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Abstract

To achieve an affordable and reliable energy system, research on power distribution system is
often focused on integration of distributed generators, energy storage solution, EV charging,
smart meters, and other advanced assets that may benefit from or require more advanced
control and optimization techniques. Despite this focus on advanced distribution system topics,
early researchers and grid scientists often start from scratch when developing optimization
programs for power distribution systems. This report introduces DistOPF, a Python package
that consolidates years of research into a versatile and modular tool. DistOPF provides
researchers with essential capabilities to solve distribution system optimal power flow (OPF)
problems using standard network models. Additionally, it offers a platform to benchmark both
new and existing algorithms against established test systems.
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Executive Summary

DistOPF is a powerful Python package designed to address the growing need for advanced
optimization techniques in power distribution systems. This versatile tool consolidates years of
research into a modular framework that provides researchers with essential capabilities to solve
distribution system OPF problems using standard network models. It serves as both a practical
tool for immediate application and a platform for benchmarking new algorithms against
established test systems. Additionally, this package helps identifying the required OPF
modleling parameters from the network models.

This package provides a robust framework for three-phase unbalanced OPF modeling,
supporting common Python solver packages such as CVXPY and SciPy. It enables researchers
to develop and benchmark new algorithms using a standardized set of test systems with
standard distribution network models, such as OpenDSS, CIM, GridLab-D models, etc. The
platform includes an OpenDSS model importer, allowing seamless integration of power system
models for OPF solver formulation. To ensure accuracy, model validation is conducted with
OpenDSS. Additionally, comprehensive visualization tools facilitate the interpretation of results,
and the framework supports flexible mathematical modeling to accommodate various OPF
objectives and constraints. The package implementation provides a block-modular codebase
that enables users to easily add constraints and objectives, enhancing flexibility in OPF
formulation. Thus, the package addresses several key challenges in the field: (i) the need to
integrate unbalanced distribution power flow models as constraints in OPF algorithms, (ii) the
time-consuming process of creating extensive training data for machine learning approaches,
(iii) the inefficiency of researchers repeatedly starting from scratch when developing
optimization programs for distribution systems, and (iv) identifying OPF modleing parameters for
standard distribution network model.

In this report, section 1.0 introduces the vision, motivation, and overview for DistOPF that
describes its role in addressing three-phase unbalanced OPF challenges in distribution
systems. The underlying mathematical models and the formulations implemented by DistOP are
detailed in section 2.0. Section 3.0-4.0 provides step-by-step guidance on setting up an OPF
problem by describing the data input format and parameters required. Additionally, section 4.0
provides corresponding visualizions to interprete the optimal solutions. These sections outlines
how to properly format input files, specify network components, define operational constraints,
select optimization objectives, and analyze results. These section ensures users can efficiently
configure the necessary data for solving a distribution system OPF problem using the DistOPF
framework. Section 5.0 validates the accuracy of the model by comparing the DistOPF results
with OpenDSS results. Finally, we conclude the findings in section 6.0.

Executive Summary \'
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Acronyms
BESS Battery Energy Storage System

DER Distributed Energy Resource

DG Distributed Generation

OPF optimal power flow
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1.0 Introduction

Both the traditional mathematical optimization methods and machine-learning (ML) -based
approaches are gaining traction to attain tractable optimal solutions for the scaled power
distribution systems [1, 2, 3, 4]. However, when developing any OPF algorithm, it is crucial to
integrate unbalanced distribution power flow models as constraints [5, 6, 7]. This represents
one of the most challenging aspects of formulating the OPF problem, given the availability of
multiple models. Besides, for ML-based approaches, creating extensive training data is
time-consuming task that significantly delays the process. Additionally, early researchers and
electric power grid scientists often start from scratch when developing optimization programs to
solve distribution OPF problems, involving the laborious task of writing OPF constraints such as
power flow models and operational limits from the ground up. This repetitive groundwork not
only consumes valuable time but also impedes progress and innovation in the field.

To address these challenges, this report introduces DistOPF, a Python package that
encapsulates years of research into a versatile and modular tool. This report aims to present
state-of-the-art optimization platform to develop and provide grid-support functionality and
enhance grid resilience for the power distribution system; and alleviate the above-mentioned
issues with developing OPF methods. It details the mathematical formulations for distribution
OPFs and guides users on integrating standard network models like CIM and OpenDSS. The
block-modular codebase allows adding constraints and objectives, enhancing flexibility in OPF
formulation.

1.1 Vision

This Python package serves as an open-source platform for three-phase, unbalanced OPF in
distribution systems, designed to support researchers. Our goal is to provide users with a
robust tool that offers

1. Asymmetrical 3-Phase OPF model generators usable with common Python solver packages
such as CVXPY [8] and SciPy [9];

2. A platform for creating and benchmarking new algorithms on a set of standard test systems;

3. Standard distribution network model importer allowing users to import power system models
directly from the standard model format for OPF solver modeling language. This feature
ensures seamless integration of existing network data into the OPF framework, enabling
efficient and accurate problem formulation for three-phase, unbalanced distribution system
analysis.;

4. Validation of the Models with standard network models;

5. Visualization and interpretation of OPF solutions/results, offering intuitive plots and analytical
tools to assess voltage profiles, power flows, and control decisions. These tools aid in
understanding the impact of optimization on network performance and identifying potential
operational challenges..

1.2 Motivation

The motivation for this work stems from the need to integrate unbalanced distribution power
flow models as constraints in OPF algorithms, which is a challenging task due to the availability

Introduction 1
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of multiple models. Furthermore, no existing package offers the flexible and modular design
needed for various users: naive users can utilize it for standard solutions, advanced users can
easily modify and customize it for their OPF formulations, and ML-based scientists can
generate training data without writing OPF formulation codes themselves, ensuring the models
reflect practical scenarios more accurately. Python was chosen as the language for this
package because it is very popular for scientific computing and has a low learning curve for
new users. Currently, no Python package is designed for optimal power flow for distribution
systems with asymmetric phases. The Python package, PandaPower provides tools for
simulating distribution systems but requires all lines to be three-phase.

1.3 DistOPF Tool Overview and Components

The tool is composed of four (4) major parts, 1) model input system, 2) optimization model
formulation, 3) OPF solver interface, and 4) solution output and visualization. Distribution
models are represented using a set of CSV files, which are read into Pandas DataFrames and
often converted from standard CIM or OpenDSS network models. Buses are described in one
CSV having columns for loads, base units, and voltage limits. Lines, switches, and transformers
are described in a CSV having columns for each term in the upper diagonal impedance matrix.
Regulators, capacitor banks, and generators each have their own CSV. To aid in model creation
and validation, models can be created using OpenDSS/CIM and converted to the tabular CSV
format. The tool provides classes and functions to make it easy to formulate and solve the
power system problem for new users while being flexible for advanced users to create new
models and algorithms. The tool has been used to solve a variety of problems including,
conservative voltage reduction, power loss minimization, generation curtailment minimization,
where either real or reactive power injections of the generators are controlled. Figure 1 shows
the power flow results on the IEEE 123-Bus test system with average voltages and real power
flow represented.

Introduction 2
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Figure 1. Results of power flow on the IEEE 123-Bus network after being converted from OpenDSS. The average
phase voltage on each bus is shown with color and total power flow on each line as the line thickness.
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2.0 Mathematical Modeling in DistOPF

The mathematical basis of DistOPF originates from the modeling equations of OPF problems,
which are formulated within power distribution systems to address OPF challenges. Similar to
other optimization problems, the OPF problem includes an objective function or cost function
that is minimized while maintaining the system’s governing physics and adhering to physical
and operational constraints. The objective or cost function can vary, targeting goals such as
minimizing power losses, reducing generation costs, or achieving conservation voltage
reduction. The constraints of the OPF problem generally encompass power flow models, grid
equipment models, and operational limits. This section describes the optimization constraints
and different OPF objectives pertinent to electric power distribution systems. o

In this paper, ()7 represents matrix transpose; (-)* represents the complex-conjugate; () &
(-) denotes the max and min of a variable; (-)(™ represents the n!” iteration; R, I denotes the
real, imaginary part of the complex number, respectively; the superscript p (without parenthesis)
denotes the three-phases, i.e., {a,b, ¢} of the system.

2.1 Constraints

The constraints of OPF problems consist of both equality and inequality relations. These
constraints are generally composed of power flow models, Distributed Energy Resource (DER)
models, and models of various assets such as transformers, regulator taps, and capacitor
switches. Additionally, operational and physical limits also form part of the constraints in OPF
formulations.

2.1.1 Power Flow Model

This section details the power flow models to formulate the OPF problems for an unbalanced
power distribution system. The unbalanced power flow equations are based on our prior work
[5]. Let us consider an unbalanced radial power distribution network of n buses where, N/
denotes the set of buses in that system and £ denotes the set of edges identifying distribution
lines that connect the ordered pair of buses {ij}, V i, € N. Here, ¢; denotes the set of phases
in the bus j. Let v? = |Vj1”|2 be the squared magnitude of voltage at bus j € \V for phase p € ¢,.
Define ¢;; = {pq: p € ¢; and q € ¢; V{ij} € £}. Let I} = (|[I}7||I7]) be the squared magnitude
of the line current flowing in the phase pq € ¢;; of line (4, j); i.e., the term lqu is a mathematical
abstraction representing the product of the magnitudes of branch currents in phases p and gq.
Also, S}! = P+ jQ7f and 2 = 1) + jai!, where pq € ¢;;. Variable p’z and qL denote the
active and reactive load (respectively) connected at node j of phase p € qb] Slmllarly, subscript
D, j denotes the DER generation at node j; e.g., pg denotes the active power generation at
node j for phase p. 55’;1 is the angle difference between the phase currents. First, we define the
nonlinear power flow model and then the linearized model is detailed.

2.1.1.1 Nonlinear Model:

With the approximated phase voltage and branch current angles, [5] developed the nonlinear
power flow model for an unbalanced radial power distribution system. The model is defined
below in (1). The loads can be modeled as voltage dependent loads as formulated in the
Appendix.

Mathematical Modeling in DistOPF 4
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PP — Z 15 (il cos(07)) — abf sin(47))

qEP;
= > PRR+ph; b, (1a)
k:j—k
fo — Z lf;’ ( " cos(é’-);]) + rqu sin(&ff))
qe¢J
= ) QR+dl,—dh a0, (1b)
k:j—k
2=t = 3 R[Sy ] 4 Y e
q€¢] qe¢]
+ Y R [zgﬂz;f;‘ﬂ (4(5;1;(12)) (2] (1c)
ql,q2€¢;,q17#q2
PP 2 pp ppp

2 _
(712 = lf}’l?f (te)

2.1.1.2 Linear-approximated Model

The computational complexity augmented by the nonlinear power flow models to the existing
scalability issues associated with large-scale OPF problems can be reduced using the
approximated linearized power flow models. In equation (2), a linear-approximated power flow
model — known as the three-phase LinDistFlow model is defined. The assumption is that the
line loses are negligible compared to the power flow in the system; however, line impedances
are included in the formulation to compute the voltage drops across the lines. [10, 5].

PP = > PRl +vi;—vh, (22)
k:j—k
Q=D QR+dl;—dp,;— @, (2b)
k:j—k
— ) 2R [SP(z (2¢c)
qEP;

2.1.2 Voltage dependent loads

The voltage dependent loads are modeled here using the CVR factor developed in [5].This
approach linearizes the load modeling, which aids in mitigating computational issues associated
with solving OPFs. Let CV R, and C'V R, be the CVR factor that determines the voltage
dependencies of real and reactive power loads, respectively; also, 0 subscript denotes the
nominal load value at 1 p.u. voltage. Then the voltage dependent loads can be modeled in the
OPF formulation as equation (3). For more details of CVR factors, please refer to [5].

p

pLO
Py =7, P20~ 1) (32)

p

22 (f 1) (3b)

p _ b
qr,; = 9.0
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2.1.3 DG Modeling

We define a general DG model for different network objectives in equation (4)-(6). This DGs are
designed as a general model, and can accommodate any DERs, such as Battery Energy
Storage System (BESS), EVs, etc. For more please refer to [11]. The general DER model is
defined by equation (4) at node j for phase p € ¢;. If S%R,j is defined as the nominal rating of
the DG at node j for phase p € ¢;, then the reactive power generation (qu) and the active
power generation p% ) of the DG are constrained by the nominal rating of the DG. When qu
is modeled as the deC|S|on variable, p7, . is assumed to measured and known. For this case,
the DG model evolves from a quadratlc inequality (4) to a linear inequality (5) constraint. On the
contrary, when the active power generation, ppD is set as decision variables, we assume

=0 THIS IS NO LONGER TRUE. Q can be specified., and the DG model is defined by
the Ilnear inequality (6).

(W) + (ab) " < (Sis) (4)
—\/(S%R,ﬂz —(rh;)* < dp; < \/(S%R,jP — (P} ,)? (5)
0<pph,; <Shnr; (6)

4]

-1

Figure 2. Visualization of inverter linearization using inscribed polygon.

However, for both real and reactive power control, DGs can be linearly approximated. The
limits of active and reactive power injection of each DG can be described as a circle with radius
mt@d on the complex plane. It may also be limited to only produce active power and not absorb
|t I|m|t|ng its operation to the right half plane. To create linear limits we inscribe a polygon in the
circle. In this instance we have used an octagon with vertices on the real and imaginary axis
and at +45°. This is described by (7) and illustrated by Fig. 2.

Mathematical Modeling in DistOPF 6
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Vapl,  + (V2 - 2)ap, ; < V285 (7a)
V2ph ;= (V2= 2)dp ; < V21 (7b)
(~1+V2)pp ; +ap ; < 551 (7¢)
(=1+ f)ij ap,; < sp" (7d)
Ph; >0 (7e)

2.1.4 Regulator Taps

Voltage regulator taps in OPF models are represented through discrete variables that adjust the
tap settings to maintain desired voltage levels across the network [11]. The regulator taps are
modeled here with the help of a set of binary variables. Let ap be the turn ratio for the voltage
regulator on phase p between node i and j. Let utap,w €0, 1Vk € {1,2,...,33} be the binary
variable for the regulator on phase p between node i and j; let b € {0.9,0.90625, ..., 1.1}. Then,
the regulator can be modeled in the OPF formulation as equation (8).

B =b;,A; =a? Vp:apV.p Afvf (8a)
33
AP = Z Byl (8b)
k=1
33
Zufap,k =1 (8c)
k=1

2.1.5 Capacitor switch

Similar to the modeling of the regulator taps, here the capacitor switches are modeled using
binary variables that represents the status of the capacitor banks For more please refer to [11,
5]. Let u? cap.j . be the binary variable denoting the switch status of the capacitor bank at phase p
of node j; then the capacitor can be modeled in the OPF formulation as equation (9).

G5 = Uap i Geaps V) (9)
2.1.6 Operational Limits
Besides the grid equipment and physics modeling, OPF constraints include the operational

bounds as well. Such as thermal limits of the branches and the nodal voltage bounds. The
models are expressed below in (10).

< (17eed)? (10a)
v<VP < (10b)

2.2 Problem Objective

In this section, a few examples of OPF objectives, specific for distribution systems are
presented. Please note that these examples are not exhaustive; using the available OPF

Mathematical Modeling in DistOPF 7
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variables, a wide range of objectives or cost functions (f(z), where x is the optimization
variable) can be formulated to suit specific requirements.

2.2.1 Example 1: Loss Minimization

The first example of an OPF objective presented here is loss minimization problem where the
line loss is reduced by optimal control set-points. The cost function for loss minimization
objective is defined in (11a). However, for the linear-approximated models, where the branch
current flow variable is not present, the cost function is approximated by (11b). Here all the
nodal voltages are assumed as 1.00 p.u. to approximate the objective function (active power
line loss) by a convex cost function.

min Z lfjp fjp (11a)
PEP;,jii—]
min Y0 ((P)+ (@) ) (11b)
PEP;,jii—]

2.2.2 Example 2: Maximize Generators Output

Another OPF objective could be maximizing the generator outputs. The objective to maximize
the output of distributed generators aims to fully utilize the generation capacity. The function is
defined in (12).

max Y ph (12)

PpED;, VjEN

2.2.3 Example 3: Minimize Total Substation Active Power Load

The third OPF objective example is to minimize the total substation active power load seeks to
reduce the active power drawn from the substation by optimally set the control variables. The
OPF objective is defined in (13).

min Z pﬁub (13)

PEPsub

2.2.4 Example 4: Minimize DER/Generator Curtailment

The objective of minimizing DER/Generator curtailment focuses on reducing the power that
needs to be curtailed from distributed energy resources and generators. In the DER curtailment
minimization problem, active power generations from the DERs are expressed as control

variables. Let p% denotes the maximum available power generation at node j for phase p,
then (14) defines the associated cost function.

min Z Z (pE—p%’j)z (14)

ViEN pEg;

Mathematical Modeling in DistOPF 8
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2.2.5 Example 5: Substation Load Tracks Total Active Power

The final example of OPF objectives presented here involves the substation load tracking a
predetermined total active power target. This helps in ensuring that the overall active power
demand at the substation aligns with the target, aiding in load balancing and efficient power
distribution. This problem is quadratic, and defined by (15)

2

min (( 5 ) - Pszz;get) (15)
p€¢sub

In conclusion, the OPF objectives described here are just a few examples tailored for

distribution systems. It is important to note that various other cost functions can be designed to
meet different operational goals and requirements.

2.3 OPF Problem

In this section, we define the OPF problems with developed constraint models for any objective
function f(x) for an unbalanced radial distribution system, where z represent the optimization
variable.

min  f(x) (16a)

s.t.
Power Flow Model: equation (1) or (2), (3) (16b)
DG Model: equation (4), or (5), or (6), or (7) (16c)
Asset Model: equation (8) - (9) (16d)
Operational Limits: equation (10) (16e)

In this section, the OPF problems for distribution systems have been defined by developing
constraint models and appropriate objective or cost functions within an unbalanced radial
distribution system. A comprehensive formulation of the OPF problem has been presented,
incorporating models for power flow, voltage-dependent loads, DGs, various assets, and
operational limits. These detailed constraint models provide a robust framework for optimizing
the operation of distribution systems, ensuring that different operational objectives can be
effectively achieved.

Mathematical Modeling in DistOPF 9
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3.0 Inputs For Optimal Power Flow

Given the OPF problem formulation in (16), a case will require that all the necessary
parameters be defined. The for the load model in (3), nominal active (p?o) and reactive power
(qfﬁo) and corresponding voltage sensitivity (CV R, and CV R,;) must be specified for each
phase of each bus. Generators are specified with an apparent power rating and active and
reactive power. Since the equations used depend on the OPF configuration, these parameters
required also depend on the OPF configuration. If the OPF is using generator active power as a
decision variable then the specified active power will be used as an active power limit.
Otherwise it is used as a constant. The specified reactive power is only used if generator
reactive power is a constant. The capacitor equation, (9), require the nominal reactive power
injection (at 1 p.u. nominal voltage) is specified. Regulator equations, (8) require the active tap
position for each phase, Ag?, if they are constant. If mixed integer regulator control is used then
the OPF will determine the tap positions. Finally, the power flow equations in (2) only require
the impedance matrix for each line.

3.1 Modeling Parameters: Native Input Format

With the goal of creating easily human readable case files, DistOPF ingests this data in the
form of five CSV files as a native input:

1. branch_data.csv: Branch data including r (resistance) and x (reactance) values. See Table 1.

2. bus_data.csv: General bus data and load information. See Table 2.

3. gen_data.csv: Generator data. See Table 3.
4. cap_data.csv: Capacitor bank data. See Table 4.
5. reg_data.csv: Tap changing voltage regulator data. See Table 5.

The CSVs are comma delimited. The first row contains the names of each column. The
column names must not have spaces between them since they will be interpreted as part of the
column name. The order of the columns does not matter. If more information is required for a
new model it is simple to add a new column to the appropriate CSV with the additional data.

The CSV files have columns for the required parameters discussed above as well as base
unit values and bus names as well as other useful information. The branch_data.csv file also
has a column for tracking line type information and status for keeping track of switches. The
bus_data.csv has columns for bus latitude and longitude which is necessary for network
visualizations. The gen_data.csv file allows the user to specify additional reactive power limits
which is useful when only positive or only negative reactive power injection is desired. It also
has a column which allows the user to specify the OPF control variables independently on each
generator.

The columns, fb, tb, and id, refer to the bus id which will need to be generated specifically
for DistOPF. The bus ids are integer values starting at 1 and 1 is always the SWING bus. The
remainder of the buses are sorted with depth-first-search and numbered accordingly.

Inputs For Optimal Power Flow 10
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CSV/DataFrame Column Description
fb From-bus id number
tb To-bus id number
from_name From-bus name
to_name To-bus name
name name of line

raa, rab, rac, rbb, rbc, rcc

resistance in p.u. (lower triagular matrix)

xaa, xab, xac, xbb, xbc, xcc

reactance in p.u. (lower triagular matrix)

overhead_line, switch, transformer, etc.

type
status (for switches) “OPEN” or “CLOSED”
s_base base VA per phase
v_In_base base line-to-neutral voltage
z_base base impedance
phases phases present

Table 2. bus_data.csv

CSV/DataFrame Column

Description

unique id for each bus (integer starting at 1)

id
name bus name
pl_a, gl_a, pl_b, gl_b, active and reactive loads (p.u.)
pl_c, ql_c
bus_type SWING or PQ; SWING bus is voltage source
v_a,v_b,v_c voltage magnitude (p.u.); input parameter for SWING bus. Other not used as
input)
v_In_base base line-to-neutral voltage (V)
s_base base power (VA)

vV_min, v_max

voltage magnitude limits (p.u.)

conservative voltage reduction parameters; alternative to ZIP model for voltage

Cvr_p, cvr_q
dependant loads. (set to O for no voltage dependence) (see. [?])
phases phases at bus (e.g.‘abc’, ‘a’, ‘ab’, etc.)
latitude node latitude; useful for plotting
longitude node longitude; useful for plotting

Inputs For Optimal Power Flow
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CSV/DataFrame Column

Description

id bus id (integer)

name capacitor name
g_a, q_b,q_c nominal reactive power (p.u.)
phases phases (e.g.‘abc’, ‘a’, ‘ab’, etc.)

Table 3. gen_data.csv

CSV/DataFrame Column

Description

id bus id (integer)

name generator name
pa, pb, pc active power output (p.u.)
ga, gb, qc reactive power output (p.u.)

s_base base power (VA)

sa_max, sb_max, sc_max

rated maximum apparent power output (VA)

phases

generator phases (abc string) (e.g.‘abc’, ‘a’, ‘ab’, etc.)

ga_max, gb_max,
qc_max

maximum reactive power output (p.u.)

ga_min, gb_min, gc_min

minimum reactive power output (p.u.)

control_variable

Which generator variables are control variables. “PQ”, “P”, “Q” or *”

Table 5. reg_data.csv

CSV/DataFrame Column Description
fb From-bus id number (integer)
tb To-bus id number (integer)
from_name From-bus name
to_name To-bus name
name regulator name
tap_a, tap_b, tap_c tap position (p.u.) -16 to +16; 0 is no tap change

To convert from any other standard network model format, the model data described above
must be extracted and then formatted as Pandas DataFrames and, optionally, saved as CSVs
according to Tables 1 and 2 and, as needed, Tables 3, 4, and 5. Before converting a model, it
is important to check if that the model is compatible. In the current version, the model must be
radial as that is a fundamental assumption. Only wye-wye transformers are supported. Also,
models with split-phase secondary lines are not supported. If a model has loads or other assets
on split-phase secondary lines they may be reflected onto the primary of the secondary

transformers before converting.

Inputs For Optimal Power Flow
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3.2.1 OpenDSS Network Model

OpenDSSDirect.py is a Python that can be used to parse OpenDSS models in python. It can
be used to aid conversion from OpenDSS. An OpenDSS converter is supplied with DistOPF to
allow easy use of OpenDSS models as input. The converter populates the CSV tables required
to create the OPF model.

3.2.2 CIM Equipment Model

Extracting a model stored using the CIM standard can be accomplished in Python with the
CIMantic Graphs Library using the “cimhub_2023” profile. This process involves extracting the
necessary data, i.e., modeling parameters from the CIM model to populate the native CSV table
format required for the OPF solver modeling language. By generating these CSV tables from
the CIM data, user can efficiently run DistOPF.

Inputs For Optimal Power Flow
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4.0 Using DistOPF

This section will briefly describe how to use the basic features of DistOPF version 0.2.0.
DistOPF is actively being developed. For the most up to data documentation visit
github.com/Scalelab-wsu/distopf.git.

4.1 Installation

To get started with DistOPF, the package needs to be installed. This can be achieved quickly
and easily using Python’s package installer, ‘pip’.

4.1.1 pip install
Simply copy and paste the below command line in the terminal:

pip install distopf

4.1.2 Developer Installation

To install the latest version from github:

1. From the directory you want to keep your distopf files, run:

git clone https://github.com/Scalelab-wsu/distopf.git

3. Create or activate the python environment you want to use.

4. From the directory where the distopf package is stored, run:

pip install -e .

This installs your local distopf package the python environment you activated. The -e option
enables editable mode, which allows you to directly edit the package and see changes
immediately reflected in your environment without reinstalling.

4.2 Basic Example

This section builds up a basic example describing each block of code and the alternatives
functions or classes that may be used.

4.21 Loading Case Data

First we import the DistOPF library and as the Pandas Library. Then we load the CSVs from the
file system using Pandas Please note, besides the native model inputs, i.e., CSVs, user can
use standard models such as OpenDSS or CIM, with associated appropriate converters.
Several cases are provided with the package including cases formated as CSVs and OpenDSS
models. These are stored in distopf/cases/. For convenience you can access this path in
DistOPF with distopf.cases.CASES_DIR. The cases are separated CSV models and OpenDSS
models by two subdirectories csv and dss.

import pandas as pd
import distopf as opf

Using DistOPF
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branch_data = pd.read_csv("branch_data.csv", header=0)

bus_data = pd.read_csv("bus_data.csv", header=0)

gen_data = pd.read_csv("gen_data.csv", header=0)

cap_data = pd.read_csv("cap_data.csv", header=0)

reg_data = pd.read_csv("reg_data.csv", header=0)

4.2.2 Instantiating the Model

The model is instantiated using each of the DataFrames loaded above. In this example we are
using LinDistModel, however other models may be used depending on the features and
performance requirements. LinDistModel is recommended since it is has most features and
good performance. If control of capacitor switching is desired, then LinDistModelCapMI which
provides a mixed integer formulation can be used. LinDistModelCapacitorRegulatorMI should
be used if regulator tap control is required.

model = opf.LinDistModel(
branch_data=branch_data,
bus_data=bus_data,
gen_data=gen_data,
cap_data=cap_data,
reg_data=reg_data,

