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Abstract 
Coupling chemical physics to continuum theories is a critical step to understanding multi-scale 
phenomena. This paper will connect non-equilibrium molecular dynamics simulations to a 
continuum-based Navier-Stokes equation that has relaxed the assumption of spatial uniformity in 
viscosity. Using a form for viscosity based on spline interpolation, viscosity as a function of 
position is obtained from the least squares fit of the velocity profile measured from molecular 
simulations of flow in a nanochannel. Viscosity can vary widely, particularly near the channel 
boundaries, indicating that uniform viscosity is no longer appropriate. Variations of the viscosity 
near the channel surfaces imply that considering solution and surface chemistry could be 
necessary to rigorously understand molecular-scale flows in nanochannels. 
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1.0 Introduction 
The extraction of macroscopic equilibrium and non-equilibrium transport properties from 
molecular dynamics simulations is a long-standing problem in statistical mechanics. Equilibrium 
properties can usually be obtained either through direct averages of appropriate variables or by 
examining the magnitude of fluctuations [1]. Non-equilibrium transport properties can be obtained 
either by integrating the auto-correlation function of some variable over time using a Green-Kubo 
relation [2,3] or by applying a field to the system and directly measuring the response. The latter 
is the approach used in non-equilibrium molecular dynamics (NEMD) simulations. Simulation of 
flow in a nanochannel to obtain the shear viscosity was one of the earliest attempts to directly 
calculate a macroscopic transport property using NEMD. The original paper of Lees and Edwards 
[4] introduced the concept of sliding periodic boundary conditions that enabled simulations of a
flow gradient without introducing physical boundaries to the system. This minimized the
introduction of artifacts associated with the boundary and helped reduce the size of the
simulations required to obtain accurate results. The 𝑥𝑥𝑥𝑥 component of the stress tensor, 𝜎𝜎𝑥𝑥𝑥𝑥 was
calculated from the simulation and used to find the viscosity 𝜇𝜇 by taking the ratio of the stress
tensor component and the gradient of the velocity

A significant concern with the NEMD approach was that the flow velocity used in the simulations 
were typically much larger than anything used in the corresponding real-world experiments. The 
necessity for using such high flow velocities derived from both the need to extract useful 
information from a simulation representing a short time interval (typically on the order of 
nanoseconds) and the relatively high velocity of atoms in the simulation due to thermal motion. 
Molecules at room temperature have velocities on the order of hundreds of meters per second 
and this provides a very noisy background from which to extract a much slower steady flow. 
Further, the high flow velocity could also potentially impact the simulations by steadily raising the 
temperature via viscous heating. However, in spite of the high flow rates, it was found that viscous 
heating was relatively small over intervals that were sufficient to estimate the viscosity. 

Gosling, McDonald and Singer [5] simplified the determination of the viscosity by applying a 
steady sinusoidal force to the simulation cell that produced a stationary flow that also varied 
sinusoidally. Comparing the stationary field with the continuum solution for the same configuration 
allowed the authors to calculate the viscosity. Note that this approach can remove the necessity 
of evaluating the microscopic stress tensor, which is itself a potentially complicated and time-
consuming calculation. This was one of the first attempts to evaluate the viscosity by comparing 
the flow field of a forced molecular simulation with the solution of a corresponding macroscopic 
continuum problem. 

Later work by Evans and Morris [6] expanded on the NEMD approach by developing equations 
of motion that created appropriate non-equilibrium fluxes that could be used in conjunction with 
linear response theory to calculate transport coefficients. These systems no longer correspond to 
Hamiltonian dynamics but under suitable restrictions still preserve the incompressibility of phase 
space and hence linear response is still applicable [6.7]. Furthermore, the equations of motion 
can be modified to not only produce the desired flow in response to an external field but also to 
correct for additional effects, such as viscous heating, by thermostatting the simulation to maintain 
a constant temperature. 
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NEMD calculations originally focused on evaluating zero wavevector properties needed for 
simulations at macroscopic scales. However, later researchers began investigating flow in 
nanochannels as interesting in itself and not just as a proxy for flows in larger systems. At the 
nanoscale, a number of assumptions about flow in a channel (e.g., that an infinitesimal fluid 
element at the continuum scale is much larger than the length scale associated with individual 
molecules) break down and deviations from classical behavior are observed [8]. Near the 
boundaries of the channel, the confined fluid can become significantly structured [9,10] and the 
assumption that the fluid is uniform in the channel and that properties of the fluid are the same 
everywhere in the system are not expected to be valid. In addition, interactions between the fluid 
and the channel surface can create boundary effects that can alter assumptions about flow at the 
boundary [8] and even assumptions about where the surface is located. 

