community 3 can be
constructed to maintain the power supply to Community 3 during the contingency. In the second
scenario, the transmission line connecting Community 1 to the power market is disconnected,
causing the entire three-community system to be isolated from the main grid. Since the
communities remain connected to each other, no additional transmission line is required. The
contingency scenarios are assumed to begin at 10 a.m. and last for 6 hours, with a 5%
probability of occurrence.

For each scenario analyzed, three incentive levels are considered: a base case with no
incentives, and low- and high-incentive cases for comparison. Detailed information on the
incentive values and cost parameters for PV and BESS is summarized in Table 1. All BESS
used are assumed to have 4-hour duration.

3.2 Results and Analysis for Contingency Scenario One

The investment decisions of all three communities under different incentive levels in
contingency scenario one are illustrated in Figure 4. The investment costs, power purchase
costs, total received incentives, and total unserved load for each community are summarized in
Table 2. Additionally, the power flow through the new transmission line is depicted in Figure 5.

Case Study 9
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Figure 2: Input parameters of the use case, including power price, scaled load and solar capacity
factor of each community in a typical day.

With DERs and the new transmission line, there is no unserved load in any of the three
cases. In the absence of incentives, only PV systems are installed by the communities, as they
can directly provide additional power. The sizes of the PV systems range from 66 MW to 76
MW, with an investment cost of $80M–$90M per community. Additionally, each community
incurs power purchase costs ranging from $207M to $220M. The total cost, combining device
investments and power purchases, is approximately $300M. During the contingency, up to 12
MW of power flows through the new transmission line between Communities 2 and 3 to meet
the load demand in Community 3.

In the low-incentive case, the installed PV capacities at the communities increase to 80
MW–91 MW. Additionally, each community installs a 20 MW–32 MW BESS, with approximately
half of the energy capacity allocated for emergency reserves. Due to the incentives, the total
investment cost for each community slightly increases to $92M–$108M. However, these new
devices reduce power purchase costs to $178M–$197M, bringing the total combined cost down
to $186M–$289M. This reduction of approximately $10M per community requires a total
incentive of $128M. Furthermore, the power flow through the new transmission line drops from
over 12 MW to below 1 MW. By offering these incentives, the costs associated with the new
transmission line can be significantly reduced.

In the high-incentive case, the installed PV capacities further increase to 92MW–98 MW, and
the BESS capacities rise to 27MW–65 MW. As in the low-incentive case, about half of the
BESS energy capacity is allocated for emergency reserves. With the higher incentives, the total
investment cost for each community increases to $96M–$121M, while power purchase costs
decrease to $160M–$178M. The total combined cost is reduced to $275M–$281M, representing
approximately a $10M reduction compared to the low-incentive case. The total incentives
provided amount to $264M. Since there is no power flow through the new transmission line, its
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Figure 3: Two contingency scenarios analyzed in the case study.

Table 1: Cost and incentive values for each scenario

Cost Incentive

PV
($M/MW)

BESS
($M/MW)

PV
($M/MW)

BESS
($M/MW)

Emergency Reserve
($M/MWh)

Scenario 1

Base 1.2 1.6 0 0 0
Low Incentive 1.2 1.6 0.2 0.4 0.3
High Incentive 1.2 1.6 0.3 0.5 0.3

Scenario 2

Base 1.2 1.6 0 0 0
Low Incentive 1.2 1.6 0.2 0.4 0.3
High Incentive 1.2 1.6 0.3 0.5 0.3

construction cost is completely avoided.
Figure 6 illustrates the net power purchases of each community across all cases under

normal and contingency scenarios. In the Base case, the purchased power during normal and
contingency scenarios remains nearly identical due to the availability of the new transmission
line. During solar peak hours, Community 1 supplies a small amount of power to the other
communities. In the low-incentive case, with increased PV capacity and BESS deployment, no
power is purchased during the contingency scenario. Since the emergency reserve is
discharged to meet demand during and after outages, power purchases during high-price hours
are also reduced, lowering overall energy costs. In the high-incentive case, similar behaviors
are observed as in the low-incentive case.

3.3 Results and Analysis for Contingency Scenario Two

The same figures and tables are used to analyze scenario two as in scenario one, except for the
power flow plot, since no new transmission line is considered in this case. In the Base case, the
solution is suboptimal because the solver failed to converge after several hours of computation.

