o

Pacific
Northwest

NATIONAL LABORATORY

PNNL-38319

A spline-based method to
obtain spatially
dependent viscosity in
confined flows

September 2025

Jaehun Chun
Bruce J Palmer
Pauline Simonnin

Prepared for the U.S. Department of Energy

@ U.S. DEPARTMENT
= of ENERGY under Contract DE-AC05-76RL01830




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062
www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728
email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov


http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/

PNNL-38319

A spline-based method to obtain spatially
dependent viscosity in confined flows

September 2025

Jaehun Chun
Bruce J Palmer
Pauline Simonnin

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354



PNNL-38319

Abstract

Coupling chemical physics to continuum theories is a critical step to understanding multi-scale
phenomena. This paper will connect non-equilibrium molecular dynamics simulations to a
continuum-based Navier-Stokes equation that has relaxed the assumption of spatial uniformity in
viscosity. Using a form for viscosity based on spline interpolation, viscosity as a function of
position is obtained from the least squares fit of the velocity profile measured from molecular
simulations of flow in a nanochannel. Viscosity can vary widely, particularly near the channel
boundaries, indicating that uniform viscosity is no longer appropriate. Variations of the viscosity
near the channel surfaces imply that considering solution and surface chemistry could be
necessary to rigorously understand molecular-scale flows in nanochannels.

https://doi.org/10.26434/chemrxiv-2025-gzmx9
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1.0 Introduction

The extraction of macroscopic equilibrium and non-equilibrium transport properties from
molecular dynamics simulations is a long-standing problem in statistical mechanics. Equilibrium
properties can usually be obtained either through direct averages of appropriate variables or by
examining the magnitude of fluctuations [1]. Non-equilibrium transport properties can be obtained
either by integrating the auto-correlation function of some variable over time using a Green-Kubo
relation [2,3] or by applying a field to the system and directly measuring the response. The latter
is the approach used in non-equilibrium molecular dynamics (NEMD) simulations. Simulation of
flow in a nanochannel to obtain the shear viscosity was one of the earliest attempts to directly
calculate a macroscopic transport property using NEMD. The original paper of Lees and Edwards
[4] introduced the concept of sliding periodic boundary conditions that enabled simulations of a
flow gradient without introducing physical boundaries to the system. This minimized the
introduction of artifacts associated with the boundary and helped reduce the size of the
simulations required to obtain accurate results. The xy component of the stress tensor, o, was

calculated from the simulation and used to find the viscosity u by taking the ratio of the stress
tensor component and the gradient of the velocity

Ouy/ (duy/dr) = p

A significant concern with the NEMD approach was that the flow velocity used in the simulations
were typically much larger than anything used in the corresponding real-world experiments. The
necessity for using such high flow velocities derived from both the need to extract useful
information from a simulation representing a short time interval (typically on the order of
nanoseconds) and the relatively high velocity of atoms in the simulation due to thermal motion.
Molecules at room temperature have velocities on the order of hundreds of meters per second
and this provides a very noisy background from which to extract a much slower steady flow.
Further, the high flow velocity could also potentially impact the simulations by steadily raising the
temperature via viscous heating. However, in spite of the high flow rates, it was found that viscous
heating was relatively small over intervals that were sufficient to estimate the viscosity.

Gosling, McDonald and Singer [5] simplified the determination of the viscosity by applying a
steady sinusoidal force to the simulation cell that produced a stationary flow that also varied
sinusoidally. Comparing the stationary field with the continuum solution for the same configuration
allowed the authors to calculate the viscosity. Note that this approach can remove the necessity
of evaluating the microscopic stress tensor, which is itself a potentially complicated and time-
consuming calculation. This was one of the first attempts to evaluate the viscosity by comparing
the flow field of a forced molecular simulation with the solution of a corresponding macroscopic
continuum problem.

Later work by Evans and Morris [6] expanded on the NEMD approach by developing equations
of motion that created appropriate non-equilibrium fluxes that could be used in conjunction with
linear response theory to calculate transport coefficients. These systems no longer correspond to
Hamiltonian dynamics but under suitable restrictions still preserve the incompressibility of phase
space and hence linear response is still applicable [6.7]. Furthermore, the equations of motion
can be modified to not only produce the desired flow in response to an external field but also to
correct for additional effects, such as viscous heating, by thermostatting the simulation to maintain
a constant temperature.
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NEMD calculations originally focused on evaluating zero wavevector properties needed for
simulations at macroscopic scales. However, later researchers began investigating flow in
nanochannels as interesting in itself and not just as a proxy for flows in larger systems. At the
nanoscale, a number of assumptions about flow in a channel (e.g., that an infinitesimal fluid
element at the continuum scale is much larger than the length scale associated with individual
molecules) break down and deviations from classical behavior are observed [8]. Near the
boundaries of the channel, the confined fluid can become significantly structured [9,10] and the
assumption that the fluid is uniform in the channel and that properties of the fluid are the same
everywhere in the system are not expected to be valid. In addition, interactions between the fluid
and the channel surface can create boundary effects that can alter assumptions about flow at the
boundary [8] and even assumptions about where the surface is located.

An early effort to look at flow in a microchannel via NEMD was reported by Todd, Evans and
Davis [11]. They studied variations in the shear stress and the shear viscosity near the boundaries
of the channel for a simple atomic fluid moved by a uniform force field to produce a parabolic
Poiseuille-like flow profile. This study calculated the components of the stress tensor directly from
a microscopic expression and also computed it by integrating the classical momentum
conservation expression. For larger channels integration appeared to work well, but later work by
Travis, Todd and Evans [12] suggested that for narrower channels, this approach breaks down.

Another approach to extracting viscosity from molecular simulations of Poiseuille flow was to fit
the flow profile to a parabola and use the known classical solution to the problem to back out the
viscosity [13,14]. This is straightforward to implement but requires some adjustments if flow near
the boundaries deviates from a classic parabolic shape. This paper will generalize this approach
by assuming that the viscosity is a function of position in the channel. In this case, the parabolic
solution is no longer valid but the viscosity can still be extracted from the simulation by fitting the
viscosity function in the Navier-Stokes equation to the flow profiles measured from simulations.
This is straightforward, since the only inputs are the velocity and a force profile, both of which are
easily measured directly from the simulation. Spline fits are used to allow multiple simulation data
to contribute to the determination of each fit parameter and produce a smooth profile for the
viscosity but still allow for local variations that reflect changes in local properties inside the fluid.

Introduction 2



PNNL-38319

2.0 Methods

The viscosity profiles calculated in this paper are based on the Navier-Stokes equation for
incompressible fluid flow, which has the form [15]

ou - - _ —
pg—l—p(u-V)u: —Vp+p+V-5 (1)
The mass density is p, the local velocity field u, the pressure is p, the acceleration of gravity is g
and the stress tensor due to shear is 6. This paper is only concerned with laminar, incompressible
flow between two parallel surfaces. In this case, the only non-zero component of u is Uy, assuming

that the parallel surfaces are perpendicular to the x-axis and that the applied force on the fluid is
parallel to the y axis. Under these conditions, the right-hand side of equation (1) is zero and the
shear stress term in equation (1) reduces to

() oy ) 2)

assuming a non-uniform viscosity. For a gravity-driven flow, the governing equation is then

0 0

)5 (1) = ®)

A schematic of the simulation setup based on this geometry is shown in figure (1).

":e ’1-

Spatially
varying
viscosity

p(x)

Sy ;z,a"'

Figure 1. Schematic diagram showing the spline based fitting method coupled with NEMD
simulations of parabolic flow in a nanochannel

This paper will focus on developing a methodology for fitting the spatially dependent viscosity

parameter u(x) in equation (3) using velocity profiles generated from NEMD simulations. The first
step in generating a profile is to create a discretized form of the operator acting on u,, (x). The
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channel is assumed to have width L and the velocity in the y-direction vanishes at the channel
boundaries located at x = 0 and x = L. The interval [0, L] is divided into N increments of size Ax =
L/N. The momentum pu,, is a conserved quantity, so itis possible to use a finite-volume approach
on equation (3). The momentum pu, satisfies the conservation equation

Dty 4 , ,
Aprwy“ — — (s + i) (4)
where i is the index of some increment in [0, L] and ;. is the flux of u,, out of the increment at
the high (+) or low (-) end repsectively. From the divergence theorem, the right-hand side of this
equation is equivalent to the operator in equation (3).

The y component of momentum is transferred between cells via a diffusive flux that is proportional
to the gradient of u,, in the x direction, Ju, = —H du, /0x. For cells that do not have a channel

boundary on one side or the other, the gradient of u,, can be approximated using a first order finite
difference

_ Hidn 1 OH Uyt — Uy
2 Ax

t.il'!i + =

This equation assumes that all values are defined at cell centers. The value of u at the interface
between the two cells is the average of the value defined at the centers of the two cells on either
side of the interface. For the two cells at the edges of the channel, there is no cell on the other
side of the interface so this formula no longer works. The value of u, at the boundaries is defined
to be zero, so the gradient can be approximated on the half-interval of length Ax/2 between the
cell center and the cell edge. The value of the viscosity is assumed to be constant on this interval
and equal to the value in the cell center. For cell 1 bordering the edge at x = 0, the flux is then

(ty0=10) —uy,
Ar/2

U = —Iy

2uy .
= : 6
H1 A (6)

Similarly, at cell N bordering the edge ax =L,

. (uynp1=0) —uyn
WUN+ = —HN Ax/2

2u, N
Ax

-._|
—

= f- L_.’\f

If 1 is assumed constant throughout the channel, then equation (4) for an interior cell reduces to

O, ; B tugc_j-_l — 2y Uy

ot F Axr? (8)

The right-hand side of the equation is proportional to the standard second order finite difference
approximation to a second derivative.
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Using the flux expressions in equation (4), a discretized version of equation (3) can be written as

K-, = g7 (9)
The elements of K are
- Pipr i Uy e — Uy, .
Kiiy1 = 5 ALz (1 —0din)
- Mip1 T i Uy i — Uy -
Kii = — = 1 —din
x_. 2 Ax? ( )
Mio i Uy i1 — Uy, -
- 2 A2 (1 —d;1)
2w, N 2u;q
— #-Nﬁﬁi.w‘ — }-11&—1‘;01’__1
- _ Haia F g Uy i1 — Uy, -
Ki; 1 = 5 Ag? (1—10:1)

Given the force array gp due to gravity, the velocity profile #, can be found by inverting K. This
can be used to construct an objective function y for a least squares regression

1

=& "-m) W

A calculation based on this equation was implemented using the PETSc/TAO optimization library
[16] and used to obtain a viscosity profile from a velocity profile. The optimizations reported here
used the Limited-Memory, Variable-Metric (LMVM) method. This method requires gradients of the

objective function, and these can be calculated if the gradients of the inverse of K are known.
These, in turn, are given by

—1 —1 = —-1
VeK =K -VzK K

where [ is a vector that represents the value of u at each of the points in the velocity profile. For
each value of y;, the matrix le? is quite sparse and contains at most 3 nonzero entries. This can
be used to speed up calculations of the gradient.

In the simplest case, the fit parameters are the viscosities y; at each cell center, so the number
of fit parameters ({1;}) is equal to the number of measurements ({u,;}). However, this appears
to be very unstable and produces poor results in the center of the channel. As a test, a parabolic
profile, corresponding to an analytic solution of equation (3) for a uniform viscosity, was used as
the input vector u,. The profile is given by

uy(z) = 22(L — z) (11)
2n

and values of u = 25, L = 100 and pg = 1 were used to generate u, (x) at 200 evenly spaced

points on the x-axis. Figure (2) compares the original profile generated from equation (11) and
the profile reconstituted using equation (9) with a fitted viscosity profile. The original and
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reconstituted profiles are close to each other but the fitted viscosity profile, shown in figure 3,
deviates noticeably from the expected value of 25 in the center of the channel. In this region, the
shear is relatively low and the value of the viscosity may have little effect on the shape of the
velocity profile, resulting in large deviations from the expected behavior.

20
40
= 30
2 — Original
o
= 20 — From Fit

10

0 20 40 60 80 100

Position

Figure 2. Parabolic velocity profile from equation (11) (red) and profile generated from least
squares fit to the parabola (blue).

40
35
30
= 25 vJJ km———.
L
Q
@
= 20
15
10
5
0 20 40 60 80 100

Position

Figure 3. Viscosity profile derived from fit to parabolic velocity profile. Expected curve is a
horizontal line with value 25.

A possible remedy for the instability in the center is to reduce the number of variables used to
describe the viscosity profile, so that more data points are used to determine each parameter.
One way to do this is to represent the viscosity profile using cubic splines [17]. In this approach,
the channel width L is divided into K intervals, each of length L/K. The endpoints of the intervals
are at the locations {;, where k € [1,K + 1]. The original measurements are at the locations x;,
i € [1,N] and the endpoints of the spline locations are chosen to coincide with the first and last
measurement locations such that {; = x; and {x,; = xy. The locations marking the endpoints of
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the spline intervals are referred to in spline terminology as “knots”. In between knots k and k + 1,
the viscosity is described by the cubic polynomial

3
i)=Y ah(@—G)"  z e (GGl (12)
n=0

At the knots, the spline function takes on the values 5, and these values are the parameters
determined by the fit. The coefficients aX are determined by requiring that the spline fit has the
values n, at the knots, that it be continuous at the knots and its first and second derivatives be
continuous at the knots. The continuity conditions can only be applied to interior knots so an
additional condition at the endpoints is that the second derivative is zero. This is a commonly
used boundary condition in spline fits and corresponds to a linear profile at the edges of the fitted
region. The two conditions at each of the endpoints means that the number of conditions matches
the number of unknowns, so the problem is well-posed. A linear profile at the endpoints also
matches the behavior seen in viscosity profiles obtained by other means [18]. It is, however, at
odds with the approximation made in evaluating the boundary conditions in equations (6) and (7)
that assumed that the viscosity profile is flat near the boundaries. However, the increments in the
data are typically much smaller than the spacing between knots, so the requirement that the profile
is constant near the boundary applies at a much smaller scale than the boundary condition for
the splines.

The conditions on the spline fit at the knots lead to the following conditions on the ak:

Forknotk =1

For knots k € [2, K]

Z apy (G — Geo1)™ =

n=0
g = Tk
3
Y ak (G — G-)" T —af =0
n=1
3
Z ak'n(n = 1)(Ce — Geor)" 2 — 205 = 0

n=2

Forknotk =K + 1

3

K
Z G,T: (CK+1 - CK}R = NK+1
n=0

3

> afn(n— 1)k — k)" =0 (13)

n=2
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These conditions are sufficient to determine the aX uniquely. Equations (13) are linear in the spline
coefficients, so it is possible to write (13) as a matrix equation of the form

=<

a=T7 (14)

where X is a 4K x 4K matrix and @ and 7 are vectors of length 4K. The vector 7 is zero except at
those locations corresponding to the conditions that the spline function equal n,, at the values x =
(- Those locations have the values n,,. Equation (14) can be formally solved to get the coefficients
a

—1

X -T=a (15)

The value of the viscosity u at any point x is a function of the aX, which are, in turn, a function of
the spline values 5. To fit the velocity profile by optimizing the objective function y, we need
gradients of y with respect to the spline values 7. The only term that depends directly on the spline
values is 7, so the gradient of a with respect to the 77 is

Via=X  -Vir (16)

Although the original matrix X is sparse, its inverse is dense so each of the a¥ will potentially
depend on the spline values at all of the knots. Using equation (16), the gradients of the spline
coefficients with respect to the 1, can be used to obtain the gradients of the u(x;) with respect to
the n,. The u(x;) have an implicit dependence on the a, so the gradients of a have the form

Vau(z;) = Vau(z;) - Via (17)

The gradients of K with respect to the 77 then have the form

V—]; { - VE { N VWE

These can then be used to obtain the gradients of the objective function

Vax = -2 (K gﬁ—ﬁy)

—1
K VK -K -gp (18)
Again, the sparsity of V; can be used to speed up the calculation of the gradients.

The spline-based fits were tested on the parabolic velocity profile described above. Fits to the
parabolic velocity profile using 4 and 16 knots were performed. A comparison of the profile
obtained using the fitted value of u with the original profile calculated using equation (11) is shown
in figure 4 for a 4-knot fit. As can be seen from the figure, there is no discernible difference
between the original and fitted curves. The viscosity profile from the fit is shown in figure 5. The
figure shows a distinct parabolic variation, but the magnitude of the variation is negligible
compared to the expected value of u. The viscosity profile obtained by using 16 knots is shown
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in figure 6. This figure shows a more complicated variation than for the 4-knot fit, but again, the
variations are minuscule compared to the expected value of u.

50.0

40.0

30.0

— Original

Velacity

— From Fit

20.0
10.0

0.0
0 20 40 60 80 100

Position

Figure 4. Parabolic velocity profile from equation (11) (red) and profile generated from least
squares fit using cubic splines (blue) using 4 knots.
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Figure 5. Viscosity profile from least squares fit to equation (11) using 4 knots. The interpolated
values of u(x) using the cubic splines are shown in red, the knot locations are shown as blue

dots.
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25.008

25.006

25.004

Viscosity

25.002

25.000

24,998 L | . .
0 20 40 60 80 100

Position
Figure 6. Viscosity profile from least squares fit to equation (11) using 16 knots. The interpolated

values of u(x) using the cubic splines are shown in red, the knot locations are shown as blue
dots.
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3.0 Results

To evaluate the effectiveness of the spline approach for real systems, classical molecular
dynamics simulations of Poiseuille flow in a nanochannel were performed. Two systems were
investigated, pure water between two slabs of talc and a 1M solution of NaCl in a pore of quartz-
(001). The potential parameters for water were those of the SPC/E model [19]. The potential
parameters for quartz, talc and the electrolyte ions were those of the CLAYFF model [20].
Molecular dynamics simulations were performed using the LAMMPS simulation package [21]. All
simulations were equilibrated for 500 ps in the NPT ensemble at 300 K and 1 bar, in the direction
of the confinement to relax the pore volume, as well as in the NVT ensemble for 5 ns. A Nosé—
Hoover [22] thermostat with a time constant of 1 ps is applied to the solid atoms only. A time step
of 1 fs was used to integrate the equations of motion. The equations of motion for the rigid water
molecules were integrated using the SHAKE algorithm [23]. In order to simulate a Poiseuille flow,
an acceleration of 4.7x 107% ((kcal-mol-' A-1)/(g-mol ")) per atom is applied in the x direction. This
value was chosen in the range where the response of the system is linear [24]. The subsequent
flow trajectories were generated at 300 K for 20 ns, and steady-state velocity profiles were
averaged over the 20 ns.

The velocity profiles and a corresponding series of spline fits are shown in figures 7 and 8. The
water profile contains 290 data points and the NaCl profile contains 620 data points. Both
simulations resulted in roughly parabolic velocity profiles. For pure water, the region near the
channel boundaries shows signs of velocity slip and the profile drops suddenly near the wall. For
NaCl, there are signs of a stagnation region near the boundary. This is usually interpreted as
being due to a layer of ions that are strongly adsorbed to the wall, thereby effectively narrowing
the width of the nano channel. Conventional analysis by fitting a velocity profile such as the NaCl
solution to a parabola typically results in regions near the boundary where the parabolic profile
goes negative. The flow is set to zero in these regions and the distance between the point at
which the parabola is zero and the fluid boundary with the wall is interpreted as a negative slip
length. Fitting a parabola to the pure water profile results in a profile that has a finite positive
velocity at the boundary. The parabolic profile can be extrapolated to the point at which it goes to
zero and the distance between that point and the boundary is interpreted as a positive slip length.

1610*
— 1410*
E=
E
8 1210"
w}
a 4
£1010
!‘_ﬁ — Original
E 8.0 10° ——4 Knots
g — 8 Knots
% 6.0 10% — 16 Knots
5 24 Knots
> 5 — 32 Knots
z 4010 48 Knots
o
2 2010%

0.0 '
0 10 20 30 40 50 60

Position (Angstroms)

Figure 7. Molecular dynamics simulation of Poiseuille flow in a nano channel for pure water. Fits
using 4, 8, 16, 24 32 and 48 knots are shown. The original simulation contains 290 data points.
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Figure 8. Molecular dynamics simulation of Poiseuille flow in a nano channel for 1M aqueous
NaCl solution. Fits using 4, 8, 16, 24 32 and 48 knots are shown. The original simulation contains
620 data points.

For pure water, all spline fits appear to fall within the noise envelope of the simulations except for
slight deviations near the boundaries of the channel. An expanded view of the velocity profile and
the fits near the lefthand boundary is displayed in figure (9) and shows what appears to be some
slippage at the boundary. The fits with a higher number of knots do an increasingly better job of
capturing the flow profile near the wall but the same fits also start capturing the noise near the
velocity maximum. This can be seen in figure (10), where the last three fits (24, 32 and 48 knots)
show unphysical wiggles near the maximum. These wiggles stay within the noise envelop in the
velocity profile and are unlikely to be reproducible across multiple runs. For the highest number
of knots, the ratio of data points to knots is relatively low (290/48 ~ 6) but still high enough that 1)
multiple data points are determining the value at the knot and 2) the spacing of data points is
much smaller than the spacing of knots.

5.0 107
2 4010°
(=}
(5
@
8
= 3.010°
= /
2 —— Original
7} 5
E 2.010 4 Knots
g — 8 Knots
& 5 — 16 Knots
g 1.0 10 — 24 Knots
= 32 Knots
k3] ' —— 48 Knots
2 0.0 ¢
=

-1.010%

0 1 2 3 4 5

Position (Angstroms)

Figure 9. Expanded view of the profile shown in figure (7) near the boundary at x = 0.
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Figure 10. Expanded view of the profile shown in figure (7) near the maximum fluid velocity.

For the 1M NaCl solution, the fits using 4 and 8 knots are not doing a good job of capturing the
flow profile near the channel walls. The 4-knot simulation also lies outside the noise envelope of
the simulation in several other parts of the profile. At 16 knots, the fits fall inside the noise envelope
and there is no noticeable improvement in the profile as the number of knots continues to
increase. A closer look at the region near the velocity maximum in figure (11) shows quite odd
behavior as the number of knots increases. Not only do wiggles appear in the fitted profile, but
the velocity curve actually appears to be discontinuous. Whether this is a result of limited

resolution in the x increments or a result of instability in the linear solution of equation (9) was not
determined.

9.4 10

©
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Velocity (Angstroms/femptosecond)

24 28 32 36 40

Position (Angstroms)

Figure 11. Expanded view of the profile shown in figure (8) near the maximum fluid velocity.

The corresponding viscosity profiles are shown in figures (12) and (13). The fits with larger
numbers of knots all show substantial variations in the center of the channel as well as oscillations
in other portions. The center of the channel is a region of low shear and the solution is likely
insensitive to the value of the viscosity in this region, resulting in unrealistic values. Similar results
have been obtained by other researchers using other approaches [18].
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Figure 12. Viscosity profile for pure water in a nano channel. Fits using 4, 8, 16, 24, 32 and 48
knots are shown.
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Figure 13. Viscosity profile for 1M aqueous NaCl solution in a nano channel. Fits using 4, 8, 16,
24 and 32 knots are shown.

For pure water, the fitted profile matches the behavior of the simulated velocity profile quite nicely.
Apart from the instability at the center and some variation at the channel edges, the viscosity
profile is fairly flat and centered at a value of about 0.5 cP. This is slightly lower than value reported
by Pfedota et al. [18] which were closer to 0.8 cP, but those simulations used a different surface
for the nano-channel as well as a different thermostat, so some differences can be expected. The
value of 0.5 cP is closer to the values calculated by Simonnin et al. for SPC/E water in different
clay nanopores, which ranged from 0.6 to 0.7 cP and also the values of 0.64-0.68 cP calculated
by Tazi et al. [25] for bulk SPC/E water.

At the edges of the channel, there is a sharp rise in the value of the viscosity, although the actual
magnitude of the rise is difficult to determine and varies considerably with the number of knots.
Just before this rise, there is a dip in the viscosity that is consistent across all profiles calculated
using a larger number of knots, starting at 16 knots. This low viscosity region corresponds roughly
to the slip region seen in the viscosity profile. The increase in viscosity after the dip as one moves
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towards the center of the channel also appears in all the higher knot fits but does not correspond
to any distinctive feature in the velocity profile.

Compared to pure water, the NaCl solution shows a much broader region near the boundary
where the viscosity is rapidly increasing. This matches the velocity profile, which also shows a
wider region near the edges where flow is noticeably suppressed compared with the traditional
parabolic profile. For the NaCl solution away from the boundary, the average viscosity appears to
be higher than for pure water, somewhere in the range 0.8-1.0 cP. The profiles are more
asymmetric than those for pure water, with curves to the left of center showing a higher viscosity
than the curves to the right. We believe this is an indication of the uncertainty in the fits due to
noise and finite sampling, since the simulated system itself should be symmetric about the center
of the channel. Unlike the profile for water, there are no obvious features beyond the high viscosity
regions at the boundaries. Although the boundary material for the simulations with and without
salt is different, the increase in viscosity with dissolved salt matches behavior seen by Simonnin
et al. [24] where adding 1M NaCl solutions increased the viscosity on the order of 0.15-0.2 cP
over pure water.

Although the results of fits using different numbers of knots are approximately consistent, there is
still wide variation in the viscosity profiles as the number of knots increases. This raises the
question of whether or not there is a consistent way of choosing an optimal number of knots to
get a profile that represents the best way of modeling the data. Given that the fits are unstable in
the center of the channel, it would be desirable to use a minimum number of knots, since this
increases the influence of regions outside the center in constraining the solution and suppressing
large fluctuations.

One approach is to look at the behavior of the objective function when the fitted curve falls inside
the noise envelope of the simulation results. When the curve is outside the noise envelope, there
are systematic deviations between the fit and simulation. As these deviations get smaller with
increasing numbers of knots, the value of the objective function will also improve significantly.
However, once the fitted curve lies entirely within the noise envelope, the improvement with
increasing knots will slow down, since the different curves are all relatively smooth and there are
no regions where the fit and the data systematically diverge from each other. Finally, if the number
of knots is increased to the point where they approach the number of data points, the fits will begin
quantitatively modeling the noise and the objective function will start rapidly decreasing again.

With this in mind, it is instructive to look at plots of the objective function as a function of the
number of knots, shown in figure 14. The absolute values of the objective functions are not
significant, since the number of data points are different, but the two functions show qualitatively
different behaviors. The lowest order fit to the pure water simulation was already almost
completely contained inside the noise envelope of the simulation and the corresponding objective
function shows relatively little variation as the number of knots increases. Figure (9) shows that
the regions near the channel boundaries are accurately modeled for the 32 and 48 knot fits and
partially captured by the 24-knot fit. Based on this, the 24 or 32 knot fit would be optimal. The
objective function does not change much between 32 and 48 knots but still shows a relatively
large decrease at 24 knots. However, all of the higher order fits (24, 32, and 48 knots) have
significant wiggles near the maximum velocity.
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Figure 14. Objective functions for pure water and NaCl systems as a function of the number of
knots.