An early effort to look at flow in a microchannel via NEMD was reported by Todd, Evans and 
Davis [11]. They studied variations in the shear stress and the shear viscosity near the boundaries 
of the channel for a simple atomic fluid moved by a uniform force field to produce a parabolic 
Poiseuille-like flow profile. This study calculated the components of the stress tensor directly from 
a microscopic expression and also computed it by integrating the classical momentum 
conservation expression. For larger channels integration appeared to work well, but later work by 
Travis, Todd and Evans [12] suggested that for narrower channels, this approach breaks down. 

Another approach to extracting viscosity from molecular simulations of Poiseuille flow was to fit 
the flow profile to a parabola and use the known classical solution to the problem to back out the 
viscosity [13,14]. This is straightforward to implement but requires some adjustments if flow near 
the boundaries deviates from a classic parabolic shape. This paper will generalize this approach 
by assuming that the viscosity is a function of position in the channel. In this case, the parabolic 
solution is no longer valid but the viscosity can still be extracted from the simulation by fitting the 
viscosity function in the Navier-Stokes equation to the flow profiles measured from simulations. 
This is straightforward, since the only inputs are the velocity and a force profile, both of which are 
easily measured directly from the simulation. Spline fits are used to allow multiple simulation data 
to contribute to the determination of each fit parameter and produce a smooth profile for the 
viscosity but still allow for local variations that reflect changes in local properties inside the fluid. 
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2.0 Methods 
The viscosity profiles calculated in this paper are based on the Navier-Stokes equation for 
incompressible fluid flow, which has the form [15] 

The mass density is 𝜌𝜌, the local velocity field 𝑢𝑢�⃑ , the pressure is 𝑝𝑝, the acceleration of gravity is 𝑔̅𝑔 
and the stress tensor due to shear is 𝜎𝜎�. This paper is only concerned with laminar, incompressible 
flow between two parallel surfaces. In this case, the only non-zero component of 𝑢𝑢�⃑  is 𝑢𝑢𝑦𝑦, assuming 
that the parallel surfaces are perpendicular to the x-axis and that the applied force on the fluid is 
parallel to the 𝑦𝑦 axis. Under these conditions, the right-hand side of equation (1) is zero and the 
shear stress term in equation (1) reduces to 

assuming a non-uniform viscosity. For a gravity-driven flow, the governing equation is then 

A schematic of the simulation setup based on this geometry is shown in figure (1). 

Figure 1. Schematic diagram showing the spline based fitting method coupled with NEMD 
simulations of parabolic flow in a nanochannel 

This paper will focus on developing a methodology for fitting the spatially dependent viscosity 
parameter 𝜇𝜇(𝑥𝑥) in equation (3) using velocity profiles generated from NEMD simulations. The first 
step in generating a profile is to create a discretized form of the operator acting on 𝑢𝑢𝑦𝑦(𝑥𝑥). The 
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channel is assumed to have width 𝐿𝐿 and the velocity in the 𝑦𝑦-direction vanishes at the channel 
boundaries located at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿. The interval [0, 𝐿𝐿] is divided into 𝑁𝑁 increments of size ∆𝑥𝑥 =
𝐿𝐿 𝑁𝑁⁄ . The momentum 𝜌𝜌𝑢𝑢𝑦𝑦 is a conserved quantity, so it is possible to use a finite-volume approach 
on equation (3). The momentum 𝜌𝜌𝑢𝑢𝑦𝑦 satisfies the conservation equation 

where 𝑖𝑖 is the index of some increment in [0, 𝐿𝐿] and 𝜓𝜓𝑖𝑖± is the flux of 𝑢𝑢𝑦𝑦 out of the increment at 
the high (+) or low (−) end repsectively. From the divergence theorem, the right-hand side of this 
equation is equivalent to the operator in equation (3). 

The 𝑦𝑦 component of momentum is transferred between cells via a diffusive flux that is proportional 
to the gradient of 𝑢𝑢𝑦𝑦 in the 𝑥𝑥 direction, 𝑗𝑗𝑢𝑢𝑦𝑦 = −𝜇𝜇 𝜕𝜕𝑢𝑢𝑦𝑦 𝜕𝜕𝜕𝜕⁄ . For cells that do not have a channel 
boundary on one side or the other, the gradient of 𝑢𝑢𝑦𝑦 can be approximated using a first order finite 
difference 

This equation assumes that all values are defined at cell centers. The value of 𝜇𝜇 at the interface 
between the two cells is the average of the value defined at the centers of the two cells on either 
side of the interface. For the two cells at the edges of the channel, there is no cell on the other 
side of the interface so this formula no longer works. The value of 𝑢𝑢𝑦𝑦 at the boundaries is defined 
to be zero, so the gradient can be approximated on the half-interval of length ∆𝑥𝑥 2⁄   between the 
cell center and the cell edge. The value of the viscosity is assumed to be constant on this interval 
and equal to the value in the cell center. For cell 1 bordering the edge at 𝑥𝑥 = 0, the flux is then 

Similarly, at cell 𝑁𝑁 bordering the edge a 𝑥𝑥 = 𝐿𝐿, 

If 𝜇𝜇 is assumed constant throughout the channel, then equation (4) for an interior cell reduces to 

The right-hand side of the equation is proportional to the standard second order finite difference 
approximation to a second derivative. 
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Using the flux expressions in equation (4), a discretized version of equation (3) can be written as 

The elements of 𝐾𝐾� are 

Given the force array 𝑔𝑔𝜌̅𝜌 due to gravity, the velocity profile 𝑢𝑢�𝑦𝑦 can be found by inverting 𝐾𝐾�. This 
can be used to construct an objective function 𝜒𝜒 for a least squares regression 

A calculation based on this equation was implemented using the PETSc/TAO optimization library 
[16] and used to obtain a viscosity profile from a velocity profile. The optimizations reported here
used the Limited-Memory, Variable-Metric (LMVM) method. This method requires gradients of the
objective function, and these can be calculated if the gradients of the inverse of 𝐾𝐾� are known.
These, in turn, are given by

where 𝜇̅𝜇 is a vector that represents the value of 𝜇𝜇 at each of the points in the velocity profile. For 
each value of 𝜇𝜇𝑖𝑖, the matrix ∇𝜇𝜇𝑖𝑖𝐾𝐾� is quite sparse and contains at most 3 nonzero entries. This can 
be used to speed up calculations of the gradient. 

In the simplest case, the fit parameters are the viscosities 𝜇𝜇𝑖𝑖 at each cell center, so the number 
of fit parameters ({𝜇𝜇𝑖𝑖}) is equal to the number of measurements ��𝜇𝜇𝑦𝑦,𝑖𝑖��. However, this appears 
to be very unstable and produces poor results in the center of the channel. As a test, a parabolic 
profile, corresponding to an analytic solution of equation (3) for a uniform viscosity, was used as 
the input vector 𝑢𝑢�𝑦𝑦. The profile is given by 

and values of 𝜇𝜇 = 25, 𝐿𝐿 = 100 and 𝜌𝜌𝜌𝜌 = 1 were used to generate 𝑢𝑢𝑦𝑦(𝑥𝑥) at 200 evenly spaced 
points on the 𝑥𝑥-axis. Figure (2) compares the original profile generated from equation (11) and 
the profile reconstituted using equation (9) with a fitted viscosity profile. The original and 
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reconstituted profiles are close to each other but the fitted viscosity profile, shown in figure 3, 
deviates noticeably from the expected value of 25 in the center of the channel. In this region, the 
shear is relatively low and the value of the viscosity may have little effect on the shape of the 
velocity profile, resulting in large deviations from the expected behavior. 