Similar behaviors are observed in scenario two as in scenario one. In the Base case, only
PV systems are installed. As incentives increase, the installed capacities of both PV and BESS
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Table 2: Community costs, incentives, and load shedding in scenario one

Community
Investment
Cost ($M)

Power Purchase
Cost ($M)

Total
Cost ($M)

Total
Incentive ($M)

Load
Shedding (MWh)

Base

1 90.7 206.6 297.2 0 0
2 90.2 207.7 297.9 0 0
3 79.7 219.8 299.6 0 0

Low
Incentive

1 108.4 177.6 286.0 49.8 0
2 105.7 180.4 286.1 42.5 0
3 92.0 196.7 288.7 35.6 0

High
Incentive

1 114.0 161.0 275.0 88.8 0
2 96.2 178.3 274.5 56.8 0
3 120.8 160.6 281.4 100.8 0

grow, with approximately half of the BESS energy capacity allocated for emergency reserves.
The total cost for the communities decreases as higher incentives are provided.

There are some differences between the two scenarios. In scenario two, all three
communities are isolated from the market during the contingency, resulting in positive unserved
load in the Base case, even though larger PV systems are installed compared to the Base case
in scenario one. For the low- and high-incentive cases, the installed sizes of PV and BESS are
smaller than those in scenario one. One possible explanation is the total isolation of the system.
Since the BESS loses the ability to perform market arbitrage during the contingency, only
smaller BESS capacities are financially viable, as their costs can be covered by the limited
revenue.

Table 3: Community costs, incentives, and load shedding in scenario two

Community
Investment
Cost ($M)

Power Purchase
Cost ($M)

Total
Cost ($M)

Total
Incentive ($M)

Load
Shedding (MWh)

Base

1 94.1 203.9 298.0 0 1.7
2 98.2 202.1 300.2 0 14.5
3 86.2 215.0 301.2 0 8.1

Low
Incentive

1 83.2 199.3 282.5 22.8 0
2 105.4 180.6 286.0 42.2 0
3 96.5 192.9 289.4 40.3 0

High
Incentive

1 89.3 184.3 273.6 51.7 0
2 90.7 183.7 274.4 49.3 0
3 104.1 175.9 280.0 76.6 0
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(a) PV

(b) BESS

(c) Emergency Reserve

Figure 4: Community investment decisions under different incentive values in scenario one.
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Figure 5: Power flow through the new transmission line.

(a) Base

(b) Low Incentive

(c) High Incentive

Figure 6: Net power purchase of each community under different incentive values in scenario
one.
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(a) PV

(b) BESS

(c) Emergency Reserve

Figure 7: Community investment decisions under different incentive values in scenario two.
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(a) Base

(b) Low Incentive

(c) High Incentive

Figure 8: Net power purchase of each community under different incentive values in scenario
two.
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4.0 Conclusions
This project constructs a Stackelberg game model as a systematic framework for designing and
evaluating financial incentives that enhance power system resilience through strategic
deployment of distributed energy resources. The methodology successfully addresses the
fundamental challenge of aligning individual community investment decisions with system-wide
resilience objectives under extreme contingency scenarios.

A three-community test system is constructed and analyzed to validate the proposed model
and framework. In this use case, one community is connected to the main grid and the other
two communities. Two contingency scenarios are tested across three incentive levels. In
scenario one, an internal transmission line connecting two communities fails causing the
isolation of one community. A new transmission line reconnecting this community is considered.
In scenario two, the entire three-community system is isolated from the main grid. The system
operator provides incentive to encourage the communities to install PV and BESS as well as
holding energy as emergency reserve for outage events. The three incentive levels include a
Base case with no incentives, as well as low- and high-incentive cases for comparison.

For both scenarios, only PV systems are installed when there is no incentive. As incentives
increase, the installed capacities of both PV and BESS grow, with approximately half of the
BESS energy capacity allocated for emergency reserves. The total cost for the communities,
including invest ment cost for DER facilities and power purchase cost, decreases as higher
incentives are provided.

In scenario one, a relatively high power flow through the new transmission line is observed
in the Base case. This flow decreases significantly when low incentives are provided and drops
to zero with high incentives. By offering incentives to communities, the construction cost for
new transmission lines can be avoided, as the incentives encourage communities to become
self-sufficient and support one another during outage events. In scenario two, unserved load is
observed in the Base case, even with the installation of PV systems. However, when incentives
are provided, the combination of PV systems and BESS is sufficient to meet the total load
during the contingency.

