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Overview

The Microgrid Component Optimization for Resilience (MCOR) tool simulates the operation of a
renewable energy, battery, and back-up generator microgrid under a large range of outage
conditions to understand how a potential system can meet the resilience goals of a particular
site. It is an open-source, command line, Python-based tool that produces an output Excel
spreadsheet as well as several types of plots to enable a user to compare different microgrid
system sizes and costs. It is intended for high-level system planning and opportunity
identification, and not for detailed electric system modeling and design. The tool includes a
range of input parameters that can be adjusted or tuned to provide a more custom analysis as
needed.

Overview ii
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1.0 Tool Methodology and Assumptions
1.1 MCOR Methodology

The goal of the MCOR tool is to provide several viable microgrid sizing options that can meet
the resilience goals of a site and maximize economic benefits. This means meeting a set of
critical loads for a specified period of time without any power supply from the electrical grid. The
tool simulates power dispatch during an outage for many different system configurations and
ranks the systems according to the goals of the site.

A MCOR simulation is comprised of several different stages:

1. Generation of renewable energy resource profile scenarios

Calculation of renewable energy power generation

Sizing of renewable energy and battery components

Simulation of microgrid power dispatch

Back-up generator sizing

o 0 bk 0w DN

Post-processing and system ranking
111 Generation of Renewable Energy Profile Scenarios

MCOR currently models two types of renewable energy resources, PV and tidal energy, to
simulate microgrid power dispatch under a large range of potential renewable energy resource
conditions. Each resource is modeled separately to develop resource profiles for a series of
simulated outages. Power generation is then calculated for each outage profile, before
combining these power profiles to simulate microgrid dispatch during the outages.

1.1.1.1 Solar Profiles

MCOR uses a statistical model, the Alternative Solar Profiles (ASP) model (Newman et al.
2020), to generate a set of solar (GHI, DNI, and cloud cover) and temperature profiles using
historical modeled solar data from NREL's NSRDB' (Sengupta et al. 2018). These profiles begin
at random times during the year, are of a specified length, and, assuming enough profiles are
generated, allow for a large range of solar conditions to be simulated. The first hour of each
profile is randomly selected from an hour in the historical dataset. Subsequent hours are then
modeled based on the historical likelihood of solar conditions changing from that starting state
(GHI, DNI, cloud cover) to a different state.

MCOR simulates each system configuration for each of the solar and temperature profiles, or
"scenarios". By using a statistical representation of solar resources under hundreds of credible
scenarios (rather than a single typical data set), this tool quantifies the confidence that the
specified resources within the microgrid have sufficient power and energy capacity to meet the
site’s resilience goals under all conditions. For example, not only does the starting time of the
outage (time of day and time of year) impact the ability of a microgrid to meet resilience goals,
but also the weather conditions during the outage period, which can be highly variable. This
allows a user to be confident that the tool’s results encompass any "worst-case scenario"

! https://nsrdb.nrel.gov/

Tool Methodology and Assumptions 1
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weather situations, helping them to make better informed decisions on equipment sizing and
providing a clearer understanding of risk. For example, a worst-case scenario may be an outage
where there is simultaneously low renewable energy generation and high load. MCOR defaults
to simulating two hundred random outages that last for the user-specified duration. Two
hundred outages were found to be sufficient to reach convergence for the generator size to
meet all load during the worst-case outage condition (Newman et al. 2020).

1.1.1.2 Tidal Profiles

MCOR uses a similar approach to modeling tidal resources and simulates hundreds of potential
outage scenarios which are randomly selected. However, as tidal resources are more
predictable than solar, instead of creating a statistical model based on historical resources,
MCOR instead samples outage periods from a 19-year tidal epoch model for the given site. The
individual scenario start date and time are chosen to match those of the solar profiles if both
solar and tidal resources are included in the microgrid model.

MCOR requires hourly tidal velocity data at a range of water column depths for a full year as an
input to this model. An example analysis was performed for the Salish Sea with a tidal turbine
location at Port Angeles, WA, and this example data is included in the MCOR repository. The
data for this model came from Yang et al. (2021). Data for other sites could be obtained from
the Marine Energy Atlas (MEA)'. Once this data is obtained, MCOR extrapolates from one year
to the 19-year tidal epoch using the UTide? Python package. Then tidal resource scenarios are
created by selecting the equivalent time periods from the tidal epoch as were used for the solar
profiles.

1.1.2 Calculation of Renewable Power Generation
1.1.2.1 PV Power Generation

For each of the solar scenarios, MCOR calculates the AC power produced from a 1kW array
using the pvlib-python? library of functions (Holmgren et al. 2018). Pvlib-python is a publicly
available and well-documented library developed at Sandia National Laboratories as part of the
PV Performance Modeling Collaborative* (Stein 2012). The most recent pvlib-python version
tested with MCOR is '0.9.4a2.dev3+geefc35c'. While this library allows for almost infinite
customization, we make several simplifying assumptions (such as panel and inverter models
and DC/AC ratio) that can be modified for sites that have more detailed information on existing
or potential PV systems. Panel and inverter performance details are based on published test
data from the California Energy Commission®. The following reference models are used in the
power calculation:

e Solar position calculation: Reda and Andreas 2004; Reda and Andreas 2007

o Extraterrestrial radiation: Reno, Hansen and Stein 2012; Partridge and Platt 1976; Duffie
and Beckman 1991; ASCE 2005

¢ Single-axis tracking: Anderson and Mikofski 2020

! https://maps.nrel.gov/marine-energy-atlas/

2 https://pypi.org/project/UTide/

3 https://github.com/pvlib/pvlib-python

4 https://pvpme.sandia.gov/

5 https://solarequipment.energy.ca.gov/Home/Index

Tool Methodology and Assumptions 2
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Diffuse Irradiation on a tilted surface and from the ground: Loutzenhiser et al. 2007; Hay &
Davies 1980

Cell and module temperature: King et al. 2004

DC power calculation (using the single diode model): De Soto et al. 2006; Dobos 2012;
Madelung 2004; Wenham, Green & Watt 1995; Jain & Kapoor 2004; King et al. 2004

PV losses: Dobos 2014
e AC power calculation: King et al. 2007

Once the AC power output is calculated for each solar scenario for a 1 kW array, the power is
scaled for each system configuration (as described below) according to the total PV capacity.

1.1.2.2 Tidal Power Generation

Once tidal velocity profiles have been created as described above, the power generated by the
tidal resource is calculated as follows according to O’Doherty et al. 2018:

3 1
min {OSCPPI;, ArOtOI‘nrOtor' ucut—in <u< ucut—out ( )
P = rated
0' u< Ucyt-in
0' u> ucut—out
where ¢, = tidal generator power coefficient
p = fluid density
u = tidal velocity
Aroor = area of the rotor
Irotor = Number of rotors per turbine
Paea = turbine rated power
Uarin = cut-in velocity

cut-out velocity

Ucut-out

Several parameters need to be determined to complete this calculation. These include:
e Turbine rated power

Number of rotors

Rotor diameter

Cut-in and cut-out velocities

Depth of turbine

The first three are determined by the turbine model. MCOR provides several example tidal
turbine models in the MCOR_Prices.xIsx spreadsheet, and turbine rated power, number of
rotors, and rotor diameter are taken from the selected model. The cut-in and cut-out velocities
can also be model-dependent, however, MCOR uses defaults for these, which can be
overridden by the user. Finally, the turbine depth must be selected by the user and is very site
dependent.

Tool Methodology and Assumptions 3
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Note that the calculation used by MCOR assumes power is generated in both directions of tidal
flow, as would be consistent with a cross-flow turbine. For an axial flow turbine with more
directionality, more alignment with the maximum current direction would be necessary to
calculate power output.

1.1.3 Sizing of Renewable Energy and Battery Components

Before running the system dispatch simulations, a set of renewable resource and battery
system sizes is determined based on the annual load profile for the site and renewable power
production. There are a few different options for determining the capacities of the microgrid
components, depending on the resources that the user opts to include as well as a few tunable
parameters. These tunable parameters are:

¢ The choice to size resources based on TMY (typical meteorological year) data or the
aggregated outage profiles described above

¢ The choice to factor in battery losses when sizing resources

In addition to the sizes chosen by MCOR, the user can choose to simulate other specific system
sizes, so this set of configurations is intended as a starting point for users who do not already
have specific component sizes determined. The methodology for determining these sizes is
described below.

1.1.3.1  Tidal

The methodology for sizing tidal resources is the same with or without additional PV resources.
MCOR supplies a list of tidal generators that the user can choose from based on the
specifications of their location. They can also add information for a specific generator not on the
included list.

Given the tidal generator model chosen by the user, MCOR will start with one tidal turbine and
continue adding systems with more turbines until the total energy generated by the tidal turbines
over the course of a year exceeds the total annual load of the site or until the maximum number
of turbines (as specified by the user) is reached, whichever comes first.

For example, for a site with a total annual load of 20,000 kWh, and a tidal turbine model that
generates 6,000 kWh per year, MCOR will model microgrid configurations with 1, 2, 3, and 4
tidal turbines. If the user indicates that only 3 tidal turbines can be included at the site, then
MCOR will model microgrid configurations with 1, 2, and 3 turbines.

113.2 PV

There are two different methods for sizing PV capacities, depending on if tidal resources are
also included in the microgrid.

Microgrids with Only PV

For microgrid systems with only PV resources, four PV system capacities are determined as
follows:

¢ Net-zero plus efficiency losses

¢ Net-zero

Tool Methodology and Assumptions 4
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e 1/2 Net-zero

e 1/4 Net-zero

The Net-zero PV capacity is determined as the capacity required to generate the total energy
used over the course of the year based on the TMY solar generation profile:

NZ =L/PV (2)
where NZ = net-zero capacity
L = total annual load
PV = total annual PV generated by a 1 kW system

Half and quarter Net-zero capacities are simply the Net-zero capacity divided by two and four,
respectively. The Net-zero plus efficiency losses capacity increases the net-zero capacity to
account for efficiency losses from charging and discharging the battery:

. L+eff (3)
NZ»=—%py
eff =excx (1—RTE) (4)

where NZ+ Net-zero plus capacity

eff = efficiency losses from charging the battery
exc = total annual excess PV generation beyond what is used instantaneously to
serve load based on the Net-zero capacity
RTE = battery system round trip efficiency

Microgrids with Both PV and Tidal

For microgrid systems with both PV and tidal resources, a different methodology is used. First,
the Net-zero size as described above is included with zero tidal turbines. Then for each tidal
turbine number, PV resources are added such that the combined total annual generation of both
PV and tidal is equal to the total annual load.

Following the example above where the total annual load is 20,000 kWh, and the selected tidal
turbine model generates 6,000 kWh per year, with an annual PV generation of 2,000 kWh per
1 kW of installed PV, the following system configurations would be modeled by MCOR:

o 1 tidal turbine, 7 kW PV

2 tidal turbines, 4 kW PV
3 tidal turbines, 1 kW PV
4 tidal turbines, 0 kW PV
0 tidal turbines, 10 kW PV

1.1.3.3 Battery

There are three different methods that are used to calculate the battery power and capacity, the
“longest night” method, the “no-RE export” method, and the “unmet load” method.

Tool Methodology and Assumptions 5
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Longest Night Method

Using the “longest night” method, five battery capacities are determined, with the largest battery
capacity calculated based on the energy necessary to meet the entire load on the longest night
of the year:

Max capacity = Maximum nightly load/RTE (5)

The other sizes are calculated as fractions of this capacity as follows:

e Max capacity

3/4 Max capacity

1/2 Max capacity

1/4 Max capacity
e 0
For each capacity size, the power rating is determined from a specified battery power to energy

ratio (either user entered or a default). Each combination of battery and PV sizes is included in
the set of system configurations, along with a system with no PV or batteries, as follows:

PV Battery
Net-zero plus efficiency losses Max capacity
Net zero Max capacity
Y2 net-zero Max capacity
Ya net-zero Max capacity

Note that this method is only valid for microgrid configurations with PV only (i.e. no tidal).

Net-zero plus efficiency losses

% Max capacity

Net zero % Max capacity
2 net-zero % Max capacity
Ya net-zero % Max capacity

Net-zero plus efficiency losses
Net zero

2 net-zero

Y4 net-zero

Net-zero plus efficiency losses

2 Max capacity
2 Max capacity
2 Max capacity
2 Max capacity
Y2 Max capacity

Net zero Y2 Max capacity
2 net-zero Y2 Max capacity
Ya net-zero Y2 Max capacity
Net-zero plus efficiency losses 0
Net zero 0
2 net-zero 0
Ya net-zero 0
0 0

Tool Methodology and Assumptions
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No-RE Export Method

The second battery sizing method is called “no-RE export” and determines the battery capacity
and power required to store all excess RE generation (beyond that used instantaneously to
serve load) for each of the included RE capacities (either PV only or PV + tidal). In addition to
the battery size that captures 100% of excess generation, MCOR will also include battery sizes
that capture 75% and 50% of excess generation. In the example with PV only, thirteen system
configurations are generated, three for each of the matched PV and battery sizes and one with
no PV or batteries.

Unmet Load Method

The third battery sizing method is called “unmet load” and determines the battery capacity and
power required to discharge the battery to meet all load not met by renewable resources
(assuming the battery is fully charged). This method is only valid for microgrid configurations
with both PV and tidal (or tidal only). As for the “no-RE export” method, one battery size is
determined for each RE configuration. For each RE size, the battery capacity is calculated as
the maximum daily load not met by the RE resources and the battery power is calculated as the
maximum excess hourly RE generation. In addition to the battery size that captures 100% of
either unmet load, MCOR will also include battery sizes that capture 75% and 50% of unmet
load.

1.1.4  Simulation of Microgrid Power Dispatch

To understand microgrid operation during an unplanned power outage under varying resource
conditions, each of the system configurations (RE and battery size) are simulated using each of
the solar and/or tidal generation scenarios (see Figure 1). Each RE generation time series
consists of hourly values for AC generation for 1 kW of installed solar or tidal energy, which are
then scaled by the RE capacity for each microgrid configuration. The load profile for each
simulation period is taken from the same dates and times as the corresponding RE generation
profile and consists of hourly demand in kW. The user uploaded demand profile can reflect total
annual load or only the critical load portion. See Section 3.6 for information on how to run a
simulation with both typical and critical load profiles.

Tool Methodology and Assumptions 7
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Figure 1. Overview of MCOR simulation structure for a simulation with PV, batteries, and a
diesel generator. Each of the microgrid system configurations, defined by a
MicrogridSystem Python obiject, is simulated for each of the solar outage profiles,
within a PVBattGenSimulator Python object. The overall simulation is coordinated by

an Optimizer Python object.

For each individual simulation, MCOR uses a fixed dispatch strategy, as follows:

¢ PV and/or MRE are dispatched to meet the load. Any excess generation is used to charge
the battery.

e The battery is dispatched. During the day, the battery will discharge at up to its power rating
to meet the load not served by RE (and constrained by remaining capacity), and during the
nighttime, there are three battery dispatch strategies:

— Discharge the battery at a constant rate based on the available capacity at the beginning
of the night and the length of the night to use all the available capacity by the end of the

night.

— As above but update the discharge rate at each hour based on the remaining available

capacity. This is the default strategy.

— Discharge the battery at up to its power rating to meet the load not served by RE. This is
the recommended method for microgrid configurations with included tidal generation.

e The generator is dispatched to meet the remaining unmet load.

1.1.5 Back-up Generator Sizing

For each system/scenario combination, the generator is sized as a simulation post-processing
step. The generator capacity is determined such that the electrical load is met at each hour of
the simulation. This capacity is then increased according to a specified percentage buffer and is
chosen from a list of default diesel generators (see Section 1.2.3). While the chosen generator
for each simulation is based on meeting all critical load, information on less conservative, but
also less expensive configurations can be found in the tool outputs. As with the generator sizing,

Tool Methodology and Assumptions
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fuel consumption is calculated as a post-processing step for each simulation (system/scenario)
combination. Based on the selected generator (which is chosen to meet all unmet load from the
RE and battery systems), fuel consumption is calculated based on a stepped linear model. The
required fuel storage tank capacity for the duration of the specified outage is also calculated and
based on a list of default tank sizes.

1.1.6 Post-processing and System Ranking

Once each simulation has been run, the results are aggregated for each system configuration
across all outage scenarios. Metrics are either calculated as the average (mean) value across
all simulations, or the most-conservative (max) value across all simulations, allowing for design
of a more resilient system. Metrics are returned to the user in an Excel spreadsheet, with each
row representing a single system configuration (combination of PV, tidal and battery size).
System configurations are ordered and filtered by the user-specified ranking and filtering
criteria, respectively. Additional Excel sheets include the user-specified annual load profile, the
calculated TMY solar generation profile (if solar is included), the calculated TMY tidal generation
profile (if tidal is included), the user-specified input parameter values, and the default parameter
values and assumptions. Although all dispatch simulations are run under outage conditions, a
few of the metrics below are calculated for grid-connected mode as a post-processing step
using the TMY generation data (e.g. annual RE net-metering revenue, annual RE demand
savings, and simple payback time).
The output metrics are as follows:

e PV capacity, tidal capacity and battery power/capacity for the specified system

o Generator power capacity for the specified system, both typical (the average across all
simulations) and most-conservative (the largest generator size across all simulations)

¢ Total fuel tank capacity (based on the largest amount of fuel needed across all simulations)

¢ Required area for the PV system. This is based on the panel size multiplied by a specified
spacing buffer

o Total system capital cost. This does not include the cost of existing systems.

e PV capital

o Tidal capital

o Battery capital, including inverter costs.

¢ Generator capital, based on the most conservative size, and including installation labor
¢ Fuel tank cost, based on the most conservative size

¢ Annual PV O&M costs

¢ Annual tidal O&M costs

¢ Annual battery O&M costs

¢ Annual generator O&M costs

¢ Annual RE net-metering revenue, which can be calculated according to several different net-
metering set-ups. These are discussed in more detail in Section 3.0 (Advanced Options)

Tool Methodology and Assumptions 9
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¢ Annual RE demand savings. This will be $0 unless a demand rate was included in the
simulation inputs

¢ Simple payback time, based on capital costs, O&M costs, and the annual RE net-metering
and demand savings revenue

e Mean PV hourly load across all simulations

e Mean peak PV hourly load across all simulations

o Max peak PV hourly load across all simulations

e Mean tidal hourly load across all simulations

o Mean peak tidal hourly load across all simulations

o Max peak tidal hourly load across all simulations

e Mean generator hourly load across all simulations

¢ Mean peak generator hourly load across all simulations

o Max peak generator hourly load across all simulations

e Mean total generator load across all simulations

o Max total generator load across all simulations

¢ Mean total outage load across all simulations

o Max total outage load across all simulations

¢ Mean hours before generator needed across all simulations
¢ Min hours before generator needed across all simulations
e Mean hourly battery load across all simulations

e Mean peak hourly battery load across all simulations

o Max peak hourly battery load across all simulations

o PV/Tidal/Battery/Generator percent, the average percentage of energy met by the PV
system, tidal system, batteries, and generator, respectively

¢ Fuel consumption for the resilience period, both typical (the average across all simulations)
and most-conservative (the largest amount of fuel consumed across all simulations)

e Storage recovery percentage, the percentage of excess RE which is charged into the
battery

Beyond output metrics, the tool can produce several different types of graphs:

Dispatch graph. This shows how the individual system components are dispatched at each
hour to meet the electrical load during an outage. While this can be displayed for any individual
system configuration (PV, tidal and battery size combination), by default, this graph is generated
for three systems: (1) The ‘best’ system according to the user-specified ranking criteria (simple
payback by default), (2) The ‘best’ system that also includes a battery, since the potential
economic benefits of batteries are not included in the payback calculation, and (3) the system
that uses the least fuel overall. For each system, the dispatch graph can be plotted for either a
specific outage scenario, the scenarios with the highest and lowest solar insolation, or the

Tool Methodology and Assumptions 10
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scenarios with the largest and smallest fuel consumption. This figure can be shown as a line
graph or a stacked area graph. An example is shown in Figure 2.
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System with Least Fuel Consumption Max Solar Irradiance Scenario
pv 603.6kW batt 699.0kW 2796.0kWh generator 350kW

System with Least Fuel Consumption Min Solar Irradiance Scenario
pv 603.6kW batt 699.0kW 2796.0kWh generator 350kW
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Figure 2. Sample dispatch figure, showing how the load is met by different microgrid

components for the outage periods with the highest (left) and lowest (right) solar

discharging in green, and diesel generator consumption in red.

Battery Power (kW) (discharging)

(charging)

insolation. The load is shown in blue, PV generation in orange, battery charging and

System comparison graphs. Users can also compare system configurations against each
other graphically by selecting either one output metric or two and showing those for all systems.
Figures 3 and 4 show examples where one or two metrics are compared, respectively. Note:
these two figures will only work for systems with PV only (i.e. no tidal).

Tool Methodology and Assumptions
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Comparison of Mean Fuel Consumption (Gal) Across System Sizes

1176.8 711.8 - 2000
- 1800
3
-1600 O
— c
S S
£ g
> 1400 §
1%
g 8
8 1200
g 2
c
) ©
d- 17276 1636.8 1595.2 1554.0 1512.7 1000 ¢
—
800
- 21450
° 600
0.0 174.7 349.5 524.2 699.0

Battery Power (kW)
Figure 3. Sample comparison figure, showing how mean fuel consumption varies across

systems with different PV capacity and battery power ratings. Darker green squares
denote lower fuel consumption (in gallons).

Comparison of Fuel Consumption and Capital Cost Across System Sizes
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Figure 4. Sample comparison figure, showing how mean fuel consumption and capital cost vary
across systems with different PV capacity and battery power ratings. Circle color
denotes PV capacity in kW with darker green representing larger capacities and circle
size denotes battery power in KW with larger size representing higher power ratings.
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1.2 Model Assumptions
As MCOR is intended to provide a high-level recommendation of system sizing, we make
several simplifying assumptions:

e MCOR considers load and generation within a single electrical node (bucket of energy
analysis), with no constraints in the distribution system that would prevent any generation
source from delivering energy to any node

e |t does not calculate distribution losses

¢ |t assumes sulfficient fuel and fuel storage is available to power all diesel generators
o It does not model sub-hourly variation

¢ |t does not consider transient effects such as equipment switching on/off

¢ |t does not account for changes in load pattern before and after daylight savings time

e The net metering and demand revenue and payback listed in the output spreadsheet are
based only on operation of the RE system during the year and do not include any
contribution from demand response or other battery operation strategies

1.21 Solar Modeling Assumptions

Most of the solar modeling assumptions (besides user-defined inputs) are hardcoded in the
solar profile generation modules or are contained in the pvlib defaults. For more on the latter,
you can go to the pvlib-python documentation page'. The MCOR-defined solar modeling
assumptions are described below:

¢ Default solar module: SunPower SPR-X22-360-C-AC, selected by choosing a newer module
similar to the top U.S. installed panel according to NREL’s OpenPV database in 2018 (now
hosted at LBNL's Tracking the Sun website?).

¢ Default inverter: SMA America SB5000US-240V-240V, selected as a reasonable size
(5 kW) from a top U.S. inverter manufacturer (SMA - manufactures U.S. inverters in
Colorado)

¢ Default modules per string: 7, with two strings in parallel, corresponding to a total of
5.04 kW, with a voltage of 490 V for a 5 kW inverter

o Albedo: 0.12
e PV losses: standard losses used by PVWatts (14%) (Dobos 2014)

¢ For single-axis tracking, a description of the functions used can be found here:
https://github.com/pvlib/pvlib-python/blob/main/docs/tutorials/tracking.ipynb

1.2.2 Tidal Modeling Assumptions

Several default assumptions are used for the tidal generator model and can be modified in the
main_example.py module when running an analysis. These include:

e Maximum power coefficient (G,): 0.42

! https://pvlib-python.readthedocs.io/en/stable/
2 https://lemp.lbl.gov/tracking-the-sun
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Tidal cut-in velocity: 0.5 m/s

Tidal cut-out velocity: 3 m/s

Tidal inverter efficiency: 0.9

Tidal turbine losses: 10%

1.2.3 Cost Assumptions

Most of the costs used in MCOR are either user-specified or contained in an Excel document
that can be edited by the user. The electricity rate, demand rate, and the net-metering are all
included as user-defined inputs. If the electricity rate is not specified, the most recent average
retail price from the U.S. Energy Information Administration is used for the relevant U.S. state’.
If no demand rate is specified, it is assumed that there is not a separate demand charge, and
revenue from demand charge savings is not calculated for the simulation. If no net-metering rate
is specified, the net-metering rate is assumed to be the same as the electricity rate.

PV capital costs are determined as follows. Ground-mounted (fixed and single-axis) and roof-
mounted costs are based on the NREL report U.S. Solar Photovoltaic System and Energy
Storage Cost Benchmarks: Q1 2021 (Ramasamy et al. 2021), which lists capital costs for PV
systems of various sizes (residential, commercial, and utility-scale). Costs are only listed for
ground-mounted fixed commercial and utility-scale, ground-mounted single-axis utility scale,
and roof-mounted residential and commercial scales. From these costs, adders for different
racking types were extrapolated as follows: roof to ground cost adder: +5%, fixed to single-axis
tracking adder: +7%. Carport adders were determined from the Vermont Solar Cost

Study (Seddon 2016) to be +19% as compared with roof-mounted. For utility-scale roof and
carport-mounted, the utility-scale ground-mounted costs were used, because utility-scale roof or
carport mounts are not feasible. In Table 1, the costs that came directly from the NREL report
are highlighted in yellow, while the other costs were extrapolated using the adders as described
above.

Table 1. PV system costs for different racking and tracking types and system sizes.

Size Limit (kW) 0-100kW 100-5000kW 5-100MW
Racking, tracking types ($/W) ($/W) ($/W)
ground, fixed 2.78 1.64 0.83
ground, single_axis 2.97 1.75 0.89

roof, fixed 2.65 1.56 0.83
carport, fixed 3.15 1.86 0.83

Two types of costs are included for tidal turbine generators. Costs for specific models are
derived from Coles et al. 2021 and costs for reference model turbines RM1, RM2 and RM4 are
derived from Neary et al. 2014a, Neary et al. 2014b, and Neary et al. 2014c, respectively. All
costs are included in the MCOR_ Prices.xIsx spreadsheet in the ‘mre_costs’ tab.

! https://www.eia.gov/electricity/state/
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Battery costs are calculated assuming $0.521/Wh for the battery system and
construction/commissioning and $0.401/W for inverter and balance of system costs. These are
based on the average of 2018 and projected 2025 costs from the report “Energy Storage
Technology and Cost Characterization” (Mongird et al. 2019).

The cost for generators is based on CAT model costs from the GSA advantage website' and
then extrapolated to $191/kW. This is then doubled to $382/kW with the assumption that total
capital cost is twice the cost listed to account for installation costs. The cost for any given
system is based on the largest generator size from all of the outage scenarios.

The fuel tank sizes and costs are based on ConVault tank systems with prices from the GSA
Advantage website".

Operations and maintenance costs are taken from a variety of sources. Generator costs are
from “The Market and Technical Potential for Combined Heat and Power in the Industrial
Sector (ONSITE SYCOM Energy Corporation 2000), battery costs are from “New Energy
Outlook 2015: Long-Term Projections of the Global Energy Sector” (BNEF 2015), PV costs are
from “The Role of Advancements in Solar Photovoltaic Efficiency, Reliability, and Costs”
(Woodhouse et al. 2016), and tidal turbine costs are from Previsic and Bedard 2009. The
generator costs provided in the cited resource include fixed and per kWh costs for three
different generator sizes. A blended $/kW rate has been calculated by prorating the costs for
inflation from 2000 to 2019, assuming an annual usage of 336 hours, and extrapolating the
three data points to an exponential function (Annual cost = scalar x capacity”exponent). Costs
for fuel consumption are not included in the MCOR model, as it is assumed that the generator is
only operated during emergency outage conditions. The operations and maintenance cost
assumptions are shown in Table 2. All operations and maintenance costs do not include
replacement costs.

Table 2. System operation and maintenance costs.

PV PV
Generator Generator ground, ground, PV PV carport,
Component scalar exp Battery fixed single_axis  roof, fixed fixed Tidal
Unit $/KW-yr $/kWh-yr  $/kW-yr  $/kW-yr $/kW-yr  $/kW-yr $/KW-yr
Cost 102.65 0.669 2.41 15 18 17.5 12.5 510

! https://www.gsaadvantage.gov
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2.0 Quick Start Guide
2.1 Setup

A Python 3.10 installation is required to run MCOR. It is also highly recommended to run MCOR
using an IDE, such as VSCode or PyCharm. To install Python as well as many commonly used
packages, you can download the Anaconda distribution
(https://www.anaconda.com/products/distribution#download-section). You can clone the MCOR
repository from Github here: https://github.com/pnnl/MCOR. Once cloned, ensure that the
“mcor” directory is in your Python path.

Required packages and versions are included in the requirements.txt file. You can install all of
these by running:

pip install -r requirements.txt

You can optionally install numba to speed up the solar power calculation:
http://numba.pydata.org/#installing.

You will also need to create your own credentials file with an NREL API key to download
historical solar data from the NSRDB. To do so:

1. Sign up for an API key here: https://developer.nrel.gov/signup/

2. Create a file called creds.yaml in the root directory and then add your email address and
API key to the file.

The file should have the following format:

nrel api key: <your key>
nrel api email: <your email>

2.2 Running the Tool

To run an MCOR simulation, you must edit and then run an input Python file with the
parameters for your site. There is a sample input file called main_example.py in the main_files/
directory. It is recommended that you copy this file for each new site, so that you can still refer
to the sample main file and do not encounter any merge conflicts when pulling updates from
Github.

You can update input parameters in the second half of the main_example.py file (or your copy)
after the “Define simulation parameters here” text. All the input parameters are stored in the
input_dict dictionary, nested in sub-dictionaries by category. Many of the parameters defined in
main_example.py are for more advanced use of MCOR, but at a minimum, you should specify
the following parameter values:

e System inputs:
— latitude

— longitude

Quick Start Guide
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— timezone
— length_trials (the number of hours in your simulated outage period)

— renewable_resources (which RE resources to include in the microgrid, options include
‘pv’ and/or ‘mre’)

e Load inputs:

— annual_load_profile (an 8760 annual load profile for the site. Make sure to update the
filename and column name which includes the load data)

¢ Financial inputs:
— utility_rate (blended electricity rate)
¢ Output inputs:

— save_filename (the name to be used for output results files. If you don’t change this for
different runs, your results will be overwritten.)

Note that the code required to download historical solar data and generate the solar profiles can
take a long time to run (up to 10 minutes, depending on the number of profiles generated and
CPUs on your computer). Fortunately, after the ASP code is run, the scenario data are saved to
csv files, so if you are not running the code for a new site, you should set “get_solar_data” to
False and “get_solar_profiles” to False, under “pv_inputs”. Likewise, if you are running a new
site, make sure those parameters are set to True. While developing the tidal model is much
faster, you can also set “get_tidal_profiles” under “mre_inputs” to False after running MCOR for
a given site the first time.

After MCOR is finished running through all the simulations, it will print out a list of the system
configurations to the Python Console and generate dispatch plots for the best systems as
described in Section 1.1.6.

It will also produce a few plots to show how the PV system is performing during normal

operation using the TMY solar data (Figures 5 and 6). These can be used to 'gut-check’ that the
PV profiles look reasonable for the given location.

TMY power profile

Power (kW)
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Figure 5. Sample TMY PV power profile showing the power generated by a 1 kW array under
typical conditions.
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Figure 6. Sample max and min power profiles showing the power generated by a 1 kW array for
the solar profiles with the maximum (left) and minimum (right) total production.

Finally, to view the quantitative results from a simulation (system sizes, fuel consumption, cost,
etc.), migrate to the directory mcor/output and open the Excel file with the filename you
specified in main_example.py. The contents of this file are described in Section 1.1.6. MCOR
will also create a binary pickle file and json file with the full results of the simulation. The binary
file can be saved for reference and loaded at any point to retrieve or re-plot your simulation
results.
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3.0 Advanced Options

Beyond the parameters specified in Section 2.0, MCOR allows you to define more advanced inputs to override many of the defaults.
A full list of all the MCOR input parameters is shown in Table 3.

Table 3. MCOR input parameters.

Parameter Default Units Example Data Type Description
system_inputs
latitude N/A degrees 46.34 Float
longitude N/A degrees -119.28 Float
timezone N/A None US/Alaska, String
US/Aleutian,
US/Arizona,

US/Central, US/East-
Indiana, US/Eastern,
US/Hawaii,
US/Indiana-Starke,
US/Michigan,
US/Mountain,
US/Pacific, US/Pacific-
New, US/Samoa (or
any other valid pytz
timezone name)

altitude 0 Meters 10 Float

num_trials 200 None 200 Int This is the number of
distinct outage periods
that are simulated for
each system. For
testing purposes, 10 is
sufficient, but for
modeling actual sites,
choose at least 200.
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Parameter Default

Units Example Data Type

Description

length_trials 336

renewable _resources ['mre’, ‘pv’]

dispatch_strategy available_capacity

size_re_resources ba False
sed_on_tmy

Hours 336 Int

None ['pv], ['pV, ‘mre’], List of Strings
[‘mre’]

None available_capacity, String
night_const_batt,
night_dynamic_batt

None True, False Boolean

The number of hours
in each outage period,
or the resilience goal.

Indicates which RE
resources should be
modeled in the
microgrid. Options
include photovoltaics
(‘pv’) and marine
renewable energy
(‘mre’).

The battery dispatch
strategy.
‘available_capacity’
always discharges the
battery up to the
available capacity,
'night_const_batt’
discharges the battery
up to the available
capacity during the
day and at a constant
rate at night,
‘night_dynamic_batt’
discharges the battery
up to the available
capacity during the
day and at a dynamic
rate at night to account
for the remaining
capacity at any given
hour.

Determines if
renewable resource
capacities are
determined using TMY
data or outage profile
data.

Advanced Options
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Parameter Default Units Example Data Type Description
size_battery_based_o True None True, False Boolean Determines if the
n_tmy battery capacity is

determined using TMY
data or outage profile
data.
size_resources_with_b True None True, False Boolean Determines if battery
attery_eff_term and inverter efficiency
should be considered
when sizing RE
resources.
start_datetimes None None [dt.strptime('11/4/2022 List of Datetime Start datetimes for
22:00', '%m/%d/%Y objects modeling outages.
%H:%M")] This should only be
used if you want to
look at specific dates
for outages rather than
having MCOR
randomly generate
them.
re_constraints {3 None {'total': 2000, 'pv" Dictionary Capacity limits for PV,
2000, 'mre': 2000} MRE and/or total RE.
pv_inputs
tilt 20 Degrees 20 Float Tilt of the PV system
azimuth 180 Degrees 180 Float Azimuth of PV system
spacing_buffer 2 None 2 Float Factor by which to
scale panel area to get
total PV array area.
pv_racking ground None ground, roof, carport  String Type of PV racking
pv_tracking fixed None fixed, single_axis String Type of PV tracking
solar_data_source nsrdb None nsrdb, himawari String Source for modeled

solar data.

Choose ‘nsrdb’ for
sites in the U.S.,
Central America,
Canada, and South
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Parameter

Default

Units Example

Data Type

Description

solar_data_start_year

solar_data_end_year

get_solar_data

get_solar_profiles

1998

2022

True

True

None

None

None

None

1998

2022

True, False

True, False

Int

Int

Boolean

Boolean

America. Choose
‘himawari’ for sites in
East Asia and the
Pacific Islands.
Coverage information
for these datasets can
be found at
https://nsrdb.nrel.gov/d
ata-viewer.

Must be between 1998
and 2022 for nsrdb
and between 2016 and
2020 for himawari.

Must be between 1998
and 2022 for nsrdb
and between 2016 and
2020 for himawari.

Determines whether to
download NSRDB
data. This is only
required once for a
given lat/lon.

Determines whether to
generate solar outage
profiles. This is only
required once for a
given lat/lon and
outage period length.

mre_inputs

mre_device _name

‘RM71’

None

‘RM?T’

String

Name of chosen tidal
device. The full list can
be found in the

MCOR _prices.xlsx file
under the ‘mre_costs’
sheet. Note: this
parameter is specified
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Parameter

Default

Units

Example

Data Type

Description

marine_data_filename

generator_type
depth
maximum_cp

tidal_cut_in_velocity

tidal_cut_out_velocity

tidal_inverter_efficienc
y
tidal_turbine_losses

get_tidal_profiles

'PortAngeles_2015_all
depths.csV'

‘tidal’
10

0.42

0.9

True

None

None

Meters

None

m/s

m/s

None

Percent

None

'PortAngeles_2015_all
depths.csV'

‘tidal’, ‘wave’
10
0.42

0.5

0.9
10

True, False

String

String
Float
Float

Float

Float

Float
Float

Boolean

outside of the
mre_inputs dictionary.
Filename for tidal
velocity input data.
Note: this file needs to
be in the MCOR
tidal_data/tidal_current
directory.

Type of MRE
generator to model.

Depth of tidal turbine
in the water column

Tidal generator power
coefficient

Tidal velocity at which
the turbine begins
generating power

Tidal velocity at which
the turbine stops
generating power

Efficiency of tidal
generator inverter

Percent losses from
tidal turbine

Determines whether to
generate tidal outage
profiles. This is only
required once for a
given lat/lon and
outage period length.

battery _inputs

batter _power to_ener
ay

0.25

None

0.25

Float

Ratio for determining
battery sizes to
simulate. This is only
used if
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Parameter Default Units Example Data Type Description
‘batt_sizing_method’ is
set to ‘longest_night'.

initial_soc 1 None 1 Float Initial battery state of
charge

one_way_battery_effic 0.9 None 0.9 Float

iency

one_way_inverter_effi 0.95 None 0.95 Float

ciency

soc_upper_limit 1 None 1 Float

soc_lower_limit 0.2 None 0.2 Float

batt_sizing_method longest_night None longest_night, String How the battery is

no_RE_export, sized. See
unmet_load Section 1.1.3.3 for a

description.

percent_at night 0.1 None 0.1 Float The fraction of
maximum PV power
below which it is
considered night, for
the purposes of battery
discharging

load_inputs

annual_load_profile N/A kw N/A Pandas Series Hourly load profile,
read from csv

off_grid_load_profile ~ None kw N/A Pandas Series Used to specify
separate load profiles
for emergency and
normal operation. See
description below.

financial_inputs

utility_rate N/A $/kWh 0.25 Float Utility rate to use for
calculating PV net-
metering revenue

demand_rate None $/kW 0.1 Float or List Demand charge rate to

use for calculating the
reduction in demand
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Parameter

Default

Units Example

Data Type

Description

system_costs

None

N/A

dictionary of Pandas
Dataframes

charges from
installation of PV. Can
be either a single
number or a list of 12
numbers, one for each
month.

Contains rated power
and fuel curves for
various generator
sizes and costs for
each component type.
Read from the Excel
file: data/MCOR
prices.xlsx

multithreading_inputs

multithreading

False

None

True, False

Boolean

Specifies if Python
multithreading should
be used to speed up
the calculation of solar
outage profiles. Note:
this will not work on all
platforms.

post_processing_inputs

filtering_constraints

None

capital_cost usd,
pv_area_ft2,
annual_benefits _usd,
simple_payback_yr, fu
el_used_gal mean,
fuel_used_gal most-
conservative,
pv_percent mean.
Each element takes
the form: {parameter,
type, value}, where
type can be max or
min.

List of dictionaries

Specifies any
constraints that should
be used to filter the
simulated systems.
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Parameter Default Units Example Data Type Description
ranking_criteria [{'parameter": None capital_cost_usd, List of dictionaries Specifies any criteria
'simple_payback_yr', annual_benefits _usd, that should be used to
'order_type": simple_payback_yr, rank the simulated
'ascending'}] fuel_used_gal mean, systems.
fuel_used_gal most-
conservative. Each
element takes the
form: {parameter,
order_type}, where
order_type can be
ascending or
descending
dispatch_plot scenari 'pV' None pv, gen, mre String Specifies which
o_criteria scenarios are used in
the dispatch plots.
Choosing ‘pv’ shows
the scenarios with the
maximum and
minimum solar
insolation, choosing
‘mre’ shows the
scenarios with the
maximum and
minimum tidal energy
generation, and
choosing ‘gen’ shows
the scenarios with the
highest and lowest fuel
consumption.
dispatch_plot _scenari None None 1 Int Specifies a specific
0 _num scenario to be used in
the dispatch plots, not
used if set to None
sizing_inputs
existing_components  {} None N/A Dictionary Component objects for

PV, tidal or battery
equipment that is
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Parameter

Default

Units Example

Data Type

Description

include_pv

include_mre

include_batt

()
()

()

kW

None

kWh, kW

(100, 200)

5)

((1000, 100), (2000,
200))

Tuple

Tuple

Tuple

already on-site. See
examples in
main_example.py.
List of specific PV
sizes to be included.
List of specific
numbers of turbines to
be included.

List of specific battery
sizes to be included.

net_metering_inputs

net_metering_limits

net_metering_rate

None

None

None

$/kWh

N/A

0.25

Dictionary

Float

Specifies limits on net-
metering revenue. See
description below.

Sets a distinct rate for
net-metering revenue.
If set to None, the
utility rate is used.

warning_inputs

suppress_warnings

False

None

True, False

Boolean

Whether or not to
suppress calculation
warnings from the
solar profile generator.

output_inputs

save_timeseries_json

save_filename

True

N/A

None

None

True, False

Project1

Boolean

String

Whether or not to save
all timeseries data in a
json file.

Filename used for
output excel and pickle
files
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3.1 Specifying Specific PV, Tidal, and Battery Sizes

In many cases, it is useful to specify a specific component size. For example, if you are
considering a specific roof for installing a PV array, and the size or corresponding capacity has
been previously estimated. There are a few ways to accomplish this:

¢ Use existing_components: This option should only be used if the cost of the specified size
should not be included in the capital costs, and if you do not want to see any sizes smaller
than the one specified. For example, to specify an existing 100 kW PV array, you could
include the following in your main_example.py file:

pv = PV (existing=True, pv_capacity=100, tilt=tilt, azimuth=azimuth,
module capacity=0.360, module area=3, spacing buffer=2,
pv_tracking='fixed', pv_ racking='ground')

input dict['sizing inputs']['existing components'] = {'pv': pv}

For an existing 1000 kWh/100 kW battery, you could include the following:

batt = Battery(existing=True, power=100, batt capacity=1000,
initial soc=1, one way battery efficiency=0.9,
one way inverter efficiency=0.95, soc upper limit=1,
soc_lower 1imit=0.1)

input dict['sizing inputs']['existing components'] = {'battery':
batt}

e Use include_pv, include_mre or include_batt: This option should be used if you want to add
a specific size to the set of configurations being considered. This increases the total number
of systems shown in the results Excel file. For example, to include a 400 kW and 500 kW PV
array in the list of simulated systems, you could include the following in your
main_example.py file:

input dict['sizing inputs']['include pv'] = (500, 400)
For a 1000 kWh/100 kW battery, you would include the following:

input dict['sizing inputs']['include batt'] = ((1000, 100),)
3.2 Specifying Specific Generator Sizes

Specifying a generator size is not recommended for a few reasons: (1) Sizing a generator for a
resilience need is a central capability within MCOR, (2) It is not guaranteed that a generator
designed to work without a microgrid system can be reconfigured to do so, and may require
expensive retrofitting, (3) If the specified generator is smaller than what is required to meet all
load during resilience periods, MCOR will just assume you have multiple generators of that size.
It is not possible to return a generator size that does not meet all the load during outage periods.

Given these caveats, if it is important to get MCOR results for a specific generator size, this can
be accomplished by creating an alternate version of the MCOR Prices Excel file in the
mcor/data directory with only one row in the “generator_costs” sheet containing the generator's
information, and then load that file in main_example.py instead of MCOR Prices.xlsx by
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changing the filename referenced by input_dict['financial_inputs’][‘'system_costs’]. The
information required includes:

Power: generator capacity in kW
Fuel consumed at V4, %2, %, and full load (in gallons per hour)

Cost: cost of one generator (including installation)

3.3 Setting Custom Costs

To update any of the default cost assumptions used by MCOR, create a copy of MCOR
Prices.xlIsx and modify the costs in the appropriate sheet. Note that the units and format cannot
be changed, so the new prices must be in the same units and format as the ones in the current
file. Then load that file in main_example.py instead of MCOR Prices.xlIsx. Prices can also be
modified in post-processing, since the costs are all included in the output Excel spreadsheet.

3.4 Setting Net-Metering Restrictions

There are several options for setting limits on the amount of revenue generated from net-
metering.

To specify a net-metering rate different from the utility rate, set the net_metering_rate
parameter in units of $/kWh

To specify no net-metering, set net_metering_rate to 0

To enforce an installed capacity cap, use the constraints parameter with a pv_capacity limit,
e.g. input_dict['filtering_constraints’] = [{‘parameter’: ‘pv_capacity’, ‘type’: ‘max’, ‘value’: 100}]
with the value in kW

To enforce an instantaneous export power cap (e.g. if you can only export 100kW to the grid
at any given moment), set the net_metering_limits parameter,

e.g. input_dict['net_metering_inputs’][‘net_metering_limits’] = {'type": 'capacity_cap', 'value":
100}, where value is in kW

To enforce a cap as a percentage of load (e.g. if you cannot end the year with a positive net-
metering balance), input_dict['net_metering_inputs’]['net_metering_limits’] = {'type":
'percent_of load', 'value': 100}, where value is in %

In the case where there is no net-metering, but the battery is sized to capture all excess PV
generation (i.e. if batt_sizing_method = 'no_RE_export'), and you want to estimate the
revenue from using the battery during normal operation to capture and use this excess
generation, set the net_metering_limits parameter, e.g.
input_dict['net_metering_inputs’][‘'net_metering_limits’] = {'type": 'no_nm_use_battery'}. This
will not include any additional costs due to wearing out the battery more quickly from using it
daily and does not capture revenue from using the battery for grid services. It also assumes
that the battery is sized with the no_RE_export method.

Note: if there are any specified existing PV components, the revenue generated from those
components will not be included in the annual benefits total.
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3.5 Using Custom 8760 Power Generation Data

It is possible to have MCOR create outage profiles based on uploaded generation data instead
of the Annual Solar Profiles (ASP) algorithm. This could be useful if your site is in a location for
which there is no historical NREL or Himawari solar data, if you would like to compare results
with known power generation at a site, or if you would like to analyze production for a resource
other than PV or tidal. This can be done by setting input_dict['pv_inputs’][‘get_solar_data’] and
input_dict['pv_inputs’][‘get_solar_profiles’] to False and commenting out the following line of
code from main_example.py:

spg.get power profiles()

And adding the following code in the same place, replacing ‘sample_pv_production.csv’ with the
filename for your production data:

tmy production = pd.read csv(os.path.join('data’',
'sample pv production.csv'), header=None, index col=0) [1]
spg.get power profiles from upload(tmy production)

Note that the parameter tmy_production must be a Pandas series. Also, it is assumed that the
uploaded file contains the power production for a 1 kW array. This code will still create a series
of outage profiles, but they will be sampled from the uploaded power profile instead of the ASP
statistical model.

3.6 Using Different Load Profiles for Normal and Emergency
Operation

To specify a separate load profile to use for emergency operation, set the off_grid_load_profile
parameter in main_example.py to read in a csv or Excel file. The format restrictions for this
parameter are the same as for annual_load_profile. If this parameter is specified (and not set to
None by default), the annual_load_profile is used to size the PV and tidal systems and calculate
annual revenue, and the off_grid_load_profile is used to size the battery and the generator, as
well as calculate the resilience metrics. If, however, the battery sizing_method parameter
(described in the next section) is set to ‘'no_RE_export’, then the annual_load_profile is also
used for sizing the battery, since it should be sized to capture excess PV during normal, grid-
connected operation.

3.7 Sizing a Battery to Avoid Exporting Excess PV to the Grid

If the site is in a location where net-metering is not allowed, it may be useful to size the system
so that the battery will absorb all excess generation produced by the PV system during normal
operation. This can be accomplished by setting the batt_sizing_method in main_example.py to
‘no_RE_export’ (the default is ‘longest_night’). If this option is used, MCOR only returns one
battery size per PV size. It is still possible to include specific PV sizes using the include_pv or
existing_components options, and battery sizes will be determined for these as well.

3.8 Running Sensitivity Studies

You can run sensitivity studies with MCOR to run several microgrid simulations while varying
one parameter. To do so, copy and modify the module main_sensitivity_example.py instead of
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main_example.py. After the “Define simulation parameters here” comment, you can specify the
parameter to be varied as well as the values to iterate over by modifying the sensitivity_param
dictionary. For example, to run simulations with outage lengths of 6, 12, and 24 hours, you

would set:

sensitivity param = {
'param category': 'system inputs',
'param name': 'length trials',
'param values': [6, 12, 24]

}

To view a list of parameters that can be used for the param_name, see the
ALLOWED_SENSITIVITY_PARAMS list in main_sensitivity_example.py. Make sure that
param_category is set to the dictionary within input_dict where the param_name parameter is
set in main_example_sensitivity.py. Note that the value of that parameter set in input_dict will be
overridden by the values specified in sensitivity param[‘param_values’]. For sensitivity studies,
the output Excel spreadsheet will contain the normal assumptions and TMY generation sheets
in addition to a results sheet for each of the sensitivity parameter values.

The function plot_comparison_graphs can be used to compare the simulations across your
sensitivity parameter. The following arguments can be modified to adjust the plot:

e comparison_metric: this controls which parameter value is plotted, options include
['pv_capacity', 'mre_capacity', 'battery capacity', 'battery_power', 'generator_power_kW',
'fuel_tank_size gal', 'pv_area_ft2', 'mre_area_ft2', 'capital_cost_usd', 'pv_capital’,
'mre_capital', 'battery_capital', 'generator_capital', 'fuel_tank_capital', '‘pv_o&m', 'mre_o&m’,
'battery_o&m'’, 'generator_o&m’, 'annual_benefits_usd', 'demand_benefits_usd',
'simple_payback_yr', 'pv_avg_load', 'pv_peak_load', 'mre_avg_load', 'mre_peak_load',
'gen_avg_load', 'gen_peak_load', 'batt_avg_load', 'batt_peak_load', 'pv_percent',
'mre_percent', 'batt_percent’, 'gen_percent', 'fuel_used_gal’, 'storage_recovery_percent']

o system_label: which microgrid system to display, options include ['least_fuel', 'least_cost',
'‘pv_only', 'mre_only', 'most_diversified', 'all']. This will control which of the several microgrid
system configurations that MCOR simulates to display in the graph.

¢ sim_label: which simulation to display, options include [‘avg', 'min’, 'max’, 'distribution']. If
‘distribution’ is selected, a boxplot will be displayed. Otherwise, a scatterplot will be
displayed.

An example is shown in Figure 7 for a sample set of simulations that varied the length_trials

parameter. In these plots, the storage_recovery percent metric is shown with a few different
options.
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Figure 7. Sensitivity study output graphs showing how the storage recovery percent varies
across simulations with different outage lengths. These were generated with the
following function calls: (a) plot_comparison_graphs(output_dict, sensitivity _param,
'storage_recovery_percent', 'least_fuel', 'avg'),

(b) plot_comparison_graphs(output_dict, sensitivity _param,
'storage_recovery_percent', 'least_fuel', 'distribution’),

(c) plot_comparison_graphs(output_dict, sensitivity_param,
'storage_recovery_percent', 'all', 'distribution’).

3.9 Modifying the Dispatch Plots and Generating Custom Plots
The dispatch graph plotting function includes several options to customize the plots. You can

also generate figures which compare metrics across different system configurations or access
the dispatch data directly for individual simulations to manipulate or plot as needed.
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3.91 Dispatch Plot Options

The dispatch plots are generated in main_example.py using the function plot_best_system. You
can set the dispatch plots to show either the two scenarios with maximum and minimum solar
irradiance, the two scenarios with maximum and minimum tidal energy generation, the two
scenarios with the least and most fuel consumption, or a specific scenario number. To toggle
between these options, set dispatch_plot_scenario_criteria in main_example.py to either “pv”,
“‘mre” or “gen” or set dispatch_plot_scenario_num to the specific scenario number. You can also
choose to have the plots displayed as a line graph or stacked graph by setting the argument
stacked_graphs in the plot_best_system call to False or True.

3.9.2 System Comparison Plots

You can also generate plots that compare all system configurations using either one or two
metrics (see examples in Section 1.1.6), by calling either the function plot_compare_metrics or
plot_compare_sizes in main_example.py. For example, to generate a heat map showing how
payback time varies across battery and PV sizes, you can run:

optim.plot compare sizes(var='simple payback yr')

To generate a bubble plot showing how payback and capital cost vary across battery and PV
sizes, you can run:

optim.plot compare metrics(x var='simple payback yr',
y _var='capital cost usd')
Below is the full list of metrics that you can include for these plots:
e generator_power

o fuel_tank_size gal

e capital_cost usd

e pv_capital

e battery_capital

e generator_capital

o fuel_tank_capital

e pv_o&m

e battery_o&m

e generator_o&m

e pv_area_ft2

¢ annual_benefits_usd

¢ demand_benefits usd

e simple_payback_yr

e pv_percent mean
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e batt_percent mean

e gen_percent mean

e generator_power_kW mean

e generator_power_kW std

e generator_power_kW most-conservative
o fuel_used_gal mean

o fuel_used_gal std

o fuel_used_gal most-conservative

Note: you will need to run a simulation first to generate the optim object. You can either make
these calls directly in the Python console or add them to your main_example.py file.

3.9.3 Custom Plots and Analysis

To further dive into the results of an MCOR simulation and generate your own custom plots or
analysis, it can be helpful to directly access a system or simulation object after running MCOR.
The system object is described in detail in the Python module microgrid_system.py. To access a
system object after an MCOR run, you can first call:

optim.print grid()

to print the list of system names, then:

s = optim.get system('pv 603.6kW batt 174.7kW 699.0kWh'")

with the chosen system name in quotes. To print general info on the system, type:

S

To see the full list of attributes and methods for the system, refer to the documentation for the
MicrogridSystem class in microgrid_system.py.

You can also access a simulator object, which refers to an individual outage scenario for a
particular system, using the system object from above and including the simulation number as
an argument:

sim = s.get simulation (5)

The simulation number is numerically assigned to each outage period.

The full list of simulator attributes and methods can be found in the documentation for the
PVBattGenSimulator class in microgrid_simulator.py. A particularly useful attribute is the
dispatch Dataframe, which is a Pandas Dataframe containing the dispatch information for every
hour of the outage scenario. This can be accessed by running:

dispatch data = sim.dispatch df
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You can also access the dispatch data by setting the
input_dict['output_inputs']['save_timeseries_json'] parameter to True and loading the resulting
json file saved to the output/ directory.
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4.0 Troubleshooting

4.1 Validation Errors

MCOR has a built-in validation checker that ensures that the input parameters are acceptable. If
your inputs cause a validation error, you will get a message in the console describing the error
and the allowable inputs for the associated parameter, e.g.:

validation.ParamValidationError: The parameter pv tracking must be one
of ['fixed', 'single axis']. You entered dual axis

4.2 Solar Profile Generation Errors

Generation of the solar profiles relies on both an external API and code repository.
Occasionally, the expected format or options for these change and it causes a problem with the
MCOR code. If you encounter the following errors or any error that is raised in the
generate_solar_profile.py module, please reach out to mcor@pnnl.gov as we may need to
update the code:

NREL solar data empty. Check that you are using valid parameters to
access the NREL api.

Solar profile csvs not found. Please check that you have entered the
longitude, latitude, number, and length of trials for a site with
previously generated solar profiles.

Error downloading NSRDB data.

Failed to download solar data file, too many timeouts.

Note that you will need to have a valid creds.yaml file in the root mcor directory for the code to
access the NSRDB api. If you get an error message related to the presence of that file, please
check the README for instructions on how to properly format the file or see instructions under
the Setup section above.
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