Figure 2. Parabolic velocity profile from equation (11) (red) and profile generated from least 
squares fit to the parabola (blue). 

Figure 3. Viscosity profile derived from fit to parabolic velocity profile. Expected curve is a 
horizontal line with value 25. 

A possible remedy for the instability in the center is to reduce the number of variables used to 
describe the viscosity profile, so that more data points are used to determine each parameter. 
One way to do this is to represent the viscosity profile using cubic splines [17]. In this approach, 
the channel width 𝐿𝐿 is divided into 𝐾𝐾 intervals, each of length 𝐿𝐿 𝐾𝐾⁄ . The endpoints of the intervals 
are at the locations 𝜁𝜁𝑘𝑘, where 𝑘𝑘 ∈ [1,𝐾𝐾 + 1]. The original measurements are at the locations 𝑥𝑥𝑖𝑖, 
𝑖𝑖 ∈ [1,𝑁𝑁] and the endpoints of the spline locations are chosen to coincide with the first and last 
measurement locations such that 𝜁𝜁1 = 𝑥𝑥1 and 𝜁𝜁𝐾𝐾+1 = 𝑥𝑥𝑁𝑁. The locations marking the endpoints of 
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the spline intervals are referred to in spline terminology as “knots”. In between knots 𝑘𝑘 and 𝑘𝑘 + 1, 
the viscosity is described by the cubic polynomial 

At the knots, the spline function takes on the values 𝜂𝜂𝑘𝑘 and these values are the parameters 
determined by the fit. The coefficients 𝑎𝑎𝑛𝑛𝑘𝑘 are determined by requiring that the spline fit has the 
values 𝜂𝜂𝑘𝑘 at the knots, that it be continuous at the knots and its first and second derivatives be 
continuous at the knots. The continuity conditions can only be applied to interior knots so an 
additional condition at the endpoints is that the second derivative is zero. This is a commonly 
used boundary condition in spline fits and corresponds to a linear profile at the edges of the fitted 
region. The two conditions at each of the endpoints means that the number of conditions matches 
the number of unknowns, so the problem is well-posed. A linear profile at the endpoints also 
matches the behavior seen in viscosity profiles obtained by other means [18]. It is, however, at 
odds with the approximation made in evaluating the boundary conditions in equations (6) and (7) 
that assumed that the viscosity profile is flat near the boundaries. However, the increments in the 
data are typically much smaller than the spacing between knots, so the requirement that the profile 
is constant near the boundary applies at a much smaller scale than the boundary condition for 
the splines.   

The conditions on the spline fit at the knots lead to the following conditions on the 𝑎𝑎𝑛𝑛𝑘𝑘: 

For knot 𝑘𝑘 = 1 

For knots 𝑘𝑘 ∈ [2,𝐾𝐾] 

For knot 𝑘𝑘 = 𝐾𝐾 + 1 
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These conditions are sufficient to determine the 𝑎𝑎𝑛𝑛𝑘𝑘 uniquely. Equations (13) are linear in the spline 
coefficients, so it is possible to write (13) as a matrix equation of the form 

where 𝑋𝑋� is a 4𝐾𝐾 × 4𝐾𝐾 matrix and 𝑎𝑎� and 𝜋𝜋� are vectors of length 4𝐾𝐾. The vector 𝜋𝜋� is zero except at 
those locations corresponding to the conditions that the spline function equal 𝜂𝜂𝑘𝑘 at the values 𝑥𝑥 =
𝜁𝜁𝑘𝑘. Those locations have the values 𝜂𝜂𝑘𝑘. Equation (14) can be formally solved to get the coefficients 
𝑎𝑎� 

The value of the viscosity 𝜇𝜇 at any point 𝑥𝑥 is a function of the 𝑎𝑎𝑛𝑛𝑘𝑘, which are, in turn, a function of 
the spline values 𝜂𝜂𝑘𝑘. To fit the velocity profile by optimizing the objective function 𝜒𝜒, we need 
gradients of 𝜒𝜒 with respect to the spline values 𝜂̅𝜂. The only term that depends directly on the spline 
values is 𝜋𝜋�, so the gradient of 𝑎𝑎� with respect to the 𝜂̅𝜂 is 

Although the original matrix 𝑋𝑋� is sparse, its inverse is dense so each of the 𝑎𝑎𝑛𝑛𝑘𝑘 will potentially 
depend on the spline values at all of the knots. Using equation (16), the gradients of the spline 
coefficients with respect to the 𝜂𝜂𝑘𝑘 can be used to obtain the gradients of the 𝜇𝜇(𝑥𝑥𝑖𝑖) with respect to 
the 𝜂𝜂𝑘𝑘. The 𝜇𝜇(𝑥𝑥𝑖𝑖) have an implicit dependence on the 𝑎𝑎�, so the gradients of 𝑎𝑎� have the form 

The gradients of 𝐾𝐾� with respect to the 𝜂̅𝜂 then have the form 

These can then be used to obtain the gradients of the objective function 

Again, the sparsity of ∇𝜇𝜇�  can be used to speed up the calculation of the gradients. 

The spline-based fits were tested on the parabolic velocity profile described above. Fits to the 
parabolic velocity profile using 4 and 16 knots were performed. A comparison of the profile 
obtained using the fitted value of 𝜇𝜇 with the original profile calculated using equation (11) is shown 
in figure 4 for a 4-knot fit. As can be seen from the figure, there is no discernible difference 
between the original and fitted curves. The viscosity profile from the fit is shown in figure 5. The 
figure shows a distinct parabolic variation, but the magnitude of the variation is negligible 
compared to the expected value of 𝜇𝜇. The viscosity profile obtained by using 16 knots is shown 
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in figure 6. This figure shows a more complicated variation than for the 4-knot fit, but again, the 
variations are minuscule compared to the expected value of 𝜇𝜇. 

Figure 4. Parabolic velocity profile from equation (11) (red) and profile generated from least 
squares fit using cubic splines (blue) using 4 knots. 

Figure 5. Viscosity profile from least squares fit to equation (11) using 4 knots. The interpolated 
values of 𝜇𝜇(𝑥𝑥) using the cubic splines are shown in red, the knot locations are shown as blue 
dots. 
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Figure 6. Viscosity profile from least squares fit to equation (11) using 16 knots. The interpolated 
values of 𝜇𝜇(𝑥𝑥) using the cubic splines are shown in red, the knot locations are shown as blue 
dots. 
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3.0 Results 
To evaluate the effectiveness of the spline approach for real systems, classical molecular 
dynamics simulations of Poiseuille flow in a nanochannel were performed. Two systems were 
investigated, pure water between two slabs of talc and a 1M solution of NaCl in a pore of quartz-
(001). The potential parameters for water were those of the SPC/E model [19]. The potential 
parameters for quartz, talc and the electrolyte ions were those of the CLAYFF model [20]. 
Molecular dynamics simulations were performed using the LAMMPS simulation package [21]. All 
simulations were equilibrated for 500 ps in the NPT ensemble at 300 K and 1 bar, in the direction 
of the confinement to relax the pore volume, as well as in the NVT ensemble for 5 ns. A Nosé–
Hoover [22] thermostat with a time constant of 1 ps is applied to the solid atoms only. A time step 
of 1 fs was used to integrate the equations of motion. The equations of motion for the rigid water 
molecules were integrated using the SHAKE algorithm [23]. In order to simulate a Poiseuille flow, 
an acceleration of 4.7× 10−5 ((kcal·mol–1 Å–1)/(g·mol−1)) per atom is applied in the 𝑥𝑥 direction. This 
value was chosen in the range where the response of the system is linear [24]. The subsequent 
flow trajectories were generated at 300 K for 20 ns, and steady-state velocity profiles were 
averaged over the 20 ns. 

The velocity profiles and a corresponding series of spline fits are shown in figures 7 and 8. The 
water profile contains 290 data points and the NaCl profile contains 620 data points. Both 
simulations resulted in roughly parabolic velocity profiles. For pure water, the region near the 
channel boundaries shows signs of velocity slip and the profile drops suddenly near the wall. For 
NaCl, there are signs of a stagnation region near the boundary. This is usually interpreted as 
being due to a layer of ions that are strongly adsorbed to the wall, thereby effectively narrowing 
the width of the nano channel. Conventional analysis by fitting a velocity profile such as the NaCl 
solution to a parabola typically results in regions near the boundary where the parabolic profile 
goes negative. The flow is set to zero in these regions and the distance between the point at 
which the parabola is zero and the fluid boundary with the wall is interpreted as a negative slip 
length. Fitting a parabola to the pure water profile results in a profile that has a finite positive 
velocity at the boundary. The parabolic profile can be extrapolated to the point at which it goes to 
zero and the distance between that point and the boundary is interpreted as a positive slip length. 

Figure 7. Molecular dynamics simulation of Poiseuille flow in a nano channel for pure water. Fits 
using 4, 8, 16, 24 32 and 48 knots are shown. The original simulation contains 290 data points. 
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Figure 8. Molecular dynamics simulation of Poiseuille flow in a nano channel for 1M aqueous 
NaCl solution. Fits using 4, 8, 16, 24 32 and 48 knots are shown. The original simulation contains 
620 data points. 

For pure water, all spline fits appear to fall within the noise envelope of the simulations except for 
slight deviations near the boundaries of the channel. An expanded view of the velocity profile and 
the fits near the lefthand boundary is displayed in figure (9) and shows what appears to be some 
slippage at the boundary. The fits with a higher number of knots do an increasingly better job of 
capturing the flow profile near the wall but the same fits also start capturing the noise near the 
velocity maximum. This can be seen in figure (10), where the last three fits (24, 32 and 48 knots) 
show unphysical wiggles near the maximum. These wiggles stay within the noise envelop in the 
velocity profile and are unlikely to be reproducible across multiple runs. For the highest number 
of knots, the ratio of data points to knots is relatively low (290/48 ∼ 6) but still high enough that 1) 
multiple data points are determining the value at the knot and 2) the spacing of data points is 
much smaller than the spacing of knots. 

Figure 9. Expanded view of the profile shown in figure (7) near the boundary at 𝑥𝑥 = 0. 
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Figure 10. Expanded view of the profile shown in figure (7) near the maximum fluid velocity. 

For the 1M NaCl solution, the fits using 4 and 8 knots are not doing a good job of capturing the 
flow profile near the channel walls. The 4-knot simulation also lies outside the noise envelope of 
the simulation in several other parts of the profile. At 16 knots, the fits fall inside the noise envelope 
and there is no noticeable improvement in the profile as the number of knots continues to 
increase. A closer look at the region near the velocity maximum in figure (11) shows quite odd 
behavior as the number of knots increases. Not only do wiggles appear in the fitted profile, but 
the velocity curve actually appears to be discontinuous. Whether this is a result of limited 
resolution in the 𝑥𝑥 increments or a result of instability in the linear solution of equation (9) was not 
determined. 

Figure 11. Expanded view of the profile shown in figure (8) near the maximum fluid velocity. 

The corresponding viscosity profiles are shown in figures (12) and (13). The fits with larger 
numbers of knots all show substantial variations in the center of the channel as well as oscillations 
in other portions. The center of the channel is a region of low shear and the solution is likely 
insensitive to the value of the viscosity in this region, resulting in unrealistic values. Similar results 
have been obtained by other researchers using other approaches [18]. 
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Figure 12. Viscosity profile for pure water in a nano channel. Fits using 4, 8, 16, 24, 32 and 48 
knots are shown. 

Figure 13. Viscosity profile for 1M aqueous NaCl solution in a nano channel. Fits using 4, 8, 16, 
24 and 32 knots are shown. 

For pure water, the fitted profile matches the behavior of the simulated velocity profile quite nicely. 
Apart from the instability at the center and some variation at the channel edges, the viscosity 
profile is fairly flat and centered at a value of about 0.5 cP. This is slightly lower than value reported 
by Předota et al. [18] which were closer to 0.8 cP, but those simulations used a different surface 
for the nano-channel as well as a different thermostat, so some differences can be expected. The 
value of 0.5 cP is closer to the values calculated by Simonnin et al. for SPC/E water in different 
clay nanopores, which ranged from 0.6 to 0.7 cP and also the values of 0.64-0.68 cP calculated 
by Tazi et al. [25] for bulk SPC/E water. 

At the edges of the channel, there is a sharp rise in the value of the viscosity, although the actual 
magnitude of the rise is difficult to determine and varies considerably with the number of knots. 
Just before this rise, there is a dip in the viscosity that is consistent across all profiles calculated 
using a larger number of knots, starting at 16 knots. This low viscosity region corresponds roughly 
to the slip region seen in the viscosity profile. The increase in viscosity after the dip as one moves 
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towards the center of the channel also appears in all the higher knot fits but does not correspond 
to any distinctive feature in the velocity profile. 

Compared to pure water, the NaCl solution shows a much broader region near the boundary 
where the viscosity is rapidly increasing. This matches the velocity profile, which also shows a 
wider region near the edges where flow is noticeably suppressed compared with the traditional 
parabolic profile. For the NaCl solution away from the boundary, the average viscosity appears to 
be higher than for pure water, somewhere in the range 0.8-1.0 cP. The profiles are more 
asymmetric than those for pure water, with curves to the left of center showing a higher viscosity 
than the curves to the right. We believe this is an indication of the uncertainty in the fits due to 
noise and finite sampling, since the simulated system itself should be symmetric about the center 
of the channel. Unlike the profile for water, there are no obvious features beyond the high viscosity 
regions at the boundaries. Although the boundary material for the simulations with and without 
salt is different, the increase in viscosity with dissolved salt matches behavior seen by Simonnin 
et al. [24] where adding 1M NaCl solutions increased the viscosity on the order of 0.15-0.2 cP 
over pure water. 

Although the results of fits using different numbers of knots are approximately consistent, there is 
still wide variation in the viscosity profiles as the number of knots increases. This raises the 
question of whether or not there is a consistent way of choosing an optimal number of knots to 
get a profile that represents the best way of modeling the data. Given that the fits are unstable in 
the center of the channel, it would be desirable to use a minimum number of knots, since this 
increases the influence of regions outside the center in constraining the solution and suppressing 
large fluctuations. 

One approach is to look at the behavior of the objective function when the fitted curve falls inside 
the noise envelope of the simulation results. When the curve is outside the noise envelope, there 
are systematic deviations between the fit and simulation. As these deviations get smaller with 
increasing numbers of knots, the value of the objective function will also improve significantly. 
However, once the fitted curve lies entirely within the noise envelope, the improvement with 
increasing knots will slow down, since the different curves are all relatively smooth and there are 
no regions where the fit and the data systematically diverge from each other. Finally, if the number 
of knots is increased to the point where they approach the number of data points, the fits will begin 
quantitatively modeling the noise and the objective function will start rapidly decreasing again. 

With this in mind, it is instructive to look at plots of the objective function as a function of the 
number of knots, shown in figure 14. The absolute values of the objective functions are not 
significant, since the number of data points are different, but the two functions show qualitatively 
different behaviors. The lowest order fit to the pure water simulation was already almost 
completely contained inside the noise envelope of the simulation and the corresponding objective 
function shows relatively little variation as the number of knots increases. Figure (9) shows that 
the regions near the channel boundaries are accurately modeled for the 32 and 48 knot fits and 
partially captured by the 24-knot fit. Based on this, the 24 or 32 knot fit would be optimal. The 
objective function does not change much between 32 and 48 knots but still shows a relatively 
large decrease at 24 knots. However, all of the higher order fits (24, 32, and 48 knots) have 
significant wiggles near the maximum velocity. 
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Figure 14. Objective functions for pure water and NaCl systems as a function of the number of 
knots. 

The curve for the NaCl system shows a distinct break at 16 knots, which also corresponds to the 
point where the fitted profile moves inside the noise envelope. However, while the 16-knot fit 
captures the behavior near the boundary quite well, it also shows some unrealistic wiggles near 
the velocity maximum. The fitted profile does stay within the range of the simulated profile, even 
near the maximum and despite the wiggles. 

Based on these observations, the 32-knot fit should be used for the pure water simulation and 16 
knot fit used for the NaCl simulation. A comparison of the two profiles is shown in figure 15. 

Figure 15. Viscosity profiles for pure water and 1M NaCl simulations. Pure water profile is from fit 
using 32 knots and 1M NaCl profile is from fit using 16 knots. 

The channel widths for the two simulations are slightly different, hence the discrepancies in 
endpoints for the curves on the right-hand side. The function 𝜇𝜇(𝑥𝑥) is relatively symmetrical for 
water and shows a distinct dip near the channel edge that corresponds to the slippage seen in 
the velocity profile. Both edges show enhanced viscosity at the boundary as well as a smaller 
enhancement about 5 Å from the edges. The profile for the NaCl solution is much different. There 
is no low viscosity region near the boundary and the viscosity inside the channel is noticeably 
higher, although the asymmetry makes it difficult to say by how much. The viscosity profile also 
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exhibits sharp increases near the boundary that start about 6-7 Å from the edge. This is much 
wider than the corresponding region for the pure water simulation. The amount of increase also 
appears larger for the NaCl system but this may reflect noise in the simulation. The velocities in 
this region are small and may be overwhelmed by noise in the profile so the actual magnitude of 
the viscosity is likely to be highly uncertain. The width of the high viscosity region, on the other 
hand, appears to be consistent as the number of knots increases and figure (13) shows little 
variation in the width after 16 knots. 
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4.0 Conclusions 
This paper describes a spline-based fitting method for obtaining viscosity profiles from simulations 
of Poiseuille flow in a nanochannel. The viscosity profiles are represented by a set of splines and 
the parameters in the spline functions are determined by a combination of continuity conditions 
on the splines themselves and a fit to the simulated velocity profile from the NEMD simulations. 
The use of splines, instead of just fitting a viscosity at every calculated value from the simulations, 
appears to lead to a more stable fit by reducing the number of fit parameters relative to the number 
of the measurements. For the simulations reported here, the worst-case scenario still resulted in 
at least 6 measurements per fitted parameter.  

The spline fits were used to fit a test case, based on a classical parabolic flow profile, as well as 
realistic simulations of water and a 1M NaCl solution in a nanochannel. The test case was able 
to recover the analytic result for the viscosity to very high accuracy. For pure water and a 1M 
solution of NaCl, the results are in semi-quantitative agreement with other simulations, but 
differences in the surfaces of the slit pore and some simulation details rule out a quantitative 
comparison. A direct comparison of results obtained using the spline fitting approach described 
here and the methods described in Todd, Evans and Davis [11] using the same models and 
simulation methodology is currently in progress. 

Solution and surface chemistry are expected to heavily influence molecular structures of confined 
liquids [26]. The apparent stickiness of the 1M NaCl solution near the channel boundaries and 
the slip observed near the walls for the pure water talc simulation suggests that viscosity is 
dependent on details of solution and surface chemistry. Effects such as charge states of the 
solid/liquid interfaces and ion specificity, which is critical to understand molecular scale flows in 
nanochannels, were demonstrated by a seminal study on dissipative responses by Granick [27]. 
Furthermore, additional features, such as the viscoelastic nature of confined aqueous liquids, 
probed by atomic force microscopy [26, 28, 29], may be important at these scales. The spline-
based fitting scheme described here can potentially be extended to include viscoelastic shear 
stress coupling as well as other potentially relevant stress models similar to those used for 
polymeric liquids. 
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