In conclusion, the bilevel optimization framework provides policymakers with a systematic
tool for designing and evaluating incentive programs that prepare communities for contingency
scenarios while maintaining economic efficiency. The methodology coordinates the
decentralized decision-making among individual communities toward societal benefits and
enhanced resilience.

Conclusions 17



PNNL-38326

5.0 References

Alotaibi, Majed A, and Magdy MA Salama. 2018. An incentive-based multistage expansion plan-
ning model for smart distribution systems. IEEE Transactions on Power Systems 33 (5):
5469–5485.

Alvarez, Federico, and Hugh Rudnick. 2010. Impact of energy efficiency incentives on electricity
distribution companies. IEEE Transactions on Power Systems 25 (4): 1865–1872.

Aschidamini, Gustavo L, Gederson A da Cruz, Mariana Resener, Maicon JS Ramos, Luís A
Pereira, Bibiana P Ferraz, Sérgio Haffner, and Panos M Pardalos. 2022. Expansion planning
of power distribution systems considering reliability: a comprehensive review. Energies 15
(6): 2275.

Bhattacharya, Sweta, Rajeswari Chengoden, Gautam Srivastava, Mamoun Alazab, Abdul Rehman
Javed, Nancy Victor, Praveen Kumar Reddy Maddikunta, and Thippa Reddy Gadekallu. 2022.
Incentive mechanisms for smart grid: state of the art, challenges, open issues, future direc-
tions. Big Data and Cognitive Computing 6 (2): 47.

Brown, David P, and David EM Sappington. 2018. Optimal procurement of distributed energy
resources. The Energy Journal 39 (5): 131–156.

Busby, Joshua W, Kyri Baker, Morgan D Bazilian, Alex Q Gilbert, Emily Grubert, Varun Rai,
Joshua D Rhodes, Sarang Shidore, Caitlin A Smith, and Michael E Webber. 2021. Cascading
risks: understanding the 2021 winter blackout in texas. Energy Research & Social Science
77:102106.

Dehghan, Shahab, and Nima Amjady. 2015. Robust transmission and energy storage expansion
planning in wind farm-integrated power systems considering transmission switching. IEEE
Transactions on Sustainable Energy 7 (2): 765–774.

Dempe, Stephan, and Alain Zemkoho. 2020. Bilevel optimization. In Springer optimization and
its applications, vol. 161. Springer.

Fattaheian-Dehkordi, Sajjad, Mehdi Tavakkoli, Ali Abbaspour, Mahmud Fotuhi-Firuzabad, and
Matti Lehtonen. 2021. An incentive-based mechanism to alleviate active power congestion
in a multi-agent distribution system. IEEE Transactions on Smart Grid 12 (3): 1978–1988.

Fortuny-Amat, José, and Bruce McCarl. 1981. A representation and economic interpretation of
a two-level programming problem. Journal of the operational Research Society 32 (9): 783–
792.

Ganz, Scott C, Chenghao Duan, and Chuanyi Ji. 2023. Socioeconomic vulnerability and differen-
tial impact of severe weather-induced power outages. PNAS nexus 2 (10): pgad295.

Gorman, Will, Galen Barbose, Cesca Miller, Philip White, Juan Pablo Carvallo, and Sunhee Baik.
2024. Evaluating the potential for solar-plus-storage backup power in the united states as
homes integrate efficient, flexible, and electrified energy technologies. Energy 304:132180.

Gui, Emi Minghui, Mark Diesendorf, and Iain MacGill. 2017. Distributed energy infrastructure
paradigm: community microgrids in a new institutional economics context. Renewable and
Sustainable Energy Reviews 72:1355–1365.

References 18



PNNL-38326

Gui, Emi Minghui, and Iain MacGill. 2018. Typology of future clean energy communities: an
exploratory structure, opportunities, and challenges. Energy research & social science 35:94–
107.

Guliasi, Leslie. 2021. Toward a political economy of public safety power shutoff: politics, ideology,
and the limits of regulatory choice in california. Energy Research & Social Science 71:101842.

Joskow, Paul L. 2008. Incentive regulation and its application to electricity networks. Review of
Network Economics 7 (4).

. 2014. Incentive regulation in theory and practice: electricity distribution and transmission
networks. Economic regulation and its reform: What have we learned?, 291–344.

Khodaei, Amin. 2014. Resiliency-oriented microgrid optimal scheduling. IEEE Transactions on
Smart Grid 5 (4): 1584–1591.