4.2.3 Solving the OPF

Once the model is instantiated, it can be solved. In this example the 1p_solve function is used
to solve the model with the gradient_load_min objective.

result = opf.lp_solve(model, opf.gradient_load_min(model))

The 1p_solve function is used when the objective function is linear and requires the model
and the objective function gradient vector be supplied. Additionally, cvxpy_solve can be used
which uses the CVXPY python package. Instead of a gradient, a function is passed as the
second argument (just the function name without parenthesis).

result = opf.cvxpy_solve(model, opf.cp_obj_loss)

When using LinDistModelCapMI the cvxpy_mi_solve must be used and when using
LinDistModelCapacitorRegulatorMI, then the solve method of that class must be used
(model.solve(f)).

The solve functions described above all return a object which includes various attributes
including the resulting vector of the variables, x, and the objective value, fun. Each of the
model classes includes methods for parsing the values from x into easy to understand Pandas
DataFrames with a column for bus names and each phase.

# Parse results

v = model.get_voltages(result.x)

s = model.get_apparent_power_flows(result.x)
p_gens = model.get_p_gens(result.x)

g_gens = model.get_q_gens(result.x)

Using DistOPF 15



4.2.4 Visualizing Results

Visualizations are produced using the Python Plotly package. Because we are using Plotly, all

the visualizations are interactive and easy to explore. Functions are provided for plotting
voltages, power flows, and generators. Additionally, plot_network can be used to create a

network plot which makes it easy to quickly understand how power flows in the network and

how voltages are distributed geographically (Fig. 3). Using the mouse, the user can hover over

nodes to get exact values of power flow, loads, generation, and capacitor reactive power for
each node. An example of plots from each of the four plotting functions used in the example

are shown in figures 3, 4, 5, and 6.

# Visualize network and power flows

opf .plot_network(model, v=v, s=s, p_gen=p_gens, q_gen=q_gens) .show()

opf .plot_voltages(v) .show()
opf .plot_power_flows(s) .show()
opf .plot_gens(p_gens, q_gens).show()

Network Plot (P.U.)
Node color: Average voltage magnitude
Line width: Total active power flow (reverse flow in red).
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Figure 3. Result of running opf.plot_network after solving the IEEE 123 bus system with 30 DERs. Additional
information is available by hovering over any of the buses. In this example hover-data is shown for bus “80”.
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Result of running opf .plot_voltages showing nodal voltages after solving the IEEE 123 bus system with

Figure 5. Result of running opf.plot_power_flows showing active and reactive power flows (branch flows) after

solving the IEEE 123 bus system with 30 DERSs.
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Figure 6. Result of running opf .plot_gens showing optimal generations after solving the IEEE 123 bus system with
30 DERs.

4.3 Advanced Options

The advanced options of the DistOPF package offer enhanced flexibility and customization for
power flow optimization. Users can write custom objective functions, specify control variables,
and set precise voltage limits, enabling tailored solutions for diverse operational requirements
and constraints. These features empower users to fine-tune the optimization process to meet
specific goals and conditions.

4.3.1 Writing Objective Functions

DistOPF provides a variety of objective functions built in, however, it does not aim to provide all
possible objective functions that users may want. This section aims to provide users with an
understanding of how an objective function may be formulated.

There are two types of objective functions supported as of the version 0.2.0 release, linear
function gradients for use with distopf.1lp_solve and convex functions for use with
distopf.cvxpy_solve.

Using DistOPF
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4.3.1.1 Linear Functions

Linear functions take the model and any optional keyword arguments as inputs and return a
1-dimensional array, ¢, representing the gradient of the objective function and having the same
length as z. The solve function, distopf.1lp_solve, will minimize c - z.

The load minimization example below implements (13). A value of 1 is placed in the gradient
array at the index for each of the variables corresponding to active power flow out of the swing
bus. Here model.phase_exists is used to prevent trying to access a variable for a phase that
doesn’t exist. Also, model.idx is used to retrieve the indices of the variables for active power
flow out of the swing bus. The first argument of model.idx gets the name of the variable, the
second gets the index of the bus, j, and the last gets the phase “a”, “b” or “c”. It is important to
note that j is 0-indexed and corresponds to the bus-id minus one; therefore the swing bus
which should have an id of 1 has in index of 0.

def gradient_load _min(model: LinDistBase, *args, **kwargs) -> np.ndarray:
¢ = np.zeros(model.n_x)
for ph in "abc":
if not model.phase_exists(ph):
continue
c[model.idx("pjk", model.swing_bus, ph)] = 1

return c

4.3.1.2 Convex Functions

Convex functions are designed to be compatible with the CVXPY Python Package. They take
the model, a CVXPY cvxpy.Variable object and optional keyword arguments. It returns a
CVXPY expression. For the best performance, it is best to formulate the expressions in a
vectorized form. You must also use disciplined convex programming (DCP) as described by the
CVXPY documentation.

The example below implements (14) by collecting the indices for all the variables
corresponding to active power generation on each phase. The parameter, model.pg_map, is a
dictionary of Pandas Series for each phase containing the indices for each active power
generation variable. The code below concatenates the indices for each phase into all_pg_idx
which is used to formulate the equation in a vectorized form.

def cp_obj_curtail(model: LinDistBase, xk: cp.Variable, #**kwargs) -> cp.
—Expression:
all_pg_idx = np.array([])
for a in "abc":
if not model.phase_exists(a):
continue
all pg_idx = np.r_[all_pg_idx, model.pg_mapl[al.to_numpy()]
all pg_idx = all_pg_idx.astype(int)
return cp.sum((model.x_max[all_pg_idx] - xk[all_pg_idx]) *x* 2)
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4.3.2 Specifying Control Variables

The control variables used in the OPF include active and reactive power injection from
generators (and capacitor switching and regulator tap positions for mixed integer models).

Control variables can be specified for each generator by listing “PQ”, “P”, “Q”, (or nothing if no
control is desired) in the control_variable column of gen_data.csv.

4.3.3 Specifying Voltage Limits

Voltage limits are specified for each node using the v_min and v_max columns in the
bus_data.csv.

Using DistOPF 20
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5.0 Validation

This section focuses on validating the results obtained from simulations using Distopf against
those generated by OpenDSS. Validation is crucial for ensuring the reliability and accuracy of
our power flow models and conversion methods.

The results for both the IEEE 13-Bus and IEEE 123-Bus systems are presented in Table 6.
For validation, we analyze power flow parameters including voltages (V), real power (P), and
reactive power (Q). The goal is to confirm that the converted models yield consistent and
credible results across different platforms. Detailed comparisons of the voltage and power flows
for both networks are shown in figures 8, 9, 10, 11 and 12.

We use several error metrics to quantify discrepancies between the results from DistOPF
and OpenDSS:

1. Maximum relative voltage error (%V Error)
2. Maximum voltage error in per-unit (p.u.)
3. Real power mismatch at the substation compare to the system’s size

4. Reactive power mismatch at the substation compare to the system’s size

Table 6. Power flow validation with OpenDSS for several models.

Real Power (MW) Reactive Power (MVAR)
Model %V Error V Error - -
(p.u.) AP Size (P) AQ Size (Q)
IEEE 13-Bus | 0.809% 0.00844 0.113 3.45 0.32 210
IEEE 123-Bus | 0.499% 0.00516 0.097 3.51 0.196 1.93

The linear approximation utilized in the modeling process does not account for power losses,
which causes expected errors to vary depending on the power losses present in each system.
To examine this relationship, we adjusted the load multiplier from 0 to 1 and plotted the voltage
error relative to the power loss. Figure 7 illustrates this effect.
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Figure 7. Maximum voltage error relative to OpenDSS solution shows a linear relationship to active power loss

calculated by OpenDSS.

Figures 8, 9, 10, 11, and 12 further validates the solutions by comparing all the nodal
voltages and branch power flows for IEEE 13-Bus and IEEE 123-Bus test system.
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Figure 8. DistOPF voltage comparison with OpenDSS solutions for IEEE 13-Bus.
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Active Power Flow (p.u.)

Figure 11.

Reactive Power Flow (p.u.)

Figure 12. DistOPF branch reactive power flow comparison with OpenDSS solutions for IEEE 123-Bus.
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6.0 Conclusion

In conclusion, DistOPF significantly enhances the efficiency and effectiveness of power
distribution system optimization by providing compatibility with various standard network
models, such as OpenDSS and CIM equipment models. It equips researchers with detailed
insights into OPF modeling, rooted in solid mathematical principles, and outlines essential
modeling parameters for formulating the OPF and the OPF modeling language. The tool
demonstrates how to use and navigate different OPF problems, specifies the necessary
modeling parameters for OPF solver languages, interprets results through useful plots, and
validates these solutions against OpenDSS power flow results to ensure feasibility. By reducing
the development time for optimization programs, DistOPF enables a quicker advancement in
power distribution system research. Researchers can customize the tool to meet their specific
needs, benefiting from comprehensive benchmarking options that ultimately contribute to the
creation of a more resilient and efficient energy system.

Conclusion
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