
PNNL-37601

DistOPF: Advanced Solutions for

Distribution Optimal Power Flow

Analysis

DistOPF v0.2 Documentation

March 2025

Nathan Gray Anamika Dubey Andrew P Reiman

Rabayet Sadnan

Prepared for the U.S. Department of Energy

Under contract DE-AC05-76RL01830

Choose an item.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062
www.osti.gov

ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/

PNNL-37601

DistOPF: Advanced Solutions for
Distribution Optimal Power Flow
Analysis
DistOPF v0.2 Documentation

March 2025

Nathan Gray Anamika Dubey

Andrew P Reiman Rabayet Sadnan

Prepared for

the U.S. Department of Energy

Under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory

Richland, Washington 99352

PNNL-37601

Abstract

To achieve an affordable and reliable energy system, research on power distribution system is

often focused on integration of distributed generators, energy storage solution, EV charging,

smart meters, and other advanced assets that may benefit from or require more advanced

control and optimization techniques. Despite this focus on advanced distribution system topics,

early researchers and grid scientists often start from scratch when developing optimization

programs for power distribution systems. This report introduces DistOPF, a Python package

that consolidates years of research into a versatile and modular tool. DistOPF provides

researchers with essential capabilities to solve distribution system optimal power flow (OPF)

problems using standard network models. Additionally, it offers a platform to benchmark both

new and existing algorithms against established test systems.

Abstract iv

PNNL-37601

Executive Summary

DistOPF is a powerful Python package designed to address the growing need for advanced

optimization techniques in power distribution systems. This versatile tool consolidates years of

research into a modular framework that provides researchers with essential capabilities to solve

distribution system OPF problems using standard network models. It serves as both a practical

tool for immediate application and a platform for benchmarking new algorithms against

established test systems. Additionally, this package helps identifying the required OPF

modleling parameters from the network models.

This package provides a robust framework for three-phase unbalanced OPF modeling,

supporting common Python solver packages such as CVXPY and SciPy. It enables researchers

to develop and benchmark new algorithms using a standardized set of test systems with

standard distribution network models, such as OpenDSS, CIM, GridLab-D models, etc. The

platform includes an OpenDSS model importer, allowing seamless integration of power system

models for OPF solver formulation. To ensure accuracy, model validation is conducted with

OpenDSS. Additionally, comprehensive visualization tools facilitate the interpretation of results,

and the framework supports flexible mathematical modeling to accommodate various OPF

objectives and constraints. The package implementation provides a block-modular codebase

that enables users to easily add constraints and objectives, enhancing flexibility in OPF

formulation. Thus, the package addresses several key challenges in the field: (i) the need to

integrate unbalanced distribution power flow models as constraints in OPF algorithms, (ii) the

time-consuming process of creating extensive training data for machine learning approaches,

(iii) the inefficiency of researchers repeatedly starting from scratch when developing

optimization programs for distribution systems, and (iv) identifying OPF modleing parameters for

standard distribution network model.

In this report, section 1.0 introduces the vision, motivation, and overview for DistOPF that

describes its role in addressing three-phase unbalanced OPF challenges in distribution

systems. The underlying mathematical models and the formulations implemented by DistOP are

detailed in section 2.0. Section 3.0-4.0 provides step-by-step guidance on setting up an OPF

problem by describing the data input format and parameters required. Additionally, section 4.0

provides corresponding visualizions to interprete the optimal solutions. These sections outlines

how to properly format input files, specify network components, define operational constraints,

select optimization objectives, and analyze results. These section ensures users can efficiently

configure the necessary data for solving a distribution system OPF problem using the DistOPF

framework. Section 5.0 validates the accuracy of the model by comparing the DistOPF results

with OpenDSS results. Finally, we conclude the findings in section 6.0.

Executive Summary v

PNNL-37601

Acronyms

BESS Battery Energy Storage System

DER Distributed Energy Resource

DG Distributed Generation

OPF optimal power flow

Acronyms vi

PNNL-37601

Contents

Abstract . iv

Executive Summary . v

Acronyms . vi

1.0 Introduction . 1

1.1 Vision . 1

1.2 Motivation . 1

1.3 DistOPF Tool Overview and Components . 2

2.0 Mathematical Modeling in DistOPF . 4

2.1 Constraints . 4

2.1.1 Power Flow Model . 4

2.1.2 Voltage dependent loads . 5

2.1.3 Distributed Generation (DG) Modeling 6

2.1.4 Regulator Taps . 7

2.1.5 Capacitor switch . 7

2.1.6 Operational Limits . 7

2.2 Problem Objective . 7

2.2.1 Example 1: Loss Minimization . 8

2.2.2 Example 2: Maximize Generators Output 8

2.2.3 Example 3: Minimize Total Substation Active Power Load 8

2.2.4 Example 4: Minimize DER/Generator Curtailment 8

2.2.5 Example 5: Substation Load Tracks Total Active Power 9

2.3 OPF Problem . 9

3.0 Inputs For Optimal Power Flow . 10

3.1 Modeling Parameters: Native Input Format . 10

3.2 Standard Network Models: Converting from Other Formats 12

3.2.1 OpenDSS Network Model . 13

3.2.2 CIM Equipment Model . 13

4.0 Using DistOPF . 14

4.1 Installation . 14

4.1.1 pip install . 14

4.1.2 Developer Installation . 14

4.2 Basic Example . 14

4.2.1 Loading Case Data . 14

Contents vii

PNNL-37601

4.2.2 Instantiating the Model . 15

4.2.3 Solving the OPF . 15

4.2.4 Visualizing Results . 16

4.3 Advanced Options . 18

4.3.1 Writing Objective Functions . 18

4.3.2 Specifying Control Variables . 20

4.3.3 Specifying Voltage Limits . 20

5.0 Validation . 21

6.0 Conclusion . 25

Contents viii

PNNL-37601

1.0 Introduction

Both the traditional mathematical optimization methods and machine-learning (ML) -based

approaches are gaining traction to attain tractable optimal solutions for the scaled power

distribution systems [1, 2, 3, 4]. However, when developing any OPF algorithm, it is crucial to

integrate unbalanced distribution power flow models as constraints [5, 6, 7]. This represents

one of the most challenging aspects of formulating the OPF problem, given the availability of

multiple models. Besides, for ML-based approaches, creating extensive training data is

time-consuming task that significantly delays the process. Additionally, early researchers and

electric power grid scientists often start from scratch when developing optimization programs to

solve distribution OPF problems, involving the laborious task of writing OPF constraints such as

power flow models and operational limits from the ground up. This repetitive groundwork not

only consumes valuable time but also impedes progress and innovation in the field.

To address these challenges, this report introduces DistOPF, a Python package that

encapsulates years of research into a versatile and modular tool. This report aims to present

state-of-the-art optimization platform to develop and provide grid-support functionality and

enhance grid resilience for the power distribution system; and alleviate the above-mentioned

issues with developing OPF methods. It details the mathematical formulations for distribution

OPFs and guides users on integrating standard network models like CIM and OpenDSS. The

block-modular codebase allows adding constraints and objectives, enhancing flexibility in OPF

formulation.

1.1 Vision

This Python package serves as an open-source platform for three-phase, unbalanced OPF in

distribution systems, designed to support researchers. Our goal is to provide users with a

robust tool that offers

1. Asymmetrical 3-Phase OPF model generators usable with common Python solver packages

such as CVXPY [8] and SciPy [9];

2. A platform for creating and benchmarking new algorithms on a set of standard test systems;

3. Standard distribution network model importer allowing users to import power system models

directly from the standard model format for OPF solver modeling language. This feature

ensures seamless integration of existing network data into the OPF framework, enabling

efficient and accurate problem formulation for three-phase, unbalanced distribution system

analysis.;

4. Validation of the Models with standard network models;

5. Visualization and interpretation of OPF solutions/results, offering intuitive plots and analytical

tools to assess voltage profiles, power flows, and control decisions. These tools aid in

understanding the impact of optimization on network performance and identifying potential

operational challenges..

1.2 Motivation

The motivation for this work stems from the need to integrate unbalanced distribution power

flow models as constraints in OPF algorithms, which is a challenging task due to the availability

Introduction 1

PNNL-37601

of multiple models. Furthermore, no existing package offers the flexible and modular design

needed for various users: naïve users can utilize it for standard solutions, advanced users can

easily modify and customize it for their OPF formulations, and ML-based scientists can

generate training data without writing OPF formulation codes themselves, ensuring the models

reflect practical scenarios more accurately. Python was chosen as the language for this

package because it is very popular for scientific computing and has a low learning curve for

new users. Currently, no Python package is designed for optimal power flow for distribution

systems with asymmetric phases. The Python package, PandaPower provides tools for

simulating distribution systems but requires all lines to be three-phase.

1.3 DistOPF Tool Overview and Components

The tool is composed of four (4) major parts, 1) model input system, 2) optimization model

formulation, 3) OPF solver interface, and 4) solution output and visualization. Distribution

models are represented using a set of CSV files, which are read into Pandas DataFrames and

often converted from standard CIM or OpenDSS network models. Buses are described in one

CSV having columns for loads, base units, and voltage limits. Lines, switches, and transformers

are described in a CSV having columns for each term in the upper diagonal impedance matrix.

Regulators, capacitor banks, and generators each have their own CSV. To aid in model creation

and validation, models can be created using OpenDSS/CIM and converted to the tabular CSV

format. The tool provides classes and functions to make it easy to formulate and solve the

power system problem for new users while being flexible for advanced users to create new

models and algorithms. The tool has been used to solve a variety of problems including,

conservative voltage reduction, power loss minimization, generation curtailment minimization,

where either real or reactive power injections of the generators are controlled. Figure 1 shows

the power flow results on the IEEE 123-Bus test system with average voltages and real power

flow represented.

Introduction 2

PNNL-37601

Substation

Reverse Power Flow

Capacitors

Generators

0.96

0.98

1

1.02

1.04

Network Plot (P.U.)

Node color: Average voltage magnitude

Line width: Total active power flow (reverse flow in red).

Figure 1. Results of power flow on the IEEE 123-Bus network after being converted from OpenDSS. The average

phase voltage on each bus is shown with color and total power flow on each line as the line thickness.

Introduction 3

PNNL-37601

2.0 Mathematical Modeling in DistOPF

The mathematical basis of DistOPF originates from the modeling equations of OPF problems,

which are formulated within power distribution systems to address OPF challenges. Similar to

other optimization problems, the OPF problem includes an objective function or cost function

that is minimized while maintaining the system’s governing physics and adhering to physical

and operational constraints. The objective or cost function can vary, targeting goals such as

minimizing power losses, reducing generation costs, or achieving conservation voltage

reduction. The constraints of the OPF problem generally encompass power flow models, grid

equipment models, and operational limits. This section describes the optimization constraints

and different OPF objectives pertinent to electric power distribution systems.

In this paper, (·)T represents matrix transpose; (·)∗ represents the complex-conjugate; (·) &
(·) denotes the max and min of a variable; (·)(n) represents the nth iteration; R, I denotes the

real, imaginary part of the complex number, respectively; the superscript p (without parenthesis)

denotes the three-phases, i.e., {a, b, c} of the system.

2.1 Constraints

The constraints of OPF problems consist of both equality and inequality relations. These

constraints are generally composed of power flow models, Distributed Energy Resource (DER)

models, and models of various assets such as transformers, regulator taps, and capacitor

switches. Additionally, operational and physical limits also form part of the constraints in OPF

formulations.

2.1.1 Power Flow Model

This section details the power flow models to formulate the OPF problems for an unbalanced

power distribution system. The unbalanced power flow equations are based on our prior work

[5]. Let us consider an unbalanced radial power distribution network of n buses where, N
denotes the set of buses in that system and E denotes the set of edges identifying distribution

lines that connect the ordered pair of buses {ij}, ∀ i, j ∈ N . Here, φj denotes the set of phases

in the bus j. Let vpj = |V p
j |2 be the squared magnitude of voltage at bus j ∈ N for phase p ∈ φj .

Define φij = {pq : p ∈ φi and q ∈ φj ∀{ij} ∈ E}. Let lpqij = (|Ippij ||I
qq
ij |) be the squared magnitude

of the line current flowing in the phase pq ∈ φij of line (i, j); i.e., the term lpqij is a mathematical

abstraction representing the product of the magnitudes of branch currents in phases p and q.
Also, Spq

ij = P pq
ij + jQpq

ij and zpqij = rpqij + jxpqij , where pq ∈ φij . Variable ppL,j and qpL,j denote the

active and reactive load (respectively) connected at node j of phase p ∈ φj . Similarly, subscript

D, j denotes the DER generation at node j; e.g., ppD,j denotes the active power generation at

node j for phase p. δpqij is the angle difference between the phase currents. First, we define the

nonlinear power flow model and then the linearized model is detailed.

2.1.1.1 Nonlinear Model:

With the approximated phase voltage and branch current angles, [5] developed the nonlinear

power flow model for an unbalanced radial power distribution system. The model is defined

below in (1). The loads can be modeled as voltage dependent loads as formulated in the

Appendix.

Mathematical Modeling in DistOPF 4

PNNL-37601

P pp
ij −

∑
q∈φj

lpqij
(
rpqij cos(δpqij)− xpq

ij sin(δpqij)
)

=
∑

k:j→k

P pp
jk + ppL,j − ppD,j (1a)

Qpp
ij −

∑
q∈φj

lpqij
(
xpq
ij cos(δpqij) + rpqij sin(δpqij)

)
=

∑
k:j→k

Qpp
jk + qpL,j − qpD,j − qpC,j (1b)

vpj = vpi −
∑
q∈φj

2R
[
Spq
ij (z

pq
ij)

∗]+ ∑
q∈φj

zpqij l
qq
ij

+
∑

q1,q2∈φj ,q1 6=q2

2R
[
zpq1ij lq1q2ij

(
6 (δq1q2ij)

)
(zpq2ij)∗

]
(1c)

(P pp
ij)2 + (Qpp

ij)
2 = vpi l

pp
ij (1d)

(lpqij)
2 = lppij l

qq
ij (1e)

2.1.1.2 Linear-approximated Model

The computational complexity augmented by the nonlinear power flow models to the existing

scalability issues associated with large-scale OPF problems can be reduced using the

approximated linearized power flow models. In equation (2), a linear-approximated power flow

model – known as the three-phase LinDistFlow model is defined. The assumption is that the

line loses are negligible compared to the power flow in the system; however, line impedances

are included in the formulation to compute the voltage drops across the lines. [10, 5].

P pp
ij =

∑
k:j→k

P pp
jk + ppL,j − ppD,j (2a)

Qpp
ij =

∑
k:j→k

Qpp
jk + qpL,j − qpD,j − qpC,j (2b)

vpj = vpi −
∑
q∈φj

2R
[
Spq
ij (z

pq
ij)

∗] (2c)

2.1.2 Voltage dependent loads

The voltage dependent loads are modeled here using the CVR factor developed in [5].This

approach linearizes the load modeling, which aids in mitigating computational issues associated

with solving OPFs. Let CV Rp and CV Rq be the CVR factor that determines the voltage

dependencies of real and reactive power loads, respectively; also, 0 subscript denotes the

nominal load value at 1 p.u. voltage. Then the voltage dependent loads can be modeled in the

OPF formulation as equation (3). For more details of CVR factors, please refer to [5].

ppL,j = ppj,0 +CVRp

ppi,0
2

(vpj − 1) (3a)

qpL,j = qpj,0 +CVRq

qpi,0
2

(vpj − 1) (3b)

Mathematical Modeling in DistOPF 5

PNNL-37601

2.1.3 DG Modeling

We define a general DG model for different network objectives in equation (4)-(6). This DGs are

designed as a general model, and can accommodate any DERs, such as Battery Energy

Storage System (BESS), EVs, etc. For more please refer to [11]. The general DER model is

defined by equation (4) at node j for phase p ∈ φj . If S
p
DR,j is defined as the nominal rating of

the DG at node j for phase p ∈ φj , then the reactive power generation (qpD,j) and the active

power generation (ppD,j) of the DG are constrained by the nominal rating of the DG. When qpD,j

is modeled as the decision variable, ppD,j is assumed to measured and known. For this case,

the DG model evolves from a quadratic inequality (4) to a linear inequality (5) constraint. On the

contrary, when the active power generation, ppD,j is set as decision variables, we assume

qpD,j = 0 THIS IS NO LONGER TRUE. Q can be specified., and the DG model is defined by

the linear inequality (6). (
ppD,j

)2

+
(
qpD,j

)2

≤
(
Sp
DR,j

)2

(4)

−
√
(Sp

DR,j)
2 − (ppD,j)

2 ≤ qpD,j ≤
√
(Sp

DR,j)
2 − (ppD,j)

2 (5)

0 ≤ ppD,j ≤ Sp
DR,j (6)

Figure 2. Visualization of inverter linearization using inscribed polygon.

However, for both real and reactive power control, DGs can be linearly approximated. The

limits of active and reactive power injection of each DG can be described as a circle with radius

sratedD,j on the complex plane. It may also be limited to only produce active power and not absorb

it, limiting its operation to the right half plane. To create linear limits we inscribe a polygon in the

circle. In this instance we have used an octagon with vertices on the real and imaginary axis

and at ±45◦. This is described by (7) and illustrated by Fig. 2.

Mathematical Modeling in DistOPF 6

PNNL-37601

√
2ppD,j + (

√
2− 2)qpD,j ≤

√
2sratedD,j (7a)

√
2ppD,j − (

√
2− 2)qpD,j ≤

√
2sratedD,j (7b)

(−1 +
√
2)ppD,j + qpD,j ≤ sratedD,j (7c)

(−1 +
√
2)ppD,j − qpD,j ≤ sratedD,j (7d)

ppD,j ≥ 0 (7e)

2.1.4 Regulator Taps

Voltage regulator taps in OPF models are represented through discrete variables that adjust the

tap settings to maintain desired voltage levels across the network [11]. The regulator taps are

modeled here with the help of a set of binary variables. Let apj be the turn ratio for the voltage

regulator on phase p between node i and j. Let uptap,k,j ∈ 0, 1∀k ∈ {1, 2, ..., 33} be the binary

variable for the regulator on phase p between node i and j; let bk ∈ {0.9, 0.90625, ..., 1.1}. Then,
the regulator can be modeled in the OPF formulation as equation (8).

Bk = b2k, Aj = a2i , V
p
j = apjV

p
i , v

p
j = Ap

jv
p
i (8a)

Ap
j =

33∑
k=1

Bku
p
tap,k,j (8b)

33∑
k=1

up
tap,k = 1 (8c)

2.1.5 Capacitor switch

Similar to the modeling of the regulator taps, here the capacitor switches are modeled using

binary variables that represents the status of the capacitor banks For more please refer to [11,

5]. Let upcap,j be the binary variable denoting the switch status of the capacitor bank at phase p
of node j; then the capacitor can be modeled in the OPF formulation as equation (9).

qpC,j = up
cap,jq

rated,p
cap,j vpj (9)

2.1.6 Operational Limits

Besides the grid equipment and physics modeling, OPF constraints include the operational

bounds as well. Such as thermal limits of the branches and the nodal voltage bounds. The

models are expressed below in (10).

lpij ≤
(
Iratedij

)2
(10a)

v ≤ vpj ≤ v (10b)

2.2 Problem Objective

In this section, a few examples of OPF objectives, specific for distribution systems are

presented. Please note that these examples are not exhaustive; using the available OPF

Mathematical Modeling in DistOPF 7

PNNL-37601

variables, a wide range of objectives or cost functions (f(x), where x is the optimization

variable) can be formulated to suit specific requirements.

2.2.1 Example 1: Loss Minimization

The first example of an OPF objective presented here is loss minimization problem where the

line loss is reduced by optimal control set-points. The cost function for loss minimization

objective is defined in (11a). However, for the linear-approximated models, where the branch

current flow variable is not present, the cost function is approximated by (11b). Here all the

nodal voltages are assumed as 1.00 p.u. to approximate the objective function (active power

line loss) by a convex cost function.

min
∑

p∈φj ,j:i→j

lppij r
pp
ij (11a)

min
∑

p∈φj ,j:i→j

((
P pp
ij

)2
+
(
Qpp

ij

)2)
rppij (11b)

2.2.2 Example 2: Maximize Generators Output

Another OPF objective could be maximizing the generator outputs. The objective to maximize

the output of distributed generators aims to fully utilize the generation capacity. The function is

defined in (12).

max
∑

p∈φj , ∀j∈N
ppD,j (12)

2.2.3 Example 3: Minimize Total Substation Active Power Load

The third OPF objective example is to minimize the total substation active power load seeks to

reduce the active power drawn from the substation by optimally set the control variables. The

OPF objective is defined in (13).

min
∑

p∈φsub

ppsub (13)

2.2.4 Example 4: Minimize DER/Generator Curtailment

The objective of minimizing DER/Generator curtailment focuses on reducing the power that

needs to be curtailed from distributed energy resources and generators. In the DER curtailment

minimization problem, active power generations from the DERs are expressed as control

variables. Let ppD,j denotes the maximum available power generation at node j for phase p,
then (14) defines the associated cost function.

min
∑
∀j∈N

∑
p∈φj

(ppD,j − ppD,j)
2 (14)

Mathematical Modeling in DistOPF 8

PNNL-37601

2.2.5 Example 5: Substation Load Tracks Total Active Power

The final example of OPF objectives presented here involves the substation load tracking a

predetermined total active power target. This helps in ensuring that the overall active power

demand at the substation aligns with the target, aiding in load balancing and efficient power

distribution. This problem is quadratic, and defined by (15)

min

(∑
p∈φsub

ppsub

)
− P target

sub

2

(15)

In conclusion, the OPF objectives described here are just a few examples tailored for

distribution systems. It is important to note that various other cost functions can be designed to

meet different operational goals and requirements.

2.3 OPF Problem

In this section, we define the OPF problems with developed constraint models for any objective

function f(x) for an unbalanced radial distribution system, where x represent the optimization

variable.

min f(x) (16a)

s.t.

Power Flow Model: equation (1) or (2), (3) (16b)

DG Model: equation (4), or (5), or (6), or (7) (16c)

Asset Model: equation (8) - (9) (16d)

Operational Limits: equation (10) (16e)

In this section, the OPF problems for distribution systems have been defined by developing

constraint models and appropriate objective or cost functions within an unbalanced radial

distribution system. A comprehensive formulation of the OPF problem has been presented,

incorporating models for power flow, voltage-dependent loads, DGs, various assets, and

operational limits. These detailed constraint models provide a robust framework for optimizing

the operation of distribution systems, ensuring that different operational objectives can be

effectively achieved.

Mathematical Modeling in DistOPF 9

PNNL-37601

3.0 Inputs For Optimal Power Flow

Given the OPF problem formulation in (16), a case will require that all the necessary

parameters be defined. The for the load model in (3), nominal active (ppj,0) and reactive power

(qpj,0) and corresponding voltage sensitivity (CV Rp and CV Rq) must be specified for each

phase of each bus. Generators are specified with an apparent power rating and active and

reactive power. Since the equations used depend on the OPF configuration, these parameters

required also depend on the OPF configuration. If the OPF is using generator active power as a

decision variable then the specified active power will be used as an active power limit.

Otherwise it is used as a constant. The specified reactive power is only used if generator

reactive power is a constant. The capacitor equation, (9), require the nominal reactive power

injection (at 1 p.u. nominal voltage) is specified. Regulator equations, (8) require the active tap

position for each phase, Ap
j , if they are constant. If mixed integer regulator control is used then

the OPF will determine the tap positions. Finally, the power flow equations in (2) only require

the impedance matrix for each line.

3.1 Modeling Parameters: Native Input Format

With the goal of creating easily human readable case files, DistOPF ingests this data in the

form of five CSV files as a native input:

1. branch_data.csv: Branch data including r (resistance) and x (reactance) values. See Table 1.

2. bus_data.csv: General bus data and load information. See Table 2.

3. gen_data.csv: Generator data. See Table 3.

4. cap_data.csv: Capacitor bank data. See Table 4.

5. reg_data.csv: Tap changing voltage regulator data. See Table 5.

The CSVs are comma delimited. The first row contains the names of each column. The

column names must not have spaces between them since they will be interpreted as part of the

column name. The order of the columns does not matter. If more information is required for a

new model it is simple to add a new column to the appropriate CSV with the additional data.

The CSV files have columns for the required parameters discussed above as well as base

unit values and bus names as well as other useful information. The branch_data.csv file also

has a column for tracking line type information and status for keeping track of switches. The

bus_data.csv has columns for bus latitude and longitude which is necessary for network

visualizations. The gen_data.csv file allows the user to specify additional reactive power limits

which is useful when only positive or only negative reactive power injection is desired. It also

has a column which allows the user to specify the OPF control variables independently on each

generator.

The columns, fb, tb, and id, refer to the bus id which will need to be generated specifically

for DistOPF. The bus ids are integer values starting at 1 and 1 is always the SWING bus. The

remainder of the buses are sorted with depth-first-search and numbered accordingly.

Inputs For Optimal Power Flow 10

PNNL-37601

Table 1. branch_data.csv

CSV/DataFrame Column Description

fb From-bus id number

tb To-bus id number

from_name From-bus name

to_name To-bus name

name name of line

raa, rab, rac, rbb, rbc, rcc resistance in p.u. (lower triagular matrix)

xaa, xab, xac, xbb, xbc, xcc reactance in p.u. (lower triagular matrix)

type overhead_line, switch, transformer, etc.

status (for switches) “OPEN” or “CLOSED”

s_base base VA per phase

v_ln_base base line-to-neutral voltage

z_base base impedance

phases phases present

Table 2. bus_data.csv

CSV/DataFrame Column Description

id unique id for each bus (integer starting at 1)

name bus name

pl_a, ql_a, pl_b, ql_b,

pl_c, ql_c

active and reactive loads (p.u.)

bus_type SWING or PQ; SWING bus is voltage source

v_a, v_b, v_c voltage magnitude (p.u.); input parameter for SWING bus. Other not used as

input)

v_ln_base base line-to-neutral voltage (V)

s_base base power (VA)

v_min, v_max voltage magnitude limits (p.u.)

cvr_p, cvr_q conservative voltage reduction parameters; alternative to ZIP model for voltage

dependant loads. (set to 0 for no voltage dependence) (see. [?])

phases phases at bus (e.g.‘abc’, ‘a’, ‘ab’, etc.)

latitude node latitude; useful for plotting

longitude node longitude; useful for plotting

Inputs For Optimal Power Flow 11

PNNL-37601

Table 4. cap_data.csv

CSV/DataFrame Column Description

id bus id (integer)

name capacitor name

q_a, q_b, q_c nominal reactive power (p.u.)

phases phases (e.g.‘abc’, ‘a’, ‘ab’, etc.)

Table 3. gen_data.csv

CSV/DataFrame Column Description

id bus id (integer)

name generator name

pa, pb, pc active power output (p.u.)

qa, qb, qc reactive power output (p.u.)

s_base base power (VA)

sa_max, sb_max, sc_max rated maximum apparent power output (VA)

phases generator phases (abc string) (e.g.‘abc’, ‘a’, ‘ab’, etc.)

qa_max, qb_max,

qc_max

maximum reactive power output (p.u.)

qa_min, qb_min, qc_min minimum reactive power output (p.u.)

control_variable Which generator variables are control variables. “PQ”, “P”, “Q” or “”

Table 5. reg_data.csv

CSV/DataFrame Column Description

fb From-bus id number (integer)

tb To-bus id number (integer)

from_name From-bus name

to_name To-bus name

name regulator name

tap_a, tap_b, tap_c tap position (p.u.) -16 to +16; 0 is no tap change

3.2 Standard Network Models: Converting from Other Formats

To convert from any other standard network model format, the model data described above

must be extracted and then formatted as Pandas DataFrames and, optionally, saved as CSVs

according to Tables 1 and 2 and, as needed, Tables 3, 4, and 5. Before converting a model, it

is important to check if that the model is compatible. In the current version, the model must be

radial as that is a fundamental assumption. Only wye-wye transformers are supported. Also,

models with split-phase secondary lines are not supported. If a model has loads or other assets

on split-phase secondary lines they may be reflected onto the primary of the secondary

transformers before converting.

Inputs For Optimal Power Flow 12

PNNL-37601

3.2.1 OpenDSS Network Model

OpenDSSDirect.py is a Python that can be used to parse OpenDSS models in python. It can

be used to aid conversion from OpenDSS. An OpenDSS converter is supplied with DistOPF to

allow easy use of OpenDSS models as input. The converter populates the CSV tables required

to create the OPF model.

3.2.2 CIM Equipment Model

Extracting a model stored using the CIM standard can be accomplished in Python with the

CIMantic Graphs Library using the “cimhub_2023” profile. This process involves extracting the

necessary data, i.e., modeling parameters from the CIM model to populate the native CSV table

format required for the OPF solver modeling language. By generating these CSV tables from

the CIM data, user can efficiently run DistOPF.

Inputs For Optimal Power Flow 13

PNNL-37601

4.0 Using DistOPF

This section will briefly describe how to use the basic features of DistOPF version 0.2.0.

DistOPF is actively being developed. For the most up to data documentation visit

github.com/Scalelab-wsu/distopf.git.

4.1 Installation

To get started with DistOPF, the package needs to be installed. This can be achieved quickly

and easily using Python’s package installer, ‘pip’.

4.1.1 pip install

Simply copy and paste the below command line in the terminal:

pip install distopf

4.1.2 Developer Installation

To install the latest version from github:

1. From the directory you want to keep your distopf files, run:

git clone https://github.com/Scalelab-wsu/distopf.git
3. Create or activate the python environment you want to use.

4. From the directory where the distopf package is stored, run:

pip install -e .
This installs your local distopf package the python environment you activated. The -e option

enables editable mode, which allows you to directly edit the package and see changes

immediately reflected in your environment without reinstalling.

4.2 Basic Example

This section builds up a basic example describing each block of code and the alternatives

functions or classes that may be used.

4.2.1 Loading Case Data

First we import the DistOPF library and as the Pandas Library. Then we load the CSVs from the

file system using Pandas Please note, besides the native model inputs, i.e., CSVs, user can

use standard models such as OpenDSS or CIM, with associated appropriate converters.

Several cases are provided with the package including cases formated as CSVs and OpenDSS

models. These are stored in distopf/cases/. For convenience you can access this path in

DistOPF with distopf.cases.CASES_DIR. The cases are separated CSV models and OpenDSS

models by two subdirectories csv and dss.

import pandas as pd
import distopf as opf

Using DistOPF 14

PNNL-37601

branch_data = pd.read_csv("branch_data.csv", header=0)
bus_data = pd.read_csv("bus_data.csv", header=0)
gen_data = pd.read_csv("gen_data.csv", header=0)
cap_data = pd.read_csv("cap_data.csv", header=0)
reg_data = pd.read_csv("reg_data.csv", header=0)

4.2.2 Instantiating the Model

The model is instantiated using each of the DataFrames loaded above. In this example we are

using LinDistModel, however other models may be used depending on the features and

performance requirements. LinDistModel is recommended since it is has most features and

good performance. If control of capacitor switching is desired, then LinDistModelCapMI which

provides a mixed integer formulation can be used. LinDistModelCapacitorRegulatorMI should

be used if regulator tap control is required.

model = opf.LinDistModel(
branch_data=branch_data,
bus_data=bus_data,
gen_data=gen_data,
cap_data=cap_data,
reg_data=reg_data,

)

4.2.3 Solving the OPF

Once the model is instantiated, it can be solved. In this example the lp_solve function is used

to solve the model with the gradient_load_min objective.

result = opf.lp_solve(model, opf.gradient_load_min(model))

The lp_solve function is used when the objective function is linear and requires the model

and the objective function gradient vector be supplied. Additionally, cvxpy_solve can be used

which uses the CVXPY python package. Instead of a gradient, a function is passed as the

second argument (just the function name without parenthesis).

result = opf.cvxpy_solve(model, opf.cp_obj_loss)

When using LinDistModelCapMI the cvxpy_mi_solve must be used and when using

LinDistModelCapacitorRegulatorMI, then the solve method of that class must be used

(model.solve(f)).
The solve functions described above all return a object which includes various attributes

including the resulting vector of the variables, x, and the objective value, fun. Each of the

model classes includes methods for parsing the values from x into easy to understand Pandas

DataFrames with a column for bus names and each phase.

Parse results
v = model.get_voltages(result.x)
s = model.get_apparent_power_flows(result.x)
p_gens = model.get_p_gens(result.x)
q_gens = model.get_q_gens(result.x)

Using DistOPF 15

PNNL-37601

4.2.4 Visualizing Results

Visualizations are produced using the Python Plotly package. Because we are using Plotly, all

the visualizations are interactive and easy to explore. Functions are provided for plotting

voltages, power flows, and generators. Additionally, plot_network can be used to create a

network plot which makes it easy to quickly understand how power flows in the network and

how voltages are distributed geographically (Fig. 3). Using the mouse, the user can hover over

nodes to get exact values of power flow, loads, generation, and capacitor reactive power for

each node. An example of plots from each of the four plotting functions used in the example

are shown in figures 3, 4, 5, and 6.

Visualize network and power flows
opf.plot_network(model, v=v, s=s, p_gen=p_gens, q_gen=q_gens).show()
opf.plot_voltages(v).show()
opf.plot_power_flows(s).show()
opf.plot_gens(p_gens, q_gens).show()

Figure 3. Result of running opf.plot_network after solving the IEEE 123 bus system with 30 DERs. Additional

information is available by hovering over any of the buses. In this example hover-data is shown for bus “80”.

Using DistOPF 16

PNNL-37601

1
5

0

1
2

1
7

2
7

3
8

5
0

5
9

6
9

8
0

9
2

1
0

2

1
1

2

0.99

1

1.01

1.02

1.03

1.04

1.05

1
5

0

1
2

1
7

2
7

3
8

5
0

5
9

6
9

8
0

9
2

1
0

2

1
1

2

1
5

0

1
2

1
7

2
7

3
8

5
0

5
9

6
9

8
0

9
2

1
0

2

1
1

2

phase

a

b

c

Bus Name Bus Name Bus Name

v

A B C

Figure 4. Result of running opf.plot_voltages showing nodal voltages after solving the IEEE 123 bus system with

30 DERs.

1
5

0
r

1
2

1
6

2
6

3
6

4
7

5
5

6
5

7
6

8
4

9
4

1
0

5

1
1

2

0

0.5

1

1
5

0
r

1
2

1
6

2
6

3
6

4
7

5
5

6
5

7
6

8
4

9
4

1
0

5

1
1

2

1
5

0
r

1
2

1
6

2
6

3
6

4
7

5
5

6
5

7
6

8
4

9
4

1
0

5

1
1

2

0

0.5

1

phase

a

b

c

To-Bus Name To-Bus Name To-Bus Name

R
e
a
c
t
iv

e
 P

o
w

e
r
 (

p
.u

.)
A

c
t
iv

e
 P

o
w

e
r
 (

p
.u

.)

A B C

Q
P

Figure 5. Result of running opf.plot_power_flows showing active and reactive power flows (branch flows) after

solving the IEEE 123 bus system with 30 DERs.

Using DistOPF 17

PNNL-37601

1 1
8

2
8

4
2

4
9

5
7

6
5

8
6

9
9

1
0

5

−0.005

0

0.005

0.01

1 1
8

2
8

4
2

4
9

5
7

6
5

8
6

9
9

1
0

5

1 1
8

2
8

4
2

4
9

5
7

6
5

8
6

9
9

1
0

5

−0.005

0

0.005

0.01 phase

a

b

c

Bus Name Bus Name Bus Name

R
e
a
c
t
iv

e
 P

o
w

e
r
 (

p
.u

.)
A

c
t
iv

e
 P

o
w

e
r
 (

p
.u

.)

A B C

Q
P

Figure 6. Result of running opf.plot_gens showing optimal generations after solving the IEEE 123 bus system with

30 DERs.

4.3 Advanced Options

The advanced options of the DistOPF package offer enhanced flexibility and customization for

power flow optimization. Users can write custom objective functions, specify control variables,

and set precise voltage limits, enabling tailored solutions for diverse operational requirements

and constraints. These features empower users to fine-tune the optimization process to meet

specific goals and conditions.

4.3.1 Writing Objective Functions

DistOPF provides a variety of objective functions built in, however, it does not aim to provide all

possible objective functions that users may want. This section aims to provide users with an

understanding of how an objective function may be formulated.

There are two types of objective functions supported as of the version 0.2.0 release, linear

function gradients for use with distopf.lp_solve and convex functions for use with

distopf.cvxpy_solve.

Using DistOPF 18

PNNL-37601

4.3.1.1 Linear Functions

Linear functions take the model and any optional keyword arguments as inputs and return a

1-dimensional array, c, representing the gradient of the objective function and having the same

length as x. The solve function, distopf.lp_solve, will minimize c · x.
The load minimization example below implements (13). A value of 1 is placed in the gradient

array at the index for each of the variables corresponding to active power flow out of the swing

bus. Here model.phase_exists is used to prevent trying to access a variable for a phase that

doesn’t exist. Also, model.idx is used to retrieve the indices of the variables for active power

flow out of the swing bus. The first argument of model.idx gets the name of the variable, the

second gets the index of the bus, j, and the last gets the phase “a”, “b” or “c”. It is important to

note that j is 0-indexed and corresponds to the bus-id minus one; therefore the swing bus

which should have an id of 1 has in index of 0.

def gradient_load_min(model: LinDistBase, *args, **kwargs) -> np.ndarray:
c = np.zeros(model.n_x)
for ph in "abc":

if not model.phase_exists(ph):
continue

c[model.idx("pjk", model.swing_bus, ph)] = 1
return c

4.3.1.2 Convex Functions

Convex functions are designed to be compatible with the CVXPY Python Package. They take

the model, a CVXPY cvxpy.Variable object and optional keyword arguments. It returns a

CVXPY expression. For the best performance, it is best to formulate the expressions in a

vectorized form. You must also use disciplined convex programming (DCP) as described by the

CVXPY documentation.

The example below implements (14) by collecting the indices for all the variables

corresponding to active power generation on each phase. The parameter, model.pg_map, is a

dictionary of Pandas Series for each phase containing the indices for each active power

generation variable. The code below concatenates the indices for each phase into all_pg_idx
which is used to formulate the equation in a vectorized form.

def cp_obj_curtail(model: LinDistBase, xk: cp.Variable, **kwargs) -> cp.
↪→Expression:

all_pg_idx = np.array([])
for a in "abc":

if not model.phase_exists(a):
continue

all_pg_idx = np.r_[all_pg_idx, model.pg_map[a].to_numpy()]
all_pg_idx = all_pg_idx.astype(int)
return cp.sum((model.x_max[all_pg_idx] - xk[all_pg_idx]) ** 2)

Using DistOPF 19

PNNL-37601

4.3.2 Specifying Control Variables

The control variables used in the OPF include active and reactive power injection from

generators (and capacitor switching and regulator tap positions for mixed integer models).

Control variables can be specified for each generator by listing “PQ”, “P”, “Q”, (or nothing if no

control is desired) in the control_variable column of gen_data.csv.

4.3.3 Specifying Voltage Limits

Voltage limits are specified for each node using the v_min and v_max columns in the

bus_data.csv.

Using DistOPF 20

PNNL-37601

5.0 Validation

This section focuses on validating the results obtained from simulations using Distopf against

those generated by OpenDSS. Validation is crucial for ensuring the reliability and accuracy of

our power flow models and conversion methods.

The results for both the IEEE 13-Bus and IEEE 123-Bus systems are presented in Table 6.

For validation, we analyze power flow parameters including voltages (V), real power (P), and

reactive power (Q). The goal is to confirm that the converted models yield consistent and

credible results across different platforms. Detailed comparisons of the voltage and power flows

for both networks are shown in figures 8, 9, 10, 11 and 12.

We use several error metrics to quantify discrepancies between the results from DistOPF

and OpenDSS:

1. Maximum relative voltage error (%V Error)

2. Maximum voltage error in per-unit (p.u.)

3. Real power mismatch at the substation compare to the system’s size

4. Reactive power mismatch at the substation compare to the system’s size

Table 6. Power flow validation with OpenDSS for several models.

Model %V Error V Error
Real Power (MW) Reactive Power (MVAR)

(p.u.) ∆P Size (P) ∆Q Size (Q)

IEEE 13-Bus 0.809% 0.00844 0.113 3.45 0.32 2.10

IEEE 123-Bus 0.499% 0.00516 0.097 3.51 0.196 1.93

The linear approximation utilized in the modeling process does not account for power losses,

which causes expected errors to vary depending on the power losses present in each system.

To examine this relationship, we adjusted the load multiplier from 0 to 1 and plotted the voltage

error relative to the power loss. Figure 7 illustrates this effect.

Validation 21

PNNL-37601

Figure 7. Maximum voltage error relative to OpenDSS solution shows a linear relationship to active power loss

calculated by OpenDSS.

Figures 8, 9, 10, 11, and 12 further validates the solutions by comparing all the nodal

voltages and branch power flows for IEEE 13-Bus and IEEE 123-Bus test system.

sourcebus 650 rg60 632 645 646 670 671 692 675 680 684 652 611 633 634
0.95

1

1.05

0.95

1

1.05

0.95

1

1.05 DistOPF

OpenDSS

Bus Name

V
o
lt

a
g
e
 (

p
.u

.)

P
H

A
S
E
-
C

P
H

A
S
E
-B

P
H

A
S
E
-A

Figure 8. DistOPF voltage comparison with OpenDSS solutions for IEEE 13-Bus.

Validation 22

PNNL-37601

650 rg60 632 645 646 670 671 692 675 680 684 652 611 633 634

0

0.5

1

650 rg60 632 645 646 670 671 692 675 680 684 652 611 633 634

0

0.5

1

0

0.5

1

DistOPF

OpenDSS

To-Bus Name To-Bus Name

P
o
w

e
r
 F

lo
w

 (
p
.u

.)
PART-ACTIVE POWER PART-REACTIVE POWER

P
H

A
S
E
-
C

P
H

A
S
E
-B

P
H

A
S
E
-A

Figure 9. DistOPF branch power flow comparison with OpenDSS solutions for IEEE 13-Bus.

1
5

0

1 1
3

2
0

2
3

2
9

2
5

r

3
3

2
4

3
6

3
9

4
2

4
6

5
0

4
8

5
2

5
5

6
0

6
4

6
1

1
6

0

6
8

7
1

9
9

1
9

7

1
0

6

3
0

0

1
1

1

1
1

4

1
0

4

7
7

8
1

8
2

8
6

9
1

9
5

9
0

7
4

5
9

1
6

9
r

1
0

5 2

0.98

1

1.02

1.04

0.98

1

1.02

1.04

0.98

1

1.02

1.04
DistOPF

OpenDSS

Bus Name

V
o
lt

a
g
e
 (

p
.u

.)

P
H

A
S
E
-
C

P
H

A
S
E
-B

P
H

A
S
E
-A

Figure 10. DistOPF voltage comparison with OpenDSS solutions for IEEE 123-Bus.

Validation 23

PNNL-37601

1
5

0
r

1 8 1
8

2
0

2
2

2
5

2
9

2
5

0

2
6

3
3

3
2

1
3

5

3
6

3
8

4
0

4
2

4
5

4
7

5
0

1
5

1

4
3

5
2

5
4

5
6

6
0

6
3

6
5

6
1

6
1

0

1
6

0
r

6
8

7
0

9
7

9
9

4
5

0

1
0

1

1
0

6

1
0

8

1
0

9

1
1

1

1
1

3

1
0

2

1
0

4

7
6

7
8

8
1

8
5

8
3

8
6

8
9

9
2

9
5

9
4

8
8

7
4

5
8

3
4

1
6

9 1
4

1
0

3 6 2

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

DistOPF

OpenDSS

To-Bus Name

A
c
t
iv

e
 P

o
w

e
r
 F

lo
w

 (
p
.u

.)

P
H

A
S
E
-
C

P
H

A
S
E
-B

P
H

A
S
E
-A

Figure 11. DistOPF branch active power flow comparison with OpenDSS solutions for IEEE 123-Bus.

1
5

0
r

1 8 1
8

2
0

2
2

2
5

2
9

2
5

0

2
6

3
3

3
2

1
3

5

3
6

3
8

4
0

4
2

4
5

4
7

5
0

1
5

1

4
3

5
2

5
4

5
6

6
0

6
3

6
5

6
1

6
1

0

1
6

0
r

6
8

7
0

9
7

9
9

4
5

0

1
0

1

1
0

6

1
0

8

1
0

9

1
1

1

1
1

3

1
0

2

1
0

4

7
6

7
8

8
1

8
5

8
3

8
6

8
9

9
2

9
5

9
4

8
8

7
4

5
8

3
4

1
6

9 1
4

1
0

3 6 2

−0.2

0

0.2

0.4

0.6

−0.2

0

0.2

0.4

0.6

−0.2

0

0.2

0.4

0.6
DistOPF

OpenDSS

To-Bus Name

R
e
a
c
t
iv

e
 P

o
w

e
r
 F

lo
w

 (
p
.u

.)

P
H

A
S
E
-
C

P
H

A
S
E
-B

P
H

A
S
E
-A

Figure 12. DistOPF branch reactive power flow comparison with OpenDSS solutions for IEEE 123-Bus.

Validation 24

PNNL-37601

6.0 Conclusion

In conclusion, DistOPF significantly enhances the efficiency and effectiveness of power

distribution system optimization by providing compatibility with various standard network

models, such as OpenDSS and CIM equipment models. It equips researchers with detailed

insights into OPF modeling, rooted in solid mathematical principles, and outlines essential

modeling parameters for formulating the OPF and the OPF modeling language. The tool

demonstrates how to use and navigate different OPF problems, specifies the necessary

modeling parameters for OPF solver languages, interprets results through useful plots, and

validates these solutions against OpenDSS power flow results to ensure feasibility. By reducing

the development time for optimization programs, DistOPF enables a quicker advancement in

power distribution system research. Researchers can customize the tool to meet their specific

needs, benefiting from comprehensive benchmarking options that ultimately contribute to the

creation of a more resilient and efficient energy system.

Conclusion 25

PNNL-37601

References

[1] Shiva Poudel et al. “Fairness-Aware Distributed Energy Coordination for Voltage Reg-

ulation in Power Distribution Systems”. In: IEEE Transactions on Sustainable Energy

(2023).

[2] Jeffrey D Taft, Paul De Martini, and Rick Geiger. Ultra-large-scale power system con-

trol and coordination architecture: A strategic framework for integrating advanced grid

functionality. Tech. rep. Pacific Northwest National Lab.(PNNL), Richland, WA (United

States), 2014.

[3] Daniel K Molzahn et al. “A survey of distributed optimization and control algorithms for

electric power systems”. In: IEEE Transactions on Smart Grid 8.6 (2017), pp. 2941–2962.

[4] Kevin P Schneider et al. Modern grid initiative distribution taxonomy final report. Tech.

rep. Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2008.

[5] Rahul Ranjan Jha et al. “Bi-level volt-var optimization to coordinate smart inverters with

voltage control devices”. In: IEEE Transactions on Power Systems 34.3 (2019), pp. 1801–

1813.

[6] Kevin P Schneider, BA Mather, Pal, et al. “Analytic considerations and design basis for

the IEEE distribution test feeders”. In: IEEE Transactions on power systems 33.3 (2017),

pp. 3181–3188.

[7] Patrick Panciatici et al. “Advanced optimization methods for power systems”. In: 2014

Power Systems Computation Conference, pp. 1–18.

[8] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling language

for convex optimization”. In: Journal of Machine Learning Research 17.83 (2016), pp. 1–

5.

[9] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

[10] Lingwen Gan and Steven H Low. “Convex relaxations and linear approximation for op-

timal power flow in multiphase radial networks”. In: 2014 Power Systems Computation

Conference. IEEE. 2014, pp. 1–9.

[11] Rabayet Sadnan et al. “Scaling Distributed Optimal Renewable Energy Coordination in

Unbalanced Distribution Systems”. In: IEEE Transactions on Sustainable Energy (2024).

REFERENCES 26

https://doi.org/10.1038/s41592-019-0686-2