The curve for the NaCl system shows a distinct break at 16 knots, which also corresponds to the
point where the fitted profile moves inside the noise envelope. However, while the 16-knot fit
captures the behavior near the boundary quite well, it also shows some unrealistic wiggles near
the velocity maximum. The fitted profile does stay within the range of the simulated profile, even
near the maximum and despite the wiggles.

Based on these observations, the 32-knot fit should be used for the pure water simulation and 16
knot fit used for the NaCl simulation. A comparison of the two profiles is shown in figure 15.
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Figure 15. Viscosity profiles for pure water and 1M NaCl simulations. Pure water profile is from fit
using 32 knots and 1M NaCl profile is from fit using 16 knots.

The channel widths for the two simulations are slightly different, hence the discrepancies in
endpoints for the curves on the right-hand side. The function u(x) is relatively symmetrical for
water and shows a distinct dip near the channel edge that corresponds to the slippage seen in
the velocity profile. Both edges show enhanced viscosity at the boundary as well as a smaller
enhancement about 5 A from the edges. The profile for the NaCl solution is much different. There
is no low viscosity region near the boundary and the viscosity inside the channel is noticeably
higher, although the asymmetry makes it difficult to say by how much. The viscosity profile also
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exhibits sharp increases near the boundary that start about 6-7 A from the edge. This is much
wider than the corresponding region for the pure water simulation. The amount of increase also
appears larger for the NaCl system but this may reflect noise in the simulation. The velocities in
this region are small and may be overwhelmed by noise in the profile so the actual magnitude of
the viscosity is likely to be highly uncertain. The width of the high viscosity region, on the other
hand, appears to be consistent as the number of knots increases and figure (13) shows little
variation in the width after 16 knots.
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4.0 Conclusions

This paper describes a spline-based fitting method for obtaining viscosity profiles from simulations
of Poiseuille flow in a nanochannel. The viscosity profiles are represented by a set of splines and
the parameters in the spline functions are determined by a combination of continuity conditions
on the splines themselves and a fit to the simulated velocity profile from the NEMD simulations.
The use of splines, instead of just fitting a viscosity at every calculated value from the simulations,
appears to lead to a more stable fit by reducing the number of fit parameters relative to the number
of the measurements. For the simulations reported here, the worst-case scenario still resulted in
at least 6 measurements per fitted parameter.

The spline fits were used to fit a test case, based on a classical parabolic flow profile, as well as
realistic simulations of water and a 1M NaCl solution in a nanochannel. The test case was able
to recover the analytic result for the viscosity to very high accuracy. For pure water and a 1M
solution of NaCl, the results are in semi-quantitative agreement with other simulations, but
differences in the surfaces of the slit pore and some simulation details rule out a quantitative
comparison. A direct comparison of results obtained using the spline fitting approach described
here and the methods described in Todd, Evans and Davis [11] using the same models and
simulation methodology is currently in progress.

Solution and surface chemistry are expected to heavily influence molecular structures of confined
liquids [26]. The apparent stickiness of the 1M NaCl solution near the channel boundaries and
the slip observed near the walls for the pure water talc simulation suggests that viscosity is
dependent on details of solution and surface chemistry. Effects such as charge states of the
solid/liquid interfaces and ion specificity, which is critical to understand molecular scale flows in
nanochannels, were demonstrated by a seminal study on dissipative responses by Granick [27].
Furthermore, additional features, such as the viscoelastic nature of confined aqueous liquids,
probed by atomic force microscopy [26, 28, 29], may be important at these scales. The spline-
based fitting scheme described here can potentially be extended to include viscoelastic shear
stress coupling as well as other potentially relevant stress models similar to those used for
polymeric liquids.
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