Khonakdar-Tarsi, Iman, Mahmud Fotuhi-Firuzabad, Mehdi Ehsan, Hosein Mohammadnezhad-
Shourkaei, and Mohammad Jooshaki. 2021. Reliability incentive regulation based on reward-
penalty mechanism using distribution feeders clustering. International Transactions on Elec-
trical Energy Systems 31 (8): e12958.

Li, Na, and Özge Okur. 2023. Economic analysis of energy communities: investment options and
cost allocation. Applied Energy 336:120706.

Masini, Andrea, and Emanuela Menichetti. 2012. The impact of behavioural factors in the re-
newable energy investment decision making process: conceptual framework and empirical
findings. Energy policy 40:28–38.

Resener, Mariana, Sérgio Haffner, Luís A Pereira, Panos M Pardalos, and Maicon JS Ramos.
2019. A comprehensive milp model for the expansion planning of power distribution systems–
part i: problem formulation. Electric Power Systems Research 170:378–384.

Ross, Liz, and Megan Day. 2022. Community energy planning: best practices and lessons learned
in nrel’s work with communities. Technical report. National Renewable Energy Lab.(NREL),
Golden, CO (United States).

Ruiz, Carlos, Antonio J Conejo, J David Fuller, Steven A Gabriel, and Benjamin F Hobbs. 2014.
A tutorial review of complementarity models for decision-making in energy markets. EURO
Journal on Decision Processes 2 (1): 91–120.

Saberi, Reza, Hamid Falaghi, Mostafa Esmaeeli, Maryam Ramezani, Ali Ashoornezhad, and
Reza Izadpanah. 2023. Power distribution network expansion planning to improve resilience.
IET Generation, Transmission & Distribution 17 (21): 4701–4716.

Schröder, Thomas, and Wilhelm Kuckshinrichs. 2015. Value of lost load: An efficient economic
indicator for power supply security? a literature review. Frontiers in energy research 3:55.

Steriotis, Konstantinos, Prodromos Makris, Georgios Tsaousoglou, Nikolaos Efthymiopoulos, and
Emmanouel Varvarigos. 2023. Co-optimization of distributed renewable energy and storage
investment decisions in a tso-dso coordination framework. IEEE Transactions on Power Sys-
tems 38 (5): 4515–4529.

References 19



PNNL-38326

Sullivan, Michael J, Josh Schellenberg, and Marshall Blundell. 2015. Updated value of service re-
liability estimates for electric utility customers in the united states. Technical report. Lawrence
Berkeley National Laboratory.

Tian, Kunpeng, Weiqing Sun, Dong Han, and Ce Yang. 2020. Joint planning and operation for
renewable-storage under different financial incentives and market mechanisms. IEEE Access
8:13998–14012.

Vahidinasab, Vahid, Mahdi Tabarzadi, Hamidreza Arasteh, Mohammad Iman Alizadeh, Moham-
mad Mohammad Beigi, Hamid Reza Sheikhzadeh, Kamyar Mehran, and Mohammad Sadegh
Sepasian. 2020. Overview of electric energy distribution networks expansion planning. IEEE
Access 8:34750–34769.

Vibrans, Luise, Emily Schulte, Karyn Morrissey, Thomas Bruckner, and Fabian Scheller. 2023.
Same same, but different: explaining heterogeneity among potential photovoltaic adopters in
germany using milieu segmentation. Energy Research & Social Science 103:113212.

Wang, Jianxiao, Haiwang Zhong, Junjie Qin, Wenyuan Tang, Ram Rajagopal, Qing Xia, and
Chongqing Kang. 2019. Incentive mechanism for sharing distributed energy resources. Jour-
nal of Modern Power Systems and Clean Energy 7 (4): 837–850.

Wang, Y, A Oulis Rousis, and G Strbac. 2022. Resilience-driven optimal sizing and pre-positioning
of mobile energy storage systems in decentralized networked microgrids. Applied Energy
305:117921.

Xu, Mingze, Shunbo Lei, Cheng Ma, Haoran Liu, Jianghua Wu, and Chaoyi Peng. 2024. An
incentive mechanism for energy communities to foster resilience investment initiatives. In
2024 ieee 8th conference on energy internet and energy system integration (ei2), 4136–
4141. IEEE.

Yuli Astriani, Farhad Shahnia, GM Shafiullah. 2021. Incentive determination of a demand re-
sponse program for microgrids. Applied Energy 292:116624–116644.

References 20



Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov




