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Abstract

This report presents a practical framework to co-design plant-level controls, storage, and market
participation demonstrated for integrating large offshore wind farms to the onshore power grid.
The approach links long-term sizing and scheduling decisions with fast dynamics so that
reliability and economic value are improved together. We formulate multi-scale multi-stage
stochastic optimization models to coordinate wind output, battery operation, and reserve
policies under uncertainty. To verify dynamic performance, we conduct detailed time-domain
simulations on a reduced Western Interconnection model. The study compares two operating
modes: conventional maximum power point tracking and a de-loaded strategy that intentionally
holds headroom for frequency support. Results show that the co-designed operating point
closely matches steady-state targets before the event, maintains stability after the trip, and
delivers a higher quality frequency response than purely maximizing energy. The de-loaded
policy reduces the lowest frequency dip and moderates power ramp rates while preserving
sufficient energy for recovery. On the market side, the framework highlights how coordinated
bidding and storage dispatch can enhance revenues and mitigate risks in day-ahead and
balancing markets, while accounting for battery wear. Overall, the report demonstrates an
end-to-end methodology that connects design, control, markets, and grid code validation. It
provides actionable guidance on selecting reserve levels, tuning supervisory controllers, and
sizing storage to support dependable, profitable offshore wind integration. The workflow uses
open-source modeling tools and scenario-based uncertainty representations, and is adaptable
to hybrid plants. Findings inform planners, operators, and regulators seeking to balance
performance, compliance, and cost effectively.

Abstract iv
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Integrating large amounts of offshore wind into power systems requires solutions that deliver
both reliable performance and attractive economics. This report develops and validates a
practical approach that joins plant design, supervisory control, and market strategies into one
coherent workflow. The central idea is control co-design: decisions about equipment sizing,
operating policies, and bidding are made together so that the plant can support the grid during
fast events while also capturing value in electricity markets.

The methodology spans multiple time scales. At long horizons, the framework sizes battery
storage and sets reserve policies that determine how much headroom the wind farm keeps for
grid support. At operational horizons, it schedules power and energy across day-ahead and
balancing markets while accounting for uncertainty. At fast time scales, it tunes controllers to
shape the plant’s response to disturbances. Modern open-source tools are used for
optimization, scenario generation, and nonlinear problem solving, enabling transparent,
reproducible analyses.

To verify that the resulting designs work under real disturbances, the study performs detailed
time-domain simulations on a reduced model of the Western Interconnection. The test includes
four offshore wind farms connected to the grid. Two operating modes are examined:
conventional maximum power point tracking, which always maximizes wind output, and a
de-loaded mode that intentionally holds back power to create headroom for frequency support.
A severe contingency is applied by tripping the system’s largest generator at 60 seconds.

The simulations show that the co-designed operating point yields steady power injections
prior to the event and maintains stable behavior afterwards. Compared with the
energy-maximizing mode, the deloaded strategy lowers the lowest frequency dip, reduces
power spikes, and leaves sufficient margin to help the system recover. These findings confirm
that modest headroom, when coordinated with storage and appropriate controls, can materially
improve system resilience without sacrificing overall energy delivery.

The economic analysis complements the dynamic results. By coordinating bidding decisions
with storage dispatch, the framework identifies operating strategies that increase revenue and
reduce exposure to forecast errors. It also incorporates battery wear considerations, supporting
replacement planning and long-term value preservation. In combination, the market and control
insights enable the plant to contribute essential grid services while remaining financially sound.

The report offers concrete guidance for developers, operators, and planners. Key
recommendations include: adopt supervisory controllers that can switch between
energy-maximizing and support providing modes; hold calibrated headroom to meet frequency
and ramping needs; co-optimize storage size with reserve policies; and validate designs with
time-domain simulations representative of grid codes and regional conditions. Transmission and
interconnection assumptions significantly influence the results, so early coordination with grid
operators is advised.

In summary, the work delivers an end-to-end process that connects design, control, markets,
and high-fidelity validation for offshore wind integration. The approach is adaptable to hybrid
plants and regions, and provides a clear pathway to achieving dependable performance and
competitive economics as renewable penetration grows. Future work will expand validation
across weather regimes, refine market models for evolving products, and explore hydrogen or
long-duration storage as complementary flexibility resources for reliability.

Executive Summary
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Acronyms and Abbreviations

OWF Offshore Wind Farm

MTDC Multi Terminal Direct Current
BESS Battery Energy Storage System
POI Point of Interconnection

CCD Control Co-design

RSC Rotor Stator Control

DA Day Ahead Market

RT Real Time Market

Acronyms and Abbreviations vi
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1.0 Multi-Objective Control Co-design Using Graph-Based
Optimization for Variable Generation Grid Integration

1.1 Motivation

Offshore wind farms (OWFs) are gaining increasing attention worldwide for sustainable energy
development. In 2022, 8,385 MW of new offshore wind energy projects were commissioned
globally [1]. In the U.S., the offshore wind energy production capacity potential reached 52,687
MW in 2023, showing a growth of 15% [1]. With the increasing power extraction from OWFs, it
is crucial to develop capabilities for efficient power transmission. Most modern OWFs are
developed with multi-terminal DC (MTDC) grids utilizing modular multilevel converters (MMC)
due to their advantages over high-voltage alternating current (HVAC) lines. A detailed review of
MMC-MTDC grids can be found in [2]. Large renewable energy source integration introduces
challenges for AC-grid operators; a comprehensive discussion is presented in [3]. One widely
recognized approach to ensure power system stability involves battery energy storage systems
(BESS) and their operation and control [4].

BESS sizing on either the AC or DC side is an important decision during OWF
interconnection planning. A comprehensive review focusing on determining optimal sizing for
wind farm applications is available in [5]. Recent work by Halwany et al. [6] developed a
probabilistic approach for onsite energy storage sizing for OWF black start operations. However,
this work did not consider onshore BESS sizing and interconnection with an MTDC grid.
Santanu et al. [7] also proposed a multi-objective approach for battery sizing in OWFs,
considering economic and reliability objectives. This work developed a sequential approach for
handling multiple objectives but neglected battery controls and converter dynamics.
Moghaddam et al. [8] considered the BESS sizing problem for an onshore wind farm; however,
they used a sequential approach where BESS size was chosen first, followed by a control
strategy. To the best of the authors’ knowledge, no studies have simultaneously accounted for
the control operations of offshore wind farms while sizing BESS.

Conventionally, the design problem is solved first, followed by operational control
optimizations. However, many studies [9]-[15] have shown that such a sequential approach
results in suboptimal system performance. Control co-design (CCD) is a control system design
approach that considers the interactions between the control system and the underlying design
of the physical system. Comprehensive reviews of CCD and handling uncertainties in its
formulation are presented in [16] and [17], respectively. In this report, we aim to develop a CCD
approach suitable for BESS design for OWFs. Specifically, we are interested in developing a
CCD approach to handle the challenge of large system CCD with tight coupling among
subsystems (e.g., MMCs). We aim to develop a generalized framework to pose a co-design
optimization problem that can also handle subsystem-level coupling constraints during control
and design optimization. Furthermore, many energy system designs require satisfying multiple
objectives (e.g., low operation cost, minimal power loss). Few studies on co-design control
(CCD) considering multiple objectives have been conducted without explicitly identifying the
Pareto front [18]-[20]. Inspired by recent research on optimizing marine energy kites [21], we
propose a CCD approach that addresses multiple objectives to find Pareto solutions for
integrating offshore wind farms into the grid. Therefore, this report aims to address the
aforementioned research objective by developing the CCD approach using a graph-based
optimization framework. This framework enables scalability of optimization for large systems
and allows for formulating a subsystem-level co-design problem. Additionally, we develop a
gradient-based approach for handling multiple objectives to identify the Pareto set.

The remainder of this report is organized as follows: Section 1.2 discusses the proposed

Multi-Objective Control Co-design Using Graph-Based Optimization for Variable Generation Grid Integration
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Figure 1: A schematic for the graph-based optimization formulation. Each node defines a sub-
system with individual objective functions.

methodology for using graph-based optimization and the gradient-based multi-objective
optimization approach for Pareto set identification. Section 1.5 describes the OWF use case for
CCD and the developed optimization formulation. In Section 1.6, we discuss the results from
the approach, and present our conclusions and future work in Section 1.7.

1.2 Methodology

This section details the proposed methodology developed for performing CCD for OWFs
interconnected with an AC-grid through BESS.

1.3 Graph-Based Optimization

Graph-based modeling abstractions have recently been explored in convex optimization [22],
infrastructure networks [23], supply chain planning problems [24], and simulation of partial
differential equations [25]. The structures of these abstractions are directly tied to the physical
topology of the systems. Recent work by [23], [26], [27] has shown that optimization and
simulation for complex systems can be represented using a graph-based computational
framework. This provides a coherent strategy to capture modeling elements for a system, which
are often common in most engineering applications. Figure 1 illustrates the graph-based
representation of an optimization problem, consisting of a set of nodes and edges. Each node
represents an individual subsystem optimization model (with variables, objectives, constraints,
and data), and each edge captures connectivity between node models and coupling constraints.
Once constructed, the graph can be communicated to traditional or decomposition optimization
solvers (e.g., Gurobi or Ipopt). In the CCD problem for OWF connecting to an AC grid through
MTDC, the system topology of MTDC and AC grids is used to define the nodes and edges.
Each node corresponds to a subsystem-level representation. Details about the CCD formulation
and how to convert it to a graph-based model will be discussed in Section 1.5. Next, the
proposed gradient-based approach for solving multi-objective optimization is described.

Multi-Objective Control Co-design Using Graph-Based Optimization for Variable Generation Grid Integration
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1.4 Gradient-Based Multi-Objective Optimization

A gradient-based multi-objective optimization framework is proposed, inspired by the
weighted-sum method and the bi-level optimization algorithm in [28]. Given N objective
functions that can be split into n nodes, the weighted-sum combination of single objective
functions {f1, fo,..., fu}, {91,---,9n}, {h1,...,hn} can be written as:

min wi(fi+fo+...+ fn) +twagr +g2+ ...+ 9n)
+...+wn(hy+ha+ ...+ hy) (1)

where {f}, {g}, {h} are groups of individual objective functions within different nodes. The
proposed multi-objective optimization framework can then be applied to update the weights to
find the Pareto frontier, as detailed in Algorithm 1.

Algorithm 1 Gradient-based Approach for Multi-Objective Optimization
Set the step sizes § for updating w Solve the graph-based problem with initial weights wy =
(w1, w3, ...,wy) using Plasmo.jl for k=0 to K step 1 do
Update w with projected gradient descent wy,.; = proj v (Wi + 3hL,) Solve the graph-based
problem with updated weights wy. 1 = (w1, wo, ..., wy) using Plasmo.jl
end
return w = w(r), where 7 ~ U(1, ..., K)

As shown in Algorithm 1, the inputs of this algorithm include the initial values of weights wy,
step size /3, and well-defined multi-objective functions, e.g., (f1, f2,..., fn) and (g1, 92,-..,9n)
(N = 2). The weighted sum of the given objective functions can be written into an n-node
graph-based formulation as in (1). During iterations from k£ = 1 to K, the weights w are updated
by the step size 3 using the per-objective stochastic gradient estimates hk, = [Vw,f, Vw,g]. The
new weights are then projected onto the N-simplex defined by
AN = {w e R" :w; > 0,Vi € [N], >_ie[n] Wi = 1}. For each iteration, the problem is solved as a
single objective graph in Plasmo.jl. After K iterations, the algorithm’s output is uniformly chosen
from the generated Pareto frontier weights (wy, ..., wWg).

It is imperative to mention that while numerous conventional methods are available for
multi-objective optimization problems, the proposed gradient-based algorithm is chosen for
three primary reasons. Firstly, computational efficiency is a critical issue when solving
large-scale graph-based multi-objective optimization problems, especially when binary variables
are present. The graph-based formulation can be easily integrated into our proposed algorithm
for computing its projected gradient without losing convexity. Secondly, the proposed algorithm
supports vector-valued nonlinear objectives and constraints, which cannot be directly solved in
existing Plasmo.jl or JuMP multi-objective solvers yet. Finally, this approach is more scalable
for graph-based formulation when combined with Plasmo.jl for application in large-scale graph
networks.

1.5 Case Study: Offshore Wind Farm Interconnect

Our methodologies are applied to the well-known WSCC 9-bus system. Two OWFs are
connected to buses 4 and 6 through a four-terminal MMC-based MTDC network to transmit
wind power [29], [30]. Two BESS are attached to buses 4 and 6 to help reduce total cost and
improve system efficiency. The system structure is shown in Figure 2.

Multi-Objective Control Co-design Using Graph-Based Optimization for Variable Generation Grid Integration
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G2 Bus-3 Bus-6 Bus-7 Bus-8 Bus-2
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AC Grid __DBus®

Station-4
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Figure 2: IEEE-9 bus system interconnected with OWFs using MMC-MTDC grid.

OWFs with converters are treated as active power sources, and energy storage devices with
converters are modeled as active power loads or sources depending on their
charging/discharging operations. MMCs connecting AC and MTDC grids are simply modeled
with fixed coefficients [31], [32]. The original nonconvex formulation of our MTDC and AC
power flow CCD problem is relaxed to a second-order conic program (SOCP) [33], [34]. This
typically yields more accurate solutions than linear models and avoids local optimality issues in
solving nonconvex problems. SOCP can be solved by many optimization solvers or calculated
through decomposition algorithms.

Control Co-design Optimization Formulation

The following two objectives are considered in our model. This formulation can be easily
extended to include additional objectives.

B X R )

€S i€EBsc tET

+Y > PO m, P 2)

€S teT

min > S PRt > > g (i + i — 2cija)

ieC teT 1,JELAC tET

+ Y Y 9oy, Wi + vjje — 20i0) ©)

iJeLpo tET

The objective function (eq. 2) minimizes total cost, including BESS installation f¥(-), regular
generator fuel cost (), and BESS operation cost fF9(-). S, Bac, and T represent the index
sets of batteries, buses in the AC grid, and time intervals, respectively. In the cost functions,
BS,; is the size of BESS ¢; Pff and Pﬁfs are their charged and discharged power at time ¢,
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respectively; and Pﬁ and th are active and reactive power output of generator i at time ¢,
respectively. 7

The objective function (eq. 3) minimizes total power loss, including those in MMCs, AC grid
transmission, and DC grid transmission. In this objective function, C, £ ¢, and Lpc are index
sets of MMCs, branches of AC and MTDC grids, respectively. Variable Pfg’ss represents the
power loss in converter i at time ¢. Parameters g;; and gpc,; are conductances of AC and DC
branch ij, respectively. Variables c;;¢, vij¢, and s;;; (appearing later) are used for replacing
voltages of AC and DC buses to obtain SOCP relaxation. Specifically, if F; and F; are the real
and imaginary parts of voltage at AC bus i, and V; is the voltage at DC bus i, then
cij = BB+ FiFj, sy = EjF; — EjF;, and v;; = V;V;. Therefore, for each AC or DC branch, they
should satisfy the following relationship:

Cijt = Cjit, Sijt = —Sjit Vij € Lac, t €T (4)
Cijt + St < Ci5,4Cjj ¢ Vij € Lac, tE€T (5)
Vijt = Vjig, Vi < Vigvjje Vij € Lpo, tE€T (6)

For each bus ¢ at time period t, the following active and reactive power balance constraints
should be satisfied:

G D Conv ch dis __
Ph—Ph+ P =P+ Py =

Y (Gijeije — Bijsije) (7)
JjeBac
Qf, — Qi = - Z (Gijsijt + Bijcijt) (8)
jeBac

Here, parameters P£ and th are active and reactive power demand, and G and B are real

and imaginary parts of the AC grid admittance matrix. Variable PS°" is the active power
injection from the MMC. 7

Let V, and V; be the lower and upper bounds of the voltage at bus i. These limits can be
imposed as:

V2< iy <V: Vi€Bac, teT 9)

The active and reactive power output of generator i at time ¢ have the following ramping and
bound limits, where the left and right-hand side values are corresponding parameters:

—Ramp{~ < Pj, — P < Ramp; * (10)
—Ramp?_ < th_H — th < Ra,mpf2+ (11)
Pimin SPZ% < Pimax (12)
QMM <QF, < QP (13)

Similar to the AC grid, each MTDC bus ¢ at time t has a balance constraint, where Bp¢ is
the index set of buses in MTDC, PX,@’F is offshore wind power generation, Gp¢ is the DC grid

admittance matrix, and variable P£C is the power injected into the MMC:

PP —PRC = )" viGoe, (14)

Jj€BDpC
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Each MMC has three constraints: power balance, loss estimation, and voltage droop control,
presented below. The index ¢ on the left and right-hand sides represents the AC and DC buses
it connects, respectively.

Pigonv + Piﬁoss — PZQC (15)
Pi%oss — ﬁz ’PZQC (16)
(kiPi,Ctom +d;)? < vigy (17)

Here, 5 is the efficiency coefficient, and k& and d are droop control parameters.
Finally, we have the constraints for each BESS i:

hpch dis pdi
SCiy — SCip1 = 0" Py —ni* PY®
0< ch,? < P‘ch_male

(18)
p it (19)
0 < Pl < P - ziy) (20)
0<SC;; < BS; (21)
BSMN < BS; < BSMax (22)

Constraint (18) is the operation equation, where parameters n°* and 5% are charging and
discharging efficiency, respectively. Constraints (19-22) define limits for charging and
discharging rates, states of charge, and sizes, respectively.

In this problem, battery size BS is chosen as a design variable, and the remaining
operation-related variables are chosen as control variables. These include charged and
discharged power of batteries (P, P%*), active and reactive power output of generators (P¢,
Q%), AC and MTDC power flow related variables (¢, s, v in constraints eq. 4-6, eq. 14), and
power through MMC (pPConv  plLoss  pDCY

To convert this problem into a graph-based model, each AC/DC bus, AC/DC branch,
converter, and BESS is defined as a graph node. The linking constraints of the edges and
objective terms in each node are derived based on the above formulation. An eight-hour time
horizon is considered for the problem. The resulting graph is shown in Figure 3, with each color
representing an hour. The graph’s structure illustrates nodes with associated decision variables
connected sequentially in time (sequential hours). Selecting one of the hours on the graph
(circled in black) shows the linking constraints among different components, including the same
components of the system.

1.6 Results

DC grid branch data is presented in Table 1. Converter droop control and efficiency parameters
are k = 0.02, d = 1, and 3 = 0.03. Battery minimum (BS™") and maximum (BS™®) capacities
are 20 MWh and 120 MWh, respectively, and their initial and minimum states of charge at the
last hour are set to half of BS™". Battery charge and discharge efficiencies are 0.8 and 1.1,
respectively. Nominal wind farm (WF) outputs are set as 40 MW and 50 MW, respectively.
Nominal load and generator cost functions are taken from the 9-bus system data. In each hour,
WF output, nominal load, and fuel cost are multiplied by the factors provided in Table 2. The
problem is formulated in Julia programming using JuMP and Plasmo packages, and solved by
Ipopt and Juniper on a laptop with an i7-12800H CPU and 16GB RAM.
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Figure 3: The graph-based co-design optimization problem visualization for the IEEE-9 bus-MTDC
use case. Each color indicates a time snapshot of the complete system described as a graph
node for 8 hours.

Table 1: DC Grid Branch Data

From To R(p.u.) ‘ From To R(p.u.)
1 2 0.0016 2 3 0.0048
1 4 0.0048 3 4 0.0042

1.6.1 Single Objective Function

Only the objective function (eq. 2) for minimizing total cost is considered initially. The results,
obtained by setting each of the two batteries with fixed sizes ranging from 20 MWh to 120 MWh
in 10 MWh increments, are shown in Figure 4.

By setting battery sizes as decision variables, total cost is minimized with an optimal solution
of 26.5 MWh and 93.2 MWh. The time for solving this problem is approximately 45 seconds,
whereas solving all 11 problems with fixed battery sizes takes almost 15 minutes in total.

To better understand how batteries reduce total cost, their hourly operations are investigated
in detail. In Figure 5, the total charging (positive)/discharging (negative) power and state of
charge of the batteries are shown by solid lines in the sub-figures, respectively. This includes
results with 11 fixed battery sizes and that of CCD by setting battery sizes as decision variables.
Dashed lines represent relative load and generation cost levels in Table 2. "BS” in the legend
stands for "Battery Size”. When load and generation costs are low, such as in the first and last
few hours, batteries are charged. This charged power is then used to satisfy demand when
load and cost are high. By transferring load from peak to off-peak hours, the total cost is
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Table 2: Load, Wind Farm Output, and Cost Levels

Hour 1 2 3 4 5 6 7 8

Load 09 11 125 14 155 13 115 1
WF Output 1 095 1.05 09 085 1 1.1 0.95
FuelCost 11 09 13 15 18 16 14 14

58900 1
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58825+

Total Cost ($)

58800 | ° °

58775} e

! s ° . !
25 50 75 100
Battery Sizes (MWh)

Figure 4: Minimum total system costs with different battery sizes.

reduced. By choosing the best battery sizes based on single-objective control co-design, the
model can balance the cost of battery installation, operation, and power generation.

Since batteries transfer load from peak to off-peak time to reduce cost, it is intuitive that
different load levels may require different battery sizes. The total cost of the system is
calculated based on these 11 fixed battery sizes, considering demand levels between 98% and
104% of the original nominal demand. The results are shown in Figure 6. As the load
increases, the optimal battery sizes for achieving minimum total cost also increase. On one
hand, higher demand may require larger battery capacities for transferring load from peak to
off-peak hours. On the other hand, higher generation costs resulting from larger loads allow for
larger budgets for battery installation and operation.

1.6.2 Multiple Objective Functions

In this subsection, both objective functions (eq. 2) and (eq. 3) are minimized together. Initially, a
linear scalarization approach is adopted to find the Pareto front by defining individual objective
weights. Figure 7(a) compares the Pareto fronts derived from fixed battery sizes with those
obtained using the CCD approach. The dashed lines depict the fronts for fixed sizes,
intersecting in certain regions, indicating that optimal battery sizes for one objective may be
suboptimal for others. In contrast, the solid black line, representing the CCD approach,
consistently remains below the dashed lines, signifying a non-dominated solution. This
indicates that the CCD approach achieves the lowest total cost for a given level of power loss
or the least power loss for a given total cost.

Three points on the Pareto front identified through CCD (refer to Fig. 7(a)) were selected.

Multi-Objective Control Co-design Using Graph-Based Optimization for Variable Generation Grid Integration
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Figure 5: Different battery sizes and relative cost/load levels in each hour (a) Battery charg-
ing/discharging operation (b) Battery state of charge.
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Figure 6: Total system cost for different nominal demand and battery sizes.
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The endpoints of the curve represent optimization for a single objective, whereas the midpoint is
the Pareto optimal solution that balances both objectives. Figure 7(b) illustrates the battery
operation at these three points. When minimizing power loss, battery usage is highest;
conversely, it is lowest when minimizing total cost. The Pareto optimal solution operates the
battery at a level that compromises between minimizing power loss and total cost.

65 (a) (b) 100

= Min Total Cost ——CCD-BS " — —LoadLv ——Min Power Loss s
E BS 20 MWh o 257 CostLv Pareto Optimal Point E
n 6.7 —— BS 40 MWh $ ——Min Total Cost o
n BS 60 MWh i o
9 ~—~BS80MWh | = 20 =
. ——BS100Mwh| 2 =
g 6.6 BS 120 MWh| g (@]

>
no_ 'g 10 E
Y 6.5 \ © 5
o N | . 7] m
g \{.Pareto Optimal Point 8 =
Z 6.4} | ‘ ‘ Min P‘f!"i";‘{jf | . | 1-50 §
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Total Cost ($1073) Time (h)

Figure 7: (a) Pareto front of two objective functions with fixed battery sizes and CCD. (b) Battery
charging/discharging operations in the three selected solutions on the Pareto front.

Algorithm 1 is applied with different numbers of iterations K = 10, 30, 100, to identify weight
combinations for the Pareto front, as shown in Fig. 8. The zoomed view shows the algorithm
sampling in the region of maximum change.

Objective value space

o
N

o
o

6.5

Total Power Loss (MW)

o
EN

— S —————

60 62 64 66
Total Cost ($107°3)

Figure 8: Pareto front of two objective functions with different iterations K.

State-of-the-art multi-objective optimization methods like evolutionary and swarm-based
algorithms are effective but become computationally expensive with larger problems. The
graph-based optimization outperforms these methods, offering faster computation and fewer
iterations. Applied to the IEEE-9-bus system, it computes the Pareto front with impressive
efficiency: for a resolution of K = 100, it takes only 17 minutes, and for K = 10, just 79.9
seconds. This is significantly quicker than traditional solvers like IPOPT, which take over 150
seconds for the same task.
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1.7 Conclusions

This study introduces a graph-based, multi-objective CCD method for optimizing storage sizing
in an AC-grid linked to OWFs via MTDC, considering power generation and transmission
controls. Results indicate that energy storage can shift demand to off-peak hours, reducing
costs, with larger storage preferred for higher demand. A gradient-based framework was used
to identify the Pareto Front for minimizing cost and power loss, revealing variable optimal
energy storage solutions. Future work will apply this CCD to larger systems and incorporate
offshore wind variability, demonstrating the advantages of graph-based optimization.

1.7.1 Validation of Control Co-design Offshore Wind Farm Using Simulations
(PSCAD)

In Figure 19, the droop control variable £k at COTWDPGE for scenario 80 in case CCD18-3 is
plotted. The pink band illustrates the distribution of k& droop for all scenarios. For most of the
time, the ESS variable is at its upper limit. By adjusting the droop status of the wind farm and
ESS, the system optimizes its output while ensuring sufficient reserve for frequency support.
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Figure 9: Droop control variable k£ at COTWDPGE for scenario 80 in case CCD18-3.

To further validate the dynamic performance of the co-design results, a time-domain
electromagnetic transient (EMT) simulation was conducted using PSCAD [35]. Both Maximum
Power Point Tracking (MPPT) and de-loading control strategies were integrated and tested
under the scenario of losing the largest generator at Palo Verde, Arizona, at 60 seconds, which
had an output of 2182.3 MW before tripping. Additional details on the PSCAD model can be
found in E. Transient trajectories of power and frequency, depicted in Figures 20(a-b) and 20(c),
were then analyzed to verify the stability and effectiveness of the co-design results.

Overall, the miniWECC system integrating OWFs remains stable both before and after a
generator trip on the main grid. Prior to the 60-second mark, the steady-state output of the four
OWFs shows only minor differences compared to the co-design results. After the disturbance,
the power output and the increase in power are both smaller than those of the MPPT curves,
indicating sufficient headroom. Additionally, the frequency nadir is lower when the OWF
operates in MPPT mode without providing frequency support. Consequently, the co-design
approach demonstrates superior transient performance, which is crucial given the increasing
penetration of wind and other inverter-based resources.

Multi-Objective Control Co-design Using Graph-Based Optimization for Variable Generation Grid Integration
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Figure 10: Power curves of 240-bus miniWECC system in PSCAD: (a) OWF; (b): BESS (c) POI
frequency curves of 240-bus miniWECC system in PSCAD.

1.7.2 Conclusions and Future Work

Simultaneous consideration of operations, controls, and market participation during the planning
of renewable energy systems, such as offshore wind farms, can achieve long-term reliability
and optimal performance. Incorporating various uncertainties into the decision-making process
enhances overall system resilience. In this report, a multi-timescale, multi-stage stochastic
control co-design methodology is developed and presented. This approach models the
multi-timescale nature of energy market participation and addresses uncertainties associated
with renewable resources and prices at the interconnection point for revenue maximization. The
approach is demonstrated using an offshore wind farm grid integration use case. Here, the
sizing of HVYDC power export cables from offshore to onshore is optimized as part of the
process to prevent under-sizing and over-sizing, which could significantly impact project
investment costs. Furthermore, energy storage sizing is considered, addressing grid
stabilization needs and incorporating market participation. Both offshore wind farm and energy
storage participation in ancillary service markets are evaluated for additional revenue
opportunities for wind farm owners. The proposed control co-design approach optimizes cable
and energy storage sizing, and market participation with droop parameters, showing improved
annual revenue for five different capacity wind farms studied. A scenario tree-based stochastic
formulation incorporates uncertainty. Additionally, the framework allows for the evaluation of
various inflation rates and the implications of energy storage on overall revenue. The study
provides validation for droop control parameters through transient PSSE simulations of an
offshore wind farm integrated with the miniWECC AC grid model, showing comparable reserve
values and performance in meeting the integrated power grid's frequency requirements.

Currently, reliance is placed on historical wind speed and price data, as offshore wind farm
development in the U.S. is still maturing. Future efforts could enhance price data estimation
using detailed production cost planning with offshore wind farms and consider futuristic climate
scenarios for wind speed data. Furthermore, different network topologies (e.g., meshed) could
be explored for power wheeling, with incentive designs providing additional revenue streams for
offshore wind farm owners. The study can also be expanded by including additional
substation-level design and control variables and incorporating reduced-order models of
dynamic converter-inverters. As energy market participation becomes increasingly important for
future renewable energy developers, the proposed framework could be extended to

Multi-Objective Control Co-design Using Graph-Based Optimization for Variable Generation Grid Integration
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next-generation energy market models to estimate revenue and develop participation strategies.
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2.0 Control Co-Design for Variable Generation Grid
Integration with Energy Storage and Energy Market

2.1 Motivation

Offshore wind farms (OWFs) are pivotal to the global transition towards sustainable energy,
harnessing higher wind speeds over open seas. This has driven their rapid international
expansion. Over the past two decades, the offshore wind industry has achieved significant

technological advancements, such as floating platform turbines and efficient generation systems.

These innovations have notably increased wind farm capacity, efficiency, and extended their
reach to deeper waters. The U.S. offshore wind energy pipeline grew by 53% in 2024 compared
to the previous year, with marked expansions on both the East and West Coasts [36].

As OWF development and grid integration advance, enhancing U.S. grid capacity becomes
crucial [37]-[39]. Robust transmission infrastructure, such as High-Voltage Direct Current
(HVDC) cables, is essential for efficient long-distance power transfer. HVDC systems offer
lower energy losses than Alternating Current (AC) systems, making them ideal for remote
offshore wind farms. Voltage Source Converters (VSC) [40] and Modular Multilevel Converters
(MMC) [41] are key components for designing multi-terminal HYDC (MTDC) systems.

The design and operation of the MTDC network, which includes offshore substations and
electrical cables, are critical for efficient OWF integration and can significantly impact system
costs. This study focuses on cable size design to maintain problem tractability. Assessing cable
size in conjunction with operational strategy helps prevent under-sizing or over-sizing of
transmission cables, directly influencing MTDC network costs.

Beyond MTDC network design, ensuring system stability is vital. Properly sized energy
storage systems (ESS) with operational controllers provide flexibility and improved
dispatchability [4], [37], [42]. The role of ESS in wind energy is reviewed in [5], with offshore
applications benefiting from onshore ESS deployment due to economic and grid service
considerations [43], [44].

As the energy mix evolves, OWFs must meet strict grid codes and provide ancillary services
beyond capacity markets to ensure grid stability [45]. Market volatility affects renewable
resource participation [46], [47]; however, larger projects can achieve enhanced profitability.
OWFs can explore new revenue streams by actively participating in energy and ancillary
service markets, enabled by technological advancements in power electronics [48], [49].
Farm-level control is crucial for profit maximization [50], and hybrid systems with storage offer
significant opportunities in ancillary markets [51], as highlighted by Eguinoa et al. [52].

Related Work Optimization-based models for onshore wind farms with energy storage to
participate in multiple energy markets have been extensively studied [53]-[56]. Notably, Hou et
al. [57] were among the first to explore OWF market participation with energy storage, though
their work focused on operational optimization without considering energy storage sizing.
Recently, Bechlenberg et al. [58] addressed energy storage sizing for OWFs optimized for
multiple electricity markets. Their work highlights the benefits of integrating OWFs with energy
storage, employing a model predictive control approach to manage storage levels and correct
prediction uncertainties. However, their ad-hoc approach to electric component sizing, such as
cable capacity, could lead to sub-optimal system performance and excessive costs.

Varotto et al. [59] proposed an optimization strategy to evaluate economic benefits through
optimal sizing and energy management of Battery Energy Storage Systems (BESS) for hybrid
wind-solar offshore farms. A subsequent study [60] framed a multi-objective optimization
problem to assess different storage technologies and locations, yet fixed storage sizes and
overlooked control tuning for market participation.

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market
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Frequency support for the power grid from renewable sources such as OWFs is increasingly
vital. This support can be delivered through wind turbines and integrated substations
(VSC/MMC-HVDC) with proper control designs [61], [62]. We review control schemes and
combinations extensively studied in the literature, particularly critiquing those in [61] for fixed
sizing assumptions. Through analysis, we identified optimizing control parameters that could
enhance OWFs’ energy and frequency support participation alongside energy storage design
sizing [63].

Our study focuses on doubly-fed induction generator (DFIG) wind turbines with deloading
control, which offers significant kinetic energy storage for frequency support with an appropriate
controller design. The deloading controller design aims to reserve a margin for grid support
when needed. Rotor-Side Control (RSC) and Pitch Angle Control (PAC) control designs for
DFIG turbines are discussed in [64]-[66], with coordinated control strategies detailed in [66],
[67]. RSC is preferred for its response speed, particularly with over-speeding for safe
operations. Our work examines the primary frequency support of wind farms using an
RSC-Droop control strategy.

Contributions: Our literature review identifies two groups of studies: one focusing on
design sizing and market participation but neglecting control parameter optimization, and the
other emphasizing control design with fixed system design. We advocate for the simultaneous
optimization of design sizing and control to improve OWFs’ performance as energy market
participants. This approach has shown promise in various engineering fields [16], including
offshore wind turbines [68], wave energy converters [69], and Energy-Harvesting Ocean Kites
[70]. Control co-design offers optimal performance in hybrid renewable systems [71], and new
market participation formulations for hybrid systems have been proposed [72], [73]. These
works highlight the importance of market participation in comprehensive assessment and
planning, as emphasized by Eguinoa et al. [52]. Our work proposes a control co-design
approach for optimizing OWF design and control parameters, focusing on market performance.

We extend the multi-timescale formulation from earlier studies [73]-[75] to a multi-timescale,
multi-stage stochastic control co-design formulation. This accounts for offshore wind and energy
price uncertainty. Addressing uncertainties is crucial for variable energy resources like OWFs.
We introduce an optimization formulation to evaluate market participation under uncertainty,
considering cable size and onshore energy storage capacity as primary design variables. We
also optimize the turbine rotor speed droop-gain parameter and use a droop-based controller to
integrate energy storage in reserve markets. This study fills a gap by integrating design and
operational planning for OWFs with energy storage, assessing developer revenue. Additionally,
we include a post-hoc validation step for the optimized droop gain control. The OWF model and
AC-Grid Mini WECC models were developed in a transient EMT-based simulation platform,
PSSE. A contingency scenario on the AC grid was simulated to compare estimated reserves
against PSSE simulations with optimized droop parameters.

The report is organized as follows: Section 2.2 defines the problem statement and details
the OWF case study. Section 2.3 outlines the mathematical models and control co-design
optimization problem formulation for each step of the multi-scale simulation framework. Section
2.4 presents results, analysis, and validation against the baseline control co-design solutions
under different inflation rate considerations, highlighting the role of energy storage sizing and
operations. Section 2.4.7 summarizes findings, limitations, and future opportunities.

2.2 Problem Definition

This section examines the control co-design of a proposed OWF on the U.S. West Coast. This
OWF is connected to an onshore point of interconnection (POI) via an HVDC cable configured

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market
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Figure 11: Schematic of the optimized wind resource area and radial interconnection shown with
tabulated details about individual farm capacity, POI location and distance from onshore.

in a radial topology. The system’s topology is illustrated in Figure 11. The choice of the U.S.
West Coast use case is inspired by the research conducted by Douville et al. [76]. An ESS is
considered for installation onshore to support the OWF’s operations and facilitate energy
exchange with the grid [77]. The system, comprising the OWF and ESS, participates in the
California Independent System Operator (CAISO) electricity markets, including day-ahead (DA)
and real-time (RT) energy markets, as well as ancillary service markets by providing upward
and downward reserves. For brevity, detailed discussions of these markets are omitted, but
further information can be found in Harris et al. [77]. Figure 11 presents the coordinates of the
POIs and OWFs, their distances, and the rated power of the OWFs, based on the use cases
proposed by Douville et al. [76].

The physical design of the system emphasizes the sizing of the ESS and the HVDC export
cables (interties). The primary objective of the control co-design is to minimize installation and
material costs while maximizing revenue from energy and ancillary service markets throughout
the ESS’s operational lifetime. System operations consider power transmission through the
HVDC cable and ESS charging/discharging capabilities. Control parameters, specifically the
droop control parameters of the OWF and ESS, ensure stable and reliable power and service
delivery. In this approach, both the OWF and ESS jointly provide the reserve. Furthermore, it is
assumed that when the ESS is utilized for reserve provision, it only needs to do so for brief
periods, thus minimally affecting the ESS’s state of charge (SoC).

To address the challenge of uncertainty in decision-making, this problem is structured as a
multi-stage stochastic optimization aimed at minimizing the system’s expected net cost. The
scenario tree, based on forecast or historical day-ahead (DA), real-time (RT), and up/down
reserve prices, in addition to wind speed data, will be thoroughly discussed in Section 2.3.4.

2.3 Methodology

The schematic of the proposed methodology is shown in Fig 12. The methodology and
framework are developed generically such that they can be applied for the simultaneous design
and operational control of various energy systems, considering market participation. In this
report, the proposed methodology will be described for the control co-design to enable energy
market participation of the OWF with ESS. The following subsections present and discuss the
details of individual steps outlined in the schematic diagram.

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market
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Figure 12: Schematic of the workflow for the proposed multi-time multi-stage stochastic control
co-design methodology

2.3.1 Design and Control Decision Variables

Design Variables: The increasing penetration of renewable energy introduces variability and
uncertainty, posing stability challenges for power system operations. ESS are effective and
widely studied solutions to address these challenges. Proper sizing and optimal operation
strategies of ESS integrated with renewable energy systems have shown promising results in
enhancing the stability, controllability, and reliability of power systems. Various ESS
technologies for wind power integration exist, including pumped hydro storage, compressed air
energy storage, flywheel energy storage, and BESS.

In recent years, BESS has experienced significant cost reductions and performance
improvements. Due to their rapid response time, high efficiency, substantial power and energy
density, and convenient siting capability, BESS are widely used for renewable energy integration.
Therefore, this study focuses on the design and sizing of lithium-ion batteries as an onshore
integrated energy storage technology for OWFs. The PNNL-curated energy storage database
[78] is utilized to provide cost and performance estimates for battery storage technologies.

OWFs are large-capacity energy resources that require efficient power transfer to onshore
facilities. Export cable design and sizing are crucial for long-term reliable operations. OWFs,
connected to onshore POls via export cables, can benefit from interconnection or inter-linked
export cable topology, as discussed in [38], [76]. These connections enable participation in
multiple energy markets or facilitate power wheeling [79] from one region to another to avoid
power curtailments. Consequently, sizing export cables solely based on OWF capacity may not
be optimal in all scenarios. In this study, cable sizing is considered another design decision
variable, accounting for market participation. For simplicity, a radial topology connecting OWFs
to onshore through subsea export cables is considered, though the framework can
accommodate other connection topologies with minor modifications. The optimization of export
cable routing, environmental conditions, or geographic factors are not included in this
formulation. Furthermore, dynamic thermal limits, cable aging, and reliability under varying
operating conditions in the problem formulation are beyond the scope of the current work.
Cable capacity size ranges and associated costs for the optimization problem were identified
using data from [38], [76], [80]. This study does not consider design sizing for onshore and
offshore converter-inverter substations or any other devices; thus, costs associated with such
systems are held constant.

Control Variables: Doubly-fed induction generator (DFIG) turbines with partial-scale power

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market 17
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electronic converters in their rotor circuit are employed, while the stator is directly connected to
the power grid. DFIG-based turbines offer various advantages over fixed-generator
technologies, including speed control within limited ranges, improved energy conversion
efficiency, and active and reactive power capabilities. The control system for DFIG-based
offshore wind turbines, depicted in Fig. 13, comprises two principal components: Grid-Side
Control (GSC) and Rotor-Side Control (RSC). The GSC is responsible for maintaining the DC
voltage across the converters by adjusting the active power dispatched to the grid and regulates
AC voltage through reactive power control. Conversely, the RSC maintains rotor-side AC
voltage and optimizes power extraction from wind conditions.

Grid
Network

Wind turbine

RSC GSC
I@
+

R Machine-side
LVRT Design control PWM
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| DC chopper |
_‘ |_

Filter

| Current Control I:: i‘;
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Figure 13: The control diagram of an offshore wind turbine, highlighting the Rotor-Side Control
(RSC). The droop gain (k) associated with the RSC controller is optimized to provide the required

reserve for primary frequency market participation.

To enhance primary frequency support, the RSC employs a de-loading strategy, establishing
a supplementary power reference in response to grid frequency variations. This approach is
formalized by the droop relationship outlined in Equation (23), which allocates a power reserve
AP from the maximum power point to counter frequency deviations on the grid, in accordance

with the guidelines specified in [67].
AP:kAf:%Af (23)

where R denotes the speed droop parameter used to share common load changes among

multiple generator units.
Despite implementing droop control in the RSC, offshore wind turbines cannot provide

frequency support under low or no wind conditions. To overcome this limitation, each OWF is
paired with a Grid-Forming Lithium-ion BESS and equipped with a primary droop controller to
ensure continuous frequency support capability [81], [82]. The droop controller follows the same
frequency support logic as outlined in (23), with its droop gain & jointly optimized alongside the

RSC'’s droop gain.

2.3.2 Energy Market: Day-Ahead, Real-Time, and Reserve

The system participates in Day-Ahead (DA), Real-Time (RT), and ancillary service markets.
Before each day begins, operators determine the power allocation for the DA market based on
its price, without prior knowledge of RT, up/down reserve prices, or wind speed. Throughout the
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day, power and reserve allocations for the remaining markets are adjusted based on observed
prices and weather conditions at each time step. In this study, a one-hour interval is assumed
for the DA market, and a 15-minute interval for the other markets. The OWF typically allocates
most of its power to the DA market, while the RT market is primarily used to mitigate
mismatches between DA market participation and actual power generation. The formulation
does not explicitly model penalties for under-performance in the day-ahead market, though
such penalties are implicitly reflected through changes in revenue.

Predicting market power prices and wind speeds is beyond the scope of this report; thus,
historical data is utilized for simulations. CAISO price data for the NP15 region from 2018 and
2022 were retrieved from the CAISO OASIS Portal. The CAISO’s OASIS API offers real-time
and historical data on Locational Marginal Prices (LMPs) for both DA and RT markets. This
data includes various market metrics such as energy prices, congestion costs, and losses,
updated frequently, with some available on a sub-hourly basis. The year 2018 represents a
typical period before the COVID-19 pandemic, while 2022 is the latest year with both price and
wind speed data available. Probability density functions of DA and RT market prices for these
two years are illustrated in Figure B.1(a-b), showing a significant energy price increase in 2022
due to rising natural gas costs [83]. The impact of high prices on system design and operation
will be discussed in Section 2.4.

2.3.3 Uncertainties Affecting Offshore Wind Farms

The development and operation of OWFs encounter significant uncertainties that affect their
safety, security, and overall viability. Wind speed and market price are primary factors among
these. These uncertainties directly impact the OWF’s output and system revenue, thus
influencing the required size of the ESS and its capacity. Additionally, effective management of
power injection into the DA market, OWF and ESS droop control parameters, and ESS
operation is essential to ensure stable and reliable power supply while maximizing total profits.

Numerous optimization strategies address the challenges posed by these uncertainties in
wind farm planning and operation. Techniques such as stochastic optimization [84], robust
optimization [85], and distributionally robust optimization [86] have been applied. Considering
that the lifespan of a BESS typically exceeds ten years, evaluating the long-term expected
revenue of the OWF yields more effective design outcomes. Furthermore, design and market
participation decisions are often not made simultaneously. Therefore, a multistage stochastic
optimization framework is employed for this problem, which assesses uncertainties at various
decision-making stages and optimizes the overall expected performance.

2.3.4 Scenario Generation Scheme

The scenario generation process is essential for modeling and optimizing the performance of
offshore wind farms (OWFs), enabling robust decision-making under uncertainty. This process
involves creating representative scenarios for key variables like wind speed and energy market
prices, capturing their inherent variability to facilitate effective optimization and control. The
scenario generation scheme is designed to balance accuracy with computational tractability
through a structured approach.

The methodology begins with the collection and normalization of historical data. Appropriate
probability distributions, such as the Weibull distribution for wind speed, are then identified, and
their goodness-of-fit is validated using statistical methods like the Kolmogorov-Smirnov test.
Subsequently, Monte Carlo simulation is employed to generate a large set of scenarios by
sampling from the identified distribution. To maintain computational efficiency, this extensive
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dataset is reduced using clustering techniques, which group similar scenarios to select a
representative subset.

These generated scenarios are then applied to optimize OWF layouts and operations. By
simulating various configurations under these conditions, robust designs that maximize energy
production and market participation while minimizing risk can be identified. A simplified block
diagram of this scheme is presented in Figure 14, with detailed algorithmic descriptions
provided in appendix-D as Algorithm 3.
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Figure 14: (a) Scenario generation scheme for offshore Wind Farm Optimization. (b) Schematic
scenario tree with defining the multi-stage decision variables.

2.3.5 Multi-time, Multi-stage Stochastic Control Co-design Formulation

This section discusses the details of the proposed control co-design multi-time scale,
multi-stage stochastic formulation. The development of this methodology has been emphasized
earlier in Section 4.1.

2.3.6 Multi-scale Formulation

It is common for different markets to clear at varying frequencies, and wind speed forecast data
may not align with these markets. In this report, DA price and wind speed data are considered
hourly, while RT and up/down reserve prices are provided every 15 minutes.

Following [74], T1 = {1,2,...,24} and T2 = {1,2,...,96} are used to represent the index
sets of each hour and each 15-minute interval in a day, respectively. Additionally, the set
To1(t) ={4(t—1)+ k| k= 1,2,3,4} contains all four 15-minute indices in hour ¢. This approach
can be easily extended to accommodate more time scales and other time resolutions.
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2.3.7 Multi-stage Formulation with Random Variables and Uncertain Parameters

There are three stages in this problem: design, DA, and RT. Random events at DA and RT
stages are represented as wP” and wRT, respectively. When making the design decision, no
uncertain parameter is observable. At the DA stage, DA price APA(wPA) for the next 24 hours is
cleared and known. At the RT stage, all other uncertain parameters are revealed, including
wind power POWF (PA (RT) extracted from OWF by maximum power point tracking, RT price
ART(WPA WRTY up reserve price AResY(WPA LRT) ‘and down reserve price AReSD (WPA (WRT),

2.3.8 Control Co-design Formulation

This section provides the detailed formulation of the problem. Let E, (X) denote the
expectation of X over all scenarios of w. The model is as follows:

min R ()\EszE + )\Cszc) — RYearEwDA []: (SZE, szC;wDA)] (24)
st 0<s2F<005PVR 5:C>0 (25)
(92 — 93)

In the objective function (73), the first term represents the installation cost of the ESS and
HVDC transmission cable, while the second term is the present value of the expected revenue
from the OWF over the lifetime of the ESS. Specifically, R® s a tax credit coefficient for new,
qualified clean energy properties. Coefficients AE and AC represent the unit costs of ESS and
cable, respectively. Variables szF and szC denote the rated power of ESS and HVDC cable,
respectively. RY®? is an annuity factor that converts expected daily revenue to present value
over the ESS’s lifetime. If the ESS has a lifetime of Y years and the inflation rate is r, then

RYea — 365 (izﬂj);l. Constraints (25) limit the ESS to below 5% of OWF rated power PWFR 1,
This limit allows for sufficient battery size exploration while accounting for the cost of larger
batteries. Constraints (92-93) pertain to the ESS’s expected SoC at the end of the day and its
expected operational cycles, which will be discussed later.

For given rated power of ESS and HVDC cable (szF, s2C) and a realization of DA scenario

wPA, F (s2F, 526, wPA) calculates the daily revenue of the OWF as follows:

F (SzE, szc; wDA> = max Z )\PA (wDA) p¥VD
teTh
+ Eyrrjon [0 (525,528, pPYP5 PR, W) | (26)

The first and second terms represent DA and expected RT stage revenues, respectively.
Variable p!'P represents the power traded to the DA market at time . For given rated power of
ESS and HVDC cable (szF, s2©), power traded to DA market p**P, and realizations of DA
scenario wPA and RT scenario wRT, G(s2F, s2C, pWP; wPA WRT) calculates the RT stage revenue

of the OWF. Its objective function is:

max > ART <wDA’wRT) IR 43 AResU (WDA’WRT> <ptReswu _|_p5esBU)

teT teTs
+ Z A?eSD(wDA,wRT)(pseSWD +p$eSBD) (27)
teTs

'Considering the large capacity of OWF, a higher percentage value would limit practicability and require additional
analysis beyond the scope of this work.
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These three terms calculate RT, up reserve, and down reserve revenues, respectively. Variable
p{'R represents the power traded to the RT market at time t; pR®sWU and pRResBY denote the up
reserve provided by OWF and ESS, respectively; and pResWP and pResBD gre the down reserve
provided by them.

Problem G(s2F, s2C, pWP; wPA WRT) is subject to a series of constraints. The power at the
onshore and offshore sides must be balanced and transmitted through the HVDC cable.

Pr = Vi, (Vig, — Vau,)g V1 € Ti, t2 € Tor(t1) (28)
(p?f —th) (p;/XR +P¥YD) =Vat,(Var, —Vigy)g YVt € Th, ta € Ta1(t1) (29)

1 (Vig(Vig — Vau)g +pReW) < s:C vt e o (30)
Lgvmgm Vie{l,2}, teTs (31)

In these constraints, parameter g is the conductance of the transmission cable; V, and V; are
the lower and upper voltage limits of bus i, respectively. Here, i = 1 refers to the offshore bus
and i = 2 refers to the onshore bus. At each time ¢, variable p}¥ represents the power actually
generated by the OWF; V;, is the voltage of node 4; p* and p¢" denote the discharged and
charged power of the ESS, respectively. Constraints (79) and (80) ensure the power balance on
the offshore and onshore sides, respectively. Constraint (81) limits the power transmitted
through the HVDC cable, accounting for a 10% additional factor of safety. Voltage limits are
imposed by constraint (82).

As stated in Section 2.3.2, the RT market is primarily used to mitigate the difference
between DA market participation and actual OWF generation. To prevent excessive power
trading in the RT market to exploit price differences between these two markets, the following
limits are imposed:

p)’;’R < max{Pt?WF(wDA,wRT) - PSWF(wDA), 0} Vt1 € Ti, t2 € Tai(t1) (32)

pry = min{ PR (PR, WRT) — POVF(WPR), 0} vt € T, 1 € Taa (1) (33)
Here, POWF(WPA) = B _rr[POWF(wPA,wRT)]. These two constraints ensure that the power traded
in the RT market remains within the difference between the actual and expected wind power in
each DA scenario.

Considering up and down reserves, the OWF’s actual output should stay within the following
range:

ptl _|_pResWU < POWF( DAvaT> \V/t]_ c 717 t2 c 7‘21(251) (34)
P, —pEeSWD > 0 th (S 7-1, to € 7—21 (tl) (35)

As discussed in Section 2.3.1, the following droop relationships apply when the OWF and
ESS provide fast frequency support:

PRESWU _ pReSWA (U vy o 7 (36)
p?eSWD kfesw A fr?ax VieTs (37)
pRESBU _ pResBA (U vy o T, (38)
pResBD — pResBA £D vy o T (39)
k™ > POV (WP WRT) [ Rinas Yty € Th, t2 € Ta(t1) (0)
ktRzesW < Pt?WF(wDA,wRT)/Rmm Vi1 € Ti, t2 € Tai(t) (41)
525/ Rinaz < ko> < 525/ Ryin VE € T 42)
ktheSW i kgesB > Pt?WF(wDA,wRT)/Rall Vt1 € Th, to € Ta1(t1) (43)
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Parameters AfU. and AfE  represent the maximum up and down frequency deviations under
planned disturbances, respectively. Variables kResW and kRSB are the droop control parameters
of the OWF and ESS, respectively. Constraints (36-39) allocate up and down reserves to the
OWF and ESS based on droop control parameters and maximum frequency deviations.
Constraints (40-43) limit the percentage of OWF and ESS primary frequency support.
Additionally, constraint (43) ensures that each OWF, when combined with its ESS, provides joint
mandatory primary frequency support to the main grid.

The ESS has the following dynamic and state constraints:

S0C; — SoCy_1 = (n°MpSh — ndspdis)TIendth vy ¢ T\ {1} (44)
SoC — 0.552EDurH = (n°"psh — ndisp?is)Tgength (45)
p%h +p5esBD < szE Yt € 7~2 (46)
pgis +ptResBU <sF VteTs (47)
0 < SoC; < szFDurH Vi e T3 (48)

Parameters 1°" and %S represent the charging and discharging efficiency of the ESS,
respectively; DurH denotes the duration hour of the ESS; 75" is the time length of the time
indices in set 73, which is 1/4 hour here. Variable SoC; is the state of charge of the ESS. The
ESS is assumed to be initially half charged. Constraints (85-86) are ESS dynamic equations,
and (89-91) impose charging, discharging, and SoC limits, respectively.

