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Abstract 

Energy storage resources (ESRs) and other zero marginal cost (ZMC) resources have unique 
characteristics that are not fully captured in today’s electricity planning and operations modeling 
tools. Because the modeling assumptions used in these tools are simplified approximations of 
how operations and investment decisions occur in the real-world, accurately representing cost 
and operational characteristics are key for determining how these resources impact price 
formation. Questions requiring accurate electricity prices, such as—Where should we build new 
transmission? Will a small modular reactor earn enough revenue to participate in the future 
electric grid? Is retrofitting a coal plant with carbon capture technology economically feasible?— 
aren’t available from today’s electricity planning and operations modeling tools. 

As an example, production cost models (PCMs) are heavily utilized tools that determine the cost 
and reliability of the electric system. However, as PCMs were developed to help thermal 
generators manage their fuel inventories, production cost modeling is largely based on fuel 
prices. Because ESRs do not incur fuel costs, they are often modeled as ZMC resources. In 
reality, ESRs incur opportunity costs as well as technology-specific (degradation) costs that are 
non-trivial to calculate but are important for price formation.   

In this research, we identify options to incorporate more realistic opportunity and degradation 
costs in ESR bidding algorithms. Expanding available bidding assumptions allows energy 
system modelers to develop more accurate economic valuations for ESRs, leading to more 
accurate price formation from leading energy system modeling tools.  
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Acronyms and Abbreviations 

DAM day-ahead market  

ESR energy storage resource 

ISO independent system operator 

PCM production cost model 

RTM real-time market 

RTO regional transmission operator 

SCED security constrained economic dispatch  

SCUD security constrained unit commitment 

SoC state-of-charge 

SoH state-of-health 

ZMC zero marginal cost resource 
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1.0 Introduction 

Energy system modeling tools are used for reasonable price and resource utilization projections 
in many grid planning activities. As the grid heads toward a high-renewable future, it is worth 
considering whether the costs of new technologies are adequately modeled using traditional 
methods that were developed for thermal resources. Production cost modeling with thermal 
resources is largely based on fuel prices. In contrast, many renewable and carbon-free 
resources bid into real-world electricity markets using opportunity costs or other technology-
specific costs. For example, energy storage resources (ESRs) do not incur fuel costs and are 
therefore currently often modeled with zero marginal costs (ZMC). Although ESRs do not have 
fuel costs, ESRs may incur opportunity costs if decisions within a dispatch horizon prevent the 
ESR from selling energy in future periods, and they also incur technology-specific costs (such 
as degradation) that are nontrivial to calculate. These opportunity costs and degradation costs 
are often ignored in existing production cost models.  

In this research, we identify options to incorporate more realistic costs in the bids for ESRs in 
leading energy system modeling tools. Expanding ESR bidding assumptions to include 
opportunity and degradation costs will enable energy system modelers to analyze price 
formation and develop more accurate economic valuations for investment and operations 
decisions in the future electric grid by reflecting a more accurate cost structure faced by market 
participants and more economic utilization of ESR resources. We investigate various methods 
to estimate these costs within existing energy system modeling tools, providing a step forward 
for future grid planning. 

1.1 Motivation 

ZMC resources (including wind and solar), and newer technologies (including many ESRs) have 
unique characteristics that are not always efficiently captured in today’s electricity planning and 
operations modeling tools. As an example, production cost models (PCMs) were developed to 
help thermal generators manage their fuel inventories – an antiquated objective for an electricity 
grid made up of ZMC resources. Market optimization models – such as Security Constrained 
Unit Commitment (SCUC) and Security Constrained Economic Dispatch (SCED), used to plan 
for and dispatch the electricity system to meet electricity demand – were also designed around 
the scheduling needs of dispatchable, thermal resources.  

While the modeling assumptions used in electricity planning and operations models are 
necessarily simplified approximations of how operations and investment decisions are made in 
the real-world energy system, representing resources’ cost and operational characteristics are 
key determinants for how these resources interact within the power system model and impact 
price formation. Newer technologies, such as ESRs, require modeling enhancements to 
accurately capture their value (Levin et al. 2023a, 2023b, Mays 2021a, 2021b). These modeling 
enhancements include technology representation, temporal fidelity, spatial fidelity, uncertainty 
representation, and the need for new methodologies and metrics to measure ESR contributions 
to reliability.  

Additionally, as current electricity planning and operations modeling tools focus on optimizing 
the centralized dispatch of generators, bidding strategies employed by individual generators or 
market participants outside of this centralized framework are often not represented. This 
omission stems from the complexity and diversity of strategies that vary significantly among 
participants, including tactics to manage risk, exploit market conditions, or optimize profit 
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margins. Such strategies, often involving advanced algorithms and market insights, play a 
pivotal role in shaping market outcomes and system reliability.  

 

1.2 Research Approach 

In this research we develop a comprehensive approach to understand current limitations in 
electricity planning and operations models for ESRs and develop options and algorithms for 
incorporating more realistic cost approximations for ESR bidding assumptions in leading energy 
system modeling tools. We first perform a survey of existing modeling approaches to gain a 
comprehensive understanding of leading practices and assumptions which may impact the 
applicability of current modeling approaches for valuing ESR contributions. We then take a deep 
dive into real-world markets and empirical ESR bidding behavior to understand how ESR 
market participation rules and market design impact how ESRs bid in practice. Given this 
survey, we then develop a menu of options for incorporating more realistic bidding behavior in 
leading electricity planning and operations modeling tools. For our menu of potential options, we 
develop modeling approaches and recommended algorithms for improving ESR representation. 
We implement our algorithms in a wholesale electricity market simulation – leveraging PNNL’s 
Wholesale Electricity Analysis via Simulation & Learning Experiments (WEASLE) platform 
(Eldridge et al., 2024) – to determine if and how our algorithms improve market surplus and 
ESR profits in a high-renewables power grid.  
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2.0 Survey of Existing Modeling Approaches 

2.1 The Value Proposition of Energy Storage Resources 

ESRs unique value proposition is driven by their ability to charge or discharge, allowing these 
resources to function as generation or load. ESRs can flexibly store electricity during periods of 
low net demand and discharge during periods of high net demand, allowing them to fulfill the 
important function of smoothing variability from intermittent renewable energy resources while 
providing stability and resilience to the grid. ESRs can also provide capacity and resource 
adequacy by dispatching during peak load, reducing the need for peaking resources. ESRs can 
be sited in geographically dispersed areas, allowing them to alleviate transmission congestion, 
and provide resilience and reliability either in front of, or behind the meter. However, enabling 
the value that ESRs can bring to the grid requires planning and operations modeling tools and 
market designs that enable their entire value stack of services. 

2.2 Current Electricity Planning and Operations Models 

In this review, we focus on needed improvements for current electricity planning and operations 
modeling tools—including PCMs, other market optimization models, and capacity expansion 
models—which were designed around the scheduling needs of dispatchable, thermal resources. 

2.2.1 Planning and Operations Models 

PCMs are a widely used planning tool for electricity market operators, regulators, and other 
stakeholders for their ability to provide detailed insight into electricity system operations over a 
various time horizons (e.g., from one day to multiple years).  PCMs belong to a family of 
mathematical optimization problems, and most of their core decision variables control the 
chronological commitment status (i.e., on/off) and dispatch (i.e., amount of generation) of 
generators. These models simulate power system market operations with a goal to minimize 
power systems’ operating costs of meeting electricity demand and reserve requirements while 
simultaneously satisfying a wide variety of operating constraints. These constraints consist of 
unit-specific constraints (e.g., minimum/maximum capacity limits, minimum up and down times, 
ramping limits) and system-wide constraints (e.g., transmission line capacity limits, interface 
capacity limits, operating reserves, emission constraints, hurdle rates). Operating costs largely 
consist of fuel costs, variable operating and maintenance costs, and start-up/shut-down costs. 
PCMs often leverage standardized datasets to represent the transmission topologies.  

PCMs typically employ an hourly time step and optimization horizons that span a single day (24 
hours), week (168 hours), or year (8760 hours) to represent day-ahead market operations. 
However, to better capture the variability in systems with a large share of renewable energy 
resources where ramping needs might exceed the capability of dispatchable thermal units, 
PCMs can also be formulated to model real-time operations which adjust the day-ahead 
dispatch in times ranging from five minutes to fifteen minutes depending on the real-time market 
paradigm. To this end, PCMs are utilized to minimize operating costs in both “day‐ahead” and 

“real‐time” decision‐making processes: day-ahead energy and ancillary service markets open 
several days before the commitment period (e.g., a week) and close a day ahead. Day-ahead 
markets allow participants to buy or sell wholesale electricity before the operating day to 
minimize reliability issues and price volatility; real-time energy and ancillary markets operate on 
much shorter intervals, clearing every 15 or 5 minutes, and act as a balancing market where the 
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day-ahead commitments are balanced against actual demand and system constraints, 
accounting in many cases for forecast errors.   
 
All organized wholesale electricity market operators in the United States use modeling 
approaches similar to those used in production cost modeling to plan for and execute day-
ahead and real-time market operations. In the day-ahead market, the market operator 
determines which generators should be committed to produce electricity the next day by solving 
a Security Constrained Unit Commitment (SCUC) optimization problem. The unit commitment 
problem determines the least cost production schedule to meet the next day’s load forecast 
based on generator supply offers. The real-time market involves dispatching the system (unit 
dispatch) based on the day-ahead unit commitment. The day-ahead SCUC is a challenging 
optimization problem formulated for addressing the unique characteristics of conventional 
generators, including supply offers based on variable fuel costs, start-up costs, operating costs, 
as well as operating characteristics. As real-time conditions may differ from day-ahead 
projections, a Security Constrained Economic Dispatch (SCED) problem is run in the real-time 
market to adjust dispatch and address any real-time imbalances.  

Capacity expansion models are used to simulate needed investment in generation or 
transmission capacity in the mid- to long-term. Capacity expansion models consider what the 
future resource portfolio may look like, including assumptions about demand, generation 
resources and policy or regulatory objectives. However, capacity expansion models tend to 
have less temporal fidelity and do not consider chronological unit commitment as in PCMs 
(Levin et al., 2023a, 2023b). 

2.2.2 Recommended Modeling Improvements for Energy Storage Resources  

Assumptions for electricity planning and operations models are necessarily simplified 
approximations the real-world energy system. However, ESRs and other new technologies have 
unique characteristics that are not represented well in current planning and operations modeling 
tools. ESRs and many other newer technologies require modeling enhancements to accurately 
capture their value. Levin et al. (2023a, 2023b) highlight the following areas for improvement: 

1. Technology representation: ESRs have unique cost and performance characteristics, 
such as power or energy capacity, discharge duration, depth of discharge, state-of-
charge, cycle life, round trip efficiency. Additionally, ESRs may incur opportunity costs 
from the potential profit lost if ESRs are unable to provide energy in the future, and they 
incur degradation costs when operational decisions affect temperatures or other factors 
that reduce the useful life of the resource.  

2. Temporal fidelity: ESR state-of-charge decisions are dynamically linked through time, 
where the decision to charge or discharge in one period affects state-of-charge in the 
next. Modeling assumptions that use too coarsely-grained time intervals may ignore 
intertemporal variability and therefore undervalue ESRs. 

3. Spatial fidelity: ESRs can be built at geographically dispersed locations to address grid 
conditions. This requires also including sufficient transmission detail to capture price and 
congestion impacts. 

4. Uncertainty: ESRs can provide value by mitigating increased net load uncertainty in 
future power systems. From a modeling perspective, improving uncertainty 
representation may require improved stochastic optimization methods and computational 
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approaches or reasonable approximations. This could include modeling full distributions 
of weather outcomes to capture potential weather extremes and using stochastic 
methods or sensitivity analyses to examine the full distribution of potential outcomes. 

5. Reliability: New methodologies and metrics to measure ESRs’ contributions to reliability 
could include modeling ancillary services with more fidelity and developing new metrics 
to capture marginal reliability contributions of ESRs.  

Further, current electricity planning and operations models are typically structured to assume 
perfectly competitive and risk-neutral market or utility operations. Market power is well-known to 
affect supply availability and prices in power markets (Gabriel et at., 2012). In practice, grid 
operators are often risk averse and try to avoid price volatility that may benefit ESRs (Mays 
2021a). Future grid planners and operators could also move towards multi-criteria approaches 
that consider broader environmental impacts that are not included in existing grid planning tools 
(Hobbs and Meier, 2012). As the above factors become more influential, a new generation of 
market modeling tools may explore more broadly how profit incentives, risk management, and 
gaming opportunities affect market outcomes.  

Pursuing these enhancements may provide grid planners, investors, regulators, and other 
interested parties with more accurate projections of future grid conditions. Addressing this gap 
in modeling strategic behavior could involve developing models that better capture the bidding 
strategies of market participants (i.e., energy suppliers, load consumers), considering factors 
such as generation costs, proxy costs of renewable resources, capacity constraints, reserve 
requirements, transmission availability, and market power exertion. Likewise, future gird 
operators may explicitly pursue risk aversion or environmental and other multi-criteria objectives 
that need to be reflected in grid modeling tools. While this paper focuses solely on 
improvements to ESR bidding assumptions, it is part of a more comprehensive set of future 
advancements in power system modeling that may be necessary to support more efficient 
market outcomes and resilient grid operations in the face of evolving zero marginal cost energy 
landscapes and regulatory frameworks. 

2.3 Current Electricity Market Design 
 
Electricity market design and detailed rules for resource participation fundamentally influence 
market efficiency. This is especially true when considering the time horizons over which market 
solutions are optimized as well as ESR participation rules. In this section, we consider existing 
market designs and market participation rules that facilitate the participation of ESRs, assessing 
current advancements and limitations for accurate ESR valuation. 

2.3.1 Wholesale Market Design  
 

The majority of electric power consumption in the U.S. is procured through organized wholesale 
markets, also known as Independent System Operators (ISOs) or Regional Transmission 
Operators (RTOs) (DOE, 2023). ISOs/RTOs schedule electric power generation and determine 
wholesale electricity prices through a multiparty auction mechanism. These auctions are cleared 
by solving a large, centralized commitment and dispatch problem that minimizes the cost to 
ensure a reliable supply of electricity. Competitive prices are calculated from the outcome of the 
least-cost solution and are generally set at the marginal cost to supply incremental demand. 
These prices may vary at each location in the ISO/RTO’s service territory and are called 
locational marginal prices (LMPs).  
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All ISO/RTO markets use a two-settlement system which includes a day-ahead market that 
schedules resources in preparation for the following day and a real-time market that continually 
updates resource dispatch in response to load forecast error and other uncertainties. At a 
fundamental level, in each market run – day ahead or real time – electricity suppliers submit 
offers to sell electricity and load-serving resources submit bids to buy electricity. Electricity 
suppliers typically submit a price-based offer curve which details the price at which they are 
willing to sell a specific quantity of electricity (and may include bidding parameters such as start-
up and shut-down costs, operating costs, variable fuel costs, and other operating characteristics 
such as minimum and maximum output). The ISO/RTO then determines the least-cost dispatch 
for all resources in the system. Resource offers are examined for non-competitive constraints by 
the ISO/RTO, and qualifying offers are accepted to meet load.  
 
Day ahead market optimizes over a 24-hour horizon and commits resources in one-hour 
interments. The resulting resource schedules are financially but not physically binding; this 
ensures that resources that follow their day-ahead schedule can be made whole regardless of 
what happens in real time. In the real-time market, resource dispatch is adjusted incrementally 
every 5 minutes to balance actual supply and demand. In practice, real time LMPs will be higher 
than the day ahead LMP to signal that more generation is needed, or real time LMPs will be 
lower to signal that less generation is needed. In addition to energy and LMPs, ISOs/RTOs also 
procure and price various ancillary service products (such as regulation, operating reserves, 
and ramp products) to ensure that the system has sufficient flexibility to maintain reliability and 
respond to variability and uncertainty. 

 
It is worth considering whether the offers submitted to wholesale electricity markets reflect the 
actual resource costs. For example, Borenstein, Bushnell, and Wolak (2002) estimate significant 
use of market power during the 2000 California energy crisis Additional examples are provided 
in Section 2.4. Although there is evidence of market manipulation in some contexts, under 
typical conditions, it is reasonable to assume that the energy markets perform competitively. 
This assumption does not rest on competitive pressure alone (that is, that the market is 
composed of many small firms, none of which hold a significant portion of total market share). 
For example, virtual bidding helps improve market competition by allowing participation by 
entities that are neither physical load nor physical generation (Hogan, 2016). Forward 
contracting provides incentives for firms to either increase or decrease prices depending on 
wither they are long or short on contracted supply (Hortaçsu and Puller, 2008). And finally, 
market power mitigation also provides a mechanism for market monitors to perform various 
screens and tests to determine if market offers are competitive (Nicholson, 2014). 
 
In the context of this work, the ISO and RTO market design generally incentivizes resources to 
run efficiently and offer their true costs into the market. However, ESRs face a substantially 
different cost structure than the start-up and shut-down costs, operating costs, variable fuel 
costs, and minimum and maximum output parameters often used to model thermal generators. 
Among other technical characteristics, ESRs require assumptions for maximum charging and 
discharging output, minimum and maximum state-of-charge limits, and charge/discharge 
efficiency. More detailed bidding parameters are provided in the following section. It is 
commonly assumed that these parameters do not include fuel costs, and so therefore the ESRs 
should bid (competitively) into the market at $0/MWh. However, it is worth considering whether 
broader economic and/or technical factors may affect ESR bidding behavior. 

2.3.2 ESR Participation Rules 
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Actual rules for participation can vary, influencing how market participants earn revenues and 
incur costs. In practice, participation rules define how resources can offer supply or bid demand 
into the market as well as share any limitations on their participation with the market operator. 
To explore this issue in more depth, we reviewed the current and proposed ESR participation 
models in the wholesale markets in Table 1.  
 
ESR participation rules (participation models) vary across ISOs/RTOs. Most markets allow 
ESRs to participate as a continuous resource with a single supply curve for charge and 
discharge capability, although participation models which require ESRs to participate as two 
distinct assets (for supply and demand capabilities) also exist. Importantly, markets also vary in 
their requirements over state-of-charge management, and whether state-of-charge is managed 
by the resource owner/operator or the market operator.  
 
Whether bids are simple price-quantity pairs or more complex (providing technical constraints, 
such as state-of-charge that the market manages) are important for the strategic behavior that 
may be exercised by market participants as well as market power mitigation. As an example, 
resource owners that submit price-quantity bids can determine operating status (charge, 
discharge) based on the price component (if price bid is less than or greater than the market 
price) and strategically withhold capacity to maintain feasibility of the bid. Withholding capacity 
to maintain feasibility can result in overly conservative operations. With complex bids, resource 
owners provide more information to the market, likely lessening the autonomy of the storage 
owner to exercise strategic bids but potentially realizing higher utilization rates. However, 
market operators have different objectives than individual resource owners, which may result in 
conflicts of interest (Vivero-Serrano et al., 2019). 

 
Emerging issues for integrating energy storage resources include developing participation 
models that reflect the various services these resources can provide, exemplified by markets 
moving toward participation models which allow a single bid curve which reflects charge and 
discharge capacity; accounting for an energy storage resource’s state-of-charge when 
optimizing over multiple services (such as energy and ancillary services); and optimizing the 
dispatch of an energy storage resource considering its duration and opportunity costs. For the 
latter two challenges, markets are developing rules which solicit more information from energy 
storage resource operators to provide more visibility into state-of-charge. 
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Table 1: Energy Storage Participation Rules in Wholesale Markets 

ISO/ 
RTO Storage Participation Model Bid Parameters 

State of Charge 
Management 

CAISOa ESRs participate in CAISO under the 
non-generator resource (NGR) model 
and can operate as either generation or 
load. NGRs bid a single supply curve 
with prices for negative capacity 
(charging) and positive capacity 
(discharging). 
 
ESRs can participate in energy, 
ancillary services, flexible ramping 
product, or as resource adequacy 
resources.  

The ISO models minimum and maximum storage capability, upper 
and lower operating limits, and round-trip efficiency for each storage 
resource.  
 
Several bid parameters are available to NGRs to help manage their 
state of charge including upper and lower charge limits for each 
trading day to reflect the highest and lowest stored energy values 
(MWh) that must be maintained, as well as an end-of-hour state-of-
charge parameter with an upper and lower state-of-charge limit to 
control how state-of-charges changes throughout the day. NGRs 
can also submit an initial state-of-charge value to indicate the 
energy available for the first participation interval.  
 
When providing ancillary services, resources also provide an 
ancillary service state-of-charge parameter which can bind in real-
time to enable resources to fulfill ancillary service awards.  
 
When providing resource adequacy, an energy storage resource’s 
net qualifying capacity is based on a test of its sustained output over 
a 4-hour period. 

ISO generally manages 
state of charge.  
 
CAISO will try to follow 
non-binding constraints set 
by storage operators 
regarding minimum and 
maximum charge goals for 
an hour, and these goals 
can’t be outside of state of 
charge limits. 

ERCOT Until late 2024, ESRs participated as 
both a generation resource (GR) and a 
controllable load resource (CLR) under 
ERCOT’s combination model, where 
generation and load were modeled as 
separate and independent devices 
(NPRR1002).  
 
ERCOT transitioned to a single model 
structure in late 2024 (NPRR1014). The 
single model structure allows energy 
storage resources (ESRs) to bid a 
single price curve which includes both 
the charging and discharging MW 
range. Other improvements include 
better state-of-charge accounting in the 
reliability unit commitment process and 
real-time market (security constrained 
economic dispatch [SCED] process) 
(NPRR1204). 

In the single model structure, ESRs provide a single incremental 
Energy Bid/Offer curve from charging (bid-to-buy) to discharging 
(offer-to-sell) that is monotonically non-decreasing from the ESR’s 
negative MW (charging) to positive MW (discharging).  
 
Start up and minimum energy costs are zero (no commitment costs, 
resource is on-line and available for dispatch).  
 
Changes from NPRR1204 include adding three new state-of-charge 
(SOC) related fields to the current operating plan (MaxSOC, 
MinSOC, and Planned Hour Begin SOC) to increase awareness, 
accounting and monitoring of each energy storage resource’s state-
of-charge for RUC and SCED processes (in particular, for ancillary 
service awards), but managing the SOC is the responsibility of the 
qualified scheduling entity. 

Managed by resource 
owner/operator 
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ISO-NEb Continuous storage facilities (CSF) are 
modeled in the market as two distinct 
asset types: a dispatchable Generator 
Asset for supplying energy or a 
Dispatchable Asset-Related Demand 
(DARD) for consuming energy. A CSF 
can offer as a Generator or bid as a 
DARD in the energy and reserve 
markets. CSFs can also participate as 
an Alternative Technology Regulation 
Resource (ATRR) in the regulation 
market.  
 
CSFs are by default committed as on-
line allowing the ISOs dispatch software 
to simultaneously consider the 
Generator Asset and the DARD. 
ATRRs receive a signal dispatch 
instruction for both positive and 
negative MWs based on its regulation 
dispatch signal and energy market 
dispatch signals. 

Generators Assets and DARDs use the same offer parameters as 
other dispatchable Generator Assets and DARDs.  
 
In the day-ahead market, Maximum Daily Energy Limit and 
Maximum Daily Energy Consumption Limit offer parameters allow a 
CSF to manage its storage capacity. In the real-time market, the 
CSF operator may call the control room and provide hourly MW 
values it does not want to be dispatched above.   
 
When a CSF is not fully charged or discharged, dispatch is based 
on offer parameters, availability status, and dispatch limits (updated 
based on telemetered available energy and storage). 

Managed by resource 
owner/operator.  
 
Owner must submit bids 
that result in the storage 
resource remaining 
between a minimum and 
maximum charge limit. 

PJMc ESRs are modeled as one continuous 
resource. ESRs can participate in 
energy, ancillary services, and capacity 
markets.  
 
ESRs have three modes of operation: 
continuous, charge, and discharge.  
 
PJM does not optimize an ESR’s state-
of-charge, market participants are 
responsible for managing real-time 
state-of-charge for honoring day-ahead 
market commitments.  
 
Market participants can modify 
economic max and min limits to signal 
availability.   

Bid parameters account for ESR characteristics. 
In the day-ahead market, market participants provide economic 
minimum and maximum limits which reflect the capability to produce 
or consume energy for each hour of the day (in MWh). If there is a 
spread between min and max limits, the unit is economically 
dispatched based on a participant-provided incremental offer curve. 
ESRs are self-scheduled, i.e., startup costs and no-load costs are 
zero. 
 
In the real-time market, the ramp-limited security-constrained 
economic dispatch does not optimize total energy over future 
periods, market participants can modify economic max and min 
limits to represent charge and discharge abilities for a given interval. 

Managed by resource 
owner/operator 

NYISOd 

 

 

 

ESRs are modeled as a single 
resource. ESRs can participate in 
energy, capacity, and ancillary services 
markets.  

For economic offers, ESRs must submit their normal upper 
operating limit, emergency upper operating limit, lower operating 
limit, incremental bid curve, market choice, unit operation, beginning 

Managed by ISO or 
resource owner/operator.  
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NYISO has a technology neutral 
participation model for all storage types. 
ESRs have three operating states: 
injecting, withdrawing, and off/idle.  
 
Due to market software solution times, 
ESRs are currently only recognized as 
“on” and fully dispatchable within their 
offered operating range. Start-up costs 
are not allowed.  

energy level (day-ahead market only), and energy level mode 
(NYISO or self). 
 
Optional parameters include fuel type, burdened fuel price, and 
opportunity cost. 
 
When NYISO manages the ESR the beginning energy level, 
roundtrip efficiency, lower and upper storage limits are used to 
ensure ESRs receive physically feasible schedules in the day-ahead 
market and real-time market. 
 
For self-managed ESRs beginning energy level, roundtrip efficiency, 
lower and upper storage limits are not considered in the market 
optimization. Instead ESRs are responsible for managing energy 
constraints through offers and telemetry is evaluated for schedule 
feasibility. 

 
Owners can choose to 
manage state-of-charge, or 
state-of- charge/scheduling 
can be managed by NYISO 
optimization. 

MISOe ESRs can participate in the day-ahead, 
real-time, and operating reserves 
markets.  An ESR determines how it is 
used the day-ahead and real-time 
markets by its commitment status.  
 
Commitment status options include 
charge, discharge, continuous, 
emergency charge, emergency 
discharge, available, outage, and not 
participating. The commitment status 
governs which operating limits are used 
by MISO to facilitate state of charge 
management (regulation, economic, 
emergency minimum and emergency 
maximum limits). 

ESR owners/operators provide data for commitment and 
consideration in dispatch activities.  
 
Offer parameters include various economic data including an energy 
offer curve (in MW, $/MW, slope or block form), various reserve 
offers (regulating capacity and mileage, spinning, supplemental 
reserve offers), no-load offer, start-up offers (hot, intermediate, 
cold), as well as self-scheduled energy, regulation, and reserve 
offers.  
 
ESR owners also provide various commitment operating parameter 
data including start times and minimum/maximum charge/discharge 
times.  ESR owners also provide dispatch operating parameter data 
which include dispatch limits and ramp rates. 

Managed by resource 
owner/operator  

SPPf A market storage resource (MSR) can 
participate in SPP energy and operating 
reserve markets.  They offer charging 
capacity, discharge capacity or a 
“continuous” classification where they 
can easily transition between charging 
and discharging.  The MSR classifies 
itself as one of these options over each 
market interval.  Commitment status, 
and maximum/ minimum discharge 

Minimum/maximum charge and discharge limits as well as 
emergency charge/discharge limits are set by the owner.  The 
resource communicates state-of-charge information, including 
current state-of-charge, and state-of-charge forecast.  Ramp rates 
are required for determining “continuous” resource classification.  
Loss factor, and charge and discharge times are also included. 

Managed by resource 
owner/operator 
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limits are parameters used by SPP to 
make a schedule. 

aCAISO (2023). 
bISO New England Inc. and New England Power Pool; Enhanced Storage Participation Revisions (2018). Available at:  https://www.iso-ne.com/static-
assets/documents/2018/10/er19-84-000_enhanced_storage_revisions.pdf.   https://www.iso-ne.com/static-assets/documents/2014/12/mr1_sec_1_12.pdf  
cPJM Energy Storage Participation Model: Energy Market (2019) https://www.pjm.com/-/media/committees-groups/committees/mic/20190315-special-esrco/20190315-item-
03a-electric-storage-resource-model.ashx  
dESR Participation Model: Energy Market Design (2019). Available at: 
https://www.nyiso.com/documents/20142/2686166/ESR%20Market%20Design%20MIWG%2009212018.pdf/ce0dccc8-f903-35b0-fbf9-74e8311a202e  
eMISO Storage Participation – FERC Order 841 Compliance. Available at: https://www.misoenergy.org/engage/MISO-Dashboard/storage-participation--ferc-order-841-
compliance/  
fSPP Member Impacting Program Overview: FERC Order 841 – Stored Energy Version 1.8. Available at: 
https://www.spp.org/documents/65314/order%20841%20member%20impacting%20program%20overview%20-%20v1.8_clean.pdf 

 

https://www.iso-ne.com/static-assets/documents/2018/10/er19-84-000_enhanced_storage_revisions.pdf
https://www.iso-ne.com/static-assets/documents/2018/10/er19-84-000_enhanced_storage_revisions.pdf
https://www.iso-ne.com/static-assets/documents/2014/12/mr1_sec_1_12.pdf
https://www.pjm.com/-/media/committees-groups/committees/mic/20190315-special-esrco/20190315-item-03a-electric-storage-resource-model.ashx
https://www.pjm.com/-/media/committees-groups/committees/mic/20190315-special-esrco/20190315-item-03a-electric-storage-resource-model.ashx
https://www.nyiso.com/documents/20142/2686166/ESR%20Market%20Design%20MIWG%2009212018.pdf/ce0dccc8-f903-35b0-fbf9-74e8311a202e
https://www.misoenergy.org/engage/MISO-Dashboard/storage-participation--ferc-order-841-compliance/
https://www.misoenergy.org/engage/MISO-Dashboard/storage-participation--ferc-order-841-compliance/
https://www.spp.org/documents/65314/order%20841%20member%20impacting%20program%20overview%20-%20v1.8_clean.pdf
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2.4 Evidence of and Potential for Exercising Strategic Behavior 
under Existing Electricity Market Design 

The previous section reviewed the current bidding rules for ESRs across major markets in the 
U.S. There’s a clear trend toward more sophisticated bidding mechanisms that can better 
capture the unique characteristics of ESRs. However, electricity market participants—such as 
investor-owned ESRs and renewables—may exhibit strategic behavior in managing risk, 
exploiting market conditions, or optimizing profit margins. Such strategies, often involving 
advanced algorithms and market insights, play a pivotal role in shaping market outcomes and 
system reliability. Recent studies on generation resources’ interactions with existing market 
frameworks have provided insights into how bidding structures and market design might affect 
ESRs’ bidding behaviors in shaping market outcomes. This section reviews key findings from 
notable papers that have contributed to our understanding of how generation resources bid in 
electricity markets and influence price formation and market outcomes. 

2.4.1 Empirical Evidence of Strategic Behavior in Electricity Markets 

Wolak (2003) analyzed bidding behavior in the California electricity market during the 2000-
2001 electricity crisis. Using detailed bid data, he found evidence of market power being 
exercised through economic and physical withholding of capacity by suppliers. Actual bids 
departed significantly from competitive benchmark bids which were estimated based on 
marginal costs.  Examining the California electricity market during the same timeframe, Kamat 
and Oren (2004) developed a multi-stage stochastic optimization model to analyze generator 
bidding behavior. Their findings underscored the strategic nature of bidding, with generators 
considering factors such as market demand and transmission constraints to maximize profits.  
Hortaçsu and Puller (2008) compared actual bids to theoretical benchmarks derived from 
optimal bidding models in the Texas (ERCOT) electricity market, revealing departures from 
theoretical optima, especially during peak demand periods. These papers contribute to a well-
established literature that conventional generators can exercise strategic bidding behavior (that 
is, they exercise market power by bidding price above marginal cost) in electricity markets.1  

However, increasing levels of ZMC renewable resources and financial traders are changing 
market dynamics as well as the potential for exercising market power or other strategic 
behavior. More recent research has focused on the impacts of these market participants on 
price formation. Ketterer (2014) investigated strategic behaviors of wind power producers on the 
German electricity market, focusing on their risk-averse portfolio optimization, bidding above 
marginal cost, and adapting to auction designs. Furthermore, Ketterer (2014) discusses how 
geographic dispersion of renewable generators can reduce market power and increase social 
welfare.2 Ito and Reguant (2016) examined strategic behavior in the Iberian sequential electricity 
markets, finding that dominant firms undersell or withhold production in forward markets to 
exercise market power, while fringe producers (including some renewables) systematically 
oversell in the day-ahead market and buy back at lower prices later. The study demonstrates 
that limited arbitrage and market power can create a systematic day-ahead price premium, with 
implications for market efficiency and the impact of renewable energy integration on market 

 
1 Borenstein et al. (1999), Chen and Hobbs (2005), Puller (2007) also find evidence of strategic behavior 

in electricity markets.  
2 See Tarufelli et al. (2022) for a recent survey of the literature on the impacts of variable renewable 

energy resources on price formation.  
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dynamics. Mercadal (2022) examined the effects of financial traders in electricity markets, 
finding that increased financial trading reduced generators' market power and increased 
consumer surplus. The study demonstrates that financial traders engage in arbitrage, which 
restricts producers' ability to strategically exert market power through intertemporal price 
discrimination, leading to lower prices and improved market efficiency. 

2.4.2 Strategic Behavior from Energy Storage Resources 

Due to the limited deployment of ESRs in today’s electricity markets, there is sparse ex-post 
empirical analyses of strategic behavior from these resources. A more common approach in the 
literature is to develop an ex-ante model that examines the potential for ESRs to exercise 
strategic behavior and influence market outcomes.   

Models for strategic behavior in ESRs have a wide array of structural features due to the various 
services they can provide, with most models focusing on strategic behavior in energy arbitrage. 
As electricity market participants’ strategic behavior can differ based on the market setting, a 
tailored model is needed to tractably represent the system and market details for each case. It is 
common for strategic behavior models to compute an equilibrium, for instance, partial, Nash, or 
generalized Nash, using either stylized or multi-level formulation to capture both strategic 
decision-making and key market details.  

Sioshansi (2010) used a stylized approach to study the effects of ESR ownership (generator-, 
load-, and standalone-ownership) on storage use and welfare; finding that strategic behavior 
leads to fewer social welfare gains (compared to the socially optimal solution), regardless of 
ownership. In some cases, adding storage may even lead to social welfare losses (compared to 
case where no storage was added). Furthermore, Hartwig and Kockar (2016) investigated the 
impact of ESR ownership by introducing a price of anarchy (PoA) to quantify the efficiency loss 
caused by ESR’s selfish behaviors, finding that strategic bidding has a nuanced impact on 
welfare, but can cause sub-optimal results if strategic bidding leads to underuse of ESRs.  
Mohsenian-Rad (2016) formulated a Stackelberg game to coordinate the operation of large, 
price-making, and geographically dispersed energy storage/battery systems in a nodal 
transmission-constrained energy market. Mohsenian-Rad found that line congestion yields more 
arbitrage (and profit) opportunities through creating more price differentials across time slots. 
However, results were sensitive to locational diversity (critical for ensuring ESR profit in 
transmission-constrained networks) as well as ESR roundtrip efficiency. Shahmohammadi et al. 
(2018) also studied the impacts of asset ownership and market-participation structures but 
assumed that all market participants (including conventional, variable, and energy storage 
resources) behave strategically. They found that ESRs could mitigate the inefficiencies of wind 
energy regardless of ESR ownership; however, co-ownership and co-operation of ESRs by the 
wind generator yielded the best results in terms of minimizing generation costs, maximizing 
wind-generation profits, minimizing wind curtailment, and minimizing the use of the high-cost 
peaking generator.  

Although empirical research on ESRs is limited, Sioshansi (2011) utilized a Stackelberg game to 
explore the impacts of strategic ESR behavior in electricity markets using historical data from 
the Texas electricity market (with no network constraints). The case study results showed that 
when wind generator-owned ESRs co-optimized operations to increase its own profits, it also 
decreased the profits of competing generators and overall consumer surplus. Further, strategic 
ESR dispatch always resulted in suboptimal welfare regardless of ownership (stand-alone or 
owned by wind-generators). The suboptimal welfare results were due to incentives for 
generators and energy traders to underuse the ESR (increasing price volatility and arbitrage 
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opportunities). Similar conclusions were drawn from the game-theoretic electricity market model 
by Schill and Kemfert (2011) who examined strategic utilization of pumped hydro storage in the 
German electricity market, finding that storage operators generally under-utilize their capacity to 
maximize profits. The study demonstrated that while storage increases overall welfare by 
smoothing prices, it also decreases total producer surplus (as generators' losses outweigh 
arbitrage profits earned by storage resources). Consumer surplus, on the other hand, increases 
as lower peak prices outweigh the effect of higher off-peak prices. 

 

2.5 Future Considerations 

ESRs—with their ability to act as generation and demand—are vital for addressing the 
increased uncertainty, driven by high penetrations of VRE resources, expected in the 
decarbonization future. The full services ESRs can provide include energy arbitrage, ancillary 
services, capacity contributions, transmission and distribution services, customer services, and 
more. Although current ESR installations are relatively a small portion of total generation 
capacity, utility-scale battery energy storage systems (BESS) capacity is expected to increase 
significantly by 2025, reaching 30 GW (from 1.5 GW in 2020) in the U.S. alone—a 20-fold 
increase that is expected to change the electricity generating portfolio and electricity market 
dynamics. However, to capture the full value stack of ESRs in future electricity markets, 
improvements are needed for electricity planning and operations tools; including better 
technology representation, more robust uncertainty representation, and new metrics for 
capturing ESR contributions to resource adequacy and system reliability.  

Although current ESR market participation models improve ESR technology representation 
through capturing more of their technical characteristics, an important need remains for better 
representation of ESR operating costs (opportunity costs and degradation costs). Accurate 
representation of ESR operating costs is important for the future electricity system, as ESRs 
may frequently be the marginal resource, setting prices for all resources based on these costs. 
Furthermore, current PCM and capacity expansion tools both assume market participants 
behave perfectly competitively. As summarized in the previous section, monitoring and 
mitigating the exercise of market power is an important consideration for ensuring competitive 
prices and system reliability. In the future electricity system, when the need for flexibility is 
increased by short and steep ramps from VREs to balance supply and demand, understanding 
the opportunity costs of ESRs becomes more important for mitigating their potential exercise of 
market power (Zhou et al., 2021). 

Traditional modeling approaches also underestimate system uncertainties and focus mostly on 
the short run time horizon. In the future, long duration ESRs are a key option to ensure supply 
and demand balance in the multi-day/week and seasonal market segments (Chad et al., 2021). 
New capacity market design may be needed to address duration-dependent qualifying capacity 
as well as longer time horizons for resource adequacy analysis. 

Last, new value streams for ESRs need to be evaluated due to the dynamics of the future 
resource mix. Reduced energy arbitrage opportunities from a high penetration of ESRs and 
reduced average wholesale energy prices from a high penetration of variable renewable energy 
resources means ESR revenues may shift from energy arbitrage to other services for 
addressing increased volatility. While it remains to be seen how the ESR value stack will evolve 
in the long term, enabling the value of ESRs may require interconnection queue reform as well 
as classification of ESRs as “dual use” transmission and market assets (Twitchell et al., 2022). 
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3.0 Enhancing Energy Storage Representation through a 
Bid-Based Modeling Approach 

Based on our survey of existing modeling approaches, current market designs and market 
participation models, as well as how ESRs may bid in practice (based on our survey of available 
literature) we developed a menu of options for incorporating more realistic bidding behavior for 
ESRs in leading electricity planning and operations modeling tools. We incorporate our bidding 
algorithms using an enhanced ESR model which we describe in Section 3.1, followed by our 
bidding algorithms in Section 3.2. 

3.1 Enhanced Energy Storage Resource Model 

In this section we describe our enhanced representation for our ESRs. Our enhanced physical 
battery model is Lithium-ion battery with available state-of-charge, power conversion efficiency, 
operating temperature, and degradation costs based on an equivalent circuit model (the 
Thevenin model) which considers thermal dynamics to value battery degradation. As our 
research focus is on the impact of more representative bidding algorithms, we provide a brief 
overview of our physical battery model. Full model details are available in Eldridge et al. (2024). 

3.1.1 Physical Battery Model 

We selected a 0th order Thevenin equivalent battery model (as described in the Appendix, 
Section Error! Reference source not found.) of an open circuit voltage with internal 
resistance. Our physical battery model also includes coupling to the environment to allow 
thermal transfer of resistive heating, making this a version of an electrical-thermal model 
(Appendix Section Error! Reference source not found.). We track the battery state-of-charge 
(SoC) and temperature as well as internal variables like DC power, voltage, current, and inverter 
losses (similar to Rosewater et al., 2019). We size our batteries to be large grid-scale ESRs, 
which can also be considered as aggregations of ESRs. ESR characteristics are shown in Table 
2.  

Characteristic Parameter Value 

State of Charge Capacity 𝐴Tcap  640 MWh 

Maximum State of Charge (95%) 𝑆𝑜𝐶max 608 MWh 

Minimum State of Charge (20%) 𝑆𝑜𝐶min 128 MWh 

Maximum Charge Rate 𝑃ch,max 125 MW 

Maximum Discharge Rate 𝑃dc,max 125 MW 

Charging Efficiency 𝜃 0.892 

Capital Cost 𝐶EoL $208 million 

Table 2: Selected characteristics and values for the battery model 
 

Note that the efficiency parameter is only applied to charging, so the round-trip efficiency, 𝜃, is 

94.6%. We determine the capital cost based on the ESR capacity. Using the projections in Cole 
and Karmakar (2023), we adopt the medium-case energy storage cost for the year 2030 of 
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$325/kWh for installed capacity1. Given the State of Charge (SoC) capacity (𝐴Ccap) of these 

storage units equals 640 MWh, capital costs (𝐶EoL) equal $208 million dollars. 

3.1.2 Battery Degradation Model 

While batteries are considered ZMC resources, batteries are subject to performance 
degradation. This degradation varies depending on how the battery is operated. Batteries can 
lengthen or shorten their expected lifetimes depending on the frequency, duration, and depth of 
their charging and discharging cycles. In this section we describe our adaptation of the 
degradation model proposed in Rosewater et al. (2019), which computes degradation and 
converts it to a dollar-valued cost. We assume a generic Lithium-ion type battery. 

The overall degradation cost in any interval is given by 

 𝑐deg =  𝐶EoLΔSoH (1) 

Where 𝑐deg is the degradation cost, 𝐶EoL is the end-of-life cost and ΔSoH is the change in 

battery state of health (SoH) in a given interval. We use the end-of-life cost from Table 2. The 
SoH is a complex quantity affected primarily by four values: 

• Clock time since the battery installation. 

• Average battery SoC 

• Average battery temperature 

• Average depth of discharge (DoD) 

In general, degradation rates increase with higher SoC, hotter temperatures, and deeper cycles 
(higher DoD). 

Battery degradation is calculated periodically, at an interval of Δ𝑡, based on the regularization 

method presented in Rosewater, et al. (2019). The degradation cost in each interval, 𝑐deg, is the 

product of the battery’s end-of-life (EoL) cost, 𝐶EoL, times the device’s incremental loss in state-

of-health (SoH), 𝑑𝑆𝑜𝐻 shown in eq. (1).  

Alternatively, degradation cost can be written as: 

 𝑐deg = 𝑐cyc + 𝑐therm + 𝑐SoC + 𝑐DoD (2) 

Where 𝑐cyc , 𝑐therm, 𝑐SoC , 𝑐DoD denotes four separate degradation components for the effects of 

cycling, thermal stress, state-of-charge, and depth-of-discharge on the battery’s state-of-health, 
the detailed calculation of which is shown Eldridge et al. (2024). 

Each component of the degradation cost can be represented by eq. (3) for the cycling 
degradation cost, eq. (4) for thermal degradation cost, eq. (5) for SoC degradation cost, and eq. 
Error! Reference source not found. for the depth-of-discharge (DoD) degradation cost.  

 
1 This is equivalent to $1300/kW for installed capacity.  
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𝑐cyc =  

Δ𝑡 𝐶EoL

(1 +
1

𝐴eff) 𝐴life𝐴Ccap
‖𝑖bat‖

1
 

(3) 

 
𝑐therm =  

Δ𝑡2 𝐶EoL𝐾𝑇𝐴resis

𝐴Tcap ‖𝑖bat‖
2

2
 

(4) 

 𝑐SoC =  Δ𝑡 𝐶EoL𝐾S�̅� (5) 

 𝑐DoD = 𝐶EoL𝐾D𝛿̅ (6) 

Where Δ𝑡 denotes time interval, end-of-life cost 𝐶EoL, coulombic efficiency 𝐴eff, rated cycle life 

𝐴life, and charge capacity 𝐴cap, the L-1 norm and L-2 norm of the battery’s charge profile ‖𝑖bat‖
1
 

and ‖𝑖bat‖
2

2
, SoC degradation factor 𝐾S, average of SoC 𝜎 , DoD degradation factor 𝐾D, and the 

average DoD variable. 

We model a 5-year-old battery as it provides a reasonable approximation of the lifetime average 
degradation cost. Average SoC and temperature are computed based on the physical battery 
model in Section 3.1.1. The depth of discharge is calculated from the battery SoC profile using a 
rainflow counting algorithm (Downing and Socie, 1982). These four attributes are used to 
compute the battery SoH at the start and end of an interval following the methodology outlined 
in Eldridge et al. (2024). Because the rainflow counting algorithm requires a moderate time 
baseline, we assess overall degradation costs on a daily basis. 

3.2 Energy Storage Bidding Algorithms 

In this section, we describe the underlying market design assumptions and energy storage 
bidding algorithms explored in this work. We also suggest additional algorithms to explore in 
future work. 

3.2.1 Market Design Assumptions 

We assume that the ESRs participate in a conventional two-settlement market with day-ahead 
and real-time market clearing where the general market clearing optimization model is a security 
constrained unit commitment (SCUC) model. We assume the day-ahead market clears at hourly 
intervals and the real-time market clears at 15-minute intervals. For both markets, we assume 
that ESRs have knowledge of renewable and load forecasts.  We also assume that SoC 
management is by the market operator. We assume the market operator has the objective to 
maximize total market surplus subject to resource and system constraints.  

The underlying market structure for the simulation is similar to real-world electricity markets 
which typically employ a sealed bid auction with a uniform price rule. Under this market 
structure, power suppliers and consumers offer price and quantity bids to the market operator, 
who then determines the market clearing price via merit order dispatch. In a perfectly 
competitive market, power suppliers would be incentivized to bid at their marginal cost and are 
considered “price takers”.  

The goal of the present work is to determine a reasonable approximation for an ESR price taker 
that submits its marginal costs to the market operator. This task is non-trivial due to the 
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complexity of the battery model presented in Section 3.1 and the simplified bidding structures 
discussed in Section 2.3.2. The following sections describe various methods or bidding formats 
that ESRs might use to approximate their complex cost structure.  

3.2.2 Selected Bidding Methods 

We develop a menu of options for incorporating more realistic bidding behavior in open-source 
modeling tools. These options range from a baseline bidding algorithm which assumes storage 
units bid with zero marginal costs ($0/MWh) for both charging and discharging to algorithms that 
include analytically and empirically derived price deltas for discharge bids to better represent 
opportunity costs. We also examine the impacts of maintaining a soft or hard limit on state-of-
charge values to better link energy storage bids to degradation costs. The soft limit requires 
end-of-interval state-of-charge levels be kept at or above a minimum value and the hard limit 
requires end-of-interval state-of-charge levels be kept at or above a maximum value. We also 
consider the impact of self-scheduling behavior based on profit-maximizing expectations of price 
forecasts.  

Our main algorithms are summarized in Table 3 and described in more detail in this section. 

 
Table 3: Overview of Selected Bidding Algorithms 

Algorithm Summary 

Baseline The baseline algorithm follows a standard PCM assumption. The algorithm has the 
following characteristics: 

Day-Ahead Market (DAM): Storage units bid with zero marginal cost ($0/MWh) for 
charging and discharging. 

Real-Time Market (RTM): Same as DAM. 

Analytical Price 
Delta 

We analytically derive an optimal discharge price of $X based on reasonably 
assumed dispatch schedule and degradation cost.  

Empirical Price 
Delta 

As it is computationally difficult to derive an analytical price delta, we calculate 
storage profit for a selection of price deltas (X) and pick the best option based on 
our numerical simulation. The algorithm has the following characteristics: 

DAM/RTM charging: $0/MWh. 

DAM/RTM discharge: $X/MWh, X > 0. 

No DAM SoC value. 

No RTM SoC value. 

Price Delta with a 
Hard SoC Limit 

With this algorithm we incorporate a SoC target, which is a hard SoC limit, to 
approximately link the DAM and RTM. The hard SoC limit also approximately links 
ESR bids to degradation costs. The algorithm has the following characteristics: 

DAM/RTM charging: $0/MWh. 
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DAM/RTM discharge: $X/MWh, X > 0. 

No DAM SoC value. 

RTM ending SoC hard limit > 0. 

Price Delta with a 
Soft SoC Limit 

With this algorithm we incorporate a SoC valuation, which is a soft SoC limit, to 
better link the DAM and RTM. The soft SoC limit also better links ESR bids to 
degradation costs. The algorithm has the following characteristics: 

DAM/RTM charging: $0/MWh. 

DAM/RTM discharge: $X/MWh, X > 0. 

No DAM SoC value. 

RTM ending SoC soft limit with value > 0. 

Self-Schedule To understand the impact of self-scheduling behaviors, we develop a price forecast 
and schedule the ESR to maximize profit over expected prices. The market follows 
ESR’s self-schedule. 

 

3.2.2.1 Baseline 

The baseline algorithm follows a standard PCM assumption. Storage units bid with zero 
marginal cost ($0/MWh) for charging and discharging in both the day-ahead market and real-
time market. In the real-time market, storage units bid an end-of-interval state-of-charge (SoC) 
value using espa_bandit algorithm (https://github.com/breldridge/espa-bandit) developed for the 
energy storage participation algorithm competition (ESPA-COMP; Tarufelli, et al. 2024). In the 
baseline scenario, the espa-bandit algorithm sets a hard price limit on end-of-interval SoC (see 
Section 3.2.2.3). 

3.2.2.2 Price Delta 

The price spread between charging and discharging prices is crucial for an ESR’s operational 
and bidding strategy because it determines its profitability. With only round-trip efficiency 
considered, the minimum profitable price spread for ESR needs to satisfy the condition that the 
price differential (price spread) between the discharge price and charge price (taking into 

account round trip efficiency losses) is positive (𝜆dis − 𝜃𝜆ch > 0). If degradation or operational 

costs are considered, a higher price spread is needed for the ESR to be profitable. To maximize 
the profit in the market, we assume the ESR adds a constant cost (i.e., price delta, Δ𝑝) for 

discharge offers to cover the degradation costs.  

The resulting ESR cost equation is as follows: 

 𝑧(∆𝑝) = ∑ (𝑝𝑡
dis ∗  ∆𝑝 − 𝑝𝑡

ch ∗  0)
𝑡

 (7) 

https://github.com/breldridge/espa-bandit
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Letting 𝑝𝑡
dis(Δ)

, 𝑝𝑡
ch(Δ)

,   𝑐deg(Δ𝑝) and 𝜆𝑡 be ESR’s the discharge, charge, degradation cost, and 

LMP after submitting a dispatch cost of Δ𝑝, the ESR’s profit is as follows: 

 𝜋 = ∑ 𝜆𝑡(𝑝𝑡
dis(Δ)

 − 𝑝𝑡
ch(Δ)

) − 𝑐deg(Δ𝑝)

𝑡
 (8) 

Which is subject its constraints on charge and discharge rate and SoC level. Although this price 
delta ∆𝑝 term may help improve the ESR’s profit margin, it is important to note that its inclusion 

is not necessarily an indication of strategic bidding or market power exertion. Rather, this cost 
term is a proxy for degradation costs (Section 3.1.2) that are not trivially part of the EST’s 
standard bidding parameters. Section 4.1 explores two methods, analytical and numerical, to 
determine an appropriate price. 

It’s crucial for market operators to understand the impacts of ESR’s bidding in terms of price 
deltas on market efficiency, system reliability, and market bidding rules. A higher price delta 
leads to underutilization of ESRs while lower price deltas can lead to ESRs incurring excessive 
degradation costs. Also, the price delta affects the available storage capacity for system 
flexibility as well as price formation. We study the price delta patterns and identify the impacts of 
ESR price delta bidding strategies by assessing both the market outcomes and ESR 
performance.   

3.2.2.3 SoC Limit Options 

For the real-time market, all ESRs can offer additional constraints on their SoC. These options 
allow the resource to better manage SoC, for example ensuring sufficient charge is available to 
meet their day-ahead schedule. The espa-bandit algorithm offers two options: a hard SoC limit 
and a soft SoC limit. 

The hard SoC limit provides a minimum acceptable SoC value for the ESR at the end of the 
real-time market horizon (which is 3 hours in our simulation). This is included as a constraint in 
the SCUC algorithm. The hard SoC limit is computed from the day-ahead schedule. The 
algorithm looks ahead to the scheduled charge or discharge values and ensures that the 
enough SoC will be available to meet the schedule. For example, if the unit is scheduled to 
discharge at 125MW from hours 17:00 to 20:00, the hard limit will ensure that at least 375MWh 
of capacity are available at 17:00.  

Mathematically, the hard limit constraint of 𝑆 is shown below for an assumed state-of-charge 

variable 𝜎𝑡 and end-of-horizon 𝑡 = 𝑇: 

 𝜎𝑇 ≥ 𝑆 (9) 

The soft SoC limit does not include an ending SoC constraint. Instead, the end-of-interval SoC 
is bid into the market. Our simulation platform is specifically designed to accept SoC valuation 
bids. The SCED solution will then be computed, accounting for the ESR preference to retain 
SoC. In the example above where the unit is scheduled to discharge at 125MW from 17:00 to 
20:00, the SoC bid value would be low before ~14:00, but will progressively rise as the time 
nears 17:00. This increases the likelihood that the ESR will have sufficient SoC capacity to meet 
the day-ahead schedule. 

Mathematically, the soft limit is implemented below, assuming a multi-step cost curve with costs 
𝐶𝑗  and state-of-charge quantities 𝑆𝑗: 
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 𝑧 = ∑ 𝐶𝑗𝜎𝑗,𝑇

𝑏

 (10) 

 𝜎𝑗𝑇 ≤ 𝑆𝑗 (11) 

 ∑ 𝜎𝑗𝑇

𝑗

=  𝜎𝑇 (12) 

Both offer types have the same purpose, but different benefits and risks. The hard SoC limit 
option is best at ensuring the unit will have enough SoC, since it is used as a constraint in the 
SCUC solution. However, the soft SoC limit option is more flexible and can better adapt to 
changing market conditions since SoC bids are included in the real-time market. Economically, 
the hard limit constraint is equivalent to setting 𝐶𝑗 = ∞ and 𝑆𝑗 = 𝑆 for one block step 𝑗, and 𝐶𝑗′ =

0 for all other quantities. 

3.2.2.4 Self-Scheduled 

Self-scheduling is currently employed in markets and allows resources to state their preferred 
schedule explicitly to the market operator. For example, this bidding method is often used by 
nuclear or coal power plants that are relatively inflexible or otherwise cannot be economically 
committed and dispatched by the market operator. In this section, we develop a method for self-
scheduling ESRs. In this case, the ESR determines its preferred schedule, then submits this 
schedule as fixed to the market. The market includes this fixed schedule as part of the SCUC or 
SCED problem. 

Typically, an ESR uses price forecasts to determine its profit-maximizing charge and discharge 
schedule (Mohsenian-Rad, 2015). These can be further modified by accounting for degradation 
or renewable uncertainty, although we do not currently include these factors in this bidding 
algorithm. However, this strategy assumes that the ESR’s price forecast is accurate. As this 
assumption does not hold in our simulation, nor in real life, self-scheduled ESR bids may result 
in suboptimal scheduling decisions even though degradation costs may be estimated 
accurately. 

We modify the profit maximization framework by dynamically estimating the future prices based 
on the excess load, including storage unit charging and discharging. To calibrate these 
estimates, we use 30 days of demand, renewable power, and ESR power outcomes from the 
baseline simulation. From this we compute the net demand, 𝐷net, in MW defined as 

 𝐷net =  𝑝demand −  𝑝𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 − 𝑝𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (13) 

Here 𝑝demand is the total system demand (MW), 𝑝𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 is the total renewable power (MW), 

and 𝑝𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is the total ESR power (MW). The net demand roughly tracks the price/quantity 

curve of the conventional generators. 

We plot the net demand vs. prices in Figure 1. From these points, we determine a best fit curve 
for the expected LMP 𝜆(𝐷net) using a mixed exponential function 

 
𝜆(𝐷net) = (𝑎0 + 𝑎1𝐷net)𝑒

(
𝐷net

𝑎2+𝑎3𝐷net
)
 

(14) 
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The coefficients 𝑎0 to 𝑎3 are determined using a minimization algorithm. We put a lower bound 
of $0/MWh on the price to avoid potential negative price estimates. 

 
Figure 1: Net Demand (Net Demand = Demand – Renewable – Storage) vs. LMP from 30 days 

of baseline simulation. Values are plotted as colored dots where color indicates the demand 
(red=low demand, yellow=high demand). The best-fit curve using our mixed exponential 

function is shown in blue.  

To estimate future prices, the ESR takes market forecast for demand and subtracts the forecast 
for renewable power. These forecasts are created during the simulation so they are up-to-date 
based on the ESR behavior. The ESR bidding algorithm then subtracts off the total ESR power 
(discharging – charging) to determine the expected excess. 

The ESR power is scaled by a factor of 12, since there are 12 ESRs (Section 4.1) each with 
nearly identical bidding behavior. From the best-fit curve, the ESR computes the expected price 
(which is now a function of battery power) and uses this to determine its optimal charge and 
discharge schedule. This is a convex but nonlinear optimization problem. 

To submit the ESR schedule as ‘fixed’ the ESR provides extreme bid values for its optimal 
schedule. For discharge bids, the ESR submits an offer at the lowest system offer value, which 
in our case is -$25/MWh. For charging bids, the ESR submits bids above the system penalty 
price of $2000/MWh. This ensures that the desired charge and discharge schedules are always 
met. These extreme bids are equivalent to submitting fixed power limits based on charge and 
discharge schedules.  

3.2.3 Bidding Algorithms to Explore in Future Work 

ESR bidding is expected to vary between storage units and these different bidding algorithms 
are expected to have different impacts on the market. Because of these two factors, it will be 
important to further explore ESR bidding algorithms in future work. We propose several 
promising methods in this section. 
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3.2.3.1 Self-Management 

Currently, ISOs/RTOs (market operators) vary in their participation rules for SoC management, 
where existing rules range from an ESR operator being responsible for SoC management to the 
market operator being responsible for SoC management. To model the impacts of ESR 
operator’s being responsible for SoC management, in future research we recommend 
developing a bidding algorithm in which the ESR operator manages their SoC. This requires the 
operator to ensure that the resource has sufficient energy available to charge or discharge 
during the intervals scheduled by the market operator. The resource owner will need to pay any 
unmet schedule at the LMP. In a self-management scheme, the market would not include 
constraints on storage SoC. 

3.2.3.2 Deep Reinforcement Learning 

Deep reinforcement learning (DRL) offers a way to leverage artificial intelligence and machine 
learning to maximize storage unit profits. DRL can be built atop the price delta formulation to 
dynamically find the optimal price delta. Alternatively, DRL can be used to create a more flexible 
bidding structure in which charge and discharge bids vary in each interval throughout the day. 
While DRL is a powerful tool, it requires significant training data and can be more difficult to 
implement in a bi-level problem (where the first level is the day-ahead and the second level is 
the real-time market). 

3.2.3.3 Stochastic 

Renewable forecast uncertainty can have a significant impact on prices. ESRs that incorporate 
this stochastic variability into their bidding algorithm outperform those that employ deterministic 
bidding (Krishnamurty et al. 2017). In this scenario, the ESR would need to estimate the 
forecast uncertainty and generate bids that maximize profits over the range of potential prices. 

3.2.3.4 Monte Carlo 

One limitation of this simulation is that it the results represent a particular realization of the 
demand and renewable forecast. By running multiple instances of the simulation in a Monte 
Carlo style, we could assess the sensitivity of these results to changes in demand and 
renewable generation. This approach is also of value in determining the impact on the market 
under uncommon operating conditions, such as unusually low renewable generation paired with 
unusually high load. For the Monte Carlo simulation, any of the bidding algorithms could be 
adopted, showing the market sensitivity under a particular ESR bidding strategy. 
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4.0 Simulation Results 

In this section we first describe our simulation details. We then present results exploring the 
optimal price delta, followed by our key findings from different bidding algorithms. 

4.1 Simulation Details 

To perform our modeling simulation, we leverage PNNL’s Wholesale Electricity Analysis via 
Simulation & Learning Experiments (WEASLE) platform (Eldridge et al., 2024). The topology of 
the WEASLE platform is an aggregated zonal topology from the 2030 WECC Common Case 
database that consists of 38 nodes created from the 38 balancing authorities (load areas, BA) of 
the Western Interconnection (WECC, 2021). In the WEASLE platform generation capacity at 
each node is created by aggregating values from each BA. Transmission topology, line ratings, 
and path limits are modified from the 2030 WECC Common Case database. Hourly load profiles 
for each BA are adjusted as needed to ensure deliverability. Wind and solar generation shapes 
are based on the 2009 NREL wind data and 2009 NREL irradiance and weather data, 
respectively. Hydro resources are modeled based on EIA Form 906/920 monthly average 
generation values for the year 2009 – a typical hydrologic year. Endogenous parameters within 
the market clearing model determine ancillary services including regulation up, regulation down, 
spinning reserve, and non-spinning reserve.  

The baseline simulation has three high renewables scenarios designed to reflect summer, 
shoulder (spring/fall) and winter seasons. Baseline resource capacities are shown in Table 4. 
Baseline battery (15%), wind (15%), and solar (25%) capacities are designed to be higher than 
currently planned for in the 2030 WECC Common Case database. The baseline also has lower 
amounts of coal (2%), and natural gas (20%) capacity as compared to the 2030 WECC 
Common Case database. Demand response (3%) capacity is similar to the 2030 WECC 
Common Case database.  

 
Table 4: Simulation Resource Portfolio Capacity Compared to 2030 WECC Common Case 

Resource WECC ADS 2030a Baseline Scenario 

 Percentage of Total Capacity 

Battery Storage 1% 15% 

Wind 12% 15% 

Solar 13% 25% 

NG-Steam/Combined Cycle 31% 20% 

Coal 5% 2% 

Demand Response 3% 3% 

Other Renewables 35% 20% 

aThe 2030 WECC Common Case is available at: https://www.wecc.org/program-areas/reliability-planning-
performance-analysis/reliability-modeling/anchor-data-set-ads   

Our market follows a conventional two-settlement market with day-ahead (SCUC) and real-time 
(SCED) components. We model the real-time market on 15-minute intervals. For both markets, 
renewable and load forecasts are provided to the storage unit resources. The forecasts are 
drawn from a set of actual values with correlated noise added following the prescription in 

https://www.wecc.org/program-areas/reliability-planning-performance-analysis/reliability-modeling/anchor-data-set-ads
https://www.wecc.org/program-areas/reliability-planning-performance-analysis/reliability-modeling/anchor-data-set-ads
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(Ghosal et al., 2023). As the time approaches the real-time interval, the forecast converges on 
the actual value, reflecting an improved forecast with a short lookahead window. The WEASLE 
platform includes a storage resource offer type, enabling SoC management by the market 
operator. This is representative of CAISO or NYISO under current ISO tariffs (Table 1). 

We run the simulation for 30 days starting on October 1st. Our preliminary results showed that 
the fall season has high battery storage income, comparable to July performance, with a more 
modest load requirement. Our network includes 12 storage units with 640MWh capacity and a 
maximum charge and discharge rate of 125MW. 

We repeat the simulation for each of the bidding algorithms described in 3.2.2. All 12 units use 
the same bidding algorithm in each scenario, but their profits, physical characteristics (SoC, 
temperature), and degradation costs are tracked individually.  

4.2 Price Delta 

In this section, we obtain an approximately optimal price delta for the ESR discharge offer (both 
analytically and numerically).  

4.2.1 Analytical Price Delta 

Further assumptions are made to derive the analytical optimal discharge offer markup Δ𝑝. That 

is, we assume a perfect forecast of the day ahead price is available, and that ESRs discharge 
all of their charged energy at the end of simulation time horizon. Note that the profit 
maximization objective function in eq. (8) is calculated with discrete prices at each time interval. 
According to the profit formulation, the revenue of an ESR from discharging should cover the 
charging and degradation costs. The price delta bids for discharging affect the charge profile, 
average SoC level, and the depth of discharge. To simplify the derivation, we assume all 

degradation cost factors (𝐶EoL , 𝐴eff, 𝐴life , 𝐾T, 𝐴cap, 𝐴Tcap , 𝐾D, 𝐾S) are constants, and then each 

cost component can be rewritten with constant factor parameters (𝐴cyc
, 𝐴thermal

, 𝐴SoC
, 𝐴DoD

)  and 

variables (‖𝑖bat‖
1

, ‖𝑖bat‖
2

2
, 𝜎, 𝛿̅). By assuming all the variables in eq. (3)-(7) are continuous and 

differentiable, the first-order derivative of the profit objective function with respect to the price 
delta is: 
 

 
𝜕𝜋

𝜕∆𝑝
= ⋀ [𝜆𝑡

dis
𝜕𝑝𝑡

dis

𝜕∆𝑝
− 𝜆𝑡

𝑐ℎ
𝜕𝑝𝑡

𝑐ℎ

𝜕∆𝑝
− 𝐴cyc

𝜕‖𝑖bat‖
1

𝜕∆𝑝
− 𝐴thermal

𝜕 (‖𝑖bat‖
2

2
)

𝜕∆𝑝
− 𝐴SoC

𝜕𝜎

𝜕∆𝑝
− 𝐴DoD

𝜕𝛿̅

𝜕∆𝑝
] 

(15) 

Where ⋀ = ∑ ∆𝑡𝑡 . As shown in eq. (15)Error! Reference source not found., the analytical 

determination of the relationship between the variables and the price delta is difficult. For 
example, the L-2 norm of the charge profile is nonlinear to the change of charging behaviors. 
For a given price forecast {𝜆𝑡 , 𝑡 = 1,2, … , 𝑇}, with a higher price delta, overall discharge energy 
decreases since discharge only occurs when 𝜆𝑡 > Δ𝑝 and charge only occurs when prices are in 

a lower range. Thus, L1 and L2 norms decrease too because ESRs are more likely to have less 
trading activity/volume when the price delta is higher. Changes in average SoC level and DoD 

depth with increased ∆𝑝 are ambiguous; initially (within some lower ranges, [𝜎, 𝛿̅]), SoC level 

and DoD depth will increase as the price delta increases, but the SoC level and DoD depth will 
decrease when price delta becomes too high as there are fewer opportunities to participate in 



PNNL-37356 

Simulation Results 15 
 

the market. By setting eq. (15) equal to 0, we can obtain the approximately optimal ∆𝑝
∗  in the 

day-ahead market.  

For each ESR in the system, we can estimate a constant factor for each cost component. For 

example, if each unit is assumed to have 5000 cycles during its lifespan (𝐴life = 5000), the 

cycling cost parameter 𝐴cyc can be computed using eq. (3). By assuming each unit has a 

thermal constant of 𝐾𝑇 = 0.1 and a normalized resistance constant of 𝐴resis = 1, the thermal 

stress cost parameter 𝑐therm can be computed. The two remaining cost parameters are 

obtained based on the assumptions that 𝐾S = 0.0005 and 𝐾D = 0.001 for the SoC and DoD cost 

component respectively (that is, 𝑐SoC for each unit of fractional SoC and 𝑐DoD for each unit of 

DoD). For a given price forecast of one day, we further assume ‖𝑖bat‖
1

,  �̅�,  �̅�  have linear 

relationships with ∆𝑝 while ‖𝑖bat‖
2
 has a quadratic relationship with ∆𝑝 . By using 𝐶deg as the 

total degradation and setting the first derivative in eq. (15), to 0, the following equation can be 
obtained 

 

 
∑ ∆𝑡

𝜕(𝜆𝑡𝑝𝑡
dis)

𝜕∆𝑝
𝜆𝑡>∆𝑝

= ∑ ∆𝑡
𝜕(𝜆𝑡𝑝𝑡

ch)

𝜕∆𝑝
𝜆𝑡<∆𝑝

+
𝜕𝐶deg

𝜕∆𝑝
 

(16) 

Where 
𝜕𝐶

deg

𝜕∆𝑝
= −𝐴cyc ∙ 𝛼 − 𝐴thermal

(2𝛽 ∙ ∆𝑝) − 𝐴SoC ∙ 𝛾 − 𝐴DoD𝜑 . The optimal price delta can be 

computed as: 

 
∆𝑝

∗ =
𝐴cyc ∙ 𝛼 + 𝐴SoC ∙ 𝛾 + 𝐴DoD𝜑

�̅� − 𝜃 − 2𝐴thermal ∙ 𝛽
 

(17) 

 

Where �̅� denotes the average price spread between discharging and charging. By setting 
marginal revenue from discharge equal to marginal cost, and by setting parameters 𝛼 =

$3 Ah/MWh,  𝛽 = $0.007
Ah2

MWh2, 𝛾 = $ 0.0002/MWh, and 𝜑 = $ 0.0006/MWh, we can 

approximate the analytical solution for an optimal price delta discharge offer based on price 
forecast. For example,  ∆𝑝

∗ = $20.03/MWh given the price forecast, as shown in Figure 2.  



PNNL-37356 

Simulation Results 16 
 

 
Figure 2: Analytical solution for an optimal price delta discharge based on a sample day ahead 

price forecast 

While the analytical derivation for the optimal price delta (∆𝑝
∗ ) provides valuable theoretical 

insights, it is subject to significant limitations when applied to real-world electricity markets. In 
practice, electricity markets operate with two interdependent marketplaces—day-ahead and 
real-time markets—where price deviations between the two markets introduce additional 
complexity. These deviations are driven by unforeseen changes in supply, demand, and grid 
constraints, which cannot be captured analytically without simplifying assumptions. This 
analytical process also assumes static price forecasts and does not account for dynamic 
impacts from energy storage on the market clearing process. In reality, ESR’s charging and 
discharging decisions impact market clearing prices, especially in the real-time market. The 
absence of this feedback effect limits the applicability of the derived results in markets where 
storage acts as a price maker rather than a price taker. Last, the analytical result relies on 
functional forms (e.g., linear, quadratic) to approximate degradation cost sensitivities, which 
may not fully capture the actual behavior of ESRs due to diverse storage technologies, the 
interdependence of cost components, and other nonlinear, system-specific cost relations.  

4.2.2 Numerical Price Delta 

To determine a more realistic ∆𝑝
∗   for ESRs, we perform simulations for a 30 day time horizon by 

choosing price deltas from the set ∆𝑝∈ {0, $10, $20, $30, $40, $50, $60}/MWh for discharge offer 

and $0/MWh for charging in the day-ahead market based on a hard SoC limit bidding rules. The 
baseline case is when ∆𝑝= 0, meaning that there is a zero marginal cost for both charging and 

discharge offers.  

4.2.3  Market Performance  

First, the impact of changing the price delta on total surplus (sum of consumer and producer 
surplus) is analyzed. We computed the physical market surplus at each interval, including 
consumer (demand) surplus, generation surplus, and battery surplus. For battery surplus, the 

Optimal Price Delta Discharge Based on Day Ahead Price Forecast 
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bid values (opportunity cost) are a proxy for the true degradation cost. We subtracted the bid 
surplus and added the degradation cost to capture the true physical surplus. 

In Figure 3, we plot the percent difference from each of the price deltas relative to the baseline. 
This plot shows the spread of daily differences, with the median values displayed. Compared to 
the baseline case (with default zero marginal cost bid), the price delta has slightly positive 
impacts on total surplus, as shown in Figure 3. For all simulated price deltas, the surplus 
increases from the baseline case by ~0.01 to ~0.04% due to discharging the stored energy at a 
higher price discharge offer delta than the baseline (zero price delta).  Market surplus tends to 
increase with higher price deltas, however changes in surplus are also more widely dispersed. A 
price delta of $40/MWh ( ∆𝑝= $40/MWh) yields the highest market surplus. Although the market 

surpluses for price deltas of $ 20/MWh, $50/MWh, and $60/MWh yield the same median 
increases in market surplus, the higher price deltas have more dispersion; meaning that higher 
price deltas could result in a more significant market surplus with longer simulation time horizon. 

 
Figure 3: Market surplus changes (in percentage) between price deltas and baseline 

As shown in Figure 3, more consistent LMPs are obtained throughout the day with lower price 
deltas ($0/MWh for the baseline and $10/MWh, Delta 10) while the biggest price delta 
($60/MWh, Delta 60) leads to an extreme price spike of $2000/MWh due to an energy shortage. 
For the price delta between $30/MWh (Delta 30) and $50/MWh (Delta 50), there are some price 
spikes at around $500/MWh. The price spread between discharge and charge price shows the 
same trend. Stable prices in the baseline and $10/MWh price delta scenarios yield a very small 
price spread while the largest price delta (Delta 60) leads to a larger price spread. The higher 
the price delta, the fewer ESRs are utilized. Consequently, a higher price delta reduces the 
capability of ESRs to provide flexibility in the system to balance supply and demand, leading to 
higher price volatility in the real time market. Note that the battery has a duration of less than 5 
hours, so it mainly takes the advantage of the price spread in an intraday horizon.   
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Figure 4: Price spread and load-weighted locational marginal prices in RTM. 

4.2.4  Energy Storage Resource Performance 

This section summarizes the performance of ESRs under different price deltas for discharge 
offers. As stated in section Error! Reference source not found., it is difficult to have an explicit 
analytical solution to the optimal price delta under the two-settlement market design due to the 
dynamic and uncertain nature of the market. However, we obtained an approximate solution by 
numerically simulating different scenarios.  

We summed the LMP-based revenue for all storage units across each day of the 30-day 
simulation. This includes both income from discharging and regulation services and subtracts 
expenses from charging. Both DAM and RTM revenue is included in the calculation. Figure 5 
shows the average daily revenue from discharging and reserve services (panel a), the average 
daily degradation cost (panel b) and the average daily net profit (panel c) across all 12 ESRs. 
Compared to our analytical results, which only include revenue from energy arbitrage as a 
simplifying assumption, in the numerical simulation, a small portion of revenue (less than 10% of 
total revenue) is earned in the reserve market. The average daily revenue for ESRs shows a 
decreasing trend as the price delta increases from $10/MWh to $40/MWh which levels off from 
$50/MWh to $60/MWh. As higher price deltas result in lower ESR participation and higher price 
volatility; the revenues earned with the lowest price delta of $10/MWh has the widest range.  
 
Average degradation costs, as shown in Figure 5 panel b display a similar trend, decreasing as 
the price delta increases from $10/MWh to $40/MWh and then leveling off from $50/MWh to 
$60/MWh. The baseline scenario ($0/MWh price delta) has a significantly higher degradation 
cost than the other cases.  
 
Net profits are obtained by subtracting average daily degradation costs from average daily 
revenues, as shown in Figure 5 panel c. For all price deltas, average daily net profits are 
negative, indicating the costs associated with efficiency loss and battery degradation are not 
fully covered by ESRs’ revenues.  Due to the high degradation costs1, the baseline case (zero 

 
1 We benchmarked degradation costs to values reported in the literature. For instance, a mid-case 

projection for 2030 indicates a capital cost of approximately $326/kWh for a 4-hour lithium-ion battery 
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marginal cost for both charging and discharging) has the lowest net profit. As price deltas 
increase, net profits improve. At a $60/MWh price delta, the median ESR gains a 40% increase 
in net profits (40% reduction in net losses) compared to that of the baseline case.  
 
To conclude, based on our simulations, there exists a threshold (optimal) price delta (∆𝑝

∗ ) at 

which an ESR earns their maximum profit by balancing their potential revenue with degradation 
cost, given existing market conditions. When the price delta (markup for discharging) is above 

that optimal value  (∆𝑝> ∆𝑝
∗ ), net profits no longer increase as the price delta increases because 

higher price deltas lead to fewer dispatch opportunities (despite stable degradation costs). On 

the other hand, when the price delta is below the optimal value  (∆𝑝< ∆𝑝
∗ ), net profits no longer 

decrease as the price delta decreases because lower price deltas lead to higher degradation 
costs, although the ESR has more discharge opportunities. 

  

       (a) Average daily revenue                                        (b) Average daily degradation cost  

 
Figure 5: Average daily revenue (a), average daily degradation cost (b), and average daily net 

profits (c) of all 12 storage units. Median values are shown for each scenario. 

 
system. With an expected charge-discharge cycles of 4000, a degradation cost of $81.5/MWh is 
estimated. 
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Figure 6 shows the degradation cost metrics associated with the cycling, thermal, average SoC, 
and DoD degradation costs, which include the changes of L1, L2 norm for charge profile, 
average SoC level and the depth of discharge for all 12 storage units and across all 30 days. 
The results indicate complex interactions between the four degradation cost components and 
the price deltas. As price delta increases, both L1 and L2 norms show consistent decreases, 
reflecting reduced battery utilization and power intensity. The average SoC level and DoD 
exhibit similar patterns, decreasing until price delta reaches $40/MWh and then stabilizing 
slightly above the minimum level. The degradation cost metrics show consistent conclusion with 
average degradation cost shown in Figure 5, panel b, degradation costs decrease when price 
delta increases within some range.  

 
Figure 6: L1 norm, L2 norm, average SoC (in percentage), and DoD (in percentage) of all 12 
storage units. Median values are shown at the top of each figure. 

 

4.3 Price Delta with State of Charge Limits Compared to Baseline 
and Self-Schedule Algorithms 

In this section we compare the performance of both the price delta with the inclusion of a hard 
SoC limit which we posit should crudely link the day-ahead and real-time market through SoC 
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management and approximately represent degradation costs; as well as the price delta with the 
inclusion of a soft SoC limit to better link the day-ahead and real-time markets while 
approximately representing degradation costs. We compare the performance of both algorithms 
to the baseline algorithm ($0 price delta with hard SoC Limit) as well as a self-scheduling 
algorithm which is based on a schedule to maximize profits over expected prices.  
 
The algorithms analyzed in this section are as follows: 

• Baseline ($0 price delta with hard SoC Limit) 

• Hard SoC Limit ($30 price delta1) 

• Soft SoC Limit ($25 price delta1) 

• Self-Scheduled 

We first examine the impact on the overall market behavior, including the market surplus and 
the real-time locational marginal price (LMP). Then we explore the impact on storage operation 
and compare ESR profitability and degradation between scenarios. 

4.3.1 Market Performance 

ESR bidding behavior can have multiple impacts on the market, including a change in the 
overall surplus and adjustments to the LMP. In Figure 7 we show the LMP over the first two 
days of the horizon. While prices fluctuate, for much of the day the overall LMPs are 
comparable between scenarios. In all scenarios, the LMP is lowest during the middle of the day 
(when there is high solar availability) and highest in the evening hours. LMP remains high 
overnight, with a small peak in the morning. 

We notice that with the baseline ESR bidding algorithm, LMPs vary the least during the day. 
Baseline LMPs remain higher during the day and are slightly lower during the evening peak 
relative to the other bidding algorithms. The soft SoC algorithm most closely tracks the baseline. 
The hard SoC algorithm is similar but does contain several modest LMP price spikes. The self-
scheduled algorithm is the only algorithm that leads to extreme price spikes, reaching the 
energy shortage penalty ($2000/MWh) during the peaks. Although extreme price spikes do not 
occur consistently over the entire 30 days, the self-scheduled algorithm does consistently result 
in the highest average SoC levels. This may indicate the exercise of market power by the ESR 
algorithm, which can increase profits by limiting discharge during peak hours. 

Over the entire 30-day simulation, the average baseline LMPs are very close to those of the soft 
SoC limit. The hard SoC limit average LMP is only slightly larger than the baseline. Only the 
self-scheduled algorithm has a significantly larger average LMP. 

 
1 In future work price deltas would be consistent for both the hard and soft SoC limits. Currently, these 

have different limits due to time and budget constraints. The $5 price delta does not make a significant 
difference in overall profit (see Section 4.2), nor does it affect the conclusions of this report. 
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Figure 7: Real-time average (load-weighted) locational marginal prices for the first two 

simulation days. Prices are shown for four ESR bidding strategies. 
 
We also examine the impact of bidding algorithms on the market surplus. Here we define 
surplus as the value of load served minus the cost of generation. However, storage unit bids are 
not necessarily representative of the true costs of ESR delivery. The cost incurred through 
degradation is a better representation of the cost to operate the battery. We therefore subtract 
the storage unit bid cost from the overall market surplus, then replace it with our computed 
degradation cost. 
 
The surplus is shown in Figure 8. This compares the percentage change of each bidding 
algorithm to the baseline. In all cases, the surplus decreases by ~0.01 to 0.02%. In all three 
scenarios, this difference is not statistically significant as the 0% change value is within, or 
nearly within one quartile from the median. The self-scheduled case shows the most deviation, 
which could become statistically significant under a longer simulation. While this is a small 
percentage, it can still lead to a non-trivial dollar value due to high overall surplus (~$150 million 
loss in total surplus in this simulation). 
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Figure 8: Market surplus as a percentage of the baseline surplus showing the distribution across 

each of the 30 days of the simulation. Median values are shown for each scenario. 

 

4.3.2 Energy Storage Resource Performance 

Operators of ESR will seek algorithms that maximize the storage unit profit. In this section, we 
examine how the storage units are physically dispatched and the corresponding profitability. 

Figure 9 shows the average state-of-charge profile across a day. These profiles are averaged 
across all 12 storage units and across all 30 days. A dotted line is shown at 128MWh, 
demonstrating the minimum SoC capacity allowed in our simulation. All the algorithms have the 
same general behavior. Some charge is reserved overnight then the storage unit discharges a 
little during the morning peak in price (see Figure 7). During the middle of the day, when solar 
output is significant, the storage units charge. Finally, they discharge to a low level over the 
evening hours, approximately 4:00pm to 10:00pm, when prices are typically high. 

The primary difference between the scenarios is the maximum state of charge. The baseline 
case reaches a high maximum, roughly 550MWh (out of 608MWh capacity), and discharges to 
the lowest level in the morning around hour 7. Both the self-scheduled and the soft SoC limit 
reach a peak of ~375MWh, while the hard SoC limit stops around 300MWh. 
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Figure 9: Average 1-day storage unit state of charge across all days and storage units. Curves 

are shown for four bidding algorithms. 

. 

The profits are shown in Figure 10. In Figure 10, panel a) we see the revenue earned by the 
storage unit in the market. Values are scaled by the MWh capacity, showing the expected daily 
profit for an ESR per MWh of installed capacity. This includes profits from providing both energy 
and reserve services less expenses from charging. While reserves are included, in our 
simulation, arbitrage is responsible for most of the profits with >90% of revenue attributed to 
arbitrage. While there is a lot of overlap between scenarios, we see that the hard SoC limit 
returns the lowest median profit and the self-scheduled algorithm returns the highest median 
profit. The baseline case covers the widest range, including some days with high profits and 
other days with negative profits (losses). 
 
While the storage units tend to earn a reasonable profit in the market, this must be weighed 
against the degradation cost incurred by the storage unit (see 3.2.2.2). Figure 10 b) shows the 
range of degradation cost by scenario. Here the baseline has a significantly higher degradation 
cost than other cases. All the bidding algorithms have comparable degradation cost with the 
lowest median value found with the hard SoC limit. 
 
The net revenue, market profits less degradation cost, is shown in Figure 10, panel c). We can 
immediately see that regardless of the scenario, the storage unit reports a loss. Due to the high 
degradation, the baseline case (standard ZMC) has the lowest net profit. The self-scheduled 
shows the smallest loss, although it is very similar to the hard SoC limit. The soft SoC limit tends 
to slightly larger losses. 
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a) Average Daily Market Revenue   b)  Average Daily Degradation Cost 

 
c) Average Daily Net Revenue 

 
Figure 10: Average profits of all 12 storage ($/MWh of capacity). This includes in panel a) the 

revenue earned by storage units in the market, panel b) the estimated degradation cost 
incurred, and panel c) the net revenue (sum of (a) and (b)). Median values are shown for each 

scenario. 
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5.0 Discussion 

Based on our results, we can draw several conclusions. The first is that the inclusion of ESR 
bidding behavior has a small impact on overall market surplus. Though all scenarios have either 
a negative median surplus or positive median surplus relative to the baseline, the shift is too 
small to consider significant. However, we can clearly see that the ESR’s bidding assumptions 
affect LMPs. In particular, the self-scheduling algorithm leads to several cases of extreme LMP, 
behavior which is not desirable from a market operator perspective. This suggests that enabling 
ESR participation in the market by allowing ESRs to submit bids and offers based on prevailing 
prices is advantageous for the market operator. Furthermore, our results show that ESR bidding 
can affect price formation and market outcomes. 

Although ESR bidding did not significantly impact market surplus, it did impact LMPs as well as 
individual storage unit profitability. We found that both self-scheduling as well as incorporating a 
price delta with an end-of-interval maximum state-of-charge (hard) limit resulted in comparable 
net revenue, and either self-scheduling to maximize profits based on expected prices or 
allowing for a price delta with some form of state-of-charge management also significantly 
outperformed the baseline when degradation costs were considered. ESRs are both less 
profitable and poorly utilized when they are dispatched as ZMC resources; this is clear evidence 
that storage unit operators should not bid into the market as ZMC resources. Our algorithms can 
be considered as a starting point for developing more accurate economic valuations for ESRs, 
as financially motivated ESR operators would likely develop even more sophisticated and 
profitable bidding algorithms. 

A more pressing concern is that, in this high-renewables simulation, ESR were not able to make 
a net profit when accounting for degradation cost. We note that our simulation is not calibrated 
to current reserve prices, meaning that ESR units could earn more in reserves. We also have 
not modeled capacity markets or federal and state subsidies which, in many cases, ESR units 
utilize to increase revenue. Nevertheless, under the structure of this simulation, there is no 
incentive to invest in ESR, despite potential benefits to the grid. Furthermore, we have not 
included any operations and maintenance costs, which would lead to even greater losses.  

We can quickly estimate the average charge and discharge price differential needed for an ESR 
to profit in the market. We will adopt a typical ESR with a 16-year lifespan, a $208 million capital 
cost (see Table 2), and a discharge of 125MW for four hours per day. We will assume 90% of 
ESR revenue comes from arbitrage, as it did in this simulation. Under these circumstances, the 
ESR will annually discharge a total of 

182,500 MWh = 125MW ×
4h

d
×

365d

yr
 

For the profits to equal the capital cost we require an average LMP gain (the difference between 
the charging and discharging LMP) based on a simplified approximation to the levelized cost of 
storage (LCOS):  

𝐿𝐶𝑂𝑆 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙

∑ 𝑀𝑊ℎ𝑡 ∗ (1 + 𝑟)−𝑡
𝑡

 

Assuming a discount rate of 3% and that revenues from arbitrage will need to cover 90% of 
capital costs (and 10% will come from other services, such as reserves). 
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$82/MWh =
$208,000,000 ∗ .9

{
182,500

(1 + .03)1 +
182,500

(1 + .03)2 …
182,500

(1 + .03)16}
 

This shows the ESR would need an average price differential of $82/MWh for its entire lifetime 
to cover its capital cost. While this neglects a number of considerations (for example, operating 
and maintenance costs as well as the capital charge rate), it sets an approximate value for the 
price at which ESR becomes profitable. 

Based on Figure 7, we can see that in most scenarios, the high and low prices differ by roughly 
$40/MWh, excluding price spikes. This is well below the $82/MWh target. Furthermore, from the 
state-of-charge shown in Figure 9, we can see that, except for the baseline, these units are not 
fully charging and discharging in a single day. At most, they are discharging for the equivalent of 
~2 hours at max discharge. If we instead assume that the ESR discharges 2 hours per day, we 
can use the same logic to compute the LCOS at which the storage unit can break even.  

$163/𝑀𝑊ℎ =
$208,000,000 ∗ .9

{
91,250

(1 + .03)1 +  
91,250

(1 + .03)2 …
91,250

(1 + .03)16}
 

This means that for our scenario, the storage unit would need to earn $163/MWh for its entire 
operational life to cover its capital cost. The need for additional revenue is even more significant 
if we require the storage unit to earn a positive return over its lifetime. 

While these are approximate figures, they highlight the need for an alternative market structure 
to enable effective ESR participation. First, increasing profits from reserve products would help 
reduce the percentage of income from arbitrage. Arbitrage revenue may also increase under 
alternative settlement structures like a multi-settlement or a rolling-horizon market (Eldridge et 
al. 2024). Other revenue could come in the form of capacity payments or markets rewarding the 
flexibility provided by ESR (Anuta et al. 2014). Regulatory tax incentives could also help enable 
ESR to function as a profitable grid resource. 

Future work can include the addition of new market structures to gauge their impact. This can 
include modeling ESR revenue under forecast errors to assess the impact of uncertainty on the 
robustness of market behavior. This could help determine the contribution of ESRs to system 
reliability in the face of uncertainty. 
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Appendix A – Potential Energy Storage Resource Models 

 

A.1 Energy Storage Resource Representation Background 

Improving battery energy storage models for electricity planning tools is a key consideration. In 
the literature, many battery equivalent modeling approaches are available to simulate battery 
performance, predict lifecycle behavior, and optimize grid integration, thereby enhancing the 
reliability and efficiency of energy systems. Battery equivalent models are used to understand 
and optimize the behavior of batteries when providing grid services (Pratt et al. 2020). Five 
battery equivalent models are summarized, which include electrical equivalent circuit models, 
electrochemical models, empirical models, data-driven models, and hybrid models. 

A.1.1 Electrical Equivalent Circuit Models 

Electrical equivalent circuit models are widely used due to their simplicity and effectiveness in 
representing battery dynamics. These models typically consist of resistors, capacitors, and 
voltage sources. 

- Thevenin Model: Comprises a voltage source in series with an internal resistance and 
one or more RC (resistor-capacitor) networks to capture transient behavior. This model 
is effective for simulating the immediate voltage response of batteries under load 
conditions. 

- Randles Model: Extends the Thevenin model by including elements like charge transfer 
resistance and Warburg impedance to account for electrochemical processes, making it 
suitable for more detailed analysis. 

- Dual Polarization Model: Incorporates additional RC networks to represent more 
complex transient behaviors and provide a more accurate representation of the battery's 
dynamic response. 

 

A.1.2 Electrochemical Models 

Electrochemical models provide a detailed understanding of the internal processes within 
batteries, offering insights into both the electrode and electrolyte phases. 

- Pseudo Two-Dimensional (P2D) Model: This model captures the electrochemical 
processes in two dimensions, accounting for spatial variations within the electrodes and 
the electrolyte. It is highly accurate but computationally intensive. 

- Single Particle Model (SPM): Simplifies the P2D model by representing each electrode 
with a single particle, reducing computational requirements while still capturing essential 
dynamics. 

 

A.1.3 Empirical Models 

Empirical models are based on fitting experimental data to mathematical equations, providing 
straightforward predictions without detailed insights into the underlying processes. 
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- Equivalent Full Order Model (EFOM): Uses comprehensive parameter sets derived from 
experimental data to predict battery behavior under various load conditions. 

- Equivalent Reduced Order Model (EROM): Streamlines the EFOM by reducing the 
number of parameters, enhancing computational efficiency while retaining reasonable 
accuracy. 

 

A.1.4 Data-Driven Models 

Data-driven models leverage historical data and machine learning techniques to predict battery 
performance, offering high adaptability and accuracy. 

- Regression Models: Utilize statistical methods to fit historical data and predict future 
performance. These models are relatively simple but can be limited by the quality of the 
data. 

- Neural Networks: Employ deep learning algorithms to capture complex, nonlinear 
relationships within the data, providing high predictive accuracy at the cost of increased 
computational complexity. 

- Kalman Filter-Based Models: Use recursive algorithms to estimate battery state of charge 
(SoC) and state of health (SoH) in real-time, combining model-based and data-driven 
approaches for robust performance. 

 

A.1.5 Hybrid Models 

Hybrid models integrate elements from different modeling approaches to leverage their 
respective strengths and mitigate their weaknesses. 

- Electrochemical-Mechanical Models: Combine electrochemical processes with mechanical 
effects such as stress and strain, offering a comprehensive view of battery behavior under 
various conditions. 

- Electrical-Thermal Models: Couple electrical circuit models with thermal models to account 
for the influence of temperature on battery performance, critical for applications in varying 
environmental conditions. 
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