Finally, the following two constraints apply. Constraint (92) requires the expected SoC of the
ESS to be half of its energy capacity at the end of the day. Constraint (93) ensures its expected
total discharge power does not exceed the daily cycle limit cyl"™.

E rr[SoCr ] = 0.5szFDurH (49)
E, gt {Zpgisndis%length < SZECyllim (50)
teTz

2.4 Results

241 Baseline, CCD, and Comparison Cases Setting

To illustrate the advantages of utilizing the Control Co-Design (CCD) model discussed in the
previous section and to explore the benefits of pairing the ESS with the OWF, results for the
following cases were computed and compared. The droop parameters are set as: R,,;, = 0.1
and R,,., = 0.5 for wind farms; R,,;,» = 0.01 and R,,.. = 0.5 for ESS; and R,; = 0.2. A total of
100 scenarios were generated, comprising 20 DA stage scenarios and 5 RT stage scenarios for
each DA stage scenario.

e Base: ESS rated power szF is set to 2% of OWF rated power; kReB and kResW gre fixed at
their upper limits for providing maximum frequency support; one or more HVDC cables with
a fixed rated power of 2600 MW are used; 3% inflation is applied; and wind and price data
are from 2018.

e CCD18-3,18-5, and 18-8: CCD model with 3%, 5%, and 8% inflation rates 2; wind and price
data are from 2018.

2Inflation rate choices were based on historical trends identified through tradingeconomics.
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e (CCD22-3,22-5, and 22-8: CCD model with 3%, 5%, and 8% inflation rates; wind and price
data are from 2022.

® No reserve: This case is identical to the CCD18-3 case, but no reserve is provided for
frequency support.

® No ESS: This case is identical to the CCD18-3 case, but no ESS is installed.

2.4.2 Design Results and Discussion

The design results for the ESS and the net profits of OWFs are detailed in Fig. 15(a), while the
cable design results are shown in Fig. 15(b). The cost for ESS is presented in Fig. 15(c). To
ensure consistent comparison, a total cost of $855.4 million for both onshore and offshore
converters is included in all design cases.

An examination of the first four cases chosen (CCD18-3, CCD18-5, CCD18-8, and the Base
case) in Fig. 15(a) indicates that the Base case, which provides the largest reserve for
frequency support, yields the lowest profit. Conversely, the no-reserve case, which allocates all
power to market sales, achieves the highest profit compared to the other four cases across all
POls. A general observation is that a higher inflation rate adversely affects net profit for all
POls in both 2018 and 2022 data sets. However, significantly higher profits are observed in
cases using 2022 data due to much higher energy prices compared to 2018.

Except for the base case, all other cases utilize the smallest onshore export cable size that
satisfies the minimum requirement specified in constraint (81), thereby reducing costs.

Figure 16(a) shows the comparison of cable material and installation costs for all other cases
versus the base case. The two color bar ranges are used to display material and installation
costs, respectively. Additionally, Fig. 16(b) highlights the difference in export cable capacity
(MW) between the baseline case and other cases.

2.4.3 ESS Sizing Analysis

Analysis of solution data for all design cases and different offshore wind farm POls revealed two
critical values for ESS size: 3% and the upper limit of 5% of the OWF rated power. In most
scenarios, the ESS size is set at one of these two values. The size of the ESS primarily
depends on the revenue it can generate during daily operations. On one hand, the system
charges the ESS when energy prices are low and discharges it during peak price hours. This
revenue strategy relies on the energy price differential across one or more consecutive days.
On the other hand, if the ESS provides the reserve for frequency support, the OWF can allocate
more power to market sales rather than retaining generation capacity, with this revenue
influenced by the absolute energy price.

When energy prices vary within specific ranges, as observed in cases CCD18-3, CCD18-5,
and CCD22-8, constraints (40) and (43) are binding, enabling the OWF to send most of its
power to the markets. An ESS sized at 3% of the OWF’s rated power can adequately meet the
reserve requirements specified in constraint (43). Figure 15(b) indicates that if the revenue
generated by the ESS does not justify its cost, the system opts for a smaller size, as evidenced
by case CCD18-8. Conversely, higher revenue potential supports a larger ESS size, even
reaching the upper limit, as demonstrated in cases CCD22-3 and CCD22-5.

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market
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Performance Analysis: Design Cases vs Wind Farm POls
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Figure 15: Comparison of (a) Net profit (b) Battery rated power (c) Battery cost for each design
case, across different case studies and wind farm POlI’s.

2.4.4 Market Participation and ESS Operation

To analyze system operations and market participation strategies, detailed information on three
typical scenarios—80, 83, and 99—at the POl COTWDPGE in case CCD18-3 is presented in
Fig. 17(a-i). Figures 17(a-c) display DA and RT market prices throughout the day.

Figures 17(d-f) illustrate the offshore wind farm (OWF) output and power traded in the two
markets, with positive values indicating sales to the markets and negative values indicating
purchases from the markets. Figures 17(g-i) show the power discharged from the ESS, where a
negative value indicates that the ESS is being charged. For Figures 17(d-f), the highlighted
background denotes time periods during the day when the RT market price is higher than the
DA market price.

In all scenarios, prices exhibit two peaks: a smaller one around 5:00 AM to 7:00 AM and a
larger one around 5:00 PM to 7:00 PM. The ESS is typically charged during midday,
approximately from 10:00 AM to 3:00 PM, and discharged around the two peak periods,
particularly the higher peak. The DA market participation decision considers prices and OWF
output across all scenarios within the same DA stage. Participation in the RT market and joint
ESS operation helps reconcile discrepancies between actual OWF generation and DA market
trades. In scenario 80, the RT price is lower than or close to the DA price, leading to DA market

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market
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Cable Infrastructure Analysis: Cost and Capacity Comparison
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Figure 16: (a) Material and installation cost comparison for all other cases (CCD-18-*, CCD22-*,
No reserve, No Battery) relative to the base-case setting. (b) Comparison of export cable capacity
(MW) differences between the baseline case and other cases.

trades nearly matching OWF generation and minimal RT market activity. In scenario 83, the RT
price exceeds the DA price, with less power allocated to the DA market than OWF generation,
allowing surplus for the RT market. Even with reduced generation from 9:00 AM to 4:00 PM,
only DA market trades are decreased, while RT trades remain consistent, and the ESS is
charged. In scenario 99, mitigation through the RT market is more pronounced. From 12:00 AM
to 5:00 AM, without OWF generation, power is purchased from the RT market to satisfy DA
commitments. Between 11:00 AM and 1:00 PM, surplus power is sold to the RT market to
maintain balance.

2.4.5 Revenue Analysis

Figure 18 displays the expected power traded and revenue from DA and RT markets in a day
for the four cases using the same input data and inflation rates. The average unit revenue is
derived by dividing total revenue from DA and RT markets by total energy traded. A brief
analysis of observations for each design case, compared to the CCD18-3 design case, is
provided as follows:

Base Case: This scenario features a smaller ESS size and provides greater reserve support
through both the OWF and ESS. With the OWF holding more reserve, total market-traded
power and revenue are reduced. However, a similar average unit revenue to CCD18-3 is
achieved through ESS operation.

No Reserve Case: Without needing to reserve OWF capacity for frequency support, this
scenario trades more power and achieves higher total revenue. As seen from Fig. 18, a
relatively small ESS is employed for output shifting, resulting in lower average unit revenue.

No ESS Case: In the absence of ESS, frequency support is solely from the OWF, reducing
total market-traded power and revenue. RT market trading, without ESS for output shifting,
manages the DA commitment and OWF generation mismatches, resulting in lower average unit

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market

26



Scenario number: 80
(RT price > DA Price: 22.9%)

g @

&40

= 40
3

=20

o 20
x

g o

=
S_ (@ 4
w4
20
g5 :
© 3.2 2
-]
£° 1
5%0
= 0
s

(9)

£ 5 20
[

g 0
s o0

@
a-25 w 20
(/2]
& -50 40
@ 0 4 8 12 16 20 24
Time (hours)

Market Participation Analysis

Scenario number: 83
(RT price > DA Price: 88.5%)

(b) —— DA Price (SIMW)
—— RT Price ($IMW)

\

(e) RT Market Participation (GW)
—— DA Market Participation (GW)
—— WF Output (GW)
RT price > DA price Periods

——

— =

(h) —— BESS Discharge (MW)

0 4 8 12 16 20 24

Time (hours)

150

125

100

75

1.0

0.5

0.0

PNNL-38288
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Figure 17: Market price (DA/RT), market participation, and ESS operation of COTWDPGE in

scenario 80 of case CCD18-3

revenue than CCD18-3.

2.4.6 Validation of Control Co-design Offshore Wind Farm Using Simulations

(PSCAD)

In Figure 19, the droop control variable £ at COTWDPGE for scenario 80 in case CCD18-3 is
plotted. The pink band illustrates the distribution of k& droop for all scenarios. For most of the
time, the ESS variable is at its upper limit. By adjusting the droop status of the wind farm and
ESS, the system optimizes its output while ensuring sufficient reserve for frequency support.

To further validate the dynamic performance of the co-design results, a time-domain
electromagnetic transient (EMT) simulation was conducted using PSCAD [35]. Both Maximum
Power Point Tracking (MPPT) and de-loading control strategies were integrated and tested
under the scenario of losing the largest generator at Palo Verde, Arizona, at 60 seconds, which
had an output of 2182.3 MW before tripping. Additional details on the PSCAD model can be
found in E. Transient trajectories of power and frequency, depicted in Figures 20(a-b) and 20(c),
were then analyzed to verify the stability and effectiveness of the co-design results.

Overall, the miniWECC system integrating OWFs remains stable both before and after a
generator trip on the main grid. Prior to the 60-second mark, the steady-state output of the four
OWFs shows only minor differences compared to the co-design results. After the disturbance,
the power output and the increase in power are both smaller than those of the MPPT curves,
indicating sufficient headroom. Additionally, the frequency nadir is lower when the OWF
operates in MPPT mode without providing frequency support. Consequently, the co-design
approach demonstrates superior transient performance, which is crucial given the increasing

Control Co-Design for Variable Generation Grid Integration with Energy Storage and Energy Market

27
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Figure 18: Comparison of selected design cases vs wind farm POI’'s for (a) Power Traded and
(b) Unit revenue of market participation.

penetration of wind and other inverter-based resources.

2.4.7 Conclusions and Future Work

Simultaneous consideration of operations, controls, and market participation during the planning
of renewable energy systems, such as offshore wind farms, can achieve long-term reliability
and optimal performance. Incorporating various uncertainties into the decision-making process
enhances overall system resilience. In this report, a multi-timescale, multi-stage stochastic
control co-design methodology is developed and presented. This approach models the
multi-timescale nature of energy market participation and addresses uncertainties associated
with renewable resources and prices at the interconnection point for revenue maximization. The
approach is demonstrated using an offshore wind farm grid integration use case. Here, the
sizing of HVYDC power export cables from offshore to onshore is optimized as part of the
process to prevent under-sizing and over-sizing, which could significantly impact project
investment costs. Furthermore, energy storage sizing is considered, addressing grid
stabilization needs and incorporating market participation. Both offshore wind farm and energy
storage participation in ancillary service markets are evaluated for additional revenue
opportunities for wind farm owners. The proposed control co-design approach optimizes cable
and energy storage sizing, and market participation with droop parameters, showing improved
annual revenue for five different capacity wind farms studied. A scenario tree-based stochastic
formulation incorporates uncertainty. Additionally, the framework allows for the evaluation of
various inflation rates and the implications of energy storage on overall revenue. The study
provides validation for droop control parameters through transient PSSE simulations of an
offshore wind farm integrated with the miniWECC AC grid model, showing comparable reserve
values and performance in meeting the integrated power grid’s frequency requirements.
Currently, reliance is placed on historical wind speed and price data, as offshore wind farm
development in the U.S. is still maturing. Future efforts could enhance price data estimation
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Figure 19: Droop control variable k at COTWDPGE for scenario 80 in case CCD18-3.
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Figure 20: Power curves of 240-bus miniWECC system in PSCAD: (a) OWF; (b): BESS (c) POI
frequency curves of 240-bus miniWECC system in PSCAD.

using detailed production cost planning with offshore wind farms and consider futuristic climate
scenarios for wind speed data. Furthermore, different network topologies (e.g., meshed) could
be explored for power wheeling, with incentive designs providing additional revenue streams for
offshore wind farm owners. The study can also be expanded by including additional
substation-level design and control variables and incorporating reduced-order models of
dynamic converter-inverters. As energy market participation becomes increasingly important for
future renewable energy developers, the proposed framework could be extended to
next-generation energy market models to estimate revenue and develop participation strategies.
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3.0 A Learning-to-Optimize Method for Constrained
Parametric Bilevel Problems

3.1 Motivation

Bilevel optimization problems are prevalent in diverse applications, spanning economics and
game theory [87], operations management and logistics [88], and engineering system design
[89]. Unfortunately, these problems are generally difficult to solve; they are typically NP-hard
and may lack efficient frameworks for approximate solutions, especially depending on their
specific characteristics [90]. This complexity presents a significant challenge for applications
requiring real-time or repeated solutions. However, many real-world scenarios demand
repeated solutions of related problem instances, such as when economic or engineering design
decisions must be made across a variety of scenarios and objectives.

This report introduces a novel framework that applies deep learning to solve a broad class of
bilevel problems. These problems include coupling constraints, which are constraints that bind
both upper- and lower-level decision variables. Our approach employs differentiable
optimization solvers at the problem’s lower level, enabling gradient-based training of neural
networks to approximate the upper-level solution. It also includes internal correction routines to
enforce coupling constraints between the upper- and lower-level problems. The resulting
models are trained to map the parameters of a bilevel problem to its optimal solution. This
approach is primarily motivated by optimal control co-design problems, a setting that involves
optimizing engineering systems with economic objectives at the upper level, subject to system
dynamics determined by optimal control problems at the lower level. We demonstrate how this
proposed framework can efficiently generate design solutions in response to varying design
objectives and criteria, as encoded by the problem parameters.

Contributions. The main contributions of this report are: (1) A novel Learning to Optimize
(L20) method for bilevel optimization problems, which is based on using differentiable
optimization to ensure lower-level solution optimality and differentiable projections for
upper-level constraint satisfaction. (2) We show how these differentiable optimizations can also
be used to create internal gradient-based correction mechanisms for satisfying coupling
constraints. These constraints significantly complicate bilevel problems by linking their upper-
and lower-level variables. (3) We demonstrate the proposed framework on a collection of
challenging bilevel design and control problems. This includes problems with nonconvex
lower-level components and complex, high-dimensional constraints. In particular, we show its
ability to learn high-quality approximators in the optimal control co-design setting, which enables
efficient generation of design solutions for varying design criteria.

3.2 Related Work

Bilevel optimization methods. Bilevel optimization problems are inherently challenging, and
generally lack efficient solution methods except in specific cases. For sufficiently small
problems with a convex structure, common solution methods typically involve single-level
reformulations (via KKT conditions or optimal value functions) that can be solved using
mixed-integer programming [90]. When a special structure is present, such as linearity at both
levels or the absence of coupling constraints, gradient methods, often relying on penalty
methods, have been proposed [91]-[93]. Recently, [94], [95] addressed a specific class of
bilevel problems using upper-level gradient descent combined with a quadratic programming
(QP)-based safety filter to enforce the KKT conditions of the lower-level problem. The complex
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nature of more general bilevel problems has led to increased interest in metaheuristics, such as
evolutionary algorithms [96], [97] and particle swarm optimization [98], over classical
alternatives. A comprehensive review of modern approaches can be found in [99].

Learning to Optimize (L20). L20 is a subfield of machine learning focused on learning fast
approximations for challenging optimization problems. One distinct branch aims to learn
information that accelerates the convergence of classical solvers [100]. In continuous
optimization, this includes predicting active constraints [101], optimization problem parameters
[102], stepsizes [103], primal variables [104], [105], and non-Euclidean metrics [106]. For
integer variables, L20 involves branching rules [107], cutting planes [108], and variable
partitions in large neighborhood search [109]. A separate branch focuses on training ML
models to predict optimal solutions directly from a problem representation [110]. A key
challenge in this area is maintaining the feasibility of predicted solutions to arbitrary constraints.
Proposed solutions include differentiable projections [111], reparameterization tricks [112], [113],
dual-variable estimation [114], [115], and gradient-based constraint correction routines [116].
Finally, some recent works have proposed using ML to accelerate bilevel optimization. [117]
introduces learning an optimal value reformulation from solved non-parametric examples using
a ReLU network embedded in an MIP solver. [118], [119] propose learning solutions of a
parametric bilevel program directly, though without any constraints at either level. This report
extends the L20 toolkit for directly learning solutions to bilevel optimization problems with
continuous variables and a full set of constraints, including coupling constraints.

3.3 Problem Setting

The goal of this report is to learn how to solve parametric bilevel optimization problems
represented by (51), where each component may depend on a vector of problem parameters p.
We use the convention that optimization variables are written as function arguments, while
problem parameters are written as subscripts. We consider a pair of problems:

B(p) :=argmin Ly(y,z) (51a)

Yy
st z € Oply) (51b)
yelp (51c)
Up(y, z) <0, (51d)

where

Op(y) :=argmin I,(y,2) (52a)
st zeSpy). (52b)

The defining feature of problem (51) is its constraint (51b), which requires the variables z to be
the solution to another optimization problem (52), which in turn depends on the variables y. We
refer to problem (51) as the upper-level problem, and (52) as the lower-level problem, with y
and z being the upper- and lower-level variables, respectively. Our objective is to learn a fast
approximator that solves the coupled problems (51,52) across a distribution of problem
parameters, denoted as P.

3.3.0.1 Classes of Constraints.

We distinguish three sets of constraints at the upper level. Condition (51c) constrains only the
upper-level variables. Constraint (51b) prescribes z as a solution to the lower-level problem (52)
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resulting from y. Additionally, the coupling constraints (51d) significantly complicate the solution
of (51). They impose further conditions on the relationship between upper- and lower-level
variables in (51), preventing solution concepts based on their separation or decoupling [90]. A
large portion of algorithms for bilevel programming cannot accommodate problems with
coupling constraints [99]. To the best of our knowledge, no previous work has proposed an L20
framework for parametrically learning to solve problems with coupling constraints.

3.3.0.2 Conditions on the Problem Form.

The proposed framework aims to learn solutions for a broad class of problems in the form of
(51,52). However, it relies on a key condition: for all y € C,, and p ~ P, the solution to the
lower-level problem (52) must be unique whenever it exists. This allows the lower-level problem
to define a function. Our proposal further assumes that this function is differentiable, a condition
that may not always be strictly met in practice. Nevertheless, many well-behaved optimization
problems of interest define continuous, almost-everywhere differentiable functions, which are
sufficient for effective end-to-end training [111]. Such pseudo-differentiable components are
common in deep learning architectures, similar to ReLU activations. While existence of the
lower-level solution is not strictly required for all y € C, and p ~ P, this condition is assumed to
hold for clarity of exposition until it is relaxed using a reformulation trick, introduced in Section
3.5.2. The functions £, will act as the loss function of a deep network and should therefore be
continuous in y and z, while U, should be smooth. Following common practice in L20, these
conditions serve as practical guidelines for applying the proposed architecture rather than
formal requirements.

3.4 Learning to Solve Bilevel Optimization

This section presents a self-supervised method for learning to solve the parametric bilevel
optimization problems described in Section 3.3. Specifically, it trains an ML model to
approximate the mapping (51), from problem parameters p to upper-level solutions y* = B(p).
Let By denote this hypothetical model, with weights 8. We assume a training set of n, problem
instances, each specified by a vector of problem parameters {p(i)}?ﬁl drawn from the
distribution P. A training procedure for B, should minimize the objective function Ly(y) attained

by its predicted solutions § = B’g(p) in expectation over P, leading to the empirical risk
minimization (ERM) goal:

min E_ [c,,(g, 2)} (53a)
st zeOpy) Vp ~ P (53b)

g €Cp Vp ~ P (53c)

Up(9.2) <0  Vp~TP, (53d)

where 4 = By(p). (53e)

Equation (53e) simply defines g as the output of By given p. Constraints (53c, 53b, 53d) require
that each such output and its resulting pair (g, 2) constitutes a feasible solution to the bilevel
problem (51,52). Learning solutions subject to such complex constraints is inherently
challenging, as any predicted gy and its corresponding 2 are unlikely to satisfy the coupling
constraint (53d) after solving (53b), even if y € C,, as required in (53c).
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This section proposes an architecture for the model B, and a method for training it to
approximate the ERM goal (53). Its core concept draws on modern techniques for differentiable
optimization. It adopts a differentiable subroutine that iteratively refines predicted solutions to
satisfy coupling constraints while maintaining feasibility to other constraints at each step. Before
prescribing the full training method, the main architectural components of 53y are introduced.

3.5 Satisfying Constraints with Differentiable Optimization Modules

Recent work in machine learning has focused on developing differentiable optimization solvers,
which treat a problem’s optimal solution as a differentiable function of its parameters. Their
Jacobian matrices are generally modeled by implicit differentiation of an optimality condition at
its optimum, such as KKT conditions [120], [121] or a fixed-point condition [122], [123]. The
following proposal is agnostic to the specific implementation used. Differentiable optimization is
often used to employ optimization problems as modules in trainable machine learning models,
and two such modules are used within 5.

3.5.0.1 Differentiable Solution of the Lower-Level Problem.

The assumption of uniqueness at the lower level defines an implicit relationship between upper-
and lower-level solutions. Thus, the overall bilevel problem is viewed as primarily finding

y* = B(p). For a given p and any predicted upper-level solution y, a differentiable solver for
problem (52) produces z = Op(y) along with g—z. This provides a means by which feasible
solution pairs can be computed and back-propagated, ensuring that (53b) is always satisfied
throughout training.

3.5.0.2 Differentiable Projection at the Upper Level.

In addition to satisfying constraint (53b) with its solution pair, any candidate y must also satisfy
its own constraint (53c). To achieve this, a projection operator is employed, which solves the
following subproblem:

TLc(y) = argmin|ly - w3. (54)
Differentiable projections are essential for constraint satisfaction in L20 [106], [111], [124]. They
can be implemented in a differentiable library such as cvxpylayers [122] or through automatic
differentiation in PyTorch when a closed-form solution is available (e.g., projection onto
non-negative constraints using a RelLU function). While other mechanisms could ensure
constraint satisfaction [125], [126], the projection operator is chosen for its role in the algorithm
presented next, leading to the projected gradient descent method, which has well-studied
convergence properties [127].

3.5.1 End-to-End Trainable Architecture

This section presents the complete architecture and training routine of a model By that learns to
solve problem (53). Let Ny be a deep neural network with weights 6, which predicts initial
estimates y = Ny(p) of an upper-level solution. Composing N, with T, ensures feasibility to
(53c), and further composition with O, produces a solution pair (g, Op(y)) that satisfies (53b)
and (53c). However, this does not necessarily satisfy the coupling constraint U, (g, 2) < 0 in
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(93d). Nonetheless, the differentiability of O,, and Il¢, provides a descent direction toward its
feasible region. To this end, the Coupling Constraint Violation is defined as follows, recognizing
y as the independent variable and 2 = O,(y) as dependent:

v(9) = ReLU(U(9,0p(9))) - (55)
The gradient of its Euclidean norm is equal to:
dv dv [0U  0oU 00
Vyllv(@)1? = 2v(y) — = 2v(y) A (56)

dy dU EJraOp oy |’

whose nontrivial component is the Jacobian 88&. This information represents backpropagation
through the lower-level problem, which can be obtained from one of the differentiable solvers
discussed previously. Automatic differentiation in PyTorch [128] is sufficient to complete the
remaining chain rule calculations in (56).
A function that reduces ||v(y)||? by performing a gradient descent step of size  can also

be defined:

G(y) =y —1Vyllv()l3. (57)
Crucially, this function can also be made differentiable by leveraging functionality for
back-propagating gradient calculations (in this case, equation (56)) in automatic differentiation
libraries such as PyTorch [129]. The result of function (57) is generally infeasible to (53c); this
can be addressed by a (differentiable) projection back onto C,, completing one step of an
end-to-end differentiable Coupling Constraint Correction routine:

Y1 = e, (yr — YV |Iv(ye)ll3) - (98)

Letting yo = Ny(p), the architecture for By follows the prediction of a neural network with m
steps of (58). Explicitly, R
By(p) = [(TI¢, 0 G)™ o Np] (p). (59)

By construction, this model is end-to-end differentiable and maintains feasibility to (53b) and
(53c) while iteratively moving toward satisfaction of (53d). Furthermore, process (58) can be
recognized as the classical projected gradient descent method on ||v(y)||3, which is known to
converge to local minima of convex and nonconvex functions under specific conditions [127].
The correction routine (58) is illustrated in Figure 21, where blue arrows represent gradient
steps (57), and alternating green arrows represent projections (54) back onto C,. The entire
chain of operations is composed with the neural network A, and unrolled in backpropagation
to update its predictions.

3.5.1.1 Convergence of the Correction and Soft Loss.

The proposed architecture builds on the concept of a gradient-based constraint correction
mechanism, popularized by the "DC3” algorithm for L20 [116]. Gradient descent methods are
not universally guaranteed to converge, and thus gradient-based constraint corrections are not
guaranteed to yield zero violations. However, as noted in [116], when initialized close to an
optimum, they are highly effective in practice [130], [131]. Following [116], a "soft” penalty
loss is prescribed:

Lo (G, 2) = Lpg, (9, 2) + Mlv ()3 (60)

This ensures that upper-level predictions from A/, are initialized close to satisfying the
coupling constraint (51d), so that its end-to-end training with the differentiable correction (58)
tends to produce feasible solutions to the full problem (51).
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Figure 21: lllustrating the differentiable coupling constraint correction. Gradient steps drive
predictions toward U (y, z) < 0 (blue), while projections maintain them in C (green).

3.5.1.2 Training Routine.

An overall training scheme is summarized in Algorithm 2, in terms of one epoch of stochastic
gradient descent. Each data input sample p(; represents a distinct instance of problem (51),
for which an initial solution estimate g is predicted at line 3. The sequence (58) makes up
lines 4-8. For each of m correction steps, g is iteratively refined by taking a step toward
feasibility of the coupling constraint (51d). The gradient g at line 6 is calculated per equation
(56). The loss (60) is then evaluated with respect to the refined estimate gy and its lower-level
pair. If needed, at test time, more than m iterations may be applied in the correction routine.
Note that Algorithm 2 describes only the forward pass of the training routine. Line 11
encapsulates backpropagation through all components of the model, implemented with a
combination of automatic differentiation and implicit differentiation via the differentiable solvers,
as described above.

Algorithm 2 Learning Bilevel Optimization with Coupling
Input: parameters {p(i)}f\;l, weights 6, learning rate «, correction stepsize ~

fori=1to N do
g < No(p;)) for k=1tom do

2
end
24 Op, () g4 VoL (§,2) 0 60-a-g

end

3.5.2 Satisfying Lower-Level Constraints

So far, this section has assumed that the lower-level problem (52) had at least one feasible
solution for any p and y € C, (see comments on existence and uniqueness in Section 3.3).
Otherwise, the optimization problem at line 5 of Algorithm 2 may be infeasible. In such cases,
this issue is addressed by reformulating the overall bilevel problem to ensure this property is
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satisfied. This is done by identifying lower-level constraints that prevent feasibility and
promoting them to the upper level, where they become coupling constraints.

Let the lower level's feasible set be partitioned as Sp(y) = Fp(y) U]-'g(y), such that F,(y)
is nonempty for all p and y € C,. Problems (51) and (52) are reformulated by replacing S,(y)
with Fp(y) in problem (52), while z ]-"pc(y) is promoted to the upper-level problem (51). As
an upper-level constraint relating y and z, it is absorbed into the coupling constraints (51d).
This technique is applied in the experiments of Section 3.6.2 and detailed in Appendices
3.11.1 and 3.12.

3.6 Experiments

This section evaluates the effectiveness of the proposed methods in learning to solve several
parametric bilevel optimization problems. To measure the optimality of learned solutions, the
true optimal solutions must be computable. Given the challenges in finding these solutions
with existing methods [99], Section 3.6.1 begins by learning solutions to small-scale synthetic
problems. For these problems, open-source solvers can provide certified optimal solutions for
comparison. Section 3.6.2 then extends the evaluation to more complex bilevel programs in
engineering design. These problems are significantly more challenging due to their larger size
and complex forms, including nonconvex optimization at the lower level. In these cases,
learned solutions are compared against those from Particle Swarm Optimization (PSO), a
metaheuristic framework commonly used in design optimization [132], [133].

Evaluation Criteria and Conventions. Algorithm 2 is evaluated on its ability to perform the
training task specified in Equation 53. Constraints (53c) and (53b) are ensured by the
algorithm’s construction. Thus, the two main criteria for evaluating the learned solutions (g, 2)
are their objective values (53a) and potential violations of the coupling constraint (53d). When
true optimal solutions (y*, z*) are available, the relative optimality gap is reported, defined as
|£(9,2)-L(y*,2*)/£(y*,z*)| and illustrated in blue. When true optima are not known, the nominal
objective value of the learned solutions, in green, is reported alongside the solution produced
by a baseline method for comparison. The coupling constraint violation (55) is also reported,
and illustrated in orange. In general, all metrics are reported on average over the respective
test set of problem instances. When a metric should ideally converge to zero, such as the
optimality gap and coupling violation, its standard deviation is also reported. Additional
implementation details for each experiment, including hyperparameter values, can be found in
Appendices 3.10, 3.11.1, 3.12.

3.6.1 Learning Bilevel Quadratic Programming

Experimental evaluation begins with a relatively simpler class of bilevel problems: Bilevel
Quadratic Programs (BQP). Both their upper and lower-level problems contain convex
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quadratic objective functions and only linear constraints. The upper- and lower-level problems
are, respectively:

B(c,d) = argmin %yTQy +cly+diz+q (61a)
Yy

st Ay<b+ Ez (61b)

z € O(y), (61c)

O(y) = argmin %zTHz +elz+fly+yg (62a)
z

st Fz<h+ Gy. (62b)

A neural network is trained to learn solutions as a function of the upper-level linear objective
coefficients. That is, in the notation of Section 3.3, p = (¢, d).

Experimental Details. For problems where certified optimal solutions can be computed within
a reasonable time (i.e., sufficiently small BQP problems), these instances are solved using a
mixed-integer programming reformulation. This provides an initial setting for objective
comparison against our learned solutions. The open-source YALMIP package is used to solve
instances by replacing the lower-level problem with KKT conditions and solving the resulting
single-level MIP via a branch-and-bound method [134].

A BQP problem with m and n variables at the upper and lower levels, respectively, is
defined as having size m x n. Three sets of BQP problems with sizes 3 x 2, 6 x 4, and 9 x 6
are randomly generated. This is done by drawing elements of matrices A, E, F, G and
vectors b, e, f, h from a uniform distribution U(0, 1). Positive-semidefinite matrices Q and H
are constructed by self-multiplication of such a matrix. Individual problem instances are
generated by drawing vectors of linear objective coefficients (¢, d) also from U(0,1). Each set
is divided into validation and test portions, each numbering 1000 instances. The prediction
model By is a 5-layer feedforward network followed by 20 steps of Algorithm 2. Algorithm 2
requires differentiable solution of problem (62) at each iteration; for this, the differentiable
convex optimization library cvxpylayers [122] is employed.

Results. Figure 22 illustrates the two main evaluation metrics—relative optimality gap (blue)
and coupling violation (orange)—throughout Algorithm 2 for each parametric BQP problem. In
each case, the relative optimality gap is reduced by two orders of magnitude over 75 epochs
to a value between 1073 and 10~2. The coupling violation (55) is rapidly diminished in the first
epoch and generally remains below 10~2 within a full standard deviation throughout training.
Test set metrics are also reported in Table 3. These results demonstrate Algorithm 2’s ability
to learn bilevel optimization with negligible error on small-scale BQP problems. Beyond the
problem sizes considered here (starting with 12 x 9), the time taken by YALMIP to fully solve
test instances becomes intractable, thus preventing benchmarking against certified optimal
solutions on larger instances.

3.6.2 Learning Optimal Control Co-Design

This section introduces more challenging bilevel optimization problems, distinguished by their
larger size and more complex forms. Optimal Control Co-Design is a bilevel problem setting
where an engineering system is designed to optimize an economic objective at the upper
level, subject to its behavior under a known optimal control policy at the lower level. These
problems cannot be solved by conventional methods with certificates of optimality. As an
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Figure 22: Optimality gap and coupling violation on different-sized BQP problems (left to right:
3x2,6x4,9x6). Shows mean and standard deviation over the test set at each training
epoch.

alternative, our learned solutions are compared to the results of a Particle Swarm
Optimization (PSO)-based metaheuristic method. The PSO framework is commonly applied to
problems lacking efficient solution methods, making it a preferred tool in design optimization
[132], [133]. Details of the PSO baseline methods, along with illustrations of their results, can
be found in Appendix 3.8.

3.6.3 Nonconvex Bilevel Optimization: Control Co-design of a Nonlinear System

This section considers a nonlinear control problem involving two connected tanks controlled
by a single pump and a two-way valve. This system serves as a simplified model for
pumped-storage hydroelectricity, a form of energy storage used by electric power systems for
load balancing. The system dynamics are described by nonlinear ODEs: @ = f(zV, u(®, y):

1 = y1(1 —u)ur — y2v/71, (63a)
To = Y1uu1 + Yo/T1 — Y21/T2, (64a)

where z; and x5 are the water levels in each tank. Control actions consist of u; (pump
modulation) and u, (valve opening). The nonlinear optimal control problem (66) seeks the
control policy that minimizes energy expended to reach a desired terminal state p. The
function 0DESolve represents Euler discretization of (63, 64) over N = 20 frames to a final
time 7. This yields new variables « = [z(V, ..., 2®™] ¢ RV*2 and u = [u,..., uN)] e RV*2,
bound by a sequence of nonlinear (i.e., nonconvex) equality constraints (66c) for 1 <i < N,
with dt = % The upper- and lower-level problems are, respectively:

B(p) = argmin,, vy (65a)
st x,u=0py) (65b)

Ymin < Y < Ymaz (65¢)

zWN) = p, (65d)
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with
N
Op(y) = argmin Y u®|3 (66a)
0<wu<l 1
st ™M =p (66b)
20t — olve(f(zW, ull . c
(i+1) — ODESolve(f(z?,ul?, y)) (66c)

The upper-level problem (65) seeks to optimize the design of such a system in terms of its
overall cost L(y, z) := v'y, treating the inlet and outlet valve coefficients y = [y1,2] as free
design parameters. A feasible design requires satisfying upper and lower bounds on each
element of y per (65c). Additionally, the parametric end-state constraint (66b) is duplicated at
the upper level in (65d) to emphasize its coupling role. The full reformulation, as per Section
3.5.2, is detailed in Appendix 3.11.1. The initial condition is =° = 0. Taken together, the
coupled problems (65, 66) aim to find the parameters y that yield the minimal-cost system
design controllable to state p by time T under its control policy (66). In this experiment, the
model By is trained to perform a fast and accurate approximation to this design problem for
any scenario specified by a given p € [0,1]. In the notation of Section 3.3, z := (z, u).
Experimental Details. This experiment considers 7' = 10s and N = 20, with ¢,,;, = 0 and
Crnaz = % Problem instances correspond to reference states {p}, randomly generated from
U(0,1), but with p; < py to ensure problem (65) feasibility. They are partitioned into training,
validation, and test sets of sizes 10000, 1000, and 1000, respectively. Corresponding optimal
system designs are learned by By, which consists of an 8-layer feedforward network N
followed by 20 steps of Algorithm 2. Implementing Algorithm 2 is complex, as it requires a
differentiable solution of the nonconvex lower-level programs (66). For this, the differentiable
model predictive control solver from [135] is employed, which differentiates problem (66)
implicitly via the KKT conditions of the final convex subproblem of a sequential quadratic
programming.

Results. Figure 23 (top two plots) illustrates the value of the design objective L(y,z), as well
as the coupling violation (55), over the test set throughout training. Overall metrics are also
found in Table 4 under the header "TT”. Despite requiring an average of 1286.7s of solution
time per instance, the PSO baseline produces design solutions with 15 percent higher cost
than those learned by Algorithm 2, which infers solutions in 0.027s on average.
Simultaneously, it achieves nearly identical satisfaction of the coupling constraint. This result
is significant, demonstrating the ability to learn nonconvex bilevel optimization with high
accuracy.

3.6.4 Control Co-Design of a Building HVAC System

Finally, this report considers the design and control of a building Heating, Ventilation, and Air
Conditioning (HVAC) system. Its control policy minimizes energy expenditure while maintaining
indoor temperature within prescribed bounds, as described by problem (68). The building
consists of two zones, thermally connected to each other and the outside environment by a
matrix of conductivity coefficients A. State variables = = [z(1), ..., z(V)] € RV*8 consist of the
temperatures of each zone’s floor, walls, indoor air, and exterior facade at each timestep k.
Control actions u = [uV), ..., u™)] € RV*2 induce heat flows into each zone, affecting the
temperature states x via the actuator design variables Y € R®*2. States are also affected by
random disturbances d, including heat transfer from occupants and solar irradiation. Thermal
constraints (68c) require that the indoor air temperature remains within prescribed time-varying
bounds (p,p). This condition couples the upper- and lower-level problems, emphasized by its

A Learning-to-Optimize Method for Constrained Parametric Bilevel Problems 39



PNNL-38288

7 i T T o =
Training Epoch Training Epoch

Figure 23: Test set metrics per epoch, on learning control co-design of the two-tank (top) and
HVAC (bottom) systems.

duplication at (67d). The design task (67) seeks to learn Y that minimizes a linear cost
function Tr(VTY') while allowing the system to be maintained within thermal bounds using
optimal control. In the notation of Section 3.3, p:= (p,p), y =Y, and z = (z,u, w):

B(p) = argmin Tr(V'Y) (67a)
st xzu,w=0,Y) (67b)
Y >0 (67c)
p® < w® < p®), (67d)
while

Op(Y) = argmin > [u|3 (682)

zOSuslw 4o Ny
st. wh® =cz® (68b)
B(k) — s < k) < ﬁ(k’) + s (68c)
2D — A2®) Ly ) + Ba®). (68d)

Experimental Details. This experiment assumes N = 30 simulation steps. Problem instances
corresponding to the thermal bounds p are generated from a -random walk, with p = p + 2.0,
to form training, validation, and test sets of sizes 10000, 1000, and 1000, respectively. A
fixed disturbance pattern d is generated from the building control test suite in NEUROMANCER
[136]. The model By is a 6-layer ReLU network followed by 10 steps of Algorithm (2).
Differentiable solution of (68) is implemented using cvxpylayers.

Results. Figure 23 (bottom two plots) illustrates the value of the design objective L(y,z), as
well as the coupling violation (55), over the test set throughout training. Overall metrics are
also found in Table 4 under "HVAC”. While learned designs incur nearly identical coupling
constraint violations on average, they are achieved at about 19 percent lower cost and with
orders of magnitude lower solving time compared to the baseline.

3.7 Conclusion and Limitations

This report has demonstrated how modern toolsets for differentiable optimization can be used
to train machine learning models as fast and accurate approximators of bilevel optimization
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with coupling constraints. Experiments on problems in the control co-design domain show that
the proposed framework can accurately approximate complex, even nonconvex programs.
Two open challenges remain to extend this work. First, it assumes that the lower-level
minimizer can be backpropagated, which is not the case in some interesting bilevel problems;
future work may focus on extending the framework to set-valued lower solutions. Second,
when lower-level objectives are nondifferentiable with respect to the upper variables,
extensions based on surrogate gradients or implicit subdifferentials may be investigated.
Addressing these points would further broaden the impact and applicability of this work.

3.8 Experimental Details: Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a metaheuristic optimization method that operates with
a population (swarm) of candidate solutions (particles). Particles update their solutions using
simple rules based on their own best-known position in the search space, as well as the
entire swarm’s best-known position. PSO is commonly applied to optimization problems with
complex objective functions and simple constraints. While simple bounds can be handled
naturally in PSO, more complex constraints are often addressed using penalty functions. A
survey of constraint-handling techniques in PSO is found in [137].

For both control co-design experiments, PSO baseline methods are implemented using the
open-source library pyswarms [138]. A penalty-function approach is adopted to handle
coupling constraints in our PSO baseline methods. Since the remaining upper-level constraints
are simple variable bounds, these are handled natively in the pyswarms PSO algorithm. As in
the report’s main proposal, the lower-level problem must be feasible relative to the upper-level
solutions found at each iteration of PSO. Constraints preventing this condition are treated as
coupling constraints and enforced with penalty functions in the lower-level problem. For the
control co-design problems, the lower-level problem implementations are identical to (70) and
(72). Overall, PSO optimizes a relaxed upper-level objective function:

Lp(y) + rr(y), (69)

subject to y € Cp, which are simple bounds on y in both experimental cases. Evaluation of
v(y) requires optimization at the lower level at each PSO iteration.

In each experiment, the pyswarms solver is configured with default cognitive, social, and
inertia parameters (c; = 0.5,¢c2 = 0.5,w = 0.9) and run with 128 particles for 200 iterations.
The penalty coefficient « is chosen such that average coupling constraint violations over the
test set are on the order of 1e — 2. This corresponds to x = 100.0 in the two-tank experiment
and « = 5.0 in the HVAC experiment.

3.9 Additional Results: Particle Swarm Optimization

This section illustrates the evolution of the PSO objective throughout its solution of the test
set instances. The best objective values, among all particles, are plotted per iteration of PSO.
The full PSO objective is illustrated, and is also shown in terms of upper-level design
objective and coupling constraint violation penalty. Each metric is reported on average over
the test set. Figure 24 corresponds to the two-tank problem, and Figure 25 corresponds to
the HVAC problem.
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3.10 Experimental Details: Learning Bilevel Quadratic Programming

This section reports additional details on the experiments presented in Section 3.6.1.

3.11 Hyperparameters and Training

Results in Section 3.6 are derived from the model that achieves the lowest loss among
independent training runs, using all combinations of the following hyperparameters:

® Learning rates from among [10~!,1072,1073,1074,1077]
e Correction stepsizes v from [1072,1073,1074]

e [SUFT penalty weights \ from [102,10°]

The best values are 1072,1074,10? respectively. All models are trained using the Adam
optimizer [139] in PyTorch. In each training run, 10 correction steps are applied in training
and 20 are applied at test time.

3.11.1 Experimental Details: Learning Control Co-design of a Two-Tank System

This section reports additional details on the nonlinear system design experiments presented
in Section 3.6.2.

3.11.2 Problem Reformulation

The two-tank system design and control problem (65, 66) is bound by the coupling constraint
™) = p, which is redundantly placed at both levels to emphasize its coupling effect. This
coupling constraint expresses that a valid system design must be controllable to the end-state
p. It is recognized that this condition may not be satisfiable for any design variable y; for
instance, some y may not allow sufficient throughput to fill the tanks from 0 to p by time step

N.

In practice, the problem is therefore reformulated as follows, as prefaced in Section 3.5.2:
B(p) = argmin, vy (70a)
st x,u=Op(y) (70b)

Ymin < Y < Ymax (700)

™ =p (70d)
N

where  Op(y) = argmin > [u® |2 + pl™ - p|? (70e)
0<z,u<l k=1

s.t. 2 = ODESolve(f(z™,ul®, y)) (70f)

In this reformulation, the constraint (V) = p remains at the upper level as a coupling
constraint, as it binds lower-level variables within the upper-level problem. Thus, it is treated
by the coupling constraint correction in Algorithm 2. The constraint is absent from the lower
level in this formulation and instead replaced with a penalty on the lower-level objective.

p =100 is used as the penalty weight in all experimental runs. While equivalent to the original
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bilevel problem (65, 66), the above formulation accommodates lower-level feasibility for any
candidate design solution at the upper level.

3.11.3 Hyperparameters and Training

Results are derived from the model that achieves the lowest upper-level objective value on
average, from among those whose average coupling constraint violation is less than or equal
to that of the PSO baseline method after 10 epochs. The results are chosen from among
independent training runs using all combinations of the following hyperparameters:

® Learning rates from among [107%,1072,1073,107%,1079]
e Correction stepsizes v from [1072,1073,1074]

e [SUFT penalty weights A from [10, 102, 103

The best values are 103,102, 10, respectively. All models are trained using the Adam
optimizer in PyTorch. In each training run, 5 correction steps are applied in training and 10
are applied at test time. The upper-level objective function has linear coefficients v consisting
of all ones in each problem instance, implying that the inlet and outlet valve coefficients
should be minimized with equal priority.

3.12 Experimental Details: Learning Control Co-design of a Building
HVAC System

This section reports additional details on the HVAC system design experiments presented in
Section 3.6.2.

3.13 Problem Reformulation

The building HVAC design and control problem (67,68) is coupled by the thermal constraints
p®) < w® < p*) which appear at both levels to emphasize their coupling role. Before
Algorithm 2 can be applied, it is recognized that those constraints may not be satisfiable
when design variables Y prevent heat flows from converting to temperature changes rapidly
enough to stay within those changing bounds.

To arrive at an equivalent problem that ensures feasibility at the lower level for any Y,
slack variables s(*) and 5(*) are introduced to both sides of (68c), yielding:

along with a no-slack condition that maintains equivalence to the original problem:
s® =35k -0 vk

This condition is enforced at the upper level and replaced in the lower level by a penalty term:

B(p) = argmin TH(V1Y) (71a)
st xz,u,w=0pY) (71b)

Y>o0 (71c)

s® =35k =0 vk (71d)
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Op(Y) = argmin > u““’%ﬂ)( Yoo 1M+ Y 8"”3) (72a)

rOsushw,s oo Ny ke{l..N} ke{l..N}
st. w® =cCcz® (72b)
p(k) 50 < w® < ﬁ(k) + s (72c)
2D = 42® 4 yu® 4+ Eq® (72d)

In this implementation of Algorithm 2, coupling constraint corrections are applied to (71d).
This is the operative coupling constraint in this reformulation, binding the upper-level problem
to lower-level variables s*) and s(®).

3.13.1 Hyperparameters and Training

Results are presented from the model that achieves the lowest upper-level objective value on
average, among those whose average coupling constraint violation is less than or equal to
that of the PSO baseline method after 25 epochs. The results are chosen from among
independent training runs using all combinations of the following hyperparameters:

® Learning rates from among [107%,1072,1073,107%,1079)
e Correction stepsizes v from [107%,1072,107¢]

e [SUFT penalty weights A from [102,10°]

The best values are 1072,1074, 102, respectively. All models are trained using the Adam
optimizer in PyTorch. In each training run, 5 correction steps are applied in training and 10
are applied at test time. The upper-level objective function has linear coefficients V' consisting
of all ones in each problem instance, meaning that all elements of the actuator design
variable have equal cost.
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4.0 Multi-terminal Topology Co-design for Variable
Generation Grid Integration

4.1 Motivation

Offshore wind farms (OWFs) are increasingly important for sustainable energy development.
The 2024 Offshore Wind Market Report [36] highlights a 53% growth in the U.S. offshore wind
energy pipeline, with significant additions on both coasts. Efficient development of OWFs and
their transmission capabilities to the main grid is crucial. The current grid, primarily designed
for synchronous generators, faces challenges with integrating large renewable resources,
affecting design and stability [140]. Multi-terminal direct current (MTDC) grids, utilizing
modular multi-level converters (MMC) and high voltage DC (HVDC) lines, offer enhanced
reliability, reduced losses, and improved controllability compared to high voltage alternating
current (HVAC) lines. Onshore converters re-convert DC to AC at interconnection points [2].

Planning offshore wind’s grid integration requires understanding multi-regional transmission
networks. Brinkman et al. [38] analyzed various offshore topologies (radial and networked) for
2030/2050, examining operational, cost, and reliability implications. Douville et al. [76] studied
western interconnection with offshore wind, investigating radial and backbone topologies in
HVAC/HVDC scenarios for 2030+. Both studies underscored the importance of offshore
transmission topology for the value of offshore wind generation and identified Points of
Interconnection (POIs) through rigorous modeling. The Atlantic study used
Eastern-Interconnect utility data with optimization based on wind resources, POI capacity, and
cable distance. Douville et al. [76] identified POls by assessing onshore transmission capacity
and conceptualizing offshore systems for efficient power flows.

OWF power production is weather-dependent, introducing uncertainty in power injection.
The point of common coupling at the POI is used to inject power into the onshore grid.
Variability in power injection can jeopardize grid stability. Introducing energy storage systems
(ESSs) with advanced operational and control strategies is a popular approach for enhancing
power system stability [4] and providing economic opportunities. A detailed review of the role
of ESS for wind energy resources is provided in [5], with various studies examining the
design and control of ESS for wind energy.

Halwany et al. [6] and Moghaddam et al. [8] emphasized the importance of ESS with
OWFs. Research by Paul et al. [7] and Sharma et al. [141] developed multi-objective
optimization formulations for ESS sizing, while Lin et al. [63] and Zoellick et al. [142] found
that ESS enhances OWF revenue through arbitrage and ancillary services. Their study
showed that the OWF at Humboldt Bay Substation, despite its small battery size, significantly
increased revenue from these markets.

Related Work: Understanding the interaction between energy markets and energy
resources is crucial. A comprehensive review on demand-side and market design for
renewable systems integration is provided in [143]. Studies by Brunetto and Tina [144] and Di
Corato et al. [53] explored the electricity market interaction for wind power with energy
storage. Dowling et al. [145] introduced a multi-time scale optimization formulation. Chen et
al. [146] and Sorourifar et al. [75] optimized wind farms and battery storage systems using
multi-timescale formulations. Gao et al. [73] demonstrated integrated energy systems’
participation in electricity markets. Parede et al. [147] examined distributed energy resource
interactions in the electricity market. Chen et al. [148] revealed a multi-interval co-optimization
approach for battery storage bidding. Bansal et al. [149] introduced a two-stage settlement
market mechanism. Ma et al. [150] and Li et al. [151] applied multi-time scale formulations
for energy systems. Given the variability in renewable generation and pricing, accounting for
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uncertainty is crucial for long-term planning. The importance of stochastic programming for
energy systems is discussed in [152], [153]. Several studies [154]-[156] have formulated
wind-storage system market participation as a multi-stage stochastic problem.

For long-term OWF planning, developing a methodology to optimize POI choices and ESS
siting, sizing, and operation is crucial. Existing literature lacks an integrated approach to deal
with these challenges. This report presents a co-design methodology, leveraging
multidisciplinary optimization techniques [16], [157], to address these issues comprehensively,
demonstrated with a case study. To balance MTDC system and ESS costs, OWF revenue
from various electricity markets is considered. We formulate a multiple-timescale optimization
model and adopt a multi-stage stochastic optimization approach to handle uncertainties in
OWF generation and market prices. Our case study uses a California-based OWF and
potential interconnect POls identified by Douville et al. [76], incorporating historical price data
to optimize interconnections between OWF buses.

The remainder of this report is organized as follows: Section ?? discusses the proposed
methodology for formulating a multi-stage multi-timescale stochastic optimization model.
Section 4.4 describes the OWF use case and data sources. Section ?? discusses the results
of the approach. Conclusions and future work are presented in Section 4.6.

4.2 Methodology

This section describes the details of the proposed co-design optimization approach for
topology optimization with ESS for OWF integration.

4.21 Problem Description

We consider an offshore wind farm (OWF) connected to onshore points of interconnection
(POls) via an MTDC system. Detailed cable routing, including seafloor conditions and
conflicts with ocean co-use, is not considered in this analysis. Similarly, the siting of
balance-of-plant equipment, such as export cables, substations, and converter stations, is
beyond the scope of this analysis. The cost of the MTDC system includes a fixed cost, a
rated power-dependent material cost for each installed transmission cable, and fixed costs for
onshore and offshore converter stations at their respective locations.

We model the ESS with a fixed duration and optimize its rated power (size) to match the
data set used. It can be easily modified to include storage capacity as a decision variable.
The cost is calculated solely based on size, without a fixed cost component. We assume that
when the ESS reserve is called upon, it only needs to provide service for a short period,
minimally affecting its state of charge (SoC). Additionally, the ESS can identify opportunities to
maximize profit through market arbitrage.

The OWF participates in day-ahead (DA) and real-time (RT) markets. It trades most of its
generated power in the DA market, using the RT market to mitigate mismatches between DA
commitment and actual generation. ESSs are installed on the onshore side to facilitate system
operation and participate in the ancillary service market by providing up and down reserves.

To optimize MTDC topology and ESS sizes for maximum net profit while considering wind
speed and market price uncertainties, a multi-stage stochastic programming model is
formulated. In the design stage, MTDC topology, cable size, and ESS locations and sizes are
determined based on power generation and market price forecasts. In the day-ahead (DA)
stage, given DA market prices and forecasts for power generation, real-time (RT) market, and
reserve prices, decisions for DA market trading are made. Finally, in the RT stage, actual
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OWF generation, RT market and reserve prices, and system participation and operation in RT
and ancillary service markets are determined.

4.3 Multi-stage Multi-timescale Stochastic Optimization Formulation

Problems involving multiple stages and markets may operate on multiple time scales. We
assume the DA market and OWF power generation operate on an hourly basis, while the RT
and ancillary markets are cleared every 15 minutes. We use 7; = {1,2,...,24} and
T2 ={1,2,...,96} to represent the index sets of each hour and each 15-minute interval in a
day, respectively. Additionally, the set 721(t) = {4(t— 1)+ k | k = 1,2,3,4} contains all four
15-minute period indices in hour ¢ € 7;.

Let wPA and wRT represent random events at DA and RT stages, respectively. These
events, once observed, determine the value of uncertain parameters in each stage. E, [X]
denotes the expectation of X over all scenarios of w'. The problem is formulated as follows:

min RT < > (AEsz,-E + /\O”yi> +) (AFser + M)

i€P lel
+> AOﬁ) — R'E_poa [}‘ (szE, szC,xC;wDA)] (73)
4%
st PPy < s:E <Py VieP (74)
chl < sle < FCxl vie L (75)
d wm <My VieP (76)
lec?
(92 — 93)

In the objective function (73), the first term includes the installation and material costs of ESSs,
HVDC transmission cables, and converters. Factor R' is a tax credit coefficient for new,
qualified clean energy properties. The second term represents the expected revenue from the
OWF. Annuity factor RY converts expected daily revenue to total present value over the

lifetime of the ESSs. If their lifetime is Y years, then RY = 365 (71«:12:);1 with inflation rate r.

P, W, and L represent the index sets of onshore POls, offshore wind farm buses, and
candidate transmission cables of the MTDC, respectively. For each POI i € P, L] denotes
the set of its adjacent cables. Binary variable x; is 1 if candidate cable [ is installed, and 0
otherwise. Binary variable y; is 1 if POl i is connected to the OWF, and 0 otherwise.
Continuous variables st and sle represent the rated power of the ESS at POI i and loading
capacity of cable I, respectively. Parameters \°", \9//, and AT represent the installation cost
of onshore converter, offshore converter, and cable [, respectively; AE and )\f denote the unit
material cost of the ESS and cable [, respectively; M is a large number, which can be the
total number of buses in this problem.

Constraints (74-75) restrict the rated power of ESSs and transmission cable capacities,
with PE, PC and FE, P° being their lower and upper limits, respectively. If any adjacent cable
of POI i is installed, it is connected to the MTDC system, as stated in (76). Constraints
(92-93) will be discussed later.

For given rated power of ESSs, MTDC topology, and a realization of DA scenario,
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F (szF,sz% xC;wPA) calculates the daily revenue of the OWF as follows:

F(sz",52°,x%;wPh) =max ) ) " aPA (wDA) pPA

i€P teTT
+EWRT‘UJDA [g (SZ SZC XC, p DA,wRTﬂ (77)

The first and second terms are DA and expected RT stage revenues, respectively. Variable
pyy represents the power traded in the DA market at POI i at time t. Parameter \PA(wPA)
denotes the DA market price at time ¢ in scenario wPA.

For given rated power of ESSs, MTDC topology, power traded in DA market, and
realizations of DA and RT scenarios, G (szF,sz% xC, pPA; wPA wRT) calculates the RT stage
revenue of the OWF. Its objective function is:

max 3737 [T (P RT) Y

i€EP tET3
Jr)\ltReu (wDA7wRT) PEteU 4 )\tReD (wDA7wRT) PE?D} (78)
s.t. (79— 91)

Variables pfl, pReY, and pitP represent the power traded in the RT market, up reserve, and

down reserve at POI i at time t, respectively. Parameters A\RT(wPA WRT) AReU ;DA ,RT) “and
AReD (DA ,RT) denote the RT market, up and down reserve prices at time ¢ in scenario
(wPA, WRTY, respectively.

This problem has a series of constraints. The power at wind farm buses and POls should
be balanced for all t; € T1, t2 € Ta1(t1).

p;/,\lltl = Z Vito (Vigts = Virta)9i, 01 Vi €W (79)
lec?
Z Vigs (Vite = Vi t2)9i,0, 01 = (pS'tSQ pg,?g)
lec?
— (R, + i) VieP (80)

Here, o;, which will appear later, and t; denote the origin and destination buses of branch [,
respectively Parameter g; ; is the conductance of the branch from bus i to bus j. Variables
pzt, pf'ts, p”, and V;, represent the actual power generation, discharged power of ESS,
charged power of ESS, and voltage at bus i at time ¢, respectively.

The power through MTDC cables and the voltage at buses should be bounded:

L1Vt Vot = Viy t)gortytt| < s28 VL€ L, t €T (81)

KigwthiViePUW,teTz (82)
In constraint (81), a 10% redundancy is imposed for security. In constraint (82), V, and V;
denote the lower and upper limits of the voltage at bus 1.

Since the RT market is primarily used to mitigate the difference between DA market
participation and actual OWF generation, the following limits are imposed:

ZPHTQ < max{ Z POYF (wP Z POV (wP } Vt1 € Th, t2 € Ta1(t1)

ieP 4% ieEW
(83)
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zpz;zm.n{ngzw DA LRT) _ ™ pOWF(,D }wleﬂ, R

i€P 1S4% EW

Here, POVF(wPA, wRT) represents the maximum wind power extracted at wind farm bus i by
maximum power point tracking in scenario (wPA wRT) at time ¢. In addition,
POVF(WPA) = E ar [POVF(wPA,wRT)]. These two constraints ensure that the power traded in
the RT market remains W|th|n the difference between the actual and expected wind power in
each DA scenario.

The maximum wind power also bounds the actual power generation from above:

0<ply < POVFWPA Ry View, teT (84)

When providing up and down reserve for fast frequency support, ESS has the following
operational and dynamic constraints for all i € P, t € T5:

SoC;y — SoCip—1 = (n'pfh — n®p{e) Ty (85)
SoCi1 — 0.5z DH = (nChpfq i) Ty (86)

ReUSZ < o ReU <7 —ReU (87)

ReD Z < PR ReD < TReD E (88)
P +pReD < sz (89)
P+ PV < szp (90)
0 < SoC;; < s2FDH (91)

Parameters rReY, rReD gnd 7ReU 7ReD represent the lower and upper limits of ESS up and
down reserves as a percentage of its rated power, respectively; 7" and n%S are ESS
charging and discharging efficiency; TZ'- is the time length of the time periods in set 73, which
is 1/4 hour here; DH denotes ESS duration hours. Variable SoC;; is the state of charge of
ESS at POI i. Constraints (85-86) are ESS dynamic equations; and constraints (87-91)
impose reserve, ESS charging, discharging, and SoC limits, respectively.

Finally, constraint (92) requires the expected SoC of ESS to be half of its energy capacity
at the end of the day, and constraint (93) ensures its expected total discharge power does not
exceed daily cycle limit cyl'™.

E &r[S0C; 7] = 0.5s2£DH Vi € P (92)
| pfen®STy | < s2feyl™ Vie P (93)
teT

For each scenario, a one-day time horizon is considered to keep the problem tractable
while estimating system revenue with acceptable accuracy. If higher accuracy is desired,
users of this approach can generate a larger scenario tree and extend the time horizon.

4.4 Case Study
441 Case Setting

In the case study, the optimized wind farm siting results presented in [76] are used. These
sites are primarily located in areas off the West Coast between Coos Bay, Oregon, and
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Eureka, California. There are five offshore wind farm buses and five POls. Nine candidate
transmission cables are considered, including five that connect each wind farm bus to a POI
and four backbone cables. The locations of these buses, the aggregated power rating of the
wind turbines, and candidate cables are illustrated in Fig. 26. The wind farm area is enlarged
on the left half of the figure. The goal is to solve for the optimal selection and size of the
cables and ESSs such that total system profit is maximized.
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Figure 26: Location of buses, wind farm rated power, and candidate MTDC cables are shown.
The wind farm area is enlarged on the left half.

The following five cases are included in this study:

® Radial: optimizes transmission cable sizes of radial topology wind farm buses to POls and
ESSs; 5% inflation rate.

® Mesh5: optimizes the transmission topology, ESS location, and ESS size; 5% inflation rate.

® MeshSL: same as Mesh5 but each POI has a limited integration capacity of 3.5 GW for
wind power.

® Mesh3 and Mesh8: same as Mesh5 but the inflation rates are 3% and 8%, respectively.

The radial topology case serves as a baseline for the study. Inflation rates of 3%, 5%, and
8% have been typical in recent years and are considered in this analysis. Case Mesh5L
represents a very common situation where POls have limited capacity for integrating
renewable energy.

The problem is modeled in Julia with JuMP[158] and solved by Ipopt and Juniper[159].

4.4.2 Dataset

The data used in this study include the Offshore California Wind Speed Dataset from the
NREL WIND Toolkit, along with DA and RT price data for the NP15 region of CAISO, the
SCL region in Washington, and the BPAT region in Oregon. Due to limited access to up and
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down reserve price data for Washington and Oregon, the same reserve prices from CAISO
were applied across all POls. Historical data from 2022 is extracted from these data sources
and utilized to generate a scenario tree by Julia package ScenTrees [160], comprising 10 DA
stage scenarios and 3 RT stage scenarios for each DA scenario.

MTDC cable cost is calculated based on the equations in [161], while converter costs are
derived from [38]. ESS cost and efficiency are obtained from the PNNL Energy Storage Cost
and Performance Database. The lower and upper limits of the ESS rated power are set as 10
kW and 1 MW, respectively, and 1% to 10% of ESS rated power can be used as reserve for
fast frequency response. All ESSs have a 4-hour duration, a lifetime of 16 years, and 2400
life cycles.

This section discusses the optimization results of designing the MTDC topology and the ESS
siting and sizing for the aforementioned cases. Figure 27 illustrates the optimized topology of
the MTDC grid.

Table 5 (A) presents the rated power of ESS at POls; Table 5 (B) provides the size of
cables, identified by origin and destination buses, with their lengths in parentheses; Table 5
(C) summarizes the system costs and profits. The MTDC cost includes both cable and
converter costs. DA and RT market revenues are calculated over the 16 years of ESS life
span and converted to present values.

The cases Radial, Mesh5, and Mesh5L, having the same inflation rate, generate similar
revenue. Among these cases, Mesh5 requires the lowest cost for installing and constructing
the ESS and MTDC system due to the fewest limitations. Only two cables, between the
onshore and offshore sides connecting buses 2—7 and 3-8, are identified through optimization,
also highlighting the optimizer’s solution to choose their short-length cable path. The Radial
case involves building long-distance cables, resulting in much higher costs. Additionally, the
five ESSs installed at the POls further increase the system cost. In case Mesh5L, with limited
capacity for integrating wind energy at the POls, another cable connecting buses 1-6 is
constructed to address the limitation. All connected POIs have an ESS installed to facilitate
system operation. In cases Mesh3 and Mesh8, different inflation rates result in different total
revenues over the ESS lifetime. They share the same MTDC system, which has the most
concentrated transmission capacity from offshore to onshore and the lowest cost among all
five cases. Overall, the MTDC systems in cases Mesh3, Mesh5, and Mesh8 are similar in
terms of construction cost.

The cost of ESS is mainly covered by providing reserve services and arbitraging the
market; therefore, ESS size is very sensitive to the inflation rate. With a lower inflation rate,
the ESS can generate more revenue, allowing for the adoption of a larger ESS, as seen in
the case Mesh3. In contrast, the revenue under a higher inflation rate can only cover the cost
of a smaller ESS, as seen in case Mesh8. Comparing with total system revenue, the ESSs in
cases Mesh5 and Mesh8 can be viewed as equivalent. It may be desired to expand the role
of ESSs, such as using them for output stabilization, to fully utilize the devices.

To investigate system operation and market participation, more detailed information for
case Mesh5 in DA stage scenario 7 is plotted in Fig. 28, including market prices, power
traded in the two markets, total generation of connected wind farm buses, and ESS SoC of
the two connected POls, respectively. The two POls have the same RT prices, while the DA
price of POI 8 is slightly higher than that of POI 7. They share one RT trading limit as
described in constraints (83-84). At POI 7, no power is traded in the DA market; all power is
sold to the RT market. At POI 8, the commitment to the DA market is close to the actual

Multi-terminal Topology Co-design for Variable Generation Grid Integration


https://www.pnnl.gov/download-reports
https://www.pnnl.gov/download-reports

PNNL-38288

Table 5. Design and Economic Results

(A) ESS Rated Power (kW)
POI Radial | Mesh5 | Mesh5L | Mesh3 Mesh8
6 11.71 0 11.01 0 0
7 11.71 11.01 10.33 1000 10.36
8 11.71 11.01 10.14 1000 10.36
9 11.71 0 0 0
10 11.71 0 0 0
(B) Cable Loading (MW)
1-6 1650 0 3410 0 0
2-7 2585 2585 3850 2398 2398
3-8 1991 8525 3850 8712 8712
4-9 2904 0 0 0 0
5-10 1980 0 0 0 0
1-2 0 0 1265 187 187
1-3 0 1650 3025 1837 1837
34 0 4884 4884 4884 4884
4-5 0 1980 1980 1980 1980
(C) Cost and Revenue ($B, except ESS cost is in $k)
ESS Cost ($k) | 52.064 | 19.584 | 27.981 | 1778.128 | 18.425
MTDC Cost 6.369 | 4.674 5.342 4.668 4.668
Total Cost 6.369 | 4.674 5.342 4.670 4.668
DA Revenue | 58.703 | 58.703 | 58.703 66.744 | 58.703
RT Revenue | 0.427 | 0.427 0.427 0.485 0.427
Total Revenue | 59.130 | 59.130 | 59.130 67.229 | 49.672
Net Profit 52.761 | 54.456 | 53.788 62.558 | 45.003
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Figure 27: Optimized MTDC topology for each case is shown.

power generation in two of the three RT stage scenarios, and the RT market is used to
mitigate the difference. In both POls, ESSs are charged when market prices are low and
discharged when prices are high to generate revenue.

In this report, we propose a methodology for simultaneously identifying the optimal MTDC
transmission topology of offshore wind farms with the location and size of energy storage
while considering energy market participation. The methodology accounts for stochastic
variations in wind and energy prices at the wind farm and POls, respectively. We analyzed
and compared the topology design and energy storage location and sizing under different
inflation conditions, benchmarking these cases against a radial base case scenario. The
results highlight the importance of co-designing the topology compared to the radial case,
demonstrating a higher net profit.

This research has the following future directions to explore: (1) designing a more reliable
MTDC topology that accounts for contingencies, such as loss of cables; (2) expanding the
role of the ESS to include functions like output smoothing and stabilization; (3) enabling wind
farms to participate in the ancillary services market.
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Figure 28: System operation of case Mesh5 in DA stage scenario 7. The 3 RT stage scenarios
are marked with solid, dash, and dash-dot lines. For the two connected POls, the first row
shows DA and RT market prices; the second row shows power traded in the two markets

(positive for selling) and total power generation from connected wind farm buses; the third row
shows ESS state of charge.
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5.0 Collaboration with various ECOMP initiative project

The project actively engaged with other ECOMP initiative projects to collaborate on various
project tasks. Figure 29 shows the connections and collaborative exchanges during fiscal year
2024 (FY24), and Figure 30 shows the collaboration during fiscal year 2025 (FY25). The
connected arrows in these figures describe the exchange of information between the
MoCoDO project and other ECOMP initiative projects.

Thrust-2: Multi-Objective
Co-Design

NS N/ AV

X - Project 2.1: Multi-Objective
ool Co-optimization Project 3.1: Multi-Entity
HIMANSHU SHARMA . Simulation Platform
L @ﬁ Architecture
Project 1.2: PEL Model TREVOR HARDY
e e De sl Project 2.2: CAMEO
HISHAM MAHMOOD SUMIT PUROHIT
Project 3.2 Model
Project 1.3: Stability Building and Execution
Characterization MOLLY ROSE K.
SAYAK MUKHERJEE Project 2.3: pyMOQDS, KELLY-GORHAM
MILAN JAIN

Figure 29: The ECOMP initiative FY24 projects description with arrows defining the interactions
of MoCoDO project-2.1 with other initiative projects.

The following sections provide detailed descriptions of the information exchange and
collaboration between projects.

5.1 Collaboration with Thrust-1 projects

This section describes the collaborative tasks that the MoCoDO project undertook with
Thrust-1 projects.

5.1.1 Validation of Control Co-design Solution

In this task, the project coordinated with ECOMP Thrust-1 project 1.2 in FY24, titled "Power
electronics model for co-design” (led by Hisham Mahmood). The objectives of this
collaboration were to validate the control co-design solutions (droop gains) used for providing
reserve services to the power grid through faster time-scale simulations (PSSE/PSCAD). The
detailed results of this collaboration are described in Section 2.4.6.

5.1.2 Protection System Control Co-design

In this task, the project coordinated with ECOMP Thrust-1 project 1D in FY25, titled "Real-time
test bed for co-design” (led by Quan Nguyen). The objective of this collaboration was to
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Figure 30: The ECOMP initiative FY25 projects description with arrows defining the interactions
of MoCoDO project-2.1 with other initiative projects.

develop a strategy for analyzing the placement of MTDC protection devices on the MTDC
network for an MTDC topology identified through the methodology defined in Section-4.2.

Figure 31 describes the workflow developed for this collaborative analysis. In step (a), the
co-design framework optimizes the siting and sizing of energy storage with the MTDC
topology co-design framework. The identified connections between generation and POI are
passed to project-1D for developing the MTDC network protection scheme design in the
PSSE/PSCAD simulation environment, shown in step (b). The identified protection scheme
with inverter-converted breakers (blue dots) and line breakers (orange dots) can be seen in
Figure 31(b), with associated costs provided in this step.

In the next step, fault scenarios are identified, and based on the circuit breaker states, the
MTDC co-design energy market optimization formulation is re-run to evaluate the impact on
system revenue by including protection devices versus various failure probabilities of fault
scenarios, shown in Figure 31(d). The results show that the circuit breaker state (ON/OFF),
depending on MTDC faults, affects revenue. The change in revenue is associated with the
type of fault observed by the MTDC network, with faster changes observed in cases with
larger power loss injections to the onshore POI (6, 7, 8).

5.1.3 Validation of MTDC Topology Co-design solutions for grid stability

In this project task, the team collaborated with ECOMP cross-thrust project-C2 in FY25, titled
"Stability characterization for co-design of power electronics dominant power systems” (led by
Buxin She/Soumya Kundu). The objective of this collaboration was to ensure that the MTDC
topology design solutions identified by solving the formulation described in Section 4.2 are
stable.
We provided the MTDC design topology and export cable characteristics described in

Section-4.2 to project-C2. The topologies were then analyzed by project-C2 to understand
their stability characteristics, and the results of this analysis can be found in the project-C2
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Figure 31: Workflow diagram defining the collaborative exchange of information between
projects.

report. As part of future work, the methodology developed in Section-4.2 can be revised to
consider feedback from the project-C2 stability analysis to revise or reformulate the MTDC
topology optimization problem.

5.2 Collaboration with Thrust-2 projects

This section describes the collaborative tasks that the MoCoDO project undertook with
Thrust-2 projects. The collaborative projects shared a common thrust in both FY24 and FY25.

5.2.1 CAMEO: A Co-design Architecture for Multi-objective Energy System
Optimization

In this task, the MoCoDO project team collaborated with ECOMP FY24 Thrust-2 project 2.2:
CAMEO: A Co-design Architecture for Multi-objective Energy System Optimization (led by
Sumit Purohit). The objective of this collaboration was to provide the multi-objective
optimization formulation to develop a co-design architecture software library for setting up
design problems. Our project provided the multi-objective formulation described in Section
1.7.2-1.2 to develop the backend framework of CAMEO for building design space exploration
for defined co-design problems via a modular and automated workflow system, enhancing
flexibility and accelerating design and validation cycles. The CAMEO tool was developed to
support cloud-scale automation with a user-friendly interface, enabling energy system
practitioners to efficiently explore diverse design alternatives. Detailed results from this
collaboration can be seen in [162].
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5.2.2 PyMOODS: Multi-objective decision support system

In this task, the MoCoDO project team collaborated with ECOMP FY24 project-2.3 and FY25
project 2C, titled PyMOODS: Multi-objective decision support system (led by Milan Jain). The
objective of this collaboration was to develop a visualization tool for visualizing multi-objective
high-dimensional solutions and providing additional support to stakeholders who need to weigh
trade-offs between solutions. The multi-objective Pareto front solutions obtained by solving the
co-design problem defined in Section 1.5 were provided to support the development of visuals
and a web-user interface. Additionally, the co-design optimization data were used to develop
visualization techniques such as generalizers and specializers, tradeoff lattices, and
uncertainty-aware scenario characterization to parse and analyze solution data for additional
insights. The results of this collaboration can be seen in reports and publications made by
project 2C. As part of future work, we will integrate the visualization tool into the optimization
library to perform in-situ visualization of solutions as optimization progresses.

5.3 Collaboration with Thrust-3 project

This section describes the collaborative tasks that the MoCoDO project undertook with
Thrust-3 projects.

5.3.1 Offshore wind farm co-design and online market bidding strategy

In this task, the MoCoDO project team collaborated with ECOMP FY24 project-3.1 and FY25
project 3A. The objectives of this collaboration were to provide the control co-design solution
obtained by solving the formulation presented in Section 1.2 and Section-4.2, shown in Figure
32(a). The next step was to provide and develop the online bidding strategy to participate in
the energy market defined in the Multi-entity Simulation Platform (MESP) developed by project
3A. Depending on the interconnection topology type—either radial or meshed (MTDC)—used
to integrate offshore wind farms with onshore points of interconnection (POI), the bidding
strategy is defined accordingly. Finally, once annual simulations are completed by MESP, we
compare the revenue projected in the offline co-design formulation with that in the online
setting by interacting through bids in the energy market with additional generators on the AC
side.

The following sections discuss additional details about the bidding strategy based on the
optimization formulation. The nomenclature for mathematical notations is defined in Table 6.
Radial Topology Day Ahead (DA) Market: When making DA bids, hourly wind speed

forecasts for the next day are provided as scenarios by MESP (Figure 32(b)). The wind
speed in each scenario at each hour is converted to maximum wind power generation P,
based on maximum power point tracking. The optimization objective has two terms: the first
term maximizes DA bidding, while the second term minimizes the expected difference
between DA bidding and anticipated RT bidding. These two terms are balanced by a weight
factor w. Additional power flow, reserve, and energy storage dynamics are included to solve
the problem as described below.

max pr’“‘ — C;—’ Z prfsff (94)

teT teT seS
st pid/ >pPA—pE teT,sesS (95)
il > VR pPA te T ses (96)
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Figure 32: Collaborative workflow diagram between MoCoDO and Thrust-3 projects showing
the integration of co-design solutions with online market bidding strategies.
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Table 6: Nomenclature: OWF online bidding formulation

Symbol Definition Symbol | Definition

T set of time indices pfesWU 1 up reserve power from wind farm
S set of all scenarios pfesBU | up reserve power from battery

t time-index pfesWP | down reserve power from wind farm
s individual scenario pfiesBD | down reserve power from battery
w stochastic scenario ngS wind power generation

g conductance of export cable pﬁf battery discharge power

pPA power traded in DA at time ¢ pin battery charge power

pfi.f ! difference between DA and RT bidding | p"f battery charge power by rule
pliff difference between RT bid and dispatch | p®s% battery discharge power by rule
pil anticipated RT bidding pr wind farm rated power

piy up reserve power pYE wind power by MPPT

piP down reserve power Vits bus voltage at wind farm

Vot bus voltage at POI AfY max frequency deviation (up)
Viin minimum voltage limits AfE max frequency deviation (down)
Vinax maximum voltage limits SCls state of charge of battery

kffSW droop parameter (wind farm) SCini initial state of charge

kftesB droop parameter (battery) nh charging efficiency

s discharging efficiency CabCap | export cable capacity

BatSize battery rated power DurH battery storage duration (hours)
TimeLength | time step length in dispatch

> SCi .= 0.5« BatSize « DurH « |S| for t =T end (116)
sES

Radial Topology Real time (RT) market: Radial Topology Real-time (RT) Market: For RT
bidding, battery charging and discharging power are determined by rules as p°** and
p?sR respectively. Specifically, if the battery’s state of charge is less than 10% of its energy
capacity, it is charged at 5% of its power rating; if its state of charge is greater than 90% of
its energy capacity, it is discharged at 5% of its power rating; otherwise, there is no battery
operation. By applying this rule, the battery maintains an appropriate state level to guarantee
sufficient flexibility in the dispatch stage.

max pVF (117)
st p™ =pieWU (1 — PR /g Ve + pesPY (118)
P =Vi(Vi —w2)g (119)

ph = pehR (120)

plis = pdisR (121)

(ps — phy — pWR = Vo (g — v1)g (122)
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Viin < V1, V2 < Vimax (123)
Vi(Vi — V2)g < CabCap (124)
PV 4 pResWU < pwP (125)
pW o pResWD >0 (126)
pResWU _ pResW A fmax (127)
pResWD — ResW A gD (128)
pResBU _ ResBA U (129)
pResBD _ pResBA fmax (130)
PV 0.5 < EReW < PWE /0.1 (131)
BatSize /0.5 < kP < BatSize/0.01 (132)
fResW y pResB > pWP /g 9 (133)
ph + pfesBD < BatSize (134)
p%s 4 pliesBU < BatSize (135)

'Radial Topology Dispatch: Radial Topology Dispatch: In the dispatch stage, the p°"E and
p?sk determined during RT bidding are used as minimum battery charging and discharging
power, respectively. The details related to dispatch are defined as follows:

min p®/f (136)
st plff > pRT _ pWD (137)
pHIf > WP — pRT (138)
pRU — pResWU(l . PR/g/Vn?\ax) + pResBU (139)
PV =Vi(i - a)g (140)
pch > pchR (141)
pdis > pdisR (142)
pchpdzs =0 (143)
(p¥e —py = pVP = Va(Vo — Va)g (144)
Vinin < V1, Va < Vinax (145)
Vi(Vi — Va)g < CabCap (146)
pW +pResWU < PWP (147)
pW _ pResWD >0 (148)
pResWU — gResW A fU (149)
plesWD _ pResW A fn]?ax (150)
pftesBU — kResBAfr(rJ]aX (151)
plesBD — pResBA £D (152)
PV /0.5 < kW < PP 0.1 (153)
BatSize/0.5 < k"**” < BatSize/0.01 (154)
JpResW | pResB > PWP/O 9 (155)
SC — SCini = (n"p™ — n®*p¥*) x TimeLength (156)
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Al-Driven Optimization \ /Multi-POI Delivery\

* ML-Based LMP Forecasting

- POl 1: LMP,, P
LMP,; = farn(Xe—24:t) POI 2: LMPl’ Pl
. 29 2

Offshore Generation

Pwina = f (Vwina) » Three-Stage Strategy

* T-24h: Day-ahead planning
with ML forecasts

* T-15min: Reallocation based
on RT prices

e T-Omin: Actual power delivery
\ operation /

Figure 33: Workflow Overview of the Al-Driven Optimization-Based Energy Market Bidding
Strategy for Offshore Wind Farms.

POIN: LMPy, Py
Price-Based Allocation
Of Power Injection

pt 4 pfiesBP < BatSize (157)
p%s + pfesBU < BatSize (158)
0 < SC < BatSize x DurH (159)

Machine Learning Model Based Energy Market Bidding: We extended our optimization
framework to a meshed case by incorporating a predictive model for Locational Marginal Price
(LMP) forecasting at the point of interconnection. The objective functions were revised to
include LMP predictions as follows:

TATD DA tual DA
actua,
max E E LMPy- Py — A E ]Pmt’s — Py (160)
neN teT n,t,s
John Day - Optimization Results Quantity Comparison by POI Hourly Revenue Comparison
LMP Forecast vs Quantity Optimized 900000
—— LMP Forecast 9.8 = 60000 - Baseline __ 800000 1
50- —— Quantity 2 5
9.6 < 2 700000 A
<404 s 2 a
E " 4§ £ 40000 1 < 600000
Z 30 "z 5 2
e g & g 500000
2204 r9-2% T 20000 9
& SO & 400000 me==Optimized
104 9.0 300000 =s== Baseline
0 T T T T r : . . .
0-
8.8 <& < RS S 1 5 9 13 17 21
AN} N
1357 911131517192123 $ X7 & <@ S Hour
Time [Hour] 0‘9 & RS
N ®

Figure 34: Comparison of LMP Forecasts and Bidding Quantities (JhonDay POI) Analyzing the
Impact of LMP Forecasts on Bidding, with Hourly Revenue Comparison Against a Baseline
Fixed-Rate LMP Case.

The forecasted day-ahead Locational Marginal Price (LMP) at the offshore wind farm’s

point of interconnection is denoted as LMP. The original formulation maintains the constraints
on power balance and energy storage dynamics. For Multi-Terminal DC (MTDC) networks,
LMP predictions were generated for each interconnected Point of Interconnection (POI) to
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determine the optimal power quantity based on the forecast. Figure 33 illustrates a high-level
workflow overview of this Al-driven, optimization-based energy market bidding strategy.

Offline testing of the predictive bidding strategy, as depicted in Fig. 34, yielded several key
findings: bidding quantities closely aligned with LMP forecasts, demonstrating price-responsive
bidding; wind power supplied approximately 60% of the total generation, establishing a stable
renewable base; a 50.1% increase in revenue, generating an additional $5.36 million
compared to the baseline fixed-LMP strategy; and a 50% increase in energy delivery through
optimized quantity allocation across POls. Moreover, battery storage was effectively
discharged during periods of high LMP, which provided operational flexibility and enhanced
revenue. The optimized dispatch strategy effectively coordinated wind and storage resources
to maximize market value.

Future work will extend the approach to energy market participation strategies for radial
topologies. Additionally, the current results, generated in an offline setting without considering
other AC grid generation participating and modeled via the Multi-Entity Simulation Platform
(MESP), will be analyzed in an online setting to assess the overall impact of the proposed
strategy.
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Appendix A — Offshore Wind Farm Turbine Technology

We use the GE 1.5 MW wind turbine as a base model [163] to generate sampling points for
speed-power fitting. A detailed electromagnetic transient (EMT) model was developed in
PSCAD, and simulations were conducted by incrementally increasing the wind speed from the
cut-in to the cut-out wind speed. These points are then fitted with a piece-wise quadratic
function as presented in Figure B.1(d). The overall fitted curve is aligned with the original GE
1.5 MW wind turbine [163]. We upscale the fitted power curve to the rated power of each
OWEF to convert wind speed to power output in the control co-design process.

Offshore Wind Farm Turbine Technology A1
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Appendix B — Wind Speed Data

The wind data utilized in the study includes historical wind speed data available from various
sources, particularly focusing on offshore wind areas. The dataset includes wind speed
measurements at different heights (e.g., 140m) and covers a range of years, notably from
2000 to 2020. The data is essential for generating stochastic wind scenarios and validating
wind speed distributions using methods such as the Weibull distribution. Key sources for this
wind data include the NREL WIND Toolkit Offshore Summary Dataset, which offers data for
specific years such as 2017 and 2020. It is important to note that this dataset exhibits bias
relative to floating LiDAR observations, attributable to atmospheric stability effects; see Bodini
et.al [164] for a comprehensive analysis . In our study, the dataset is used solely to
stochastically generate wind-speed scenarios, so this bias is expected to have limited
influence on the reported results. In future work, we will employ additional wind-resource
datasets to quantify the sensitivity of co-design solutions to wind-speed data.

The Offshore California Dataset from NREL WIND Toolkit is a 21-year wind resource
dataset for offshore California. Produced in 2020, this data set replaces NREL's Wind
Integration National Dataset (WIND) Toolkit for offshore California, which was produced and
released publicly in 2013 and is currently the principal data set used by stakeholders for wind
resource assessment in the continental United States. Both the WIND Toolkit and this new
data set are created using the Weather Research and Forecasting (WRF) numerical weather
prediction model (NWP)

The Figure B.1(a-b) illustrate wind speed density distributions at various locations
(WCASCADE, JohnDay, COTWDPGE, Tesla, and Mossland) for 2018 and 2022. Both years
show multi-modal distributions, with peaks around 4-10 m/s and tailing off after 30 m/s. In
2022, the density appears slightly higher around 8-12 m/s across most locations compared to
2018, which might indicate stronger winds or more frequent occurrences of mid-range speeds.
This shift can significantly influence wind power generation since wind turbines typically
produce maximum power output in this speed range.

Comparing the wind speed distributions to the turbine power curve in Figure B.1(d), the
observed wind speeds in 2018 and 2022 indicate that a significant portion of the wind speeds
in both years fall within the optimal power generation region (8-12 m/s). The slight increase in
frequency in this range during 2022 suggests potentially higher energy output, assuming the
wind farms are designed for maximum efficiency in this range.

Wind Speed Data B.1
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Figure B.1: Distribution of wind-speed for different wind farms locations in (a) 2018 (b) 2022 (c)
Day ahead (DA) and Real time (RT) price (2018,2022) (d) Wind turbine power characteristic
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Appendix C — Energy Market Data

The energy market data primarily comes from the California Independent System Operator
(CAISO). This data is accessed through two sources, the CAISO OASIS API or EIA portal.

CAISO OASIS API includes various market-related metrics such as Locational Marginal
Prices (LMPs) for both day-ahead and real-time markets, Ancillary Service Prices (ASP), and
system performance data like Regulation Mileage. The CAISO data covers the periods from
2018 onwards, with some limitations in earlier years where LMP data may not be available.
This data is crucial for analyzing the market participation of offshore wind farms and
optimizing their dispatch in energy markets.

The Wholesale Electricity Market Portal, launched by the U.S. Energy Information
Administration (EIA) in March 2024, provides access to electricity market data from seven
Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs),
including CAISO. The Portal offers datasets such as day-ahead and real-time locational
marginal prices (LMPs), load/demand data, generation fuel mix, and city temperatures,
gathered from RTO/ISO public data and NOAA. Data availability varies, with updates ranging
from hourly to longer intervals. Data can be accessed through dashboards and bulk download
flat files via CAISO EIA Portal, though API access is not currently available.

Energy Market Data CA
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Appendix D — Scenario Generation Algorithm

The scenario generation algorithm is presented in Algorithm-3.

Algorithm 3 Kernel-Based Scenario Tree Generation Algorithm

Input: Time series data for LMP, ASP, Windspeed, etc.

Output: Scenario tree structure

Parameters: SCN1 = 20 (second-stage scenarios), SCN2 = 5 (third-stage scenarios)

Step 1: Data Preprocessing Load datasets for LMP, ASP, and Windspeed Reshape data
into a 3D array (N, T, K), where N is the number of samples, T is time steps, and K is the
number of variables

Step 2: Scenario Generation Using Kernel Density Estimation (KDE) for each fime step
t=1to T do

Normalize weights w < w/ ) w Compute effective sample size N, and standard deviation
o, Generate scenario z[t| using KDE from multivariate normal distribution Update weights
based on Markovian or Non-Markovian process

end

Return scenario trajectory x

Step 3: Tree Construction Define tree structure as [1,SCN1,SCN2,1,1,1] Apply kernel-based
sampling to generate 100,000 scenarios Construct the scenario tree using tree approximation

Step 4: Save the Scenario Tree

Scenario Generation Algorithm D.1
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Appendix E — PSCAD Model and Test Scenarios

The PSCAD model used for validation is modified from the base 240-bus miniWECC system
developed in [35]. Grid-following inverter-based resources with dynamic models of REGCAT1,
REECB1, and REPCA1 are integrated into the system. The REGCA1 model is adjusted so
that the d- and g-axis currents are transformed into a three-phase current using a
phase-locked loop. Additionally, frequency and voltage droop deadbands are set at £0.017 Hz
and £0.01 p.u., respectively.

Five offshore wind farms (OWFs) are connected to WCASCADE, JOHN DAY,
COTTONWOOD, TESLA, and MOSSLAND, with rated capacities of 1500 MW, 2350 MW,
1810 MW, 2640 MW, and 1800 MW, respectively. These type 3 turbines include a pitch angle
control module, a grid-side control module, a rotor-side control module, and a DC-link
chopper, allowing them to switch flexibly between MPPT and de-loading modes. They are
assigned wind speeds of 10.68 m/s, 10.68 m/s, 8.86 m/s, 8.86 m/s, and 6.75 m/s,
representing typical wind conditions.

PSCAD Model and Test Scenarios E.1
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